1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern kmem_cache_t *sctp_bucket_cachep; 111 112 /* Get the sndbuf space available at the time on the association. */ 113 static inline int sctp_wspace(struct sctp_association *asoc) 114 { 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130 } 131 132 /* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142 { 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 160 } 161 162 /* Verify that this is a valid address. */ 163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 164 int len) 165 { 166 struct sctp_af *af; 167 168 /* Verify basic sockaddr. */ 169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 170 if (!af) 171 return -EINVAL; 172 173 /* Is this a valid SCTP address? */ 174 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 175 return -EINVAL; 176 177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 /* Look up the association by its id. If this is not a UDP-style 184 * socket, the ID field is always ignored. 185 */ 186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 187 { 188 struct sctp_association *asoc = NULL; 189 190 /* If this is not a UDP-style socket, assoc id should be ignored. */ 191 if (!sctp_style(sk, UDP)) { 192 /* Return NULL if the socket state is not ESTABLISHED. It 193 * could be a TCP-style listening socket or a socket which 194 * hasn't yet called connect() to establish an association. 195 */ 196 if (!sctp_sstate(sk, ESTABLISHED)) 197 return NULL; 198 199 /* Get the first and the only association from the list. */ 200 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 202 struct sctp_association, asocs); 203 return asoc; 204 } 205 206 /* Otherwise this is a UDP-style socket. */ 207 if (!id || (id == (sctp_assoc_t)-1)) 208 return NULL; 209 210 spin_lock_bh(&sctp_assocs_id_lock); 211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 212 spin_unlock_bh(&sctp_assocs_id_lock); 213 214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 215 return NULL; 216 217 return asoc; 218 } 219 220 /* Look up the transport from an address and an assoc id. If both address and 221 * id are specified, the associations matching the address and the id should be 222 * the same. 223 */ 224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 225 struct sockaddr_storage *addr, 226 sctp_assoc_t id) 227 { 228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 229 struct sctp_transport *transport; 230 union sctp_addr *laddr = (union sctp_addr *)addr; 231 232 laddr->v4.sin_port = ntohs(laddr->v4.sin_port); 233 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 234 (union sctp_addr *)addr, 235 &transport); 236 laddr->v4.sin_port = htons(laddr->v4.sin_port); 237 238 if (!addr_asoc) 239 return NULL; 240 241 id_asoc = sctp_id2assoc(sk, id); 242 if (id_asoc && (id_asoc != addr_asoc)) 243 return NULL; 244 245 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 246 (union sctp_addr *)addr); 247 248 return transport; 249 } 250 251 /* API 3.1.2 bind() - UDP Style Syntax 252 * The syntax of bind() is, 253 * 254 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 255 * 256 * sd - the socket descriptor returned by socket(). 257 * addr - the address structure (struct sockaddr_in or struct 258 * sockaddr_in6 [RFC 2553]), 259 * addr_len - the size of the address structure. 260 */ 261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 262 { 263 int retval = 0; 264 265 sctp_lock_sock(sk); 266 267 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 268 sk, addr, addr_len); 269 270 /* Disallow binding twice. */ 271 if (!sctp_sk(sk)->ep->base.bind_addr.port) 272 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 273 addr_len); 274 else 275 retval = -EINVAL; 276 277 sctp_release_sock(sk); 278 279 return retval; 280 } 281 282 static long sctp_get_port_local(struct sock *, union sctp_addr *); 283 284 /* Verify this is a valid sockaddr. */ 285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 286 union sctp_addr *addr, int len) 287 { 288 struct sctp_af *af; 289 290 /* Check minimum size. */ 291 if (len < sizeof (struct sockaddr)) 292 return NULL; 293 294 /* Does this PF support this AF? */ 295 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 296 return NULL; 297 298 /* If we get this far, af is valid. */ 299 af = sctp_get_af_specific(addr->sa.sa_family); 300 301 if (len < af->sockaddr_len) 302 return NULL; 303 304 return af; 305 } 306 307 /* Bind a local address either to an endpoint or to an association. */ 308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 309 { 310 struct sctp_sock *sp = sctp_sk(sk); 311 struct sctp_endpoint *ep = sp->ep; 312 struct sctp_bind_addr *bp = &ep->base.bind_addr; 313 struct sctp_af *af; 314 unsigned short snum; 315 int ret = 0; 316 317 /* Common sockaddr verification. */ 318 af = sctp_sockaddr_af(sp, addr, len); 319 if (!af) { 320 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 321 sk, addr, len); 322 return -EINVAL; 323 } 324 325 snum = ntohs(addr->v4.sin_port); 326 327 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 328 ", port: %d, new port: %d, len: %d)\n", 329 sk, 330 addr, 331 bp->port, snum, 332 len); 333 334 /* PF specific bind() address verification. */ 335 if (!sp->pf->bind_verify(sp, addr)) 336 return -EADDRNOTAVAIL; 337 338 /* We must either be unbound, or bind to the same port. */ 339 if (bp->port && (snum != bp->port)) { 340 SCTP_DEBUG_PRINTK("sctp_do_bind:" 341 " New port %d does not match existing port " 342 "%d.\n", snum, bp->port); 343 return -EINVAL; 344 } 345 346 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 347 return -EACCES; 348 349 /* Make sure we are allowed to bind here. 350 * The function sctp_get_port_local() does duplicate address 351 * detection. 352 */ 353 if ((ret = sctp_get_port_local(sk, addr))) { 354 if (ret == (long) sk) { 355 /* This endpoint has a conflicting address. */ 356 return -EINVAL; 357 } else { 358 return -EADDRINUSE; 359 } 360 } 361 362 /* Refresh ephemeral port. */ 363 if (!bp->port) 364 bp->port = inet_sk(sk)->num; 365 366 /* Add the address to the bind address list. */ 367 sctp_local_bh_disable(); 368 sctp_write_lock(&ep->base.addr_lock); 369 370 /* Use GFP_ATOMIC since BHs are disabled. */ 371 addr->v4.sin_port = ntohs(addr->v4.sin_port); 372 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 373 addr->v4.sin_port = htons(addr->v4.sin_port); 374 sctp_write_unlock(&ep->base.addr_lock); 375 sctp_local_bh_enable(); 376 377 /* Copy back into socket for getsockname() use. */ 378 if (!ret) { 379 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 380 af->to_sk_saddr(addr, sk); 381 } 382 383 return ret; 384 } 385 386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 387 * 388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 389 * at any one time. If a sender, after sending an ASCONF chunk, decides 390 * it needs to transfer another ASCONF Chunk, it MUST wait until the 391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 392 * subsequent ASCONF. Note this restriction binds each side, so at any 393 * time two ASCONF may be in-transit on any given association (one sent 394 * from each endpoint). 395 */ 396 static int sctp_send_asconf(struct sctp_association *asoc, 397 struct sctp_chunk *chunk) 398 { 399 int retval = 0; 400 401 /* If there is an outstanding ASCONF chunk, queue it for later 402 * transmission. 403 */ 404 if (asoc->addip_last_asconf) { 405 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 406 goto out; 407 } 408 409 /* Hold the chunk until an ASCONF_ACK is received. */ 410 sctp_chunk_hold(chunk); 411 retval = sctp_primitive_ASCONF(asoc, chunk); 412 if (retval) 413 sctp_chunk_free(chunk); 414 else 415 asoc->addip_last_asconf = chunk; 416 417 out: 418 return retval; 419 } 420 421 /* Add a list of addresses as bind addresses to local endpoint or 422 * association. 423 * 424 * Basically run through each address specified in the addrs/addrcnt 425 * array/length pair, determine if it is IPv6 or IPv4 and call 426 * sctp_do_bind() on it. 427 * 428 * If any of them fails, then the operation will be reversed and the 429 * ones that were added will be removed. 430 * 431 * Only sctp_setsockopt_bindx() is supposed to call this function. 432 */ 433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 434 { 435 int cnt; 436 int retval = 0; 437 void *addr_buf; 438 struct sockaddr *sa_addr; 439 struct sctp_af *af; 440 441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 442 sk, addrs, addrcnt); 443 444 addr_buf = addrs; 445 for (cnt = 0; cnt < addrcnt; cnt++) { 446 /* The list may contain either IPv4 or IPv6 address; 447 * determine the address length for walking thru the list. 448 */ 449 sa_addr = (struct sockaddr *)addr_buf; 450 af = sctp_get_af_specific(sa_addr->sa_family); 451 if (!af) { 452 retval = -EINVAL; 453 goto err_bindx_add; 454 } 455 456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 457 af->sockaddr_len); 458 459 addr_buf += af->sockaddr_len; 460 461 err_bindx_add: 462 if (retval < 0) { 463 /* Failed. Cleanup the ones that have been added */ 464 if (cnt > 0) 465 sctp_bindx_rem(sk, addrs, cnt); 466 return retval; 467 } 468 } 469 470 return retval; 471 } 472 473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 474 * associations that are part of the endpoint indicating that a list of local 475 * addresses are added to the endpoint. 476 * 477 * If any of the addresses is already in the bind address list of the 478 * association, we do not send the chunk for that association. But it will not 479 * affect other associations. 480 * 481 * Only sctp_setsockopt_bindx() is supposed to call this function. 482 */ 483 static int sctp_send_asconf_add_ip(struct sock *sk, 484 struct sockaddr *addrs, 485 int addrcnt) 486 { 487 struct sctp_sock *sp; 488 struct sctp_endpoint *ep; 489 struct sctp_association *asoc; 490 struct sctp_bind_addr *bp; 491 struct sctp_chunk *chunk; 492 struct sctp_sockaddr_entry *laddr; 493 union sctp_addr *addr; 494 union sctp_addr saveaddr; 495 void *addr_buf; 496 struct sctp_af *af; 497 struct list_head *pos; 498 struct list_head *p; 499 int i; 500 int retval = 0; 501 502 if (!sctp_addip_enable) 503 return retval; 504 505 sp = sctp_sk(sk); 506 ep = sp->ep; 507 508 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 509 __FUNCTION__, sk, addrs, addrcnt); 510 511 list_for_each(pos, &ep->asocs) { 512 asoc = list_entry(pos, struct sctp_association, asocs); 513 514 if (!asoc->peer.asconf_capable) 515 continue; 516 517 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 518 continue; 519 520 if (!sctp_state(asoc, ESTABLISHED)) 521 continue; 522 523 /* Check if any address in the packed array of addresses is 524 * in the bind address list of the association. If so, 525 * do not send the asconf chunk to its peer, but continue with 526 * other associations. 527 */ 528 addr_buf = addrs; 529 for (i = 0; i < addrcnt; i++) { 530 addr = (union sctp_addr *)addr_buf; 531 af = sctp_get_af_specific(addr->v4.sin_family); 532 if (!af) { 533 retval = -EINVAL; 534 goto out; 535 } 536 537 if (sctp_assoc_lookup_laddr(asoc, addr)) 538 break; 539 540 addr_buf += af->sockaddr_len; 541 } 542 if (i < addrcnt) 543 continue; 544 545 /* Use the first address in bind addr list of association as 546 * Address Parameter of ASCONF CHUNK. 547 */ 548 sctp_read_lock(&asoc->base.addr_lock); 549 bp = &asoc->base.bind_addr; 550 p = bp->address_list.next; 551 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 552 sctp_read_unlock(&asoc->base.addr_lock); 553 554 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 555 addrcnt, SCTP_PARAM_ADD_IP); 556 if (!chunk) { 557 retval = -ENOMEM; 558 goto out; 559 } 560 561 retval = sctp_send_asconf(asoc, chunk); 562 if (retval) 563 goto out; 564 565 /* Add the new addresses to the bind address list with 566 * use_as_src set to 0. 567 */ 568 sctp_local_bh_disable(); 569 sctp_write_lock(&asoc->base.addr_lock); 570 addr_buf = addrs; 571 for (i = 0; i < addrcnt; i++) { 572 addr = (union sctp_addr *)addr_buf; 573 af = sctp_get_af_specific(addr->v4.sin_family); 574 memcpy(&saveaddr, addr, af->sockaddr_len); 575 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 576 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 577 GFP_ATOMIC); 578 addr_buf += af->sockaddr_len; 579 } 580 sctp_write_unlock(&asoc->base.addr_lock); 581 sctp_local_bh_enable(); 582 } 583 584 out: 585 return retval; 586 } 587 588 /* Remove a list of addresses from bind addresses list. Do not remove the 589 * last address. 590 * 591 * Basically run through each address specified in the addrs/addrcnt 592 * array/length pair, determine if it is IPv6 or IPv4 and call 593 * sctp_del_bind() on it. 594 * 595 * If any of them fails, then the operation will be reversed and the 596 * ones that were removed will be added back. 597 * 598 * At least one address has to be left; if only one address is 599 * available, the operation will return -EBUSY. 600 * 601 * Only sctp_setsockopt_bindx() is supposed to call this function. 602 */ 603 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 604 { 605 struct sctp_sock *sp = sctp_sk(sk); 606 struct sctp_endpoint *ep = sp->ep; 607 int cnt; 608 struct sctp_bind_addr *bp = &ep->base.bind_addr; 609 int retval = 0; 610 union sctp_addr saveaddr; 611 void *addr_buf; 612 struct sockaddr *sa_addr; 613 struct sctp_af *af; 614 615 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 616 sk, addrs, addrcnt); 617 618 addr_buf = addrs; 619 for (cnt = 0; cnt < addrcnt; cnt++) { 620 /* If the bind address list is empty or if there is only one 621 * bind address, there is nothing more to be removed (we need 622 * at least one address here). 623 */ 624 if (list_empty(&bp->address_list) || 625 (sctp_list_single_entry(&bp->address_list))) { 626 retval = -EBUSY; 627 goto err_bindx_rem; 628 } 629 630 /* The list may contain either IPv4 or IPv6 address; 631 * determine the address length to copy the address to 632 * saveaddr. 633 */ 634 sa_addr = (struct sockaddr *)addr_buf; 635 af = sctp_get_af_specific(sa_addr->sa_family); 636 if (!af) { 637 retval = -EINVAL; 638 goto err_bindx_rem; 639 } 640 memcpy(&saveaddr, sa_addr, af->sockaddr_len); 641 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 642 if (saveaddr.v4.sin_port != bp->port) { 643 retval = -EINVAL; 644 goto err_bindx_rem; 645 } 646 647 /* FIXME - There is probably a need to check if sk->sk_saddr and 648 * sk->sk_rcv_addr are currently set to one of the addresses to 649 * be removed. This is something which needs to be looked into 650 * when we are fixing the outstanding issues with multi-homing 651 * socket routing and failover schemes. Refer to comments in 652 * sctp_do_bind(). -daisy 653 */ 654 sctp_local_bh_disable(); 655 sctp_write_lock(&ep->base.addr_lock); 656 657 retval = sctp_del_bind_addr(bp, &saveaddr); 658 659 sctp_write_unlock(&ep->base.addr_lock); 660 sctp_local_bh_enable(); 661 662 addr_buf += af->sockaddr_len; 663 err_bindx_rem: 664 if (retval < 0) { 665 /* Failed. Add the ones that has been removed back */ 666 if (cnt > 0) 667 sctp_bindx_add(sk, addrs, cnt); 668 return retval; 669 } 670 } 671 672 return retval; 673 } 674 675 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 676 * the associations that are part of the endpoint indicating that a list of 677 * local addresses are removed from the endpoint. 678 * 679 * If any of the addresses is already in the bind address list of the 680 * association, we do not send the chunk for that association. But it will not 681 * affect other associations. 682 * 683 * Only sctp_setsockopt_bindx() is supposed to call this function. 684 */ 685 static int sctp_send_asconf_del_ip(struct sock *sk, 686 struct sockaddr *addrs, 687 int addrcnt) 688 { 689 struct sctp_sock *sp; 690 struct sctp_endpoint *ep; 691 struct sctp_association *asoc; 692 struct sctp_transport *transport; 693 struct sctp_bind_addr *bp; 694 struct sctp_chunk *chunk; 695 union sctp_addr *laddr; 696 union sctp_addr saveaddr; 697 void *addr_buf; 698 struct sctp_af *af; 699 struct list_head *pos, *pos1; 700 struct sctp_sockaddr_entry *saddr; 701 int i; 702 int retval = 0; 703 704 if (!sctp_addip_enable) 705 return retval; 706 707 sp = sctp_sk(sk); 708 ep = sp->ep; 709 710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 711 __FUNCTION__, sk, addrs, addrcnt); 712 713 list_for_each(pos, &ep->asocs) { 714 asoc = list_entry(pos, struct sctp_association, asocs); 715 716 if (!asoc->peer.asconf_capable) 717 continue; 718 719 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 720 continue; 721 722 if (!sctp_state(asoc, ESTABLISHED)) 723 continue; 724 725 /* Check if any address in the packed array of addresses is 726 * not present in the bind address list of the association. 727 * If so, do not send the asconf chunk to its peer, but 728 * continue with other associations. 729 */ 730 addr_buf = addrs; 731 for (i = 0; i < addrcnt; i++) { 732 laddr = (union sctp_addr *)addr_buf; 733 af = sctp_get_af_specific(laddr->v4.sin_family); 734 if (!af) { 735 retval = -EINVAL; 736 goto out; 737 } 738 739 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 740 break; 741 742 addr_buf += af->sockaddr_len; 743 } 744 if (i < addrcnt) 745 continue; 746 747 /* Find one address in the association's bind address list 748 * that is not in the packed array of addresses. This is to 749 * make sure that we do not delete all the addresses in the 750 * association. 751 */ 752 sctp_read_lock(&asoc->base.addr_lock); 753 bp = &asoc->base.bind_addr; 754 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 755 addrcnt, sp); 756 sctp_read_unlock(&asoc->base.addr_lock); 757 if (!laddr) 758 continue; 759 760 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 761 SCTP_PARAM_DEL_IP); 762 if (!chunk) { 763 retval = -ENOMEM; 764 goto out; 765 } 766 767 /* Reset use_as_src flag for the addresses in the bind address 768 * list that are to be deleted. 769 */ 770 sctp_local_bh_disable(); 771 sctp_write_lock(&asoc->base.addr_lock); 772 addr_buf = addrs; 773 for (i = 0; i < addrcnt; i++) { 774 laddr = (union sctp_addr *)addr_buf; 775 af = sctp_get_af_specific(laddr->v4.sin_family); 776 memcpy(&saveaddr, laddr, af->sockaddr_len); 777 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 778 list_for_each(pos1, &bp->address_list) { 779 saddr = list_entry(pos1, 780 struct sctp_sockaddr_entry, 781 list); 782 if (sctp_cmp_addr_exact(&saddr->a, &saveaddr)) 783 saddr->use_as_src = 0; 784 } 785 addr_buf += af->sockaddr_len; 786 } 787 sctp_write_unlock(&asoc->base.addr_lock); 788 sctp_local_bh_enable(); 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each(pos1, &asoc->peer.transport_addr_list) { 795 transport = list_entry(pos1, struct sctp_transport, 796 transports); 797 dst_release(transport->dst); 798 sctp_transport_route(transport, NULL, 799 sctp_sk(asoc->base.sk)); 800 } 801 802 retval = sctp_send_asconf(asoc, chunk); 803 } 804 out: 805 return retval; 806 } 807 808 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 809 * 810 * API 8.1 811 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 812 * int flags); 813 * 814 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 815 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 816 * or IPv6 addresses. 817 * 818 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 819 * Section 3.1.2 for this usage. 820 * 821 * addrs is a pointer to an array of one or more socket addresses. Each 822 * address is contained in its appropriate structure (i.e. struct 823 * sockaddr_in or struct sockaddr_in6) the family of the address type 824 * must be used to distengish the address length (note that this 825 * representation is termed a "packed array" of addresses). The caller 826 * specifies the number of addresses in the array with addrcnt. 827 * 828 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 829 * -1, and sets errno to the appropriate error code. 830 * 831 * For SCTP, the port given in each socket address must be the same, or 832 * sctp_bindx() will fail, setting errno to EINVAL. 833 * 834 * The flags parameter is formed from the bitwise OR of zero or more of 835 * the following currently defined flags: 836 * 837 * SCTP_BINDX_ADD_ADDR 838 * 839 * SCTP_BINDX_REM_ADDR 840 * 841 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 842 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 843 * addresses from the association. The two flags are mutually exclusive; 844 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 845 * not remove all addresses from an association; sctp_bindx() will 846 * reject such an attempt with EINVAL. 847 * 848 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 849 * additional addresses with an endpoint after calling bind(). Or use 850 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 851 * socket is associated with so that no new association accepted will be 852 * associated with those addresses. If the endpoint supports dynamic 853 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 854 * endpoint to send the appropriate message to the peer to change the 855 * peers address lists. 856 * 857 * Adding and removing addresses from a connected association is 858 * optional functionality. Implementations that do not support this 859 * functionality should return EOPNOTSUPP. 860 * 861 * Basically do nothing but copying the addresses from user to kernel 862 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 863 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 864 * from userspace. 865 * 866 * We don't use copy_from_user() for optimization: we first do the 867 * sanity checks (buffer size -fast- and access check-healthy 868 * pointer); if all of those succeed, then we can alloc the memory 869 * (expensive operation) needed to copy the data to kernel. Then we do 870 * the copying without checking the user space area 871 * (__copy_from_user()). 872 * 873 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 874 * it. 875 * 876 * sk The sk of the socket 877 * addrs The pointer to the addresses in user land 878 * addrssize Size of the addrs buffer 879 * op Operation to perform (add or remove, see the flags of 880 * sctp_bindx) 881 * 882 * Returns 0 if ok, <0 errno code on error. 883 */ 884 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 885 struct sockaddr __user *addrs, 886 int addrs_size, int op) 887 { 888 struct sockaddr *kaddrs; 889 int err; 890 int addrcnt = 0; 891 int walk_size = 0; 892 struct sockaddr *sa_addr; 893 void *addr_buf; 894 struct sctp_af *af; 895 896 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 897 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 898 899 if (unlikely(addrs_size <= 0)) 900 return -EINVAL; 901 902 /* Check the user passed a healthy pointer. */ 903 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 904 return -EFAULT; 905 906 /* Alloc space for the address array in kernel memory. */ 907 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 908 if (unlikely(!kaddrs)) 909 return -ENOMEM; 910 911 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 912 kfree(kaddrs); 913 return -EFAULT; 914 } 915 916 /* Walk through the addrs buffer and count the number of addresses. */ 917 addr_buf = kaddrs; 918 while (walk_size < addrs_size) { 919 sa_addr = (struct sockaddr *)addr_buf; 920 af = sctp_get_af_specific(sa_addr->sa_family); 921 922 /* If the address family is not supported or if this address 923 * causes the address buffer to overflow return EINVAL. 924 */ 925 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 926 kfree(kaddrs); 927 return -EINVAL; 928 } 929 addrcnt++; 930 addr_buf += af->sockaddr_len; 931 walk_size += af->sockaddr_len; 932 } 933 934 /* Do the work. */ 935 switch (op) { 936 case SCTP_BINDX_ADD_ADDR: 937 err = sctp_bindx_add(sk, kaddrs, addrcnt); 938 if (err) 939 goto out; 940 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 941 break; 942 943 case SCTP_BINDX_REM_ADDR: 944 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 945 if (err) 946 goto out; 947 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 948 break; 949 950 default: 951 err = -EINVAL; 952 break; 953 }; 954 955 out: 956 kfree(kaddrs); 957 958 return err; 959 } 960 961 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 962 * 963 * Common routine for handling connect() and sctp_connectx(). 964 * Connect will come in with just a single address. 965 */ 966 static int __sctp_connect(struct sock* sk, 967 struct sockaddr *kaddrs, 968 int addrs_size) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 struct sockaddr *sa_addr; 983 void *addr_buf; 984 985 sp = sctp_sk(sk); 986 ep = sp->ep; 987 988 /* connect() cannot be done on a socket that is already in ESTABLISHED 989 * state - UDP-style peeled off socket or a TCP-style socket that 990 * is already connected. 991 * It cannot be done even on a TCP-style listening socket. 992 */ 993 if (sctp_sstate(sk, ESTABLISHED) || 994 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 995 err = -EISCONN; 996 goto out_free; 997 } 998 999 /* Walk through the addrs buffer and count the number of addresses. */ 1000 addr_buf = kaddrs; 1001 while (walk_size < addrs_size) { 1002 sa_addr = (struct sockaddr *)addr_buf; 1003 af = sctp_get_af_specific(sa_addr->sa_family); 1004 1005 /* If the address family is not supported or if this address 1006 * causes the address buffer to overflow return EINVAL. 1007 */ 1008 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1009 err = -EINVAL; 1010 goto out_free; 1011 } 1012 1013 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr, 1014 af->sockaddr_len); 1015 if (err) 1016 goto out_free; 1017 1018 memcpy(&to, sa_addr, af->sockaddr_len); 1019 to.v4.sin_port = ntohs(to.v4.sin_port); 1020 1021 /* Check if there already is a matching association on the 1022 * endpoint (other than the one created here). 1023 */ 1024 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1025 if (asoc2 && asoc2 != asoc) { 1026 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1027 err = -EISCONN; 1028 else 1029 err = -EALREADY; 1030 goto out_free; 1031 } 1032 1033 /* If we could not find a matching association on the endpoint, 1034 * make sure that there is no peeled-off association matching 1035 * the peer address even on another socket. 1036 */ 1037 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1038 err = -EADDRNOTAVAIL; 1039 goto out_free; 1040 } 1041 1042 if (!asoc) { 1043 /* If a bind() or sctp_bindx() is not called prior to 1044 * an sctp_connectx() call, the system picks an 1045 * ephemeral port and will choose an address set 1046 * equivalent to binding with a wildcard address. 1047 */ 1048 if (!ep->base.bind_addr.port) { 1049 if (sctp_autobind(sk)) { 1050 err = -EAGAIN; 1051 goto out_free; 1052 } 1053 } else { 1054 /* 1055 * If an unprivileged user inherits a 1-many 1056 * style socket with open associations on a 1057 * privileged port, it MAY be permitted to 1058 * accept new associations, but it SHOULD NOT 1059 * be permitted to open new associations. 1060 */ 1061 if (ep->base.bind_addr.port < PROT_SOCK && 1062 !capable(CAP_NET_BIND_SERVICE)) { 1063 err = -EACCES; 1064 goto out_free; 1065 } 1066 } 1067 1068 scope = sctp_scope(&to); 1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1070 if (!asoc) { 1071 err = -ENOMEM; 1072 goto out_free; 1073 } 1074 } 1075 1076 /* Prime the peer's transport structures. */ 1077 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1078 SCTP_UNKNOWN); 1079 if (!transport) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 1084 addrcnt++; 1085 addr_buf += af->sockaddr_len; 1086 walk_size += af->sockaddr_len; 1087 } 1088 1089 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1090 if (err < 0) { 1091 goto out_free; 1092 } 1093 1094 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1095 if (err < 0) { 1096 goto out_free; 1097 } 1098 1099 /* Initialize sk's dport and daddr for getpeername() */ 1100 inet_sk(sk)->dport = htons(asoc->peer.port); 1101 af = sctp_get_af_specific(to.sa.sa_family); 1102 af->to_sk_daddr(&to, sk); 1103 sk->sk_err = 0; 1104 1105 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 1106 err = sctp_wait_for_connect(asoc, &timeo); 1107 1108 /* Don't free association on exit. */ 1109 asoc = NULL; 1110 1111 out_free: 1112 1113 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1114 " kaddrs: %p err: %d\n", 1115 asoc, kaddrs, err); 1116 if (asoc) 1117 sctp_association_free(asoc); 1118 return err; 1119 } 1120 1121 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1122 * 1123 * API 8.9 1124 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1125 * 1126 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1127 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1128 * or IPv6 addresses. 1129 * 1130 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1131 * Section 3.1.2 for this usage. 1132 * 1133 * addrs is a pointer to an array of one or more socket addresses. Each 1134 * address is contained in its appropriate structure (i.e. struct 1135 * sockaddr_in or struct sockaddr_in6) the family of the address type 1136 * must be used to distengish the address length (note that this 1137 * representation is termed a "packed array" of addresses). The caller 1138 * specifies the number of addresses in the array with addrcnt. 1139 * 1140 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1141 * -1, and sets errno to the appropriate error code. 1142 * 1143 * For SCTP, the port given in each socket address must be the same, or 1144 * sctp_connectx() will fail, setting errno to EINVAL. 1145 * 1146 * An application can use sctp_connectx to initiate an association with 1147 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1148 * allows a caller to specify multiple addresses at which a peer can be 1149 * reached. The way the SCTP stack uses the list of addresses to set up 1150 * the association is implementation dependant. This function only 1151 * specifies that the stack will try to make use of all the addresses in 1152 * the list when needed. 1153 * 1154 * Note that the list of addresses passed in is only used for setting up 1155 * the association. It does not necessarily equal the set of addresses 1156 * the peer uses for the resulting association. If the caller wants to 1157 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1158 * retrieve them after the association has been set up. 1159 * 1160 * Basically do nothing but copying the addresses from user to kernel 1161 * land and invoking either sctp_connectx(). This is used for tunneling 1162 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1163 * 1164 * We don't use copy_from_user() for optimization: we first do the 1165 * sanity checks (buffer size -fast- and access check-healthy 1166 * pointer); if all of those succeed, then we can alloc the memory 1167 * (expensive operation) needed to copy the data to kernel. Then we do 1168 * the copying without checking the user space area 1169 * (__copy_from_user()). 1170 * 1171 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1172 * it. 1173 * 1174 * sk The sk of the socket 1175 * addrs The pointer to the addresses in user land 1176 * addrssize Size of the addrs buffer 1177 * 1178 * Returns 0 if ok, <0 errno code on error. 1179 */ 1180 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1181 struct sockaddr __user *addrs, 1182 int addrs_size) 1183 { 1184 int err = 0; 1185 struct sockaddr *kaddrs; 1186 1187 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1188 __FUNCTION__, sk, addrs, addrs_size); 1189 1190 if (unlikely(addrs_size <= 0)) 1191 return -EINVAL; 1192 1193 /* Check the user passed a healthy pointer. */ 1194 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1195 return -EFAULT; 1196 1197 /* Alloc space for the address array in kernel memory. */ 1198 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1199 if (unlikely(!kaddrs)) 1200 return -ENOMEM; 1201 1202 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1203 err = -EFAULT; 1204 } else { 1205 err = __sctp_connect(sk, kaddrs, addrs_size); 1206 } 1207 1208 kfree(kaddrs); 1209 return err; 1210 } 1211 1212 /* API 3.1.4 close() - UDP Style Syntax 1213 * Applications use close() to perform graceful shutdown (as described in 1214 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1215 * by a UDP-style socket. 1216 * 1217 * The syntax is 1218 * 1219 * ret = close(int sd); 1220 * 1221 * sd - the socket descriptor of the associations to be closed. 1222 * 1223 * To gracefully shutdown a specific association represented by the 1224 * UDP-style socket, an application should use the sendmsg() call, 1225 * passing no user data, but including the appropriate flag in the 1226 * ancillary data (see Section xxxx). 1227 * 1228 * If sd in the close() call is a branched-off socket representing only 1229 * one association, the shutdown is performed on that association only. 1230 * 1231 * 4.1.6 close() - TCP Style Syntax 1232 * 1233 * Applications use close() to gracefully close down an association. 1234 * 1235 * The syntax is: 1236 * 1237 * int close(int sd); 1238 * 1239 * sd - the socket descriptor of the association to be closed. 1240 * 1241 * After an application calls close() on a socket descriptor, no further 1242 * socket operations will succeed on that descriptor. 1243 * 1244 * API 7.1.4 SO_LINGER 1245 * 1246 * An application using the TCP-style socket can use this option to 1247 * perform the SCTP ABORT primitive. The linger option structure is: 1248 * 1249 * struct linger { 1250 * int l_onoff; // option on/off 1251 * int l_linger; // linger time 1252 * }; 1253 * 1254 * To enable the option, set l_onoff to 1. If the l_linger value is set 1255 * to 0, calling close() is the same as the ABORT primitive. If the 1256 * value is set to a negative value, the setsockopt() call will return 1257 * an error. If the value is set to a positive value linger_time, the 1258 * close() can be blocked for at most linger_time ms. If the graceful 1259 * shutdown phase does not finish during this period, close() will 1260 * return but the graceful shutdown phase continues in the system. 1261 */ 1262 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1263 { 1264 struct sctp_endpoint *ep; 1265 struct sctp_association *asoc; 1266 struct list_head *pos, *temp; 1267 1268 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1269 1270 sctp_lock_sock(sk); 1271 sk->sk_shutdown = SHUTDOWN_MASK; 1272 1273 ep = sctp_sk(sk)->ep; 1274 1275 /* Walk all associations on an endpoint. */ 1276 list_for_each_safe(pos, temp, &ep->asocs) { 1277 asoc = list_entry(pos, struct sctp_association, asocs); 1278 1279 if (sctp_style(sk, TCP)) { 1280 /* A closed association can still be in the list if 1281 * it belongs to a TCP-style listening socket that is 1282 * not yet accepted. If so, free it. If not, send an 1283 * ABORT or SHUTDOWN based on the linger options. 1284 */ 1285 if (sctp_state(asoc, CLOSED)) { 1286 sctp_unhash_established(asoc); 1287 sctp_association_free(asoc); 1288 continue; 1289 } 1290 } 1291 1292 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) 1293 sctp_primitive_ABORT(asoc, NULL); 1294 else 1295 sctp_primitive_SHUTDOWN(asoc, NULL); 1296 } 1297 1298 /* Clean up any skbs sitting on the receive queue. */ 1299 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1300 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1301 1302 /* On a TCP-style socket, block for at most linger_time if set. */ 1303 if (sctp_style(sk, TCP) && timeout) 1304 sctp_wait_for_close(sk, timeout); 1305 1306 /* This will run the backlog queue. */ 1307 sctp_release_sock(sk); 1308 1309 /* Supposedly, no process has access to the socket, but 1310 * the net layers still may. 1311 */ 1312 sctp_local_bh_disable(); 1313 sctp_bh_lock_sock(sk); 1314 1315 /* Hold the sock, since sk_common_release() will put sock_put() 1316 * and we have just a little more cleanup. 1317 */ 1318 sock_hold(sk); 1319 sk_common_release(sk); 1320 1321 sctp_bh_unlock_sock(sk); 1322 sctp_local_bh_enable(); 1323 1324 sock_put(sk); 1325 1326 SCTP_DBG_OBJCNT_DEC(sock); 1327 } 1328 1329 /* Handle EPIPE error. */ 1330 static int sctp_error(struct sock *sk, int flags, int err) 1331 { 1332 if (err == -EPIPE) 1333 err = sock_error(sk) ? : -EPIPE; 1334 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1335 send_sig(SIGPIPE, current, 0); 1336 return err; 1337 } 1338 1339 /* API 3.1.3 sendmsg() - UDP Style Syntax 1340 * 1341 * An application uses sendmsg() and recvmsg() calls to transmit data to 1342 * and receive data from its peer. 1343 * 1344 * ssize_t sendmsg(int socket, const struct msghdr *message, 1345 * int flags); 1346 * 1347 * socket - the socket descriptor of the endpoint. 1348 * message - pointer to the msghdr structure which contains a single 1349 * user message and possibly some ancillary data. 1350 * 1351 * See Section 5 for complete description of the data 1352 * structures. 1353 * 1354 * flags - flags sent or received with the user message, see Section 1355 * 5 for complete description of the flags. 1356 * 1357 * Note: This function could use a rewrite especially when explicit 1358 * connect support comes in. 1359 */ 1360 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1361 1362 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1363 1364 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1365 struct msghdr *msg, size_t msg_len) 1366 { 1367 struct sctp_sock *sp; 1368 struct sctp_endpoint *ep; 1369 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1370 struct sctp_transport *transport, *chunk_tp; 1371 struct sctp_chunk *chunk; 1372 union sctp_addr to; 1373 struct sockaddr *msg_name = NULL; 1374 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1375 struct sctp_sndrcvinfo *sinfo; 1376 struct sctp_initmsg *sinit; 1377 sctp_assoc_t associd = 0; 1378 sctp_cmsgs_t cmsgs = { NULL }; 1379 int err; 1380 sctp_scope_t scope; 1381 long timeo; 1382 __u16 sinfo_flags = 0; 1383 struct sctp_datamsg *datamsg; 1384 struct list_head *pos; 1385 int msg_flags = msg->msg_flags; 1386 1387 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1388 sk, msg, msg_len); 1389 1390 err = 0; 1391 sp = sctp_sk(sk); 1392 ep = sp->ep; 1393 1394 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1395 1396 /* We cannot send a message over a TCP-style listening socket. */ 1397 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1398 err = -EPIPE; 1399 goto out_nounlock; 1400 } 1401 1402 /* Parse out the SCTP CMSGs. */ 1403 err = sctp_msghdr_parse(msg, &cmsgs); 1404 1405 if (err) { 1406 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1407 goto out_nounlock; 1408 } 1409 1410 /* Fetch the destination address for this packet. This 1411 * address only selects the association--it is not necessarily 1412 * the address we will send to. 1413 * For a peeled-off socket, msg_name is ignored. 1414 */ 1415 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1416 int msg_namelen = msg->msg_namelen; 1417 1418 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1419 msg_namelen); 1420 if (err) 1421 return err; 1422 1423 if (msg_namelen > sizeof(to)) 1424 msg_namelen = sizeof(to); 1425 memcpy(&to, msg->msg_name, msg_namelen); 1426 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is " 1427 "0x%x:%u.\n", 1428 to.v4.sin_addr.s_addr, to.v4.sin_port); 1429 1430 to.v4.sin_port = ntohs(to.v4.sin_port); 1431 msg_name = msg->msg_name; 1432 } 1433 1434 sinfo = cmsgs.info; 1435 sinit = cmsgs.init; 1436 1437 /* Did the user specify SNDRCVINFO? */ 1438 if (sinfo) { 1439 sinfo_flags = sinfo->sinfo_flags; 1440 associd = sinfo->sinfo_assoc_id; 1441 } 1442 1443 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1444 msg_len, sinfo_flags); 1445 1446 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1447 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1448 err = -EINVAL; 1449 goto out_nounlock; 1450 } 1451 1452 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1453 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1454 * If SCTP_ABORT is set, the message length could be non zero with 1455 * the msg_iov set to the user abort reason. 1456 */ 1457 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1458 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1459 err = -EINVAL; 1460 goto out_nounlock; 1461 } 1462 1463 /* If SCTP_ADDR_OVER is set, there must be an address 1464 * specified in msg_name. 1465 */ 1466 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1467 err = -EINVAL; 1468 goto out_nounlock; 1469 } 1470 1471 transport = NULL; 1472 1473 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1474 1475 sctp_lock_sock(sk); 1476 1477 /* If a msg_name has been specified, assume this is to be used. */ 1478 if (msg_name) { 1479 /* Look for a matching association on the endpoint. */ 1480 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1481 if (!asoc) { 1482 /* If we could not find a matching association on the 1483 * endpoint, make sure that it is not a TCP-style 1484 * socket that already has an association or there is 1485 * no peeled-off association on another socket. 1486 */ 1487 if ((sctp_style(sk, TCP) && 1488 sctp_sstate(sk, ESTABLISHED)) || 1489 sctp_endpoint_is_peeled_off(ep, &to)) { 1490 err = -EADDRNOTAVAIL; 1491 goto out_unlock; 1492 } 1493 } 1494 } else { 1495 asoc = sctp_id2assoc(sk, associd); 1496 if (!asoc) { 1497 err = -EPIPE; 1498 goto out_unlock; 1499 } 1500 } 1501 1502 if (asoc) { 1503 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1504 1505 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1506 * socket that has an association in CLOSED state. This can 1507 * happen when an accepted socket has an association that is 1508 * already CLOSED. 1509 */ 1510 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1511 err = -EPIPE; 1512 goto out_unlock; 1513 } 1514 1515 if (sinfo_flags & SCTP_EOF) { 1516 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1517 asoc); 1518 sctp_primitive_SHUTDOWN(asoc, NULL); 1519 err = 0; 1520 goto out_unlock; 1521 } 1522 if (sinfo_flags & SCTP_ABORT) { 1523 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1524 sctp_primitive_ABORT(asoc, msg); 1525 err = 0; 1526 goto out_unlock; 1527 } 1528 } 1529 1530 /* Do we need to create the association? */ 1531 if (!asoc) { 1532 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1533 1534 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1535 err = -EINVAL; 1536 goto out_unlock; 1537 } 1538 1539 /* Check for invalid stream against the stream counts, 1540 * either the default or the user specified stream counts. 1541 */ 1542 if (sinfo) { 1543 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1544 /* Check against the defaults. */ 1545 if (sinfo->sinfo_stream >= 1546 sp->initmsg.sinit_num_ostreams) { 1547 err = -EINVAL; 1548 goto out_unlock; 1549 } 1550 } else { 1551 /* Check against the requested. */ 1552 if (sinfo->sinfo_stream >= 1553 sinit->sinit_num_ostreams) { 1554 err = -EINVAL; 1555 goto out_unlock; 1556 } 1557 } 1558 } 1559 1560 /* 1561 * API 3.1.2 bind() - UDP Style Syntax 1562 * If a bind() or sctp_bindx() is not called prior to a 1563 * sendmsg() call that initiates a new association, the 1564 * system picks an ephemeral port and will choose an address 1565 * set equivalent to binding with a wildcard address. 1566 */ 1567 if (!ep->base.bind_addr.port) { 1568 if (sctp_autobind(sk)) { 1569 err = -EAGAIN; 1570 goto out_unlock; 1571 } 1572 } else { 1573 /* 1574 * If an unprivileged user inherits a one-to-many 1575 * style socket with open associations on a privileged 1576 * port, it MAY be permitted to accept new associations, 1577 * but it SHOULD NOT be permitted to open new 1578 * associations. 1579 */ 1580 if (ep->base.bind_addr.port < PROT_SOCK && 1581 !capable(CAP_NET_BIND_SERVICE)) { 1582 err = -EACCES; 1583 goto out_unlock; 1584 } 1585 } 1586 1587 scope = sctp_scope(&to); 1588 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1589 if (!new_asoc) { 1590 err = -ENOMEM; 1591 goto out_unlock; 1592 } 1593 asoc = new_asoc; 1594 1595 /* If the SCTP_INIT ancillary data is specified, set all 1596 * the association init values accordingly. 1597 */ 1598 if (sinit) { 1599 if (sinit->sinit_num_ostreams) { 1600 asoc->c.sinit_num_ostreams = 1601 sinit->sinit_num_ostreams; 1602 } 1603 if (sinit->sinit_max_instreams) { 1604 asoc->c.sinit_max_instreams = 1605 sinit->sinit_max_instreams; 1606 } 1607 if (sinit->sinit_max_attempts) { 1608 asoc->max_init_attempts 1609 = sinit->sinit_max_attempts; 1610 } 1611 if (sinit->sinit_max_init_timeo) { 1612 asoc->max_init_timeo = 1613 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1614 } 1615 } 1616 1617 /* Prime the peer's transport structures. */ 1618 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1619 if (!transport) { 1620 err = -ENOMEM; 1621 goto out_free; 1622 } 1623 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1624 if (err < 0) { 1625 err = -ENOMEM; 1626 goto out_free; 1627 } 1628 } 1629 1630 /* ASSERT: we have a valid association at this point. */ 1631 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1632 1633 if (!sinfo) { 1634 /* If the user didn't specify SNDRCVINFO, make up one with 1635 * some defaults. 1636 */ 1637 default_sinfo.sinfo_stream = asoc->default_stream; 1638 default_sinfo.sinfo_flags = asoc->default_flags; 1639 default_sinfo.sinfo_ppid = asoc->default_ppid; 1640 default_sinfo.sinfo_context = asoc->default_context; 1641 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1642 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1643 sinfo = &default_sinfo; 1644 } 1645 1646 /* API 7.1.7, the sndbuf size per association bounds the 1647 * maximum size of data that can be sent in a single send call. 1648 */ 1649 if (msg_len > sk->sk_sndbuf) { 1650 err = -EMSGSIZE; 1651 goto out_free; 1652 } 1653 1654 /* If fragmentation is disabled and the message length exceeds the 1655 * association fragmentation point, return EMSGSIZE. The I-D 1656 * does not specify what this error is, but this looks like 1657 * a great fit. 1658 */ 1659 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1660 err = -EMSGSIZE; 1661 goto out_free; 1662 } 1663 1664 if (sinfo) { 1665 /* Check for invalid stream. */ 1666 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1667 err = -EINVAL; 1668 goto out_free; 1669 } 1670 } 1671 1672 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1673 if (!sctp_wspace(asoc)) { 1674 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1675 if (err) 1676 goto out_free; 1677 } 1678 1679 /* If an address is passed with the sendto/sendmsg call, it is used 1680 * to override the primary destination address in the TCP model, or 1681 * when SCTP_ADDR_OVER flag is set in the UDP model. 1682 */ 1683 if ((sctp_style(sk, TCP) && msg_name) || 1684 (sinfo_flags & SCTP_ADDR_OVER)) { 1685 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1686 if (!chunk_tp) { 1687 err = -EINVAL; 1688 goto out_free; 1689 } 1690 } else 1691 chunk_tp = NULL; 1692 1693 /* Auto-connect, if we aren't connected already. */ 1694 if (sctp_state(asoc, CLOSED)) { 1695 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1696 if (err < 0) 1697 goto out_free; 1698 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1699 } 1700 1701 /* Break the message into multiple chunks of maximum size. */ 1702 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1703 if (!datamsg) { 1704 err = -ENOMEM; 1705 goto out_free; 1706 } 1707 1708 /* Now send the (possibly) fragmented message. */ 1709 list_for_each(pos, &datamsg->chunks) { 1710 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1711 sctp_datamsg_track(chunk); 1712 1713 /* Do accounting for the write space. */ 1714 sctp_set_owner_w(chunk); 1715 1716 chunk->transport = chunk_tp; 1717 1718 /* Send it to the lower layers. Note: all chunks 1719 * must either fail or succeed. The lower layer 1720 * works that way today. Keep it that way or this 1721 * breaks. 1722 */ 1723 err = sctp_primitive_SEND(asoc, chunk); 1724 /* Did the lower layer accept the chunk? */ 1725 if (err) 1726 sctp_chunk_free(chunk); 1727 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1728 } 1729 1730 sctp_datamsg_free(datamsg); 1731 if (err) 1732 goto out_free; 1733 else 1734 err = msg_len; 1735 1736 /* If we are already past ASSOCIATE, the lower 1737 * layers are responsible for association cleanup. 1738 */ 1739 goto out_unlock; 1740 1741 out_free: 1742 if (new_asoc) 1743 sctp_association_free(asoc); 1744 out_unlock: 1745 sctp_release_sock(sk); 1746 1747 out_nounlock: 1748 return sctp_error(sk, msg_flags, err); 1749 1750 #if 0 1751 do_sock_err: 1752 if (msg_len) 1753 err = msg_len; 1754 else 1755 err = sock_error(sk); 1756 goto out; 1757 1758 do_interrupted: 1759 if (msg_len) 1760 err = msg_len; 1761 goto out; 1762 #endif /* 0 */ 1763 } 1764 1765 /* This is an extended version of skb_pull() that removes the data from the 1766 * start of a skb even when data is spread across the list of skb's in the 1767 * frag_list. len specifies the total amount of data that needs to be removed. 1768 * when 'len' bytes could be removed from the skb, it returns 0. 1769 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1770 * could not be removed. 1771 */ 1772 static int sctp_skb_pull(struct sk_buff *skb, int len) 1773 { 1774 struct sk_buff *list; 1775 int skb_len = skb_headlen(skb); 1776 int rlen; 1777 1778 if (len <= skb_len) { 1779 __skb_pull(skb, len); 1780 return 0; 1781 } 1782 len -= skb_len; 1783 __skb_pull(skb, skb_len); 1784 1785 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1786 rlen = sctp_skb_pull(list, len); 1787 skb->len -= (len-rlen); 1788 skb->data_len -= (len-rlen); 1789 1790 if (!rlen) 1791 return 0; 1792 1793 len = rlen; 1794 } 1795 1796 return len; 1797 } 1798 1799 /* API 3.1.3 recvmsg() - UDP Style Syntax 1800 * 1801 * ssize_t recvmsg(int socket, struct msghdr *message, 1802 * int flags); 1803 * 1804 * socket - the socket descriptor of the endpoint. 1805 * message - pointer to the msghdr structure which contains a single 1806 * user message and possibly some ancillary data. 1807 * 1808 * See Section 5 for complete description of the data 1809 * structures. 1810 * 1811 * flags - flags sent or received with the user message, see Section 1812 * 5 for complete description of the flags. 1813 */ 1814 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1815 1816 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1817 struct msghdr *msg, size_t len, int noblock, 1818 int flags, int *addr_len) 1819 { 1820 struct sctp_ulpevent *event = NULL; 1821 struct sctp_sock *sp = sctp_sk(sk); 1822 struct sk_buff *skb; 1823 int copied; 1824 int err = 0; 1825 int skb_len; 1826 1827 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1828 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1829 "len", len, "knoblauch", noblock, 1830 "flags", flags, "addr_len", addr_len); 1831 1832 sctp_lock_sock(sk); 1833 1834 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1835 err = -ENOTCONN; 1836 goto out; 1837 } 1838 1839 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1840 if (!skb) 1841 goto out; 1842 1843 /* Get the total length of the skb including any skb's in the 1844 * frag_list. 1845 */ 1846 skb_len = skb->len; 1847 1848 copied = skb_len; 1849 if (copied > len) 1850 copied = len; 1851 1852 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1853 1854 event = sctp_skb2event(skb); 1855 1856 if (err) 1857 goto out_free; 1858 1859 sock_recv_timestamp(msg, sk, skb); 1860 if (sctp_ulpevent_is_notification(event)) { 1861 msg->msg_flags |= MSG_NOTIFICATION; 1862 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1863 } else { 1864 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1865 } 1866 1867 /* Check if we allow SCTP_SNDRCVINFO. */ 1868 if (sp->subscribe.sctp_data_io_event) 1869 sctp_ulpevent_read_sndrcvinfo(event, msg); 1870 #if 0 1871 /* FIXME: we should be calling IP/IPv6 layers. */ 1872 if (sk->sk_protinfo.af_inet.cmsg_flags) 1873 ip_cmsg_recv(msg, skb); 1874 #endif 1875 1876 err = copied; 1877 1878 /* If skb's length exceeds the user's buffer, update the skb and 1879 * push it back to the receive_queue so that the next call to 1880 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1881 */ 1882 if (skb_len > copied) { 1883 msg->msg_flags &= ~MSG_EOR; 1884 if (flags & MSG_PEEK) 1885 goto out_free; 1886 sctp_skb_pull(skb, copied); 1887 skb_queue_head(&sk->sk_receive_queue, skb); 1888 1889 /* When only partial message is copied to the user, increase 1890 * rwnd by that amount. If all the data in the skb is read, 1891 * rwnd is updated when the event is freed. 1892 */ 1893 sctp_assoc_rwnd_increase(event->asoc, copied); 1894 goto out; 1895 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1896 (event->msg_flags & MSG_EOR)) 1897 msg->msg_flags |= MSG_EOR; 1898 else 1899 msg->msg_flags &= ~MSG_EOR; 1900 1901 out_free: 1902 if (flags & MSG_PEEK) { 1903 /* Release the skb reference acquired after peeking the skb in 1904 * sctp_skb_recv_datagram(). 1905 */ 1906 kfree_skb(skb); 1907 } else { 1908 /* Free the event which includes releasing the reference to 1909 * the owner of the skb, freeing the skb and updating the 1910 * rwnd. 1911 */ 1912 sctp_ulpevent_free(event); 1913 } 1914 out: 1915 sctp_release_sock(sk); 1916 return err; 1917 } 1918 1919 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1920 * 1921 * This option is a on/off flag. If enabled no SCTP message 1922 * fragmentation will be performed. Instead if a message being sent 1923 * exceeds the current PMTU size, the message will NOT be sent and 1924 * instead a error will be indicated to the user. 1925 */ 1926 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1927 char __user *optval, int optlen) 1928 { 1929 int val; 1930 1931 if (optlen < sizeof(int)) 1932 return -EINVAL; 1933 1934 if (get_user(val, (int __user *)optval)) 1935 return -EFAULT; 1936 1937 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1938 1939 return 0; 1940 } 1941 1942 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1943 int optlen) 1944 { 1945 if (optlen != sizeof(struct sctp_event_subscribe)) 1946 return -EINVAL; 1947 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1948 return -EFAULT; 1949 return 0; 1950 } 1951 1952 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1953 * 1954 * This socket option is applicable to the UDP-style socket only. When 1955 * set it will cause associations that are idle for more than the 1956 * specified number of seconds to automatically close. An association 1957 * being idle is defined an association that has NOT sent or received 1958 * user data. The special value of '0' indicates that no automatic 1959 * close of any associations should be performed. The option expects an 1960 * integer defining the number of seconds of idle time before an 1961 * association is closed. 1962 */ 1963 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1964 int optlen) 1965 { 1966 struct sctp_sock *sp = sctp_sk(sk); 1967 1968 /* Applicable to UDP-style socket only */ 1969 if (sctp_style(sk, TCP)) 1970 return -EOPNOTSUPP; 1971 if (optlen != sizeof(int)) 1972 return -EINVAL; 1973 if (copy_from_user(&sp->autoclose, optval, optlen)) 1974 return -EFAULT; 1975 1976 return 0; 1977 } 1978 1979 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1980 * 1981 * Applications can enable or disable heartbeats for any peer address of 1982 * an association, modify an address's heartbeat interval, force a 1983 * heartbeat to be sent immediately, and adjust the address's maximum 1984 * number of retransmissions sent before an address is considered 1985 * unreachable. The following structure is used to access and modify an 1986 * address's parameters: 1987 * 1988 * struct sctp_paddrparams { 1989 * sctp_assoc_t spp_assoc_id; 1990 * struct sockaddr_storage spp_address; 1991 * uint32_t spp_hbinterval; 1992 * uint16_t spp_pathmaxrxt; 1993 * uint32_t spp_pathmtu; 1994 * uint32_t spp_sackdelay; 1995 * uint32_t spp_flags; 1996 * }; 1997 * 1998 * spp_assoc_id - (one-to-many style socket) This is filled in the 1999 * application, and identifies the association for 2000 * this query. 2001 * spp_address - This specifies which address is of interest. 2002 * spp_hbinterval - This contains the value of the heartbeat interval, 2003 * in milliseconds. If a value of zero 2004 * is present in this field then no changes are to 2005 * be made to this parameter. 2006 * spp_pathmaxrxt - This contains the maximum number of 2007 * retransmissions before this address shall be 2008 * considered unreachable. If a value of zero 2009 * is present in this field then no changes are to 2010 * be made to this parameter. 2011 * spp_pathmtu - When Path MTU discovery is disabled the value 2012 * specified here will be the "fixed" path mtu. 2013 * Note that if the spp_address field is empty 2014 * then all associations on this address will 2015 * have this fixed path mtu set upon them. 2016 * 2017 * spp_sackdelay - When delayed sack is enabled, this value specifies 2018 * the number of milliseconds that sacks will be delayed 2019 * for. This value will apply to all addresses of an 2020 * association if the spp_address field is empty. Note 2021 * also, that if delayed sack is enabled and this 2022 * value is set to 0, no change is made to the last 2023 * recorded delayed sack timer value. 2024 * 2025 * spp_flags - These flags are used to control various features 2026 * on an association. The flag field may contain 2027 * zero or more of the following options. 2028 * 2029 * SPP_HB_ENABLE - Enable heartbeats on the 2030 * specified address. Note that if the address 2031 * field is empty all addresses for the association 2032 * have heartbeats enabled upon them. 2033 * 2034 * SPP_HB_DISABLE - Disable heartbeats on the 2035 * speicifed address. Note that if the address 2036 * field is empty all addresses for the association 2037 * will have their heartbeats disabled. Note also 2038 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2039 * mutually exclusive, only one of these two should 2040 * be specified. Enabling both fields will have 2041 * undetermined results. 2042 * 2043 * SPP_HB_DEMAND - Request a user initiated heartbeat 2044 * to be made immediately. 2045 * 2046 * SPP_PMTUD_ENABLE - This field will enable PMTU 2047 * discovery upon the specified address. Note that 2048 * if the address feild is empty then all addresses 2049 * on the association are effected. 2050 * 2051 * SPP_PMTUD_DISABLE - This field will disable PMTU 2052 * discovery upon the specified address. Note that 2053 * if the address feild is empty then all addresses 2054 * on the association are effected. Not also that 2055 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2056 * exclusive. Enabling both will have undetermined 2057 * results. 2058 * 2059 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2060 * on delayed sack. The time specified in spp_sackdelay 2061 * is used to specify the sack delay for this address. Note 2062 * that if spp_address is empty then all addresses will 2063 * enable delayed sack and take on the sack delay 2064 * value specified in spp_sackdelay. 2065 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2066 * off delayed sack. If the spp_address field is blank then 2067 * delayed sack is disabled for the entire association. Note 2068 * also that this field is mutually exclusive to 2069 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2070 * results. 2071 */ 2072 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2073 struct sctp_transport *trans, 2074 struct sctp_association *asoc, 2075 struct sctp_sock *sp, 2076 int hb_change, 2077 int pmtud_change, 2078 int sackdelay_change) 2079 { 2080 int error; 2081 2082 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2083 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2084 if (error) 2085 return error; 2086 } 2087 2088 if (params->spp_hbinterval) { 2089 if (trans) { 2090 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2091 } else if (asoc) { 2092 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2093 } else { 2094 sp->hbinterval = params->spp_hbinterval; 2095 } 2096 } 2097 2098 if (hb_change) { 2099 if (trans) { 2100 trans->param_flags = 2101 (trans->param_flags & ~SPP_HB) | hb_change; 2102 } else if (asoc) { 2103 asoc->param_flags = 2104 (asoc->param_flags & ~SPP_HB) | hb_change; 2105 } else { 2106 sp->param_flags = 2107 (sp->param_flags & ~SPP_HB) | hb_change; 2108 } 2109 } 2110 2111 if (params->spp_pathmtu) { 2112 if (trans) { 2113 trans->pathmtu = params->spp_pathmtu; 2114 sctp_assoc_sync_pmtu(asoc); 2115 } else if (asoc) { 2116 asoc->pathmtu = params->spp_pathmtu; 2117 sctp_frag_point(sp, params->spp_pathmtu); 2118 } else { 2119 sp->pathmtu = params->spp_pathmtu; 2120 } 2121 } 2122 2123 if (pmtud_change) { 2124 if (trans) { 2125 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2126 (params->spp_flags & SPP_PMTUD_ENABLE); 2127 trans->param_flags = 2128 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2129 if (update) { 2130 sctp_transport_pmtu(trans); 2131 sctp_assoc_sync_pmtu(asoc); 2132 } 2133 } else if (asoc) { 2134 asoc->param_flags = 2135 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2136 } else { 2137 sp->param_flags = 2138 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2139 } 2140 } 2141 2142 if (params->spp_sackdelay) { 2143 if (trans) { 2144 trans->sackdelay = 2145 msecs_to_jiffies(params->spp_sackdelay); 2146 } else if (asoc) { 2147 asoc->sackdelay = 2148 msecs_to_jiffies(params->spp_sackdelay); 2149 } else { 2150 sp->sackdelay = params->spp_sackdelay; 2151 } 2152 } 2153 2154 if (sackdelay_change) { 2155 if (trans) { 2156 trans->param_flags = 2157 (trans->param_flags & ~SPP_SACKDELAY) | 2158 sackdelay_change; 2159 } else if (asoc) { 2160 asoc->param_flags = 2161 (asoc->param_flags & ~SPP_SACKDELAY) | 2162 sackdelay_change; 2163 } else { 2164 sp->param_flags = 2165 (sp->param_flags & ~SPP_SACKDELAY) | 2166 sackdelay_change; 2167 } 2168 } 2169 2170 if (params->spp_pathmaxrxt) { 2171 if (trans) { 2172 trans->pathmaxrxt = params->spp_pathmaxrxt; 2173 } else if (asoc) { 2174 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2175 } else { 2176 sp->pathmaxrxt = params->spp_pathmaxrxt; 2177 } 2178 } 2179 2180 return 0; 2181 } 2182 2183 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2184 char __user *optval, int optlen) 2185 { 2186 struct sctp_paddrparams params; 2187 struct sctp_transport *trans = NULL; 2188 struct sctp_association *asoc = NULL; 2189 struct sctp_sock *sp = sctp_sk(sk); 2190 int error; 2191 int hb_change, pmtud_change, sackdelay_change; 2192 2193 if (optlen != sizeof(struct sctp_paddrparams)) 2194 return - EINVAL; 2195 2196 if (copy_from_user(¶ms, optval, optlen)) 2197 return -EFAULT; 2198 2199 /* Validate flags and value parameters. */ 2200 hb_change = params.spp_flags & SPP_HB; 2201 pmtud_change = params.spp_flags & SPP_PMTUD; 2202 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2203 2204 if (hb_change == SPP_HB || 2205 pmtud_change == SPP_PMTUD || 2206 sackdelay_change == SPP_SACKDELAY || 2207 params.spp_sackdelay > 500 || 2208 (params.spp_pathmtu 2209 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2210 return -EINVAL; 2211 2212 /* If an address other than INADDR_ANY is specified, and 2213 * no transport is found, then the request is invalid. 2214 */ 2215 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2216 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2217 params.spp_assoc_id); 2218 if (!trans) 2219 return -EINVAL; 2220 } 2221 2222 /* Get association, if assoc_id != 0 and the socket is a one 2223 * to many style socket, and an association was not found, then 2224 * the id was invalid. 2225 */ 2226 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2227 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2228 return -EINVAL; 2229 2230 /* Heartbeat demand can only be sent on a transport or 2231 * association, but not a socket. 2232 */ 2233 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2234 return -EINVAL; 2235 2236 /* Process parameters. */ 2237 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2238 hb_change, pmtud_change, 2239 sackdelay_change); 2240 2241 if (error) 2242 return error; 2243 2244 /* If changes are for association, also apply parameters to each 2245 * transport. 2246 */ 2247 if (!trans && asoc) { 2248 struct list_head *pos; 2249 2250 list_for_each(pos, &asoc->peer.transport_addr_list) { 2251 trans = list_entry(pos, struct sctp_transport, 2252 transports); 2253 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2254 hb_change, pmtud_change, 2255 sackdelay_change); 2256 } 2257 } 2258 2259 return 0; 2260 } 2261 2262 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2263 * 2264 * This options will get or set the delayed ack timer. The time is set 2265 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2266 * endpoints default delayed ack timer value. If the assoc_id field is 2267 * non-zero, then the set or get effects the specified association. 2268 * 2269 * struct sctp_assoc_value { 2270 * sctp_assoc_t assoc_id; 2271 * uint32_t assoc_value; 2272 * }; 2273 * 2274 * assoc_id - This parameter, indicates which association the 2275 * user is preforming an action upon. Note that if 2276 * this field's value is zero then the endpoints 2277 * default value is changed (effecting future 2278 * associations only). 2279 * 2280 * assoc_value - This parameter contains the number of milliseconds 2281 * that the user is requesting the delayed ACK timer 2282 * be set to. Note that this value is defined in 2283 * the standard to be between 200 and 500 milliseconds. 2284 * 2285 * Note: a value of zero will leave the value alone, 2286 * but disable SACK delay. A non-zero value will also 2287 * enable SACK delay. 2288 */ 2289 2290 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2291 char __user *optval, int optlen) 2292 { 2293 struct sctp_assoc_value params; 2294 struct sctp_transport *trans = NULL; 2295 struct sctp_association *asoc = NULL; 2296 struct sctp_sock *sp = sctp_sk(sk); 2297 2298 if (optlen != sizeof(struct sctp_assoc_value)) 2299 return - EINVAL; 2300 2301 if (copy_from_user(¶ms, optval, optlen)) 2302 return -EFAULT; 2303 2304 /* Validate value parameter. */ 2305 if (params.assoc_value > 500) 2306 return -EINVAL; 2307 2308 /* Get association, if assoc_id != 0 and the socket is a one 2309 * to many style socket, and an association was not found, then 2310 * the id was invalid. 2311 */ 2312 asoc = sctp_id2assoc(sk, params.assoc_id); 2313 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2314 return -EINVAL; 2315 2316 if (params.assoc_value) { 2317 if (asoc) { 2318 asoc->sackdelay = 2319 msecs_to_jiffies(params.assoc_value); 2320 asoc->param_flags = 2321 (asoc->param_flags & ~SPP_SACKDELAY) | 2322 SPP_SACKDELAY_ENABLE; 2323 } else { 2324 sp->sackdelay = params.assoc_value; 2325 sp->param_flags = 2326 (sp->param_flags & ~SPP_SACKDELAY) | 2327 SPP_SACKDELAY_ENABLE; 2328 } 2329 } else { 2330 if (asoc) { 2331 asoc->param_flags = 2332 (asoc->param_flags & ~SPP_SACKDELAY) | 2333 SPP_SACKDELAY_DISABLE; 2334 } else { 2335 sp->param_flags = 2336 (sp->param_flags & ~SPP_SACKDELAY) | 2337 SPP_SACKDELAY_DISABLE; 2338 } 2339 } 2340 2341 /* If change is for association, also apply to each transport. */ 2342 if (asoc) { 2343 struct list_head *pos; 2344 2345 list_for_each(pos, &asoc->peer.transport_addr_list) { 2346 trans = list_entry(pos, struct sctp_transport, 2347 transports); 2348 if (params.assoc_value) { 2349 trans->sackdelay = 2350 msecs_to_jiffies(params.assoc_value); 2351 trans->param_flags = 2352 (trans->param_flags & ~SPP_SACKDELAY) | 2353 SPP_SACKDELAY_ENABLE; 2354 } else { 2355 trans->param_flags = 2356 (trans->param_flags & ~SPP_SACKDELAY) | 2357 SPP_SACKDELAY_DISABLE; 2358 } 2359 } 2360 } 2361 2362 return 0; 2363 } 2364 2365 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2366 * 2367 * Applications can specify protocol parameters for the default association 2368 * initialization. The option name argument to setsockopt() and getsockopt() 2369 * is SCTP_INITMSG. 2370 * 2371 * Setting initialization parameters is effective only on an unconnected 2372 * socket (for UDP-style sockets only future associations are effected 2373 * by the change). With TCP-style sockets, this option is inherited by 2374 * sockets derived from a listener socket. 2375 */ 2376 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2377 { 2378 struct sctp_initmsg sinit; 2379 struct sctp_sock *sp = sctp_sk(sk); 2380 2381 if (optlen != sizeof(struct sctp_initmsg)) 2382 return -EINVAL; 2383 if (copy_from_user(&sinit, optval, optlen)) 2384 return -EFAULT; 2385 2386 if (sinit.sinit_num_ostreams) 2387 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2388 if (sinit.sinit_max_instreams) 2389 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2390 if (sinit.sinit_max_attempts) 2391 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2392 if (sinit.sinit_max_init_timeo) 2393 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2394 2395 return 0; 2396 } 2397 2398 /* 2399 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2400 * 2401 * Applications that wish to use the sendto() system call may wish to 2402 * specify a default set of parameters that would normally be supplied 2403 * through the inclusion of ancillary data. This socket option allows 2404 * such an application to set the default sctp_sndrcvinfo structure. 2405 * The application that wishes to use this socket option simply passes 2406 * in to this call the sctp_sndrcvinfo structure defined in Section 2407 * 5.2.2) The input parameters accepted by this call include 2408 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2409 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2410 * to this call if the caller is using the UDP model. 2411 */ 2412 static int sctp_setsockopt_default_send_param(struct sock *sk, 2413 char __user *optval, int optlen) 2414 { 2415 struct sctp_sndrcvinfo info; 2416 struct sctp_association *asoc; 2417 struct sctp_sock *sp = sctp_sk(sk); 2418 2419 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2420 return -EINVAL; 2421 if (copy_from_user(&info, optval, optlen)) 2422 return -EFAULT; 2423 2424 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2425 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2426 return -EINVAL; 2427 2428 if (asoc) { 2429 asoc->default_stream = info.sinfo_stream; 2430 asoc->default_flags = info.sinfo_flags; 2431 asoc->default_ppid = info.sinfo_ppid; 2432 asoc->default_context = info.sinfo_context; 2433 asoc->default_timetolive = info.sinfo_timetolive; 2434 } else { 2435 sp->default_stream = info.sinfo_stream; 2436 sp->default_flags = info.sinfo_flags; 2437 sp->default_ppid = info.sinfo_ppid; 2438 sp->default_context = info.sinfo_context; 2439 sp->default_timetolive = info.sinfo_timetolive; 2440 } 2441 2442 return 0; 2443 } 2444 2445 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2446 * 2447 * Requests that the local SCTP stack use the enclosed peer address as 2448 * the association primary. The enclosed address must be one of the 2449 * association peer's addresses. 2450 */ 2451 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2452 int optlen) 2453 { 2454 struct sctp_prim prim; 2455 struct sctp_transport *trans; 2456 2457 if (optlen != sizeof(struct sctp_prim)) 2458 return -EINVAL; 2459 2460 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2461 return -EFAULT; 2462 2463 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2464 if (!trans) 2465 return -EINVAL; 2466 2467 sctp_assoc_set_primary(trans->asoc, trans); 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * 7.1.5 SCTP_NODELAY 2474 * 2475 * Turn on/off any Nagle-like algorithm. This means that packets are 2476 * generally sent as soon as possible and no unnecessary delays are 2477 * introduced, at the cost of more packets in the network. Expects an 2478 * integer boolean flag. 2479 */ 2480 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2481 int optlen) 2482 { 2483 int val; 2484 2485 if (optlen < sizeof(int)) 2486 return -EINVAL; 2487 if (get_user(val, (int __user *)optval)) 2488 return -EFAULT; 2489 2490 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2491 return 0; 2492 } 2493 2494 /* 2495 * 2496 * 7.1.1 SCTP_RTOINFO 2497 * 2498 * The protocol parameters used to initialize and bound retransmission 2499 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2500 * and modify these parameters. 2501 * All parameters are time values, in milliseconds. A value of 0, when 2502 * modifying the parameters, indicates that the current value should not 2503 * be changed. 2504 * 2505 */ 2506 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2507 struct sctp_rtoinfo rtoinfo; 2508 struct sctp_association *asoc; 2509 2510 if (optlen != sizeof (struct sctp_rtoinfo)) 2511 return -EINVAL; 2512 2513 if (copy_from_user(&rtoinfo, optval, optlen)) 2514 return -EFAULT; 2515 2516 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2517 2518 /* Set the values to the specific association */ 2519 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2520 return -EINVAL; 2521 2522 if (asoc) { 2523 if (rtoinfo.srto_initial != 0) 2524 asoc->rto_initial = 2525 msecs_to_jiffies(rtoinfo.srto_initial); 2526 if (rtoinfo.srto_max != 0) 2527 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2528 if (rtoinfo.srto_min != 0) 2529 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2530 } else { 2531 /* If there is no association or the association-id = 0 2532 * set the values to the endpoint. 2533 */ 2534 struct sctp_sock *sp = sctp_sk(sk); 2535 2536 if (rtoinfo.srto_initial != 0) 2537 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2538 if (rtoinfo.srto_max != 0) 2539 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2540 if (rtoinfo.srto_min != 0) 2541 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2542 } 2543 2544 return 0; 2545 } 2546 2547 /* 2548 * 2549 * 7.1.2 SCTP_ASSOCINFO 2550 * 2551 * This option is used to tune the the maximum retransmission attempts 2552 * of the association. 2553 * Returns an error if the new association retransmission value is 2554 * greater than the sum of the retransmission value of the peer. 2555 * See [SCTP] for more information. 2556 * 2557 */ 2558 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2559 { 2560 2561 struct sctp_assocparams assocparams; 2562 struct sctp_association *asoc; 2563 2564 if (optlen != sizeof(struct sctp_assocparams)) 2565 return -EINVAL; 2566 if (copy_from_user(&assocparams, optval, optlen)) 2567 return -EFAULT; 2568 2569 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2570 2571 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2572 return -EINVAL; 2573 2574 /* Set the values to the specific association */ 2575 if (asoc) { 2576 if (assocparams.sasoc_asocmaxrxt != 0) { 2577 __u32 path_sum = 0; 2578 int paths = 0; 2579 struct list_head *pos; 2580 struct sctp_transport *peer_addr; 2581 2582 list_for_each(pos, &asoc->peer.transport_addr_list) { 2583 peer_addr = list_entry(pos, 2584 struct sctp_transport, 2585 transports); 2586 path_sum += peer_addr->pathmaxrxt; 2587 paths++; 2588 } 2589 2590 /* Only validate asocmaxrxt if we have more then 2591 * one path/transport. We do this because path 2592 * retransmissions are only counted when we have more 2593 * then one path. 2594 */ 2595 if (paths > 1 && 2596 assocparams.sasoc_asocmaxrxt > path_sum) 2597 return -EINVAL; 2598 2599 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2600 } 2601 2602 if (assocparams.sasoc_cookie_life != 0) { 2603 asoc->cookie_life.tv_sec = 2604 assocparams.sasoc_cookie_life / 1000; 2605 asoc->cookie_life.tv_usec = 2606 (assocparams.sasoc_cookie_life % 1000) 2607 * 1000; 2608 } 2609 } else { 2610 /* Set the values to the endpoint */ 2611 struct sctp_sock *sp = sctp_sk(sk); 2612 2613 if (assocparams.sasoc_asocmaxrxt != 0) 2614 sp->assocparams.sasoc_asocmaxrxt = 2615 assocparams.sasoc_asocmaxrxt; 2616 if (assocparams.sasoc_cookie_life != 0) 2617 sp->assocparams.sasoc_cookie_life = 2618 assocparams.sasoc_cookie_life; 2619 } 2620 return 0; 2621 } 2622 2623 /* 2624 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2625 * 2626 * This socket option is a boolean flag which turns on or off mapped V4 2627 * addresses. If this option is turned on and the socket is type 2628 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2629 * If this option is turned off, then no mapping will be done of V4 2630 * addresses and a user will receive both PF_INET6 and PF_INET type 2631 * addresses on the socket. 2632 */ 2633 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2634 { 2635 int val; 2636 struct sctp_sock *sp = sctp_sk(sk); 2637 2638 if (optlen < sizeof(int)) 2639 return -EINVAL; 2640 if (get_user(val, (int __user *)optval)) 2641 return -EFAULT; 2642 if (val) 2643 sp->v4mapped = 1; 2644 else 2645 sp->v4mapped = 0; 2646 2647 return 0; 2648 } 2649 2650 /* 2651 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2652 * 2653 * This socket option specifies the maximum size to put in any outgoing 2654 * SCTP chunk. If a message is larger than this size it will be 2655 * fragmented by SCTP into the specified size. Note that the underlying 2656 * SCTP implementation may fragment into smaller sized chunks when the 2657 * PMTU of the underlying association is smaller than the value set by 2658 * the user. 2659 */ 2660 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2661 { 2662 struct sctp_association *asoc; 2663 struct list_head *pos; 2664 struct sctp_sock *sp = sctp_sk(sk); 2665 int val; 2666 2667 if (optlen < sizeof(int)) 2668 return -EINVAL; 2669 if (get_user(val, (int __user *)optval)) 2670 return -EFAULT; 2671 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2672 return -EINVAL; 2673 sp->user_frag = val; 2674 2675 /* Update the frag_point of the existing associations. */ 2676 list_for_each(pos, &(sp->ep->asocs)) { 2677 asoc = list_entry(pos, struct sctp_association, asocs); 2678 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2679 } 2680 2681 return 0; 2682 } 2683 2684 2685 /* 2686 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2687 * 2688 * Requests that the peer mark the enclosed address as the association 2689 * primary. The enclosed address must be one of the association's 2690 * locally bound addresses. The following structure is used to make a 2691 * set primary request: 2692 */ 2693 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2694 int optlen) 2695 { 2696 struct sctp_sock *sp; 2697 struct sctp_endpoint *ep; 2698 struct sctp_association *asoc = NULL; 2699 struct sctp_setpeerprim prim; 2700 struct sctp_chunk *chunk; 2701 int err; 2702 2703 sp = sctp_sk(sk); 2704 ep = sp->ep; 2705 2706 if (!sctp_addip_enable) 2707 return -EPERM; 2708 2709 if (optlen != sizeof(struct sctp_setpeerprim)) 2710 return -EINVAL; 2711 2712 if (copy_from_user(&prim, optval, optlen)) 2713 return -EFAULT; 2714 2715 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2716 if (!asoc) 2717 return -EINVAL; 2718 2719 if (!asoc->peer.asconf_capable) 2720 return -EPERM; 2721 2722 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2723 return -EPERM; 2724 2725 if (!sctp_state(asoc, ESTABLISHED)) 2726 return -ENOTCONN; 2727 2728 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2729 return -EADDRNOTAVAIL; 2730 2731 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2732 chunk = sctp_make_asconf_set_prim(asoc, 2733 (union sctp_addr *)&prim.sspp_addr); 2734 if (!chunk) 2735 return -ENOMEM; 2736 2737 err = sctp_send_asconf(asoc, chunk); 2738 2739 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2740 2741 return err; 2742 } 2743 2744 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval, 2745 int optlen) 2746 { 2747 struct sctp_setadaption adaption; 2748 2749 if (optlen != sizeof(struct sctp_setadaption)) 2750 return -EINVAL; 2751 if (copy_from_user(&adaption, optval, optlen)) 2752 return -EFAULT; 2753 2754 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind; 2755 2756 return 0; 2757 } 2758 2759 /* API 6.2 setsockopt(), getsockopt() 2760 * 2761 * Applications use setsockopt() and getsockopt() to set or retrieve 2762 * socket options. Socket options are used to change the default 2763 * behavior of sockets calls. They are described in Section 7. 2764 * 2765 * The syntax is: 2766 * 2767 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2768 * int __user *optlen); 2769 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2770 * int optlen); 2771 * 2772 * sd - the socket descript. 2773 * level - set to IPPROTO_SCTP for all SCTP options. 2774 * optname - the option name. 2775 * optval - the buffer to store the value of the option. 2776 * optlen - the size of the buffer. 2777 */ 2778 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2779 char __user *optval, int optlen) 2780 { 2781 int retval = 0; 2782 2783 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2784 sk, optname); 2785 2786 /* I can hardly begin to describe how wrong this is. This is 2787 * so broken as to be worse than useless. The API draft 2788 * REALLY is NOT helpful here... I am not convinced that the 2789 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2790 * are at all well-founded. 2791 */ 2792 if (level != SOL_SCTP) { 2793 struct sctp_af *af = sctp_sk(sk)->pf->af; 2794 retval = af->setsockopt(sk, level, optname, optval, optlen); 2795 goto out_nounlock; 2796 } 2797 2798 sctp_lock_sock(sk); 2799 2800 switch (optname) { 2801 case SCTP_SOCKOPT_BINDX_ADD: 2802 /* 'optlen' is the size of the addresses buffer. */ 2803 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2804 optlen, SCTP_BINDX_ADD_ADDR); 2805 break; 2806 2807 case SCTP_SOCKOPT_BINDX_REM: 2808 /* 'optlen' is the size of the addresses buffer. */ 2809 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2810 optlen, SCTP_BINDX_REM_ADDR); 2811 break; 2812 2813 case SCTP_SOCKOPT_CONNECTX: 2814 /* 'optlen' is the size of the addresses buffer. */ 2815 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2816 optlen); 2817 break; 2818 2819 case SCTP_DISABLE_FRAGMENTS: 2820 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2821 break; 2822 2823 case SCTP_EVENTS: 2824 retval = sctp_setsockopt_events(sk, optval, optlen); 2825 break; 2826 2827 case SCTP_AUTOCLOSE: 2828 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2829 break; 2830 2831 case SCTP_PEER_ADDR_PARAMS: 2832 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2833 break; 2834 2835 case SCTP_DELAYED_ACK_TIME: 2836 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 2837 break; 2838 2839 case SCTP_INITMSG: 2840 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2841 break; 2842 case SCTP_DEFAULT_SEND_PARAM: 2843 retval = sctp_setsockopt_default_send_param(sk, optval, 2844 optlen); 2845 break; 2846 case SCTP_PRIMARY_ADDR: 2847 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2848 break; 2849 case SCTP_SET_PEER_PRIMARY_ADDR: 2850 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2851 break; 2852 case SCTP_NODELAY: 2853 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2854 break; 2855 case SCTP_RTOINFO: 2856 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2857 break; 2858 case SCTP_ASSOCINFO: 2859 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2860 break; 2861 case SCTP_I_WANT_MAPPED_V4_ADDR: 2862 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2863 break; 2864 case SCTP_MAXSEG: 2865 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2866 break; 2867 case SCTP_ADAPTION_LAYER: 2868 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen); 2869 break; 2870 2871 default: 2872 retval = -ENOPROTOOPT; 2873 break; 2874 }; 2875 2876 sctp_release_sock(sk); 2877 2878 out_nounlock: 2879 return retval; 2880 } 2881 2882 /* API 3.1.6 connect() - UDP Style Syntax 2883 * 2884 * An application may use the connect() call in the UDP model to initiate an 2885 * association without sending data. 2886 * 2887 * The syntax is: 2888 * 2889 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2890 * 2891 * sd: the socket descriptor to have a new association added to. 2892 * 2893 * nam: the address structure (either struct sockaddr_in or struct 2894 * sockaddr_in6 defined in RFC2553 [7]). 2895 * 2896 * len: the size of the address. 2897 */ 2898 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 2899 int addr_len) 2900 { 2901 int err = 0; 2902 struct sctp_af *af; 2903 2904 sctp_lock_sock(sk); 2905 2906 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 2907 __FUNCTION__, sk, addr, addr_len); 2908 2909 /* Validate addr_len before calling common connect/connectx routine. */ 2910 af = sctp_get_af_specific(addr->sa_family); 2911 if (!af || addr_len < af->sockaddr_len) { 2912 err = -EINVAL; 2913 } else { 2914 /* Pass correct addr len to common routine (so it knows there 2915 * is only one address being passed. 2916 */ 2917 err = __sctp_connect(sk, addr, af->sockaddr_len); 2918 } 2919 2920 sctp_release_sock(sk); 2921 return err; 2922 } 2923 2924 /* FIXME: Write comments. */ 2925 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2926 { 2927 return -EOPNOTSUPP; /* STUB */ 2928 } 2929 2930 /* 4.1.4 accept() - TCP Style Syntax 2931 * 2932 * Applications use accept() call to remove an established SCTP 2933 * association from the accept queue of the endpoint. A new socket 2934 * descriptor will be returned from accept() to represent the newly 2935 * formed association. 2936 */ 2937 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2938 { 2939 struct sctp_sock *sp; 2940 struct sctp_endpoint *ep; 2941 struct sock *newsk = NULL; 2942 struct sctp_association *asoc; 2943 long timeo; 2944 int error = 0; 2945 2946 sctp_lock_sock(sk); 2947 2948 sp = sctp_sk(sk); 2949 ep = sp->ep; 2950 2951 if (!sctp_style(sk, TCP)) { 2952 error = -EOPNOTSUPP; 2953 goto out; 2954 } 2955 2956 if (!sctp_sstate(sk, LISTENING)) { 2957 error = -EINVAL; 2958 goto out; 2959 } 2960 2961 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 2962 2963 error = sctp_wait_for_accept(sk, timeo); 2964 if (error) 2965 goto out; 2966 2967 /* We treat the list of associations on the endpoint as the accept 2968 * queue and pick the first association on the list. 2969 */ 2970 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 2971 2972 newsk = sp->pf->create_accept_sk(sk, asoc); 2973 if (!newsk) { 2974 error = -ENOMEM; 2975 goto out; 2976 } 2977 2978 /* Populate the fields of the newsk from the oldsk and migrate the 2979 * asoc to the newsk. 2980 */ 2981 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 2982 2983 out: 2984 sctp_release_sock(sk); 2985 *err = error; 2986 return newsk; 2987 } 2988 2989 /* The SCTP ioctl handler. */ 2990 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 2991 { 2992 return -ENOIOCTLCMD; 2993 } 2994 2995 /* This is the function which gets called during socket creation to 2996 * initialized the SCTP-specific portion of the sock. 2997 * The sock structure should already be zero-filled memory. 2998 */ 2999 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3000 { 3001 struct sctp_endpoint *ep; 3002 struct sctp_sock *sp; 3003 3004 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3005 3006 sp = sctp_sk(sk); 3007 3008 /* Initialize the SCTP per socket area. */ 3009 switch (sk->sk_type) { 3010 case SOCK_SEQPACKET: 3011 sp->type = SCTP_SOCKET_UDP; 3012 break; 3013 case SOCK_STREAM: 3014 sp->type = SCTP_SOCKET_TCP; 3015 break; 3016 default: 3017 return -ESOCKTNOSUPPORT; 3018 } 3019 3020 /* Initialize default send parameters. These parameters can be 3021 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3022 */ 3023 sp->default_stream = 0; 3024 sp->default_ppid = 0; 3025 sp->default_flags = 0; 3026 sp->default_context = 0; 3027 sp->default_timetolive = 0; 3028 3029 /* Initialize default setup parameters. These parameters 3030 * can be modified with the SCTP_INITMSG socket option or 3031 * overridden by the SCTP_INIT CMSG. 3032 */ 3033 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3034 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3035 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3036 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max); 3037 3038 /* Initialize default RTO related parameters. These parameters can 3039 * be modified for with the SCTP_RTOINFO socket option. 3040 */ 3041 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial); 3042 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max); 3043 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min); 3044 3045 /* Initialize default association related parameters. These parameters 3046 * can be modified with the SCTP_ASSOCINFO socket option. 3047 */ 3048 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3049 sp->assocparams.sasoc_number_peer_destinations = 0; 3050 sp->assocparams.sasoc_peer_rwnd = 0; 3051 sp->assocparams.sasoc_local_rwnd = 0; 3052 sp->assocparams.sasoc_cookie_life = 3053 jiffies_to_msecs(sctp_valid_cookie_life); 3054 3055 /* Initialize default event subscriptions. By default, all the 3056 * options are off. 3057 */ 3058 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3059 3060 /* Default Peer Address Parameters. These defaults can 3061 * be modified via SCTP_PEER_ADDR_PARAMS 3062 */ 3063 sp->hbinterval = jiffies_to_msecs(sctp_hb_interval); 3064 sp->pathmaxrxt = sctp_max_retrans_path; 3065 sp->pathmtu = 0; // allow default discovery 3066 sp->sackdelay = jiffies_to_msecs(sctp_sack_timeout); 3067 sp->param_flags = SPP_HB_ENABLE | 3068 SPP_PMTUD_ENABLE | 3069 SPP_SACKDELAY_ENABLE; 3070 3071 /* If enabled no SCTP message fragmentation will be performed. 3072 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3073 */ 3074 sp->disable_fragments = 0; 3075 3076 /* Turn on/off any Nagle-like algorithm. */ 3077 sp->nodelay = 1; 3078 3079 /* Enable by default. */ 3080 sp->v4mapped = 1; 3081 3082 /* Auto-close idle associations after the configured 3083 * number of seconds. A value of 0 disables this 3084 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3085 * for UDP-style sockets only. 3086 */ 3087 sp->autoclose = 0; 3088 3089 /* User specified fragmentation limit. */ 3090 sp->user_frag = 0; 3091 3092 sp->adaption_ind = 0; 3093 3094 sp->pf = sctp_get_pf_specific(sk->sk_family); 3095 3096 /* Control variables for partial data delivery. */ 3097 sp->pd_mode = 0; 3098 skb_queue_head_init(&sp->pd_lobby); 3099 3100 /* Create a per socket endpoint structure. Even if we 3101 * change the data structure relationships, this may still 3102 * be useful for storing pre-connect address information. 3103 */ 3104 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3105 if (!ep) 3106 return -ENOMEM; 3107 3108 sp->ep = ep; 3109 sp->hmac = NULL; 3110 3111 SCTP_DBG_OBJCNT_INC(sock); 3112 return 0; 3113 } 3114 3115 /* Cleanup any SCTP per socket resources. */ 3116 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3117 { 3118 struct sctp_endpoint *ep; 3119 3120 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3121 3122 /* Release our hold on the endpoint. */ 3123 ep = sctp_sk(sk)->ep; 3124 sctp_endpoint_free(ep); 3125 3126 return 0; 3127 } 3128 3129 /* API 4.1.7 shutdown() - TCP Style Syntax 3130 * int shutdown(int socket, int how); 3131 * 3132 * sd - the socket descriptor of the association to be closed. 3133 * how - Specifies the type of shutdown. The values are 3134 * as follows: 3135 * SHUT_RD 3136 * Disables further receive operations. No SCTP 3137 * protocol action is taken. 3138 * SHUT_WR 3139 * Disables further send operations, and initiates 3140 * the SCTP shutdown sequence. 3141 * SHUT_RDWR 3142 * Disables further send and receive operations 3143 * and initiates the SCTP shutdown sequence. 3144 */ 3145 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3146 { 3147 struct sctp_endpoint *ep; 3148 struct sctp_association *asoc; 3149 3150 if (!sctp_style(sk, TCP)) 3151 return; 3152 3153 if (how & SEND_SHUTDOWN) { 3154 ep = sctp_sk(sk)->ep; 3155 if (!list_empty(&ep->asocs)) { 3156 asoc = list_entry(ep->asocs.next, 3157 struct sctp_association, asocs); 3158 sctp_primitive_SHUTDOWN(asoc, NULL); 3159 } 3160 } 3161 } 3162 3163 /* 7.2.1 Association Status (SCTP_STATUS) 3164 3165 * Applications can retrieve current status information about an 3166 * association, including association state, peer receiver window size, 3167 * number of unacked data chunks, and number of data chunks pending 3168 * receipt. This information is read-only. 3169 */ 3170 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3171 char __user *optval, 3172 int __user *optlen) 3173 { 3174 struct sctp_status status; 3175 struct sctp_association *asoc = NULL; 3176 struct sctp_transport *transport; 3177 sctp_assoc_t associd; 3178 int retval = 0; 3179 3180 if (len != sizeof(status)) { 3181 retval = -EINVAL; 3182 goto out; 3183 } 3184 3185 if (copy_from_user(&status, optval, sizeof(status))) { 3186 retval = -EFAULT; 3187 goto out; 3188 } 3189 3190 associd = status.sstat_assoc_id; 3191 asoc = sctp_id2assoc(sk, associd); 3192 if (!asoc) { 3193 retval = -EINVAL; 3194 goto out; 3195 } 3196 3197 transport = asoc->peer.primary_path; 3198 3199 status.sstat_assoc_id = sctp_assoc2id(asoc); 3200 status.sstat_state = asoc->state; 3201 status.sstat_rwnd = asoc->peer.rwnd; 3202 status.sstat_unackdata = asoc->unack_data; 3203 3204 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3205 status.sstat_instrms = asoc->c.sinit_max_instreams; 3206 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3207 status.sstat_fragmentation_point = asoc->frag_point; 3208 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3209 memcpy(&status.sstat_primary.spinfo_address, 3210 &(transport->ipaddr), sizeof(union sctp_addr)); 3211 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3212 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3213 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3214 status.sstat_primary.spinfo_state = transport->state; 3215 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3216 status.sstat_primary.spinfo_srtt = transport->srtt; 3217 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3218 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3219 3220 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3221 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3222 3223 if (put_user(len, optlen)) { 3224 retval = -EFAULT; 3225 goto out; 3226 } 3227 3228 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3229 len, status.sstat_state, status.sstat_rwnd, 3230 status.sstat_assoc_id); 3231 3232 if (copy_to_user(optval, &status, len)) { 3233 retval = -EFAULT; 3234 goto out; 3235 } 3236 3237 out: 3238 return (retval); 3239 } 3240 3241 3242 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3243 * 3244 * Applications can retrieve information about a specific peer address 3245 * of an association, including its reachability state, congestion 3246 * window, and retransmission timer values. This information is 3247 * read-only. 3248 */ 3249 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3250 char __user *optval, 3251 int __user *optlen) 3252 { 3253 struct sctp_paddrinfo pinfo; 3254 struct sctp_transport *transport; 3255 int retval = 0; 3256 3257 if (len != sizeof(pinfo)) { 3258 retval = -EINVAL; 3259 goto out; 3260 } 3261 3262 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 3263 retval = -EFAULT; 3264 goto out; 3265 } 3266 3267 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3268 pinfo.spinfo_assoc_id); 3269 if (!transport) 3270 return -EINVAL; 3271 3272 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3273 pinfo.spinfo_state = transport->state; 3274 pinfo.spinfo_cwnd = transport->cwnd; 3275 pinfo.spinfo_srtt = transport->srtt; 3276 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3277 pinfo.spinfo_mtu = transport->pathmtu; 3278 3279 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3280 pinfo.spinfo_state = SCTP_ACTIVE; 3281 3282 if (put_user(len, optlen)) { 3283 retval = -EFAULT; 3284 goto out; 3285 } 3286 3287 if (copy_to_user(optval, &pinfo, len)) { 3288 retval = -EFAULT; 3289 goto out; 3290 } 3291 3292 out: 3293 return (retval); 3294 } 3295 3296 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3297 * 3298 * This option is a on/off flag. If enabled no SCTP message 3299 * fragmentation will be performed. Instead if a message being sent 3300 * exceeds the current PMTU size, the message will NOT be sent and 3301 * instead a error will be indicated to the user. 3302 */ 3303 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3304 char __user *optval, int __user *optlen) 3305 { 3306 int val; 3307 3308 if (len < sizeof(int)) 3309 return -EINVAL; 3310 3311 len = sizeof(int); 3312 val = (sctp_sk(sk)->disable_fragments == 1); 3313 if (put_user(len, optlen)) 3314 return -EFAULT; 3315 if (copy_to_user(optval, &val, len)) 3316 return -EFAULT; 3317 return 0; 3318 } 3319 3320 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3321 * 3322 * This socket option is used to specify various notifications and 3323 * ancillary data the user wishes to receive. 3324 */ 3325 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3326 int __user *optlen) 3327 { 3328 if (len != sizeof(struct sctp_event_subscribe)) 3329 return -EINVAL; 3330 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3331 return -EFAULT; 3332 return 0; 3333 } 3334 3335 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3336 * 3337 * This socket option is applicable to the UDP-style socket only. When 3338 * set it will cause associations that are idle for more than the 3339 * specified number of seconds to automatically close. An association 3340 * being idle is defined an association that has NOT sent or received 3341 * user data. The special value of '0' indicates that no automatic 3342 * close of any associations should be performed. The option expects an 3343 * integer defining the number of seconds of idle time before an 3344 * association is closed. 3345 */ 3346 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3347 { 3348 /* Applicable to UDP-style socket only */ 3349 if (sctp_style(sk, TCP)) 3350 return -EOPNOTSUPP; 3351 if (len != sizeof(int)) 3352 return -EINVAL; 3353 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 3354 return -EFAULT; 3355 return 0; 3356 } 3357 3358 /* Helper routine to branch off an association to a new socket. */ 3359 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3360 struct socket **sockp) 3361 { 3362 struct sock *sk = asoc->base.sk; 3363 struct socket *sock; 3364 int err = 0; 3365 3366 /* An association cannot be branched off from an already peeled-off 3367 * socket, nor is this supported for tcp style sockets. 3368 */ 3369 if (!sctp_style(sk, UDP)) 3370 return -EINVAL; 3371 3372 /* Create a new socket. */ 3373 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3374 if (err < 0) 3375 return err; 3376 3377 /* Populate the fields of the newsk from the oldsk and migrate the 3378 * asoc to the newsk. 3379 */ 3380 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3381 *sockp = sock; 3382 3383 return err; 3384 } 3385 3386 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3387 { 3388 sctp_peeloff_arg_t peeloff; 3389 struct socket *newsock; 3390 int retval = 0; 3391 struct sctp_association *asoc; 3392 3393 if (len != sizeof(sctp_peeloff_arg_t)) 3394 return -EINVAL; 3395 if (copy_from_user(&peeloff, optval, len)) 3396 return -EFAULT; 3397 3398 asoc = sctp_id2assoc(sk, peeloff.associd); 3399 if (!asoc) { 3400 retval = -EINVAL; 3401 goto out; 3402 } 3403 3404 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3405 3406 retval = sctp_do_peeloff(asoc, &newsock); 3407 if (retval < 0) 3408 goto out; 3409 3410 /* Map the socket to an unused fd that can be returned to the user. */ 3411 retval = sock_map_fd(newsock); 3412 if (retval < 0) { 3413 sock_release(newsock); 3414 goto out; 3415 } 3416 3417 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3418 __FUNCTION__, sk, asoc, newsock->sk, retval); 3419 3420 /* Return the fd mapped to the new socket. */ 3421 peeloff.sd = retval; 3422 if (copy_to_user(optval, &peeloff, len)) 3423 retval = -EFAULT; 3424 3425 out: 3426 return retval; 3427 } 3428 3429 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3430 * 3431 * Applications can enable or disable heartbeats for any peer address of 3432 * an association, modify an address's heartbeat interval, force a 3433 * heartbeat to be sent immediately, and adjust the address's maximum 3434 * number of retransmissions sent before an address is considered 3435 * unreachable. The following structure is used to access and modify an 3436 * address's parameters: 3437 * 3438 * struct sctp_paddrparams { 3439 * sctp_assoc_t spp_assoc_id; 3440 * struct sockaddr_storage spp_address; 3441 * uint32_t spp_hbinterval; 3442 * uint16_t spp_pathmaxrxt; 3443 * uint32_t spp_pathmtu; 3444 * uint32_t spp_sackdelay; 3445 * uint32_t spp_flags; 3446 * }; 3447 * 3448 * spp_assoc_id - (one-to-many style socket) This is filled in the 3449 * application, and identifies the association for 3450 * this query. 3451 * spp_address - This specifies which address is of interest. 3452 * spp_hbinterval - This contains the value of the heartbeat interval, 3453 * in milliseconds. If a value of zero 3454 * is present in this field then no changes are to 3455 * be made to this parameter. 3456 * spp_pathmaxrxt - This contains the maximum number of 3457 * retransmissions before this address shall be 3458 * considered unreachable. If a value of zero 3459 * is present in this field then no changes are to 3460 * be made to this parameter. 3461 * spp_pathmtu - When Path MTU discovery is disabled the value 3462 * specified here will be the "fixed" path mtu. 3463 * Note that if the spp_address field is empty 3464 * then all associations on this address will 3465 * have this fixed path mtu set upon them. 3466 * 3467 * spp_sackdelay - When delayed sack is enabled, this value specifies 3468 * the number of milliseconds that sacks will be delayed 3469 * for. This value will apply to all addresses of an 3470 * association if the spp_address field is empty. Note 3471 * also, that if delayed sack is enabled and this 3472 * value is set to 0, no change is made to the last 3473 * recorded delayed sack timer value. 3474 * 3475 * spp_flags - These flags are used to control various features 3476 * on an association. The flag field may contain 3477 * zero or more of the following options. 3478 * 3479 * SPP_HB_ENABLE - Enable heartbeats on the 3480 * specified address. Note that if the address 3481 * field is empty all addresses for the association 3482 * have heartbeats enabled upon them. 3483 * 3484 * SPP_HB_DISABLE - Disable heartbeats on the 3485 * speicifed address. Note that if the address 3486 * field is empty all addresses for the association 3487 * will have their heartbeats disabled. Note also 3488 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3489 * mutually exclusive, only one of these two should 3490 * be specified. Enabling both fields will have 3491 * undetermined results. 3492 * 3493 * SPP_HB_DEMAND - Request a user initiated heartbeat 3494 * to be made immediately. 3495 * 3496 * SPP_PMTUD_ENABLE - This field will enable PMTU 3497 * discovery upon the specified address. Note that 3498 * if the address feild is empty then all addresses 3499 * on the association are effected. 3500 * 3501 * SPP_PMTUD_DISABLE - This field will disable PMTU 3502 * discovery upon the specified address. Note that 3503 * if the address feild is empty then all addresses 3504 * on the association are effected. Not also that 3505 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3506 * exclusive. Enabling both will have undetermined 3507 * results. 3508 * 3509 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3510 * on delayed sack. The time specified in spp_sackdelay 3511 * is used to specify the sack delay for this address. Note 3512 * that if spp_address is empty then all addresses will 3513 * enable delayed sack and take on the sack delay 3514 * value specified in spp_sackdelay. 3515 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3516 * off delayed sack. If the spp_address field is blank then 3517 * delayed sack is disabled for the entire association. Note 3518 * also that this field is mutually exclusive to 3519 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3520 * results. 3521 */ 3522 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3523 char __user *optval, int __user *optlen) 3524 { 3525 struct sctp_paddrparams params; 3526 struct sctp_transport *trans = NULL; 3527 struct sctp_association *asoc = NULL; 3528 struct sctp_sock *sp = sctp_sk(sk); 3529 3530 if (len != sizeof(struct sctp_paddrparams)) 3531 return -EINVAL; 3532 3533 if (copy_from_user(¶ms, optval, len)) 3534 return -EFAULT; 3535 3536 /* If an address other than INADDR_ANY is specified, and 3537 * no transport is found, then the request is invalid. 3538 */ 3539 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3540 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3541 params.spp_assoc_id); 3542 if (!trans) { 3543 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3544 return -EINVAL; 3545 } 3546 } 3547 3548 /* Get association, if assoc_id != 0 and the socket is a one 3549 * to many style socket, and an association was not found, then 3550 * the id was invalid. 3551 */ 3552 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3553 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3554 SCTP_DEBUG_PRINTK("Failed no association\n"); 3555 return -EINVAL; 3556 } 3557 3558 if (trans) { 3559 /* Fetch transport values. */ 3560 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3561 params.spp_pathmtu = trans->pathmtu; 3562 params.spp_pathmaxrxt = trans->pathmaxrxt; 3563 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3564 3565 /*draft-11 doesn't say what to return in spp_flags*/ 3566 params.spp_flags = trans->param_flags; 3567 } else if (asoc) { 3568 /* Fetch association values. */ 3569 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3570 params.spp_pathmtu = asoc->pathmtu; 3571 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3572 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3573 3574 /*draft-11 doesn't say what to return in spp_flags*/ 3575 params.spp_flags = asoc->param_flags; 3576 } else { 3577 /* Fetch socket values. */ 3578 params.spp_hbinterval = sp->hbinterval; 3579 params.spp_pathmtu = sp->pathmtu; 3580 params.spp_sackdelay = sp->sackdelay; 3581 params.spp_pathmaxrxt = sp->pathmaxrxt; 3582 3583 /*draft-11 doesn't say what to return in spp_flags*/ 3584 params.spp_flags = sp->param_flags; 3585 } 3586 3587 if (copy_to_user(optval, ¶ms, len)) 3588 return -EFAULT; 3589 3590 if (put_user(len, optlen)) 3591 return -EFAULT; 3592 3593 return 0; 3594 } 3595 3596 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3597 * 3598 * This options will get or set the delayed ack timer. The time is set 3599 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3600 * endpoints default delayed ack timer value. If the assoc_id field is 3601 * non-zero, then the set or get effects the specified association. 3602 * 3603 * struct sctp_assoc_value { 3604 * sctp_assoc_t assoc_id; 3605 * uint32_t assoc_value; 3606 * }; 3607 * 3608 * assoc_id - This parameter, indicates which association the 3609 * user is preforming an action upon. Note that if 3610 * this field's value is zero then the endpoints 3611 * default value is changed (effecting future 3612 * associations only). 3613 * 3614 * assoc_value - This parameter contains the number of milliseconds 3615 * that the user is requesting the delayed ACK timer 3616 * be set to. Note that this value is defined in 3617 * the standard to be between 200 and 500 milliseconds. 3618 * 3619 * Note: a value of zero will leave the value alone, 3620 * but disable SACK delay. A non-zero value will also 3621 * enable SACK delay. 3622 */ 3623 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3624 char __user *optval, 3625 int __user *optlen) 3626 { 3627 struct sctp_assoc_value params; 3628 struct sctp_association *asoc = NULL; 3629 struct sctp_sock *sp = sctp_sk(sk); 3630 3631 if (len != sizeof(struct sctp_assoc_value)) 3632 return - EINVAL; 3633 3634 if (copy_from_user(¶ms, optval, len)) 3635 return -EFAULT; 3636 3637 /* Get association, if assoc_id != 0 and the socket is a one 3638 * to many style socket, and an association was not found, then 3639 * the id was invalid. 3640 */ 3641 asoc = sctp_id2assoc(sk, params.assoc_id); 3642 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3643 return -EINVAL; 3644 3645 if (asoc) { 3646 /* Fetch association values. */ 3647 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3648 params.assoc_value = jiffies_to_msecs( 3649 asoc->sackdelay); 3650 else 3651 params.assoc_value = 0; 3652 } else { 3653 /* Fetch socket values. */ 3654 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3655 params.assoc_value = sp->sackdelay; 3656 else 3657 params.assoc_value = 0; 3658 } 3659 3660 if (copy_to_user(optval, ¶ms, len)) 3661 return -EFAULT; 3662 3663 if (put_user(len, optlen)) 3664 return -EFAULT; 3665 3666 return 0; 3667 } 3668 3669 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3670 * 3671 * Applications can specify protocol parameters for the default association 3672 * initialization. The option name argument to setsockopt() and getsockopt() 3673 * is SCTP_INITMSG. 3674 * 3675 * Setting initialization parameters is effective only on an unconnected 3676 * socket (for UDP-style sockets only future associations are effected 3677 * by the change). With TCP-style sockets, this option is inherited by 3678 * sockets derived from a listener socket. 3679 */ 3680 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3681 { 3682 if (len != sizeof(struct sctp_initmsg)) 3683 return -EINVAL; 3684 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3685 return -EFAULT; 3686 return 0; 3687 } 3688 3689 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3690 char __user *optval, 3691 int __user *optlen) 3692 { 3693 sctp_assoc_t id; 3694 struct sctp_association *asoc; 3695 struct list_head *pos; 3696 int cnt = 0; 3697 3698 if (len != sizeof(sctp_assoc_t)) 3699 return -EINVAL; 3700 3701 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3702 return -EFAULT; 3703 3704 /* For UDP-style sockets, id specifies the association to query. */ 3705 asoc = sctp_id2assoc(sk, id); 3706 if (!asoc) 3707 return -EINVAL; 3708 3709 list_for_each(pos, &asoc->peer.transport_addr_list) { 3710 cnt ++; 3711 } 3712 3713 return cnt; 3714 } 3715 3716 /* 3717 * Old API for getting list of peer addresses. Does not work for 32-bit 3718 * programs running on a 64-bit kernel 3719 */ 3720 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3721 char __user *optval, 3722 int __user *optlen) 3723 { 3724 struct sctp_association *asoc; 3725 struct list_head *pos; 3726 int cnt = 0; 3727 struct sctp_getaddrs_old getaddrs; 3728 struct sctp_transport *from; 3729 void __user *to; 3730 union sctp_addr temp; 3731 struct sctp_sock *sp = sctp_sk(sk); 3732 int addrlen; 3733 3734 if (len != sizeof(struct sctp_getaddrs_old)) 3735 return -EINVAL; 3736 3737 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3738 return -EFAULT; 3739 3740 if (getaddrs.addr_num <= 0) return -EINVAL; 3741 3742 /* For UDP-style sockets, id specifies the association to query. */ 3743 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3744 if (!asoc) 3745 return -EINVAL; 3746 3747 to = (void __user *)getaddrs.addrs; 3748 list_for_each(pos, &asoc->peer.transport_addr_list) { 3749 from = list_entry(pos, struct sctp_transport, transports); 3750 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3751 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3752 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3753 temp.v4.sin_port = htons(temp.v4.sin_port); 3754 if (copy_to_user(to, &temp, addrlen)) 3755 return -EFAULT; 3756 to += addrlen ; 3757 cnt ++; 3758 if (cnt >= getaddrs.addr_num) break; 3759 } 3760 getaddrs.addr_num = cnt; 3761 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3762 return -EFAULT; 3763 3764 return 0; 3765 } 3766 3767 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3768 char __user *optval, int __user *optlen) 3769 { 3770 struct sctp_association *asoc; 3771 struct list_head *pos; 3772 int cnt = 0; 3773 struct sctp_getaddrs getaddrs; 3774 struct sctp_transport *from; 3775 void __user *to; 3776 union sctp_addr temp; 3777 struct sctp_sock *sp = sctp_sk(sk); 3778 int addrlen; 3779 size_t space_left; 3780 int bytes_copied; 3781 3782 if (len < sizeof(struct sctp_getaddrs)) 3783 return -EINVAL; 3784 3785 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3786 return -EFAULT; 3787 3788 /* For UDP-style sockets, id specifies the association to query. */ 3789 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3790 if (!asoc) 3791 return -EINVAL; 3792 3793 to = optval + offsetof(struct sctp_getaddrs,addrs); 3794 space_left = len - sizeof(struct sctp_getaddrs) - 3795 offsetof(struct sctp_getaddrs,addrs); 3796 3797 list_for_each(pos, &asoc->peer.transport_addr_list) { 3798 from = list_entry(pos, struct sctp_transport, transports); 3799 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3800 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3801 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3802 if(space_left < addrlen) 3803 return -ENOMEM; 3804 temp.v4.sin_port = htons(temp.v4.sin_port); 3805 if (copy_to_user(to, &temp, addrlen)) 3806 return -EFAULT; 3807 to += addrlen; 3808 cnt++; 3809 space_left -= addrlen; 3810 } 3811 3812 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3813 return -EFAULT; 3814 bytes_copied = ((char __user *)to) - optval; 3815 if (put_user(bytes_copied, optlen)) 3816 return -EFAULT; 3817 3818 return 0; 3819 } 3820 3821 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 3822 char __user *optval, 3823 int __user *optlen) 3824 { 3825 sctp_assoc_t id; 3826 struct sctp_bind_addr *bp; 3827 struct sctp_association *asoc; 3828 struct list_head *pos; 3829 struct sctp_sockaddr_entry *addr; 3830 rwlock_t *addr_lock; 3831 unsigned long flags; 3832 int cnt = 0; 3833 3834 if (len != sizeof(sctp_assoc_t)) 3835 return -EINVAL; 3836 3837 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3838 return -EFAULT; 3839 3840 /* 3841 * For UDP-style sockets, id specifies the association to query. 3842 * If the id field is set to the value '0' then the locally bound 3843 * addresses are returned without regard to any particular 3844 * association. 3845 */ 3846 if (0 == id) { 3847 bp = &sctp_sk(sk)->ep->base.bind_addr; 3848 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3849 } else { 3850 asoc = sctp_id2assoc(sk, id); 3851 if (!asoc) 3852 return -EINVAL; 3853 bp = &asoc->base.bind_addr; 3854 addr_lock = &asoc->base.addr_lock; 3855 } 3856 3857 sctp_read_lock(addr_lock); 3858 3859 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3860 * addresses from the global local address list. 3861 */ 3862 if (sctp_list_single_entry(&bp->address_list)) { 3863 addr = list_entry(bp->address_list.next, 3864 struct sctp_sockaddr_entry, list); 3865 if (sctp_is_any(&addr->a)) { 3866 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3867 list_for_each(pos, &sctp_local_addr_list) { 3868 addr = list_entry(pos, 3869 struct sctp_sockaddr_entry, 3870 list); 3871 if ((PF_INET == sk->sk_family) && 3872 (AF_INET6 == addr->a.sa.sa_family)) 3873 continue; 3874 cnt++; 3875 } 3876 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3877 flags); 3878 } else { 3879 cnt = 1; 3880 } 3881 goto done; 3882 } 3883 3884 list_for_each(pos, &bp->address_list) { 3885 cnt ++; 3886 } 3887 3888 done: 3889 sctp_read_unlock(addr_lock); 3890 return cnt; 3891 } 3892 3893 /* Helper function that copies local addresses to user and returns the number 3894 * of addresses copied. 3895 */ 3896 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs, 3897 void __user *to) 3898 { 3899 struct list_head *pos; 3900 struct sctp_sockaddr_entry *addr; 3901 unsigned long flags; 3902 union sctp_addr temp; 3903 int cnt = 0; 3904 int addrlen; 3905 3906 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3907 list_for_each(pos, &sctp_local_addr_list) { 3908 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3909 if ((PF_INET == sk->sk_family) && 3910 (AF_INET6 == addr->a.sa.sa_family)) 3911 continue; 3912 memcpy(&temp, &addr->a, sizeof(temp)); 3913 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3914 &temp); 3915 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3916 temp.v4.sin_port = htons(port); 3917 if (copy_to_user(to, &temp, addrlen)) { 3918 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3919 flags); 3920 return -EFAULT; 3921 } 3922 to += addrlen; 3923 cnt ++; 3924 if (cnt >= max_addrs) break; 3925 } 3926 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3927 3928 return cnt; 3929 } 3930 3931 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, 3932 void __user **to, size_t space_left) 3933 { 3934 struct list_head *pos; 3935 struct sctp_sockaddr_entry *addr; 3936 unsigned long flags; 3937 union sctp_addr temp; 3938 int cnt = 0; 3939 int addrlen; 3940 3941 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3942 list_for_each(pos, &sctp_local_addr_list) { 3943 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3944 if ((PF_INET == sk->sk_family) && 3945 (AF_INET6 == addr->a.sa.sa_family)) 3946 continue; 3947 memcpy(&temp, &addr->a, sizeof(temp)); 3948 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3949 &temp); 3950 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3951 if(space_left<addrlen) 3952 return -ENOMEM; 3953 temp.v4.sin_port = htons(port); 3954 if (copy_to_user(*to, &temp, addrlen)) { 3955 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3956 flags); 3957 return -EFAULT; 3958 } 3959 *to += addrlen; 3960 cnt ++; 3961 space_left -= addrlen; 3962 } 3963 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3964 3965 return cnt; 3966 } 3967 3968 /* Old API for getting list of local addresses. Does not work for 32-bit 3969 * programs running on a 64-bit kernel 3970 */ 3971 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 3972 char __user *optval, int __user *optlen) 3973 { 3974 struct sctp_bind_addr *bp; 3975 struct sctp_association *asoc; 3976 struct list_head *pos; 3977 int cnt = 0; 3978 struct sctp_getaddrs_old getaddrs; 3979 struct sctp_sockaddr_entry *addr; 3980 void __user *to; 3981 union sctp_addr temp; 3982 struct sctp_sock *sp = sctp_sk(sk); 3983 int addrlen; 3984 rwlock_t *addr_lock; 3985 int err = 0; 3986 3987 if (len != sizeof(struct sctp_getaddrs_old)) 3988 return -EINVAL; 3989 3990 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3991 return -EFAULT; 3992 3993 if (getaddrs.addr_num <= 0) return -EINVAL; 3994 /* 3995 * For UDP-style sockets, id specifies the association to query. 3996 * If the id field is set to the value '0' then the locally bound 3997 * addresses are returned without regard to any particular 3998 * association. 3999 */ 4000 if (0 == getaddrs.assoc_id) { 4001 bp = &sctp_sk(sk)->ep->base.bind_addr; 4002 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4003 } else { 4004 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4005 if (!asoc) 4006 return -EINVAL; 4007 bp = &asoc->base.bind_addr; 4008 addr_lock = &asoc->base.addr_lock; 4009 } 4010 4011 to = getaddrs.addrs; 4012 4013 sctp_read_lock(addr_lock); 4014 4015 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4016 * addresses from the global local address list. 4017 */ 4018 if (sctp_list_single_entry(&bp->address_list)) { 4019 addr = list_entry(bp->address_list.next, 4020 struct sctp_sockaddr_entry, list); 4021 if (sctp_is_any(&addr->a)) { 4022 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port, 4023 getaddrs.addr_num, 4024 to); 4025 if (cnt < 0) { 4026 err = cnt; 4027 goto unlock; 4028 } 4029 goto copy_getaddrs; 4030 } 4031 } 4032 4033 list_for_each(pos, &bp->address_list) { 4034 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4035 memcpy(&temp, &addr->a, sizeof(temp)); 4036 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4037 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4038 temp.v4.sin_port = htons(temp.v4.sin_port); 4039 if (copy_to_user(to, &temp, addrlen)) { 4040 err = -EFAULT; 4041 goto unlock; 4042 } 4043 to += addrlen; 4044 cnt ++; 4045 if (cnt >= getaddrs.addr_num) break; 4046 } 4047 4048 copy_getaddrs: 4049 getaddrs.addr_num = cnt; 4050 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 4051 err = -EFAULT; 4052 4053 unlock: 4054 sctp_read_unlock(addr_lock); 4055 return err; 4056 } 4057 4058 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4059 char __user *optval, int __user *optlen) 4060 { 4061 struct sctp_bind_addr *bp; 4062 struct sctp_association *asoc; 4063 struct list_head *pos; 4064 int cnt = 0; 4065 struct sctp_getaddrs getaddrs; 4066 struct sctp_sockaddr_entry *addr; 4067 void __user *to; 4068 union sctp_addr temp; 4069 struct sctp_sock *sp = sctp_sk(sk); 4070 int addrlen; 4071 rwlock_t *addr_lock; 4072 int err = 0; 4073 size_t space_left; 4074 int bytes_copied; 4075 4076 if (len <= sizeof(struct sctp_getaddrs)) 4077 return -EINVAL; 4078 4079 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4080 return -EFAULT; 4081 4082 /* 4083 * For UDP-style sockets, id specifies the association to query. 4084 * If the id field is set to the value '0' then the locally bound 4085 * addresses are returned without regard to any particular 4086 * association. 4087 */ 4088 if (0 == getaddrs.assoc_id) { 4089 bp = &sctp_sk(sk)->ep->base.bind_addr; 4090 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4091 } else { 4092 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4093 if (!asoc) 4094 return -EINVAL; 4095 bp = &asoc->base.bind_addr; 4096 addr_lock = &asoc->base.addr_lock; 4097 } 4098 4099 to = optval + offsetof(struct sctp_getaddrs,addrs); 4100 space_left = len - sizeof(struct sctp_getaddrs) - 4101 offsetof(struct sctp_getaddrs,addrs); 4102 4103 sctp_read_lock(addr_lock); 4104 4105 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4106 * addresses from the global local address list. 4107 */ 4108 if (sctp_list_single_entry(&bp->address_list)) { 4109 addr = list_entry(bp->address_list.next, 4110 struct sctp_sockaddr_entry, list); 4111 if (sctp_is_any(&addr->a)) { 4112 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 4113 &to, space_left); 4114 if (cnt < 0) { 4115 err = cnt; 4116 goto unlock; 4117 } 4118 goto copy_getaddrs; 4119 } 4120 } 4121 4122 list_for_each(pos, &bp->address_list) { 4123 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4124 memcpy(&temp, &addr->a, sizeof(temp)); 4125 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4126 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4127 if(space_left < addrlen) 4128 return -ENOMEM; /*fixme: right error?*/ 4129 temp.v4.sin_port = htons(temp.v4.sin_port); 4130 if (copy_to_user(to, &temp, addrlen)) { 4131 err = -EFAULT; 4132 goto unlock; 4133 } 4134 to += addrlen; 4135 cnt ++; 4136 space_left -= addrlen; 4137 } 4138 4139 copy_getaddrs: 4140 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4141 return -EFAULT; 4142 bytes_copied = ((char __user *)to) - optval; 4143 if (put_user(bytes_copied, optlen)) 4144 return -EFAULT; 4145 4146 unlock: 4147 sctp_read_unlock(addr_lock); 4148 return err; 4149 } 4150 4151 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4152 * 4153 * Requests that the local SCTP stack use the enclosed peer address as 4154 * the association primary. The enclosed address must be one of the 4155 * association peer's addresses. 4156 */ 4157 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4158 char __user *optval, int __user *optlen) 4159 { 4160 struct sctp_prim prim; 4161 struct sctp_association *asoc; 4162 struct sctp_sock *sp = sctp_sk(sk); 4163 4164 if (len != sizeof(struct sctp_prim)) 4165 return -EINVAL; 4166 4167 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 4168 return -EFAULT; 4169 4170 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4171 if (!asoc) 4172 return -EINVAL; 4173 4174 if (!asoc->peer.primary_path) 4175 return -ENOTCONN; 4176 4177 asoc->peer.primary_path->ipaddr.v4.sin_port = 4178 htons(asoc->peer.primary_path->ipaddr.v4.sin_port); 4179 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4180 sizeof(union sctp_addr)); 4181 asoc->peer.primary_path->ipaddr.v4.sin_port = 4182 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port); 4183 4184 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4185 (union sctp_addr *)&prim.ssp_addr); 4186 4187 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 4188 return -EFAULT; 4189 4190 return 0; 4191 } 4192 4193 /* 4194 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER) 4195 * 4196 * Requests that the local endpoint set the specified Adaption Layer 4197 * Indication parameter for all future INIT and INIT-ACK exchanges. 4198 */ 4199 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len, 4200 char __user *optval, int __user *optlen) 4201 { 4202 struct sctp_setadaption adaption; 4203 4204 if (len != sizeof(struct sctp_setadaption)) 4205 return -EINVAL; 4206 4207 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind; 4208 if (copy_to_user(optval, &adaption, len)) 4209 return -EFAULT; 4210 4211 return 0; 4212 } 4213 4214 /* 4215 * 4216 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4217 * 4218 * Applications that wish to use the sendto() system call may wish to 4219 * specify a default set of parameters that would normally be supplied 4220 * through the inclusion of ancillary data. This socket option allows 4221 * such an application to set the default sctp_sndrcvinfo structure. 4222 4223 4224 * The application that wishes to use this socket option simply passes 4225 * in to this call the sctp_sndrcvinfo structure defined in Section 4226 * 5.2.2) The input parameters accepted by this call include 4227 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4228 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4229 * to this call if the caller is using the UDP model. 4230 * 4231 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4232 */ 4233 static int sctp_getsockopt_default_send_param(struct sock *sk, 4234 int len, char __user *optval, 4235 int __user *optlen) 4236 { 4237 struct sctp_sndrcvinfo info; 4238 struct sctp_association *asoc; 4239 struct sctp_sock *sp = sctp_sk(sk); 4240 4241 if (len != sizeof(struct sctp_sndrcvinfo)) 4242 return -EINVAL; 4243 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 4244 return -EFAULT; 4245 4246 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4247 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4248 return -EINVAL; 4249 4250 if (asoc) { 4251 info.sinfo_stream = asoc->default_stream; 4252 info.sinfo_flags = asoc->default_flags; 4253 info.sinfo_ppid = asoc->default_ppid; 4254 info.sinfo_context = asoc->default_context; 4255 info.sinfo_timetolive = asoc->default_timetolive; 4256 } else { 4257 info.sinfo_stream = sp->default_stream; 4258 info.sinfo_flags = sp->default_flags; 4259 info.sinfo_ppid = sp->default_ppid; 4260 info.sinfo_context = sp->default_context; 4261 info.sinfo_timetolive = sp->default_timetolive; 4262 } 4263 4264 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 4265 return -EFAULT; 4266 4267 return 0; 4268 } 4269 4270 /* 4271 * 4272 * 7.1.5 SCTP_NODELAY 4273 * 4274 * Turn on/off any Nagle-like algorithm. This means that packets are 4275 * generally sent as soon as possible and no unnecessary delays are 4276 * introduced, at the cost of more packets in the network. Expects an 4277 * integer boolean flag. 4278 */ 4279 4280 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4281 char __user *optval, int __user *optlen) 4282 { 4283 int val; 4284 4285 if (len < sizeof(int)) 4286 return -EINVAL; 4287 4288 len = sizeof(int); 4289 val = (sctp_sk(sk)->nodelay == 1); 4290 if (put_user(len, optlen)) 4291 return -EFAULT; 4292 if (copy_to_user(optval, &val, len)) 4293 return -EFAULT; 4294 return 0; 4295 } 4296 4297 /* 4298 * 4299 * 7.1.1 SCTP_RTOINFO 4300 * 4301 * The protocol parameters used to initialize and bound retransmission 4302 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4303 * and modify these parameters. 4304 * All parameters are time values, in milliseconds. A value of 0, when 4305 * modifying the parameters, indicates that the current value should not 4306 * be changed. 4307 * 4308 */ 4309 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4310 char __user *optval, 4311 int __user *optlen) { 4312 struct sctp_rtoinfo rtoinfo; 4313 struct sctp_association *asoc; 4314 4315 if (len != sizeof (struct sctp_rtoinfo)) 4316 return -EINVAL; 4317 4318 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 4319 return -EFAULT; 4320 4321 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4322 4323 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4324 return -EINVAL; 4325 4326 /* Values corresponding to the specific association. */ 4327 if (asoc) { 4328 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4329 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4330 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4331 } else { 4332 /* Values corresponding to the endpoint. */ 4333 struct sctp_sock *sp = sctp_sk(sk); 4334 4335 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4336 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4337 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4338 } 4339 4340 if (put_user(len, optlen)) 4341 return -EFAULT; 4342 4343 if (copy_to_user(optval, &rtoinfo, len)) 4344 return -EFAULT; 4345 4346 return 0; 4347 } 4348 4349 /* 4350 * 4351 * 7.1.2 SCTP_ASSOCINFO 4352 * 4353 * This option is used to tune the the maximum retransmission attempts 4354 * of the association. 4355 * Returns an error if the new association retransmission value is 4356 * greater than the sum of the retransmission value of the peer. 4357 * See [SCTP] for more information. 4358 * 4359 */ 4360 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4361 char __user *optval, 4362 int __user *optlen) 4363 { 4364 4365 struct sctp_assocparams assocparams; 4366 struct sctp_association *asoc; 4367 struct list_head *pos; 4368 int cnt = 0; 4369 4370 if (len != sizeof (struct sctp_assocparams)) 4371 return -EINVAL; 4372 4373 if (copy_from_user(&assocparams, optval, 4374 sizeof (struct sctp_assocparams))) 4375 return -EFAULT; 4376 4377 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4378 4379 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4380 return -EINVAL; 4381 4382 /* Values correspoinding to the specific association */ 4383 if (asoc) { 4384 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4385 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4386 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4387 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4388 * 1000) + 4389 (asoc->cookie_life.tv_usec 4390 / 1000); 4391 4392 list_for_each(pos, &asoc->peer.transport_addr_list) { 4393 cnt ++; 4394 } 4395 4396 assocparams.sasoc_number_peer_destinations = cnt; 4397 } else { 4398 /* Values corresponding to the endpoint */ 4399 struct sctp_sock *sp = sctp_sk(sk); 4400 4401 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4402 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4403 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4404 assocparams.sasoc_cookie_life = 4405 sp->assocparams.sasoc_cookie_life; 4406 assocparams.sasoc_number_peer_destinations = 4407 sp->assocparams. 4408 sasoc_number_peer_destinations; 4409 } 4410 4411 if (put_user(len, optlen)) 4412 return -EFAULT; 4413 4414 if (copy_to_user(optval, &assocparams, len)) 4415 return -EFAULT; 4416 4417 return 0; 4418 } 4419 4420 /* 4421 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4422 * 4423 * This socket option is a boolean flag which turns on or off mapped V4 4424 * addresses. If this option is turned on and the socket is type 4425 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4426 * If this option is turned off, then no mapping will be done of V4 4427 * addresses and a user will receive both PF_INET6 and PF_INET type 4428 * addresses on the socket. 4429 */ 4430 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4431 char __user *optval, int __user *optlen) 4432 { 4433 int val; 4434 struct sctp_sock *sp = sctp_sk(sk); 4435 4436 if (len < sizeof(int)) 4437 return -EINVAL; 4438 4439 len = sizeof(int); 4440 val = sp->v4mapped; 4441 if (put_user(len, optlen)) 4442 return -EFAULT; 4443 if (copy_to_user(optval, &val, len)) 4444 return -EFAULT; 4445 4446 return 0; 4447 } 4448 4449 /* 4450 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4451 * 4452 * This socket option specifies the maximum size to put in any outgoing 4453 * SCTP chunk. If a message is larger than this size it will be 4454 * fragmented by SCTP into the specified size. Note that the underlying 4455 * SCTP implementation may fragment into smaller sized chunks when the 4456 * PMTU of the underlying association is smaller than the value set by 4457 * the user. 4458 */ 4459 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4460 char __user *optval, int __user *optlen) 4461 { 4462 int val; 4463 4464 if (len < sizeof(int)) 4465 return -EINVAL; 4466 4467 len = sizeof(int); 4468 4469 val = sctp_sk(sk)->user_frag; 4470 if (put_user(len, optlen)) 4471 return -EFAULT; 4472 if (copy_to_user(optval, &val, len)) 4473 return -EFAULT; 4474 4475 return 0; 4476 } 4477 4478 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4479 char __user *optval, int __user *optlen) 4480 { 4481 int retval = 0; 4482 int len; 4483 4484 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4485 sk, optname); 4486 4487 /* I can hardly begin to describe how wrong this is. This is 4488 * so broken as to be worse than useless. The API draft 4489 * REALLY is NOT helpful here... I am not convinced that the 4490 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4491 * are at all well-founded. 4492 */ 4493 if (level != SOL_SCTP) { 4494 struct sctp_af *af = sctp_sk(sk)->pf->af; 4495 4496 retval = af->getsockopt(sk, level, optname, optval, optlen); 4497 return retval; 4498 } 4499 4500 if (get_user(len, optlen)) 4501 return -EFAULT; 4502 4503 sctp_lock_sock(sk); 4504 4505 switch (optname) { 4506 case SCTP_STATUS: 4507 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4508 break; 4509 case SCTP_DISABLE_FRAGMENTS: 4510 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4511 optlen); 4512 break; 4513 case SCTP_EVENTS: 4514 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4515 break; 4516 case SCTP_AUTOCLOSE: 4517 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4518 break; 4519 case SCTP_SOCKOPT_PEELOFF: 4520 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4521 break; 4522 case SCTP_PEER_ADDR_PARAMS: 4523 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4524 optlen); 4525 break; 4526 case SCTP_DELAYED_ACK_TIME: 4527 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4528 optlen); 4529 break; 4530 case SCTP_INITMSG: 4531 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4532 break; 4533 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4534 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4535 optlen); 4536 break; 4537 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4538 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4539 optlen); 4540 break; 4541 case SCTP_GET_PEER_ADDRS_OLD: 4542 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4543 optlen); 4544 break; 4545 case SCTP_GET_LOCAL_ADDRS_OLD: 4546 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4547 optlen); 4548 break; 4549 case SCTP_GET_PEER_ADDRS: 4550 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4551 optlen); 4552 break; 4553 case SCTP_GET_LOCAL_ADDRS: 4554 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4555 optlen); 4556 break; 4557 case SCTP_DEFAULT_SEND_PARAM: 4558 retval = sctp_getsockopt_default_send_param(sk, len, 4559 optval, optlen); 4560 break; 4561 case SCTP_PRIMARY_ADDR: 4562 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4563 break; 4564 case SCTP_NODELAY: 4565 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4566 break; 4567 case SCTP_RTOINFO: 4568 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4569 break; 4570 case SCTP_ASSOCINFO: 4571 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4572 break; 4573 case SCTP_I_WANT_MAPPED_V4_ADDR: 4574 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4575 break; 4576 case SCTP_MAXSEG: 4577 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4578 break; 4579 case SCTP_GET_PEER_ADDR_INFO: 4580 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4581 optlen); 4582 break; 4583 case SCTP_ADAPTION_LAYER: 4584 retval = sctp_getsockopt_adaption_layer(sk, len, optval, 4585 optlen); 4586 break; 4587 default: 4588 retval = -ENOPROTOOPT; 4589 break; 4590 }; 4591 4592 sctp_release_sock(sk); 4593 return retval; 4594 } 4595 4596 static void sctp_hash(struct sock *sk) 4597 { 4598 /* STUB */ 4599 } 4600 4601 static void sctp_unhash(struct sock *sk) 4602 { 4603 /* STUB */ 4604 } 4605 4606 /* Check if port is acceptable. Possibly find first available port. 4607 * 4608 * The port hash table (contained in the 'global' SCTP protocol storage 4609 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4610 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4611 * list (the list number is the port number hashed out, so as you 4612 * would expect from a hash function, all the ports in a given list have 4613 * such a number that hashes out to the same list number; you were 4614 * expecting that, right?); so each list has a set of ports, with a 4615 * link to the socket (struct sock) that uses it, the port number and 4616 * a fastreuse flag (FIXME: NPI ipg). 4617 */ 4618 static struct sctp_bind_bucket *sctp_bucket_create( 4619 struct sctp_bind_hashbucket *head, unsigned short snum); 4620 4621 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4622 { 4623 struct sctp_bind_hashbucket *head; /* hash list */ 4624 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4625 unsigned short snum; 4626 int ret; 4627 4628 /* NOTE: Remember to put this back to net order. */ 4629 addr->v4.sin_port = ntohs(addr->v4.sin_port); 4630 snum = addr->v4.sin_port; 4631 4632 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4633 sctp_local_bh_disable(); 4634 4635 if (snum == 0) { 4636 /* Search for an available port. 4637 * 4638 * 'sctp_port_rover' was the last port assigned, so 4639 * we start to search from 'sctp_port_rover + 4640 * 1'. What we do is first check if port 'rover' is 4641 * already in the hash table; if not, we use that; if 4642 * it is, we try next. 4643 */ 4644 int low = sysctl_local_port_range[0]; 4645 int high = sysctl_local_port_range[1]; 4646 int remaining = (high - low) + 1; 4647 int rover; 4648 int index; 4649 4650 sctp_spin_lock(&sctp_port_alloc_lock); 4651 rover = sctp_port_rover; 4652 do { 4653 rover++; 4654 if ((rover < low) || (rover > high)) 4655 rover = low; 4656 index = sctp_phashfn(rover); 4657 head = &sctp_port_hashtable[index]; 4658 sctp_spin_lock(&head->lock); 4659 for (pp = head->chain; pp; pp = pp->next) 4660 if (pp->port == rover) 4661 goto next; 4662 break; 4663 next: 4664 sctp_spin_unlock(&head->lock); 4665 } while (--remaining > 0); 4666 sctp_port_rover = rover; 4667 sctp_spin_unlock(&sctp_port_alloc_lock); 4668 4669 /* Exhausted local port range during search? */ 4670 ret = 1; 4671 if (remaining <= 0) 4672 goto fail; 4673 4674 /* OK, here is the one we will use. HEAD (the port 4675 * hash table list entry) is non-NULL and we hold it's 4676 * mutex. 4677 */ 4678 snum = rover; 4679 } else { 4680 /* We are given an specific port number; we verify 4681 * that it is not being used. If it is used, we will 4682 * exahust the search in the hash list corresponding 4683 * to the port number (snum) - we detect that with the 4684 * port iterator, pp being NULL. 4685 */ 4686 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 4687 sctp_spin_lock(&head->lock); 4688 for (pp = head->chain; pp; pp = pp->next) { 4689 if (pp->port == snum) 4690 goto pp_found; 4691 } 4692 } 4693 pp = NULL; 4694 goto pp_not_found; 4695 pp_found: 4696 if (!hlist_empty(&pp->owner)) { 4697 /* We had a port hash table hit - there is an 4698 * available port (pp != NULL) and it is being 4699 * used by other socket (pp->owner not empty); that other 4700 * socket is going to be sk2. 4701 */ 4702 int reuse = sk->sk_reuse; 4703 struct sock *sk2; 4704 struct hlist_node *node; 4705 4706 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 4707 if (pp->fastreuse && sk->sk_reuse) 4708 goto success; 4709 4710 /* Run through the list of sockets bound to the port 4711 * (pp->port) [via the pointers bind_next and 4712 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 4713 * we get the endpoint they describe and run through 4714 * the endpoint's list of IP (v4 or v6) addresses, 4715 * comparing each of the addresses with the address of 4716 * the socket sk. If we find a match, then that means 4717 * that this port/socket (sk) combination are already 4718 * in an endpoint. 4719 */ 4720 sk_for_each_bound(sk2, node, &pp->owner) { 4721 struct sctp_endpoint *ep2; 4722 ep2 = sctp_sk(sk2)->ep; 4723 4724 if (reuse && sk2->sk_reuse) 4725 continue; 4726 4727 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 4728 sctp_sk(sk))) { 4729 ret = (long)sk2; 4730 goto fail_unlock; 4731 } 4732 } 4733 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 4734 } 4735 pp_not_found: 4736 /* If there was a hash table miss, create a new port. */ 4737 ret = 1; 4738 if (!pp && !(pp = sctp_bucket_create(head, snum))) 4739 goto fail_unlock; 4740 4741 /* In either case (hit or miss), make sure fastreuse is 1 only 4742 * if sk->sk_reuse is too (that is, if the caller requested 4743 * SO_REUSEADDR on this socket -sk-). 4744 */ 4745 if (hlist_empty(&pp->owner)) 4746 pp->fastreuse = sk->sk_reuse ? 1 : 0; 4747 else if (pp->fastreuse && !sk->sk_reuse) 4748 pp->fastreuse = 0; 4749 4750 /* We are set, so fill up all the data in the hash table 4751 * entry, tie the socket list information with the rest of the 4752 * sockets FIXME: Blurry, NPI (ipg). 4753 */ 4754 success: 4755 inet_sk(sk)->num = snum; 4756 if (!sctp_sk(sk)->bind_hash) { 4757 sk_add_bind_node(sk, &pp->owner); 4758 sctp_sk(sk)->bind_hash = pp; 4759 } 4760 ret = 0; 4761 4762 fail_unlock: 4763 sctp_spin_unlock(&head->lock); 4764 4765 fail: 4766 sctp_local_bh_enable(); 4767 addr->v4.sin_port = htons(addr->v4.sin_port); 4768 return ret; 4769 } 4770 4771 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 4772 * port is requested. 4773 */ 4774 static int sctp_get_port(struct sock *sk, unsigned short snum) 4775 { 4776 long ret; 4777 union sctp_addr addr; 4778 struct sctp_af *af = sctp_sk(sk)->pf->af; 4779 4780 /* Set up a dummy address struct from the sk. */ 4781 af->from_sk(&addr, sk); 4782 addr.v4.sin_port = htons(snum); 4783 4784 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 4785 ret = sctp_get_port_local(sk, &addr); 4786 4787 return (ret ? 1 : 0); 4788 } 4789 4790 /* 4791 * 3.1.3 listen() - UDP Style Syntax 4792 * 4793 * By default, new associations are not accepted for UDP style sockets. 4794 * An application uses listen() to mark a socket as being able to 4795 * accept new associations. 4796 */ 4797 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 4798 { 4799 struct sctp_sock *sp = sctp_sk(sk); 4800 struct sctp_endpoint *ep = sp->ep; 4801 4802 /* Only UDP style sockets that are not peeled off are allowed to 4803 * listen(). 4804 */ 4805 if (!sctp_style(sk, UDP)) 4806 return -EINVAL; 4807 4808 /* If backlog is zero, disable listening. */ 4809 if (!backlog) { 4810 if (sctp_sstate(sk, CLOSED)) 4811 return 0; 4812 4813 sctp_unhash_endpoint(ep); 4814 sk->sk_state = SCTP_SS_CLOSED; 4815 } 4816 4817 /* Return if we are already listening. */ 4818 if (sctp_sstate(sk, LISTENING)) 4819 return 0; 4820 4821 /* 4822 * If a bind() or sctp_bindx() is not called prior to a listen() 4823 * call that allows new associations to be accepted, the system 4824 * picks an ephemeral port and will choose an address set equivalent 4825 * to binding with a wildcard address. 4826 * 4827 * This is not currently spelled out in the SCTP sockets 4828 * extensions draft, but follows the practice as seen in TCP 4829 * sockets. 4830 */ 4831 if (!ep->base.bind_addr.port) { 4832 if (sctp_autobind(sk)) 4833 return -EAGAIN; 4834 } 4835 sk->sk_state = SCTP_SS_LISTENING; 4836 sctp_hash_endpoint(ep); 4837 return 0; 4838 } 4839 4840 /* 4841 * 4.1.3 listen() - TCP Style Syntax 4842 * 4843 * Applications uses listen() to ready the SCTP endpoint for accepting 4844 * inbound associations. 4845 */ 4846 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 4847 { 4848 struct sctp_sock *sp = sctp_sk(sk); 4849 struct sctp_endpoint *ep = sp->ep; 4850 4851 /* If backlog is zero, disable listening. */ 4852 if (!backlog) { 4853 if (sctp_sstate(sk, CLOSED)) 4854 return 0; 4855 4856 sctp_unhash_endpoint(ep); 4857 sk->sk_state = SCTP_SS_CLOSED; 4858 } 4859 4860 if (sctp_sstate(sk, LISTENING)) 4861 return 0; 4862 4863 /* 4864 * If a bind() or sctp_bindx() is not called prior to a listen() 4865 * call that allows new associations to be accepted, the system 4866 * picks an ephemeral port and will choose an address set equivalent 4867 * to binding with a wildcard address. 4868 * 4869 * This is not currently spelled out in the SCTP sockets 4870 * extensions draft, but follows the practice as seen in TCP 4871 * sockets. 4872 */ 4873 if (!ep->base.bind_addr.port) { 4874 if (sctp_autobind(sk)) 4875 return -EAGAIN; 4876 } 4877 sk->sk_state = SCTP_SS_LISTENING; 4878 sk->sk_max_ack_backlog = backlog; 4879 sctp_hash_endpoint(ep); 4880 return 0; 4881 } 4882 4883 /* 4884 * Move a socket to LISTENING state. 4885 */ 4886 int sctp_inet_listen(struct socket *sock, int backlog) 4887 { 4888 struct sock *sk = sock->sk; 4889 struct crypto_tfm *tfm=NULL; 4890 int err = -EINVAL; 4891 4892 if (unlikely(backlog < 0)) 4893 goto out; 4894 4895 sctp_lock_sock(sk); 4896 4897 if (sock->state != SS_UNCONNECTED) 4898 goto out; 4899 4900 /* Allocate HMAC for generating cookie. */ 4901 if (sctp_hmac_alg) { 4902 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0); 4903 if (!tfm) { 4904 err = -ENOSYS; 4905 goto out; 4906 } 4907 } 4908 4909 switch (sock->type) { 4910 case SOCK_SEQPACKET: 4911 err = sctp_seqpacket_listen(sk, backlog); 4912 break; 4913 case SOCK_STREAM: 4914 err = sctp_stream_listen(sk, backlog); 4915 break; 4916 default: 4917 break; 4918 }; 4919 if (err) 4920 goto cleanup; 4921 4922 /* Store away the transform reference. */ 4923 sctp_sk(sk)->hmac = tfm; 4924 out: 4925 sctp_release_sock(sk); 4926 return err; 4927 cleanup: 4928 sctp_crypto_free_tfm(tfm); 4929 goto out; 4930 } 4931 4932 /* 4933 * This function is done by modeling the current datagram_poll() and the 4934 * tcp_poll(). Note that, based on these implementations, we don't 4935 * lock the socket in this function, even though it seems that, 4936 * ideally, locking or some other mechanisms can be used to ensure 4937 * the integrity of the counters (sndbuf and wmem_alloc) used 4938 * in this place. We assume that we don't need locks either until proven 4939 * otherwise. 4940 * 4941 * Another thing to note is that we include the Async I/O support 4942 * here, again, by modeling the current TCP/UDP code. We don't have 4943 * a good way to test with it yet. 4944 */ 4945 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 4946 { 4947 struct sock *sk = sock->sk; 4948 struct sctp_sock *sp = sctp_sk(sk); 4949 unsigned int mask; 4950 4951 poll_wait(file, sk->sk_sleep, wait); 4952 4953 /* A TCP-style listening socket becomes readable when the accept queue 4954 * is not empty. 4955 */ 4956 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4957 return (!list_empty(&sp->ep->asocs)) ? 4958 (POLLIN | POLLRDNORM) : 0; 4959 4960 mask = 0; 4961 4962 /* Is there any exceptional events? */ 4963 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 4964 mask |= POLLERR; 4965 if (sk->sk_shutdown & RCV_SHUTDOWN) 4966 mask |= POLLRDHUP; 4967 if (sk->sk_shutdown == SHUTDOWN_MASK) 4968 mask |= POLLHUP; 4969 4970 /* Is it readable? Reconsider this code with TCP-style support. */ 4971 if (!skb_queue_empty(&sk->sk_receive_queue) || 4972 (sk->sk_shutdown & RCV_SHUTDOWN)) 4973 mask |= POLLIN | POLLRDNORM; 4974 4975 /* The association is either gone or not ready. */ 4976 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 4977 return mask; 4978 4979 /* Is it writable? */ 4980 if (sctp_writeable(sk)) { 4981 mask |= POLLOUT | POLLWRNORM; 4982 } else { 4983 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 4984 /* 4985 * Since the socket is not locked, the buffer 4986 * might be made available after the writeable check and 4987 * before the bit is set. This could cause a lost I/O 4988 * signal. tcp_poll() has a race breaker for this race 4989 * condition. Based on their implementation, we put 4990 * in the following code to cover it as well. 4991 */ 4992 if (sctp_writeable(sk)) 4993 mask |= POLLOUT | POLLWRNORM; 4994 } 4995 return mask; 4996 } 4997 4998 /******************************************************************** 4999 * 2nd Level Abstractions 5000 ********************************************************************/ 5001 5002 static struct sctp_bind_bucket *sctp_bucket_create( 5003 struct sctp_bind_hashbucket *head, unsigned short snum) 5004 { 5005 struct sctp_bind_bucket *pp; 5006 5007 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC); 5008 SCTP_DBG_OBJCNT_INC(bind_bucket); 5009 if (pp) { 5010 pp->port = snum; 5011 pp->fastreuse = 0; 5012 INIT_HLIST_HEAD(&pp->owner); 5013 if ((pp->next = head->chain) != NULL) 5014 pp->next->pprev = &pp->next; 5015 head->chain = pp; 5016 pp->pprev = &head->chain; 5017 } 5018 return pp; 5019 } 5020 5021 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5022 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5023 { 5024 if (pp && hlist_empty(&pp->owner)) { 5025 if (pp->next) 5026 pp->next->pprev = pp->pprev; 5027 *(pp->pprev) = pp->next; 5028 kmem_cache_free(sctp_bucket_cachep, pp); 5029 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5030 } 5031 } 5032 5033 /* Release this socket's reference to a local port. */ 5034 static inline void __sctp_put_port(struct sock *sk) 5035 { 5036 struct sctp_bind_hashbucket *head = 5037 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5038 struct sctp_bind_bucket *pp; 5039 5040 sctp_spin_lock(&head->lock); 5041 pp = sctp_sk(sk)->bind_hash; 5042 __sk_del_bind_node(sk); 5043 sctp_sk(sk)->bind_hash = NULL; 5044 inet_sk(sk)->num = 0; 5045 sctp_bucket_destroy(pp); 5046 sctp_spin_unlock(&head->lock); 5047 } 5048 5049 void sctp_put_port(struct sock *sk) 5050 { 5051 sctp_local_bh_disable(); 5052 __sctp_put_port(sk); 5053 sctp_local_bh_enable(); 5054 } 5055 5056 /* 5057 * The system picks an ephemeral port and choose an address set equivalent 5058 * to binding with a wildcard address. 5059 * One of those addresses will be the primary address for the association. 5060 * This automatically enables the multihoming capability of SCTP. 5061 */ 5062 static int sctp_autobind(struct sock *sk) 5063 { 5064 union sctp_addr autoaddr; 5065 struct sctp_af *af; 5066 unsigned short port; 5067 5068 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5069 af = sctp_sk(sk)->pf->af; 5070 5071 port = htons(inet_sk(sk)->num); 5072 af->inaddr_any(&autoaddr, port); 5073 5074 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5075 } 5076 5077 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5078 * 5079 * From RFC 2292 5080 * 4.2 The cmsghdr Structure * 5081 * 5082 * When ancillary data is sent or received, any number of ancillary data 5083 * objects can be specified by the msg_control and msg_controllen members of 5084 * the msghdr structure, because each object is preceded by 5085 * a cmsghdr structure defining the object's length (the cmsg_len member). 5086 * Historically Berkeley-derived implementations have passed only one object 5087 * at a time, but this API allows multiple objects to be 5088 * passed in a single call to sendmsg() or recvmsg(). The following example 5089 * shows two ancillary data objects in a control buffer. 5090 * 5091 * |<--------------------------- msg_controllen -------------------------->| 5092 * | | 5093 * 5094 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5095 * 5096 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5097 * | | | 5098 * 5099 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5100 * 5101 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5102 * | | | | | 5103 * 5104 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5105 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5106 * 5107 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5108 * 5109 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5110 * ^ 5111 * | 5112 * 5113 * msg_control 5114 * points here 5115 */ 5116 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5117 sctp_cmsgs_t *cmsgs) 5118 { 5119 struct cmsghdr *cmsg; 5120 5121 for (cmsg = CMSG_FIRSTHDR(msg); 5122 cmsg != NULL; 5123 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5124 if (!CMSG_OK(msg, cmsg)) 5125 return -EINVAL; 5126 5127 /* Should we parse this header or ignore? */ 5128 if (cmsg->cmsg_level != IPPROTO_SCTP) 5129 continue; 5130 5131 /* Strictly check lengths following example in SCM code. */ 5132 switch (cmsg->cmsg_type) { 5133 case SCTP_INIT: 5134 /* SCTP Socket API Extension 5135 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5136 * 5137 * This cmsghdr structure provides information for 5138 * initializing new SCTP associations with sendmsg(). 5139 * The SCTP_INITMSG socket option uses this same data 5140 * structure. This structure is not used for 5141 * recvmsg(). 5142 * 5143 * cmsg_level cmsg_type cmsg_data[] 5144 * ------------ ------------ ---------------------- 5145 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5146 */ 5147 if (cmsg->cmsg_len != 5148 CMSG_LEN(sizeof(struct sctp_initmsg))) 5149 return -EINVAL; 5150 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5151 break; 5152 5153 case SCTP_SNDRCV: 5154 /* SCTP Socket API Extension 5155 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5156 * 5157 * This cmsghdr structure specifies SCTP options for 5158 * sendmsg() and describes SCTP header information 5159 * about a received message through recvmsg(). 5160 * 5161 * cmsg_level cmsg_type cmsg_data[] 5162 * ------------ ------------ ---------------------- 5163 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5164 */ 5165 if (cmsg->cmsg_len != 5166 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5167 return -EINVAL; 5168 5169 cmsgs->info = 5170 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5171 5172 /* Minimally, validate the sinfo_flags. */ 5173 if (cmsgs->info->sinfo_flags & 5174 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5175 SCTP_ABORT | SCTP_EOF)) 5176 return -EINVAL; 5177 break; 5178 5179 default: 5180 return -EINVAL; 5181 }; 5182 } 5183 return 0; 5184 } 5185 5186 /* 5187 * Wait for a packet.. 5188 * Note: This function is the same function as in core/datagram.c 5189 * with a few modifications to make lksctp work. 5190 */ 5191 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5192 { 5193 int error; 5194 DEFINE_WAIT(wait); 5195 5196 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5197 5198 /* Socket errors? */ 5199 error = sock_error(sk); 5200 if (error) 5201 goto out; 5202 5203 if (!skb_queue_empty(&sk->sk_receive_queue)) 5204 goto ready; 5205 5206 /* Socket shut down? */ 5207 if (sk->sk_shutdown & RCV_SHUTDOWN) 5208 goto out; 5209 5210 /* Sequenced packets can come disconnected. If so we report the 5211 * problem. 5212 */ 5213 error = -ENOTCONN; 5214 5215 /* Is there a good reason to think that we may receive some data? */ 5216 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5217 goto out; 5218 5219 /* Handle signals. */ 5220 if (signal_pending(current)) 5221 goto interrupted; 5222 5223 /* Let another process have a go. Since we are going to sleep 5224 * anyway. Note: This may cause odd behaviors if the message 5225 * does not fit in the user's buffer, but this seems to be the 5226 * only way to honor MSG_DONTWAIT realistically. 5227 */ 5228 sctp_release_sock(sk); 5229 *timeo_p = schedule_timeout(*timeo_p); 5230 sctp_lock_sock(sk); 5231 5232 ready: 5233 finish_wait(sk->sk_sleep, &wait); 5234 return 0; 5235 5236 interrupted: 5237 error = sock_intr_errno(*timeo_p); 5238 5239 out: 5240 finish_wait(sk->sk_sleep, &wait); 5241 *err = error; 5242 return error; 5243 } 5244 5245 /* Receive a datagram. 5246 * Note: This is pretty much the same routine as in core/datagram.c 5247 * with a few changes to make lksctp work. 5248 */ 5249 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5250 int noblock, int *err) 5251 { 5252 int error; 5253 struct sk_buff *skb; 5254 long timeo; 5255 5256 timeo = sock_rcvtimeo(sk, noblock); 5257 5258 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5259 timeo, MAX_SCHEDULE_TIMEOUT); 5260 5261 do { 5262 /* Again only user level code calls this function, 5263 * so nothing interrupt level 5264 * will suddenly eat the receive_queue. 5265 * 5266 * Look at current nfs client by the way... 5267 * However, this function was corrent in any case. 8) 5268 */ 5269 if (flags & MSG_PEEK) { 5270 spin_lock_bh(&sk->sk_receive_queue.lock); 5271 skb = skb_peek(&sk->sk_receive_queue); 5272 if (skb) 5273 atomic_inc(&skb->users); 5274 spin_unlock_bh(&sk->sk_receive_queue.lock); 5275 } else { 5276 skb = skb_dequeue(&sk->sk_receive_queue); 5277 } 5278 5279 if (skb) 5280 return skb; 5281 5282 /* Caller is allowed not to check sk->sk_err before calling. */ 5283 error = sock_error(sk); 5284 if (error) 5285 goto no_packet; 5286 5287 if (sk->sk_shutdown & RCV_SHUTDOWN) 5288 break; 5289 5290 /* User doesn't want to wait. */ 5291 error = -EAGAIN; 5292 if (!timeo) 5293 goto no_packet; 5294 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5295 5296 return NULL; 5297 5298 no_packet: 5299 *err = error; 5300 return NULL; 5301 } 5302 5303 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5304 static void __sctp_write_space(struct sctp_association *asoc) 5305 { 5306 struct sock *sk = asoc->base.sk; 5307 struct socket *sock = sk->sk_socket; 5308 5309 if ((sctp_wspace(asoc) > 0) && sock) { 5310 if (waitqueue_active(&asoc->wait)) 5311 wake_up_interruptible(&asoc->wait); 5312 5313 if (sctp_writeable(sk)) { 5314 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5315 wake_up_interruptible(sk->sk_sleep); 5316 5317 /* Note that we try to include the Async I/O support 5318 * here by modeling from the current TCP/UDP code. 5319 * We have not tested with it yet. 5320 */ 5321 if (sock->fasync_list && 5322 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5323 sock_wake_async(sock, 2, POLL_OUT); 5324 } 5325 } 5326 } 5327 5328 /* Do accounting for the sndbuf space. 5329 * Decrement the used sndbuf space of the corresponding association by the 5330 * data size which was just transmitted(freed). 5331 */ 5332 static void sctp_wfree(struct sk_buff *skb) 5333 { 5334 struct sctp_association *asoc; 5335 struct sctp_chunk *chunk; 5336 struct sock *sk; 5337 5338 /* Get the saved chunk pointer. */ 5339 chunk = *((struct sctp_chunk **)(skb->cb)); 5340 asoc = chunk->asoc; 5341 sk = asoc->base.sk; 5342 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5343 sizeof(struct sk_buff) + 5344 sizeof(struct sctp_chunk); 5345 5346 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5347 5348 sock_wfree(skb); 5349 __sctp_write_space(asoc); 5350 5351 sctp_association_put(asoc); 5352 } 5353 5354 /* Helper function to wait for space in the sndbuf. */ 5355 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5356 size_t msg_len) 5357 { 5358 struct sock *sk = asoc->base.sk; 5359 int err = 0; 5360 long current_timeo = *timeo_p; 5361 DEFINE_WAIT(wait); 5362 5363 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5364 asoc, (long)(*timeo_p), msg_len); 5365 5366 /* Increment the association's refcnt. */ 5367 sctp_association_hold(asoc); 5368 5369 /* Wait on the association specific sndbuf space. */ 5370 for (;;) { 5371 prepare_to_wait_exclusive(&asoc->wait, &wait, 5372 TASK_INTERRUPTIBLE); 5373 if (!*timeo_p) 5374 goto do_nonblock; 5375 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5376 asoc->base.dead) 5377 goto do_error; 5378 if (signal_pending(current)) 5379 goto do_interrupted; 5380 if (msg_len <= sctp_wspace(asoc)) 5381 break; 5382 5383 /* Let another process have a go. Since we are going 5384 * to sleep anyway. 5385 */ 5386 sctp_release_sock(sk); 5387 current_timeo = schedule_timeout(current_timeo); 5388 BUG_ON(sk != asoc->base.sk); 5389 sctp_lock_sock(sk); 5390 5391 *timeo_p = current_timeo; 5392 } 5393 5394 out: 5395 finish_wait(&asoc->wait, &wait); 5396 5397 /* Release the association's refcnt. */ 5398 sctp_association_put(asoc); 5399 5400 return err; 5401 5402 do_error: 5403 err = -EPIPE; 5404 goto out; 5405 5406 do_interrupted: 5407 err = sock_intr_errno(*timeo_p); 5408 goto out; 5409 5410 do_nonblock: 5411 err = -EAGAIN; 5412 goto out; 5413 } 5414 5415 /* If socket sndbuf has changed, wake up all per association waiters. */ 5416 void sctp_write_space(struct sock *sk) 5417 { 5418 struct sctp_association *asoc; 5419 struct list_head *pos; 5420 5421 /* Wake up the tasks in each wait queue. */ 5422 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5423 asoc = list_entry(pos, struct sctp_association, asocs); 5424 __sctp_write_space(asoc); 5425 } 5426 } 5427 5428 /* Is there any sndbuf space available on the socket? 5429 * 5430 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5431 * associations on the same socket. For a UDP-style socket with 5432 * multiple associations, it is possible for it to be "unwriteable" 5433 * prematurely. I assume that this is acceptable because 5434 * a premature "unwriteable" is better than an accidental "writeable" which 5435 * would cause an unwanted block under certain circumstances. For the 1-1 5436 * UDP-style sockets or TCP-style sockets, this code should work. 5437 * - Daisy 5438 */ 5439 static int sctp_writeable(struct sock *sk) 5440 { 5441 int amt = 0; 5442 5443 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5444 if (amt < 0) 5445 amt = 0; 5446 return amt; 5447 } 5448 5449 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5450 * returns immediately with EINPROGRESS. 5451 */ 5452 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5453 { 5454 struct sock *sk = asoc->base.sk; 5455 int err = 0; 5456 long current_timeo = *timeo_p; 5457 DEFINE_WAIT(wait); 5458 5459 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5460 (long)(*timeo_p)); 5461 5462 /* Increment the association's refcnt. */ 5463 sctp_association_hold(asoc); 5464 5465 for (;;) { 5466 prepare_to_wait_exclusive(&asoc->wait, &wait, 5467 TASK_INTERRUPTIBLE); 5468 if (!*timeo_p) 5469 goto do_nonblock; 5470 if (sk->sk_shutdown & RCV_SHUTDOWN) 5471 break; 5472 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5473 asoc->base.dead) 5474 goto do_error; 5475 if (signal_pending(current)) 5476 goto do_interrupted; 5477 5478 if (sctp_state(asoc, ESTABLISHED)) 5479 break; 5480 5481 /* Let another process have a go. Since we are going 5482 * to sleep anyway. 5483 */ 5484 sctp_release_sock(sk); 5485 current_timeo = schedule_timeout(current_timeo); 5486 sctp_lock_sock(sk); 5487 5488 *timeo_p = current_timeo; 5489 } 5490 5491 out: 5492 finish_wait(&asoc->wait, &wait); 5493 5494 /* Release the association's refcnt. */ 5495 sctp_association_put(asoc); 5496 5497 return err; 5498 5499 do_error: 5500 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5501 err = -ETIMEDOUT; 5502 else 5503 err = -ECONNREFUSED; 5504 goto out; 5505 5506 do_interrupted: 5507 err = sock_intr_errno(*timeo_p); 5508 goto out; 5509 5510 do_nonblock: 5511 err = -EINPROGRESS; 5512 goto out; 5513 } 5514 5515 static int sctp_wait_for_accept(struct sock *sk, long timeo) 5516 { 5517 struct sctp_endpoint *ep; 5518 int err = 0; 5519 DEFINE_WAIT(wait); 5520 5521 ep = sctp_sk(sk)->ep; 5522 5523 5524 for (;;) { 5525 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5526 TASK_INTERRUPTIBLE); 5527 5528 if (list_empty(&ep->asocs)) { 5529 sctp_release_sock(sk); 5530 timeo = schedule_timeout(timeo); 5531 sctp_lock_sock(sk); 5532 } 5533 5534 err = -EINVAL; 5535 if (!sctp_sstate(sk, LISTENING)) 5536 break; 5537 5538 err = 0; 5539 if (!list_empty(&ep->asocs)) 5540 break; 5541 5542 err = sock_intr_errno(timeo); 5543 if (signal_pending(current)) 5544 break; 5545 5546 err = -EAGAIN; 5547 if (!timeo) 5548 break; 5549 } 5550 5551 finish_wait(sk->sk_sleep, &wait); 5552 5553 return err; 5554 } 5555 5556 void sctp_wait_for_close(struct sock *sk, long timeout) 5557 { 5558 DEFINE_WAIT(wait); 5559 5560 do { 5561 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5562 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5563 break; 5564 sctp_release_sock(sk); 5565 timeout = schedule_timeout(timeout); 5566 sctp_lock_sock(sk); 5567 } while (!signal_pending(current) && timeout); 5568 5569 finish_wait(sk->sk_sleep, &wait); 5570 } 5571 5572 /* Populate the fields of the newsk from the oldsk and migrate the assoc 5573 * and its messages to the newsk. 5574 */ 5575 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5576 struct sctp_association *assoc, 5577 sctp_socket_type_t type) 5578 { 5579 struct sctp_sock *oldsp = sctp_sk(oldsk); 5580 struct sctp_sock *newsp = sctp_sk(newsk); 5581 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5582 struct sctp_endpoint *newep = newsp->ep; 5583 struct sk_buff *skb, *tmp; 5584 struct sctp_ulpevent *event; 5585 int flags = 0; 5586 5587 /* Migrate socket buffer sizes and all the socket level options to the 5588 * new socket. 5589 */ 5590 newsk->sk_sndbuf = oldsk->sk_sndbuf; 5591 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 5592 /* Brute force copy old sctp opt. */ 5593 inet_sk_copy_descendant(newsk, oldsk); 5594 5595 /* Restore the ep value that was overwritten with the above structure 5596 * copy. 5597 */ 5598 newsp->ep = newep; 5599 newsp->hmac = NULL; 5600 5601 /* Hook this new socket in to the bind_hash list. */ 5602 pp = sctp_sk(oldsk)->bind_hash; 5603 sk_add_bind_node(newsk, &pp->owner); 5604 sctp_sk(newsk)->bind_hash = pp; 5605 inet_sk(newsk)->num = inet_sk(oldsk)->num; 5606 5607 /* Copy the bind_addr list from the original endpoint to the new 5608 * endpoint so that we can handle restarts properly 5609 */ 5610 if (assoc->peer.ipv4_address) 5611 flags |= SCTP_ADDR4_PEERSUPP; 5612 if (assoc->peer.ipv6_address) 5613 flags |= SCTP_ADDR6_PEERSUPP; 5614 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 5615 &oldsp->ep->base.bind_addr, 5616 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 5617 5618 /* Move any messages in the old socket's receive queue that are for the 5619 * peeled off association to the new socket's receive queue. 5620 */ 5621 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 5622 event = sctp_skb2event(skb); 5623 if (event->asoc == assoc) { 5624 sock_rfree(skb); 5625 __skb_unlink(skb, &oldsk->sk_receive_queue); 5626 __skb_queue_tail(&newsk->sk_receive_queue, skb); 5627 skb_set_owner_r(skb, newsk); 5628 } 5629 } 5630 5631 /* Clean up any messages pending delivery due to partial 5632 * delivery. Three cases: 5633 * 1) No partial deliver; no work. 5634 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 5635 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 5636 */ 5637 skb_queue_head_init(&newsp->pd_lobby); 5638 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 5639 5640 if (sctp_sk(oldsk)->pd_mode) { 5641 struct sk_buff_head *queue; 5642 5643 /* Decide which queue to move pd_lobby skbs to. */ 5644 if (assoc->ulpq.pd_mode) { 5645 queue = &newsp->pd_lobby; 5646 } else 5647 queue = &newsk->sk_receive_queue; 5648 5649 /* Walk through the pd_lobby, looking for skbs that 5650 * need moved to the new socket. 5651 */ 5652 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 5653 event = sctp_skb2event(skb); 5654 if (event->asoc == assoc) { 5655 sock_rfree(skb); 5656 __skb_unlink(skb, &oldsp->pd_lobby); 5657 __skb_queue_tail(queue, skb); 5658 skb_set_owner_r(skb, newsk); 5659 } 5660 } 5661 5662 /* Clear up any skbs waiting for the partial 5663 * delivery to finish. 5664 */ 5665 if (assoc->ulpq.pd_mode) 5666 sctp_clear_pd(oldsk); 5667 5668 } 5669 5670 /* Set the type of socket to indicate that it is peeled off from the 5671 * original UDP-style socket or created with the accept() call on a 5672 * TCP-style socket.. 5673 */ 5674 newsp->type = type; 5675 5676 /* Mark the new socket "in-use" by the user so that any packets 5677 * that may arrive on the association after we've moved it are 5678 * queued to the backlog. This prevents a potential race between 5679 * backlog processing on the old socket and new-packet processing 5680 * on the new socket. 5681 */ 5682 sctp_lock_sock(newsk); 5683 sctp_assoc_migrate(assoc, newsk); 5684 5685 /* If the association on the newsk is already closed before accept() 5686 * is called, set RCV_SHUTDOWN flag. 5687 */ 5688 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 5689 newsk->sk_shutdown |= RCV_SHUTDOWN; 5690 5691 newsk->sk_state = SCTP_SS_ESTABLISHED; 5692 sctp_release_sock(newsk); 5693 } 5694 5695 /* This proto struct describes the ULP interface for SCTP. */ 5696 struct proto sctp_prot = { 5697 .name = "SCTP", 5698 .owner = THIS_MODULE, 5699 .close = sctp_close, 5700 .connect = sctp_connect, 5701 .disconnect = sctp_disconnect, 5702 .accept = sctp_accept, 5703 .ioctl = sctp_ioctl, 5704 .init = sctp_init_sock, 5705 .destroy = sctp_destroy_sock, 5706 .shutdown = sctp_shutdown, 5707 .setsockopt = sctp_setsockopt, 5708 .getsockopt = sctp_getsockopt, 5709 .sendmsg = sctp_sendmsg, 5710 .recvmsg = sctp_recvmsg, 5711 .bind = sctp_bind, 5712 .backlog_rcv = sctp_backlog_rcv, 5713 .hash = sctp_hash, 5714 .unhash = sctp_unhash, 5715 .get_port = sctp_get_port, 5716 .obj_size = sizeof(struct sctp_sock), 5717 }; 5718 5719 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5720 struct proto sctpv6_prot = { 5721 .name = "SCTPv6", 5722 .owner = THIS_MODULE, 5723 .close = sctp_close, 5724 .connect = sctp_connect, 5725 .disconnect = sctp_disconnect, 5726 .accept = sctp_accept, 5727 .ioctl = sctp_ioctl, 5728 .init = sctp_init_sock, 5729 .destroy = sctp_destroy_sock, 5730 .shutdown = sctp_shutdown, 5731 .setsockopt = sctp_setsockopt, 5732 .getsockopt = sctp_getsockopt, 5733 .sendmsg = sctp_sendmsg, 5734 .recvmsg = sctp_recvmsg, 5735 .bind = sctp_bind, 5736 .backlog_rcv = sctp_backlog_rcv, 5737 .hash = sctp_hash, 5738 .unhash = sctp_unhash, 5739 .get_port = sctp_get_port, 5740 .obj_size = sizeof(struct sctp6_sock), 5741 }; 5742 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 5743