xref: /linux/net/sctp/socket.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
233 					       laddr,
234 					       &transport);
235 
236 	if (!addr_asoc)
237 		return NULL;
238 
239 	id_asoc = sctp_id2assoc(sk, id);
240 	if (id_asoc && (id_asoc != addr_asoc))
241 		return NULL;
242 
243 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
244 						(union sctp_addr *)addr);
245 
246 	return transport;
247 }
248 
249 /* API 3.1.2 bind() - UDP Style Syntax
250  * The syntax of bind() is,
251  *
252  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
253  *
254  *   sd      - the socket descriptor returned by socket().
255  *   addr    - the address structure (struct sockaddr_in or struct
256  *             sockaddr_in6 [RFC 2553]),
257  *   addr_len - the size of the address structure.
258  */
259 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
260 {
261 	int retval = 0;
262 
263 	sctp_lock_sock(sk);
264 
265 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
266 			  sk, addr, addr_len);
267 
268 	/* Disallow binding twice. */
269 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
270 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
271 				      addr_len);
272 	else
273 		retval = -EINVAL;
274 
275 	sctp_release_sock(sk);
276 
277 	return retval;
278 }
279 
280 static long sctp_get_port_local(struct sock *, union sctp_addr *);
281 
282 /* Verify this is a valid sockaddr. */
283 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
284 					union sctp_addr *addr, int len)
285 {
286 	struct sctp_af *af;
287 
288 	/* Check minimum size.  */
289 	if (len < sizeof (struct sockaddr))
290 		return NULL;
291 
292 	/* Does this PF support this AF? */
293 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
294 		return NULL;
295 
296 	/* If we get this far, af is valid. */
297 	af = sctp_get_af_specific(addr->sa.sa_family);
298 
299 	if (len < af->sockaddr_len)
300 		return NULL;
301 
302 	return af;
303 }
304 
305 /* Bind a local address either to an endpoint or to an association.  */
306 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
307 {
308 	struct sctp_sock *sp = sctp_sk(sk);
309 	struct sctp_endpoint *ep = sp->ep;
310 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
311 	struct sctp_af *af;
312 	unsigned short snum;
313 	int ret = 0;
314 
315 	/* Common sockaddr verification. */
316 	af = sctp_sockaddr_af(sp, addr, len);
317 	if (!af) {
318 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
319 				  sk, addr, len);
320 		return -EINVAL;
321 	}
322 
323 	snum = ntohs(addr->v4.sin_port);
324 
325 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
326 				 ", port: %d, new port: %d, len: %d)\n",
327 				 sk,
328 				 addr,
329 				 bp->port, snum,
330 				 len);
331 
332 	/* PF specific bind() address verification. */
333 	if (!sp->pf->bind_verify(sp, addr))
334 		return -EADDRNOTAVAIL;
335 
336 	/* We must either be unbound, or bind to the same port.  */
337 	if (bp->port && (snum != bp->port)) {
338 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
339 				  " New port %d does not match existing port "
340 				  "%d.\n", snum, bp->port);
341 		return -EINVAL;
342 	}
343 
344 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
345 		return -EACCES;
346 
347 	/* Make sure we are allowed to bind here.
348 	 * The function sctp_get_port_local() does duplicate address
349 	 * detection.
350 	 */
351 	if ((ret = sctp_get_port_local(sk, addr))) {
352 		if (ret == (long) sk) {
353 			/* This endpoint has a conflicting address. */
354 			return -EINVAL;
355 		} else {
356 			return -EADDRINUSE;
357 		}
358 	}
359 
360 	/* Refresh ephemeral port.  */
361 	if (!bp->port)
362 		bp->port = inet_sk(sk)->num;
363 
364 	/* Add the address to the bind address list.  */
365 	sctp_local_bh_disable();
366 	sctp_write_lock(&ep->base.addr_lock);
367 
368 	/* Use GFP_ATOMIC since BHs are disabled.  */
369 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
370 	sctp_write_unlock(&ep->base.addr_lock);
371 	sctp_local_bh_enable();
372 
373 	/* Copy back into socket for getsockname() use. */
374 	if (!ret) {
375 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
376 		af->to_sk_saddr(addr, sk);
377 	}
378 
379 	return ret;
380 }
381 
382  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
383  *
384  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
385  * at any one time.  If a sender, after sending an ASCONF chunk, decides
386  * it needs to transfer another ASCONF Chunk, it MUST wait until the
387  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
388  * subsequent ASCONF. Note this restriction binds each side, so at any
389  * time two ASCONF may be in-transit on any given association (one sent
390  * from each endpoint).
391  */
392 static int sctp_send_asconf(struct sctp_association *asoc,
393 			    struct sctp_chunk *chunk)
394 {
395 	int		retval = 0;
396 
397 	/* If there is an outstanding ASCONF chunk, queue it for later
398 	 * transmission.
399 	 */
400 	if (asoc->addip_last_asconf) {
401 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
402 		goto out;
403 	}
404 
405 	/* Hold the chunk until an ASCONF_ACK is received. */
406 	sctp_chunk_hold(chunk);
407 	retval = sctp_primitive_ASCONF(asoc, chunk);
408 	if (retval)
409 		sctp_chunk_free(chunk);
410 	else
411 		asoc->addip_last_asconf = chunk;
412 
413 out:
414 	return retval;
415 }
416 
417 /* Add a list of addresses as bind addresses to local endpoint or
418  * association.
419  *
420  * Basically run through each address specified in the addrs/addrcnt
421  * array/length pair, determine if it is IPv6 or IPv4 and call
422  * sctp_do_bind() on it.
423  *
424  * If any of them fails, then the operation will be reversed and the
425  * ones that were added will be removed.
426  *
427  * Only sctp_setsockopt_bindx() is supposed to call this function.
428  */
429 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
430 {
431 	int cnt;
432 	int retval = 0;
433 	void *addr_buf;
434 	struct sockaddr *sa_addr;
435 	struct sctp_af *af;
436 
437 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
438 			  sk, addrs, addrcnt);
439 
440 	addr_buf = addrs;
441 	for (cnt = 0; cnt < addrcnt; cnt++) {
442 		/* The list may contain either IPv4 or IPv6 address;
443 		 * determine the address length for walking thru the list.
444 		 */
445 		sa_addr = (struct sockaddr *)addr_buf;
446 		af = sctp_get_af_specific(sa_addr->sa_family);
447 		if (!af) {
448 			retval = -EINVAL;
449 			goto err_bindx_add;
450 		}
451 
452 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
453 				      af->sockaddr_len);
454 
455 		addr_buf += af->sockaddr_len;
456 
457 err_bindx_add:
458 		if (retval < 0) {
459 			/* Failed. Cleanup the ones that have been added */
460 			if (cnt > 0)
461 				sctp_bindx_rem(sk, addrs, cnt);
462 			return retval;
463 		}
464 	}
465 
466 	return retval;
467 }
468 
469 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
470  * associations that are part of the endpoint indicating that a list of local
471  * addresses are added to the endpoint.
472  *
473  * If any of the addresses is already in the bind address list of the
474  * association, we do not send the chunk for that association.  But it will not
475  * affect other associations.
476  *
477  * Only sctp_setsockopt_bindx() is supposed to call this function.
478  */
479 static int sctp_send_asconf_add_ip(struct sock		*sk,
480 				   struct sockaddr	*addrs,
481 				   int 			addrcnt)
482 {
483 	struct sctp_sock		*sp;
484 	struct sctp_endpoint		*ep;
485 	struct sctp_association		*asoc;
486 	struct sctp_bind_addr		*bp;
487 	struct sctp_chunk		*chunk;
488 	struct sctp_sockaddr_entry	*laddr;
489 	union sctp_addr			*addr;
490 	union sctp_addr			saveaddr;
491 	void				*addr_buf;
492 	struct sctp_af			*af;
493 	struct list_head		*pos;
494 	struct list_head		*p;
495 	int 				i;
496 	int 				retval = 0;
497 
498 	if (!sctp_addip_enable)
499 		return retval;
500 
501 	sp = sctp_sk(sk);
502 	ep = sp->ep;
503 
504 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
505 			  __FUNCTION__, sk, addrs, addrcnt);
506 
507 	list_for_each(pos, &ep->asocs) {
508 		asoc = list_entry(pos, struct sctp_association, asocs);
509 
510 		if (!asoc->peer.asconf_capable)
511 			continue;
512 
513 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
514 			continue;
515 
516 		if (!sctp_state(asoc, ESTABLISHED))
517 			continue;
518 
519 		/* Check if any address in the packed array of addresses is
520 	         * in the bind address list of the association. If so,
521 		 * do not send the asconf chunk to its peer, but continue with
522 		 * other associations.
523 		 */
524 		addr_buf = addrs;
525 		for (i = 0; i < addrcnt; i++) {
526 			addr = (union sctp_addr *)addr_buf;
527 			af = sctp_get_af_specific(addr->v4.sin_family);
528 			if (!af) {
529 				retval = -EINVAL;
530 				goto out;
531 			}
532 
533 			if (sctp_assoc_lookup_laddr(asoc, addr))
534 				break;
535 
536 			addr_buf += af->sockaddr_len;
537 		}
538 		if (i < addrcnt)
539 			continue;
540 
541 		/* Use the first address in bind addr list of association as
542 		 * Address Parameter of ASCONF CHUNK.
543 		 */
544 		sctp_read_lock(&asoc->base.addr_lock);
545 		bp = &asoc->base.bind_addr;
546 		p = bp->address_list.next;
547 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
548 		sctp_read_unlock(&asoc->base.addr_lock);
549 
550 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
551 						   addrcnt, SCTP_PARAM_ADD_IP);
552 		if (!chunk) {
553 			retval = -ENOMEM;
554 			goto out;
555 		}
556 
557 		retval = sctp_send_asconf(asoc, chunk);
558 		if (retval)
559 			goto out;
560 
561 		/* Add the new addresses to the bind address list with
562 		 * use_as_src set to 0.
563 		 */
564 		sctp_local_bh_disable();
565 		sctp_write_lock(&asoc->base.addr_lock);
566 		addr_buf = addrs;
567 		for (i = 0; i < addrcnt; i++) {
568 			addr = (union sctp_addr *)addr_buf;
569 			af = sctp_get_af_specific(addr->v4.sin_family);
570 			memcpy(&saveaddr, addr, af->sockaddr_len);
571 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
572 						    GFP_ATOMIC);
573 			addr_buf += af->sockaddr_len;
574 		}
575 		sctp_write_unlock(&asoc->base.addr_lock);
576 		sctp_local_bh_enable();
577 	}
578 
579 out:
580 	return retval;
581 }
582 
583 /* Remove a list of addresses from bind addresses list.  Do not remove the
584  * last address.
585  *
586  * Basically run through each address specified in the addrs/addrcnt
587  * array/length pair, determine if it is IPv6 or IPv4 and call
588  * sctp_del_bind() on it.
589  *
590  * If any of them fails, then the operation will be reversed and the
591  * ones that were removed will be added back.
592  *
593  * At least one address has to be left; if only one address is
594  * available, the operation will return -EBUSY.
595  *
596  * Only sctp_setsockopt_bindx() is supposed to call this function.
597  */
598 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
599 {
600 	struct sctp_sock *sp = sctp_sk(sk);
601 	struct sctp_endpoint *ep = sp->ep;
602 	int cnt;
603 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
604 	int retval = 0;
605 	void *addr_buf;
606 	union sctp_addr *sa_addr;
607 	struct sctp_af *af;
608 
609 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
610 			  sk, addrs, addrcnt);
611 
612 	addr_buf = addrs;
613 	for (cnt = 0; cnt < addrcnt; cnt++) {
614 		/* If the bind address list is empty or if there is only one
615 		 * bind address, there is nothing more to be removed (we need
616 		 * at least one address here).
617 		 */
618 		if (list_empty(&bp->address_list) ||
619 		    (sctp_list_single_entry(&bp->address_list))) {
620 			retval = -EBUSY;
621 			goto err_bindx_rem;
622 		}
623 
624 		sa_addr = (union sctp_addr *)addr_buf;
625 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
626 		if (!af) {
627 			retval = -EINVAL;
628 			goto err_bindx_rem;
629 		}
630 		if (sa_addr->v4.sin_port != htons(bp->port)) {
631 			retval = -EINVAL;
632 			goto err_bindx_rem;
633 		}
634 
635 		/* FIXME - There is probably a need to check if sk->sk_saddr and
636 		 * sk->sk_rcv_addr are currently set to one of the addresses to
637 		 * be removed. This is something which needs to be looked into
638 		 * when we are fixing the outstanding issues with multi-homing
639 		 * socket routing and failover schemes. Refer to comments in
640 		 * sctp_do_bind(). -daisy
641 		 */
642 		sctp_local_bh_disable();
643 		sctp_write_lock(&ep->base.addr_lock);
644 
645 		retval = sctp_del_bind_addr(bp, sa_addr);
646 
647 		sctp_write_unlock(&ep->base.addr_lock);
648 		sctp_local_bh_enable();
649 
650 		addr_buf += af->sockaddr_len;
651 err_bindx_rem:
652 		if (retval < 0) {
653 			/* Failed. Add the ones that has been removed back */
654 			if (cnt > 0)
655 				sctp_bindx_add(sk, addrs, cnt);
656 			return retval;
657 		}
658 	}
659 
660 	return retval;
661 }
662 
663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
664  * the associations that are part of the endpoint indicating that a list of
665  * local addresses are removed from the endpoint.
666  *
667  * If any of the addresses is already in the bind address list of the
668  * association, we do not send the chunk for that association.  But it will not
669  * affect other associations.
670  *
671  * Only sctp_setsockopt_bindx() is supposed to call this function.
672  */
673 static int sctp_send_asconf_del_ip(struct sock		*sk,
674 				   struct sockaddr	*addrs,
675 				   int			addrcnt)
676 {
677 	struct sctp_sock	*sp;
678 	struct sctp_endpoint	*ep;
679 	struct sctp_association	*asoc;
680 	struct sctp_transport	*transport;
681 	struct sctp_bind_addr	*bp;
682 	struct sctp_chunk	*chunk;
683 	union sctp_addr		*laddr;
684 	void			*addr_buf;
685 	struct sctp_af		*af;
686 	struct list_head	*pos, *pos1;
687 	struct sctp_sockaddr_entry *saddr;
688 	int 			i;
689 	int 			retval = 0;
690 
691 	if (!sctp_addip_enable)
692 		return retval;
693 
694 	sp = sctp_sk(sk);
695 	ep = sp->ep;
696 
697 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
698 			  __FUNCTION__, sk, addrs, addrcnt);
699 
700 	list_for_each(pos, &ep->asocs) {
701 		asoc = list_entry(pos, struct sctp_association, asocs);
702 
703 		if (!asoc->peer.asconf_capable)
704 			continue;
705 
706 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
707 			continue;
708 
709 		if (!sctp_state(asoc, ESTABLISHED))
710 			continue;
711 
712 		/* Check if any address in the packed array of addresses is
713 	         * not present in the bind address list of the association.
714 		 * If so, do not send the asconf chunk to its peer, but
715 		 * continue with other associations.
716 		 */
717 		addr_buf = addrs;
718 		for (i = 0; i < addrcnt; i++) {
719 			laddr = (union sctp_addr *)addr_buf;
720 			af = sctp_get_af_specific(laddr->v4.sin_family);
721 			if (!af) {
722 				retval = -EINVAL;
723 				goto out;
724 			}
725 
726 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
727 				break;
728 
729 			addr_buf += af->sockaddr_len;
730 		}
731 		if (i < addrcnt)
732 			continue;
733 
734 		/* Find one address in the association's bind address list
735 		 * that is not in the packed array of addresses. This is to
736 		 * make sure that we do not delete all the addresses in the
737 		 * association.
738 		 */
739 		sctp_read_lock(&asoc->base.addr_lock);
740 		bp = &asoc->base.bind_addr;
741 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
742 					       addrcnt, sp);
743 		sctp_read_unlock(&asoc->base.addr_lock);
744 		if (!laddr)
745 			continue;
746 
747 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
748 						   SCTP_PARAM_DEL_IP);
749 		if (!chunk) {
750 			retval = -ENOMEM;
751 			goto out;
752 		}
753 
754 		/* Reset use_as_src flag for the addresses in the bind address
755 		 * list that are to be deleted.
756 		 */
757 		sctp_local_bh_disable();
758 		sctp_write_lock(&asoc->base.addr_lock);
759 		addr_buf = addrs;
760 		for (i = 0; i < addrcnt; i++) {
761 			laddr = (union sctp_addr *)addr_buf;
762 			af = sctp_get_af_specific(laddr->v4.sin_family);
763 			list_for_each(pos1, &bp->address_list) {
764 				saddr = list_entry(pos1,
765 						   struct sctp_sockaddr_entry,
766 						   list);
767 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
768 					saddr->use_as_src = 0;
769 			}
770 			addr_buf += af->sockaddr_len;
771 		}
772 		sctp_write_unlock(&asoc->base.addr_lock);
773 		sctp_local_bh_enable();
774 
775 		/* Update the route and saddr entries for all the transports
776 		 * as some of the addresses in the bind address list are
777 		 * about to be deleted and cannot be used as source addresses.
778 		 */
779 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
780 			transport = list_entry(pos1, struct sctp_transport,
781 					       transports);
782 			dst_release(transport->dst);
783 			sctp_transport_route(transport, NULL,
784 					     sctp_sk(asoc->base.sk));
785 		}
786 
787 		retval = sctp_send_asconf(asoc, chunk);
788 	}
789 out:
790 	return retval;
791 }
792 
793 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
794  *
795  * API 8.1
796  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
797  *                int flags);
798  *
799  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
800  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
801  * or IPv6 addresses.
802  *
803  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
804  * Section 3.1.2 for this usage.
805  *
806  * addrs is a pointer to an array of one or more socket addresses. Each
807  * address is contained in its appropriate structure (i.e. struct
808  * sockaddr_in or struct sockaddr_in6) the family of the address type
809  * must be used to distinguish the address length (note that this
810  * representation is termed a "packed array" of addresses). The caller
811  * specifies the number of addresses in the array with addrcnt.
812  *
813  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
814  * -1, and sets errno to the appropriate error code.
815  *
816  * For SCTP, the port given in each socket address must be the same, or
817  * sctp_bindx() will fail, setting errno to EINVAL.
818  *
819  * The flags parameter is formed from the bitwise OR of zero or more of
820  * the following currently defined flags:
821  *
822  * SCTP_BINDX_ADD_ADDR
823  *
824  * SCTP_BINDX_REM_ADDR
825  *
826  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
827  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
828  * addresses from the association. The two flags are mutually exclusive;
829  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
830  * not remove all addresses from an association; sctp_bindx() will
831  * reject such an attempt with EINVAL.
832  *
833  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
834  * additional addresses with an endpoint after calling bind().  Or use
835  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
836  * socket is associated with so that no new association accepted will be
837  * associated with those addresses. If the endpoint supports dynamic
838  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
839  * endpoint to send the appropriate message to the peer to change the
840  * peers address lists.
841  *
842  * Adding and removing addresses from a connected association is
843  * optional functionality. Implementations that do not support this
844  * functionality should return EOPNOTSUPP.
845  *
846  * Basically do nothing but copying the addresses from user to kernel
847  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
848  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
849  * from userspace.
850  *
851  * We don't use copy_from_user() for optimization: we first do the
852  * sanity checks (buffer size -fast- and access check-healthy
853  * pointer); if all of those succeed, then we can alloc the memory
854  * (expensive operation) needed to copy the data to kernel. Then we do
855  * the copying without checking the user space area
856  * (__copy_from_user()).
857  *
858  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
859  * it.
860  *
861  * sk        The sk of the socket
862  * addrs     The pointer to the addresses in user land
863  * addrssize Size of the addrs buffer
864  * op        Operation to perform (add or remove, see the flags of
865  *           sctp_bindx)
866  *
867  * Returns 0 if ok, <0 errno code on error.
868  */
869 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
870 				      struct sockaddr __user *addrs,
871 				      int addrs_size, int op)
872 {
873 	struct sockaddr *kaddrs;
874 	int err;
875 	int addrcnt = 0;
876 	int walk_size = 0;
877 	struct sockaddr *sa_addr;
878 	void *addr_buf;
879 	struct sctp_af *af;
880 
881 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
882 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
883 
884 	if (unlikely(addrs_size <= 0))
885 		return -EINVAL;
886 
887 	/* Check the user passed a healthy pointer.  */
888 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
889 		return -EFAULT;
890 
891 	/* Alloc space for the address array in kernel memory.  */
892 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
893 	if (unlikely(!kaddrs))
894 		return -ENOMEM;
895 
896 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
897 		kfree(kaddrs);
898 		return -EFAULT;
899 	}
900 
901 	/* Walk through the addrs buffer and count the number of addresses. */
902 	addr_buf = kaddrs;
903 	while (walk_size < addrs_size) {
904 		sa_addr = (struct sockaddr *)addr_buf;
905 		af = sctp_get_af_specific(sa_addr->sa_family);
906 
907 		/* If the address family is not supported or if this address
908 		 * causes the address buffer to overflow return EINVAL.
909 		 */
910 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
911 			kfree(kaddrs);
912 			return -EINVAL;
913 		}
914 		addrcnt++;
915 		addr_buf += af->sockaddr_len;
916 		walk_size += af->sockaddr_len;
917 	}
918 
919 	/* Do the work. */
920 	switch (op) {
921 	case SCTP_BINDX_ADD_ADDR:
922 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
923 		if (err)
924 			goto out;
925 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
926 		break;
927 
928 	case SCTP_BINDX_REM_ADDR:
929 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
930 		if (err)
931 			goto out;
932 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
933 		break;
934 
935 	default:
936 		err = -EINVAL;
937 		break;
938         };
939 
940 out:
941 	kfree(kaddrs);
942 
943 	return err;
944 }
945 
946 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
947  *
948  * Common routine for handling connect() and sctp_connectx().
949  * Connect will come in with just a single address.
950  */
951 static int __sctp_connect(struct sock* sk,
952 			  struct sockaddr *kaddrs,
953 			  int addrs_size)
954 {
955 	struct sctp_sock *sp;
956 	struct sctp_endpoint *ep;
957 	struct sctp_association *asoc = NULL;
958 	struct sctp_association *asoc2;
959 	struct sctp_transport *transport;
960 	union sctp_addr to;
961 	struct sctp_af *af;
962 	sctp_scope_t scope;
963 	long timeo;
964 	int err = 0;
965 	int addrcnt = 0;
966 	int walk_size = 0;
967 	union sctp_addr *sa_addr;
968 	void *addr_buf;
969 
970 	sp = sctp_sk(sk);
971 	ep = sp->ep;
972 
973 	/* connect() cannot be done on a socket that is already in ESTABLISHED
974 	 * state - UDP-style peeled off socket or a TCP-style socket that
975 	 * is already connected.
976 	 * It cannot be done even on a TCP-style listening socket.
977 	 */
978 	if (sctp_sstate(sk, ESTABLISHED) ||
979 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
980 		err = -EISCONN;
981 		goto out_free;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		sa_addr = (union sctp_addr *)addr_buf;
988 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
989 
990 		/* If the address family is not supported or if this address
991 		 * causes the address buffer to overflow return EINVAL.
992 		 */
993 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
994 			err = -EINVAL;
995 			goto out_free;
996 		}
997 
998 		err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len);
999 		if (err)
1000 			goto out_free;
1001 
1002 		memcpy(&to, sa_addr, af->sockaddr_len);
1003 
1004 		/* Check if there already is a matching association on the
1005 		 * endpoint (other than the one created here).
1006 		 */
1007 		asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport);
1008 		if (asoc2 && asoc2 != asoc) {
1009 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1010 				err = -EISCONN;
1011 			else
1012 				err = -EALREADY;
1013 			goto out_free;
1014 		}
1015 
1016 		/* If we could not find a matching association on the endpoint,
1017 		 * make sure that there is no peeled-off association matching
1018 		 * the peer address even on another socket.
1019 		 */
1020 		if (sctp_endpoint_is_peeled_off(ep, sa_addr)) {
1021 			err = -EADDRNOTAVAIL;
1022 			goto out_free;
1023 		}
1024 
1025 		if (!asoc) {
1026 			/* If a bind() or sctp_bindx() is not called prior to
1027 			 * an sctp_connectx() call, the system picks an
1028 			 * ephemeral port and will choose an address set
1029 			 * equivalent to binding with a wildcard address.
1030 			 */
1031 			if (!ep->base.bind_addr.port) {
1032 				if (sctp_autobind(sk)) {
1033 					err = -EAGAIN;
1034 					goto out_free;
1035 				}
1036 			} else {
1037 				/*
1038 				 * If an unprivileged user inherits a 1-many
1039 				 * style socket with open associations on a
1040 				 * privileged port, it MAY be permitted to
1041 				 * accept new associations, but it SHOULD NOT
1042 				 * be permitted to open new associations.
1043 				 */
1044 				if (ep->base.bind_addr.port < PROT_SOCK &&
1045 				    !capable(CAP_NET_BIND_SERVICE)) {
1046 					err = -EACCES;
1047 					goto out_free;
1048 				}
1049 			}
1050 
1051 			scope = sctp_scope(sa_addr);
1052 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1053 			if (!asoc) {
1054 				err = -ENOMEM;
1055 				goto out_free;
1056 			}
1057 		}
1058 
1059 		/* Prime the peer's transport structures.  */
1060 		transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL,
1061 						SCTP_UNKNOWN);
1062 		if (!transport) {
1063 			err = -ENOMEM;
1064 			goto out_free;
1065 		}
1066 
1067 		addrcnt++;
1068 		addr_buf += af->sockaddr_len;
1069 		walk_size += af->sockaddr_len;
1070 	}
1071 
1072 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1073 	if (err < 0) {
1074 		goto out_free;
1075 	}
1076 
1077 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1078 	if (err < 0) {
1079 		goto out_free;
1080 	}
1081 
1082 	/* Initialize sk's dport and daddr for getpeername() */
1083 	inet_sk(sk)->dport = htons(asoc->peer.port);
1084 	af = sctp_get_af_specific(to.sa.sa_family);
1085 	af->to_sk_daddr(&to, sk);
1086 	sk->sk_err = 0;
1087 
1088 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1089 	err = sctp_wait_for_connect(asoc, &timeo);
1090 
1091 	/* Don't free association on exit. */
1092 	asoc = NULL;
1093 
1094 out_free:
1095 
1096 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1097 		          " kaddrs: %p err: %d\n",
1098 	                  asoc, kaddrs, err);
1099 	if (asoc)
1100 		sctp_association_free(asoc);
1101 	return err;
1102 }
1103 
1104 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1105  *
1106  * API 8.9
1107  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1108  *
1109  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1110  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1111  * or IPv6 addresses.
1112  *
1113  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1114  * Section 3.1.2 for this usage.
1115  *
1116  * addrs is a pointer to an array of one or more socket addresses. Each
1117  * address is contained in its appropriate structure (i.e. struct
1118  * sockaddr_in or struct sockaddr_in6) the family of the address type
1119  * must be used to distengish the address length (note that this
1120  * representation is termed a "packed array" of addresses). The caller
1121  * specifies the number of addresses in the array with addrcnt.
1122  *
1123  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1124  * -1, and sets errno to the appropriate error code.
1125  *
1126  * For SCTP, the port given in each socket address must be the same, or
1127  * sctp_connectx() will fail, setting errno to EINVAL.
1128  *
1129  * An application can use sctp_connectx to initiate an association with
1130  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1131  * allows a caller to specify multiple addresses at which a peer can be
1132  * reached.  The way the SCTP stack uses the list of addresses to set up
1133  * the association is implementation dependant.  This function only
1134  * specifies that the stack will try to make use of all the addresses in
1135  * the list when needed.
1136  *
1137  * Note that the list of addresses passed in is only used for setting up
1138  * the association.  It does not necessarily equal the set of addresses
1139  * the peer uses for the resulting association.  If the caller wants to
1140  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1141  * retrieve them after the association has been set up.
1142  *
1143  * Basically do nothing but copying the addresses from user to kernel
1144  * land and invoking either sctp_connectx(). This is used for tunneling
1145  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1146  *
1147  * We don't use copy_from_user() for optimization: we first do the
1148  * sanity checks (buffer size -fast- and access check-healthy
1149  * pointer); if all of those succeed, then we can alloc the memory
1150  * (expensive operation) needed to copy the data to kernel. Then we do
1151  * the copying without checking the user space area
1152  * (__copy_from_user()).
1153  *
1154  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1155  * it.
1156  *
1157  * sk        The sk of the socket
1158  * addrs     The pointer to the addresses in user land
1159  * addrssize Size of the addrs buffer
1160  *
1161  * Returns 0 if ok, <0 errno code on error.
1162  */
1163 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1164 				      struct sockaddr __user *addrs,
1165 				      int addrs_size)
1166 {
1167 	int err = 0;
1168 	struct sockaddr *kaddrs;
1169 
1170 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1171 			  __FUNCTION__, sk, addrs, addrs_size);
1172 
1173 	if (unlikely(addrs_size <= 0))
1174 		return -EINVAL;
1175 
1176 	/* Check the user passed a healthy pointer.  */
1177 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1178 		return -EFAULT;
1179 
1180 	/* Alloc space for the address array in kernel memory.  */
1181 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1182 	if (unlikely(!kaddrs))
1183 		return -ENOMEM;
1184 
1185 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1186 		err = -EFAULT;
1187 	} else {
1188 		err = __sctp_connect(sk, kaddrs, addrs_size);
1189 	}
1190 
1191 	kfree(kaddrs);
1192 	return err;
1193 }
1194 
1195 /* API 3.1.4 close() - UDP Style Syntax
1196  * Applications use close() to perform graceful shutdown (as described in
1197  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1198  * by a UDP-style socket.
1199  *
1200  * The syntax is
1201  *
1202  *   ret = close(int sd);
1203  *
1204  *   sd      - the socket descriptor of the associations to be closed.
1205  *
1206  * To gracefully shutdown a specific association represented by the
1207  * UDP-style socket, an application should use the sendmsg() call,
1208  * passing no user data, but including the appropriate flag in the
1209  * ancillary data (see Section xxxx).
1210  *
1211  * If sd in the close() call is a branched-off socket representing only
1212  * one association, the shutdown is performed on that association only.
1213  *
1214  * 4.1.6 close() - TCP Style Syntax
1215  *
1216  * Applications use close() to gracefully close down an association.
1217  *
1218  * The syntax is:
1219  *
1220  *    int close(int sd);
1221  *
1222  *      sd      - the socket descriptor of the association to be closed.
1223  *
1224  * After an application calls close() on a socket descriptor, no further
1225  * socket operations will succeed on that descriptor.
1226  *
1227  * API 7.1.4 SO_LINGER
1228  *
1229  * An application using the TCP-style socket can use this option to
1230  * perform the SCTP ABORT primitive.  The linger option structure is:
1231  *
1232  *  struct  linger {
1233  *     int     l_onoff;                // option on/off
1234  *     int     l_linger;               // linger time
1235  * };
1236  *
1237  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1238  * to 0, calling close() is the same as the ABORT primitive.  If the
1239  * value is set to a negative value, the setsockopt() call will return
1240  * an error.  If the value is set to a positive value linger_time, the
1241  * close() can be blocked for at most linger_time ms.  If the graceful
1242  * shutdown phase does not finish during this period, close() will
1243  * return but the graceful shutdown phase continues in the system.
1244  */
1245 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1246 {
1247 	struct sctp_endpoint *ep;
1248 	struct sctp_association *asoc;
1249 	struct list_head *pos, *temp;
1250 
1251 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1252 
1253 	sctp_lock_sock(sk);
1254 	sk->sk_shutdown = SHUTDOWN_MASK;
1255 
1256 	ep = sctp_sk(sk)->ep;
1257 
1258 	/* Walk all associations on an endpoint.  */
1259 	list_for_each_safe(pos, temp, &ep->asocs) {
1260 		asoc = list_entry(pos, struct sctp_association, asocs);
1261 
1262 		if (sctp_style(sk, TCP)) {
1263 			/* A closed association can still be in the list if
1264 			 * it belongs to a TCP-style listening socket that is
1265 			 * not yet accepted. If so, free it. If not, send an
1266 			 * ABORT or SHUTDOWN based on the linger options.
1267 			 */
1268 			if (sctp_state(asoc, CLOSED)) {
1269 				sctp_unhash_established(asoc);
1270 				sctp_association_free(asoc);
1271 				continue;
1272 			}
1273 		}
1274 
1275 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1276 			struct sctp_chunk *chunk;
1277 
1278 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1279 			if (chunk)
1280 				sctp_primitive_ABORT(asoc, chunk);
1281 		} else
1282 			sctp_primitive_SHUTDOWN(asoc, NULL);
1283 	}
1284 
1285 	/* Clean up any skbs sitting on the receive queue.  */
1286 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1287 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1288 
1289 	/* On a TCP-style socket, block for at most linger_time if set. */
1290 	if (sctp_style(sk, TCP) && timeout)
1291 		sctp_wait_for_close(sk, timeout);
1292 
1293 	/* This will run the backlog queue.  */
1294 	sctp_release_sock(sk);
1295 
1296 	/* Supposedly, no process has access to the socket, but
1297 	 * the net layers still may.
1298 	 */
1299 	sctp_local_bh_disable();
1300 	sctp_bh_lock_sock(sk);
1301 
1302 	/* Hold the sock, since sk_common_release() will put sock_put()
1303 	 * and we have just a little more cleanup.
1304 	 */
1305 	sock_hold(sk);
1306 	sk_common_release(sk);
1307 
1308 	sctp_bh_unlock_sock(sk);
1309 	sctp_local_bh_enable();
1310 
1311 	sock_put(sk);
1312 
1313 	SCTP_DBG_OBJCNT_DEC(sock);
1314 }
1315 
1316 /* Handle EPIPE error. */
1317 static int sctp_error(struct sock *sk, int flags, int err)
1318 {
1319 	if (err == -EPIPE)
1320 		err = sock_error(sk) ? : -EPIPE;
1321 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1322 		send_sig(SIGPIPE, current, 0);
1323 	return err;
1324 }
1325 
1326 /* API 3.1.3 sendmsg() - UDP Style Syntax
1327  *
1328  * An application uses sendmsg() and recvmsg() calls to transmit data to
1329  * and receive data from its peer.
1330  *
1331  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1332  *                  int flags);
1333  *
1334  *  socket  - the socket descriptor of the endpoint.
1335  *  message - pointer to the msghdr structure which contains a single
1336  *            user message and possibly some ancillary data.
1337  *
1338  *            See Section 5 for complete description of the data
1339  *            structures.
1340  *
1341  *  flags   - flags sent or received with the user message, see Section
1342  *            5 for complete description of the flags.
1343  *
1344  * Note:  This function could use a rewrite especially when explicit
1345  * connect support comes in.
1346  */
1347 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1348 
1349 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1350 
1351 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1352 			     struct msghdr *msg, size_t msg_len)
1353 {
1354 	struct sctp_sock *sp;
1355 	struct sctp_endpoint *ep;
1356 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1357 	struct sctp_transport *transport, *chunk_tp;
1358 	struct sctp_chunk *chunk;
1359 	union sctp_addr to;
1360 	struct sockaddr *msg_name = NULL;
1361 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1362 	struct sctp_sndrcvinfo *sinfo;
1363 	struct sctp_initmsg *sinit;
1364 	sctp_assoc_t associd = 0;
1365 	sctp_cmsgs_t cmsgs = { NULL };
1366 	int err;
1367 	sctp_scope_t scope;
1368 	long timeo;
1369 	__u16 sinfo_flags = 0;
1370 	struct sctp_datamsg *datamsg;
1371 	struct list_head *pos;
1372 	int msg_flags = msg->msg_flags;
1373 
1374 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1375 			  sk, msg, msg_len);
1376 
1377 	err = 0;
1378 	sp = sctp_sk(sk);
1379 	ep = sp->ep;
1380 
1381 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1382 
1383 	/* We cannot send a message over a TCP-style listening socket. */
1384 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1385 		err = -EPIPE;
1386 		goto out_nounlock;
1387 	}
1388 
1389 	/* Parse out the SCTP CMSGs.  */
1390 	err = sctp_msghdr_parse(msg, &cmsgs);
1391 
1392 	if (err) {
1393 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1394 		goto out_nounlock;
1395 	}
1396 
1397 	/* Fetch the destination address for this packet.  This
1398 	 * address only selects the association--it is not necessarily
1399 	 * the address we will send to.
1400 	 * For a peeled-off socket, msg_name is ignored.
1401 	 */
1402 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1403 		int msg_namelen = msg->msg_namelen;
1404 
1405 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1406 				       msg_namelen);
1407 		if (err)
1408 			return err;
1409 
1410 		if (msg_namelen > sizeof(to))
1411 			msg_namelen = sizeof(to);
1412 		memcpy(&to, msg->msg_name, msg_namelen);
1413 		msg_name = msg->msg_name;
1414 	}
1415 
1416 	sinfo = cmsgs.info;
1417 	sinit = cmsgs.init;
1418 
1419 	/* Did the user specify SNDRCVINFO?  */
1420 	if (sinfo) {
1421 		sinfo_flags = sinfo->sinfo_flags;
1422 		associd = sinfo->sinfo_assoc_id;
1423 	}
1424 
1425 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1426 			  msg_len, sinfo_flags);
1427 
1428 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1429 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1430 		err = -EINVAL;
1431 		goto out_nounlock;
1432 	}
1433 
1434 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1435 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1436 	 * If SCTP_ABORT is set, the message length could be non zero with
1437 	 * the msg_iov set to the user abort reason.
1438  	 */
1439 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1440 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1441 		err = -EINVAL;
1442 		goto out_nounlock;
1443 	}
1444 
1445 	/* If SCTP_ADDR_OVER is set, there must be an address
1446 	 * specified in msg_name.
1447 	 */
1448 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1449 		err = -EINVAL;
1450 		goto out_nounlock;
1451 	}
1452 
1453 	transport = NULL;
1454 
1455 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1456 
1457 	sctp_lock_sock(sk);
1458 
1459 	/* If a msg_name has been specified, assume this is to be used.  */
1460 	if (msg_name) {
1461 		/* Look for a matching association on the endpoint. */
1462 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1463 		if (!asoc) {
1464 			/* If we could not find a matching association on the
1465 			 * endpoint, make sure that it is not a TCP-style
1466 			 * socket that already has an association or there is
1467 			 * no peeled-off association on another socket.
1468 			 */
1469 			if ((sctp_style(sk, TCP) &&
1470 			     sctp_sstate(sk, ESTABLISHED)) ||
1471 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1472 				err = -EADDRNOTAVAIL;
1473 				goto out_unlock;
1474 			}
1475 		}
1476 	} else {
1477 		asoc = sctp_id2assoc(sk, associd);
1478 		if (!asoc) {
1479 			err = -EPIPE;
1480 			goto out_unlock;
1481 		}
1482 	}
1483 
1484 	if (asoc) {
1485 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1486 
1487 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1488 		 * socket that has an association in CLOSED state. This can
1489 		 * happen when an accepted socket has an association that is
1490 		 * already CLOSED.
1491 		 */
1492 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1493 			err = -EPIPE;
1494 			goto out_unlock;
1495 		}
1496 
1497 		if (sinfo_flags & SCTP_EOF) {
1498 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1499 					  asoc);
1500 			sctp_primitive_SHUTDOWN(asoc, NULL);
1501 			err = 0;
1502 			goto out_unlock;
1503 		}
1504 		if (sinfo_flags & SCTP_ABORT) {
1505 			struct sctp_chunk *chunk;
1506 
1507 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1508 			if (!chunk) {
1509 				err = -ENOMEM;
1510 				goto out_unlock;
1511 			}
1512 
1513 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1514 			sctp_primitive_ABORT(asoc, chunk);
1515 			err = 0;
1516 			goto out_unlock;
1517 		}
1518 	}
1519 
1520 	/* Do we need to create the association?  */
1521 	if (!asoc) {
1522 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1523 
1524 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1525 			err = -EINVAL;
1526 			goto out_unlock;
1527 		}
1528 
1529 		/* Check for invalid stream against the stream counts,
1530 		 * either the default or the user specified stream counts.
1531 		 */
1532 		if (sinfo) {
1533 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1534 				/* Check against the defaults. */
1535 				if (sinfo->sinfo_stream >=
1536 				    sp->initmsg.sinit_num_ostreams) {
1537 					err = -EINVAL;
1538 					goto out_unlock;
1539 				}
1540 			} else {
1541 				/* Check against the requested.  */
1542 				if (sinfo->sinfo_stream >=
1543 				    sinit->sinit_num_ostreams) {
1544 					err = -EINVAL;
1545 					goto out_unlock;
1546 				}
1547 			}
1548 		}
1549 
1550 		/*
1551 		 * API 3.1.2 bind() - UDP Style Syntax
1552 		 * If a bind() or sctp_bindx() is not called prior to a
1553 		 * sendmsg() call that initiates a new association, the
1554 		 * system picks an ephemeral port and will choose an address
1555 		 * set equivalent to binding with a wildcard address.
1556 		 */
1557 		if (!ep->base.bind_addr.port) {
1558 			if (sctp_autobind(sk)) {
1559 				err = -EAGAIN;
1560 				goto out_unlock;
1561 			}
1562 		} else {
1563 			/*
1564 			 * If an unprivileged user inherits a one-to-many
1565 			 * style socket with open associations on a privileged
1566 			 * port, it MAY be permitted to accept new associations,
1567 			 * but it SHOULD NOT be permitted to open new
1568 			 * associations.
1569 			 */
1570 			if (ep->base.bind_addr.port < PROT_SOCK &&
1571 			    !capable(CAP_NET_BIND_SERVICE)) {
1572 				err = -EACCES;
1573 				goto out_unlock;
1574 			}
1575 		}
1576 
1577 		scope = sctp_scope(&to);
1578 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1579 		if (!new_asoc) {
1580 			err = -ENOMEM;
1581 			goto out_unlock;
1582 		}
1583 		asoc = new_asoc;
1584 
1585 		/* If the SCTP_INIT ancillary data is specified, set all
1586 		 * the association init values accordingly.
1587 		 */
1588 		if (sinit) {
1589 			if (sinit->sinit_num_ostreams) {
1590 				asoc->c.sinit_num_ostreams =
1591 					sinit->sinit_num_ostreams;
1592 			}
1593 			if (sinit->sinit_max_instreams) {
1594 				asoc->c.sinit_max_instreams =
1595 					sinit->sinit_max_instreams;
1596 			}
1597 			if (sinit->sinit_max_attempts) {
1598 				asoc->max_init_attempts
1599 					= sinit->sinit_max_attempts;
1600 			}
1601 			if (sinit->sinit_max_init_timeo) {
1602 				asoc->max_init_timeo =
1603 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1604 			}
1605 		}
1606 
1607 		/* Prime the peer's transport structures.  */
1608 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1609 		if (!transport) {
1610 			err = -ENOMEM;
1611 			goto out_free;
1612 		}
1613 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1614 		if (err < 0) {
1615 			err = -ENOMEM;
1616 			goto out_free;
1617 		}
1618 	}
1619 
1620 	/* ASSERT: we have a valid association at this point.  */
1621 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1622 
1623 	if (!sinfo) {
1624 		/* If the user didn't specify SNDRCVINFO, make up one with
1625 		 * some defaults.
1626 		 */
1627 		default_sinfo.sinfo_stream = asoc->default_stream;
1628 		default_sinfo.sinfo_flags = asoc->default_flags;
1629 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1630 		default_sinfo.sinfo_context = asoc->default_context;
1631 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1632 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1633 		sinfo = &default_sinfo;
1634 	}
1635 
1636 	/* API 7.1.7, the sndbuf size per association bounds the
1637 	 * maximum size of data that can be sent in a single send call.
1638 	 */
1639 	if (msg_len > sk->sk_sndbuf) {
1640 		err = -EMSGSIZE;
1641 		goto out_free;
1642 	}
1643 
1644 	/* If fragmentation is disabled and the message length exceeds the
1645 	 * association fragmentation point, return EMSGSIZE.  The I-D
1646 	 * does not specify what this error is, but this looks like
1647 	 * a great fit.
1648 	 */
1649 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1650 		err = -EMSGSIZE;
1651 		goto out_free;
1652 	}
1653 
1654 	if (sinfo) {
1655 		/* Check for invalid stream. */
1656 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1657 			err = -EINVAL;
1658 			goto out_free;
1659 		}
1660 	}
1661 
1662 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1663 	if (!sctp_wspace(asoc)) {
1664 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1665 		if (err)
1666 			goto out_free;
1667 	}
1668 
1669 	/* If an address is passed with the sendto/sendmsg call, it is used
1670 	 * to override the primary destination address in the TCP model, or
1671 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1672 	 */
1673 	if ((sctp_style(sk, TCP) && msg_name) ||
1674 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1675 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1676 		if (!chunk_tp) {
1677 			err = -EINVAL;
1678 			goto out_free;
1679 		}
1680 	} else
1681 		chunk_tp = NULL;
1682 
1683 	/* Auto-connect, if we aren't connected already. */
1684 	if (sctp_state(asoc, CLOSED)) {
1685 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1686 		if (err < 0)
1687 			goto out_free;
1688 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1689 	}
1690 
1691 	/* Break the message into multiple chunks of maximum size. */
1692 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1693 	if (!datamsg) {
1694 		err = -ENOMEM;
1695 		goto out_free;
1696 	}
1697 
1698 	/* Now send the (possibly) fragmented message. */
1699 	list_for_each(pos, &datamsg->chunks) {
1700 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1701 		sctp_datamsg_track(chunk);
1702 
1703 		/* Do accounting for the write space.  */
1704 		sctp_set_owner_w(chunk);
1705 
1706 		chunk->transport = chunk_tp;
1707 
1708 		/* Send it to the lower layers.  Note:  all chunks
1709 		 * must either fail or succeed.   The lower layer
1710 		 * works that way today.  Keep it that way or this
1711 		 * breaks.
1712 		 */
1713 		err = sctp_primitive_SEND(asoc, chunk);
1714 		/* Did the lower layer accept the chunk? */
1715 		if (err)
1716 			sctp_chunk_free(chunk);
1717 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1718 	}
1719 
1720 	sctp_datamsg_free(datamsg);
1721 	if (err)
1722 		goto out_free;
1723 	else
1724 		err = msg_len;
1725 
1726 	/* If we are already past ASSOCIATE, the lower
1727 	 * layers are responsible for association cleanup.
1728 	 */
1729 	goto out_unlock;
1730 
1731 out_free:
1732 	if (new_asoc)
1733 		sctp_association_free(asoc);
1734 out_unlock:
1735 	sctp_release_sock(sk);
1736 
1737 out_nounlock:
1738 	return sctp_error(sk, msg_flags, err);
1739 
1740 #if 0
1741 do_sock_err:
1742 	if (msg_len)
1743 		err = msg_len;
1744 	else
1745 		err = sock_error(sk);
1746 	goto out;
1747 
1748 do_interrupted:
1749 	if (msg_len)
1750 		err = msg_len;
1751 	goto out;
1752 #endif /* 0 */
1753 }
1754 
1755 /* This is an extended version of skb_pull() that removes the data from the
1756  * start of a skb even when data is spread across the list of skb's in the
1757  * frag_list. len specifies the total amount of data that needs to be removed.
1758  * when 'len' bytes could be removed from the skb, it returns 0.
1759  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1760  * could not be removed.
1761  */
1762 static int sctp_skb_pull(struct sk_buff *skb, int len)
1763 {
1764 	struct sk_buff *list;
1765 	int skb_len = skb_headlen(skb);
1766 	int rlen;
1767 
1768 	if (len <= skb_len) {
1769 		__skb_pull(skb, len);
1770 		return 0;
1771 	}
1772 	len -= skb_len;
1773 	__skb_pull(skb, skb_len);
1774 
1775 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1776 		rlen = sctp_skb_pull(list, len);
1777 		skb->len -= (len-rlen);
1778 		skb->data_len -= (len-rlen);
1779 
1780 		if (!rlen)
1781 			return 0;
1782 
1783 		len = rlen;
1784 	}
1785 
1786 	return len;
1787 }
1788 
1789 /* API 3.1.3  recvmsg() - UDP Style Syntax
1790  *
1791  *  ssize_t recvmsg(int socket, struct msghdr *message,
1792  *                    int flags);
1793  *
1794  *  socket  - the socket descriptor of the endpoint.
1795  *  message - pointer to the msghdr structure which contains a single
1796  *            user message and possibly some ancillary data.
1797  *
1798  *            See Section 5 for complete description of the data
1799  *            structures.
1800  *
1801  *  flags   - flags sent or received with the user message, see Section
1802  *            5 for complete description of the flags.
1803  */
1804 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1805 
1806 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1807 			     struct msghdr *msg, size_t len, int noblock,
1808 			     int flags, int *addr_len)
1809 {
1810 	struct sctp_ulpevent *event = NULL;
1811 	struct sctp_sock *sp = sctp_sk(sk);
1812 	struct sk_buff *skb;
1813 	int copied;
1814 	int err = 0;
1815 	int skb_len;
1816 
1817 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1818 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1819 			  "len", len, "knoblauch", noblock,
1820 			  "flags", flags, "addr_len", addr_len);
1821 
1822 	sctp_lock_sock(sk);
1823 
1824 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1825 		err = -ENOTCONN;
1826 		goto out;
1827 	}
1828 
1829 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1830 	if (!skb)
1831 		goto out;
1832 
1833 	/* Get the total length of the skb including any skb's in the
1834 	 * frag_list.
1835 	 */
1836 	skb_len = skb->len;
1837 
1838 	copied = skb_len;
1839 	if (copied > len)
1840 		copied = len;
1841 
1842 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1843 
1844 	event = sctp_skb2event(skb);
1845 
1846 	if (err)
1847 		goto out_free;
1848 
1849 	sock_recv_timestamp(msg, sk, skb);
1850 	if (sctp_ulpevent_is_notification(event)) {
1851 		msg->msg_flags |= MSG_NOTIFICATION;
1852 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1853 	} else {
1854 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1855 	}
1856 
1857 	/* Check if we allow SCTP_SNDRCVINFO. */
1858 	if (sp->subscribe.sctp_data_io_event)
1859 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1860 #if 0
1861 	/* FIXME: we should be calling IP/IPv6 layers.  */
1862 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1863 		ip_cmsg_recv(msg, skb);
1864 #endif
1865 
1866 	err = copied;
1867 
1868 	/* If skb's length exceeds the user's buffer, update the skb and
1869 	 * push it back to the receive_queue so that the next call to
1870 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1871 	 */
1872 	if (skb_len > copied) {
1873 		msg->msg_flags &= ~MSG_EOR;
1874 		if (flags & MSG_PEEK)
1875 			goto out_free;
1876 		sctp_skb_pull(skb, copied);
1877 		skb_queue_head(&sk->sk_receive_queue, skb);
1878 
1879 		/* When only partial message is copied to the user, increase
1880 		 * rwnd by that amount. If all the data in the skb is read,
1881 		 * rwnd is updated when the event is freed.
1882 		 */
1883 		sctp_assoc_rwnd_increase(event->asoc, copied);
1884 		goto out;
1885 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1886 		   (event->msg_flags & MSG_EOR))
1887 		msg->msg_flags |= MSG_EOR;
1888 	else
1889 		msg->msg_flags &= ~MSG_EOR;
1890 
1891 out_free:
1892 	if (flags & MSG_PEEK) {
1893 		/* Release the skb reference acquired after peeking the skb in
1894 		 * sctp_skb_recv_datagram().
1895 		 */
1896 		kfree_skb(skb);
1897 	} else {
1898 		/* Free the event which includes releasing the reference to
1899 		 * the owner of the skb, freeing the skb and updating the
1900 		 * rwnd.
1901 		 */
1902 		sctp_ulpevent_free(event);
1903 	}
1904 out:
1905 	sctp_release_sock(sk);
1906 	return err;
1907 }
1908 
1909 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1910  *
1911  * This option is a on/off flag.  If enabled no SCTP message
1912  * fragmentation will be performed.  Instead if a message being sent
1913  * exceeds the current PMTU size, the message will NOT be sent and
1914  * instead a error will be indicated to the user.
1915  */
1916 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1917 					    char __user *optval, int optlen)
1918 {
1919 	int val;
1920 
1921 	if (optlen < sizeof(int))
1922 		return -EINVAL;
1923 
1924 	if (get_user(val, (int __user *)optval))
1925 		return -EFAULT;
1926 
1927 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1928 
1929 	return 0;
1930 }
1931 
1932 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1933 					int optlen)
1934 {
1935 	if (optlen != sizeof(struct sctp_event_subscribe))
1936 		return -EINVAL;
1937 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1938 		return -EFAULT;
1939 	return 0;
1940 }
1941 
1942 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1943  *
1944  * This socket option is applicable to the UDP-style socket only.  When
1945  * set it will cause associations that are idle for more than the
1946  * specified number of seconds to automatically close.  An association
1947  * being idle is defined an association that has NOT sent or received
1948  * user data.  The special value of '0' indicates that no automatic
1949  * close of any associations should be performed.  The option expects an
1950  * integer defining the number of seconds of idle time before an
1951  * association is closed.
1952  */
1953 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1954 					    int optlen)
1955 {
1956 	struct sctp_sock *sp = sctp_sk(sk);
1957 
1958 	/* Applicable to UDP-style socket only */
1959 	if (sctp_style(sk, TCP))
1960 		return -EOPNOTSUPP;
1961 	if (optlen != sizeof(int))
1962 		return -EINVAL;
1963 	if (copy_from_user(&sp->autoclose, optval, optlen))
1964 		return -EFAULT;
1965 
1966 	return 0;
1967 }
1968 
1969 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1970  *
1971  * Applications can enable or disable heartbeats for any peer address of
1972  * an association, modify an address's heartbeat interval, force a
1973  * heartbeat to be sent immediately, and adjust the address's maximum
1974  * number of retransmissions sent before an address is considered
1975  * unreachable.  The following structure is used to access and modify an
1976  * address's parameters:
1977  *
1978  *  struct sctp_paddrparams {
1979  *     sctp_assoc_t            spp_assoc_id;
1980  *     struct sockaddr_storage spp_address;
1981  *     uint32_t                spp_hbinterval;
1982  *     uint16_t                spp_pathmaxrxt;
1983  *     uint32_t                spp_pathmtu;
1984  *     uint32_t                spp_sackdelay;
1985  *     uint32_t                spp_flags;
1986  * };
1987  *
1988  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1989  *                     application, and identifies the association for
1990  *                     this query.
1991  *   spp_address     - This specifies which address is of interest.
1992  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1993  *                     in milliseconds.  If a  value of zero
1994  *                     is present in this field then no changes are to
1995  *                     be made to this parameter.
1996  *   spp_pathmaxrxt  - This contains the maximum number of
1997  *                     retransmissions before this address shall be
1998  *                     considered unreachable. If a  value of zero
1999  *                     is present in this field then no changes are to
2000  *                     be made to this parameter.
2001  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2002  *                     specified here will be the "fixed" path mtu.
2003  *                     Note that if the spp_address field is empty
2004  *                     then all associations on this address will
2005  *                     have this fixed path mtu set upon them.
2006  *
2007  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2008  *                     the number of milliseconds that sacks will be delayed
2009  *                     for. This value will apply to all addresses of an
2010  *                     association if the spp_address field is empty. Note
2011  *                     also, that if delayed sack is enabled and this
2012  *                     value is set to 0, no change is made to the last
2013  *                     recorded delayed sack timer value.
2014  *
2015  *   spp_flags       - These flags are used to control various features
2016  *                     on an association. The flag field may contain
2017  *                     zero or more of the following options.
2018  *
2019  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2020  *                     specified address. Note that if the address
2021  *                     field is empty all addresses for the association
2022  *                     have heartbeats enabled upon them.
2023  *
2024  *                     SPP_HB_DISABLE - Disable heartbeats on the
2025  *                     speicifed address. Note that if the address
2026  *                     field is empty all addresses for the association
2027  *                     will have their heartbeats disabled. Note also
2028  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2029  *                     mutually exclusive, only one of these two should
2030  *                     be specified. Enabling both fields will have
2031  *                     undetermined results.
2032  *
2033  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2034  *                     to be made immediately.
2035  *
2036  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2037  *                     discovery upon the specified address. Note that
2038  *                     if the address feild is empty then all addresses
2039  *                     on the association are effected.
2040  *
2041  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2042  *                     discovery upon the specified address. Note that
2043  *                     if the address feild is empty then all addresses
2044  *                     on the association are effected. Not also that
2045  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2046  *                     exclusive. Enabling both will have undetermined
2047  *                     results.
2048  *
2049  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2050  *                     on delayed sack. The time specified in spp_sackdelay
2051  *                     is used to specify the sack delay for this address. Note
2052  *                     that if spp_address is empty then all addresses will
2053  *                     enable delayed sack and take on the sack delay
2054  *                     value specified in spp_sackdelay.
2055  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2056  *                     off delayed sack. If the spp_address field is blank then
2057  *                     delayed sack is disabled for the entire association. Note
2058  *                     also that this field is mutually exclusive to
2059  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2060  *                     results.
2061  */
2062 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2063 				       struct sctp_transport   *trans,
2064 				       struct sctp_association *asoc,
2065 				       struct sctp_sock        *sp,
2066 				       int                      hb_change,
2067 				       int                      pmtud_change,
2068 				       int                      sackdelay_change)
2069 {
2070 	int error;
2071 
2072 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2073 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2074 		if (error)
2075 			return error;
2076 	}
2077 
2078 	if (params->spp_hbinterval) {
2079 		if (trans) {
2080 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2081 		} else if (asoc) {
2082 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2083 		} else {
2084 			sp->hbinterval = params->spp_hbinterval;
2085 		}
2086 	}
2087 
2088 	if (hb_change) {
2089 		if (trans) {
2090 			trans->param_flags =
2091 				(trans->param_flags & ~SPP_HB) | hb_change;
2092 		} else if (asoc) {
2093 			asoc->param_flags =
2094 				(asoc->param_flags & ~SPP_HB) | hb_change;
2095 		} else {
2096 			sp->param_flags =
2097 				(sp->param_flags & ~SPP_HB) | hb_change;
2098 		}
2099 	}
2100 
2101 	if (params->spp_pathmtu) {
2102 		if (trans) {
2103 			trans->pathmtu = params->spp_pathmtu;
2104 			sctp_assoc_sync_pmtu(asoc);
2105 		} else if (asoc) {
2106 			asoc->pathmtu = params->spp_pathmtu;
2107 			sctp_frag_point(sp, params->spp_pathmtu);
2108 		} else {
2109 			sp->pathmtu = params->spp_pathmtu;
2110 		}
2111 	}
2112 
2113 	if (pmtud_change) {
2114 		if (trans) {
2115 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2116 				(params->spp_flags & SPP_PMTUD_ENABLE);
2117 			trans->param_flags =
2118 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2119 			if (update) {
2120 				sctp_transport_pmtu(trans);
2121 				sctp_assoc_sync_pmtu(asoc);
2122 			}
2123 		} else if (asoc) {
2124 			asoc->param_flags =
2125 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2126 		} else {
2127 			sp->param_flags =
2128 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2129 		}
2130 	}
2131 
2132 	if (params->spp_sackdelay) {
2133 		if (trans) {
2134 			trans->sackdelay =
2135 				msecs_to_jiffies(params->spp_sackdelay);
2136 		} else if (asoc) {
2137 			asoc->sackdelay =
2138 				msecs_to_jiffies(params->spp_sackdelay);
2139 		} else {
2140 			sp->sackdelay = params->spp_sackdelay;
2141 		}
2142 	}
2143 
2144 	if (sackdelay_change) {
2145 		if (trans) {
2146 			trans->param_flags =
2147 				(trans->param_flags & ~SPP_SACKDELAY) |
2148 				sackdelay_change;
2149 		} else if (asoc) {
2150 			asoc->param_flags =
2151 				(asoc->param_flags & ~SPP_SACKDELAY) |
2152 				sackdelay_change;
2153 		} else {
2154 			sp->param_flags =
2155 				(sp->param_flags & ~SPP_SACKDELAY) |
2156 				sackdelay_change;
2157 		}
2158 	}
2159 
2160 	if (params->spp_pathmaxrxt) {
2161 		if (trans) {
2162 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2163 		} else if (asoc) {
2164 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2165 		} else {
2166 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2167 		}
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2174 					    char __user *optval, int optlen)
2175 {
2176 	struct sctp_paddrparams  params;
2177 	struct sctp_transport   *trans = NULL;
2178 	struct sctp_association *asoc = NULL;
2179 	struct sctp_sock        *sp = sctp_sk(sk);
2180 	int error;
2181 	int hb_change, pmtud_change, sackdelay_change;
2182 
2183 	if (optlen != sizeof(struct sctp_paddrparams))
2184 		return - EINVAL;
2185 
2186 	if (copy_from_user(&params, optval, optlen))
2187 		return -EFAULT;
2188 
2189 	/* Validate flags and value parameters. */
2190 	hb_change        = params.spp_flags & SPP_HB;
2191 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2192 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2193 
2194 	if (hb_change        == SPP_HB ||
2195 	    pmtud_change     == SPP_PMTUD ||
2196 	    sackdelay_change == SPP_SACKDELAY ||
2197 	    params.spp_sackdelay > 500 ||
2198 	    (params.spp_pathmtu
2199 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2200 		return -EINVAL;
2201 
2202 	/* If an address other than INADDR_ANY is specified, and
2203 	 * no transport is found, then the request is invalid.
2204 	 */
2205 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2206 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2207 					       params.spp_assoc_id);
2208 		if (!trans)
2209 			return -EINVAL;
2210 	}
2211 
2212 	/* Get association, if assoc_id != 0 and the socket is a one
2213 	 * to many style socket, and an association was not found, then
2214 	 * the id was invalid.
2215 	 */
2216 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2217 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2218 		return -EINVAL;
2219 
2220 	/* Heartbeat demand can only be sent on a transport or
2221 	 * association, but not a socket.
2222 	 */
2223 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2224 		return -EINVAL;
2225 
2226 	/* Process parameters. */
2227 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2228 					    hb_change, pmtud_change,
2229 					    sackdelay_change);
2230 
2231 	if (error)
2232 		return error;
2233 
2234 	/* If changes are for association, also apply parameters to each
2235 	 * transport.
2236 	 */
2237 	if (!trans && asoc) {
2238 		struct list_head *pos;
2239 
2240 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2241 			trans = list_entry(pos, struct sctp_transport,
2242 					   transports);
2243 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2244 						    hb_change, pmtud_change,
2245 						    sackdelay_change);
2246 		}
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2253  *
2254  *   This options will get or set the delayed ack timer.  The time is set
2255  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2256  *   endpoints default delayed ack timer value.  If the assoc_id field is
2257  *   non-zero, then the set or get effects the specified association.
2258  *
2259  *   struct sctp_assoc_value {
2260  *       sctp_assoc_t            assoc_id;
2261  *       uint32_t                assoc_value;
2262  *   };
2263  *
2264  *     assoc_id    - This parameter, indicates which association the
2265  *                   user is preforming an action upon. Note that if
2266  *                   this field's value is zero then the endpoints
2267  *                   default value is changed (effecting future
2268  *                   associations only).
2269  *
2270  *     assoc_value - This parameter contains the number of milliseconds
2271  *                   that the user is requesting the delayed ACK timer
2272  *                   be set to. Note that this value is defined in
2273  *                   the standard to be between 200 and 500 milliseconds.
2274  *
2275  *                   Note: a value of zero will leave the value alone,
2276  *                   but disable SACK delay. A non-zero value will also
2277  *                   enable SACK delay.
2278  */
2279 
2280 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2281 					    char __user *optval, int optlen)
2282 {
2283 	struct sctp_assoc_value  params;
2284 	struct sctp_transport   *trans = NULL;
2285 	struct sctp_association *asoc = NULL;
2286 	struct sctp_sock        *sp = sctp_sk(sk);
2287 
2288 	if (optlen != sizeof(struct sctp_assoc_value))
2289 		return - EINVAL;
2290 
2291 	if (copy_from_user(&params, optval, optlen))
2292 		return -EFAULT;
2293 
2294 	/* Validate value parameter. */
2295 	if (params.assoc_value > 500)
2296 		return -EINVAL;
2297 
2298 	/* Get association, if assoc_id != 0 and the socket is a one
2299 	 * to many style socket, and an association was not found, then
2300 	 * the id was invalid.
2301  	 */
2302 	asoc = sctp_id2assoc(sk, params.assoc_id);
2303 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2304 		return -EINVAL;
2305 
2306 	if (params.assoc_value) {
2307 		if (asoc) {
2308 			asoc->sackdelay =
2309 				msecs_to_jiffies(params.assoc_value);
2310 			asoc->param_flags =
2311 				(asoc->param_flags & ~SPP_SACKDELAY) |
2312 				SPP_SACKDELAY_ENABLE;
2313 		} else {
2314 			sp->sackdelay = params.assoc_value;
2315 			sp->param_flags =
2316 				(sp->param_flags & ~SPP_SACKDELAY) |
2317 				SPP_SACKDELAY_ENABLE;
2318 		}
2319 	} else {
2320 		if (asoc) {
2321 			asoc->param_flags =
2322 				(asoc->param_flags & ~SPP_SACKDELAY) |
2323 				SPP_SACKDELAY_DISABLE;
2324 		} else {
2325 			sp->param_flags =
2326 				(sp->param_flags & ~SPP_SACKDELAY) |
2327 				SPP_SACKDELAY_DISABLE;
2328 		}
2329 	}
2330 
2331 	/* If change is for association, also apply to each transport. */
2332 	if (asoc) {
2333 		struct list_head *pos;
2334 
2335 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2336 			trans = list_entry(pos, struct sctp_transport,
2337 					   transports);
2338 			if (params.assoc_value) {
2339 				trans->sackdelay =
2340 					msecs_to_jiffies(params.assoc_value);
2341 				trans->param_flags =
2342 					(trans->param_flags & ~SPP_SACKDELAY) |
2343 					SPP_SACKDELAY_ENABLE;
2344 			} else {
2345 				trans->param_flags =
2346 					(trans->param_flags & ~SPP_SACKDELAY) |
2347 					SPP_SACKDELAY_DISABLE;
2348 			}
2349 		}
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2356  *
2357  * Applications can specify protocol parameters for the default association
2358  * initialization.  The option name argument to setsockopt() and getsockopt()
2359  * is SCTP_INITMSG.
2360  *
2361  * Setting initialization parameters is effective only on an unconnected
2362  * socket (for UDP-style sockets only future associations are effected
2363  * by the change).  With TCP-style sockets, this option is inherited by
2364  * sockets derived from a listener socket.
2365  */
2366 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2367 {
2368 	struct sctp_initmsg sinit;
2369 	struct sctp_sock *sp = sctp_sk(sk);
2370 
2371 	if (optlen != sizeof(struct sctp_initmsg))
2372 		return -EINVAL;
2373 	if (copy_from_user(&sinit, optval, optlen))
2374 		return -EFAULT;
2375 
2376 	if (sinit.sinit_num_ostreams)
2377 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2378 	if (sinit.sinit_max_instreams)
2379 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2380 	if (sinit.sinit_max_attempts)
2381 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2382 	if (sinit.sinit_max_init_timeo)
2383 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2384 
2385 	return 0;
2386 }
2387 
2388 /*
2389  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2390  *
2391  *   Applications that wish to use the sendto() system call may wish to
2392  *   specify a default set of parameters that would normally be supplied
2393  *   through the inclusion of ancillary data.  This socket option allows
2394  *   such an application to set the default sctp_sndrcvinfo structure.
2395  *   The application that wishes to use this socket option simply passes
2396  *   in to this call the sctp_sndrcvinfo structure defined in Section
2397  *   5.2.2) The input parameters accepted by this call include
2398  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2399  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2400  *   to this call if the caller is using the UDP model.
2401  */
2402 static int sctp_setsockopt_default_send_param(struct sock *sk,
2403 						char __user *optval, int optlen)
2404 {
2405 	struct sctp_sndrcvinfo info;
2406 	struct sctp_association *asoc;
2407 	struct sctp_sock *sp = sctp_sk(sk);
2408 
2409 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2410 		return -EINVAL;
2411 	if (copy_from_user(&info, optval, optlen))
2412 		return -EFAULT;
2413 
2414 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2415 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2416 		return -EINVAL;
2417 
2418 	if (asoc) {
2419 		asoc->default_stream = info.sinfo_stream;
2420 		asoc->default_flags = info.sinfo_flags;
2421 		asoc->default_ppid = info.sinfo_ppid;
2422 		asoc->default_context = info.sinfo_context;
2423 		asoc->default_timetolive = info.sinfo_timetolive;
2424 	} else {
2425 		sp->default_stream = info.sinfo_stream;
2426 		sp->default_flags = info.sinfo_flags;
2427 		sp->default_ppid = info.sinfo_ppid;
2428 		sp->default_context = info.sinfo_context;
2429 		sp->default_timetolive = info.sinfo_timetolive;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2436  *
2437  * Requests that the local SCTP stack use the enclosed peer address as
2438  * the association primary.  The enclosed address must be one of the
2439  * association peer's addresses.
2440  */
2441 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2442 					int optlen)
2443 {
2444 	struct sctp_prim prim;
2445 	struct sctp_transport *trans;
2446 
2447 	if (optlen != sizeof(struct sctp_prim))
2448 		return -EINVAL;
2449 
2450 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2451 		return -EFAULT;
2452 
2453 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2454 	if (!trans)
2455 		return -EINVAL;
2456 
2457 	sctp_assoc_set_primary(trans->asoc, trans);
2458 
2459 	return 0;
2460 }
2461 
2462 /*
2463  * 7.1.5 SCTP_NODELAY
2464  *
2465  * Turn on/off any Nagle-like algorithm.  This means that packets are
2466  * generally sent as soon as possible and no unnecessary delays are
2467  * introduced, at the cost of more packets in the network.  Expects an
2468  *  integer boolean flag.
2469  */
2470 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2471 					int optlen)
2472 {
2473 	int val;
2474 
2475 	if (optlen < sizeof(int))
2476 		return -EINVAL;
2477 	if (get_user(val, (int __user *)optval))
2478 		return -EFAULT;
2479 
2480 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2481 	return 0;
2482 }
2483 
2484 /*
2485  *
2486  * 7.1.1 SCTP_RTOINFO
2487  *
2488  * The protocol parameters used to initialize and bound retransmission
2489  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2490  * and modify these parameters.
2491  * All parameters are time values, in milliseconds.  A value of 0, when
2492  * modifying the parameters, indicates that the current value should not
2493  * be changed.
2494  *
2495  */
2496 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2497 	struct sctp_rtoinfo rtoinfo;
2498 	struct sctp_association *asoc;
2499 
2500 	if (optlen != sizeof (struct sctp_rtoinfo))
2501 		return -EINVAL;
2502 
2503 	if (copy_from_user(&rtoinfo, optval, optlen))
2504 		return -EFAULT;
2505 
2506 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2507 
2508 	/* Set the values to the specific association */
2509 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2510 		return -EINVAL;
2511 
2512 	if (asoc) {
2513 		if (rtoinfo.srto_initial != 0)
2514 			asoc->rto_initial =
2515 				msecs_to_jiffies(rtoinfo.srto_initial);
2516 		if (rtoinfo.srto_max != 0)
2517 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2518 		if (rtoinfo.srto_min != 0)
2519 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2520 	} else {
2521 		/* If there is no association or the association-id = 0
2522 		 * set the values to the endpoint.
2523 		 */
2524 		struct sctp_sock *sp = sctp_sk(sk);
2525 
2526 		if (rtoinfo.srto_initial != 0)
2527 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2528 		if (rtoinfo.srto_max != 0)
2529 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2530 		if (rtoinfo.srto_min != 0)
2531 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 /*
2538  *
2539  * 7.1.2 SCTP_ASSOCINFO
2540  *
2541  * This option is used to tune the the maximum retransmission attempts
2542  * of the association.
2543  * Returns an error if the new association retransmission value is
2544  * greater than the sum of the retransmission value  of the peer.
2545  * See [SCTP] for more information.
2546  *
2547  */
2548 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2549 {
2550 
2551 	struct sctp_assocparams assocparams;
2552 	struct sctp_association *asoc;
2553 
2554 	if (optlen != sizeof(struct sctp_assocparams))
2555 		return -EINVAL;
2556 	if (copy_from_user(&assocparams, optval, optlen))
2557 		return -EFAULT;
2558 
2559 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2560 
2561 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2562 		return -EINVAL;
2563 
2564 	/* Set the values to the specific association */
2565 	if (asoc) {
2566 		if (assocparams.sasoc_asocmaxrxt != 0) {
2567 			__u32 path_sum = 0;
2568 			int   paths = 0;
2569 			struct list_head *pos;
2570 			struct sctp_transport *peer_addr;
2571 
2572 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2573 				peer_addr = list_entry(pos,
2574 						struct sctp_transport,
2575 						transports);
2576 				path_sum += peer_addr->pathmaxrxt;
2577 				paths++;
2578 			}
2579 
2580 			/* Only validate asocmaxrxt if we have more then
2581 			 * one path/transport.  We do this because path
2582 			 * retransmissions are only counted when we have more
2583 			 * then one path.
2584 			 */
2585 			if (paths > 1 &&
2586 			    assocparams.sasoc_asocmaxrxt > path_sum)
2587 				return -EINVAL;
2588 
2589 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2590 		}
2591 
2592 		if (assocparams.sasoc_cookie_life != 0) {
2593 			asoc->cookie_life.tv_sec =
2594 					assocparams.sasoc_cookie_life / 1000;
2595 			asoc->cookie_life.tv_usec =
2596 					(assocparams.sasoc_cookie_life % 1000)
2597 					* 1000;
2598 		}
2599 	} else {
2600 		/* Set the values to the endpoint */
2601 		struct sctp_sock *sp = sctp_sk(sk);
2602 
2603 		if (assocparams.sasoc_asocmaxrxt != 0)
2604 			sp->assocparams.sasoc_asocmaxrxt =
2605 						assocparams.sasoc_asocmaxrxt;
2606 		if (assocparams.sasoc_cookie_life != 0)
2607 			sp->assocparams.sasoc_cookie_life =
2608 						assocparams.sasoc_cookie_life;
2609 	}
2610 	return 0;
2611 }
2612 
2613 /*
2614  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2615  *
2616  * This socket option is a boolean flag which turns on or off mapped V4
2617  * addresses.  If this option is turned on and the socket is type
2618  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2619  * If this option is turned off, then no mapping will be done of V4
2620  * addresses and a user will receive both PF_INET6 and PF_INET type
2621  * addresses on the socket.
2622  */
2623 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2624 {
2625 	int val;
2626 	struct sctp_sock *sp = sctp_sk(sk);
2627 
2628 	if (optlen < sizeof(int))
2629 		return -EINVAL;
2630 	if (get_user(val, (int __user *)optval))
2631 		return -EFAULT;
2632 	if (val)
2633 		sp->v4mapped = 1;
2634 	else
2635 		sp->v4mapped = 0;
2636 
2637 	return 0;
2638 }
2639 
2640 /*
2641  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2642  *
2643  * This socket option specifies the maximum size to put in any outgoing
2644  * SCTP chunk.  If a message is larger than this size it will be
2645  * fragmented by SCTP into the specified size.  Note that the underlying
2646  * SCTP implementation may fragment into smaller sized chunks when the
2647  * PMTU of the underlying association is smaller than the value set by
2648  * the user.
2649  */
2650 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2651 {
2652 	struct sctp_association *asoc;
2653 	struct list_head *pos;
2654 	struct sctp_sock *sp = sctp_sk(sk);
2655 	int val;
2656 
2657 	if (optlen < sizeof(int))
2658 		return -EINVAL;
2659 	if (get_user(val, (int __user *)optval))
2660 		return -EFAULT;
2661 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2662 		return -EINVAL;
2663 	sp->user_frag = val;
2664 
2665 	/* Update the frag_point of the existing associations. */
2666 	list_for_each(pos, &(sp->ep->asocs)) {
2667 		asoc = list_entry(pos, struct sctp_association, asocs);
2668 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 
2675 /*
2676  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2677  *
2678  *   Requests that the peer mark the enclosed address as the association
2679  *   primary. The enclosed address must be one of the association's
2680  *   locally bound addresses. The following structure is used to make a
2681  *   set primary request:
2682  */
2683 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2684 					     int optlen)
2685 {
2686 	struct sctp_sock	*sp;
2687 	struct sctp_endpoint	*ep;
2688 	struct sctp_association	*asoc = NULL;
2689 	struct sctp_setpeerprim	prim;
2690 	struct sctp_chunk	*chunk;
2691 	int 			err;
2692 
2693 	sp = sctp_sk(sk);
2694 	ep = sp->ep;
2695 
2696 	if (!sctp_addip_enable)
2697 		return -EPERM;
2698 
2699 	if (optlen != sizeof(struct sctp_setpeerprim))
2700 		return -EINVAL;
2701 
2702 	if (copy_from_user(&prim, optval, optlen))
2703 		return -EFAULT;
2704 
2705 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2706 	if (!asoc)
2707 		return -EINVAL;
2708 
2709 	if (!asoc->peer.asconf_capable)
2710 		return -EPERM;
2711 
2712 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2713 		return -EPERM;
2714 
2715 	if (!sctp_state(asoc, ESTABLISHED))
2716 		return -ENOTCONN;
2717 
2718 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2719 		return -EADDRNOTAVAIL;
2720 
2721 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2722 	chunk = sctp_make_asconf_set_prim(asoc,
2723 					  (union sctp_addr *)&prim.sspp_addr);
2724 	if (!chunk)
2725 		return -ENOMEM;
2726 
2727 	err = sctp_send_asconf(asoc, chunk);
2728 
2729 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2730 
2731 	return err;
2732 }
2733 
2734 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2735 					  int optlen)
2736 {
2737 	struct sctp_setadaption adaption;
2738 
2739 	if (optlen != sizeof(struct sctp_setadaption))
2740 		return -EINVAL;
2741 	if (copy_from_user(&adaption, optval, optlen))
2742 		return -EFAULT;
2743 
2744 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2745 
2746 	return 0;
2747 }
2748 
2749 /* API 6.2 setsockopt(), getsockopt()
2750  *
2751  * Applications use setsockopt() and getsockopt() to set or retrieve
2752  * socket options.  Socket options are used to change the default
2753  * behavior of sockets calls.  They are described in Section 7.
2754  *
2755  * The syntax is:
2756  *
2757  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2758  *                    int __user *optlen);
2759  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2760  *                    int optlen);
2761  *
2762  *   sd      - the socket descript.
2763  *   level   - set to IPPROTO_SCTP for all SCTP options.
2764  *   optname - the option name.
2765  *   optval  - the buffer to store the value of the option.
2766  *   optlen  - the size of the buffer.
2767  */
2768 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2769 				char __user *optval, int optlen)
2770 {
2771 	int retval = 0;
2772 
2773 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2774 			  sk, optname);
2775 
2776 	/* I can hardly begin to describe how wrong this is.  This is
2777 	 * so broken as to be worse than useless.  The API draft
2778 	 * REALLY is NOT helpful here...  I am not convinced that the
2779 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2780 	 * are at all well-founded.
2781 	 */
2782 	if (level != SOL_SCTP) {
2783 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2784 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2785 		goto out_nounlock;
2786 	}
2787 
2788 	sctp_lock_sock(sk);
2789 
2790 	switch (optname) {
2791 	case SCTP_SOCKOPT_BINDX_ADD:
2792 		/* 'optlen' is the size of the addresses buffer. */
2793 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2794 					       optlen, SCTP_BINDX_ADD_ADDR);
2795 		break;
2796 
2797 	case SCTP_SOCKOPT_BINDX_REM:
2798 		/* 'optlen' is the size of the addresses buffer. */
2799 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2800 					       optlen, SCTP_BINDX_REM_ADDR);
2801 		break;
2802 
2803 	case SCTP_SOCKOPT_CONNECTX:
2804 		/* 'optlen' is the size of the addresses buffer. */
2805 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2806 					       optlen);
2807 		break;
2808 
2809 	case SCTP_DISABLE_FRAGMENTS:
2810 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2811 		break;
2812 
2813 	case SCTP_EVENTS:
2814 		retval = sctp_setsockopt_events(sk, optval, optlen);
2815 		break;
2816 
2817 	case SCTP_AUTOCLOSE:
2818 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2819 		break;
2820 
2821 	case SCTP_PEER_ADDR_PARAMS:
2822 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2823 		break;
2824 
2825 	case SCTP_DELAYED_ACK_TIME:
2826 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2827 		break;
2828 
2829 	case SCTP_INITMSG:
2830 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2831 		break;
2832 	case SCTP_DEFAULT_SEND_PARAM:
2833 		retval = sctp_setsockopt_default_send_param(sk, optval,
2834 							    optlen);
2835 		break;
2836 	case SCTP_PRIMARY_ADDR:
2837 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2838 		break;
2839 	case SCTP_SET_PEER_PRIMARY_ADDR:
2840 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2841 		break;
2842 	case SCTP_NODELAY:
2843 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2844 		break;
2845 	case SCTP_RTOINFO:
2846 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2847 		break;
2848 	case SCTP_ASSOCINFO:
2849 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2850 		break;
2851 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2852 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2853 		break;
2854 	case SCTP_MAXSEG:
2855 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2856 		break;
2857 	case SCTP_ADAPTION_LAYER:
2858 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2859 		break;
2860 
2861 	default:
2862 		retval = -ENOPROTOOPT;
2863 		break;
2864 	};
2865 
2866 	sctp_release_sock(sk);
2867 
2868 out_nounlock:
2869 	return retval;
2870 }
2871 
2872 /* API 3.1.6 connect() - UDP Style Syntax
2873  *
2874  * An application may use the connect() call in the UDP model to initiate an
2875  * association without sending data.
2876  *
2877  * The syntax is:
2878  *
2879  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2880  *
2881  * sd: the socket descriptor to have a new association added to.
2882  *
2883  * nam: the address structure (either struct sockaddr_in or struct
2884  *    sockaddr_in6 defined in RFC2553 [7]).
2885  *
2886  * len: the size of the address.
2887  */
2888 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2889 			     int addr_len)
2890 {
2891 	int err = 0;
2892 	struct sctp_af *af;
2893 
2894 	sctp_lock_sock(sk);
2895 
2896 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2897 			  __FUNCTION__, sk, addr, addr_len);
2898 
2899 	/* Validate addr_len before calling common connect/connectx routine. */
2900 	af = sctp_get_af_specific(addr->sa_family);
2901 	if (!af || addr_len < af->sockaddr_len) {
2902 		err = -EINVAL;
2903 	} else {
2904 		/* Pass correct addr len to common routine (so it knows there
2905 		 * is only one address being passed.
2906 		 */
2907 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2908 	}
2909 
2910 	sctp_release_sock(sk);
2911 	return err;
2912 }
2913 
2914 /* FIXME: Write comments. */
2915 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2916 {
2917 	return -EOPNOTSUPP; /* STUB */
2918 }
2919 
2920 /* 4.1.4 accept() - TCP Style Syntax
2921  *
2922  * Applications use accept() call to remove an established SCTP
2923  * association from the accept queue of the endpoint.  A new socket
2924  * descriptor will be returned from accept() to represent the newly
2925  * formed association.
2926  */
2927 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2928 {
2929 	struct sctp_sock *sp;
2930 	struct sctp_endpoint *ep;
2931 	struct sock *newsk = NULL;
2932 	struct sctp_association *asoc;
2933 	long timeo;
2934 	int error = 0;
2935 
2936 	sctp_lock_sock(sk);
2937 
2938 	sp = sctp_sk(sk);
2939 	ep = sp->ep;
2940 
2941 	if (!sctp_style(sk, TCP)) {
2942 		error = -EOPNOTSUPP;
2943 		goto out;
2944 	}
2945 
2946 	if (!sctp_sstate(sk, LISTENING)) {
2947 		error = -EINVAL;
2948 		goto out;
2949 	}
2950 
2951 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
2952 
2953 	error = sctp_wait_for_accept(sk, timeo);
2954 	if (error)
2955 		goto out;
2956 
2957 	/* We treat the list of associations on the endpoint as the accept
2958 	 * queue and pick the first association on the list.
2959 	 */
2960 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2961 
2962 	newsk = sp->pf->create_accept_sk(sk, asoc);
2963 	if (!newsk) {
2964 		error = -ENOMEM;
2965 		goto out;
2966 	}
2967 
2968 	/* Populate the fields of the newsk from the oldsk and migrate the
2969 	 * asoc to the newsk.
2970 	 */
2971 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2972 
2973 out:
2974 	sctp_release_sock(sk);
2975  	*err = error;
2976 	return newsk;
2977 }
2978 
2979 /* The SCTP ioctl handler. */
2980 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2981 {
2982 	return -ENOIOCTLCMD;
2983 }
2984 
2985 /* This is the function which gets called during socket creation to
2986  * initialized the SCTP-specific portion of the sock.
2987  * The sock structure should already be zero-filled memory.
2988  */
2989 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2990 {
2991 	struct sctp_endpoint *ep;
2992 	struct sctp_sock *sp;
2993 
2994 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2995 
2996 	sp = sctp_sk(sk);
2997 
2998 	/* Initialize the SCTP per socket area.  */
2999 	switch (sk->sk_type) {
3000 	case SOCK_SEQPACKET:
3001 		sp->type = SCTP_SOCKET_UDP;
3002 		break;
3003 	case SOCK_STREAM:
3004 		sp->type = SCTP_SOCKET_TCP;
3005 		break;
3006 	default:
3007 		return -ESOCKTNOSUPPORT;
3008 	}
3009 
3010 	/* Initialize default send parameters. These parameters can be
3011 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3012 	 */
3013 	sp->default_stream = 0;
3014 	sp->default_ppid = 0;
3015 	sp->default_flags = 0;
3016 	sp->default_context = 0;
3017 	sp->default_timetolive = 0;
3018 
3019 	/* Initialize default setup parameters. These parameters
3020 	 * can be modified with the SCTP_INITMSG socket option or
3021 	 * overridden by the SCTP_INIT CMSG.
3022 	 */
3023 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3024 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3025 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3026 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3027 
3028 	/* Initialize default RTO related parameters.  These parameters can
3029 	 * be modified for with the SCTP_RTOINFO socket option.
3030 	 */
3031 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3032 	sp->rtoinfo.srto_max     = sctp_rto_max;
3033 	sp->rtoinfo.srto_min     = sctp_rto_min;
3034 
3035 	/* Initialize default association related parameters. These parameters
3036 	 * can be modified with the SCTP_ASSOCINFO socket option.
3037 	 */
3038 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3039 	sp->assocparams.sasoc_number_peer_destinations = 0;
3040 	sp->assocparams.sasoc_peer_rwnd = 0;
3041 	sp->assocparams.sasoc_local_rwnd = 0;
3042 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3043 
3044 	/* Initialize default event subscriptions. By default, all the
3045 	 * options are off.
3046 	 */
3047 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3048 
3049 	/* Default Peer Address Parameters.  These defaults can
3050 	 * be modified via SCTP_PEER_ADDR_PARAMS
3051 	 */
3052 	sp->hbinterval  = sctp_hb_interval;
3053 	sp->pathmaxrxt  = sctp_max_retrans_path;
3054 	sp->pathmtu     = 0; // allow default discovery
3055 	sp->sackdelay   = sctp_sack_timeout;
3056 	sp->param_flags = SPP_HB_ENABLE |
3057 	                  SPP_PMTUD_ENABLE |
3058 	                  SPP_SACKDELAY_ENABLE;
3059 
3060 	/* If enabled no SCTP message fragmentation will be performed.
3061 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3062 	 */
3063 	sp->disable_fragments = 0;
3064 
3065 	/* Enable Nagle algorithm by default.  */
3066 	sp->nodelay           = 0;
3067 
3068 	/* Enable by default. */
3069 	sp->v4mapped          = 1;
3070 
3071 	/* Auto-close idle associations after the configured
3072 	 * number of seconds.  A value of 0 disables this
3073 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3074 	 * for UDP-style sockets only.
3075 	 */
3076 	sp->autoclose         = 0;
3077 
3078 	/* User specified fragmentation limit. */
3079 	sp->user_frag         = 0;
3080 
3081 	sp->adaption_ind = 0;
3082 
3083 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3084 
3085 	/* Control variables for partial data delivery. */
3086 	sp->pd_mode           = 0;
3087 	skb_queue_head_init(&sp->pd_lobby);
3088 
3089 	/* Create a per socket endpoint structure.  Even if we
3090 	 * change the data structure relationships, this may still
3091 	 * be useful for storing pre-connect address information.
3092 	 */
3093 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3094 	if (!ep)
3095 		return -ENOMEM;
3096 
3097 	sp->ep = ep;
3098 	sp->hmac = NULL;
3099 
3100 	SCTP_DBG_OBJCNT_INC(sock);
3101 	return 0;
3102 }
3103 
3104 /* Cleanup any SCTP per socket resources.  */
3105 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3106 {
3107 	struct sctp_endpoint *ep;
3108 
3109 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3110 
3111 	/* Release our hold on the endpoint. */
3112 	ep = sctp_sk(sk)->ep;
3113 	sctp_endpoint_free(ep);
3114 
3115 	return 0;
3116 }
3117 
3118 /* API 4.1.7 shutdown() - TCP Style Syntax
3119  *     int shutdown(int socket, int how);
3120  *
3121  *     sd      - the socket descriptor of the association to be closed.
3122  *     how     - Specifies the type of shutdown.  The  values  are
3123  *               as follows:
3124  *               SHUT_RD
3125  *                     Disables further receive operations. No SCTP
3126  *                     protocol action is taken.
3127  *               SHUT_WR
3128  *                     Disables further send operations, and initiates
3129  *                     the SCTP shutdown sequence.
3130  *               SHUT_RDWR
3131  *                     Disables further send  and  receive  operations
3132  *                     and initiates the SCTP shutdown sequence.
3133  */
3134 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3135 {
3136 	struct sctp_endpoint *ep;
3137 	struct sctp_association *asoc;
3138 
3139 	if (!sctp_style(sk, TCP))
3140 		return;
3141 
3142 	if (how & SEND_SHUTDOWN) {
3143 		ep = sctp_sk(sk)->ep;
3144 		if (!list_empty(&ep->asocs)) {
3145 			asoc = list_entry(ep->asocs.next,
3146 					  struct sctp_association, asocs);
3147 			sctp_primitive_SHUTDOWN(asoc, NULL);
3148 		}
3149 	}
3150 }
3151 
3152 /* 7.2.1 Association Status (SCTP_STATUS)
3153 
3154  * Applications can retrieve current status information about an
3155  * association, including association state, peer receiver window size,
3156  * number of unacked data chunks, and number of data chunks pending
3157  * receipt.  This information is read-only.
3158  */
3159 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3160 				       char __user *optval,
3161 				       int __user *optlen)
3162 {
3163 	struct sctp_status status;
3164 	struct sctp_association *asoc = NULL;
3165 	struct sctp_transport *transport;
3166 	sctp_assoc_t associd;
3167 	int retval = 0;
3168 
3169 	if (len != sizeof(status)) {
3170 		retval = -EINVAL;
3171 		goto out;
3172 	}
3173 
3174 	if (copy_from_user(&status, optval, sizeof(status))) {
3175 		retval = -EFAULT;
3176 		goto out;
3177 	}
3178 
3179 	associd = status.sstat_assoc_id;
3180 	asoc = sctp_id2assoc(sk, associd);
3181 	if (!asoc) {
3182 		retval = -EINVAL;
3183 		goto out;
3184 	}
3185 
3186 	transport = asoc->peer.primary_path;
3187 
3188 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3189 	status.sstat_state = asoc->state;
3190 	status.sstat_rwnd =  asoc->peer.rwnd;
3191 	status.sstat_unackdata = asoc->unack_data;
3192 
3193 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3194 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3195 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3196 	status.sstat_fragmentation_point = asoc->frag_point;
3197 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3198 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3199 			transport->af_specific->sockaddr_len);
3200 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3201 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3202 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3203 	status.sstat_primary.spinfo_state = transport->state;
3204 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3205 	status.sstat_primary.spinfo_srtt = transport->srtt;
3206 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3207 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3208 
3209 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3210 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3211 
3212 	if (put_user(len, optlen)) {
3213 		retval = -EFAULT;
3214 		goto out;
3215 	}
3216 
3217 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3218 			  len, status.sstat_state, status.sstat_rwnd,
3219 			  status.sstat_assoc_id);
3220 
3221 	if (copy_to_user(optval, &status, len)) {
3222 		retval = -EFAULT;
3223 		goto out;
3224 	}
3225 
3226 out:
3227 	return (retval);
3228 }
3229 
3230 
3231 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3232  *
3233  * Applications can retrieve information about a specific peer address
3234  * of an association, including its reachability state, congestion
3235  * window, and retransmission timer values.  This information is
3236  * read-only.
3237  */
3238 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3239 					  char __user *optval,
3240 					  int __user *optlen)
3241 {
3242 	struct sctp_paddrinfo pinfo;
3243 	struct sctp_transport *transport;
3244 	int retval = 0;
3245 
3246 	if (len != sizeof(pinfo)) {
3247 		retval = -EINVAL;
3248 		goto out;
3249 	}
3250 
3251 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3252 		retval = -EFAULT;
3253 		goto out;
3254 	}
3255 
3256 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3257 					   pinfo.spinfo_assoc_id);
3258 	if (!transport)
3259 		return -EINVAL;
3260 
3261 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3262 	pinfo.spinfo_state = transport->state;
3263 	pinfo.spinfo_cwnd = transport->cwnd;
3264 	pinfo.spinfo_srtt = transport->srtt;
3265 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3266 	pinfo.spinfo_mtu = transport->pathmtu;
3267 
3268 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3269 		pinfo.spinfo_state = SCTP_ACTIVE;
3270 
3271 	if (put_user(len, optlen)) {
3272 		retval = -EFAULT;
3273 		goto out;
3274 	}
3275 
3276 	if (copy_to_user(optval, &pinfo, len)) {
3277 		retval = -EFAULT;
3278 		goto out;
3279 	}
3280 
3281 out:
3282 	return (retval);
3283 }
3284 
3285 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3286  *
3287  * This option is a on/off flag.  If enabled no SCTP message
3288  * fragmentation will be performed.  Instead if a message being sent
3289  * exceeds the current PMTU size, the message will NOT be sent and
3290  * instead a error will be indicated to the user.
3291  */
3292 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3293 					char __user *optval, int __user *optlen)
3294 {
3295 	int val;
3296 
3297 	if (len < sizeof(int))
3298 		return -EINVAL;
3299 
3300 	len = sizeof(int);
3301 	val = (sctp_sk(sk)->disable_fragments == 1);
3302 	if (put_user(len, optlen))
3303 		return -EFAULT;
3304 	if (copy_to_user(optval, &val, len))
3305 		return -EFAULT;
3306 	return 0;
3307 }
3308 
3309 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3310  *
3311  * This socket option is used to specify various notifications and
3312  * ancillary data the user wishes to receive.
3313  */
3314 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3315 				  int __user *optlen)
3316 {
3317 	if (len != sizeof(struct sctp_event_subscribe))
3318 		return -EINVAL;
3319 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3320 		return -EFAULT;
3321 	return 0;
3322 }
3323 
3324 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3325  *
3326  * This socket option is applicable to the UDP-style socket only.  When
3327  * set it will cause associations that are idle for more than the
3328  * specified number of seconds to automatically close.  An association
3329  * being idle is defined an association that has NOT sent or received
3330  * user data.  The special value of '0' indicates that no automatic
3331  * close of any associations should be performed.  The option expects an
3332  * integer defining the number of seconds of idle time before an
3333  * association is closed.
3334  */
3335 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3336 {
3337 	/* Applicable to UDP-style socket only */
3338 	if (sctp_style(sk, TCP))
3339 		return -EOPNOTSUPP;
3340 	if (len != sizeof(int))
3341 		return -EINVAL;
3342 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3343 		return -EFAULT;
3344 	return 0;
3345 }
3346 
3347 /* Helper routine to branch off an association to a new socket.  */
3348 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3349 				struct socket **sockp)
3350 {
3351 	struct sock *sk = asoc->base.sk;
3352 	struct socket *sock;
3353 	struct inet_sock *inetsk;
3354 	int err = 0;
3355 
3356 	/* An association cannot be branched off from an already peeled-off
3357 	 * socket, nor is this supported for tcp style sockets.
3358 	 */
3359 	if (!sctp_style(sk, UDP))
3360 		return -EINVAL;
3361 
3362 	/* Create a new socket.  */
3363 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3364 	if (err < 0)
3365 		return err;
3366 
3367 	/* Populate the fields of the newsk from the oldsk and migrate the
3368 	 * asoc to the newsk.
3369 	 */
3370 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3371 
3372 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3373 	 * Set the daddr and initialize id to something more random
3374 	 */
3375 	inetsk = inet_sk(sock->sk);
3376 	inetsk->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr;
3377 	inetsk->id = asoc->next_tsn ^ jiffies;
3378 
3379 	*sockp = sock;
3380 
3381 	return err;
3382 }
3383 
3384 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3385 {
3386 	sctp_peeloff_arg_t peeloff;
3387 	struct socket *newsock;
3388 	int retval = 0;
3389 	struct sctp_association *asoc;
3390 
3391 	if (len != sizeof(sctp_peeloff_arg_t))
3392 		return -EINVAL;
3393 	if (copy_from_user(&peeloff, optval, len))
3394 		return -EFAULT;
3395 
3396 	asoc = sctp_id2assoc(sk, peeloff.associd);
3397 	if (!asoc) {
3398 		retval = -EINVAL;
3399 		goto out;
3400 	}
3401 
3402 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3403 
3404 	retval = sctp_do_peeloff(asoc, &newsock);
3405 	if (retval < 0)
3406 		goto out;
3407 
3408 	/* Map the socket to an unused fd that can be returned to the user.  */
3409 	retval = sock_map_fd(newsock);
3410 	if (retval < 0) {
3411 		sock_release(newsock);
3412 		goto out;
3413 	}
3414 
3415 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3416 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3417 
3418 	/* Return the fd mapped to the new socket.  */
3419 	peeloff.sd = retval;
3420 	if (copy_to_user(optval, &peeloff, len))
3421 		retval = -EFAULT;
3422 
3423 out:
3424 	return retval;
3425 }
3426 
3427 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3428  *
3429  * Applications can enable or disable heartbeats for any peer address of
3430  * an association, modify an address's heartbeat interval, force a
3431  * heartbeat to be sent immediately, and adjust the address's maximum
3432  * number of retransmissions sent before an address is considered
3433  * unreachable.  The following structure is used to access and modify an
3434  * address's parameters:
3435  *
3436  *  struct sctp_paddrparams {
3437  *     sctp_assoc_t            spp_assoc_id;
3438  *     struct sockaddr_storage spp_address;
3439  *     uint32_t                spp_hbinterval;
3440  *     uint16_t                spp_pathmaxrxt;
3441  *     uint32_t                spp_pathmtu;
3442  *     uint32_t                spp_sackdelay;
3443  *     uint32_t                spp_flags;
3444  * };
3445  *
3446  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3447  *                     application, and identifies the association for
3448  *                     this query.
3449  *   spp_address     - This specifies which address is of interest.
3450  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3451  *                     in milliseconds.  If a  value of zero
3452  *                     is present in this field then no changes are to
3453  *                     be made to this parameter.
3454  *   spp_pathmaxrxt  - This contains the maximum number of
3455  *                     retransmissions before this address shall be
3456  *                     considered unreachable. If a  value of zero
3457  *                     is present in this field then no changes are to
3458  *                     be made to this parameter.
3459  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3460  *                     specified here will be the "fixed" path mtu.
3461  *                     Note that if the spp_address field is empty
3462  *                     then all associations on this address will
3463  *                     have this fixed path mtu set upon them.
3464  *
3465  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3466  *                     the number of milliseconds that sacks will be delayed
3467  *                     for. This value will apply to all addresses of an
3468  *                     association if the spp_address field is empty. Note
3469  *                     also, that if delayed sack is enabled and this
3470  *                     value is set to 0, no change is made to the last
3471  *                     recorded delayed sack timer value.
3472  *
3473  *   spp_flags       - These flags are used to control various features
3474  *                     on an association. The flag field may contain
3475  *                     zero or more of the following options.
3476  *
3477  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3478  *                     specified address. Note that if the address
3479  *                     field is empty all addresses for the association
3480  *                     have heartbeats enabled upon them.
3481  *
3482  *                     SPP_HB_DISABLE - Disable heartbeats on the
3483  *                     speicifed address. Note that if the address
3484  *                     field is empty all addresses for the association
3485  *                     will have their heartbeats disabled. Note also
3486  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3487  *                     mutually exclusive, only one of these two should
3488  *                     be specified. Enabling both fields will have
3489  *                     undetermined results.
3490  *
3491  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3492  *                     to be made immediately.
3493  *
3494  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3495  *                     discovery upon the specified address. Note that
3496  *                     if the address feild is empty then all addresses
3497  *                     on the association are effected.
3498  *
3499  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3500  *                     discovery upon the specified address. Note that
3501  *                     if the address feild is empty then all addresses
3502  *                     on the association are effected. Not also that
3503  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3504  *                     exclusive. Enabling both will have undetermined
3505  *                     results.
3506  *
3507  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3508  *                     on delayed sack. The time specified in spp_sackdelay
3509  *                     is used to specify the sack delay for this address. Note
3510  *                     that if spp_address is empty then all addresses will
3511  *                     enable delayed sack and take on the sack delay
3512  *                     value specified in spp_sackdelay.
3513  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3514  *                     off delayed sack. If the spp_address field is blank then
3515  *                     delayed sack is disabled for the entire association. Note
3516  *                     also that this field is mutually exclusive to
3517  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3518  *                     results.
3519  */
3520 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3521 					    char __user *optval, int __user *optlen)
3522 {
3523 	struct sctp_paddrparams  params;
3524 	struct sctp_transport   *trans = NULL;
3525 	struct sctp_association *asoc = NULL;
3526 	struct sctp_sock        *sp = sctp_sk(sk);
3527 
3528 	if (len != sizeof(struct sctp_paddrparams))
3529 		return -EINVAL;
3530 
3531 	if (copy_from_user(&params, optval, len))
3532 		return -EFAULT;
3533 
3534 	/* If an address other than INADDR_ANY is specified, and
3535 	 * no transport is found, then the request is invalid.
3536 	 */
3537 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3538 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3539 					       params.spp_assoc_id);
3540 		if (!trans) {
3541 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3542 			return -EINVAL;
3543 		}
3544 	}
3545 
3546 	/* Get association, if assoc_id != 0 and the socket is a one
3547 	 * to many style socket, and an association was not found, then
3548 	 * the id was invalid.
3549 	 */
3550 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3551 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3552 		SCTP_DEBUG_PRINTK("Failed no association\n");
3553 		return -EINVAL;
3554 	}
3555 
3556 	if (trans) {
3557 		/* Fetch transport values. */
3558 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3559 		params.spp_pathmtu    = trans->pathmtu;
3560 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3561 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3562 
3563 		/*draft-11 doesn't say what to return in spp_flags*/
3564 		params.spp_flags      = trans->param_flags;
3565 	} else if (asoc) {
3566 		/* Fetch association values. */
3567 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3568 		params.spp_pathmtu    = asoc->pathmtu;
3569 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3570 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3571 
3572 		/*draft-11 doesn't say what to return in spp_flags*/
3573 		params.spp_flags      = asoc->param_flags;
3574 	} else {
3575 		/* Fetch socket values. */
3576 		params.spp_hbinterval = sp->hbinterval;
3577 		params.spp_pathmtu    = sp->pathmtu;
3578 		params.spp_sackdelay  = sp->sackdelay;
3579 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3580 
3581 		/*draft-11 doesn't say what to return in spp_flags*/
3582 		params.spp_flags      = sp->param_flags;
3583 	}
3584 
3585 	if (copy_to_user(optval, &params, len))
3586 		return -EFAULT;
3587 
3588 	if (put_user(len, optlen))
3589 		return -EFAULT;
3590 
3591 	return 0;
3592 }
3593 
3594 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3595  *
3596  *   This options will get or set the delayed ack timer.  The time is set
3597  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3598  *   endpoints default delayed ack timer value.  If the assoc_id field is
3599  *   non-zero, then the set or get effects the specified association.
3600  *
3601  *   struct sctp_assoc_value {
3602  *       sctp_assoc_t            assoc_id;
3603  *       uint32_t                assoc_value;
3604  *   };
3605  *
3606  *     assoc_id    - This parameter, indicates which association the
3607  *                   user is preforming an action upon. Note that if
3608  *                   this field's value is zero then the endpoints
3609  *                   default value is changed (effecting future
3610  *                   associations only).
3611  *
3612  *     assoc_value - This parameter contains the number of milliseconds
3613  *                   that the user is requesting the delayed ACK timer
3614  *                   be set to. Note that this value is defined in
3615  *                   the standard to be between 200 and 500 milliseconds.
3616  *
3617  *                   Note: a value of zero will leave the value alone,
3618  *                   but disable SACK delay. A non-zero value will also
3619  *                   enable SACK delay.
3620  */
3621 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3622 					    char __user *optval,
3623 					    int __user *optlen)
3624 {
3625 	struct sctp_assoc_value  params;
3626 	struct sctp_association *asoc = NULL;
3627 	struct sctp_sock        *sp = sctp_sk(sk);
3628 
3629 	if (len != sizeof(struct sctp_assoc_value))
3630 		return - EINVAL;
3631 
3632 	if (copy_from_user(&params, optval, len))
3633 		return -EFAULT;
3634 
3635 	/* Get association, if assoc_id != 0 and the socket is a one
3636 	 * to many style socket, and an association was not found, then
3637 	 * the id was invalid.
3638  	 */
3639 	asoc = sctp_id2assoc(sk, params.assoc_id);
3640 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3641 		return -EINVAL;
3642 
3643 	if (asoc) {
3644 		/* Fetch association values. */
3645 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3646 			params.assoc_value = jiffies_to_msecs(
3647 				asoc->sackdelay);
3648 		else
3649 			params.assoc_value = 0;
3650 	} else {
3651 		/* Fetch socket values. */
3652 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3653 			params.assoc_value  = sp->sackdelay;
3654 		else
3655 			params.assoc_value  = 0;
3656 	}
3657 
3658 	if (copy_to_user(optval, &params, len))
3659 		return -EFAULT;
3660 
3661 	if (put_user(len, optlen))
3662 		return -EFAULT;
3663 
3664 	return 0;
3665 }
3666 
3667 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3668  *
3669  * Applications can specify protocol parameters for the default association
3670  * initialization.  The option name argument to setsockopt() and getsockopt()
3671  * is SCTP_INITMSG.
3672  *
3673  * Setting initialization parameters is effective only on an unconnected
3674  * socket (for UDP-style sockets only future associations are effected
3675  * by the change).  With TCP-style sockets, this option is inherited by
3676  * sockets derived from a listener socket.
3677  */
3678 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3679 {
3680 	if (len != sizeof(struct sctp_initmsg))
3681 		return -EINVAL;
3682 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3683 		return -EFAULT;
3684 	return 0;
3685 }
3686 
3687 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3688 					      char __user *optval,
3689 					      int __user *optlen)
3690 {
3691 	sctp_assoc_t id;
3692 	struct sctp_association *asoc;
3693 	struct list_head *pos;
3694 	int cnt = 0;
3695 
3696 	if (len != sizeof(sctp_assoc_t))
3697 		return -EINVAL;
3698 
3699 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3700 		return -EFAULT;
3701 
3702 	/* For UDP-style sockets, id specifies the association to query.  */
3703 	asoc = sctp_id2assoc(sk, id);
3704 	if (!asoc)
3705 		return -EINVAL;
3706 
3707 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3708 		cnt ++;
3709 	}
3710 
3711 	return cnt;
3712 }
3713 
3714 /*
3715  * Old API for getting list of peer addresses. Does not work for 32-bit
3716  * programs running on a 64-bit kernel
3717  */
3718 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3719 					  char __user *optval,
3720 					  int __user *optlen)
3721 {
3722 	struct sctp_association *asoc;
3723 	struct list_head *pos;
3724 	int cnt = 0;
3725 	struct sctp_getaddrs_old getaddrs;
3726 	struct sctp_transport *from;
3727 	void __user *to;
3728 	union sctp_addr temp;
3729 	struct sctp_sock *sp = sctp_sk(sk);
3730 	int addrlen;
3731 
3732 	if (len != sizeof(struct sctp_getaddrs_old))
3733 		return -EINVAL;
3734 
3735 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3736 		return -EFAULT;
3737 
3738 	if (getaddrs.addr_num <= 0) return -EINVAL;
3739 
3740 	/* For UDP-style sockets, id specifies the association to query.  */
3741 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3742 	if (!asoc)
3743 		return -EINVAL;
3744 
3745 	to = (void __user *)getaddrs.addrs;
3746 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3747 		from = list_entry(pos, struct sctp_transport, transports);
3748 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3749 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3750 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3751 		if (copy_to_user(to, &temp, addrlen))
3752 			return -EFAULT;
3753 		to += addrlen ;
3754 		cnt ++;
3755 		if (cnt >= getaddrs.addr_num) break;
3756 	}
3757 	getaddrs.addr_num = cnt;
3758 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3759 		return -EFAULT;
3760 
3761 	return 0;
3762 }
3763 
3764 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3765 				      char __user *optval, int __user *optlen)
3766 {
3767 	struct sctp_association *asoc;
3768 	struct list_head *pos;
3769 	int cnt = 0;
3770 	struct sctp_getaddrs getaddrs;
3771 	struct sctp_transport *from;
3772 	void __user *to;
3773 	union sctp_addr temp;
3774 	struct sctp_sock *sp = sctp_sk(sk);
3775 	int addrlen;
3776 	size_t space_left;
3777 	int bytes_copied;
3778 
3779 	if (len < sizeof(struct sctp_getaddrs))
3780 		return -EINVAL;
3781 
3782 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3783 		return -EFAULT;
3784 
3785 	/* For UDP-style sockets, id specifies the association to query.  */
3786 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3787 	if (!asoc)
3788 		return -EINVAL;
3789 
3790 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3791 	space_left = len - sizeof(struct sctp_getaddrs) -
3792 			offsetof(struct sctp_getaddrs,addrs);
3793 
3794 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3795 		from = list_entry(pos, struct sctp_transport, transports);
3796 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3797 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3798 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3799 		if(space_left < addrlen)
3800 			return -ENOMEM;
3801 		if (copy_to_user(to, &temp, addrlen))
3802 			return -EFAULT;
3803 		to += addrlen;
3804 		cnt++;
3805 		space_left -= addrlen;
3806 	}
3807 
3808 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3809 		return -EFAULT;
3810 	bytes_copied = ((char __user *)to) - optval;
3811 	if (put_user(bytes_copied, optlen))
3812 		return -EFAULT;
3813 
3814 	return 0;
3815 }
3816 
3817 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3818 					       char __user *optval,
3819 					       int __user *optlen)
3820 {
3821 	sctp_assoc_t id;
3822 	struct sctp_bind_addr *bp;
3823 	struct sctp_association *asoc;
3824 	struct list_head *pos;
3825 	struct sctp_sockaddr_entry *addr;
3826 	rwlock_t *addr_lock;
3827 	unsigned long flags;
3828 	int cnt = 0;
3829 
3830 	if (len != sizeof(sctp_assoc_t))
3831 		return -EINVAL;
3832 
3833 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3834 		return -EFAULT;
3835 
3836 	/*
3837 	 *  For UDP-style sockets, id specifies the association to query.
3838 	 *  If the id field is set to the value '0' then the locally bound
3839 	 *  addresses are returned without regard to any particular
3840 	 *  association.
3841 	 */
3842 	if (0 == id) {
3843 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3844 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3845 	} else {
3846 		asoc = sctp_id2assoc(sk, id);
3847 		if (!asoc)
3848 			return -EINVAL;
3849 		bp = &asoc->base.bind_addr;
3850 		addr_lock = &asoc->base.addr_lock;
3851 	}
3852 
3853 	sctp_read_lock(addr_lock);
3854 
3855 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3856 	 * addresses from the global local address list.
3857 	 */
3858 	if (sctp_list_single_entry(&bp->address_list)) {
3859 		addr = list_entry(bp->address_list.next,
3860 				  struct sctp_sockaddr_entry, list);
3861 		if (sctp_is_any(&addr->a)) {
3862 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3863 			list_for_each(pos, &sctp_local_addr_list) {
3864 				addr = list_entry(pos,
3865 						  struct sctp_sockaddr_entry,
3866 						  list);
3867 				if ((PF_INET == sk->sk_family) &&
3868 				    (AF_INET6 == addr->a.sa.sa_family))
3869 					continue;
3870 				cnt++;
3871 			}
3872 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3873 						    flags);
3874 		} else {
3875 			cnt = 1;
3876 		}
3877 		goto done;
3878 	}
3879 
3880 	list_for_each(pos, &bp->address_list) {
3881 		cnt ++;
3882 	}
3883 
3884 done:
3885 	sctp_read_unlock(addr_lock);
3886 	return cnt;
3887 }
3888 
3889 /* Helper function that copies local addresses to user and returns the number
3890  * of addresses copied.
3891  */
3892 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3893 					void __user *to)
3894 {
3895 	struct list_head *pos;
3896 	struct sctp_sockaddr_entry *addr;
3897 	unsigned long flags;
3898 	union sctp_addr temp;
3899 	int cnt = 0;
3900 	int addrlen;
3901 
3902 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3903 	list_for_each(pos, &sctp_local_addr_list) {
3904 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3905 		if ((PF_INET == sk->sk_family) &&
3906 		    (AF_INET6 == addr->a.sa.sa_family))
3907 			continue;
3908 		memcpy(&temp, &addr->a, sizeof(temp));
3909 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3910 								&temp);
3911 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3912 		if (copy_to_user(to, &temp, addrlen)) {
3913 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3914 						    flags);
3915 			return -EFAULT;
3916 		}
3917 		to += addrlen;
3918 		cnt ++;
3919 		if (cnt >= max_addrs) break;
3920 	}
3921 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3922 
3923 	return cnt;
3924 }
3925 
3926 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3927 				    void __user **to, size_t space_left)
3928 {
3929 	struct list_head *pos;
3930 	struct sctp_sockaddr_entry *addr;
3931 	unsigned long flags;
3932 	union sctp_addr temp;
3933 	int cnt = 0;
3934 	int addrlen;
3935 
3936 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3937 	list_for_each(pos, &sctp_local_addr_list) {
3938 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3939 		if ((PF_INET == sk->sk_family) &&
3940 		    (AF_INET6 == addr->a.sa.sa_family))
3941 			continue;
3942 		memcpy(&temp, &addr->a, sizeof(temp));
3943 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3944 								&temp);
3945 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3946 		if(space_left<addrlen)
3947 			return -ENOMEM;
3948 		if (copy_to_user(*to, &temp, addrlen)) {
3949 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3950 						    flags);
3951 			return -EFAULT;
3952 		}
3953 		*to += addrlen;
3954 		cnt ++;
3955 		space_left -= addrlen;
3956 	}
3957 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3958 
3959 	return cnt;
3960 }
3961 
3962 /* Old API for getting list of local addresses. Does not work for 32-bit
3963  * programs running on a 64-bit kernel
3964  */
3965 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3966 					   char __user *optval, int __user *optlen)
3967 {
3968 	struct sctp_bind_addr *bp;
3969 	struct sctp_association *asoc;
3970 	struct list_head *pos;
3971 	int cnt = 0;
3972 	struct sctp_getaddrs_old getaddrs;
3973 	struct sctp_sockaddr_entry *addr;
3974 	void __user *to;
3975 	union sctp_addr temp;
3976 	struct sctp_sock *sp = sctp_sk(sk);
3977 	int addrlen;
3978 	rwlock_t *addr_lock;
3979 	int err = 0;
3980 
3981 	if (len != sizeof(struct sctp_getaddrs_old))
3982 		return -EINVAL;
3983 
3984 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3985 		return -EFAULT;
3986 
3987 	if (getaddrs.addr_num <= 0) return -EINVAL;
3988 	/*
3989 	 *  For UDP-style sockets, id specifies the association to query.
3990 	 *  If the id field is set to the value '0' then the locally bound
3991 	 *  addresses are returned without regard to any particular
3992 	 *  association.
3993 	 */
3994 	if (0 == getaddrs.assoc_id) {
3995 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3996 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3997 	} else {
3998 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3999 		if (!asoc)
4000 			return -EINVAL;
4001 		bp = &asoc->base.bind_addr;
4002 		addr_lock = &asoc->base.addr_lock;
4003 	}
4004 
4005 	to = getaddrs.addrs;
4006 
4007 	sctp_read_lock(addr_lock);
4008 
4009 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4010 	 * addresses from the global local address list.
4011 	 */
4012 	if (sctp_list_single_entry(&bp->address_list)) {
4013 		addr = list_entry(bp->address_list.next,
4014 				  struct sctp_sockaddr_entry, list);
4015 		if (sctp_is_any(&addr->a)) {
4016 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
4017 							   getaddrs.addr_num,
4018 							   to);
4019 			if (cnt < 0) {
4020 				err = cnt;
4021 				goto unlock;
4022 			}
4023 			goto copy_getaddrs;
4024 		}
4025 	}
4026 
4027 	list_for_each(pos, &bp->address_list) {
4028 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4029 		memcpy(&temp, &addr->a, sizeof(temp));
4030 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4031 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4032 		if (copy_to_user(to, &temp, addrlen)) {
4033 			err = -EFAULT;
4034 			goto unlock;
4035 		}
4036 		to += addrlen;
4037 		cnt ++;
4038 		if (cnt >= getaddrs.addr_num) break;
4039 	}
4040 
4041 copy_getaddrs:
4042 	getaddrs.addr_num = cnt;
4043 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4044 		err = -EFAULT;
4045 
4046 unlock:
4047 	sctp_read_unlock(addr_lock);
4048 	return err;
4049 }
4050 
4051 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4052 				       char __user *optval, int __user *optlen)
4053 {
4054 	struct sctp_bind_addr *bp;
4055 	struct sctp_association *asoc;
4056 	struct list_head *pos;
4057 	int cnt = 0;
4058 	struct sctp_getaddrs getaddrs;
4059 	struct sctp_sockaddr_entry *addr;
4060 	void __user *to;
4061 	union sctp_addr temp;
4062 	struct sctp_sock *sp = sctp_sk(sk);
4063 	int addrlen;
4064 	rwlock_t *addr_lock;
4065 	int err = 0;
4066 	size_t space_left;
4067 	int bytes_copied;
4068 
4069 	if (len <= sizeof(struct sctp_getaddrs))
4070 		return -EINVAL;
4071 
4072 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4073 		return -EFAULT;
4074 
4075 	/*
4076 	 *  For UDP-style sockets, id specifies the association to query.
4077 	 *  If the id field is set to the value '0' then the locally bound
4078 	 *  addresses are returned without regard to any particular
4079 	 *  association.
4080 	 */
4081 	if (0 == getaddrs.assoc_id) {
4082 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4083 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4084 	} else {
4085 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4086 		if (!asoc)
4087 			return -EINVAL;
4088 		bp = &asoc->base.bind_addr;
4089 		addr_lock = &asoc->base.addr_lock;
4090 	}
4091 
4092 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4093 	space_left = len - sizeof(struct sctp_getaddrs) -
4094 			 offsetof(struct sctp_getaddrs,addrs);
4095 
4096 	sctp_read_lock(addr_lock);
4097 
4098 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4099 	 * addresses from the global local address list.
4100 	 */
4101 	if (sctp_list_single_entry(&bp->address_list)) {
4102 		addr = list_entry(bp->address_list.next,
4103 				  struct sctp_sockaddr_entry, list);
4104 		if (sctp_is_any(&addr->a)) {
4105 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4106 						       &to, space_left);
4107 			if (cnt < 0) {
4108 				err = cnt;
4109 				goto unlock;
4110 			}
4111 			goto copy_getaddrs;
4112 		}
4113 	}
4114 
4115 	list_for_each(pos, &bp->address_list) {
4116 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4117 		memcpy(&temp, &addr->a, sizeof(temp));
4118 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4119 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4120 		if(space_left < addrlen)
4121 			return -ENOMEM; /*fixme: right error?*/
4122 		if (copy_to_user(to, &temp, addrlen)) {
4123 			err = -EFAULT;
4124 			goto unlock;
4125 		}
4126 		to += addrlen;
4127 		cnt ++;
4128 		space_left -= addrlen;
4129 	}
4130 
4131 copy_getaddrs:
4132 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4133 		return -EFAULT;
4134 	bytes_copied = ((char __user *)to) - optval;
4135 	if (put_user(bytes_copied, optlen))
4136 		return -EFAULT;
4137 
4138 unlock:
4139 	sctp_read_unlock(addr_lock);
4140 	return err;
4141 }
4142 
4143 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4144  *
4145  * Requests that the local SCTP stack use the enclosed peer address as
4146  * the association primary.  The enclosed address must be one of the
4147  * association peer's addresses.
4148  */
4149 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4150 					char __user *optval, int __user *optlen)
4151 {
4152 	struct sctp_prim prim;
4153 	struct sctp_association *asoc;
4154 	struct sctp_sock *sp = sctp_sk(sk);
4155 
4156 	if (len != sizeof(struct sctp_prim))
4157 		return -EINVAL;
4158 
4159 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4160 		return -EFAULT;
4161 
4162 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4163 	if (!asoc)
4164 		return -EINVAL;
4165 
4166 	if (!asoc->peer.primary_path)
4167 		return -ENOTCONN;
4168 
4169 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4170 		asoc->peer.primary_path->af_specific->sockaddr_len);
4171 
4172 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4173 			(union sctp_addr *)&prim.ssp_addr);
4174 
4175 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4176 		return -EFAULT;
4177 
4178 	return 0;
4179 }
4180 
4181 /*
4182  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4183  *
4184  * Requests that the local endpoint set the specified Adaption Layer
4185  * Indication parameter for all future INIT and INIT-ACK exchanges.
4186  */
4187 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4188 				  char __user *optval, int __user *optlen)
4189 {
4190 	struct sctp_setadaption adaption;
4191 
4192 	if (len != sizeof(struct sctp_setadaption))
4193 		return -EINVAL;
4194 
4195 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4196 	if (copy_to_user(optval, &adaption, len))
4197 		return -EFAULT;
4198 
4199 	return 0;
4200 }
4201 
4202 /*
4203  *
4204  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4205  *
4206  *   Applications that wish to use the sendto() system call may wish to
4207  *   specify a default set of parameters that would normally be supplied
4208  *   through the inclusion of ancillary data.  This socket option allows
4209  *   such an application to set the default sctp_sndrcvinfo structure.
4210 
4211 
4212  *   The application that wishes to use this socket option simply passes
4213  *   in to this call the sctp_sndrcvinfo structure defined in Section
4214  *   5.2.2) The input parameters accepted by this call include
4215  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4216  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4217  *   to this call if the caller is using the UDP model.
4218  *
4219  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4220  */
4221 static int sctp_getsockopt_default_send_param(struct sock *sk,
4222 					int len, char __user *optval,
4223 					int __user *optlen)
4224 {
4225 	struct sctp_sndrcvinfo info;
4226 	struct sctp_association *asoc;
4227 	struct sctp_sock *sp = sctp_sk(sk);
4228 
4229 	if (len != sizeof(struct sctp_sndrcvinfo))
4230 		return -EINVAL;
4231 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4232 		return -EFAULT;
4233 
4234 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4235 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4236 		return -EINVAL;
4237 
4238 	if (asoc) {
4239 		info.sinfo_stream = asoc->default_stream;
4240 		info.sinfo_flags = asoc->default_flags;
4241 		info.sinfo_ppid = asoc->default_ppid;
4242 		info.sinfo_context = asoc->default_context;
4243 		info.sinfo_timetolive = asoc->default_timetolive;
4244 	} else {
4245 		info.sinfo_stream = sp->default_stream;
4246 		info.sinfo_flags = sp->default_flags;
4247 		info.sinfo_ppid = sp->default_ppid;
4248 		info.sinfo_context = sp->default_context;
4249 		info.sinfo_timetolive = sp->default_timetolive;
4250 	}
4251 
4252 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4253 		return -EFAULT;
4254 
4255 	return 0;
4256 }
4257 
4258 /*
4259  *
4260  * 7.1.5 SCTP_NODELAY
4261  *
4262  * Turn on/off any Nagle-like algorithm.  This means that packets are
4263  * generally sent as soon as possible and no unnecessary delays are
4264  * introduced, at the cost of more packets in the network.  Expects an
4265  * integer boolean flag.
4266  */
4267 
4268 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4269 				   char __user *optval, int __user *optlen)
4270 {
4271 	int val;
4272 
4273 	if (len < sizeof(int))
4274 		return -EINVAL;
4275 
4276 	len = sizeof(int);
4277 	val = (sctp_sk(sk)->nodelay == 1);
4278 	if (put_user(len, optlen))
4279 		return -EFAULT;
4280 	if (copy_to_user(optval, &val, len))
4281 		return -EFAULT;
4282 	return 0;
4283 }
4284 
4285 /*
4286  *
4287  * 7.1.1 SCTP_RTOINFO
4288  *
4289  * The protocol parameters used to initialize and bound retransmission
4290  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4291  * and modify these parameters.
4292  * All parameters are time values, in milliseconds.  A value of 0, when
4293  * modifying the parameters, indicates that the current value should not
4294  * be changed.
4295  *
4296  */
4297 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4298 				char __user *optval,
4299 				int __user *optlen) {
4300 	struct sctp_rtoinfo rtoinfo;
4301 	struct sctp_association *asoc;
4302 
4303 	if (len != sizeof (struct sctp_rtoinfo))
4304 		return -EINVAL;
4305 
4306 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4307 		return -EFAULT;
4308 
4309 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4310 
4311 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4312 		return -EINVAL;
4313 
4314 	/* Values corresponding to the specific association. */
4315 	if (asoc) {
4316 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4317 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4318 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4319 	} else {
4320 		/* Values corresponding to the endpoint. */
4321 		struct sctp_sock *sp = sctp_sk(sk);
4322 
4323 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4324 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4325 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4326 	}
4327 
4328 	if (put_user(len, optlen))
4329 		return -EFAULT;
4330 
4331 	if (copy_to_user(optval, &rtoinfo, len))
4332 		return -EFAULT;
4333 
4334 	return 0;
4335 }
4336 
4337 /*
4338  *
4339  * 7.1.2 SCTP_ASSOCINFO
4340  *
4341  * This option is used to tune the the maximum retransmission attempts
4342  * of the association.
4343  * Returns an error if the new association retransmission value is
4344  * greater than the sum of the retransmission value  of the peer.
4345  * See [SCTP] for more information.
4346  *
4347  */
4348 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4349 				     char __user *optval,
4350 				     int __user *optlen)
4351 {
4352 
4353 	struct sctp_assocparams assocparams;
4354 	struct sctp_association *asoc;
4355 	struct list_head *pos;
4356 	int cnt = 0;
4357 
4358 	if (len != sizeof (struct sctp_assocparams))
4359 		return -EINVAL;
4360 
4361 	if (copy_from_user(&assocparams, optval,
4362 			sizeof (struct sctp_assocparams)))
4363 		return -EFAULT;
4364 
4365 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4366 
4367 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4368 		return -EINVAL;
4369 
4370 	/* Values correspoinding to the specific association */
4371 	if (asoc) {
4372 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4373 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4374 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4375 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4376 						* 1000) +
4377 						(asoc->cookie_life.tv_usec
4378 						/ 1000);
4379 
4380 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4381 			cnt ++;
4382 		}
4383 
4384 		assocparams.sasoc_number_peer_destinations = cnt;
4385 	} else {
4386 		/* Values corresponding to the endpoint */
4387 		struct sctp_sock *sp = sctp_sk(sk);
4388 
4389 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4390 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4391 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4392 		assocparams.sasoc_cookie_life =
4393 					sp->assocparams.sasoc_cookie_life;
4394 		assocparams.sasoc_number_peer_destinations =
4395 					sp->assocparams.
4396 					sasoc_number_peer_destinations;
4397 	}
4398 
4399 	if (put_user(len, optlen))
4400 		return -EFAULT;
4401 
4402 	if (copy_to_user(optval, &assocparams, len))
4403 		return -EFAULT;
4404 
4405 	return 0;
4406 }
4407 
4408 /*
4409  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4410  *
4411  * This socket option is a boolean flag which turns on or off mapped V4
4412  * addresses.  If this option is turned on and the socket is type
4413  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4414  * If this option is turned off, then no mapping will be done of V4
4415  * addresses and a user will receive both PF_INET6 and PF_INET type
4416  * addresses on the socket.
4417  */
4418 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4419 				    char __user *optval, int __user *optlen)
4420 {
4421 	int val;
4422 	struct sctp_sock *sp = sctp_sk(sk);
4423 
4424 	if (len < sizeof(int))
4425 		return -EINVAL;
4426 
4427 	len = sizeof(int);
4428 	val = sp->v4mapped;
4429 	if (put_user(len, optlen))
4430 		return -EFAULT;
4431 	if (copy_to_user(optval, &val, len))
4432 		return -EFAULT;
4433 
4434 	return 0;
4435 }
4436 
4437 /*
4438  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4439  *
4440  * This socket option specifies the maximum size to put in any outgoing
4441  * SCTP chunk.  If a message is larger than this size it will be
4442  * fragmented by SCTP into the specified size.  Note that the underlying
4443  * SCTP implementation may fragment into smaller sized chunks when the
4444  * PMTU of the underlying association is smaller than the value set by
4445  * the user.
4446  */
4447 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4448 				  char __user *optval, int __user *optlen)
4449 {
4450 	int val;
4451 
4452 	if (len < sizeof(int))
4453 		return -EINVAL;
4454 
4455 	len = sizeof(int);
4456 
4457 	val = sctp_sk(sk)->user_frag;
4458 	if (put_user(len, optlen))
4459 		return -EFAULT;
4460 	if (copy_to_user(optval, &val, len))
4461 		return -EFAULT;
4462 
4463 	return 0;
4464 }
4465 
4466 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4467 				char __user *optval, int __user *optlen)
4468 {
4469 	int retval = 0;
4470 	int len;
4471 
4472 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4473 			  sk, optname);
4474 
4475 	/* I can hardly begin to describe how wrong this is.  This is
4476 	 * so broken as to be worse than useless.  The API draft
4477 	 * REALLY is NOT helpful here...  I am not convinced that the
4478 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4479 	 * are at all well-founded.
4480 	 */
4481 	if (level != SOL_SCTP) {
4482 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4483 
4484 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4485 		return retval;
4486 	}
4487 
4488 	if (get_user(len, optlen))
4489 		return -EFAULT;
4490 
4491 	sctp_lock_sock(sk);
4492 
4493 	switch (optname) {
4494 	case SCTP_STATUS:
4495 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4496 		break;
4497 	case SCTP_DISABLE_FRAGMENTS:
4498 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4499 							   optlen);
4500 		break;
4501 	case SCTP_EVENTS:
4502 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4503 		break;
4504 	case SCTP_AUTOCLOSE:
4505 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4506 		break;
4507 	case SCTP_SOCKOPT_PEELOFF:
4508 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4509 		break;
4510 	case SCTP_PEER_ADDR_PARAMS:
4511 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4512 							  optlen);
4513 		break;
4514 	case SCTP_DELAYED_ACK_TIME:
4515 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4516 							  optlen);
4517 		break;
4518 	case SCTP_INITMSG:
4519 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4520 		break;
4521 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4522 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4523 							    optlen);
4524 		break;
4525 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4526 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4527 							     optlen);
4528 		break;
4529 	case SCTP_GET_PEER_ADDRS_OLD:
4530 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4531 							optlen);
4532 		break;
4533 	case SCTP_GET_LOCAL_ADDRS_OLD:
4534 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4535 							 optlen);
4536 		break;
4537 	case SCTP_GET_PEER_ADDRS:
4538 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4539 						    optlen);
4540 		break;
4541 	case SCTP_GET_LOCAL_ADDRS:
4542 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4543 						     optlen);
4544 		break;
4545 	case SCTP_DEFAULT_SEND_PARAM:
4546 		retval = sctp_getsockopt_default_send_param(sk, len,
4547 							    optval, optlen);
4548 		break;
4549 	case SCTP_PRIMARY_ADDR:
4550 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4551 		break;
4552 	case SCTP_NODELAY:
4553 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4554 		break;
4555 	case SCTP_RTOINFO:
4556 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4557 		break;
4558 	case SCTP_ASSOCINFO:
4559 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4560 		break;
4561 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4562 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4563 		break;
4564 	case SCTP_MAXSEG:
4565 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4566 		break;
4567 	case SCTP_GET_PEER_ADDR_INFO:
4568 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4569 							optlen);
4570 		break;
4571 	case SCTP_ADAPTION_LAYER:
4572 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4573 							optlen);
4574 		break;
4575 	default:
4576 		retval = -ENOPROTOOPT;
4577 		break;
4578 	};
4579 
4580 	sctp_release_sock(sk);
4581 	return retval;
4582 }
4583 
4584 static void sctp_hash(struct sock *sk)
4585 {
4586 	/* STUB */
4587 }
4588 
4589 static void sctp_unhash(struct sock *sk)
4590 {
4591 	/* STUB */
4592 }
4593 
4594 /* Check if port is acceptable.  Possibly find first available port.
4595  *
4596  * The port hash table (contained in the 'global' SCTP protocol storage
4597  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4598  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4599  * list (the list number is the port number hashed out, so as you
4600  * would expect from a hash function, all the ports in a given list have
4601  * such a number that hashes out to the same list number; you were
4602  * expecting that, right?); so each list has a set of ports, with a
4603  * link to the socket (struct sock) that uses it, the port number and
4604  * a fastreuse flag (FIXME: NPI ipg).
4605  */
4606 static struct sctp_bind_bucket *sctp_bucket_create(
4607 	struct sctp_bind_hashbucket *head, unsigned short snum);
4608 
4609 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4610 {
4611 	struct sctp_bind_hashbucket *head; /* hash list */
4612 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4613 	unsigned short snum;
4614 	int ret;
4615 
4616 	snum = ntohs(addr->v4.sin_port);
4617 
4618 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4619 	sctp_local_bh_disable();
4620 
4621 	if (snum == 0) {
4622 		/* Search for an available port.
4623 		 *
4624 		 * 'sctp_port_rover' was the last port assigned, so
4625 		 * we start to search from 'sctp_port_rover +
4626 		 * 1'. What we do is first check if port 'rover' is
4627 		 * already in the hash table; if not, we use that; if
4628 		 * it is, we try next.
4629 		 */
4630 		int low = sysctl_local_port_range[0];
4631 		int high = sysctl_local_port_range[1];
4632 		int remaining = (high - low) + 1;
4633 		int rover;
4634 		int index;
4635 
4636 		sctp_spin_lock(&sctp_port_alloc_lock);
4637 		rover = sctp_port_rover;
4638 		do {
4639 			rover++;
4640 			if ((rover < low) || (rover > high))
4641 				rover = low;
4642 			index = sctp_phashfn(rover);
4643 			head = &sctp_port_hashtable[index];
4644 			sctp_spin_lock(&head->lock);
4645 			for (pp = head->chain; pp; pp = pp->next)
4646 				if (pp->port == rover)
4647 					goto next;
4648 			break;
4649 		next:
4650 			sctp_spin_unlock(&head->lock);
4651 		} while (--remaining > 0);
4652 		sctp_port_rover = rover;
4653 		sctp_spin_unlock(&sctp_port_alloc_lock);
4654 
4655 		/* Exhausted local port range during search? */
4656 		ret = 1;
4657 		if (remaining <= 0)
4658 			goto fail;
4659 
4660 		/* OK, here is the one we will use.  HEAD (the port
4661 		 * hash table list entry) is non-NULL and we hold it's
4662 		 * mutex.
4663 		 */
4664 		snum = rover;
4665 	} else {
4666 		/* We are given an specific port number; we verify
4667 		 * that it is not being used. If it is used, we will
4668 		 * exahust the search in the hash list corresponding
4669 		 * to the port number (snum) - we detect that with the
4670 		 * port iterator, pp being NULL.
4671 		 */
4672 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4673 		sctp_spin_lock(&head->lock);
4674 		for (pp = head->chain; pp; pp = pp->next) {
4675 			if (pp->port == snum)
4676 				goto pp_found;
4677 		}
4678 	}
4679 	pp = NULL;
4680 	goto pp_not_found;
4681 pp_found:
4682 	if (!hlist_empty(&pp->owner)) {
4683 		/* We had a port hash table hit - there is an
4684 		 * available port (pp != NULL) and it is being
4685 		 * used by other socket (pp->owner not empty); that other
4686 		 * socket is going to be sk2.
4687 		 */
4688 		int reuse = sk->sk_reuse;
4689 		struct sock *sk2;
4690 		struct hlist_node *node;
4691 
4692 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4693 		if (pp->fastreuse && sk->sk_reuse)
4694 			goto success;
4695 
4696 		/* Run through the list of sockets bound to the port
4697 		 * (pp->port) [via the pointers bind_next and
4698 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4699 		 * we get the endpoint they describe and run through
4700 		 * the endpoint's list of IP (v4 or v6) addresses,
4701 		 * comparing each of the addresses with the address of
4702 		 * the socket sk. If we find a match, then that means
4703 		 * that this port/socket (sk) combination are already
4704 		 * in an endpoint.
4705 		 */
4706 		sk_for_each_bound(sk2, node, &pp->owner) {
4707 			struct sctp_endpoint *ep2;
4708 			ep2 = sctp_sk(sk2)->ep;
4709 
4710 			if (reuse && sk2->sk_reuse)
4711 				continue;
4712 
4713 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4714 						 sctp_sk(sk))) {
4715 				ret = (long)sk2;
4716 				goto fail_unlock;
4717 			}
4718 		}
4719 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4720 	}
4721 pp_not_found:
4722 	/* If there was a hash table miss, create a new port.  */
4723 	ret = 1;
4724 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4725 		goto fail_unlock;
4726 
4727 	/* In either case (hit or miss), make sure fastreuse is 1 only
4728 	 * if sk->sk_reuse is too (that is, if the caller requested
4729 	 * SO_REUSEADDR on this socket -sk-).
4730 	 */
4731 	if (hlist_empty(&pp->owner))
4732 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4733 	else if (pp->fastreuse && !sk->sk_reuse)
4734 		pp->fastreuse = 0;
4735 
4736 	/* We are set, so fill up all the data in the hash table
4737 	 * entry, tie the socket list information with the rest of the
4738 	 * sockets FIXME: Blurry, NPI (ipg).
4739 	 */
4740 success:
4741 	inet_sk(sk)->num = snum;
4742 	if (!sctp_sk(sk)->bind_hash) {
4743 		sk_add_bind_node(sk, &pp->owner);
4744 		sctp_sk(sk)->bind_hash = pp;
4745 	}
4746 	ret = 0;
4747 
4748 fail_unlock:
4749 	sctp_spin_unlock(&head->lock);
4750 
4751 fail:
4752 	sctp_local_bh_enable();
4753 	return ret;
4754 }
4755 
4756 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4757  * port is requested.
4758  */
4759 static int sctp_get_port(struct sock *sk, unsigned short snum)
4760 {
4761 	long ret;
4762 	union sctp_addr addr;
4763 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4764 
4765 	/* Set up a dummy address struct from the sk. */
4766 	af->from_sk(&addr, sk);
4767 	addr.v4.sin_port = htons(snum);
4768 
4769 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4770 	ret = sctp_get_port_local(sk, &addr);
4771 
4772 	return (ret ? 1 : 0);
4773 }
4774 
4775 /*
4776  * 3.1.3 listen() - UDP Style Syntax
4777  *
4778  *   By default, new associations are not accepted for UDP style sockets.
4779  *   An application uses listen() to mark a socket as being able to
4780  *   accept new associations.
4781  */
4782 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4783 {
4784 	struct sctp_sock *sp = sctp_sk(sk);
4785 	struct sctp_endpoint *ep = sp->ep;
4786 
4787 	/* Only UDP style sockets that are not peeled off are allowed to
4788 	 * listen().
4789 	 */
4790 	if (!sctp_style(sk, UDP))
4791 		return -EINVAL;
4792 
4793 	/* If backlog is zero, disable listening. */
4794 	if (!backlog) {
4795 		if (sctp_sstate(sk, CLOSED))
4796 			return 0;
4797 
4798 		sctp_unhash_endpoint(ep);
4799 		sk->sk_state = SCTP_SS_CLOSED;
4800 	}
4801 
4802 	/* Return if we are already listening. */
4803 	if (sctp_sstate(sk, LISTENING))
4804 		return 0;
4805 
4806 	/*
4807 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4808 	 * call that allows new associations to be accepted, the system
4809 	 * picks an ephemeral port and will choose an address set equivalent
4810 	 * to binding with a wildcard address.
4811 	 *
4812 	 * This is not currently spelled out in the SCTP sockets
4813 	 * extensions draft, but follows the practice as seen in TCP
4814 	 * sockets.
4815 	 */
4816 	if (!ep->base.bind_addr.port) {
4817 		if (sctp_autobind(sk))
4818 			return -EAGAIN;
4819 	}
4820 	sk->sk_state = SCTP_SS_LISTENING;
4821 	sctp_hash_endpoint(ep);
4822 	return 0;
4823 }
4824 
4825 /*
4826  * 4.1.3 listen() - TCP Style Syntax
4827  *
4828  *   Applications uses listen() to ready the SCTP endpoint for accepting
4829  *   inbound associations.
4830  */
4831 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4832 {
4833 	struct sctp_sock *sp = sctp_sk(sk);
4834 	struct sctp_endpoint *ep = sp->ep;
4835 
4836 	/* If backlog is zero, disable listening. */
4837 	if (!backlog) {
4838 		if (sctp_sstate(sk, CLOSED))
4839 			return 0;
4840 
4841 		sctp_unhash_endpoint(ep);
4842 		sk->sk_state = SCTP_SS_CLOSED;
4843 	}
4844 
4845 	if (sctp_sstate(sk, LISTENING))
4846 		return 0;
4847 
4848 	/*
4849 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4850 	 * call that allows new associations to be accepted, the system
4851 	 * picks an ephemeral port and will choose an address set equivalent
4852 	 * to binding with a wildcard address.
4853 	 *
4854 	 * This is not currently spelled out in the SCTP sockets
4855 	 * extensions draft, but follows the practice as seen in TCP
4856 	 * sockets.
4857 	 */
4858 	if (!ep->base.bind_addr.port) {
4859 		if (sctp_autobind(sk))
4860 			return -EAGAIN;
4861 	}
4862 	sk->sk_state = SCTP_SS_LISTENING;
4863 	sk->sk_max_ack_backlog = backlog;
4864 	sctp_hash_endpoint(ep);
4865 	return 0;
4866 }
4867 
4868 /*
4869  *  Move a socket to LISTENING state.
4870  */
4871 int sctp_inet_listen(struct socket *sock, int backlog)
4872 {
4873 	struct sock *sk = sock->sk;
4874 	struct crypto_hash *tfm = NULL;
4875 	int err = -EINVAL;
4876 
4877 	if (unlikely(backlog < 0))
4878 		goto out;
4879 
4880 	sctp_lock_sock(sk);
4881 
4882 	if (sock->state != SS_UNCONNECTED)
4883 		goto out;
4884 
4885 	/* Allocate HMAC for generating cookie. */
4886 	if (sctp_hmac_alg) {
4887 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
4888 		if (!tfm) {
4889 			err = -ENOSYS;
4890 			goto out;
4891 		}
4892 	}
4893 
4894 	switch (sock->type) {
4895 	case SOCK_SEQPACKET:
4896 		err = sctp_seqpacket_listen(sk, backlog);
4897 		break;
4898 	case SOCK_STREAM:
4899 		err = sctp_stream_listen(sk, backlog);
4900 		break;
4901 	default:
4902 		break;
4903 	};
4904 	if (err)
4905 		goto cleanup;
4906 
4907 	/* Store away the transform reference. */
4908 	sctp_sk(sk)->hmac = tfm;
4909 out:
4910 	sctp_release_sock(sk);
4911 	return err;
4912 cleanup:
4913 	crypto_free_hash(tfm);
4914 	goto out;
4915 }
4916 
4917 /*
4918  * This function is done by modeling the current datagram_poll() and the
4919  * tcp_poll().  Note that, based on these implementations, we don't
4920  * lock the socket in this function, even though it seems that,
4921  * ideally, locking or some other mechanisms can be used to ensure
4922  * the integrity of the counters (sndbuf and wmem_alloc) used
4923  * in this place.  We assume that we don't need locks either until proven
4924  * otherwise.
4925  *
4926  * Another thing to note is that we include the Async I/O support
4927  * here, again, by modeling the current TCP/UDP code.  We don't have
4928  * a good way to test with it yet.
4929  */
4930 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4931 {
4932 	struct sock *sk = sock->sk;
4933 	struct sctp_sock *sp = sctp_sk(sk);
4934 	unsigned int mask;
4935 
4936 	poll_wait(file, sk->sk_sleep, wait);
4937 
4938 	/* A TCP-style listening socket becomes readable when the accept queue
4939 	 * is not empty.
4940 	 */
4941 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4942 		return (!list_empty(&sp->ep->asocs)) ?
4943 		       	(POLLIN | POLLRDNORM) : 0;
4944 
4945 	mask = 0;
4946 
4947 	/* Is there any exceptional events?  */
4948 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4949 		mask |= POLLERR;
4950 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4951 		mask |= POLLRDHUP;
4952 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4953 		mask |= POLLHUP;
4954 
4955 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4956 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4957 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4958 		mask |= POLLIN | POLLRDNORM;
4959 
4960 	/* The association is either gone or not ready.  */
4961 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4962 		return mask;
4963 
4964 	/* Is it writable?  */
4965 	if (sctp_writeable(sk)) {
4966 		mask |= POLLOUT | POLLWRNORM;
4967 	} else {
4968 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4969 		/*
4970 		 * Since the socket is not locked, the buffer
4971 		 * might be made available after the writeable check and
4972 		 * before the bit is set.  This could cause a lost I/O
4973 		 * signal.  tcp_poll() has a race breaker for this race
4974 		 * condition.  Based on their implementation, we put
4975 		 * in the following code to cover it as well.
4976 		 */
4977 		if (sctp_writeable(sk))
4978 			mask |= POLLOUT | POLLWRNORM;
4979 	}
4980 	return mask;
4981 }
4982 
4983 /********************************************************************
4984  * 2nd Level Abstractions
4985  ********************************************************************/
4986 
4987 static struct sctp_bind_bucket *sctp_bucket_create(
4988 	struct sctp_bind_hashbucket *head, unsigned short snum)
4989 {
4990 	struct sctp_bind_bucket *pp;
4991 
4992 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
4993 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4994 	if (pp) {
4995 		pp->port = snum;
4996 		pp->fastreuse = 0;
4997 		INIT_HLIST_HEAD(&pp->owner);
4998 		if ((pp->next = head->chain) != NULL)
4999 			pp->next->pprev = &pp->next;
5000 		head->chain = pp;
5001 		pp->pprev = &head->chain;
5002 	}
5003 	return pp;
5004 }
5005 
5006 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5007 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5008 {
5009 	if (pp && hlist_empty(&pp->owner)) {
5010 		if (pp->next)
5011 			pp->next->pprev = pp->pprev;
5012 		*(pp->pprev) = pp->next;
5013 		kmem_cache_free(sctp_bucket_cachep, pp);
5014 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5015 	}
5016 }
5017 
5018 /* Release this socket's reference to a local port.  */
5019 static inline void __sctp_put_port(struct sock *sk)
5020 {
5021 	struct sctp_bind_hashbucket *head =
5022 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5023 	struct sctp_bind_bucket *pp;
5024 
5025 	sctp_spin_lock(&head->lock);
5026 	pp = sctp_sk(sk)->bind_hash;
5027 	__sk_del_bind_node(sk);
5028 	sctp_sk(sk)->bind_hash = NULL;
5029 	inet_sk(sk)->num = 0;
5030 	sctp_bucket_destroy(pp);
5031 	sctp_spin_unlock(&head->lock);
5032 }
5033 
5034 void sctp_put_port(struct sock *sk)
5035 {
5036 	sctp_local_bh_disable();
5037 	__sctp_put_port(sk);
5038 	sctp_local_bh_enable();
5039 }
5040 
5041 /*
5042  * The system picks an ephemeral port and choose an address set equivalent
5043  * to binding with a wildcard address.
5044  * One of those addresses will be the primary address for the association.
5045  * This automatically enables the multihoming capability of SCTP.
5046  */
5047 static int sctp_autobind(struct sock *sk)
5048 {
5049 	union sctp_addr autoaddr;
5050 	struct sctp_af *af;
5051 	__be16 port;
5052 
5053 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5054 	af = sctp_sk(sk)->pf->af;
5055 
5056 	port = htons(inet_sk(sk)->num);
5057 	af->inaddr_any(&autoaddr, port);
5058 
5059 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5060 }
5061 
5062 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5063  *
5064  * From RFC 2292
5065  * 4.2 The cmsghdr Structure *
5066  *
5067  * When ancillary data is sent or received, any number of ancillary data
5068  * objects can be specified by the msg_control and msg_controllen members of
5069  * the msghdr structure, because each object is preceded by
5070  * a cmsghdr structure defining the object's length (the cmsg_len member).
5071  * Historically Berkeley-derived implementations have passed only one object
5072  * at a time, but this API allows multiple objects to be
5073  * passed in a single call to sendmsg() or recvmsg(). The following example
5074  * shows two ancillary data objects in a control buffer.
5075  *
5076  *   |<--------------------------- msg_controllen -------------------------->|
5077  *   |                                                                       |
5078  *
5079  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5080  *
5081  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5082  *   |                                   |                                   |
5083  *
5084  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5085  *
5086  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5087  *   |                                |  |                                |  |
5088  *
5089  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5090  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5091  *
5092  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5093  *
5094  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5095  *    ^
5096  *    |
5097  *
5098  * msg_control
5099  * points here
5100  */
5101 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5102 				  sctp_cmsgs_t *cmsgs)
5103 {
5104 	struct cmsghdr *cmsg;
5105 
5106 	for (cmsg = CMSG_FIRSTHDR(msg);
5107 	     cmsg != NULL;
5108 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5109 		if (!CMSG_OK(msg, cmsg))
5110 			return -EINVAL;
5111 
5112 		/* Should we parse this header or ignore?  */
5113 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5114 			continue;
5115 
5116 		/* Strictly check lengths following example in SCM code.  */
5117 		switch (cmsg->cmsg_type) {
5118 		case SCTP_INIT:
5119 			/* SCTP Socket API Extension
5120 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5121 			 *
5122 			 * This cmsghdr structure provides information for
5123 			 * initializing new SCTP associations with sendmsg().
5124 			 * The SCTP_INITMSG socket option uses this same data
5125 			 * structure.  This structure is not used for
5126 			 * recvmsg().
5127 			 *
5128 			 * cmsg_level    cmsg_type      cmsg_data[]
5129 			 * ------------  ------------   ----------------------
5130 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5131 			 */
5132 			if (cmsg->cmsg_len !=
5133 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5134 				return -EINVAL;
5135 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5136 			break;
5137 
5138 		case SCTP_SNDRCV:
5139 			/* SCTP Socket API Extension
5140 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5141 			 *
5142 			 * This cmsghdr structure specifies SCTP options for
5143 			 * sendmsg() and describes SCTP header information
5144 			 * about a received message through recvmsg().
5145 			 *
5146 			 * cmsg_level    cmsg_type      cmsg_data[]
5147 			 * ------------  ------------   ----------------------
5148 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5149 			 */
5150 			if (cmsg->cmsg_len !=
5151 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5152 				return -EINVAL;
5153 
5154 			cmsgs->info =
5155 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5156 
5157 			/* Minimally, validate the sinfo_flags. */
5158 			if (cmsgs->info->sinfo_flags &
5159 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5160 			      SCTP_ABORT | SCTP_EOF))
5161 				return -EINVAL;
5162 			break;
5163 
5164 		default:
5165 			return -EINVAL;
5166 		};
5167 	}
5168 	return 0;
5169 }
5170 
5171 /*
5172  * Wait for a packet..
5173  * Note: This function is the same function as in core/datagram.c
5174  * with a few modifications to make lksctp work.
5175  */
5176 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5177 {
5178 	int error;
5179 	DEFINE_WAIT(wait);
5180 
5181 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5182 
5183 	/* Socket errors? */
5184 	error = sock_error(sk);
5185 	if (error)
5186 		goto out;
5187 
5188 	if (!skb_queue_empty(&sk->sk_receive_queue))
5189 		goto ready;
5190 
5191 	/* Socket shut down?  */
5192 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5193 		goto out;
5194 
5195 	/* Sequenced packets can come disconnected.  If so we report the
5196 	 * problem.
5197 	 */
5198 	error = -ENOTCONN;
5199 
5200 	/* Is there a good reason to think that we may receive some data?  */
5201 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5202 		goto out;
5203 
5204 	/* Handle signals.  */
5205 	if (signal_pending(current))
5206 		goto interrupted;
5207 
5208 	/* Let another process have a go.  Since we are going to sleep
5209 	 * anyway.  Note: This may cause odd behaviors if the message
5210 	 * does not fit in the user's buffer, but this seems to be the
5211 	 * only way to honor MSG_DONTWAIT realistically.
5212 	 */
5213 	sctp_release_sock(sk);
5214 	*timeo_p = schedule_timeout(*timeo_p);
5215 	sctp_lock_sock(sk);
5216 
5217 ready:
5218 	finish_wait(sk->sk_sleep, &wait);
5219 	return 0;
5220 
5221 interrupted:
5222 	error = sock_intr_errno(*timeo_p);
5223 
5224 out:
5225 	finish_wait(sk->sk_sleep, &wait);
5226 	*err = error;
5227 	return error;
5228 }
5229 
5230 /* Receive a datagram.
5231  * Note: This is pretty much the same routine as in core/datagram.c
5232  * with a few changes to make lksctp work.
5233  */
5234 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5235 					      int noblock, int *err)
5236 {
5237 	int error;
5238 	struct sk_buff *skb;
5239 	long timeo;
5240 
5241 	timeo = sock_rcvtimeo(sk, noblock);
5242 
5243 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5244 			  timeo, MAX_SCHEDULE_TIMEOUT);
5245 
5246 	do {
5247 		/* Again only user level code calls this function,
5248 		 * so nothing interrupt level
5249 		 * will suddenly eat the receive_queue.
5250 		 *
5251 		 *  Look at current nfs client by the way...
5252 		 *  However, this function was corrent in any case. 8)
5253 		 */
5254 		if (flags & MSG_PEEK) {
5255 			spin_lock_bh(&sk->sk_receive_queue.lock);
5256 			skb = skb_peek(&sk->sk_receive_queue);
5257 			if (skb)
5258 				atomic_inc(&skb->users);
5259 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5260 		} else {
5261 			skb = skb_dequeue(&sk->sk_receive_queue);
5262 		}
5263 
5264 		if (skb)
5265 			return skb;
5266 
5267 		/* Caller is allowed not to check sk->sk_err before calling. */
5268 		error = sock_error(sk);
5269 		if (error)
5270 			goto no_packet;
5271 
5272 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5273 			break;
5274 
5275 		/* User doesn't want to wait.  */
5276 		error = -EAGAIN;
5277 		if (!timeo)
5278 			goto no_packet;
5279 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5280 
5281 	return NULL;
5282 
5283 no_packet:
5284 	*err = error;
5285 	return NULL;
5286 }
5287 
5288 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5289 static void __sctp_write_space(struct sctp_association *asoc)
5290 {
5291 	struct sock *sk = asoc->base.sk;
5292 	struct socket *sock = sk->sk_socket;
5293 
5294 	if ((sctp_wspace(asoc) > 0) && sock) {
5295 		if (waitqueue_active(&asoc->wait))
5296 			wake_up_interruptible(&asoc->wait);
5297 
5298 		if (sctp_writeable(sk)) {
5299 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5300 				wake_up_interruptible(sk->sk_sleep);
5301 
5302 			/* Note that we try to include the Async I/O support
5303 			 * here by modeling from the current TCP/UDP code.
5304 			 * We have not tested with it yet.
5305 			 */
5306 			if (sock->fasync_list &&
5307 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5308 				sock_wake_async(sock, 2, POLL_OUT);
5309 		}
5310 	}
5311 }
5312 
5313 /* Do accounting for the sndbuf space.
5314  * Decrement the used sndbuf space of the corresponding association by the
5315  * data size which was just transmitted(freed).
5316  */
5317 static void sctp_wfree(struct sk_buff *skb)
5318 {
5319 	struct sctp_association *asoc;
5320 	struct sctp_chunk *chunk;
5321 	struct sock *sk;
5322 
5323 	/* Get the saved chunk pointer.  */
5324 	chunk = *((struct sctp_chunk **)(skb->cb));
5325 	asoc = chunk->asoc;
5326 	sk = asoc->base.sk;
5327 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5328 				sizeof(struct sk_buff) +
5329 				sizeof(struct sctp_chunk);
5330 
5331 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5332 
5333 	sock_wfree(skb);
5334 	__sctp_write_space(asoc);
5335 
5336 	sctp_association_put(asoc);
5337 }
5338 
5339 /* Do accounting for the receive space on the socket.
5340  * Accounting for the association is done in ulpevent.c
5341  * We set this as a destructor for the cloned data skbs so that
5342  * accounting is done at the correct time.
5343  */
5344 void sctp_sock_rfree(struct sk_buff *skb)
5345 {
5346 	struct sock *sk = skb->sk;
5347 	struct sctp_ulpevent *event = sctp_skb2event(skb);
5348 
5349 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5350 }
5351 
5352 
5353 /* Helper function to wait for space in the sndbuf.  */
5354 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5355 				size_t msg_len)
5356 {
5357 	struct sock *sk = asoc->base.sk;
5358 	int err = 0;
5359 	long current_timeo = *timeo_p;
5360 	DEFINE_WAIT(wait);
5361 
5362 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5363 	                  asoc, (long)(*timeo_p), msg_len);
5364 
5365 	/* Increment the association's refcnt.  */
5366 	sctp_association_hold(asoc);
5367 
5368 	/* Wait on the association specific sndbuf space. */
5369 	for (;;) {
5370 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5371 					  TASK_INTERRUPTIBLE);
5372 		if (!*timeo_p)
5373 			goto do_nonblock;
5374 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5375 		    asoc->base.dead)
5376 			goto do_error;
5377 		if (signal_pending(current))
5378 			goto do_interrupted;
5379 		if (msg_len <= sctp_wspace(asoc))
5380 			break;
5381 
5382 		/* Let another process have a go.  Since we are going
5383 		 * to sleep anyway.
5384 		 */
5385 		sctp_release_sock(sk);
5386 		current_timeo = schedule_timeout(current_timeo);
5387 		BUG_ON(sk != asoc->base.sk);
5388 		sctp_lock_sock(sk);
5389 
5390 		*timeo_p = current_timeo;
5391 	}
5392 
5393 out:
5394 	finish_wait(&asoc->wait, &wait);
5395 
5396 	/* Release the association's refcnt.  */
5397 	sctp_association_put(asoc);
5398 
5399 	return err;
5400 
5401 do_error:
5402 	err = -EPIPE;
5403 	goto out;
5404 
5405 do_interrupted:
5406 	err = sock_intr_errno(*timeo_p);
5407 	goto out;
5408 
5409 do_nonblock:
5410 	err = -EAGAIN;
5411 	goto out;
5412 }
5413 
5414 /* If socket sndbuf has changed, wake up all per association waiters.  */
5415 void sctp_write_space(struct sock *sk)
5416 {
5417 	struct sctp_association *asoc;
5418 	struct list_head *pos;
5419 
5420 	/* Wake up the tasks in each wait queue.  */
5421 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5422 		asoc = list_entry(pos, struct sctp_association, asocs);
5423 		__sctp_write_space(asoc);
5424 	}
5425 }
5426 
5427 /* Is there any sndbuf space available on the socket?
5428  *
5429  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5430  * associations on the same socket.  For a UDP-style socket with
5431  * multiple associations, it is possible for it to be "unwriteable"
5432  * prematurely.  I assume that this is acceptable because
5433  * a premature "unwriteable" is better than an accidental "writeable" which
5434  * would cause an unwanted block under certain circumstances.  For the 1-1
5435  * UDP-style sockets or TCP-style sockets, this code should work.
5436  *  - Daisy
5437  */
5438 static int sctp_writeable(struct sock *sk)
5439 {
5440 	int amt = 0;
5441 
5442 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5443 	if (amt < 0)
5444 		amt = 0;
5445 	return amt;
5446 }
5447 
5448 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5449  * returns immediately with EINPROGRESS.
5450  */
5451 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5452 {
5453 	struct sock *sk = asoc->base.sk;
5454 	int err = 0;
5455 	long current_timeo = *timeo_p;
5456 	DEFINE_WAIT(wait);
5457 
5458 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5459 			  (long)(*timeo_p));
5460 
5461 	/* Increment the association's refcnt.  */
5462 	sctp_association_hold(asoc);
5463 
5464 	for (;;) {
5465 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5466 					  TASK_INTERRUPTIBLE);
5467 		if (!*timeo_p)
5468 			goto do_nonblock;
5469 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5470 			break;
5471 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5472 		    asoc->base.dead)
5473 			goto do_error;
5474 		if (signal_pending(current))
5475 			goto do_interrupted;
5476 
5477 		if (sctp_state(asoc, ESTABLISHED))
5478 			break;
5479 
5480 		/* Let another process have a go.  Since we are going
5481 		 * to sleep anyway.
5482 		 */
5483 		sctp_release_sock(sk);
5484 		current_timeo = schedule_timeout(current_timeo);
5485 		sctp_lock_sock(sk);
5486 
5487 		*timeo_p = current_timeo;
5488 	}
5489 
5490 out:
5491 	finish_wait(&asoc->wait, &wait);
5492 
5493 	/* Release the association's refcnt.  */
5494 	sctp_association_put(asoc);
5495 
5496 	return err;
5497 
5498 do_error:
5499 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5500 		err = -ETIMEDOUT;
5501 	else
5502 		err = -ECONNREFUSED;
5503 	goto out;
5504 
5505 do_interrupted:
5506 	err = sock_intr_errno(*timeo_p);
5507 	goto out;
5508 
5509 do_nonblock:
5510 	err = -EINPROGRESS;
5511 	goto out;
5512 }
5513 
5514 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5515 {
5516 	struct sctp_endpoint *ep;
5517 	int err = 0;
5518 	DEFINE_WAIT(wait);
5519 
5520 	ep = sctp_sk(sk)->ep;
5521 
5522 
5523 	for (;;) {
5524 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5525 					  TASK_INTERRUPTIBLE);
5526 
5527 		if (list_empty(&ep->asocs)) {
5528 			sctp_release_sock(sk);
5529 			timeo = schedule_timeout(timeo);
5530 			sctp_lock_sock(sk);
5531 		}
5532 
5533 		err = -EINVAL;
5534 		if (!sctp_sstate(sk, LISTENING))
5535 			break;
5536 
5537 		err = 0;
5538 		if (!list_empty(&ep->asocs))
5539 			break;
5540 
5541 		err = sock_intr_errno(timeo);
5542 		if (signal_pending(current))
5543 			break;
5544 
5545 		err = -EAGAIN;
5546 		if (!timeo)
5547 			break;
5548 	}
5549 
5550 	finish_wait(sk->sk_sleep, &wait);
5551 
5552 	return err;
5553 }
5554 
5555 void sctp_wait_for_close(struct sock *sk, long timeout)
5556 {
5557 	DEFINE_WAIT(wait);
5558 
5559 	do {
5560 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5561 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5562 			break;
5563 		sctp_release_sock(sk);
5564 		timeout = schedule_timeout(timeout);
5565 		sctp_lock_sock(sk);
5566 	} while (!signal_pending(current) && timeout);
5567 
5568 	finish_wait(sk->sk_sleep, &wait);
5569 }
5570 
5571 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5572  * and its messages to the newsk.
5573  */
5574 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5575 			      struct sctp_association *assoc,
5576 			      sctp_socket_type_t type)
5577 {
5578 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5579 	struct sctp_sock *newsp = sctp_sk(newsk);
5580 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5581 	struct sctp_endpoint *newep = newsp->ep;
5582 	struct sk_buff *skb, *tmp;
5583 	struct sctp_ulpevent *event;
5584 	int flags = 0;
5585 
5586 	/* Migrate socket buffer sizes and all the socket level options to the
5587 	 * new socket.
5588 	 */
5589 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5590 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5591 	/* Brute force copy old sctp opt. */
5592 	inet_sk_copy_descendant(newsk, oldsk);
5593 
5594 	/* Restore the ep value that was overwritten with the above structure
5595 	 * copy.
5596 	 */
5597 	newsp->ep = newep;
5598 	newsp->hmac = NULL;
5599 
5600 	/* Hook this new socket in to the bind_hash list. */
5601 	pp = sctp_sk(oldsk)->bind_hash;
5602 	sk_add_bind_node(newsk, &pp->owner);
5603 	sctp_sk(newsk)->bind_hash = pp;
5604 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5605 
5606 	/* Copy the bind_addr list from the original endpoint to the new
5607 	 * endpoint so that we can handle restarts properly
5608 	 */
5609 	if (PF_INET6 == assoc->base.sk->sk_family)
5610 		flags = SCTP_ADDR6_ALLOWED;
5611 	if (assoc->peer.ipv4_address)
5612 		flags |= SCTP_ADDR4_PEERSUPP;
5613 	if (assoc->peer.ipv6_address)
5614 		flags |= SCTP_ADDR6_PEERSUPP;
5615 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5616 			     &oldsp->ep->base.bind_addr,
5617 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5618 
5619 	/* Move any messages in the old socket's receive queue that are for the
5620 	 * peeled off association to the new socket's receive queue.
5621 	 */
5622 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5623 		event = sctp_skb2event(skb);
5624 		if (event->asoc == assoc) {
5625 			sctp_sock_rfree(skb);
5626 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5627 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5628 			sctp_skb_set_owner_r(skb, newsk);
5629 		}
5630 	}
5631 
5632 	/* Clean up any messages pending delivery due to partial
5633 	 * delivery.   Three cases:
5634 	 * 1) No partial deliver;  no work.
5635 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5636 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5637 	 */
5638 	skb_queue_head_init(&newsp->pd_lobby);
5639 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5640 
5641 	if (sctp_sk(oldsk)->pd_mode) {
5642 		struct sk_buff_head *queue;
5643 
5644 		/* Decide which queue to move pd_lobby skbs to. */
5645 		if (assoc->ulpq.pd_mode) {
5646 			queue = &newsp->pd_lobby;
5647 		} else
5648 			queue = &newsk->sk_receive_queue;
5649 
5650 		/* Walk through the pd_lobby, looking for skbs that
5651 		 * need moved to the new socket.
5652 		 */
5653 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5654 			event = sctp_skb2event(skb);
5655 			if (event->asoc == assoc) {
5656 				sctp_sock_rfree(skb);
5657 				__skb_unlink(skb, &oldsp->pd_lobby);
5658 				__skb_queue_tail(queue, skb);
5659 				sctp_skb_set_owner_r(skb, newsk);
5660 			}
5661 		}
5662 
5663 		/* Clear up any skbs waiting for the partial
5664 		 * delivery to finish.
5665 		 */
5666 		if (assoc->ulpq.pd_mode)
5667 			sctp_clear_pd(oldsk);
5668 
5669 	}
5670 
5671 	/* Set the type of socket to indicate that it is peeled off from the
5672 	 * original UDP-style socket or created with the accept() call on a
5673 	 * TCP-style socket..
5674 	 */
5675 	newsp->type = type;
5676 
5677 	/* Mark the new socket "in-use" by the user so that any packets
5678 	 * that may arrive on the association after we've moved it are
5679 	 * queued to the backlog.  This prevents a potential race between
5680 	 * backlog processing on the old socket and new-packet processing
5681 	 * on the new socket.
5682 	 */
5683 	sctp_lock_sock(newsk);
5684 	sctp_assoc_migrate(assoc, newsk);
5685 
5686 	/* If the association on the newsk is already closed before accept()
5687 	 * is called, set RCV_SHUTDOWN flag.
5688 	 */
5689 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5690 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5691 
5692 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5693 	sctp_release_sock(newsk);
5694 }
5695 
5696 /* This proto struct describes the ULP interface for SCTP.  */
5697 struct proto sctp_prot = {
5698 	.name        =	"SCTP",
5699 	.owner       =	THIS_MODULE,
5700 	.close       =	sctp_close,
5701 	.connect     =	sctp_connect,
5702 	.disconnect  =	sctp_disconnect,
5703 	.accept      =	sctp_accept,
5704 	.ioctl       =	sctp_ioctl,
5705 	.init        =	sctp_init_sock,
5706 	.destroy     =	sctp_destroy_sock,
5707 	.shutdown    =	sctp_shutdown,
5708 	.setsockopt  =	sctp_setsockopt,
5709 	.getsockopt  =	sctp_getsockopt,
5710 	.sendmsg     =	sctp_sendmsg,
5711 	.recvmsg     =	sctp_recvmsg,
5712 	.bind        =	sctp_bind,
5713 	.backlog_rcv =	sctp_backlog_rcv,
5714 	.hash        =	sctp_hash,
5715 	.unhash      =	sctp_unhash,
5716 	.get_port    =	sctp_get_port,
5717 	.obj_size    =  sizeof(struct sctp_sock),
5718 };
5719 
5720 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5721 struct proto sctpv6_prot = {
5722 	.name		= "SCTPv6",
5723 	.owner		= THIS_MODULE,
5724 	.close		= sctp_close,
5725 	.connect	= sctp_connect,
5726 	.disconnect	= sctp_disconnect,
5727 	.accept		= sctp_accept,
5728 	.ioctl		= sctp_ioctl,
5729 	.init		= sctp_init_sock,
5730 	.destroy	= sctp_destroy_sock,
5731 	.shutdown	= sctp_shutdown,
5732 	.setsockopt	= sctp_setsockopt,
5733 	.getsockopt	= sctp_getsockopt,
5734 	.sendmsg	= sctp_sendmsg,
5735 	.recvmsg	= sctp_recvmsg,
5736 	.bind		= sctp_bind,
5737 	.backlog_rcv	= sctp_backlog_rcv,
5738 	.hash		= sctp_hash,
5739 	.unhash		= sctp_unhash,
5740 	.get_port	= sctp_get_port,
5741 	.obj_size	= sizeof(struct sctp6_sock),
5742 };
5743 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5744