xref: /linux/net/sctp/socket.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern kmem_cache_t *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
233 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
234 					       (union sctp_addr *)addr,
235 					       &transport);
236 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
237 
238 	if (!addr_asoc)
239 		return NULL;
240 
241 	id_asoc = sctp_id2assoc(sk, id);
242 	if (id_asoc && (id_asoc != addr_asoc))
243 		return NULL;
244 
245 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 						(union sctp_addr *)addr);
247 
248 	return transport;
249 }
250 
251 /* API 3.1.2 bind() - UDP Style Syntax
252  * The syntax of bind() is,
253  *
254  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
255  *
256  *   sd      - the socket descriptor returned by socket().
257  *   addr    - the address structure (struct sockaddr_in or struct
258  *             sockaddr_in6 [RFC 2553]),
259  *   addr_len - the size of the address structure.
260  */
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
262 {
263 	int retval = 0;
264 
265 	sctp_lock_sock(sk);
266 
267 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 			  sk, addr, addr_len);
269 
270 	/* Disallow binding twice. */
271 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 				      addr_len);
274 	else
275 		retval = -EINVAL;
276 
277 	sctp_release_sock(sk);
278 
279 	return retval;
280 }
281 
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
283 
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 					union sctp_addr *addr, int len)
287 {
288 	struct sctp_af *af;
289 
290 	/* Check minimum size.  */
291 	if (len < sizeof (struct sockaddr))
292 		return NULL;
293 
294 	/* Does this PF support this AF? */
295 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 		return NULL;
297 
298 	/* If we get this far, af is valid. */
299 	af = sctp_get_af_specific(addr->sa.sa_family);
300 
301 	if (len < af->sockaddr_len)
302 		return NULL;
303 
304 	return af;
305 }
306 
307 /* Bind a local address either to an endpoint or to an association.  */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
309 {
310 	struct sctp_sock *sp = sctp_sk(sk);
311 	struct sctp_endpoint *ep = sp->ep;
312 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 	struct sctp_af *af;
314 	unsigned short snum;
315 	int ret = 0;
316 
317 	/* Common sockaddr verification. */
318 	af = sctp_sockaddr_af(sp, addr, len);
319 	if (!af) {
320 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
321 				  sk, addr, len);
322 		return -EINVAL;
323 	}
324 
325 	snum = ntohs(addr->v4.sin_port);
326 
327 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
328 				 ", port: %d, new port: %d, len: %d)\n",
329 				 sk,
330 				 addr,
331 				 bp->port, snum,
332 				 len);
333 
334 	/* PF specific bind() address verification. */
335 	if (!sp->pf->bind_verify(sp, addr))
336 		return -EADDRNOTAVAIL;
337 
338 	/* We must either be unbound, or bind to the same port.  */
339 	if (bp->port && (snum != bp->port)) {
340 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 				  " New port %d does not match existing port "
342 				  "%d.\n", snum, bp->port);
343 		return -EINVAL;
344 	}
345 
346 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 		return -EACCES;
348 
349 	/* Make sure we are allowed to bind here.
350 	 * The function sctp_get_port_local() does duplicate address
351 	 * detection.
352 	 */
353 	if ((ret = sctp_get_port_local(sk, addr))) {
354 		if (ret == (long) sk) {
355 			/* This endpoint has a conflicting address. */
356 			return -EINVAL;
357 		} else {
358 			return -EADDRINUSE;
359 		}
360 	}
361 
362 	/* Refresh ephemeral port.  */
363 	if (!bp->port)
364 		bp->port = inet_sk(sk)->num;
365 
366 	/* Add the address to the bind address list.  */
367 	sctp_local_bh_disable();
368 	sctp_write_lock(&ep->base.addr_lock);
369 
370 	/* Use GFP_ATOMIC since BHs are disabled.  */
371 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
373 	addr->v4.sin_port = htons(addr->v4.sin_port);
374 	sctp_write_unlock(&ep->base.addr_lock);
375 	sctp_local_bh_enable();
376 
377 	/* Copy back into socket for getsockname() use. */
378 	if (!ret) {
379 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 		af->to_sk_saddr(addr, sk);
381 	}
382 
383 	return ret;
384 }
385 
386  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
387  *
388  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389  * at any one time.  If a sender, after sending an ASCONF chunk, decides
390  * it needs to transfer another ASCONF Chunk, it MUST wait until the
391  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392  * subsequent ASCONF. Note this restriction binds each side, so at any
393  * time two ASCONF may be in-transit on any given association (one sent
394  * from each endpoint).
395  */
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 			    struct sctp_chunk *chunk)
398 {
399 	int		retval = 0;
400 
401 	/* If there is an outstanding ASCONF chunk, queue it for later
402 	 * transmission.
403 	 */
404 	if (asoc->addip_last_asconf) {
405 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 		goto out;
407 	}
408 
409 	/* Hold the chunk until an ASCONF_ACK is received. */
410 	sctp_chunk_hold(chunk);
411 	retval = sctp_primitive_ASCONF(asoc, chunk);
412 	if (retval)
413 		sctp_chunk_free(chunk);
414 	else
415 		asoc->addip_last_asconf = chunk;
416 
417 out:
418 	return retval;
419 }
420 
421 /* Add a list of addresses as bind addresses to local endpoint or
422  * association.
423  *
424  * Basically run through each address specified in the addrs/addrcnt
425  * array/length pair, determine if it is IPv6 or IPv4 and call
426  * sctp_do_bind() on it.
427  *
428  * If any of them fails, then the operation will be reversed and the
429  * ones that were added will be removed.
430  *
431  * Only sctp_setsockopt_bindx() is supposed to call this function.
432  */
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
434 {
435 	int cnt;
436 	int retval = 0;
437 	void *addr_buf;
438 	struct sockaddr *sa_addr;
439 	struct sctp_af *af;
440 
441 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 			  sk, addrs, addrcnt);
443 
444 	addr_buf = addrs;
445 	for (cnt = 0; cnt < addrcnt; cnt++) {
446 		/* The list may contain either IPv4 or IPv6 address;
447 		 * determine the address length for walking thru the list.
448 		 */
449 		sa_addr = (struct sockaddr *)addr_buf;
450 		af = sctp_get_af_specific(sa_addr->sa_family);
451 		if (!af) {
452 			retval = -EINVAL;
453 			goto err_bindx_add;
454 		}
455 
456 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 				      af->sockaddr_len);
458 
459 		addr_buf += af->sockaddr_len;
460 
461 err_bindx_add:
462 		if (retval < 0) {
463 			/* Failed. Cleanup the ones that have been added */
464 			if (cnt > 0)
465 				sctp_bindx_rem(sk, addrs, cnt);
466 			return retval;
467 		}
468 	}
469 
470 	return retval;
471 }
472 
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474  * associations that are part of the endpoint indicating that a list of local
475  * addresses are added to the endpoint.
476  *
477  * If any of the addresses is already in the bind address list of the
478  * association, we do not send the chunk for that association.  But it will not
479  * affect other associations.
480  *
481  * Only sctp_setsockopt_bindx() is supposed to call this function.
482  */
483 static int sctp_send_asconf_add_ip(struct sock		*sk,
484 				   struct sockaddr	*addrs,
485 				   int 			addrcnt)
486 {
487 	struct sctp_sock		*sp;
488 	struct sctp_endpoint		*ep;
489 	struct sctp_association		*asoc;
490 	struct sctp_bind_addr		*bp;
491 	struct sctp_chunk		*chunk;
492 	struct sctp_sockaddr_entry	*laddr;
493 	union sctp_addr			*addr;
494 	union sctp_addr			saveaddr;
495 	void				*addr_buf;
496 	struct sctp_af			*af;
497 	struct list_head		*pos;
498 	struct list_head		*p;
499 	int 				i;
500 	int 				retval = 0;
501 
502 	if (!sctp_addip_enable)
503 		return retval;
504 
505 	sp = sctp_sk(sk);
506 	ep = sp->ep;
507 
508 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 			  __FUNCTION__, sk, addrs, addrcnt);
510 
511 	list_for_each(pos, &ep->asocs) {
512 		asoc = list_entry(pos, struct sctp_association, asocs);
513 
514 		if (!asoc->peer.asconf_capable)
515 			continue;
516 
517 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 			continue;
519 
520 		if (!sctp_state(asoc, ESTABLISHED))
521 			continue;
522 
523 		/* Check if any address in the packed array of addresses is
524 	         * in the bind address list of the association. If so,
525 		 * do not send the asconf chunk to its peer, but continue with
526 		 * other associations.
527 		 */
528 		addr_buf = addrs;
529 		for (i = 0; i < addrcnt; i++) {
530 			addr = (union sctp_addr *)addr_buf;
531 			af = sctp_get_af_specific(addr->v4.sin_family);
532 			if (!af) {
533 				retval = -EINVAL;
534 				goto out;
535 			}
536 
537 			if (sctp_assoc_lookup_laddr(asoc, addr))
538 				break;
539 
540 			addr_buf += af->sockaddr_len;
541 		}
542 		if (i < addrcnt)
543 			continue;
544 
545 		/* Use the first address in bind addr list of association as
546 		 * Address Parameter of ASCONF CHUNK.
547 		 */
548 		sctp_read_lock(&asoc->base.addr_lock);
549 		bp = &asoc->base.bind_addr;
550 		p = bp->address_list.next;
551 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 		sctp_read_unlock(&asoc->base.addr_lock);
553 
554 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
555 						   addrcnt, SCTP_PARAM_ADD_IP);
556 		if (!chunk) {
557 			retval = -ENOMEM;
558 			goto out;
559 		}
560 
561 		retval = sctp_send_asconf(asoc, chunk);
562 		if (retval)
563 			goto out;
564 
565 		/* Add the new addresses to the bind address list with
566 		 * use_as_src set to 0.
567 		 */
568 		sctp_local_bh_disable();
569 		sctp_write_lock(&asoc->base.addr_lock);
570 		addr_buf = addrs;
571 		for (i = 0; i < addrcnt; i++) {
572 			addr = (union sctp_addr *)addr_buf;
573 			af = sctp_get_af_specific(addr->v4.sin_family);
574 			memcpy(&saveaddr, addr, af->sockaddr_len);
575 			saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
576 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
577 						    GFP_ATOMIC);
578 			addr_buf += af->sockaddr_len;
579 		}
580 		sctp_write_unlock(&asoc->base.addr_lock);
581 		sctp_local_bh_enable();
582 	}
583 
584 out:
585 	return retval;
586 }
587 
588 /* Remove a list of addresses from bind addresses list.  Do not remove the
589  * last address.
590  *
591  * Basically run through each address specified in the addrs/addrcnt
592  * array/length pair, determine if it is IPv6 or IPv4 and call
593  * sctp_del_bind() on it.
594  *
595  * If any of them fails, then the operation will be reversed and the
596  * ones that were removed will be added back.
597  *
598  * At least one address has to be left; if only one address is
599  * available, the operation will return -EBUSY.
600  *
601  * Only sctp_setsockopt_bindx() is supposed to call this function.
602  */
603 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
604 {
605 	struct sctp_sock *sp = sctp_sk(sk);
606 	struct sctp_endpoint *ep = sp->ep;
607 	int cnt;
608 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
609 	int retval = 0;
610 	union sctp_addr saveaddr;
611 	void *addr_buf;
612 	struct sockaddr *sa_addr;
613 	struct sctp_af *af;
614 
615 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
616 			  sk, addrs, addrcnt);
617 
618 	addr_buf = addrs;
619 	for (cnt = 0; cnt < addrcnt; cnt++) {
620 		/* If the bind address list is empty or if there is only one
621 		 * bind address, there is nothing more to be removed (we need
622 		 * at least one address here).
623 		 */
624 		if (list_empty(&bp->address_list) ||
625 		    (sctp_list_single_entry(&bp->address_list))) {
626 			retval = -EBUSY;
627 			goto err_bindx_rem;
628 		}
629 
630 		/* The list may contain either IPv4 or IPv6 address;
631 		 * determine the address length to copy the address to
632 		 * saveaddr.
633 		 */
634 		sa_addr = (struct sockaddr *)addr_buf;
635 		af = sctp_get_af_specific(sa_addr->sa_family);
636 		if (!af) {
637 			retval = -EINVAL;
638 			goto err_bindx_rem;
639 		}
640 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
641 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
642 		if (saveaddr.v4.sin_port != bp->port) {
643 			retval = -EINVAL;
644 			goto err_bindx_rem;
645 		}
646 
647 		/* FIXME - There is probably a need to check if sk->sk_saddr and
648 		 * sk->sk_rcv_addr are currently set to one of the addresses to
649 		 * be removed. This is something which needs to be looked into
650 		 * when we are fixing the outstanding issues with multi-homing
651 		 * socket routing and failover schemes. Refer to comments in
652 		 * sctp_do_bind(). -daisy
653 		 */
654 		sctp_local_bh_disable();
655 		sctp_write_lock(&ep->base.addr_lock);
656 
657 		retval = sctp_del_bind_addr(bp, &saveaddr);
658 
659 		sctp_write_unlock(&ep->base.addr_lock);
660 		sctp_local_bh_enable();
661 
662 		addr_buf += af->sockaddr_len;
663 err_bindx_rem:
664 		if (retval < 0) {
665 			/* Failed. Add the ones that has been removed back */
666 			if (cnt > 0)
667 				sctp_bindx_add(sk, addrs, cnt);
668 			return retval;
669 		}
670 	}
671 
672 	return retval;
673 }
674 
675 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
676  * the associations that are part of the endpoint indicating that a list of
677  * local addresses are removed from the endpoint.
678  *
679  * If any of the addresses is already in the bind address list of the
680  * association, we do not send the chunk for that association.  But it will not
681  * affect other associations.
682  *
683  * Only sctp_setsockopt_bindx() is supposed to call this function.
684  */
685 static int sctp_send_asconf_del_ip(struct sock		*sk,
686 				   struct sockaddr	*addrs,
687 				   int			addrcnt)
688 {
689 	struct sctp_sock	*sp;
690 	struct sctp_endpoint	*ep;
691 	struct sctp_association	*asoc;
692 	struct sctp_transport	*transport;
693 	struct sctp_bind_addr	*bp;
694 	struct sctp_chunk	*chunk;
695 	union sctp_addr		*laddr;
696 	union sctp_addr		saveaddr;
697 	void			*addr_buf;
698 	struct sctp_af		*af;
699 	struct list_head	*pos, *pos1;
700 	struct sctp_sockaddr_entry *saddr;
701 	int 			i;
702 	int 			retval = 0;
703 
704 	if (!sctp_addip_enable)
705 		return retval;
706 
707 	sp = sctp_sk(sk);
708 	ep = sp->ep;
709 
710 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 			  __FUNCTION__, sk, addrs, addrcnt);
712 
713 	list_for_each(pos, &ep->asocs) {
714 		asoc = list_entry(pos, struct sctp_association, asocs);
715 
716 		if (!asoc->peer.asconf_capable)
717 			continue;
718 
719 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
720 			continue;
721 
722 		if (!sctp_state(asoc, ESTABLISHED))
723 			continue;
724 
725 		/* Check if any address in the packed array of addresses is
726 	         * not present in the bind address list of the association.
727 		 * If so, do not send the asconf chunk to its peer, but
728 		 * continue with other associations.
729 		 */
730 		addr_buf = addrs;
731 		for (i = 0; i < addrcnt; i++) {
732 			laddr = (union sctp_addr *)addr_buf;
733 			af = sctp_get_af_specific(laddr->v4.sin_family);
734 			if (!af) {
735 				retval = -EINVAL;
736 				goto out;
737 			}
738 
739 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
740 				break;
741 
742 			addr_buf += af->sockaddr_len;
743 		}
744 		if (i < addrcnt)
745 			continue;
746 
747 		/* Find one address in the association's bind address list
748 		 * that is not in the packed array of addresses. This is to
749 		 * make sure that we do not delete all the addresses in the
750 		 * association.
751 		 */
752 		sctp_read_lock(&asoc->base.addr_lock);
753 		bp = &asoc->base.bind_addr;
754 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
755 					       addrcnt, sp);
756 		sctp_read_unlock(&asoc->base.addr_lock);
757 		if (!laddr)
758 			continue;
759 
760 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
761 						   SCTP_PARAM_DEL_IP);
762 		if (!chunk) {
763 			retval = -ENOMEM;
764 			goto out;
765 		}
766 
767 		/* Reset use_as_src flag for the addresses in the bind address
768 		 * list that are to be deleted.
769 		 */
770 		sctp_local_bh_disable();
771 		sctp_write_lock(&asoc->base.addr_lock);
772 		addr_buf = addrs;
773 		for (i = 0; i < addrcnt; i++) {
774 			laddr = (union sctp_addr *)addr_buf;
775 			af = sctp_get_af_specific(laddr->v4.sin_family);
776 			memcpy(&saveaddr, laddr, af->sockaddr_len);
777 			saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
778 			list_for_each(pos1, &bp->address_list) {
779 				saddr = list_entry(pos1,
780 						   struct sctp_sockaddr_entry,
781 						   list);
782 				if (sctp_cmp_addr_exact(&saddr->a, &saveaddr))
783 					saddr->use_as_src = 0;
784 			}
785 			addr_buf += af->sockaddr_len;
786 		}
787 		sctp_write_unlock(&asoc->base.addr_lock);
788 		sctp_local_bh_enable();
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
795 			transport = list_entry(pos1, struct sctp_transport,
796 					       transports);
797 			dst_release(transport->dst);
798 			sctp_transport_route(transport, NULL,
799 					     sctp_sk(asoc->base.sk));
800 		}
801 
802 		retval = sctp_send_asconf(asoc, chunk);
803 	}
804 out:
805 	return retval;
806 }
807 
808 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
809  *
810  * API 8.1
811  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
812  *                int flags);
813  *
814  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
815  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
816  * or IPv6 addresses.
817  *
818  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
819  * Section 3.1.2 for this usage.
820  *
821  * addrs is a pointer to an array of one or more socket addresses. Each
822  * address is contained in its appropriate structure (i.e. struct
823  * sockaddr_in or struct sockaddr_in6) the family of the address type
824  * must be used to distengish the address length (note that this
825  * representation is termed a "packed array" of addresses). The caller
826  * specifies the number of addresses in the array with addrcnt.
827  *
828  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
829  * -1, and sets errno to the appropriate error code.
830  *
831  * For SCTP, the port given in each socket address must be the same, or
832  * sctp_bindx() will fail, setting errno to EINVAL.
833  *
834  * The flags parameter is formed from the bitwise OR of zero or more of
835  * the following currently defined flags:
836  *
837  * SCTP_BINDX_ADD_ADDR
838  *
839  * SCTP_BINDX_REM_ADDR
840  *
841  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
842  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
843  * addresses from the association. The two flags are mutually exclusive;
844  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
845  * not remove all addresses from an association; sctp_bindx() will
846  * reject such an attempt with EINVAL.
847  *
848  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
849  * additional addresses with an endpoint after calling bind().  Or use
850  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
851  * socket is associated with so that no new association accepted will be
852  * associated with those addresses. If the endpoint supports dynamic
853  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
854  * endpoint to send the appropriate message to the peer to change the
855  * peers address lists.
856  *
857  * Adding and removing addresses from a connected association is
858  * optional functionality. Implementations that do not support this
859  * functionality should return EOPNOTSUPP.
860  *
861  * Basically do nothing but copying the addresses from user to kernel
862  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
863  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
864  * from userspace.
865  *
866  * We don't use copy_from_user() for optimization: we first do the
867  * sanity checks (buffer size -fast- and access check-healthy
868  * pointer); if all of those succeed, then we can alloc the memory
869  * (expensive operation) needed to copy the data to kernel. Then we do
870  * the copying without checking the user space area
871  * (__copy_from_user()).
872  *
873  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
874  * it.
875  *
876  * sk        The sk of the socket
877  * addrs     The pointer to the addresses in user land
878  * addrssize Size of the addrs buffer
879  * op        Operation to perform (add or remove, see the flags of
880  *           sctp_bindx)
881  *
882  * Returns 0 if ok, <0 errno code on error.
883  */
884 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
885 				      struct sockaddr __user *addrs,
886 				      int addrs_size, int op)
887 {
888 	struct sockaddr *kaddrs;
889 	int err;
890 	int addrcnt = 0;
891 	int walk_size = 0;
892 	struct sockaddr *sa_addr;
893 	void *addr_buf;
894 	struct sctp_af *af;
895 
896 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
897 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
898 
899 	if (unlikely(addrs_size <= 0))
900 		return -EINVAL;
901 
902 	/* Check the user passed a healthy pointer.  */
903 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
904 		return -EFAULT;
905 
906 	/* Alloc space for the address array in kernel memory.  */
907 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
908 	if (unlikely(!kaddrs))
909 		return -ENOMEM;
910 
911 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
912 		kfree(kaddrs);
913 		return -EFAULT;
914 	}
915 
916 	/* Walk through the addrs buffer and count the number of addresses. */
917 	addr_buf = kaddrs;
918 	while (walk_size < addrs_size) {
919 		sa_addr = (struct sockaddr *)addr_buf;
920 		af = sctp_get_af_specific(sa_addr->sa_family);
921 
922 		/* If the address family is not supported or if this address
923 		 * causes the address buffer to overflow return EINVAL.
924 		 */
925 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
926 			kfree(kaddrs);
927 			return -EINVAL;
928 		}
929 		addrcnt++;
930 		addr_buf += af->sockaddr_len;
931 		walk_size += af->sockaddr_len;
932 	}
933 
934 	/* Do the work. */
935 	switch (op) {
936 	case SCTP_BINDX_ADD_ADDR:
937 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
938 		if (err)
939 			goto out;
940 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
941 		break;
942 
943 	case SCTP_BINDX_REM_ADDR:
944 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
945 		if (err)
946 			goto out;
947 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
948 		break;
949 
950 	default:
951 		err = -EINVAL;
952 		break;
953         };
954 
955 out:
956 	kfree(kaddrs);
957 
958 	return err;
959 }
960 
961 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
962  *
963  * Common routine for handling connect() and sctp_connectx().
964  * Connect will come in with just a single address.
965  */
966 static int __sctp_connect(struct sock* sk,
967 			  struct sockaddr *kaddrs,
968 			  int addrs_size)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	struct sockaddr *sa_addr;
983 	void *addr_buf;
984 
985 	sp = sctp_sk(sk);
986 	ep = sp->ep;
987 
988 	/* connect() cannot be done on a socket that is already in ESTABLISHED
989 	 * state - UDP-style peeled off socket or a TCP-style socket that
990 	 * is already connected.
991 	 * It cannot be done even on a TCP-style listening socket.
992 	 */
993 	if (sctp_sstate(sk, ESTABLISHED) ||
994 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
995 		err = -EISCONN;
996 		goto out_free;
997 	}
998 
999 	/* Walk through the addrs buffer and count the number of addresses. */
1000 	addr_buf = kaddrs;
1001 	while (walk_size < addrs_size) {
1002 		sa_addr = (struct sockaddr *)addr_buf;
1003 		af = sctp_get_af_specific(sa_addr->sa_family);
1004 
1005 		/* If the address family is not supported or if this address
1006 		 * causes the address buffer to overflow return EINVAL.
1007 		 */
1008 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1009 			err = -EINVAL;
1010 			goto out_free;
1011 		}
1012 
1013 		err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
1014 				       af->sockaddr_len);
1015 		if (err)
1016 			goto out_free;
1017 
1018 		memcpy(&to, sa_addr, af->sockaddr_len);
1019 		to.v4.sin_port = ntohs(to.v4.sin_port);
1020 
1021 		/* Check if there already is a matching association on the
1022 		 * endpoint (other than the one created here).
1023 		 */
1024 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1025 		if (asoc2 && asoc2 != asoc) {
1026 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1027 				err = -EISCONN;
1028 			else
1029 				err = -EALREADY;
1030 			goto out_free;
1031 		}
1032 
1033 		/* If we could not find a matching association on the endpoint,
1034 		 * make sure that there is no peeled-off association matching
1035 		 * the peer address even on another socket.
1036 		 */
1037 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1038 			err = -EADDRNOTAVAIL;
1039 			goto out_free;
1040 		}
1041 
1042 		if (!asoc) {
1043 			/* If a bind() or sctp_bindx() is not called prior to
1044 			 * an sctp_connectx() call, the system picks an
1045 			 * ephemeral port and will choose an address set
1046 			 * equivalent to binding with a wildcard address.
1047 			 */
1048 			if (!ep->base.bind_addr.port) {
1049 				if (sctp_autobind(sk)) {
1050 					err = -EAGAIN;
1051 					goto out_free;
1052 				}
1053 			} else {
1054 				/*
1055 				 * If an unprivileged user inherits a 1-many
1056 				 * style socket with open associations on a
1057 				 * privileged port, it MAY be permitted to
1058 				 * accept new associations, but it SHOULD NOT
1059 				 * be permitted to open new associations.
1060 				 */
1061 				if (ep->base.bind_addr.port < PROT_SOCK &&
1062 				    !capable(CAP_NET_BIND_SERVICE)) {
1063 					err = -EACCES;
1064 					goto out_free;
1065 				}
1066 			}
1067 
1068 			scope = sctp_scope(&to);
1069 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1070 			if (!asoc) {
1071 				err = -ENOMEM;
1072 				goto out_free;
1073 			}
1074 		}
1075 
1076 		/* Prime the peer's transport structures.  */
1077 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1078 						SCTP_UNKNOWN);
1079 		if (!transport) {
1080 			err = -ENOMEM;
1081 			goto out_free;
1082 		}
1083 
1084 		addrcnt++;
1085 		addr_buf += af->sockaddr_len;
1086 		walk_size += af->sockaddr_len;
1087 	}
1088 
1089 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1090 	if (err < 0) {
1091 		goto out_free;
1092 	}
1093 
1094 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1095 	if (err < 0) {
1096 		goto out_free;
1097 	}
1098 
1099 	/* Initialize sk's dport and daddr for getpeername() */
1100 	inet_sk(sk)->dport = htons(asoc->peer.port);
1101 	af = sctp_get_af_specific(to.sa.sa_family);
1102 	af->to_sk_daddr(&to, sk);
1103 	sk->sk_err = 0;
1104 
1105 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1106 	err = sctp_wait_for_connect(asoc, &timeo);
1107 
1108 	/* Don't free association on exit. */
1109 	asoc = NULL;
1110 
1111 out_free:
1112 
1113 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1114 		          " kaddrs: %p err: %d\n",
1115 	                  asoc, kaddrs, err);
1116 	if (asoc)
1117 		sctp_association_free(asoc);
1118 	return err;
1119 }
1120 
1121 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1122  *
1123  * API 8.9
1124  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1125  *
1126  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1127  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1128  * or IPv6 addresses.
1129  *
1130  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1131  * Section 3.1.2 for this usage.
1132  *
1133  * addrs is a pointer to an array of one or more socket addresses. Each
1134  * address is contained in its appropriate structure (i.e. struct
1135  * sockaddr_in or struct sockaddr_in6) the family of the address type
1136  * must be used to distengish the address length (note that this
1137  * representation is termed a "packed array" of addresses). The caller
1138  * specifies the number of addresses in the array with addrcnt.
1139  *
1140  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1141  * -1, and sets errno to the appropriate error code.
1142  *
1143  * For SCTP, the port given in each socket address must be the same, or
1144  * sctp_connectx() will fail, setting errno to EINVAL.
1145  *
1146  * An application can use sctp_connectx to initiate an association with
1147  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1148  * allows a caller to specify multiple addresses at which a peer can be
1149  * reached.  The way the SCTP stack uses the list of addresses to set up
1150  * the association is implementation dependant.  This function only
1151  * specifies that the stack will try to make use of all the addresses in
1152  * the list when needed.
1153  *
1154  * Note that the list of addresses passed in is only used for setting up
1155  * the association.  It does not necessarily equal the set of addresses
1156  * the peer uses for the resulting association.  If the caller wants to
1157  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1158  * retrieve them after the association has been set up.
1159  *
1160  * Basically do nothing but copying the addresses from user to kernel
1161  * land and invoking either sctp_connectx(). This is used for tunneling
1162  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1163  *
1164  * We don't use copy_from_user() for optimization: we first do the
1165  * sanity checks (buffer size -fast- and access check-healthy
1166  * pointer); if all of those succeed, then we can alloc the memory
1167  * (expensive operation) needed to copy the data to kernel. Then we do
1168  * the copying without checking the user space area
1169  * (__copy_from_user()).
1170  *
1171  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1172  * it.
1173  *
1174  * sk        The sk of the socket
1175  * addrs     The pointer to the addresses in user land
1176  * addrssize Size of the addrs buffer
1177  *
1178  * Returns 0 if ok, <0 errno code on error.
1179  */
1180 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1181 				      struct sockaddr __user *addrs,
1182 				      int addrs_size)
1183 {
1184 	int err = 0;
1185 	struct sockaddr *kaddrs;
1186 
1187 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1188 			  __FUNCTION__, sk, addrs, addrs_size);
1189 
1190 	if (unlikely(addrs_size <= 0))
1191 		return -EINVAL;
1192 
1193 	/* Check the user passed a healthy pointer.  */
1194 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1195 		return -EFAULT;
1196 
1197 	/* Alloc space for the address array in kernel memory.  */
1198 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1199 	if (unlikely(!kaddrs))
1200 		return -ENOMEM;
1201 
1202 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1203 		err = -EFAULT;
1204 	} else {
1205 		err = __sctp_connect(sk, kaddrs, addrs_size);
1206 	}
1207 
1208 	kfree(kaddrs);
1209 	return err;
1210 }
1211 
1212 /* API 3.1.4 close() - UDP Style Syntax
1213  * Applications use close() to perform graceful shutdown (as described in
1214  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1215  * by a UDP-style socket.
1216  *
1217  * The syntax is
1218  *
1219  *   ret = close(int sd);
1220  *
1221  *   sd      - the socket descriptor of the associations to be closed.
1222  *
1223  * To gracefully shutdown a specific association represented by the
1224  * UDP-style socket, an application should use the sendmsg() call,
1225  * passing no user data, but including the appropriate flag in the
1226  * ancillary data (see Section xxxx).
1227  *
1228  * If sd in the close() call is a branched-off socket representing only
1229  * one association, the shutdown is performed on that association only.
1230  *
1231  * 4.1.6 close() - TCP Style Syntax
1232  *
1233  * Applications use close() to gracefully close down an association.
1234  *
1235  * The syntax is:
1236  *
1237  *    int close(int sd);
1238  *
1239  *      sd      - the socket descriptor of the association to be closed.
1240  *
1241  * After an application calls close() on a socket descriptor, no further
1242  * socket operations will succeed on that descriptor.
1243  *
1244  * API 7.1.4 SO_LINGER
1245  *
1246  * An application using the TCP-style socket can use this option to
1247  * perform the SCTP ABORT primitive.  The linger option structure is:
1248  *
1249  *  struct  linger {
1250  *     int     l_onoff;                // option on/off
1251  *     int     l_linger;               // linger time
1252  * };
1253  *
1254  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1255  * to 0, calling close() is the same as the ABORT primitive.  If the
1256  * value is set to a negative value, the setsockopt() call will return
1257  * an error.  If the value is set to a positive value linger_time, the
1258  * close() can be blocked for at most linger_time ms.  If the graceful
1259  * shutdown phase does not finish during this period, close() will
1260  * return but the graceful shutdown phase continues in the system.
1261  */
1262 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1263 {
1264 	struct sctp_endpoint *ep;
1265 	struct sctp_association *asoc;
1266 	struct list_head *pos, *temp;
1267 
1268 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1269 
1270 	sctp_lock_sock(sk);
1271 	sk->sk_shutdown = SHUTDOWN_MASK;
1272 
1273 	ep = sctp_sk(sk)->ep;
1274 
1275 	/* Walk all associations on an endpoint.  */
1276 	list_for_each_safe(pos, temp, &ep->asocs) {
1277 		asoc = list_entry(pos, struct sctp_association, asocs);
1278 
1279 		if (sctp_style(sk, TCP)) {
1280 			/* A closed association can still be in the list if
1281 			 * it belongs to a TCP-style listening socket that is
1282 			 * not yet accepted. If so, free it. If not, send an
1283 			 * ABORT or SHUTDOWN based on the linger options.
1284 			 */
1285 			if (sctp_state(asoc, CLOSED)) {
1286 				sctp_unhash_established(asoc);
1287 				sctp_association_free(asoc);
1288 				continue;
1289 			}
1290 		}
1291 
1292 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)
1293 			sctp_primitive_ABORT(asoc, NULL);
1294 		else
1295 			sctp_primitive_SHUTDOWN(asoc, NULL);
1296 	}
1297 
1298 	/* Clean up any skbs sitting on the receive queue.  */
1299 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1300 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1301 
1302 	/* On a TCP-style socket, block for at most linger_time if set. */
1303 	if (sctp_style(sk, TCP) && timeout)
1304 		sctp_wait_for_close(sk, timeout);
1305 
1306 	/* This will run the backlog queue.  */
1307 	sctp_release_sock(sk);
1308 
1309 	/* Supposedly, no process has access to the socket, but
1310 	 * the net layers still may.
1311 	 */
1312 	sctp_local_bh_disable();
1313 	sctp_bh_lock_sock(sk);
1314 
1315 	/* Hold the sock, since sk_common_release() will put sock_put()
1316 	 * and we have just a little more cleanup.
1317 	 */
1318 	sock_hold(sk);
1319 	sk_common_release(sk);
1320 
1321 	sctp_bh_unlock_sock(sk);
1322 	sctp_local_bh_enable();
1323 
1324 	sock_put(sk);
1325 
1326 	SCTP_DBG_OBJCNT_DEC(sock);
1327 }
1328 
1329 /* Handle EPIPE error. */
1330 static int sctp_error(struct sock *sk, int flags, int err)
1331 {
1332 	if (err == -EPIPE)
1333 		err = sock_error(sk) ? : -EPIPE;
1334 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1335 		send_sig(SIGPIPE, current, 0);
1336 	return err;
1337 }
1338 
1339 /* API 3.1.3 sendmsg() - UDP Style Syntax
1340  *
1341  * An application uses sendmsg() and recvmsg() calls to transmit data to
1342  * and receive data from its peer.
1343  *
1344  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1345  *                  int flags);
1346  *
1347  *  socket  - the socket descriptor of the endpoint.
1348  *  message - pointer to the msghdr structure which contains a single
1349  *            user message and possibly some ancillary data.
1350  *
1351  *            See Section 5 for complete description of the data
1352  *            structures.
1353  *
1354  *  flags   - flags sent or received with the user message, see Section
1355  *            5 for complete description of the flags.
1356  *
1357  * Note:  This function could use a rewrite especially when explicit
1358  * connect support comes in.
1359  */
1360 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1361 
1362 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1363 
1364 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1365 			     struct msghdr *msg, size_t msg_len)
1366 {
1367 	struct sctp_sock *sp;
1368 	struct sctp_endpoint *ep;
1369 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1370 	struct sctp_transport *transport, *chunk_tp;
1371 	struct sctp_chunk *chunk;
1372 	union sctp_addr to;
1373 	struct sockaddr *msg_name = NULL;
1374 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1375 	struct sctp_sndrcvinfo *sinfo;
1376 	struct sctp_initmsg *sinit;
1377 	sctp_assoc_t associd = 0;
1378 	sctp_cmsgs_t cmsgs = { NULL };
1379 	int err;
1380 	sctp_scope_t scope;
1381 	long timeo;
1382 	__u16 sinfo_flags = 0;
1383 	struct sctp_datamsg *datamsg;
1384 	struct list_head *pos;
1385 	int msg_flags = msg->msg_flags;
1386 
1387 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1388 			  sk, msg, msg_len);
1389 
1390 	err = 0;
1391 	sp = sctp_sk(sk);
1392 	ep = sp->ep;
1393 
1394 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1395 
1396 	/* We cannot send a message over a TCP-style listening socket. */
1397 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1398 		err = -EPIPE;
1399 		goto out_nounlock;
1400 	}
1401 
1402 	/* Parse out the SCTP CMSGs.  */
1403 	err = sctp_msghdr_parse(msg, &cmsgs);
1404 
1405 	if (err) {
1406 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1407 		goto out_nounlock;
1408 	}
1409 
1410 	/* Fetch the destination address for this packet.  This
1411 	 * address only selects the association--it is not necessarily
1412 	 * the address we will send to.
1413 	 * For a peeled-off socket, msg_name is ignored.
1414 	 */
1415 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1416 		int msg_namelen = msg->msg_namelen;
1417 
1418 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1419 				       msg_namelen);
1420 		if (err)
1421 			return err;
1422 
1423 		if (msg_namelen > sizeof(to))
1424 			msg_namelen = sizeof(to);
1425 		memcpy(&to, msg->msg_name, msg_namelen);
1426 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1427 				  "0x%x:%u.\n",
1428 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1429 
1430 		to.v4.sin_port = ntohs(to.v4.sin_port);
1431 		msg_name = msg->msg_name;
1432 	}
1433 
1434 	sinfo = cmsgs.info;
1435 	sinit = cmsgs.init;
1436 
1437 	/* Did the user specify SNDRCVINFO?  */
1438 	if (sinfo) {
1439 		sinfo_flags = sinfo->sinfo_flags;
1440 		associd = sinfo->sinfo_assoc_id;
1441 	}
1442 
1443 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1444 			  msg_len, sinfo_flags);
1445 
1446 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1447 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1448 		err = -EINVAL;
1449 		goto out_nounlock;
1450 	}
1451 
1452 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1453 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1454 	 * If SCTP_ABORT is set, the message length could be non zero with
1455 	 * the msg_iov set to the user abort reason.
1456  	 */
1457 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1458 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1459 		err = -EINVAL;
1460 		goto out_nounlock;
1461 	}
1462 
1463 	/* If SCTP_ADDR_OVER is set, there must be an address
1464 	 * specified in msg_name.
1465 	 */
1466 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1467 		err = -EINVAL;
1468 		goto out_nounlock;
1469 	}
1470 
1471 	transport = NULL;
1472 
1473 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1474 
1475 	sctp_lock_sock(sk);
1476 
1477 	/* If a msg_name has been specified, assume this is to be used.  */
1478 	if (msg_name) {
1479 		/* Look for a matching association on the endpoint. */
1480 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1481 		if (!asoc) {
1482 			/* If we could not find a matching association on the
1483 			 * endpoint, make sure that it is not a TCP-style
1484 			 * socket that already has an association or there is
1485 			 * no peeled-off association on another socket.
1486 			 */
1487 			if ((sctp_style(sk, TCP) &&
1488 			     sctp_sstate(sk, ESTABLISHED)) ||
1489 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1490 				err = -EADDRNOTAVAIL;
1491 				goto out_unlock;
1492 			}
1493 		}
1494 	} else {
1495 		asoc = sctp_id2assoc(sk, associd);
1496 		if (!asoc) {
1497 			err = -EPIPE;
1498 			goto out_unlock;
1499 		}
1500 	}
1501 
1502 	if (asoc) {
1503 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1504 
1505 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1506 		 * socket that has an association in CLOSED state. This can
1507 		 * happen when an accepted socket has an association that is
1508 		 * already CLOSED.
1509 		 */
1510 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1511 			err = -EPIPE;
1512 			goto out_unlock;
1513 		}
1514 
1515 		if (sinfo_flags & SCTP_EOF) {
1516 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1517 					  asoc);
1518 			sctp_primitive_SHUTDOWN(asoc, NULL);
1519 			err = 0;
1520 			goto out_unlock;
1521 		}
1522 		if (sinfo_flags & SCTP_ABORT) {
1523 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1524 			sctp_primitive_ABORT(asoc, msg);
1525 			err = 0;
1526 			goto out_unlock;
1527 		}
1528 	}
1529 
1530 	/* Do we need to create the association?  */
1531 	if (!asoc) {
1532 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1533 
1534 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1535 			err = -EINVAL;
1536 			goto out_unlock;
1537 		}
1538 
1539 		/* Check for invalid stream against the stream counts,
1540 		 * either the default or the user specified stream counts.
1541 		 */
1542 		if (sinfo) {
1543 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1544 				/* Check against the defaults. */
1545 				if (sinfo->sinfo_stream >=
1546 				    sp->initmsg.sinit_num_ostreams) {
1547 					err = -EINVAL;
1548 					goto out_unlock;
1549 				}
1550 			} else {
1551 				/* Check against the requested.  */
1552 				if (sinfo->sinfo_stream >=
1553 				    sinit->sinit_num_ostreams) {
1554 					err = -EINVAL;
1555 					goto out_unlock;
1556 				}
1557 			}
1558 		}
1559 
1560 		/*
1561 		 * API 3.1.2 bind() - UDP Style Syntax
1562 		 * If a bind() or sctp_bindx() is not called prior to a
1563 		 * sendmsg() call that initiates a new association, the
1564 		 * system picks an ephemeral port and will choose an address
1565 		 * set equivalent to binding with a wildcard address.
1566 		 */
1567 		if (!ep->base.bind_addr.port) {
1568 			if (sctp_autobind(sk)) {
1569 				err = -EAGAIN;
1570 				goto out_unlock;
1571 			}
1572 		} else {
1573 			/*
1574 			 * If an unprivileged user inherits a one-to-many
1575 			 * style socket with open associations on a privileged
1576 			 * port, it MAY be permitted to accept new associations,
1577 			 * but it SHOULD NOT be permitted to open new
1578 			 * associations.
1579 			 */
1580 			if (ep->base.bind_addr.port < PROT_SOCK &&
1581 			    !capable(CAP_NET_BIND_SERVICE)) {
1582 				err = -EACCES;
1583 				goto out_unlock;
1584 			}
1585 		}
1586 
1587 		scope = sctp_scope(&to);
1588 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1589 		if (!new_asoc) {
1590 			err = -ENOMEM;
1591 			goto out_unlock;
1592 		}
1593 		asoc = new_asoc;
1594 
1595 		/* If the SCTP_INIT ancillary data is specified, set all
1596 		 * the association init values accordingly.
1597 		 */
1598 		if (sinit) {
1599 			if (sinit->sinit_num_ostreams) {
1600 				asoc->c.sinit_num_ostreams =
1601 					sinit->sinit_num_ostreams;
1602 			}
1603 			if (sinit->sinit_max_instreams) {
1604 				asoc->c.sinit_max_instreams =
1605 					sinit->sinit_max_instreams;
1606 			}
1607 			if (sinit->sinit_max_attempts) {
1608 				asoc->max_init_attempts
1609 					= sinit->sinit_max_attempts;
1610 			}
1611 			if (sinit->sinit_max_init_timeo) {
1612 				asoc->max_init_timeo =
1613 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1614 			}
1615 		}
1616 
1617 		/* Prime the peer's transport structures.  */
1618 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1619 		if (!transport) {
1620 			err = -ENOMEM;
1621 			goto out_free;
1622 		}
1623 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1624 		if (err < 0) {
1625 			err = -ENOMEM;
1626 			goto out_free;
1627 		}
1628 	}
1629 
1630 	/* ASSERT: we have a valid association at this point.  */
1631 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1632 
1633 	if (!sinfo) {
1634 		/* If the user didn't specify SNDRCVINFO, make up one with
1635 		 * some defaults.
1636 		 */
1637 		default_sinfo.sinfo_stream = asoc->default_stream;
1638 		default_sinfo.sinfo_flags = asoc->default_flags;
1639 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1640 		default_sinfo.sinfo_context = asoc->default_context;
1641 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1642 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1643 		sinfo = &default_sinfo;
1644 	}
1645 
1646 	/* API 7.1.7, the sndbuf size per association bounds the
1647 	 * maximum size of data that can be sent in a single send call.
1648 	 */
1649 	if (msg_len > sk->sk_sndbuf) {
1650 		err = -EMSGSIZE;
1651 		goto out_free;
1652 	}
1653 
1654 	/* If fragmentation is disabled and the message length exceeds the
1655 	 * association fragmentation point, return EMSGSIZE.  The I-D
1656 	 * does not specify what this error is, but this looks like
1657 	 * a great fit.
1658 	 */
1659 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1660 		err = -EMSGSIZE;
1661 		goto out_free;
1662 	}
1663 
1664 	if (sinfo) {
1665 		/* Check for invalid stream. */
1666 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1667 			err = -EINVAL;
1668 			goto out_free;
1669 		}
1670 	}
1671 
1672 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1673 	if (!sctp_wspace(asoc)) {
1674 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1675 		if (err)
1676 			goto out_free;
1677 	}
1678 
1679 	/* If an address is passed with the sendto/sendmsg call, it is used
1680 	 * to override the primary destination address in the TCP model, or
1681 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1682 	 */
1683 	if ((sctp_style(sk, TCP) && msg_name) ||
1684 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1685 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1686 		if (!chunk_tp) {
1687 			err = -EINVAL;
1688 			goto out_free;
1689 		}
1690 	} else
1691 		chunk_tp = NULL;
1692 
1693 	/* Auto-connect, if we aren't connected already. */
1694 	if (sctp_state(asoc, CLOSED)) {
1695 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1696 		if (err < 0)
1697 			goto out_free;
1698 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1699 	}
1700 
1701 	/* Break the message into multiple chunks of maximum size. */
1702 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1703 	if (!datamsg) {
1704 		err = -ENOMEM;
1705 		goto out_free;
1706 	}
1707 
1708 	/* Now send the (possibly) fragmented message. */
1709 	list_for_each(pos, &datamsg->chunks) {
1710 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1711 		sctp_datamsg_track(chunk);
1712 
1713 		/* Do accounting for the write space.  */
1714 		sctp_set_owner_w(chunk);
1715 
1716 		chunk->transport = chunk_tp;
1717 
1718 		/* Send it to the lower layers.  Note:  all chunks
1719 		 * must either fail or succeed.   The lower layer
1720 		 * works that way today.  Keep it that way or this
1721 		 * breaks.
1722 		 */
1723 		err = sctp_primitive_SEND(asoc, chunk);
1724 		/* Did the lower layer accept the chunk? */
1725 		if (err)
1726 			sctp_chunk_free(chunk);
1727 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1728 	}
1729 
1730 	sctp_datamsg_free(datamsg);
1731 	if (err)
1732 		goto out_free;
1733 	else
1734 		err = msg_len;
1735 
1736 	/* If we are already past ASSOCIATE, the lower
1737 	 * layers are responsible for association cleanup.
1738 	 */
1739 	goto out_unlock;
1740 
1741 out_free:
1742 	if (new_asoc)
1743 		sctp_association_free(asoc);
1744 out_unlock:
1745 	sctp_release_sock(sk);
1746 
1747 out_nounlock:
1748 	return sctp_error(sk, msg_flags, err);
1749 
1750 #if 0
1751 do_sock_err:
1752 	if (msg_len)
1753 		err = msg_len;
1754 	else
1755 		err = sock_error(sk);
1756 	goto out;
1757 
1758 do_interrupted:
1759 	if (msg_len)
1760 		err = msg_len;
1761 	goto out;
1762 #endif /* 0 */
1763 }
1764 
1765 /* This is an extended version of skb_pull() that removes the data from the
1766  * start of a skb even when data is spread across the list of skb's in the
1767  * frag_list. len specifies the total amount of data that needs to be removed.
1768  * when 'len' bytes could be removed from the skb, it returns 0.
1769  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1770  * could not be removed.
1771  */
1772 static int sctp_skb_pull(struct sk_buff *skb, int len)
1773 {
1774 	struct sk_buff *list;
1775 	int skb_len = skb_headlen(skb);
1776 	int rlen;
1777 
1778 	if (len <= skb_len) {
1779 		__skb_pull(skb, len);
1780 		return 0;
1781 	}
1782 	len -= skb_len;
1783 	__skb_pull(skb, skb_len);
1784 
1785 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1786 		rlen = sctp_skb_pull(list, len);
1787 		skb->len -= (len-rlen);
1788 		skb->data_len -= (len-rlen);
1789 
1790 		if (!rlen)
1791 			return 0;
1792 
1793 		len = rlen;
1794 	}
1795 
1796 	return len;
1797 }
1798 
1799 /* API 3.1.3  recvmsg() - UDP Style Syntax
1800  *
1801  *  ssize_t recvmsg(int socket, struct msghdr *message,
1802  *                    int flags);
1803  *
1804  *  socket  - the socket descriptor of the endpoint.
1805  *  message - pointer to the msghdr structure which contains a single
1806  *            user message and possibly some ancillary data.
1807  *
1808  *            See Section 5 for complete description of the data
1809  *            structures.
1810  *
1811  *  flags   - flags sent or received with the user message, see Section
1812  *            5 for complete description of the flags.
1813  */
1814 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1815 
1816 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1817 			     struct msghdr *msg, size_t len, int noblock,
1818 			     int flags, int *addr_len)
1819 {
1820 	struct sctp_ulpevent *event = NULL;
1821 	struct sctp_sock *sp = sctp_sk(sk);
1822 	struct sk_buff *skb;
1823 	int copied;
1824 	int err = 0;
1825 	int skb_len;
1826 
1827 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1828 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1829 			  "len", len, "knoblauch", noblock,
1830 			  "flags", flags, "addr_len", addr_len);
1831 
1832 	sctp_lock_sock(sk);
1833 
1834 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1835 		err = -ENOTCONN;
1836 		goto out;
1837 	}
1838 
1839 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1840 	if (!skb)
1841 		goto out;
1842 
1843 	/* Get the total length of the skb including any skb's in the
1844 	 * frag_list.
1845 	 */
1846 	skb_len = skb->len;
1847 
1848 	copied = skb_len;
1849 	if (copied > len)
1850 		copied = len;
1851 
1852 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1853 
1854 	event = sctp_skb2event(skb);
1855 
1856 	if (err)
1857 		goto out_free;
1858 
1859 	sock_recv_timestamp(msg, sk, skb);
1860 	if (sctp_ulpevent_is_notification(event)) {
1861 		msg->msg_flags |= MSG_NOTIFICATION;
1862 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1863 	} else {
1864 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1865 	}
1866 
1867 	/* Check if we allow SCTP_SNDRCVINFO. */
1868 	if (sp->subscribe.sctp_data_io_event)
1869 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1870 #if 0
1871 	/* FIXME: we should be calling IP/IPv6 layers.  */
1872 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1873 		ip_cmsg_recv(msg, skb);
1874 #endif
1875 
1876 	err = copied;
1877 
1878 	/* If skb's length exceeds the user's buffer, update the skb and
1879 	 * push it back to the receive_queue so that the next call to
1880 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1881 	 */
1882 	if (skb_len > copied) {
1883 		msg->msg_flags &= ~MSG_EOR;
1884 		if (flags & MSG_PEEK)
1885 			goto out_free;
1886 		sctp_skb_pull(skb, copied);
1887 		skb_queue_head(&sk->sk_receive_queue, skb);
1888 
1889 		/* When only partial message is copied to the user, increase
1890 		 * rwnd by that amount. If all the data in the skb is read,
1891 		 * rwnd is updated when the event is freed.
1892 		 */
1893 		sctp_assoc_rwnd_increase(event->asoc, copied);
1894 		goto out;
1895 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1896 		   (event->msg_flags & MSG_EOR))
1897 		msg->msg_flags |= MSG_EOR;
1898 	else
1899 		msg->msg_flags &= ~MSG_EOR;
1900 
1901 out_free:
1902 	if (flags & MSG_PEEK) {
1903 		/* Release the skb reference acquired after peeking the skb in
1904 		 * sctp_skb_recv_datagram().
1905 		 */
1906 		kfree_skb(skb);
1907 	} else {
1908 		/* Free the event which includes releasing the reference to
1909 		 * the owner of the skb, freeing the skb and updating the
1910 		 * rwnd.
1911 		 */
1912 		sctp_ulpevent_free(event);
1913 	}
1914 out:
1915 	sctp_release_sock(sk);
1916 	return err;
1917 }
1918 
1919 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1920  *
1921  * This option is a on/off flag.  If enabled no SCTP message
1922  * fragmentation will be performed.  Instead if a message being sent
1923  * exceeds the current PMTU size, the message will NOT be sent and
1924  * instead a error will be indicated to the user.
1925  */
1926 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1927 					    char __user *optval, int optlen)
1928 {
1929 	int val;
1930 
1931 	if (optlen < sizeof(int))
1932 		return -EINVAL;
1933 
1934 	if (get_user(val, (int __user *)optval))
1935 		return -EFAULT;
1936 
1937 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1938 
1939 	return 0;
1940 }
1941 
1942 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1943 					int optlen)
1944 {
1945 	if (optlen != sizeof(struct sctp_event_subscribe))
1946 		return -EINVAL;
1947 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1948 		return -EFAULT;
1949 	return 0;
1950 }
1951 
1952 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1953  *
1954  * This socket option is applicable to the UDP-style socket only.  When
1955  * set it will cause associations that are idle for more than the
1956  * specified number of seconds to automatically close.  An association
1957  * being idle is defined an association that has NOT sent or received
1958  * user data.  The special value of '0' indicates that no automatic
1959  * close of any associations should be performed.  The option expects an
1960  * integer defining the number of seconds of idle time before an
1961  * association is closed.
1962  */
1963 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1964 					    int optlen)
1965 {
1966 	struct sctp_sock *sp = sctp_sk(sk);
1967 
1968 	/* Applicable to UDP-style socket only */
1969 	if (sctp_style(sk, TCP))
1970 		return -EOPNOTSUPP;
1971 	if (optlen != sizeof(int))
1972 		return -EINVAL;
1973 	if (copy_from_user(&sp->autoclose, optval, optlen))
1974 		return -EFAULT;
1975 
1976 	return 0;
1977 }
1978 
1979 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1980  *
1981  * Applications can enable or disable heartbeats for any peer address of
1982  * an association, modify an address's heartbeat interval, force a
1983  * heartbeat to be sent immediately, and adjust the address's maximum
1984  * number of retransmissions sent before an address is considered
1985  * unreachable.  The following structure is used to access and modify an
1986  * address's parameters:
1987  *
1988  *  struct sctp_paddrparams {
1989  *     sctp_assoc_t            spp_assoc_id;
1990  *     struct sockaddr_storage spp_address;
1991  *     uint32_t                spp_hbinterval;
1992  *     uint16_t                spp_pathmaxrxt;
1993  *     uint32_t                spp_pathmtu;
1994  *     uint32_t                spp_sackdelay;
1995  *     uint32_t                spp_flags;
1996  * };
1997  *
1998  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1999  *                     application, and identifies the association for
2000  *                     this query.
2001  *   spp_address     - This specifies which address is of interest.
2002  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2003  *                     in milliseconds.  If a  value of zero
2004  *                     is present in this field then no changes are to
2005  *                     be made to this parameter.
2006  *   spp_pathmaxrxt  - This contains the maximum number of
2007  *                     retransmissions before this address shall be
2008  *                     considered unreachable. If a  value of zero
2009  *                     is present in this field then no changes are to
2010  *                     be made to this parameter.
2011  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2012  *                     specified here will be the "fixed" path mtu.
2013  *                     Note that if the spp_address field is empty
2014  *                     then all associations on this address will
2015  *                     have this fixed path mtu set upon them.
2016  *
2017  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2018  *                     the number of milliseconds that sacks will be delayed
2019  *                     for. This value will apply to all addresses of an
2020  *                     association if the spp_address field is empty. Note
2021  *                     also, that if delayed sack is enabled and this
2022  *                     value is set to 0, no change is made to the last
2023  *                     recorded delayed sack timer value.
2024  *
2025  *   spp_flags       - These flags are used to control various features
2026  *                     on an association. The flag field may contain
2027  *                     zero or more of the following options.
2028  *
2029  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2030  *                     specified address. Note that if the address
2031  *                     field is empty all addresses for the association
2032  *                     have heartbeats enabled upon them.
2033  *
2034  *                     SPP_HB_DISABLE - Disable heartbeats on the
2035  *                     speicifed address. Note that if the address
2036  *                     field is empty all addresses for the association
2037  *                     will have their heartbeats disabled. Note also
2038  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2039  *                     mutually exclusive, only one of these two should
2040  *                     be specified. Enabling both fields will have
2041  *                     undetermined results.
2042  *
2043  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2044  *                     to be made immediately.
2045  *
2046  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2047  *                     discovery upon the specified address. Note that
2048  *                     if the address feild is empty then all addresses
2049  *                     on the association are effected.
2050  *
2051  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2052  *                     discovery upon the specified address. Note that
2053  *                     if the address feild is empty then all addresses
2054  *                     on the association are effected. Not also that
2055  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2056  *                     exclusive. Enabling both will have undetermined
2057  *                     results.
2058  *
2059  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2060  *                     on delayed sack. The time specified in spp_sackdelay
2061  *                     is used to specify the sack delay for this address. Note
2062  *                     that if spp_address is empty then all addresses will
2063  *                     enable delayed sack and take on the sack delay
2064  *                     value specified in spp_sackdelay.
2065  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2066  *                     off delayed sack. If the spp_address field is blank then
2067  *                     delayed sack is disabled for the entire association. Note
2068  *                     also that this field is mutually exclusive to
2069  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2070  *                     results.
2071  */
2072 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2073 				struct sctp_transport   *trans,
2074 				struct sctp_association *asoc,
2075 				struct sctp_sock        *sp,
2076 				int                      hb_change,
2077 				int                      pmtud_change,
2078 				int                      sackdelay_change)
2079 {
2080 	int error;
2081 
2082 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2083 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2084 		if (error)
2085 			return error;
2086 	}
2087 
2088 	if (params->spp_hbinterval) {
2089 		if (trans) {
2090 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2091 		} else if (asoc) {
2092 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2093 		} else {
2094 			sp->hbinterval = params->spp_hbinterval;
2095 		}
2096 	}
2097 
2098 	if (hb_change) {
2099 		if (trans) {
2100 			trans->param_flags =
2101 				(trans->param_flags & ~SPP_HB) | hb_change;
2102 		} else if (asoc) {
2103 			asoc->param_flags =
2104 				(asoc->param_flags & ~SPP_HB) | hb_change;
2105 		} else {
2106 			sp->param_flags =
2107 				(sp->param_flags & ~SPP_HB) | hb_change;
2108 		}
2109 	}
2110 
2111 	if (params->spp_pathmtu) {
2112 		if (trans) {
2113 			trans->pathmtu = params->spp_pathmtu;
2114 			sctp_assoc_sync_pmtu(asoc);
2115 		} else if (asoc) {
2116 			asoc->pathmtu = params->spp_pathmtu;
2117 			sctp_frag_point(sp, params->spp_pathmtu);
2118 		} else {
2119 			sp->pathmtu = params->spp_pathmtu;
2120 		}
2121 	}
2122 
2123 	if (pmtud_change) {
2124 		if (trans) {
2125 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2126 				(params->spp_flags & SPP_PMTUD_ENABLE);
2127 			trans->param_flags =
2128 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2129 			if (update) {
2130 				sctp_transport_pmtu(trans);
2131 				sctp_assoc_sync_pmtu(asoc);
2132 			}
2133 		} else if (asoc) {
2134 			asoc->param_flags =
2135 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2136 		} else {
2137 			sp->param_flags =
2138 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2139 		}
2140 	}
2141 
2142 	if (params->spp_sackdelay) {
2143 		if (trans) {
2144 			trans->sackdelay =
2145 				msecs_to_jiffies(params->spp_sackdelay);
2146 		} else if (asoc) {
2147 			asoc->sackdelay =
2148 				msecs_to_jiffies(params->spp_sackdelay);
2149 		} else {
2150 			sp->sackdelay = params->spp_sackdelay;
2151 		}
2152 	}
2153 
2154 	if (sackdelay_change) {
2155 		if (trans) {
2156 			trans->param_flags =
2157 				(trans->param_flags & ~SPP_SACKDELAY) |
2158 				sackdelay_change;
2159 		} else if (asoc) {
2160 			asoc->param_flags =
2161 				(asoc->param_flags & ~SPP_SACKDELAY) |
2162 				sackdelay_change;
2163 		} else {
2164 			sp->param_flags =
2165 				(sp->param_flags & ~SPP_SACKDELAY) |
2166 				sackdelay_change;
2167 		}
2168 	}
2169 
2170 	if (params->spp_pathmaxrxt) {
2171 		if (trans) {
2172 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2173 		} else if (asoc) {
2174 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2175 		} else {
2176 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2177 		}
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2184 					    char __user *optval, int optlen)
2185 {
2186 	struct sctp_paddrparams  params;
2187 	struct sctp_transport   *trans = NULL;
2188 	struct sctp_association *asoc = NULL;
2189 	struct sctp_sock        *sp = sctp_sk(sk);
2190 	int error;
2191 	int hb_change, pmtud_change, sackdelay_change;
2192 
2193 	if (optlen != sizeof(struct sctp_paddrparams))
2194 		return - EINVAL;
2195 
2196 	if (copy_from_user(&params, optval, optlen))
2197 		return -EFAULT;
2198 
2199 	/* Validate flags and value parameters. */
2200 	hb_change        = params.spp_flags & SPP_HB;
2201 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2202 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2203 
2204 	if (hb_change        == SPP_HB ||
2205 	    pmtud_change     == SPP_PMTUD ||
2206 	    sackdelay_change == SPP_SACKDELAY ||
2207 	    params.spp_sackdelay > 500 ||
2208 	    (params.spp_pathmtu
2209 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2210 		return -EINVAL;
2211 
2212 	/* If an address other than INADDR_ANY is specified, and
2213 	 * no transport is found, then the request is invalid.
2214 	 */
2215 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2216 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2217 					       params.spp_assoc_id);
2218 		if (!trans)
2219 			return -EINVAL;
2220 	}
2221 
2222 	/* Get association, if assoc_id != 0 and the socket is a one
2223 	 * to many style socket, and an association was not found, then
2224 	 * the id was invalid.
2225 	 */
2226 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2227 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2228 		return -EINVAL;
2229 
2230 	/* Heartbeat demand can only be sent on a transport or
2231 	 * association, but not a socket.
2232 	 */
2233 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2234 		return -EINVAL;
2235 
2236 	/* Process parameters. */
2237 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2238 					    hb_change, pmtud_change,
2239 					    sackdelay_change);
2240 
2241 	if (error)
2242 		return error;
2243 
2244 	/* If changes are for association, also apply parameters to each
2245 	 * transport.
2246 	 */
2247 	if (!trans && asoc) {
2248 		struct list_head *pos;
2249 
2250 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2251 			trans = list_entry(pos, struct sctp_transport,
2252 					   transports);
2253 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2254 						    hb_change, pmtud_change,
2255 						    sackdelay_change);
2256 		}
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2263  *
2264  *   This options will get or set the delayed ack timer.  The time is set
2265  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2266  *   endpoints default delayed ack timer value.  If the assoc_id field is
2267  *   non-zero, then the set or get effects the specified association.
2268  *
2269  *   struct sctp_assoc_value {
2270  *       sctp_assoc_t            assoc_id;
2271  *       uint32_t                assoc_value;
2272  *   };
2273  *
2274  *     assoc_id    - This parameter, indicates which association the
2275  *                   user is preforming an action upon. Note that if
2276  *                   this field's value is zero then the endpoints
2277  *                   default value is changed (effecting future
2278  *                   associations only).
2279  *
2280  *     assoc_value - This parameter contains the number of milliseconds
2281  *                   that the user is requesting the delayed ACK timer
2282  *                   be set to. Note that this value is defined in
2283  *                   the standard to be between 200 and 500 milliseconds.
2284  *
2285  *                   Note: a value of zero will leave the value alone,
2286  *                   but disable SACK delay. A non-zero value will also
2287  *                   enable SACK delay.
2288  */
2289 
2290 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2291 					    char __user *optval, int optlen)
2292 {
2293 	struct sctp_assoc_value  params;
2294 	struct sctp_transport   *trans = NULL;
2295 	struct sctp_association *asoc = NULL;
2296 	struct sctp_sock        *sp = sctp_sk(sk);
2297 
2298 	if (optlen != sizeof(struct sctp_assoc_value))
2299 		return - EINVAL;
2300 
2301 	if (copy_from_user(&params, optval, optlen))
2302 		return -EFAULT;
2303 
2304 	/* Validate value parameter. */
2305 	if (params.assoc_value > 500)
2306 		return -EINVAL;
2307 
2308 	/* Get association, if assoc_id != 0 and the socket is a one
2309 	 * to many style socket, and an association was not found, then
2310 	 * the id was invalid.
2311  	 */
2312 	asoc = sctp_id2assoc(sk, params.assoc_id);
2313 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2314 		return -EINVAL;
2315 
2316 	if (params.assoc_value) {
2317 		if (asoc) {
2318 			asoc->sackdelay =
2319 				msecs_to_jiffies(params.assoc_value);
2320 			asoc->param_flags =
2321 				(asoc->param_flags & ~SPP_SACKDELAY) |
2322 				SPP_SACKDELAY_ENABLE;
2323 		} else {
2324 			sp->sackdelay = params.assoc_value;
2325 			sp->param_flags =
2326 				(sp->param_flags & ~SPP_SACKDELAY) |
2327 				SPP_SACKDELAY_ENABLE;
2328 		}
2329 	} else {
2330 		if (asoc) {
2331 			asoc->param_flags =
2332 				(asoc->param_flags & ~SPP_SACKDELAY) |
2333 				SPP_SACKDELAY_DISABLE;
2334 		} else {
2335 			sp->param_flags =
2336 				(sp->param_flags & ~SPP_SACKDELAY) |
2337 				SPP_SACKDELAY_DISABLE;
2338 		}
2339 	}
2340 
2341 	/* If change is for association, also apply to each transport. */
2342 	if (asoc) {
2343 		struct list_head *pos;
2344 
2345 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2346 			trans = list_entry(pos, struct sctp_transport,
2347 					   transports);
2348 			if (params.assoc_value) {
2349 				trans->sackdelay =
2350 					msecs_to_jiffies(params.assoc_value);
2351 				trans->param_flags =
2352 					(trans->param_flags & ~SPP_SACKDELAY) |
2353 					SPP_SACKDELAY_ENABLE;
2354 			} else {
2355 				trans->param_flags =
2356 					(trans->param_flags & ~SPP_SACKDELAY) |
2357 					SPP_SACKDELAY_DISABLE;
2358 			}
2359 		}
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2366  *
2367  * Applications can specify protocol parameters for the default association
2368  * initialization.  The option name argument to setsockopt() and getsockopt()
2369  * is SCTP_INITMSG.
2370  *
2371  * Setting initialization parameters is effective only on an unconnected
2372  * socket (for UDP-style sockets only future associations are effected
2373  * by the change).  With TCP-style sockets, this option is inherited by
2374  * sockets derived from a listener socket.
2375  */
2376 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2377 {
2378 	struct sctp_initmsg sinit;
2379 	struct sctp_sock *sp = sctp_sk(sk);
2380 
2381 	if (optlen != sizeof(struct sctp_initmsg))
2382 		return -EINVAL;
2383 	if (copy_from_user(&sinit, optval, optlen))
2384 		return -EFAULT;
2385 
2386 	if (sinit.sinit_num_ostreams)
2387 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2388 	if (sinit.sinit_max_instreams)
2389 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2390 	if (sinit.sinit_max_attempts)
2391 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2392 	if (sinit.sinit_max_init_timeo)
2393 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2394 
2395 	return 0;
2396 }
2397 
2398 /*
2399  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2400  *
2401  *   Applications that wish to use the sendto() system call may wish to
2402  *   specify a default set of parameters that would normally be supplied
2403  *   through the inclusion of ancillary data.  This socket option allows
2404  *   such an application to set the default sctp_sndrcvinfo structure.
2405  *   The application that wishes to use this socket option simply passes
2406  *   in to this call the sctp_sndrcvinfo structure defined in Section
2407  *   5.2.2) The input parameters accepted by this call include
2408  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2409  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2410  *   to this call if the caller is using the UDP model.
2411  */
2412 static int sctp_setsockopt_default_send_param(struct sock *sk,
2413 						char __user *optval, int optlen)
2414 {
2415 	struct sctp_sndrcvinfo info;
2416 	struct sctp_association *asoc;
2417 	struct sctp_sock *sp = sctp_sk(sk);
2418 
2419 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2420 		return -EINVAL;
2421 	if (copy_from_user(&info, optval, optlen))
2422 		return -EFAULT;
2423 
2424 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2425 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2426 		return -EINVAL;
2427 
2428 	if (asoc) {
2429 		asoc->default_stream = info.sinfo_stream;
2430 		asoc->default_flags = info.sinfo_flags;
2431 		asoc->default_ppid = info.sinfo_ppid;
2432 		asoc->default_context = info.sinfo_context;
2433 		asoc->default_timetolive = info.sinfo_timetolive;
2434 	} else {
2435 		sp->default_stream = info.sinfo_stream;
2436 		sp->default_flags = info.sinfo_flags;
2437 		sp->default_ppid = info.sinfo_ppid;
2438 		sp->default_context = info.sinfo_context;
2439 		sp->default_timetolive = info.sinfo_timetolive;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2446  *
2447  * Requests that the local SCTP stack use the enclosed peer address as
2448  * the association primary.  The enclosed address must be one of the
2449  * association peer's addresses.
2450  */
2451 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2452 					int optlen)
2453 {
2454 	struct sctp_prim prim;
2455 	struct sctp_transport *trans;
2456 
2457 	if (optlen != sizeof(struct sctp_prim))
2458 		return -EINVAL;
2459 
2460 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2461 		return -EFAULT;
2462 
2463 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2464 	if (!trans)
2465 		return -EINVAL;
2466 
2467 	sctp_assoc_set_primary(trans->asoc, trans);
2468 
2469 	return 0;
2470 }
2471 
2472 /*
2473  * 7.1.5 SCTP_NODELAY
2474  *
2475  * Turn on/off any Nagle-like algorithm.  This means that packets are
2476  * generally sent as soon as possible and no unnecessary delays are
2477  * introduced, at the cost of more packets in the network.  Expects an
2478  *  integer boolean flag.
2479  */
2480 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2481 					int optlen)
2482 {
2483 	int val;
2484 
2485 	if (optlen < sizeof(int))
2486 		return -EINVAL;
2487 	if (get_user(val, (int __user *)optval))
2488 		return -EFAULT;
2489 
2490 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2491 	return 0;
2492 }
2493 
2494 /*
2495  *
2496  * 7.1.1 SCTP_RTOINFO
2497  *
2498  * The protocol parameters used to initialize and bound retransmission
2499  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2500  * and modify these parameters.
2501  * All parameters are time values, in milliseconds.  A value of 0, when
2502  * modifying the parameters, indicates that the current value should not
2503  * be changed.
2504  *
2505  */
2506 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2507 	struct sctp_rtoinfo rtoinfo;
2508 	struct sctp_association *asoc;
2509 
2510 	if (optlen != sizeof (struct sctp_rtoinfo))
2511 		return -EINVAL;
2512 
2513 	if (copy_from_user(&rtoinfo, optval, optlen))
2514 		return -EFAULT;
2515 
2516 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2517 
2518 	/* Set the values to the specific association */
2519 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2520 		return -EINVAL;
2521 
2522 	if (asoc) {
2523 		if (rtoinfo.srto_initial != 0)
2524 			asoc->rto_initial =
2525 				msecs_to_jiffies(rtoinfo.srto_initial);
2526 		if (rtoinfo.srto_max != 0)
2527 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2528 		if (rtoinfo.srto_min != 0)
2529 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2530 	} else {
2531 		/* If there is no association or the association-id = 0
2532 		 * set the values to the endpoint.
2533 		 */
2534 		struct sctp_sock *sp = sctp_sk(sk);
2535 
2536 		if (rtoinfo.srto_initial != 0)
2537 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2538 		if (rtoinfo.srto_max != 0)
2539 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2540 		if (rtoinfo.srto_min != 0)
2541 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 /*
2548  *
2549  * 7.1.2 SCTP_ASSOCINFO
2550  *
2551  * This option is used to tune the the maximum retransmission attempts
2552  * of the association.
2553  * Returns an error if the new association retransmission value is
2554  * greater than the sum of the retransmission value  of the peer.
2555  * See [SCTP] for more information.
2556  *
2557  */
2558 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2559 {
2560 
2561 	struct sctp_assocparams assocparams;
2562 	struct sctp_association *asoc;
2563 
2564 	if (optlen != sizeof(struct sctp_assocparams))
2565 		return -EINVAL;
2566 	if (copy_from_user(&assocparams, optval, optlen))
2567 		return -EFAULT;
2568 
2569 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2570 
2571 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2572 		return -EINVAL;
2573 
2574 	/* Set the values to the specific association */
2575 	if (asoc) {
2576 		if (assocparams.sasoc_asocmaxrxt != 0) {
2577 			__u32 path_sum = 0;
2578 			int   paths = 0;
2579 			struct list_head *pos;
2580 			struct sctp_transport *peer_addr;
2581 
2582 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2583 				peer_addr = list_entry(pos,
2584 						struct sctp_transport,
2585 						transports);
2586 				path_sum += peer_addr->pathmaxrxt;
2587 				paths++;
2588 			}
2589 
2590 			/* Only validate asocmaxrxt if we have more then
2591 			 * one path/transport.  We do this because path
2592 			 * retransmissions are only counted when we have more
2593 			 * then one path.
2594 			 */
2595 			if (paths > 1 &&
2596 			    assocparams.sasoc_asocmaxrxt > path_sum)
2597 				return -EINVAL;
2598 
2599 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2600 		}
2601 
2602 		if (assocparams.sasoc_cookie_life != 0) {
2603 			asoc->cookie_life.tv_sec =
2604 					assocparams.sasoc_cookie_life / 1000;
2605 			asoc->cookie_life.tv_usec =
2606 					(assocparams.sasoc_cookie_life % 1000)
2607 					* 1000;
2608 		}
2609 	} else {
2610 		/* Set the values to the endpoint */
2611 		struct sctp_sock *sp = sctp_sk(sk);
2612 
2613 		if (assocparams.sasoc_asocmaxrxt != 0)
2614 			sp->assocparams.sasoc_asocmaxrxt =
2615 						assocparams.sasoc_asocmaxrxt;
2616 		if (assocparams.sasoc_cookie_life != 0)
2617 			sp->assocparams.sasoc_cookie_life =
2618 						assocparams.sasoc_cookie_life;
2619 	}
2620 	return 0;
2621 }
2622 
2623 /*
2624  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2625  *
2626  * This socket option is a boolean flag which turns on or off mapped V4
2627  * addresses.  If this option is turned on and the socket is type
2628  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2629  * If this option is turned off, then no mapping will be done of V4
2630  * addresses and a user will receive both PF_INET6 and PF_INET type
2631  * addresses on the socket.
2632  */
2633 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2634 {
2635 	int val;
2636 	struct sctp_sock *sp = sctp_sk(sk);
2637 
2638 	if (optlen < sizeof(int))
2639 		return -EINVAL;
2640 	if (get_user(val, (int __user *)optval))
2641 		return -EFAULT;
2642 	if (val)
2643 		sp->v4mapped = 1;
2644 	else
2645 		sp->v4mapped = 0;
2646 
2647 	return 0;
2648 }
2649 
2650 /*
2651  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2652  *
2653  * This socket option specifies the maximum size to put in any outgoing
2654  * SCTP chunk.  If a message is larger than this size it will be
2655  * fragmented by SCTP into the specified size.  Note that the underlying
2656  * SCTP implementation may fragment into smaller sized chunks when the
2657  * PMTU of the underlying association is smaller than the value set by
2658  * the user.
2659  */
2660 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2661 {
2662 	struct sctp_association *asoc;
2663 	struct list_head *pos;
2664 	struct sctp_sock *sp = sctp_sk(sk);
2665 	int val;
2666 
2667 	if (optlen < sizeof(int))
2668 		return -EINVAL;
2669 	if (get_user(val, (int __user *)optval))
2670 		return -EFAULT;
2671 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2672 		return -EINVAL;
2673 	sp->user_frag = val;
2674 
2675 	/* Update the frag_point of the existing associations. */
2676 	list_for_each(pos, &(sp->ep->asocs)) {
2677 		asoc = list_entry(pos, struct sctp_association, asocs);
2678 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 
2685 /*
2686  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2687  *
2688  *   Requests that the peer mark the enclosed address as the association
2689  *   primary. The enclosed address must be one of the association's
2690  *   locally bound addresses. The following structure is used to make a
2691  *   set primary request:
2692  */
2693 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2694 					     int optlen)
2695 {
2696 	struct sctp_sock	*sp;
2697 	struct sctp_endpoint	*ep;
2698 	struct sctp_association	*asoc = NULL;
2699 	struct sctp_setpeerprim	prim;
2700 	struct sctp_chunk	*chunk;
2701 	int 			err;
2702 
2703 	sp = sctp_sk(sk);
2704 	ep = sp->ep;
2705 
2706 	if (!sctp_addip_enable)
2707 		return -EPERM;
2708 
2709 	if (optlen != sizeof(struct sctp_setpeerprim))
2710 		return -EINVAL;
2711 
2712 	if (copy_from_user(&prim, optval, optlen))
2713 		return -EFAULT;
2714 
2715 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2716 	if (!asoc)
2717 		return -EINVAL;
2718 
2719 	if (!asoc->peer.asconf_capable)
2720 		return -EPERM;
2721 
2722 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2723 		return -EPERM;
2724 
2725 	if (!sctp_state(asoc, ESTABLISHED))
2726 		return -ENOTCONN;
2727 
2728 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2729 		return -EADDRNOTAVAIL;
2730 
2731 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2732 	chunk = sctp_make_asconf_set_prim(asoc,
2733 					  (union sctp_addr *)&prim.sspp_addr);
2734 	if (!chunk)
2735 		return -ENOMEM;
2736 
2737 	err = sctp_send_asconf(asoc, chunk);
2738 
2739 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2740 
2741 	return err;
2742 }
2743 
2744 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2745 					  int optlen)
2746 {
2747 	struct sctp_setadaption adaption;
2748 
2749 	if (optlen != sizeof(struct sctp_setadaption))
2750 		return -EINVAL;
2751 	if (copy_from_user(&adaption, optval, optlen))
2752 		return -EFAULT;
2753 
2754 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2755 
2756 	return 0;
2757 }
2758 
2759 /* API 6.2 setsockopt(), getsockopt()
2760  *
2761  * Applications use setsockopt() and getsockopt() to set or retrieve
2762  * socket options.  Socket options are used to change the default
2763  * behavior of sockets calls.  They are described in Section 7.
2764  *
2765  * The syntax is:
2766  *
2767  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2768  *                    int __user *optlen);
2769  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2770  *                    int optlen);
2771  *
2772  *   sd      - the socket descript.
2773  *   level   - set to IPPROTO_SCTP for all SCTP options.
2774  *   optname - the option name.
2775  *   optval  - the buffer to store the value of the option.
2776  *   optlen  - the size of the buffer.
2777  */
2778 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2779 				char __user *optval, int optlen)
2780 {
2781 	int retval = 0;
2782 
2783 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2784 			  sk, optname);
2785 
2786 	/* I can hardly begin to describe how wrong this is.  This is
2787 	 * so broken as to be worse than useless.  The API draft
2788 	 * REALLY is NOT helpful here...  I am not convinced that the
2789 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2790 	 * are at all well-founded.
2791 	 */
2792 	if (level != SOL_SCTP) {
2793 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2794 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2795 		goto out_nounlock;
2796 	}
2797 
2798 	sctp_lock_sock(sk);
2799 
2800 	switch (optname) {
2801 	case SCTP_SOCKOPT_BINDX_ADD:
2802 		/* 'optlen' is the size of the addresses buffer. */
2803 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2804 					       optlen, SCTP_BINDX_ADD_ADDR);
2805 		break;
2806 
2807 	case SCTP_SOCKOPT_BINDX_REM:
2808 		/* 'optlen' is the size of the addresses buffer. */
2809 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2810 					       optlen, SCTP_BINDX_REM_ADDR);
2811 		break;
2812 
2813 	case SCTP_SOCKOPT_CONNECTX:
2814 		/* 'optlen' is the size of the addresses buffer. */
2815 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2816 					       optlen);
2817 		break;
2818 
2819 	case SCTP_DISABLE_FRAGMENTS:
2820 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2821 		break;
2822 
2823 	case SCTP_EVENTS:
2824 		retval = sctp_setsockopt_events(sk, optval, optlen);
2825 		break;
2826 
2827 	case SCTP_AUTOCLOSE:
2828 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2829 		break;
2830 
2831 	case SCTP_PEER_ADDR_PARAMS:
2832 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2833 		break;
2834 
2835 	case SCTP_DELAYED_ACK_TIME:
2836 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2837 		break;
2838 
2839 	case SCTP_INITMSG:
2840 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2841 		break;
2842 	case SCTP_DEFAULT_SEND_PARAM:
2843 		retval = sctp_setsockopt_default_send_param(sk, optval,
2844 							    optlen);
2845 		break;
2846 	case SCTP_PRIMARY_ADDR:
2847 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2848 		break;
2849 	case SCTP_SET_PEER_PRIMARY_ADDR:
2850 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2851 		break;
2852 	case SCTP_NODELAY:
2853 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2854 		break;
2855 	case SCTP_RTOINFO:
2856 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2857 		break;
2858 	case SCTP_ASSOCINFO:
2859 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2860 		break;
2861 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2862 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2863 		break;
2864 	case SCTP_MAXSEG:
2865 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2866 		break;
2867 	case SCTP_ADAPTION_LAYER:
2868 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2869 		break;
2870 
2871 	default:
2872 		retval = -ENOPROTOOPT;
2873 		break;
2874 	};
2875 
2876 	sctp_release_sock(sk);
2877 
2878 out_nounlock:
2879 	return retval;
2880 }
2881 
2882 /* API 3.1.6 connect() - UDP Style Syntax
2883  *
2884  * An application may use the connect() call in the UDP model to initiate an
2885  * association without sending data.
2886  *
2887  * The syntax is:
2888  *
2889  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2890  *
2891  * sd: the socket descriptor to have a new association added to.
2892  *
2893  * nam: the address structure (either struct sockaddr_in or struct
2894  *    sockaddr_in6 defined in RFC2553 [7]).
2895  *
2896  * len: the size of the address.
2897  */
2898 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2899 			     int addr_len)
2900 {
2901 	int err = 0;
2902 	struct sctp_af *af;
2903 
2904 	sctp_lock_sock(sk);
2905 
2906 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2907 			  __FUNCTION__, sk, addr, addr_len);
2908 
2909 	/* Validate addr_len before calling common connect/connectx routine. */
2910 	af = sctp_get_af_specific(addr->sa_family);
2911 	if (!af || addr_len < af->sockaddr_len) {
2912 		err = -EINVAL;
2913 	} else {
2914 		/* Pass correct addr len to common routine (so it knows there
2915 		 * is only one address being passed.
2916 		 */
2917 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2918 	}
2919 
2920 	sctp_release_sock(sk);
2921 	return err;
2922 }
2923 
2924 /* FIXME: Write comments. */
2925 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2926 {
2927 	return -EOPNOTSUPP; /* STUB */
2928 }
2929 
2930 /* 4.1.4 accept() - TCP Style Syntax
2931  *
2932  * Applications use accept() call to remove an established SCTP
2933  * association from the accept queue of the endpoint.  A new socket
2934  * descriptor will be returned from accept() to represent the newly
2935  * formed association.
2936  */
2937 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2938 {
2939 	struct sctp_sock *sp;
2940 	struct sctp_endpoint *ep;
2941 	struct sock *newsk = NULL;
2942 	struct sctp_association *asoc;
2943 	long timeo;
2944 	int error = 0;
2945 
2946 	sctp_lock_sock(sk);
2947 
2948 	sp = sctp_sk(sk);
2949 	ep = sp->ep;
2950 
2951 	if (!sctp_style(sk, TCP)) {
2952 		error = -EOPNOTSUPP;
2953 		goto out;
2954 	}
2955 
2956 	if (!sctp_sstate(sk, LISTENING)) {
2957 		error = -EINVAL;
2958 		goto out;
2959 	}
2960 
2961 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2962 
2963 	error = sctp_wait_for_accept(sk, timeo);
2964 	if (error)
2965 		goto out;
2966 
2967 	/* We treat the list of associations on the endpoint as the accept
2968 	 * queue and pick the first association on the list.
2969 	 */
2970 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2971 
2972 	newsk = sp->pf->create_accept_sk(sk, asoc);
2973 	if (!newsk) {
2974 		error = -ENOMEM;
2975 		goto out;
2976 	}
2977 
2978 	/* Populate the fields of the newsk from the oldsk and migrate the
2979 	 * asoc to the newsk.
2980 	 */
2981 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2982 
2983 out:
2984 	sctp_release_sock(sk);
2985  	*err = error;
2986 	return newsk;
2987 }
2988 
2989 /* The SCTP ioctl handler. */
2990 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2991 {
2992 	return -ENOIOCTLCMD;
2993 }
2994 
2995 /* This is the function which gets called during socket creation to
2996  * initialized the SCTP-specific portion of the sock.
2997  * The sock structure should already be zero-filled memory.
2998  */
2999 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3000 {
3001 	struct sctp_endpoint *ep;
3002 	struct sctp_sock *sp;
3003 
3004 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3005 
3006 	sp = sctp_sk(sk);
3007 
3008 	/* Initialize the SCTP per socket area.  */
3009 	switch (sk->sk_type) {
3010 	case SOCK_SEQPACKET:
3011 		sp->type = SCTP_SOCKET_UDP;
3012 		break;
3013 	case SOCK_STREAM:
3014 		sp->type = SCTP_SOCKET_TCP;
3015 		break;
3016 	default:
3017 		return -ESOCKTNOSUPPORT;
3018 	}
3019 
3020 	/* Initialize default send parameters. These parameters can be
3021 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3022 	 */
3023 	sp->default_stream = 0;
3024 	sp->default_ppid = 0;
3025 	sp->default_flags = 0;
3026 	sp->default_context = 0;
3027 	sp->default_timetolive = 0;
3028 
3029 	/* Initialize default setup parameters. These parameters
3030 	 * can be modified with the SCTP_INITMSG socket option or
3031 	 * overridden by the SCTP_INIT CMSG.
3032 	 */
3033 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3034 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3035 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3036 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
3037 
3038 	/* Initialize default RTO related parameters.  These parameters can
3039 	 * be modified for with the SCTP_RTOINFO socket option.
3040 	 */
3041 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
3042 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
3043 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
3044 
3045 	/* Initialize default association related parameters. These parameters
3046 	 * can be modified with the SCTP_ASSOCINFO socket option.
3047 	 */
3048 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3049 	sp->assocparams.sasoc_number_peer_destinations = 0;
3050 	sp->assocparams.sasoc_peer_rwnd = 0;
3051 	sp->assocparams.sasoc_local_rwnd = 0;
3052 	sp->assocparams.sasoc_cookie_life =
3053 		jiffies_to_msecs(sctp_valid_cookie_life);
3054 
3055 	/* Initialize default event subscriptions. By default, all the
3056 	 * options are off.
3057 	 */
3058 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3059 
3060 	/* Default Peer Address Parameters.  These defaults can
3061 	 * be modified via SCTP_PEER_ADDR_PARAMS
3062 	 */
3063 	sp->hbinterval  = jiffies_to_msecs(sctp_hb_interval);
3064 	sp->pathmaxrxt  = sctp_max_retrans_path;
3065 	sp->pathmtu     = 0; // allow default discovery
3066 	sp->sackdelay   = jiffies_to_msecs(sctp_sack_timeout);
3067 	sp->param_flags = SPP_HB_ENABLE |
3068 	                  SPP_PMTUD_ENABLE |
3069 	                  SPP_SACKDELAY_ENABLE;
3070 
3071 	/* If enabled no SCTP message fragmentation will be performed.
3072 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3073 	 */
3074 	sp->disable_fragments = 0;
3075 
3076 	/* Turn on/off any Nagle-like algorithm.  */
3077 	sp->nodelay           = 1;
3078 
3079 	/* Enable by default. */
3080 	sp->v4mapped          = 1;
3081 
3082 	/* Auto-close idle associations after the configured
3083 	 * number of seconds.  A value of 0 disables this
3084 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3085 	 * for UDP-style sockets only.
3086 	 */
3087 	sp->autoclose         = 0;
3088 
3089 	/* User specified fragmentation limit. */
3090 	sp->user_frag         = 0;
3091 
3092 	sp->adaption_ind = 0;
3093 
3094 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3095 
3096 	/* Control variables for partial data delivery. */
3097 	sp->pd_mode           = 0;
3098 	skb_queue_head_init(&sp->pd_lobby);
3099 
3100 	/* Create a per socket endpoint structure.  Even if we
3101 	 * change the data structure relationships, this may still
3102 	 * be useful for storing pre-connect address information.
3103 	 */
3104 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3105 	if (!ep)
3106 		return -ENOMEM;
3107 
3108 	sp->ep = ep;
3109 	sp->hmac = NULL;
3110 
3111 	SCTP_DBG_OBJCNT_INC(sock);
3112 	return 0;
3113 }
3114 
3115 /* Cleanup any SCTP per socket resources.  */
3116 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3117 {
3118 	struct sctp_endpoint *ep;
3119 
3120 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3121 
3122 	/* Release our hold on the endpoint. */
3123 	ep = sctp_sk(sk)->ep;
3124 	sctp_endpoint_free(ep);
3125 
3126 	return 0;
3127 }
3128 
3129 /* API 4.1.7 shutdown() - TCP Style Syntax
3130  *     int shutdown(int socket, int how);
3131  *
3132  *     sd      - the socket descriptor of the association to be closed.
3133  *     how     - Specifies the type of shutdown.  The  values  are
3134  *               as follows:
3135  *               SHUT_RD
3136  *                     Disables further receive operations. No SCTP
3137  *                     protocol action is taken.
3138  *               SHUT_WR
3139  *                     Disables further send operations, and initiates
3140  *                     the SCTP shutdown sequence.
3141  *               SHUT_RDWR
3142  *                     Disables further send  and  receive  operations
3143  *                     and initiates the SCTP shutdown sequence.
3144  */
3145 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3146 {
3147 	struct sctp_endpoint *ep;
3148 	struct sctp_association *asoc;
3149 
3150 	if (!sctp_style(sk, TCP))
3151 		return;
3152 
3153 	if (how & SEND_SHUTDOWN) {
3154 		ep = sctp_sk(sk)->ep;
3155 		if (!list_empty(&ep->asocs)) {
3156 			asoc = list_entry(ep->asocs.next,
3157 					  struct sctp_association, asocs);
3158 			sctp_primitive_SHUTDOWN(asoc, NULL);
3159 		}
3160 	}
3161 }
3162 
3163 /* 7.2.1 Association Status (SCTP_STATUS)
3164 
3165  * Applications can retrieve current status information about an
3166  * association, including association state, peer receiver window size,
3167  * number of unacked data chunks, and number of data chunks pending
3168  * receipt.  This information is read-only.
3169  */
3170 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3171 				       char __user *optval,
3172 				       int __user *optlen)
3173 {
3174 	struct sctp_status status;
3175 	struct sctp_association *asoc = NULL;
3176 	struct sctp_transport *transport;
3177 	sctp_assoc_t associd;
3178 	int retval = 0;
3179 
3180 	if (len != sizeof(status)) {
3181 		retval = -EINVAL;
3182 		goto out;
3183 	}
3184 
3185 	if (copy_from_user(&status, optval, sizeof(status))) {
3186 		retval = -EFAULT;
3187 		goto out;
3188 	}
3189 
3190 	associd = status.sstat_assoc_id;
3191 	asoc = sctp_id2assoc(sk, associd);
3192 	if (!asoc) {
3193 		retval = -EINVAL;
3194 		goto out;
3195 	}
3196 
3197 	transport = asoc->peer.primary_path;
3198 
3199 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3200 	status.sstat_state = asoc->state;
3201 	status.sstat_rwnd =  asoc->peer.rwnd;
3202 	status.sstat_unackdata = asoc->unack_data;
3203 
3204 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3205 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3206 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3207 	status.sstat_fragmentation_point = asoc->frag_point;
3208 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3209 	memcpy(&status.sstat_primary.spinfo_address,
3210 	       &(transport->ipaddr), sizeof(union sctp_addr));
3211 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3212 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3213 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3214 	status.sstat_primary.spinfo_state = transport->state;
3215 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3216 	status.sstat_primary.spinfo_srtt = transport->srtt;
3217 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3218 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3219 
3220 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3221 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3222 
3223 	if (put_user(len, optlen)) {
3224 		retval = -EFAULT;
3225 		goto out;
3226 	}
3227 
3228 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3229 			  len, status.sstat_state, status.sstat_rwnd,
3230 			  status.sstat_assoc_id);
3231 
3232 	if (copy_to_user(optval, &status, len)) {
3233 		retval = -EFAULT;
3234 		goto out;
3235 	}
3236 
3237 out:
3238 	return (retval);
3239 }
3240 
3241 
3242 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3243  *
3244  * Applications can retrieve information about a specific peer address
3245  * of an association, including its reachability state, congestion
3246  * window, and retransmission timer values.  This information is
3247  * read-only.
3248  */
3249 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3250 					  char __user *optval,
3251 					  int __user *optlen)
3252 {
3253 	struct sctp_paddrinfo pinfo;
3254 	struct sctp_transport *transport;
3255 	int retval = 0;
3256 
3257 	if (len != sizeof(pinfo)) {
3258 		retval = -EINVAL;
3259 		goto out;
3260 	}
3261 
3262 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3263 		retval = -EFAULT;
3264 		goto out;
3265 	}
3266 
3267 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3268 					   pinfo.spinfo_assoc_id);
3269 	if (!transport)
3270 		return -EINVAL;
3271 
3272 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3273 	pinfo.spinfo_state = transport->state;
3274 	pinfo.spinfo_cwnd = transport->cwnd;
3275 	pinfo.spinfo_srtt = transport->srtt;
3276 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3277 	pinfo.spinfo_mtu = transport->pathmtu;
3278 
3279 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3280 		pinfo.spinfo_state = SCTP_ACTIVE;
3281 
3282 	if (put_user(len, optlen)) {
3283 		retval = -EFAULT;
3284 		goto out;
3285 	}
3286 
3287 	if (copy_to_user(optval, &pinfo, len)) {
3288 		retval = -EFAULT;
3289 		goto out;
3290 	}
3291 
3292 out:
3293 	return (retval);
3294 }
3295 
3296 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3297  *
3298  * This option is a on/off flag.  If enabled no SCTP message
3299  * fragmentation will be performed.  Instead if a message being sent
3300  * exceeds the current PMTU size, the message will NOT be sent and
3301  * instead a error will be indicated to the user.
3302  */
3303 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3304 					char __user *optval, int __user *optlen)
3305 {
3306 	int val;
3307 
3308 	if (len < sizeof(int))
3309 		return -EINVAL;
3310 
3311 	len = sizeof(int);
3312 	val = (sctp_sk(sk)->disable_fragments == 1);
3313 	if (put_user(len, optlen))
3314 		return -EFAULT;
3315 	if (copy_to_user(optval, &val, len))
3316 		return -EFAULT;
3317 	return 0;
3318 }
3319 
3320 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3321  *
3322  * This socket option is used to specify various notifications and
3323  * ancillary data the user wishes to receive.
3324  */
3325 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3326 				  int __user *optlen)
3327 {
3328 	if (len != sizeof(struct sctp_event_subscribe))
3329 		return -EINVAL;
3330 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3331 		return -EFAULT;
3332 	return 0;
3333 }
3334 
3335 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3336  *
3337  * This socket option is applicable to the UDP-style socket only.  When
3338  * set it will cause associations that are idle for more than the
3339  * specified number of seconds to automatically close.  An association
3340  * being idle is defined an association that has NOT sent or received
3341  * user data.  The special value of '0' indicates that no automatic
3342  * close of any associations should be performed.  The option expects an
3343  * integer defining the number of seconds of idle time before an
3344  * association is closed.
3345  */
3346 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3347 {
3348 	/* Applicable to UDP-style socket only */
3349 	if (sctp_style(sk, TCP))
3350 		return -EOPNOTSUPP;
3351 	if (len != sizeof(int))
3352 		return -EINVAL;
3353 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3354 		return -EFAULT;
3355 	return 0;
3356 }
3357 
3358 /* Helper routine to branch off an association to a new socket.  */
3359 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3360 				struct socket **sockp)
3361 {
3362 	struct sock *sk = asoc->base.sk;
3363 	struct socket *sock;
3364 	int err = 0;
3365 
3366 	/* An association cannot be branched off from an already peeled-off
3367 	 * socket, nor is this supported for tcp style sockets.
3368 	 */
3369 	if (!sctp_style(sk, UDP))
3370 		return -EINVAL;
3371 
3372 	/* Create a new socket.  */
3373 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3374 	if (err < 0)
3375 		return err;
3376 
3377 	/* Populate the fields of the newsk from the oldsk and migrate the
3378 	 * asoc to the newsk.
3379 	 */
3380 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3381 	*sockp = sock;
3382 
3383 	return err;
3384 }
3385 
3386 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3387 {
3388 	sctp_peeloff_arg_t peeloff;
3389 	struct socket *newsock;
3390 	int retval = 0;
3391 	struct sctp_association *asoc;
3392 
3393 	if (len != sizeof(sctp_peeloff_arg_t))
3394 		return -EINVAL;
3395 	if (copy_from_user(&peeloff, optval, len))
3396 		return -EFAULT;
3397 
3398 	asoc = sctp_id2assoc(sk, peeloff.associd);
3399 	if (!asoc) {
3400 		retval = -EINVAL;
3401 		goto out;
3402 	}
3403 
3404 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3405 
3406 	retval = sctp_do_peeloff(asoc, &newsock);
3407 	if (retval < 0)
3408 		goto out;
3409 
3410 	/* Map the socket to an unused fd that can be returned to the user.  */
3411 	retval = sock_map_fd(newsock);
3412 	if (retval < 0) {
3413 		sock_release(newsock);
3414 		goto out;
3415 	}
3416 
3417 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3418 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3419 
3420 	/* Return the fd mapped to the new socket.  */
3421 	peeloff.sd = retval;
3422 	if (copy_to_user(optval, &peeloff, len))
3423 		retval = -EFAULT;
3424 
3425 out:
3426 	return retval;
3427 }
3428 
3429 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3430  *
3431  * Applications can enable or disable heartbeats for any peer address of
3432  * an association, modify an address's heartbeat interval, force a
3433  * heartbeat to be sent immediately, and adjust the address's maximum
3434  * number of retransmissions sent before an address is considered
3435  * unreachable.  The following structure is used to access and modify an
3436  * address's parameters:
3437  *
3438  *  struct sctp_paddrparams {
3439  *     sctp_assoc_t            spp_assoc_id;
3440  *     struct sockaddr_storage spp_address;
3441  *     uint32_t                spp_hbinterval;
3442  *     uint16_t                spp_pathmaxrxt;
3443  *     uint32_t                spp_pathmtu;
3444  *     uint32_t                spp_sackdelay;
3445  *     uint32_t                spp_flags;
3446  * };
3447  *
3448  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3449  *                     application, and identifies the association for
3450  *                     this query.
3451  *   spp_address     - This specifies which address is of interest.
3452  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3453  *                     in milliseconds.  If a  value of zero
3454  *                     is present in this field then no changes are to
3455  *                     be made to this parameter.
3456  *   spp_pathmaxrxt  - This contains the maximum number of
3457  *                     retransmissions before this address shall be
3458  *                     considered unreachable. If a  value of zero
3459  *                     is present in this field then no changes are to
3460  *                     be made to this parameter.
3461  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3462  *                     specified here will be the "fixed" path mtu.
3463  *                     Note that if the spp_address field is empty
3464  *                     then all associations on this address will
3465  *                     have this fixed path mtu set upon them.
3466  *
3467  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3468  *                     the number of milliseconds that sacks will be delayed
3469  *                     for. This value will apply to all addresses of an
3470  *                     association if the spp_address field is empty. Note
3471  *                     also, that if delayed sack is enabled and this
3472  *                     value is set to 0, no change is made to the last
3473  *                     recorded delayed sack timer value.
3474  *
3475  *   spp_flags       - These flags are used to control various features
3476  *                     on an association. The flag field may contain
3477  *                     zero or more of the following options.
3478  *
3479  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3480  *                     specified address. Note that if the address
3481  *                     field is empty all addresses for the association
3482  *                     have heartbeats enabled upon them.
3483  *
3484  *                     SPP_HB_DISABLE - Disable heartbeats on the
3485  *                     speicifed address. Note that if the address
3486  *                     field is empty all addresses for the association
3487  *                     will have their heartbeats disabled. Note also
3488  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3489  *                     mutually exclusive, only one of these two should
3490  *                     be specified. Enabling both fields will have
3491  *                     undetermined results.
3492  *
3493  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3494  *                     to be made immediately.
3495  *
3496  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3497  *                     discovery upon the specified address. Note that
3498  *                     if the address feild is empty then all addresses
3499  *                     on the association are effected.
3500  *
3501  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3502  *                     discovery upon the specified address. Note that
3503  *                     if the address feild is empty then all addresses
3504  *                     on the association are effected. Not also that
3505  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3506  *                     exclusive. Enabling both will have undetermined
3507  *                     results.
3508  *
3509  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3510  *                     on delayed sack. The time specified in spp_sackdelay
3511  *                     is used to specify the sack delay for this address. Note
3512  *                     that if spp_address is empty then all addresses will
3513  *                     enable delayed sack and take on the sack delay
3514  *                     value specified in spp_sackdelay.
3515  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3516  *                     off delayed sack. If the spp_address field is blank then
3517  *                     delayed sack is disabled for the entire association. Note
3518  *                     also that this field is mutually exclusive to
3519  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3520  *                     results.
3521  */
3522 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3523 					    char __user *optval, int __user *optlen)
3524 {
3525 	struct sctp_paddrparams  params;
3526 	struct sctp_transport   *trans = NULL;
3527 	struct sctp_association *asoc = NULL;
3528 	struct sctp_sock        *sp = sctp_sk(sk);
3529 
3530 	if (len != sizeof(struct sctp_paddrparams))
3531 		return -EINVAL;
3532 
3533 	if (copy_from_user(&params, optval, len))
3534 		return -EFAULT;
3535 
3536 	/* If an address other than INADDR_ANY is specified, and
3537 	 * no transport is found, then the request is invalid.
3538 	 */
3539 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3540 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3541 					       params.spp_assoc_id);
3542 		if (!trans) {
3543 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3544 			return -EINVAL;
3545 		}
3546 	}
3547 
3548 	/* Get association, if assoc_id != 0 and the socket is a one
3549 	 * to many style socket, and an association was not found, then
3550 	 * the id was invalid.
3551 	 */
3552 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3553 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3554 		SCTP_DEBUG_PRINTK("Failed no association\n");
3555 		return -EINVAL;
3556 	}
3557 
3558 	if (trans) {
3559 		/* Fetch transport values. */
3560 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3561 		params.spp_pathmtu    = trans->pathmtu;
3562 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3563 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3564 
3565 		/*draft-11 doesn't say what to return in spp_flags*/
3566 		params.spp_flags      = trans->param_flags;
3567 	} else if (asoc) {
3568 		/* Fetch association values. */
3569 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3570 		params.spp_pathmtu    = asoc->pathmtu;
3571 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3572 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3573 
3574 		/*draft-11 doesn't say what to return in spp_flags*/
3575 		params.spp_flags      = asoc->param_flags;
3576 	} else {
3577 		/* Fetch socket values. */
3578 		params.spp_hbinterval = sp->hbinterval;
3579 		params.spp_pathmtu    = sp->pathmtu;
3580 		params.spp_sackdelay  = sp->sackdelay;
3581 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3582 
3583 		/*draft-11 doesn't say what to return in spp_flags*/
3584 		params.spp_flags      = sp->param_flags;
3585 	}
3586 
3587 	if (copy_to_user(optval, &params, len))
3588 		return -EFAULT;
3589 
3590 	if (put_user(len, optlen))
3591 		return -EFAULT;
3592 
3593 	return 0;
3594 }
3595 
3596 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3597  *
3598  *   This options will get or set the delayed ack timer.  The time is set
3599  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3600  *   endpoints default delayed ack timer value.  If the assoc_id field is
3601  *   non-zero, then the set or get effects the specified association.
3602  *
3603  *   struct sctp_assoc_value {
3604  *       sctp_assoc_t            assoc_id;
3605  *       uint32_t                assoc_value;
3606  *   };
3607  *
3608  *     assoc_id    - This parameter, indicates which association the
3609  *                   user is preforming an action upon. Note that if
3610  *                   this field's value is zero then the endpoints
3611  *                   default value is changed (effecting future
3612  *                   associations only).
3613  *
3614  *     assoc_value - This parameter contains the number of milliseconds
3615  *                   that the user is requesting the delayed ACK timer
3616  *                   be set to. Note that this value is defined in
3617  *                   the standard to be between 200 and 500 milliseconds.
3618  *
3619  *                   Note: a value of zero will leave the value alone,
3620  *                   but disable SACK delay. A non-zero value will also
3621  *                   enable SACK delay.
3622  */
3623 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3624 					    char __user *optval,
3625 					    int __user *optlen)
3626 {
3627 	struct sctp_assoc_value  params;
3628 	struct sctp_association *asoc = NULL;
3629 	struct sctp_sock        *sp = sctp_sk(sk);
3630 
3631 	if (len != sizeof(struct sctp_assoc_value))
3632 		return - EINVAL;
3633 
3634 	if (copy_from_user(&params, optval, len))
3635 		return -EFAULT;
3636 
3637 	/* Get association, if assoc_id != 0 and the socket is a one
3638 	 * to many style socket, and an association was not found, then
3639 	 * the id was invalid.
3640  	 */
3641 	asoc = sctp_id2assoc(sk, params.assoc_id);
3642 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3643 		return -EINVAL;
3644 
3645 	if (asoc) {
3646 		/* Fetch association values. */
3647 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3648 			params.assoc_value = jiffies_to_msecs(
3649 				asoc->sackdelay);
3650 		else
3651 			params.assoc_value = 0;
3652 	} else {
3653 		/* Fetch socket values. */
3654 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3655 			params.assoc_value  = sp->sackdelay;
3656 		else
3657 			params.assoc_value  = 0;
3658 	}
3659 
3660 	if (copy_to_user(optval, &params, len))
3661 		return -EFAULT;
3662 
3663 	if (put_user(len, optlen))
3664 		return -EFAULT;
3665 
3666 	return 0;
3667 }
3668 
3669 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3670  *
3671  * Applications can specify protocol parameters for the default association
3672  * initialization.  The option name argument to setsockopt() and getsockopt()
3673  * is SCTP_INITMSG.
3674  *
3675  * Setting initialization parameters is effective only on an unconnected
3676  * socket (for UDP-style sockets only future associations are effected
3677  * by the change).  With TCP-style sockets, this option is inherited by
3678  * sockets derived from a listener socket.
3679  */
3680 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3681 {
3682 	if (len != sizeof(struct sctp_initmsg))
3683 		return -EINVAL;
3684 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3685 		return -EFAULT;
3686 	return 0;
3687 }
3688 
3689 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3690 					      char __user *optval,
3691 					      int __user *optlen)
3692 {
3693 	sctp_assoc_t id;
3694 	struct sctp_association *asoc;
3695 	struct list_head *pos;
3696 	int cnt = 0;
3697 
3698 	if (len != sizeof(sctp_assoc_t))
3699 		return -EINVAL;
3700 
3701 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3702 		return -EFAULT;
3703 
3704 	/* For UDP-style sockets, id specifies the association to query.  */
3705 	asoc = sctp_id2assoc(sk, id);
3706 	if (!asoc)
3707 		return -EINVAL;
3708 
3709 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3710 		cnt ++;
3711 	}
3712 
3713 	return cnt;
3714 }
3715 
3716 /*
3717  * Old API for getting list of peer addresses. Does not work for 32-bit
3718  * programs running on a 64-bit kernel
3719  */
3720 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3721 					  char __user *optval,
3722 					  int __user *optlen)
3723 {
3724 	struct sctp_association *asoc;
3725 	struct list_head *pos;
3726 	int cnt = 0;
3727 	struct sctp_getaddrs_old getaddrs;
3728 	struct sctp_transport *from;
3729 	void __user *to;
3730 	union sctp_addr temp;
3731 	struct sctp_sock *sp = sctp_sk(sk);
3732 	int addrlen;
3733 
3734 	if (len != sizeof(struct sctp_getaddrs_old))
3735 		return -EINVAL;
3736 
3737 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3738 		return -EFAULT;
3739 
3740 	if (getaddrs.addr_num <= 0) return -EINVAL;
3741 
3742 	/* For UDP-style sockets, id specifies the association to query.  */
3743 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3744 	if (!asoc)
3745 		return -EINVAL;
3746 
3747 	to = (void __user *)getaddrs.addrs;
3748 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3749 		from = list_entry(pos, struct sctp_transport, transports);
3750 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3751 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3752 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3753 		temp.v4.sin_port = htons(temp.v4.sin_port);
3754 		if (copy_to_user(to, &temp, addrlen))
3755 			return -EFAULT;
3756 		to += addrlen ;
3757 		cnt ++;
3758 		if (cnt >= getaddrs.addr_num) break;
3759 	}
3760 	getaddrs.addr_num = cnt;
3761 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3762 		return -EFAULT;
3763 
3764 	return 0;
3765 }
3766 
3767 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3768 				      char __user *optval, int __user *optlen)
3769 {
3770 	struct sctp_association *asoc;
3771 	struct list_head *pos;
3772 	int cnt = 0;
3773 	struct sctp_getaddrs getaddrs;
3774 	struct sctp_transport *from;
3775 	void __user *to;
3776 	union sctp_addr temp;
3777 	struct sctp_sock *sp = sctp_sk(sk);
3778 	int addrlen;
3779 	size_t space_left;
3780 	int bytes_copied;
3781 
3782 	if (len < sizeof(struct sctp_getaddrs))
3783 		return -EINVAL;
3784 
3785 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3786 		return -EFAULT;
3787 
3788 	/* For UDP-style sockets, id specifies the association to query.  */
3789 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3790 	if (!asoc)
3791 		return -EINVAL;
3792 
3793 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3794 	space_left = len - sizeof(struct sctp_getaddrs) -
3795 			offsetof(struct sctp_getaddrs,addrs);
3796 
3797 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3798 		from = list_entry(pos, struct sctp_transport, transports);
3799 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3800 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3801 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3802 		if(space_left < addrlen)
3803 			return -ENOMEM;
3804 		temp.v4.sin_port = htons(temp.v4.sin_port);
3805 		if (copy_to_user(to, &temp, addrlen))
3806 			return -EFAULT;
3807 		to += addrlen;
3808 		cnt++;
3809 		space_left -= addrlen;
3810 	}
3811 
3812 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3813 		return -EFAULT;
3814 	bytes_copied = ((char __user *)to) - optval;
3815 	if (put_user(bytes_copied, optlen))
3816 		return -EFAULT;
3817 
3818 	return 0;
3819 }
3820 
3821 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3822 					       char __user *optval,
3823 					       int __user *optlen)
3824 {
3825 	sctp_assoc_t id;
3826 	struct sctp_bind_addr *bp;
3827 	struct sctp_association *asoc;
3828 	struct list_head *pos;
3829 	struct sctp_sockaddr_entry *addr;
3830 	rwlock_t *addr_lock;
3831 	unsigned long flags;
3832 	int cnt = 0;
3833 
3834 	if (len != sizeof(sctp_assoc_t))
3835 		return -EINVAL;
3836 
3837 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3838 		return -EFAULT;
3839 
3840 	/*
3841 	 *  For UDP-style sockets, id specifies the association to query.
3842 	 *  If the id field is set to the value '0' then the locally bound
3843 	 *  addresses are returned without regard to any particular
3844 	 *  association.
3845 	 */
3846 	if (0 == id) {
3847 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3848 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3849 	} else {
3850 		asoc = sctp_id2assoc(sk, id);
3851 		if (!asoc)
3852 			return -EINVAL;
3853 		bp = &asoc->base.bind_addr;
3854 		addr_lock = &asoc->base.addr_lock;
3855 	}
3856 
3857 	sctp_read_lock(addr_lock);
3858 
3859 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3860 	 * addresses from the global local address list.
3861 	 */
3862 	if (sctp_list_single_entry(&bp->address_list)) {
3863 		addr = list_entry(bp->address_list.next,
3864 				  struct sctp_sockaddr_entry, list);
3865 		if (sctp_is_any(&addr->a)) {
3866 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3867 			list_for_each(pos, &sctp_local_addr_list) {
3868 				addr = list_entry(pos,
3869 						  struct sctp_sockaddr_entry,
3870 						  list);
3871 				if ((PF_INET == sk->sk_family) &&
3872 				    (AF_INET6 == addr->a.sa.sa_family))
3873 					continue;
3874 				cnt++;
3875 			}
3876 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3877 						    flags);
3878 		} else {
3879 			cnt = 1;
3880 		}
3881 		goto done;
3882 	}
3883 
3884 	list_for_each(pos, &bp->address_list) {
3885 		cnt ++;
3886 	}
3887 
3888 done:
3889 	sctp_read_unlock(addr_lock);
3890 	return cnt;
3891 }
3892 
3893 /* Helper function that copies local addresses to user and returns the number
3894  * of addresses copied.
3895  */
3896 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3897 					void __user *to)
3898 {
3899 	struct list_head *pos;
3900 	struct sctp_sockaddr_entry *addr;
3901 	unsigned long flags;
3902 	union sctp_addr temp;
3903 	int cnt = 0;
3904 	int addrlen;
3905 
3906 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3907 	list_for_each(pos, &sctp_local_addr_list) {
3908 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3909 		if ((PF_INET == sk->sk_family) &&
3910 		    (AF_INET6 == addr->a.sa.sa_family))
3911 			continue;
3912 		memcpy(&temp, &addr->a, sizeof(temp));
3913 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3914 								&temp);
3915 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3916 		temp.v4.sin_port = htons(port);
3917 		if (copy_to_user(to, &temp, addrlen)) {
3918 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3919 						    flags);
3920 			return -EFAULT;
3921 		}
3922 		to += addrlen;
3923 		cnt ++;
3924 		if (cnt >= max_addrs) break;
3925 	}
3926 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3927 
3928 	return cnt;
3929 }
3930 
3931 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3932 				    void __user **to, size_t space_left)
3933 {
3934 	struct list_head *pos;
3935 	struct sctp_sockaddr_entry *addr;
3936 	unsigned long flags;
3937 	union sctp_addr temp;
3938 	int cnt = 0;
3939 	int addrlen;
3940 
3941 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3942 	list_for_each(pos, &sctp_local_addr_list) {
3943 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3944 		if ((PF_INET == sk->sk_family) &&
3945 		    (AF_INET6 == addr->a.sa.sa_family))
3946 			continue;
3947 		memcpy(&temp, &addr->a, sizeof(temp));
3948 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3949 								&temp);
3950 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3951 		if(space_left<addrlen)
3952 			return -ENOMEM;
3953 		temp.v4.sin_port = htons(port);
3954 		if (copy_to_user(*to, &temp, addrlen)) {
3955 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3956 						    flags);
3957 			return -EFAULT;
3958 		}
3959 		*to += addrlen;
3960 		cnt ++;
3961 		space_left -= addrlen;
3962 	}
3963 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3964 
3965 	return cnt;
3966 }
3967 
3968 /* Old API for getting list of local addresses. Does not work for 32-bit
3969  * programs running on a 64-bit kernel
3970  */
3971 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3972 					   char __user *optval, int __user *optlen)
3973 {
3974 	struct sctp_bind_addr *bp;
3975 	struct sctp_association *asoc;
3976 	struct list_head *pos;
3977 	int cnt = 0;
3978 	struct sctp_getaddrs_old getaddrs;
3979 	struct sctp_sockaddr_entry *addr;
3980 	void __user *to;
3981 	union sctp_addr temp;
3982 	struct sctp_sock *sp = sctp_sk(sk);
3983 	int addrlen;
3984 	rwlock_t *addr_lock;
3985 	int err = 0;
3986 
3987 	if (len != sizeof(struct sctp_getaddrs_old))
3988 		return -EINVAL;
3989 
3990 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3991 		return -EFAULT;
3992 
3993 	if (getaddrs.addr_num <= 0) return -EINVAL;
3994 	/*
3995 	 *  For UDP-style sockets, id specifies the association to query.
3996 	 *  If the id field is set to the value '0' then the locally bound
3997 	 *  addresses are returned without regard to any particular
3998 	 *  association.
3999 	 */
4000 	if (0 == getaddrs.assoc_id) {
4001 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4002 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4003 	} else {
4004 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4005 		if (!asoc)
4006 			return -EINVAL;
4007 		bp = &asoc->base.bind_addr;
4008 		addr_lock = &asoc->base.addr_lock;
4009 	}
4010 
4011 	to = getaddrs.addrs;
4012 
4013 	sctp_read_lock(addr_lock);
4014 
4015 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4016 	 * addresses from the global local address list.
4017 	 */
4018 	if (sctp_list_single_entry(&bp->address_list)) {
4019 		addr = list_entry(bp->address_list.next,
4020 				  struct sctp_sockaddr_entry, list);
4021 		if (sctp_is_any(&addr->a)) {
4022 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
4023 							   getaddrs.addr_num,
4024 							   to);
4025 			if (cnt < 0) {
4026 				err = cnt;
4027 				goto unlock;
4028 			}
4029 			goto copy_getaddrs;
4030 		}
4031 	}
4032 
4033 	list_for_each(pos, &bp->address_list) {
4034 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4035 		memcpy(&temp, &addr->a, sizeof(temp));
4036 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4037 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4038 		temp.v4.sin_port = htons(temp.v4.sin_port);
4039 		if (copy_to_user(to, &temp, addrlen)) {
4040 			err = -EFAULT;
4041 			goto unlock;
4042 		}
4043 		to += addrlen;
4044 		cnt ++;
4045 		if (cnt >= getaddrs.addr_num) break;
4046 	}
4047 
4048 copy_getaddrs:
4049 	getaddrs.addr_num = cnt;
4050 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4051 		err = -EFAULT;
4052 
4053 unlock:
4054 	sctp_read_unlock(addr_lock);
4055 	return err;
4056 }
4057 
4058 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4059 				       char __user *optval, int __user *optlen)
4060 {
4061 	struct sctp_bind_addr *bp;
4062 	struct sctp_association *asoc;
4063 	struct list_head *pos;
4064 	int cnt = 0;
4065 	struct sctp_getaddrs getaddrs;
4066 	struct sctp_sockaddr_entry *addr;
4067 	void __user *to;
4068 	union sctp_addr temp;
4069 	struct sctp_sock *sp = sctp_sk(sk);
4070 	int addrlen;
4071 	rwlock_t *addr_lock;
4072 	int err = 0;
4073 	size_t space_left;
4074 	int bytes_copied;
4075 
4076 	if (len <= sizeof(struct sctp_getaddrs))
4077 		return -EINVAL;
4078 
4079 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4080 		return -EFAULT;
4081 
4082 	/*
4083 	 *  For UDP-style sockets, id specifies the association to query.
4084 	 *  If the id field is set to the value '0' then the locally bound
4085 	 *  addresses are returned without regard to any particular
4086 	 *  association.
4087 	 */
4088 	if (0 == getaddrs.assoc_id) {
4089 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4090 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4091 	} else {
4092 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4093 		if (!asoc)
4094 			return -EINVAL;
4095 		bp = &asoc->base.bind_addr;
4096 		addr_lock = &asoc->base.addr_lock;
4097 	}
4098 
4099 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4100 	space_left = len - sizeof(struct sctp_getaddrs) -
4101 			 offsetof(struct sctp_getaddrs,addrs);
4102 
4103 	sctp_read_lock(addr_lock);
4104 
4105 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4106 	 * addresses from the global local address list.
4107 	 */
4108 	if (sctp_list_single_entry(&bp->address_list)) {
4109 		addr = list_entry(bp->address_list.next,
4110 				  struct sctp_sockaddr_entry, list);
4111 		if (sctp_is_any(&addr->a)) {
4112 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4113 						       &to, space_left);
4114 			if (cnt < 0) {
4115 				err = cnt;
4116 				goto unlock;
4117 			}
4118 			goto copy_getaddrs;
4119 		}
4120 	}
4121 
4122 	list_for_each(pos, &bp->address_list) {
4123 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4124 		memcpy(&temp, &addr->a, sizeof(temp));
4125 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4126 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4127 		if(space_left < addrlen)
4128 			return -ENOMEM; /*fixme: right error?*/
4129 		temp.v4.sin_port = htons(temp.v4.sin_port);
4130 		if (copy_to_user(to, &temp, addrlen)) {
4131 			err = -EFAULT;
4132 			goto unlock;
4133 		}
4134 		to += addrlen;
4135 		cnt ++;
4136 		space_left -= addrlen;
4137 	}
4138 
4139 copy_getaddrs:
4140 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4141 		return -EFAULT;
4142 	bytes_copied = ((char __user *)to) - optval;
4143 	if (put_user(bytes_copied, optlen))
4144 		return -EFAULT;
4145 
4146 unlock:
4147 	sctp_read_unlock(addr_lock);
4148 	return err;
4149 }
4150 
4151 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4152  *
4153  * Requests that the local SCTP stack use the enclosed peer address as
4154  * the association primary.  The enclosed address must be one of the
4155  * association peer's addresses.
4156  */
4157 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4158 					char __user *optval, int __user *optlen)
4159 {
4160 	struct sctp_prim prim;
4161 	struct sctp_association *asoc;
4162 	struct sctp_sock *sp = sctp_sk(sk);
4163 
4164 	if (len != sizeof(struct sctp_prim))
4165 		return -EINVAL;
4166 
4167 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4168 		return -EFAULT;
4169 
4170 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4171 	if (!asoc)
4172 		return -EINVAL;
4173 
4174 	if (!asoc->peer.primary_path)
4175 		return -ENOTCONN;
4176 
4177 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4178 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4179 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4180 	       sizeof(union sctp_addr));
4181 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4182 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4183 
4184 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4185 			(union sctp_addr *)&prim.ssp_addr);
4186 
4187 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4188 		return -EFAULT;
4189 
4190 	return 0;
4191 }
4192 
4193 /*
4194  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4195  *
4196  * Requests that the local endpoint set the specified Adaption Layer
4197  * Indication parameter for all future INIT and INIT-ACK exchanges.
4198  */
4199 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4200 				  char __user *optval, int __user *optlen)
4201 {
4202 	struct sctp_setadaption adaption;
4203 
4204 	if (len != sizeof(struct sctp_setadaption))
4205 		return -EINVAL;
4206 
4207 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4208 	if (copy_to_user(optval, &adaption, len))
4209 		return -EFAULT;
4210 
4211 	return 0;
4212 }
4213 
4214 /*
4215  *
4216  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4217  *
4218  *   Applications that wish to use the sendto() system call may wish to
4219  *   specify a default set of parameters that would normally be supplied
4220  *   through the inclusion of ancillary data.  This socket option allows
4221  *   such an application to set the default sctp_sndrcvinfo structure.
4222 
4223 
4224  *   The application that wishes to use this socket option simply passes
4225  *   in to this call the sctp_sndrcvinfo structure defined in Section
4226  *   5.2.2) The input parameters accepted by this call include
4227  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4228  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4229  *   to this call if the caller is using the UDP model.
4230  *
4231  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4232  */
4233 static int sctp_getsockopt_default_send_param(struct sock *sk,
4234 					int len, char __user *optval,
4235 					int __user *optlen)
4236 {
4237 	struct sctp_sndrcvinfo info;
4238 	struct sctp_association *asoc;
4239 	struct sctp_sock *sp = sctp_sk(sk);
4240 
4241 	if (len != sizeof(struct sctp_sndrcvinfo))
4242 		return -EINVAL;
4243 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4244 		return -EFAULT;
4245 
4246 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4247 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4248 		return -EINVAL;
4249 
4250 	if (asoc) {
4251 		info.sinfo_stream = asoc->default_stream;
4252 		info.sinfo_flags = asoc->default_flags;
4253 		info.sinfo_ppid = asoc->default_ppid;
4254 		info.sinfo_context = asoc->default_context;
4255 		info.sinfo_timetolive = asoc->default_timetolive;
4256 	} else {
4257 		info.sinfo_stream = sp->default_stream;
4258 		info.sinfo_flags = sp->default_flags;
4259 		info.sinfo_ppid = sp->default_ppid;
4260 		info.sinfo_context = sp->default_context;
4261 		info.sinfo_timetolive = sp->default_timetolive;
4262 	}
4263 
4264 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4265 		return -EFAULT;
4266 
4267 	return 0;
4268 }
4269 
4270 /*
4271  *
4272  * 7.1.5 SCTP_NODELAY
4273  *
4274  * Turn on/off any Nagle-like algorithm.  This means that packets are
4275  * generally sent as soon as possible and no unnecessary delays are
4276  * introduced, at the cost of more packets in the network.  Expects an
4277  * integer boolean flag.
4278  */
4279 
4280 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4281 				   char __user *optval, int __user *optlen)
4282 {
4283 	int val;
4284 
4285 	if (len < sizeof(int))
4286 		return -EINVAL;
4287 
4288 	len = sizeof(int);
4289 	val = (sctp_sk(sk)->nodelay == 1);
4290 	if (put_user(len, optlen))
4291 		return -EFAULT;
4292 	if (copy_to_user(optval, &val, len))
4293 		return -EFAULT;
4294 	return 0;
4295 }
4296 
4297 /*
4298  *
4299  * 7.1.1 SCTP_RTOINFO
4300  *
4301  * The protocol parameters used to initialize and bound retransmission
4302  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4303  * and modify these parameters.
4304  * All parameters are time values, in milliseconds.  A value of 0, when
4305  * modifying the parameters, indicates that the current value should not
4306  * be changed.
4307  *
4308  */
4309 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4310 				char __user *optval,
4311 				int __user *optlen) {
4312 	struct sctp_rtoinfo rtoinfo;
4313 	struct sctp_association *asoc;
4314 
4315 	if (len != sizeof (struct sctp_rtoinfo))
4316 		return -EINVAL;
4317 
4318 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4319 		return -EFAULT;
4320 
4321 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4322 
4323 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4324 		return -EINVAL;
4325 
4326 	/* Values corresponding to the specific association. */
4327 	if (asoc) {
4328 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4329 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4330 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4331 	} else {
4332 		/* Values corresponding to the endpoint. */
4333 		struct sctp_sock *sp = sctp_sk(sk);
4334 
4335 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4336 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4337 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4338 	}
4339 
4340 	if (put_user(len, optlen))
4341 		return -EFAULT;
4342 
4343 	if (copy_to_user(optval, &rtoinfo, len))
4344 		return -EFAULT;
4345 
4346 	return 0;
4347 }
4348 
4349 /*
4350  *
4351  * 7.1.2 SCTP_ASSOCINFO
4352  *
4353  * This option is used to tune the the maximum retransmission attempts
4354  * of the association.
4355  * Returns an error if the new association retransmission value is
4356  * greater than the sum of the retransmission value  of the peer.
4357  * See [SCTP] for more information.
4358  *
4359  */
4360 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4361 				     char __user *optval,
4362 				     int __user *optlen)
4363 {
4364 
4365 	struct sctp_assocparams assocparams;
4366 	struct sctp_association *asoc;
4367 	struct list_head *pos;
4368 	int cnt = 0;
4369 
4370 	if (len != sizeof (struct sctp_assocparams))
4371 		return -EINVAL;
4372 
4373 	if (copy_from_user(&assocparams, optval,
4374 			sizeof (struct sctp_assocparams)))
4375 		return -EFAULT;
4376 
4377 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4378 
4379 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4380 		return -EINVAL;
4381 
4382 	/* Values correspoinding to the specific association */
4383 	if (asoc) {
4384 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4385 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4386 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4387 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4388 						* 1000) +
4389 						(asoc->cookie_life.tv_usec
4390 						/ 1000);
4391 
4392 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4393 			cnt ++;
4394 		}
4395 
4396 		assocparams.sasoc_number_peer_destinations = cnt;
4397 	} else {
4398 		/* Values corresponding to the endpoint */
4399 		struct sctp_sock *sp = sctp_sk(sk);
4400 
4401 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4402 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4403 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4404 		assocparams.sasoc_cookie_life =
4405 					sp->assocparams.sasoc_cookie_life;
4406 		assocparams.sasoc_number_peer_destinations =
4407 					sp->assocparams.
4408 					sasoc_number_peer_destinations;
4409 	}
4410 
4411 	if (put_user(len, optlen))
4412 		return -EFAULT;
4413 
4414 	if (copy_to_user(optval, &assocparams, len))
4415 		return -EFAULT;
4416 
4417 	return 0;
4418 }
4419 
4420 /*
4421  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4422  *
4423  * This socket option is a boolean flag which turns on or off mapped V4
4424  * addresses.  If this option is turned on and the socket is type
4425  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4426  * If this option is turned off, then no mapping will be done of V4
4427  * addresses and a user will receive both PF_INET6 and PF_INET type
4428  * addresses on the socket.
4429  */
4430 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4431 				    char __user *optval, int __user *optlen)
4432 {
4433 	int val;
4434 	struct sctp_sock *sp = sctp_sk(sk);
4435 
4436 	if (len < sizeof(int))
4437 		return -EINVAL;
4438 
4439 	len = sizeof(int);
4440 	val = sp->v4mapped;
4441 	if (put_user(len, optlen))
4442 		return -EFAULT;
4443 	if (copy_to_user(optval, &val, len))
4444 		return -EFAULT;
4445 
4446 	return 0;
4447 }
4448 
4449 /*
4450  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4451  *
4452  * This socket option specifies the maximum size to put in any outgoing
4453  * SCTP chunk.  If a message is larger than this size it will be
4454  * fragmented by SCTP into the specified size.  Note that the underlying
4455  * SCTP implementation may fragment into smaller sized chunks when the
4456  * PMTU of the underlying association is smaller than the value set by
4457  * the user.
4458  */
4459 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4460 				  char __user *optval, int __user *optlen)
4461 {
4462 	int val;
4463 
4464 	if (len < sizeof(int))
4465 		return -EINVAL;
4466 
4467 	len = sizeof(int);
4468 
4469 	val = sctp_sk(sk)->user_frag;
4470 	if (put_user(len, optlen))
4471 		return -EFAULT;
4472 	if (copy_to_user(optval, &val, len))
4473 		return -EFAULT;
4474 
4475 	return 0;
4476 }
4477 
4478 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4479 				char __user *optval, int __user *optlen)
4480 {
4481 	int retval = 0;
4482 	int len;
4483 
4484 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4485 			  sk, optname);
4486 
4487 	/* I can hardly begin to describe how wrong this is.  This is
4488 	 * so broken as to be worse than useless.  The API draft
4489 	 * REALLY is NOT helpful here...  I am not convinced that the
4490 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4491 	 * are at all well-founded.
4492 	 */
4493 	if (level != SOL_SCTP) {
4494 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4495 
4496 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4497 		return retval;
4498 	}
4499 
4500 	if (get_user(len, optlen))
4501 		return -EFAULT;
4502 
4503 	sctp_lock_sock(sk);
4504 
4505 	switch (optname) {
4506 	case SCTP_STATUS:
4507 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4508 		break;
4509 	case SCTP_DISABLE_FRAGMENTS:
4510 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4511 							   optlen);
4512 		break;
4513 	case SCTP_EVENTS:
4514 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4515 		break;
4516 	case SCTP_AUTOCLOSE:
4517 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4518 		break;
4519 	case SCTP_SOCKOPT_PEELOFF:
4520 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4521 		break;
4522 	case SCTP_PEER_ADDR_PARAMS:
4523 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4524 							  optlen);
4525 		break;
4526 	case SCTP_DELAYED_ACK_TIME:
4527 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4528 							  optlen);
4529 		break;
4530 	case SCTP_INITMSG:
4531 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4532 		break;
4533 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4534 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4535 							    optlen);
4536 		break;
4537 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4538 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4539 							     optlen);
4540 		break;
4541 	case SCTP_GET_PEER_ADDRS_OLD:
4542 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4543 							optlen);
4544 		break;
4545 	case SCTP_GET_LOCAL_ADDRS_OLD:
4546 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4547 							 optlen);
4548 		break;
4549 	case SCTP_GET_PEER_ADDRS:
4550 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4551 						    optlen);
4552 		break;
4553 	case SCTP_GET_LOCAL_ADDRS:
4554 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4555 						     optlen);
4556 		break;
4557 	case SCTP_DEFAULT_SEND_PARAM:
4558 		retval = sctp_getsockopt_default_send_param(sk, len,
4559 							    optval, optlen);
4560 		break;
4561 	case SCTP_PRIMARY_ADDR:
4562 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4563 		break;
4564 	case SCTP_NODELAY:
4565 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4566 		break;
4567 	case SCTP_RTOINFO:
4568 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4569 		break;
4570 	case SCTP_ASSOCINFO:
4571 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4572 		break;
4573 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4574 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4575 		break;
4576 	case SCTP_MAXSEG:
4577 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4578 		break;
4579 	case SCTP_GET_PEER_ADDR_INFO:
4580 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4581 							optlen);
4582 		break;
4583 	case SCTP_ADAPTION_LAYER:
4584 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4585 							optlen);
4586 		break;
4587 	default:
4588 		retval = -ENOPROTOOPT;
4589 		break;
4590 	};
4591 
4592 	sctp_release_sock(sk);
4593 	return retval;
4594 }
4595 
4596 static void sctp_hash(struct sock *sk)
4597 {
4598 	/* STUB */
4599 }
4600 
4601 static void sctp_unhash(struct sock *sk)
4602 {
4603 	/* STUB */
4604 }
4605 
4606 /* Check if port is acceptable.  Possibly find first available port.
4607  *
4608  * The port hash table (contained in the 'global' SCTP protocol storage
4609  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4610  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4611  * list (the list number is the port number hashed out, so as you
4612  * would expect from a hash function, all the ports in a given list have
4613  * such a number that hashes out to the same list number; you were
4614  * expecting that, right?); so each list has a set of ports, with a
4615  * link to the socket (struct sock) that uses it, the port number and
4616  * a fastreuse flag (FIXME: NPI ipg).
4617  */
4618 static struct sctp_bind_bucket *sctp_bucket_create(
4619 	struct sctp_bind_hashbucket *head, unsigned short snum);
4620 
4621 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4622 {
4623 	struct sctp_bind_hashbucket *head; /* hash list */
4624 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4625 	unsigned short snum;
4626 	int ret;
4627 
4628 	/* NOTE:  Remember to put this back to net order. */
4629 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
4630 	snum = addr->v4.sin_port;
4631 
4632 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4633 	sctp_local_bh_disable();
4634 
4635 	if (snum == 0) {
4636 		/* Search for an available port.
4637 		 *
4638 		 * 'sctp_port_rover' was the last port assigned, so
4639 		 * we start to search from 'sctp_port_rover +
4640 		 * 1'. What we do is first check if port 'rover' is
4641 		 * already in the hash table; if not, we use that; if
4642 		 * it is, we try next.
4643 		 */
4644 		int low = sysctl_local_port_range[0];
4645 		int high = sysctl_local_port_range[1];
4646 		int remaining = (high - low) + 1;
4647 		int rover;
4648 		int index;
4649 
4650 		sctp_spin_lock(&sctp_port_alloc_lock);
4651 		rover = sctp_port_rover;
4652 		do {
4653 			rover++;
4654 			if ((rover < low) || (rover > high))
4655 				rover = low;
4656 			index = sctp_phashfn(rover);
4657 			head = &sctp_port_hashtable[index];
4658 			sctp_spin_lock(&head->lock);
4659 			for (pp = head->chain; pp; pp = pp->next)
4660 				if (pp->port == rover)
4661 					goto next;
4662 			break;
4663 		next:
4664 			sctp_spin_unlock(&head->lock);
4665 		} while (--remaining > 0);
4666 		sctp_port_rover = rover;
4667 		sctp_spin_unlock(&sctp_port_alloc_lock);
4668 
4669 		/* Exhausted local port range during search? */
4670 		ret = 1;
4671 		if (remaining <= 0)
4672 			goto fail;
4673 
4674 		/* OK, here is the one we will use.  HEAD (the port
4675 		 * hash table list entry) is non-NULL and we hold it's
4676 		 * mutex.
4677 		 */
4678 		snum = rover;
4679 	} else {
4680 		/* We are given an specific port number; we verify
4681 		 * that it is not being used. If it is used, we will
4682 		 * exahust the search in the hash list corresponding
4683 		 * to the port number (snum) - we detect that with the
4684 		 * port iterator, pp being NULL.
4685 		 */
4686 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4687 		sctp_spin_lock(&head->lock);
4688 		for (pp = head->chain; pp; pp = pp->next) {
4689 			if (pp->port == snum)
4690 				goto pp_found;
4691 		}
4692 	}
4693 	pp = NULL;
4694 	goto pp_not_found;
4695 pp_found:
4696 	if (!hlist_empty(&pp->owner)) {
4697 		/* We had a port hash table hit - there is an
4698 		 * available port (pp != NULL) and it is being
4699 		 * used by other socket (pp->owner not empty); that other
4700 		 * socket is going to be sk2.
4701 		 */
4702 		int reuse = sk->sk_reuse;
4703 		struct sock *sk2;
4704 		struct hlist_node *node;
4705 
4706 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4707 		if (pp->fastreuse && sk->sk_reuse)
4708 			goto success;
4709 
4710 		/* Run through the list of sockets bound to the port
4711 		 * (pp->port) [via the pointers bind_next and
4712 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4713 		 * we get the endpoint they describe and run through
4714 		 * the endpoint's list of IP (v4 or v6) addresses,
4715 		 * comparing each of the addresses with the address of
4716 		 * the socket sk. If we find a match, then that means
4717 		 * that this port/socket (sk) combination are already
4718 		 * in an endpoint.
4719 		 */
4720 		sk_for_each_bound(sk2, node, &pp->owner) {
4721 			struct sctp_endpoint *ep2;
4722 			ep2 = sctp_sk(sk2)->ep;
4723 
4724 			if (reuse && sk2->sk_reuse)
4725 				continue;
4726 
4727 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4728 						 sctp_sk(sk))) {
4729 				ret = (long)sk2;
4730 				goto fail_unlock;
4731 			}
4732 		}
4733 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4734 	}
4735 pp_not_found:
4736 	/* If there was a hash table miss, create a new port.  */
4737 	ret = 1;
4738 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4739 		goto fail_unlock;
4740 
4741 	/* In either case (hit or miss), make sure fastreuse is 1 only
4742 	 * if sk->sk_reuse is too (that is, if the caller requested
4743 	 * SO_REUSEADDR on this socket -sk-).
4744 	 */
4745 	if (hlist_empty(&pp->owner))
4746 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4747 	else if (pp->fastreuse && !sk->sk_reuse)
4748 		pp->fastreuse = 0;
4749 
4750 	/* We are set, so fill up all the data in the hash table
4751 	 * entry, tie the socket list information with the rest of the
4752 	 * sockets FIXME: Blurry, NPI (ipg).
4753 	 */
4754 success:
4755 	inet_sk(sk)->num = snum;
4756 	if (!sctp_sk(sk)->bind_hash) {
4757 		sk_add_bind_node(sk, &pp->owner);
4758 		sctp_sk(sk)->bind_hash = pp;
4759 	}
4760 	ret = 0;
4761 
4762 fail_unlock:
4763 	sctp_spin_unlock(&head->lock);
4764 
4765 fail:
4766 	sctp_local_bh_enable();
4767 	addr->v4.sin_port = htons(addr->v4.sin_port);
4768 	return ret;
4769 }
4770 
4771 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4772  * port is requested.
4773  */
4774 static int sctp_get_port(struct sock *sk, unsigned short snum)
4775 {
4776 	long ret;
4777 	union sctp_addr addr;
4778 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4779 
4780 	/* Set up a dummy address struct from the sk. */
4781 	af->from_sk(&addr, sk);
4782 	addr.v4.sin_port = htons(snum);
4783 
4784 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4785 	ret = sctp_get_port_local(sk, &addr);
4786 
4787 	return (ret ? 1 : 0);
4788 }
4789 
4790 /*
4791  * 3.1.3 listen() - UDP Style Syntax
4792  *
4793  *   By default, new associations are not accepted for UDP style sockets.
4794  *   An application uses listen() to mark a socket as being able to
4795  *   accept new associations.
4796  */
4797 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4798 {
4799 	struct sctp_sock *sp = sctp_sk(sk);
4800 	struct sctp_endpoint *ep = sp->ep;
4801 
4802 	/* Only UDP style sockets that are not peeled off are allowed to
4803 	 * listen().
4804 	 */
4805 	if (!sctp_style(sk, UDP))
4806 		return -EINVAL;
4807 
4808 	/* If backlog is zero, disable listening. */
4809 	if (!backlog) {
4810 		if (sctp_sstate(sk, CLOSED))
4811 			return 0;
4812 
4813 		sctp_unhash_endpoint(ep);
4814 		sk->sk_state = SCTP_SS_CLOSED;
4815 	}
4816 
4817 	/* Return if we are already listening. */
4818 	if (sctp_sstate(sk, LISTENING))
4819 		return 0;
4820 
4821 	/*
4822 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4823 	 * call that allows new associations to be accepted, the system
4824 	 * picks an ephemeral port and will choose an address set equivalent
4825 	 * to binding with a wildcard address.
4826 	 *
4827 	 * This is not currently spelled out in the SCTP sockets
4828 	 * extensions draft, but follows the practice as seen in TCP
4829 	 * sockets.
4830 	 */
4831 	if (!ep->base.bind_addr.port) {
4832 		if (sctp_autobind(sk))
4833 			return -EAGAIN;
4834 	}
4835 	sk->sk_state = SCTP_SS_LISTENING;
4836 	sctp_hash_endpoint(ep);
4837 	return 0;
4838 }
4839 
4840 /*
4841  * 4.1.3 listen() - TCP Style Syntax
4842  *
4843  *   Applications uses listen() to ready the SCTP endpoint for accepting
4844  *   inbound associations.
4845  */
4846 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4847 {
4848 	struct sctp_sock *sp = sctp_sk(sk);
4849 	struct sctp_endpoint *ep = sp->ep;
4850 
4851 	/* If backlog is zero, disable listening. */
4852 	if (!backlog) {
4853 		if (sctp_sstate(sk, CLOSED))
4854 			return 0;
4855 
4856 		sctp_unhash_endpoint(ep);
4857 		sk->sk_state = SCTP_SS_CLOSED;
4858 	}
4859 
4860 	if (sctp_sstate(sk, LISTENING))
4861 		return 0;
4862 
4863 	/*
4864 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4865 	 * call that allows new associations to be accepted, the system
4866 	 * picks an ephemeral port and will choose an address set equivalent
4867 	 * to binding with a wildcard address.
4868 	 *
4869 	 * This is not currently spelled out in the SCTP sockets
4870 	 * extensions draft, but follows the practice as seen in TCP
4871 	 * sockets.
4872 	 */
4873 	if (!ep->base.bind_addr.port) {
4874 		if (sctp_autobind(sk))
4875 			return -EAGAIN;
4876 	}
4877 	sk->sk_state = SCTP_SS_LISTENING;
4878 	sk->sk_max_ack_backlog = backlog;
4879 	sctp_hash_endpoint(ep);
4880 	return 0;
4881 }
4882 
4883 /*
4884  *  Move a socket to LISTENING state.
4885  */
4886 int sctp_inet_listen(struct socket *sock, int backlog)
4887 {
4888 	struct sock *sk = sock->sk;
4889 	struct crypto_tfm *tfm=NULL;
4890 	int err = -EINVAL;
4891 
4892 	if (unlikely(backlog < 0))
4893 		goto out;
4894 
4895 	sctp_lock_sock(sk);
4896 
4897 	if (sock->state != SS_UNCONNECTED)
4898 		goto out;
4899 
4900 	/* Allocate HMAC for generating cookie. */
4901 	if (sctp_hmac_alg) {
4902 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4903 		if (!tfm) {
4904 			err = -ENOSYS;
4905 			goto out;
4906 		}
4907 	}
4908 
4909 	switch (sock->type) {
4910 	case SOCK_SEQPACKET:
4911 		err = sctp_seqpacket_listen(sk, backlog);
4912 		break;
4913 	case SOCK_STREAM:
4914 		err = sctp_stream_listen(sk, backlog);
4915 		break;
4916 	default:
4917 		break;
4918 	};
4919 	if (err)
4920 		goto cleanup;
4921 
4922 	/* Store away the transform reference. */
4923 	sctp_sk(sk)->hmac = tfm;
4924 out:
4925 	sctp_release_sock(sk);
4926 	return err;
4927 cleanup:
4928 	sctp_crypto_free_tfm(tfm);
4929 	goto out;
4930 }
4931 
4932 /*
4933  * This function is done by modeling the current datagram_poll() and the
4934  * tcp_poll().  Note that, based on these implementations, we don't
4935  * lock the socket in this function, even though it seems that,
4936  * ideally, locking or some other mechanisms can be used to ensure
4937  * the integrity of the counters (sndbuf and wmem_alloc) used
4938  * in this place.  We assume that we don't need locks either until proven
4939  * otherwise.
4940  *
4941  * Another thing to note is that we include the Async I/O support
4942  * here, again, by modeling the current TCP/UDP code.  We don't have
4943  * a good way to test with it yet.
4944  */
4945 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4946 {
4947 	struct sock *sk = sock->sk;
4948 	struct sctp_sock *sp = sctp_sk(sk);
4949 	unsigned int mask;
4950 
4951 	poll_wait(file, sk->sk_sleep, wait);
4952 
4953 	/* A TCP-style listening socket becomes readable when the accept queue
4954 	 * is not empty.
4955 	 */
4956 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4957 		return (!list_empty(&sp->ep->asocs)) ?
4958 		       	(POLLIN | POLLRDNORM) : 0;
4959 
4960 	mask = 0;
4961 
4962 	/* Is there any exceptional events?  */
4963 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4964 		mask |= POLLERR;
4965 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4966 		mask |= POLLRDHUP;
4967 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4968 		mask |= POLLHUP;
4969 
4970 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4971 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4972 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4973 		mask |= POLLIN | POLLRDNORM;
4974 
4975 	/* The association is either gone or not ready.  */
4976 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4977 		return mask;
4978 
4979 	/* Is it writable?  */
4980 	if (sctp_writeable(sk)) {
4981 		mask |= POLLOUT | POLLWRNORM;
4982 	} else {
4983 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4984 		/*
4985 		 * Since the socket is not locked, the buffer
4986 		 * might be made available after the writeable check and
4987 		 * before the bit is set.  This could cause a lost I/O
4988 		 * signal.  tcp_poll() has a race breaker for this race
4989 		 * condition.  Based on their implementation, we put
4990 		 * in the following code to cover it as well.
4991 		 */
4992 		if (sctp_writeable(sk))
4993 			mask |= POLLOUT | POLLWRNORM;
4994 	}
4995 	return mask;
4996 }
4997 
4998 /********************************************************************
4999  * 2nd Level Abstractions
5000  ********************************************************************/
5001 
5002 static struct sctp_bind_bucket *sctp_bucket_create(
5003 	struct sctp_bind_hashbucket *head, unsigned short snum)
5004 {
5005 	struct sctp_bind_bucket *pp;
5006 
5007 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
5008 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5009 	if (pp) {
5010 		pp->port = snum;
5011 		pp->fastreuse = 0;
5012 		INIT_HLIST_HEAD(&pp->owner);
5013 		if ((pp->next = head->chain) != NULL)
5014 			pp->next->pprev = &pp->next;
5015 		head->chain = pp;
5016 		pp->pprev = &head->chain;
5017 	}
5018 	return pp;
5019 }
5020 
5021 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5022 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5023 {
5024 	if (pp && hlist_empty(&pp->owner)) {
5025 		if (pp->next)
5026 			pp->next->pprev = pp->pprev;
5027 		*(pp->pprev) = pp->next;
5028 		kmem_cache_free(sctp_bucket_cachep, pp);
5029 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5030 	}
5031 }
5032 
5033 /* Release this socket's reference to a local port.  */
5034 static inline void __sctp_put_port(struct sock *sk)
5035 {
5036 	struct sctp_bind_hashbucket *head =
5037 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5038 	struct sctp_bind_bucket *pp;
5039 
5040 	sctp_spin_lock(&head->lock);
5041 	pp = sctp_sk(sk)->bind_hash;
5042 	__sk_del_bind_node(sk);
5043 	sctp_sk(sk)->bind_hash = NULL;
5044 	inet_sk(sk)->num = 0;
5045 	sctp_bucket_destroy(pp);
5046 	sctp_spin_unlock(&head->lock);
5047 }
5048 
5049 void sctp_put_port(struct sock *sk)
5050 {
5051 	sctp_local_bh_disable();
5052 	__sctp_put_port(sk);
5053 	sctp_local_bh_enable();
5054 }
5055 
5056 /*
5057  * The system picks an ephemeral port and choose an address set equivalent
5058  * to binding with a wildcard address.
5059  * One of those addresses will be the primary address for the association.
5060  * This automatically enables the multihoming capability of SCTP.
5061  */
5062 static int sctp_autobind(struct sock *sk)
5063 {
5064 	union sctp_addr autoaddr;
5065 	struct sctp_af *af;
5066 	unsigned short port;
5067 
5068 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5069 	af = sctp_sk(sk)->pf->af;
5070 
5071 	port = htons(inet_sk(sk)->num);
5072 	af->inaddr_any(&autoaddr, port);
5073 
5074 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5075 }
5076 
5077 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5078  *
5079  * From RFC 2292
5080  * 4.2 The cmsghdr Structure *
5081  *
5082  * When ancillary data is sent or received, any number of ancillary data
5083  * objects can be specified by the msg_control and msg_controllen members of
5084  * the msghdr structure, because each object is preceded by
5085  * a cmsghdr structure defining the object's length (the cmsg_len member).
5086  * Historically Berkeley-derived implementations have passed only one object
5087  * at a time, but this API allows multiple objects to be
5088  * passed in a single call to sendmsg() or recvmsg(). The following example
5089  * shows two ancillary data objects in a control buffer.
5090  *
5091  *   |<--------------------------- msg_controllen -------------------------->|
5092  *   |                                                                       |
5093  *
5094  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5095  *
5096  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5097  *   |                                   |                                   |
5098  *
5099  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5100  *
5101  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5102  *   |                                |  |                                |  |
5103  *
5104  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5105  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5106  *
5107  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5108  *
5109  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5110  *    ^
5111  *    |
5112  *
5113  * msg_control
5114  * points here
5115  */
5116 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5117 				  sctp_cmsgs_t *cmsgs)
5118 {
5119 	struct cmsghdr *cmsg;
5120 
5121 	for (cmsg = CMSG_FIRSTHDR(msg);
5122 	     cmsg != NULL;
5123 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5124 		if (!CMSG_OK(msg, cmsg))
5125 			return -EINVAL;
5126 
5127 		/* Should we parse this header or ignore?  */
5128 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5129 			continue;
5130 
5131 		/* Strictly check lengths following example in SCM code.  */
5132 		switch (cmsg->cmsg_type) {
5133 		case SCTP_INIT:
5134 			/* SCTP Socket API Extension
5135 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5136 			 *
5137 			 * This cmsghdr structure provides information for
5138 			 * initializing new SCTP associations with sendmsg().
5139 			 * The SCTP_INITMSG socket option uses this same data
5140 			 * structure.  This structure is not used for
5141 			 * recvmsg().
5142 			 *
5143 			 * cmsg_level    cmsg_type      cmsg_data[]
5144 			 * ------------  ------------   ----------------------
5145 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5146 			 */
5147 			if (cmsg->cmsg_len !=
5148 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5149 				return -EINVAL;
5150 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5151 			break;
5152 
5153 		case SCTP_SNDRCV:
5154 			/* SCTP Socket API Extension
5155 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5156 			 *
5157 			 * This cmsghdr structure specifies SCTP options for
5158 			 * sendmsg() and describes SCTP header information
5159 			 * about a received message through recvmsg().
5160 			 *
5161 			 * cmsg_level    cmsg_type      cmsg_data[]
5162 			 * ------------  ------------   ----------------------
5163 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5164 			 */
5165 			if (cmsg->cmsg_len !=
5166 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5167 				return -EINVAL;
5168 
5169 			cmsgs->info =
5170 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5171 
5172 			/* Minimally, validate the sinfo_flags. */
5173 			if (cmsgs->info->sinfo_flags &
5174 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5175 			      SCTP_ABORT | SCTP_EOF))
5176 				return -EINVAL;
5177 			break;
5178 
5179 		default:
5180 			return -EINVAL;
5181 		};
5182 	}
5183 	return 0;
5184 }
5185 
5186 /*
5187  * Wait for a packet..
5188  * Note: This function is the same function as in core/datagram.c
5189  * with a few modifications to make lksctp work.
5190  */
5191 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5192 {
5193 	int error;
5194 	DEFINE_WAIT(wait);
5195 
5196 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5197 
5198 	/* Socket errors? */
5199 	error = sock_error(sk);
5200 	if (error)
5201 		goto out;
5202 
5203 	if (!skb_queue_empty(&sk->sk_receive_queue))
5204 		goto ready;
5205 
5206 	/* Socket shut down?  */
5207 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5208 		goto out;
5209 
5210 	/* Sequenced packets can come disconnected.  If so we report the
5211 	 * problem.
5212 	 */
5213 	error = -ENOTCONN;
5214 
5215 	/* Is there a good reason to think that we may receive some data?  */
5216 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5217 		goto out;
5218 
5219 	/* Handle signals.  */
5220 	if (signal_pending(current))
5221 		goto interrupted;
5222 
5223 	/* Let another process have a go.  Since we are going to sleep
5224 	 * anyway.  Note: This may cause odd behaviors if the message
5225 	 * does not fit in the user's buffer, but this seems to be the
5226 	 * only way to honor MSG_DONTWAIT realistically.
5227 	 */
5228 	sctp_release_sock(sk);
5229 	*timeo_p = schedule_timeout(*timeo_p);
5230 	sctp_lock_sock(sk);
5231 
5232 ready:
5233 	finish_wait(sk->sk_sleep, &wait);
5234 	return 0;
5235 
5236 interrupted:
5237 	error = sock_intr_errno(*timeo_p);
5238 
5239 out:
5240 	finish_wait(sk->sk_sleep, &wait);
5241 	*err = error;
5242 	return error;
5243 }
5244 
5245 /* Receive a datagram.
5246  * Note: This is pretty much the same routine as in core/datagram.c
5247  * with a few changes to make lksctp work.
5248  */
5249 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5250 					      int noblock, int *err)
5251 {
5252 	int error;
5253 	struct sk_buff *skb;
5254 	long timeo;
5255 
5256 	timeo = sock_rcvtimeo(sk, noblock);
5257 
5258 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5259 			  timeo, MAX_SCHEDULE_TIMEOUT);
5260 
5261 	do {
5262 		/* Again only user level code calls this function,
5263 		 * so nothing interrupt level
5264 		 * will suddenly eat the receive_queue.
5265 		 *
5266 		 *  Look at current nfs client by the way...
5267 		 *  However, this function was corrent in any case. 8)
5268 		 */
5269 		if (flags & MSG_PEEK) {
5270 			spin_lock_bh(&sk->sk_receive_queue.lock);
5271 			skb = skb_peek(&sk->sk_receive_queue);
5272 			if (skb)
5273 				atomic_inc(&skb->users);
5274 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5275 		} else {
5276 			skb = skb_dequeue(&sk->sk_receive_queue);
5277 		}
5278 
5279 		if (skb)
5280 			return skb;
5281 
5282 		/* Caller is allowed not to check sk->sk_err before calling. */
5283 		error = sock_error(sk);
5284 		if (error)
5285 			goto no_packet;
5286 
5287 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5288 			break;
5289 
5290 		/* User doesn't want to wait.  */
5291 		error = -EAGAIN;
5292 		if (!timeo)
5293 			goto no_packet;
5294 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5295 
5296 	return NULL;
5297 
5298 no_packet:
5299 	*err = error;
5300 	return NULL;
5301 }
5302 
5303 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5304 static void __sctp_write_space(struct sctp_association *asoc)
5305 {
5306 	struct sock *sk = asoc->base.sk;
5307 	struct socket *sock = sk->sk_socket;
5308 
5309 	if ((sctp_wspace(asoc) > 0) && sock) {
5310 		if (waitqueue_active(&asoc->wait))
5311 			wake_up_interruptible(&asoc->wait);
5312 
5313 		if (sctp_writeable(sk)) {
5314 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5315 				wake_up_interruptible(sk->sk_sleep);
5316 
5317 			/* Note that we try to include the Async I/O support
5318 			 * here by modeling from the current TCP/UDP code.
5319 			 * We have not tested with it yet.
5320 			 */
5321 			if (sock->fasync_list &&
5322 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5323 				sock_wake_async(sock, 2, POLL_OUT);
5324 		}
5325 	}
5326 }
5327 
5328 /* Do accounting for the sndbuf space.
5329  * Decrement the used sndbuf space of the corresponding association by the
5330  * data size which was just transmitted(freed).
5331  */
5332 static void sctp_wfree(struct sk_buff *skb)
5333 {
5334 	struct sctp_association *asoc;
5335 	struct sctp_chunk *chunk;
5336 	struct sock *sk;
5337 
5338 	/* Get the saved chunk pointer.  */
5339 	chunk = *((struct sctp_chunk **)(skb->cb));
5340 	asoc = chunk->asoc;
5341 	sk = asoc->base.sk;
5342 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5343 				sizeof(struct sk_buff) +
5344 				sizeof(struct sctp_chunk);
5345 
5346 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5347 
5348 	sock_wfree(skb);
5349 	__sctp_write_space(asoc);
5350 
5351 	sctp_association_put(asoc);
5352 }
5353 
5354 /* Helper function to wait for space in the sndbuf.  */
5355 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5356 				size_t msg_len)
5357 {
5358 	struct sock *sk = asoc->base.sk;
5359 	int err = 0;
5360 	long current_timeo = *timeo_p;
5361 	DEFINE_WAIT(wait);
5362 
5363 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5364 	                  asoc, (long)(*timeo_p), msg_len);
5365 
5366 	/* Increment the association's refcnt.  */
5367 	sctp_association_hold(asoc);
5368 
5369 	/* Wait on the association specific sndbuf space. */
5370 	for (;;) {
5371 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5372 					  TASK_INTERRUPTIBLE);
5373 		if (!*timeo_p)
5374 			goto do_nonblock;
5375 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5376 		    asoc->base.dead)
5377 			goto do_error;
5378 		if (signal_pending(current))
5379 			goto do_interrupted;
5380 		if (msg_len <= sctp_wspace(asoc))
5381 			break;
5382 
5383 		/* Let another process have a go.  Since we are going
5384 		 * to sleep anyway.
5385 		 */
5386 		sctp_release_sock(sk);
5387 		current_timeo = schedule_timeout(current_timeo);
5388 		BUG_ON(sk != asoc->base.sk);
5389 		sctp_lock_sock(sk);
5390 
5391 		*timeo_p = current_timeo;
5392 	}
5393 
5394 out:
5395 	finish_wait(&asoc->wait, &wait);
5396 
5397 	/* Release the association's refcnt.  */
5398 	sctp_association_put(asoc);
5399 
5400 	return err;
5401 
5402 do_error:
5403 	err = -EPIPE;
5404 	goto out;
5405 
5406 do_interrupted:
5407 	err = sock_intr_errno(*timeo_p);
5408 	goto out;
5409 
5410 do_nonblock:
5411 	err = -EAGAIN;
5412 	goto out;
5413 }
5414 
5415 /* If socket sndbuf has changed, wake up all per association waiters.  */
5416 void sctp_write_space(struct sock *sk)
5417 {
5418 	struct sctp_association *asoc;
5419 	struct list_head *pos;
5420 
5421 	/* Wake up the tasks in each wait queue.  */
5422 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5423 		asoc = list_entry(pos, struct sctp_association, asocs);
5424 		__sctp_write_space(asoc);
5425 	}
5426 }
5427 
5428 /* Is there any sndbuf space available on the socket?
5429  *
5430  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5431  * associations on the same socket.  For a UDP-style socket with
5432  * multiple associations, it is possible for it to be "unwriteable"
5433  * prematurely.  I assume that this is acceptable because
5434  * a premature "unwriteable" is better than an accidental "writeable" which
5435  * would cause an unwanted block under certain circumstances.  For the 1-1
5436  * UDP-style sockets or TCP-style sockets, this code should work.
5437  *  - Daisy
5438  */
5439 static int sctp_writeable(struct sock *sk)
5440 {
5441 	int amt = 0;
5442 
5443 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5444 	if (amt < 0)
5445 		amt = 0;
5446 	return amt;
5447 }
5448 
5449 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5450  * returns immediately with EINPROGRESS.
5451  */
5452 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5453 {
5454 	struct sock *sk = asoc->base.sk;
5455 	int err = 0;
5456 	long current_timeo = *timeo_p;
5457 	DEFINE_WAIT(wait);
5458 
5459 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5460 			  (long)(*timeo_p));
5461 
5462 	/* Increment the association's refcnt.  */
5463 	sctp_association_hold(asoc);
5464 
5465 	for (;;) {
5466 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5467 					  TASK_INTERRUPTIBLE);
5468 		if (!*timeo_p)
5469 			goto do_nonblock;
5470 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5471 			break;
5472 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5473 		    asoc->base.dead)
5474 			goto do_error;
5475 		if (signal_pending(current))
5476 			goto do_interrupted;
5477 
5478 		if (sctp_state(asoc, ESTABLISHED))
5479 			break;
5480 
5481 		/* Let another process have a go.  Since we are going
5482 		 * to sleep anyway.
5483 		 */
5484 		sctp_release_sock(sk);
5485 		current_timeo = schedule_timeout(current_timeo);
5486 		sctp_lock_sock(sk);
5487 
5488 		*timeo_p = current_timeo;
5489 	}
5490 
5491 out:
5492 	finish_wait(&asoc->wait, &wait);
5493 
5494 	/* Release the association's refcnt.  */
5495 	sctp_association_put(asoc);
5496 
5497 	return err;
5498 
5499 do_error:
5500 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5501 		err = -ETIMEDOUT;
5502 	else
5503 		err = -ECONNREFUSED;
5504 	goto out;
5505 
5506 do_interrupted:
5507 	err = sock_intr_errno(*timeo_p);
5508 	goto out;
5509 
5510 do_nonblock:
5511 	err = -EINPROGRESS;
5512 	goto out;
5513 }
5514 
5515 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5516 {
5517 	struct sctp_endpoint *ep;
5518 	int err = 0;
5519 	DEFINE_WAIT(wait);
5520 
5521 	ep = sctp_sk(sk)->ep;
5522 
5523 
5524 	for (;;) {
5525 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5526 					  TASK_INTERRUPTIBLE);
5527 
5528 		if (list_empty(&ep->asocs)) {
5529 			sctp_release_sock(sk);
5530 			timeo = schedule_timeout(timeo);
5531 			sctp_lock_sock(sk);
5532 		}
5533 
5534 		err = -EINVAL;
5535 		if (!sctp_sstate(sk, LISTENING))
5536 			break;
5537 
5538 		err = 0;
5539 		if (!list_empty(&ep->asocs))
5540 			break;
5541 
5542 		err = sock_intr_errno(timeo);
5543 		if (signal_pending(current))
5544 			break;
5545 
5546 		err = -EAGAIN;
5547 		if (!timeo)
5548 			break;
5549 	}
5550 
5551 	finish_wait(sk->sk_sleep, &wait);
5552 
5553 	return err;
5554 }
5555 
5556 void sctp_wait_for_close(struct sock *sk, long timeout)
5557 {
5558 	DEFINE_WAIT(wait);
5559 
5560 	do {
5561 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5562 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5563 			break;
5564 		sctp_release_sock(sk);
5565 		timeout = schedule_timeout(timeout);
5566 		sctp_lock_sock(sk);
5567 	} while (!signal_pending(current) && timeout);
5568 
5569 	finish_wait(sk->sk_sleep, &wait);
5570 }
5571 
5572 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5573  * and its messages to the newsk.
5574  */
5575 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5576 			      struct sctp_association *assoc,
5577 			      sctp_socket_type_t type)
5578 {
5579 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5580 	struct sctp_sock *newsp = sctp_sk(newsk);
5581 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5582 	struct sctp_endpoint *newep = newsp->ep;
5583 	struct sk_buff *skb, *tmp;
5584 	struct sctp_ulpevent *event;
5585 	int flags = 0;
5586 
5587 	/* Migrate socket buffer sizes and all the socket level options to the
5588 	 * new socket.
5589 	 */
5590 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5591 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5592 	/* Brute force copy old sctp opt. */
5593 	inet_sk_copy_descendant(newsk, oldsk);
5594 
5595 	/* Restore the ep value that was overwritten with the above structure
5596 	 * copy.
5597 	 */
5598 	newsp->ep = newep;
5599 	newsp->hmac = NULL;
5600 
5601 	/* Hook this new socket in to the bind_hash list. */
5602 	pp = sctp_sk(oldsk)->bind_hash;
5603 	sk_add_bind_node(newsk, &pp->owner);
5604 	sctp_sk(newsk)->bind_hash = pp;
5605 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5606 
5607 	/* Copy the bind_addr list from the original endpoint to the new
5608 	 * endpoint so that we can handle restarts properly
5609 	 */
5610 	if (assoc->peer.ipv4_address)
5611 		flags |= SCTP_ADDR4_PEERSUPP;
5612 	if (assoc->peer.ipv6_address)
5613 		flags |= SCTP_ADDR6_PEERSUPP;
5614 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5615 			     &oldsp->ep->base.bind_addr,
5616 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5617 
5618 	/* Move any messages in the old socket's receive queue that are for the
5619 	 * peeled off association to the new socket's receive queue.
5620 	 */
5621 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5622 		event = sctp_skb2event(skb);
5623 		if (event->asoc == assoc) {
5624 			sock_rfree(skb);
5625 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5626 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5627 			skb_set_owner_r(skb, newsk);
5628 		}
5629 	}
5630 
5631 	/* Clean up any messages pending delivery due to partial
5632 	 * delivery.   Three cases:
5633 	 * 1) No partial deliver;  no work.
5634 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5635 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5636 	 */
5637 	skb_queue_head_init(&newsp->pd_lobby);
5638 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5639 
5640 	if (sctp_sk(oldsk)->pd_mode) {
5641 		struct sk_buff_head *queue;
5642 
5643 		/* Decide which queue to move pd_lobby skbs to. */
5644 		if (assoc->ulpq.pd_mode) {
5645 			queue = &newsp->pd_lobby;
5646 		} else
5647 			queue = &newsk->sk_receive_queue;
5648 
5649 		/* Walk through the pd_lobby, looking for skbs that
5650 		 * need moved to the new socket.
5651 		 */
5652 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5653 			event = sctp_skb2event(skb);
5654 			if (event->asoc == assoc) {
5655 				sock_rfree(skb);
5656 				__skb_unlink(skb, &oldsp->pd_lobby);
5657 				__skb_queue_tail(queue, skb);
5658 				skb_set_owner_r(skb, newsk);
5659 			}
5660 		}
5661 
5662 		/* Clear up any skbs waiting for the partial
5663 		 * delivery to finish.
5664 		 */
5665 		if (assoc->ulpq.pd_mode)
5666 			sctp_clear_pd(oldsk);
5667 
5668 	}
5669 
5670 	/* Set the type of socket to indicate that it is peeled off from the
5671 	 * original UDP-style socket or created with the accept() call on a
5672 	 * TCP-style socket..
5673 	 */
5674 	newsp->type = type;
5675 
5676 	/* Mark the new socket "in-use" by the user so that any packets
5677 	 * that may arrive on the association after we've moved it are
5678 	 * queued to the backlog.  This prevents a potential race between
5679 	 * backlog processing on the old socket and new-packet processing
5680 	 * on the new socket.
5681 	 */
5682 	sctp_lock_sock(newsk);
5683 	sctp_assoc_migrate(assoc, newsk);
5684 
5685 	/* If the association on the newsk is already closed before accept()
5686 	 * is called, set RCV_SHUTDOWN flag.
5687 	 */
5688 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5689 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5690 
5691 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5692 	sctp_release_sock(newsk);
5693 }
5694 
5695 /* This proto struct describes the ULP interface for SCTP.  */
5696 struct proto sctp_prot = {
5697 	.name        =	"SCTP",
5698 	.owner       =	THIS_MODULE,
5699 	.close       =	sctp_close,
5700 	.connect     =	sctp_connect,
5701 	.disconnect  =	sctp_disconnect,
5702 	.accept      =	sctp_accept,
5703 	.ioctl       =	sctp_ioctl,
5704 	.init        =	sctp_init_sock,
5705 	.destroy     =	sctp_destroy_sock,
5706 	.shutdown    =	sctp_shutdown,
5707 	.setsockopt  =	sctp_setsockopt,
5708 	.getsockopt  =	sctp_getsockopt,
5709 	.sendmsg     =	sctp_sendmsg,
5710 	.recvmsg     =	sctp_recvmsg,
5711 	.bind        =	sctp_bind,
5712 	.backlog_rcv =	sctp_backlog_rcv,
5713 	.hash        =	sctp_hash,
5714 	.unhash      =	sctp_unhash,
5715 	.get_port    =	sctp_get_port,
5716 	.obj_size    =  sizeof(struct sctp_sock),
5717 };
5718 
5719 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5720 struct proto sctpv6_prot = {
5721 	.name		= "SCTPv6",
5722 	.owner		= THIS_MODULE,
5723 	.close		= sctp_close,
5724 	.connect	= sctp_connect,
5725 	.disconnect	= sctp_disconnect,
5726 	.accept		= sctp_accept,
5727 	.ioctl		= sctp_ioctl,
5728 	.init		= sctp_init_sock,
5729 	.destroy	= sctp_destroy_sock,
5730 	.shutdown	= sctp_shutdown,
5731 	.setsockopt	= sctp_setsockopt,
5732 	.getsockopt	= sctp_getsockopt,
5733 	.sendmsg	= sctp_sendmsg,
5734 	.recvmsg	= sctp_recvmsg,
5735 	.bind		= sctp_bind,
5736 	.backlog_rcv	= sctp_backlog_rcv,
5737 	.hash		= sctp_hash,
5738 	.unhash		= sctp_unhash,
5739 	.get_port	= sctp_get_port,
5740 	.obj_size	= sizeof(struct sctp6_sock),
5741 };
5742 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5743