1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 112 /* Get the sndbuf space available at the time on the association. */ 113 static inline int sctp_wspace(struct sctp_association *asoc) 114 { 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130 } 131 132 /* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142 { 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 160 } 161 162 /* Verify that this is a valid address. */ 163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 164 int len) 165 { 166 struct sctp_af *af; 167 168 /* Verify basic sockaddr. */ 169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 170 if (!af) 171 return -EINVAL; 172 173 /* Is this a valid SCTP address? */ 174 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 175 return -EINVAL; 176 177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 /* Look up the association by its id. If this is not a UDP-style 184 * socket, the ID field is always ignored. 185 */ 186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 187 { 188 struct sctp_association *asoc = NULL; 189 190 /* If this is not a UDP-style socket, assoc id should be ignored. */ 191 if (!sctp_style(sk, UDP)) { 192 /* Return NULL if the socket state is not ESTABLISHED. It 193 * could be a TCP-style listening socket or a socket which 194 * hasn't yet called connect() to establish an association. 195 */ 196 if (!sctp_sstate(sk, ESTABLISHED)) 197 return NULL; 198 199 /* Get the first and the only association from the list. */ 200 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 202 struct sctp_association, asocs); 203 return asoc; 204 } 205 206 /* Otherwise this is a UDP-style socket. */ 207 if (!id || (id == (sctp_assoc_t)-1)) 208 return NULL; 209 210 spin_lock_bh(&sctp_assocs_id_lock); 211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 212 spin_unlock_bh(&sctp_assocs_id_lock); 213 214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 215 return NULL; 216 217 return asoc; 218 } 219 220 /* Look up the transport from an address and an assoc id. If both address and 221 * id are specified, the associations matching the address and the id should be 222 * the same. 223 */ 224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 225 struct sockaddr_storage *addr, 226 sctp_assoc_t id) 227 { 228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 229 struct sctp_transport *transport; 230 union sctp_addr *laddr = (union sctp_addr *)addr; 231 232 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 233 laddr, 234 &transport); 235 236 if (!addr_asoc) 237 return NULL; 238 239 id_asoc = sctp_id2assoc(sk, id); 240 if (id_asoc && (id_asoc != addr_asoc)) 241 return NULL; 242 243 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 244 (union sctp_addr *)addr); 245 246 return transport; 247 } 248 249 /* API 3.1.2 bind() - UDP Style Syntax 250 * The syntax of bind() is, 251 * 252 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 253 * 254 * sd - the socket descriptor returned by socket(). 255 * addr - the address structure (struct sockaddr_in or struct 256 * sockaddr_in6 [RFC 2553]), 257 * addr_len - the size of the address structure. 258 */ 259 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 260 { 261 int retval = 0; 262 263 sctp_lock_sock(sk); 264 265 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 266 sk, addr, addr_len); 267 268 /* Disallow binding twice. */ 269 if (!sctp_sk(sk)->ep->base.bind_addr.port) 270 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 271 addr_len); 272 else 273 retval = -EINVAL; 274 275 sctp_release_sock(sk); 276 277 return retval; 278 } 279 280 static long sctp_get_port_local(struct sock *, union sctp_addr *); 281 282 /* Verify this is a valid sockaddr. */ 283 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 284 union sctp_addr *addr, int len) 285 { 286 struct sctp_af *af; 287 288 /* Check minimum size. */ 289 if (len < sizeof (struct sockaddr)) 290 return NULL; 291 292 /* Does this PF support this AF? */ 293 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 294 return NULL; 295 296 /* If we get this far, af is valid. */ 297 af = sctp_get_af_specific(addr->sa.sa_family); 298 299 if (len < af->sockaddr_len) 300 return NULL; 301 302 return af; 303 } 304 305 /* Bind a local address either to an endpoint or to an association. */ 306 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 307 { 308 struct sctp_sock *sp = sctp_sk(sk); 309 struct sctp_endpoint *ep = sp->ep; 310 struct sctp_bind_addr *bp = &ep->base.bind_addr; 311 struct sctp_af *af; 312 unsigned short snum; 313 int ret = 0; 314 315 /* Common sockaddr verification. */ 316 af = sctp_sockaddr_af(sp, addr, len); 317 if (!af) { 318 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 319 sk, addr, len); 320 return -EINVAL; 321 } 322 323 snum = ntohs(addr->v4.sin_port); 324 325 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 326 ", port: %d, new port: %d, len: %d)\n", 327 sk, 328 addr, 329 bp->port, snum, 330 len); 331 332 /* PF specific bind() address verification. */ 333 if (!sp->pf->bind_verify(sp, addr)) 334 return -EADDRNOTAVAIL; 335 336 /* We must either be unbound, or bind to the same port. */ 337 if (bp->port && (snum != bp->port)) { 338 SCTP_DEBUG_PRINTK("sctp_do_bind:" 339 " New port %d does not match existing port " 340 "%d.\n", snum, bp->port); 341 return -EINVAL; 342 } 343 344 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 345 return -EACCES; 346 347 /* Make sure we are allowed to bind here. 348 * The function sctp_get_port_local() does duplicate address 349 * detection. 350 */ 351 if ((ret = sctp_get_port_local(sk, addr))) { 352 if (ret == (long) sk) { 353 /* This endpoint has a conflicting address. */ 354 return -EINVAL; 355 } else { 356 return -EADDRINUSE; 357 } 358 } 359 360 /* Refresh ephemeral port. */ 361 if (!bp->port) 362 bp->port = inet_sk(sk)->num; 363 364 /* Add the address to the bind address list. */ 365 sctp_local_bh_disable(); 366 sctp_write_lock(&ep->base.addr_lock); 367 368 /* Use GFP_ATOMIC since BHs are disabled. */ 369 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 370 sctp_write_unlock(&ep->base.addr_lock); 371 sctp_local_bh_enable(); 372 373 /* Copy back into socket for getsockname() use. */ 374 if (!ret) { 375 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 376 af->to_sk_saddr(addr, sk); 377 } 378 379 return ret; 380 } 381 382 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 383 * 384 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 385 * at any one time. If a sender, after sending an ASCONF chunk, decides 386 * it needs to transfer another ASCONF Chunk, it MUST wait until the 387 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 388 * subsequent ASCONF. Note this restriction binds each side, so at any 389 * time two ASCONF may be in-transit on any given association (one sent 390 * from each endpoint). 391 */ 392 static int sctp_send_asconf(struct sctp_association *asoc, 393 struct sctp_chunk *chunk) 394 { 395 int retval = 0; 396 397 /* If there is an outstanding ASCONF chunk, queue it for later 398 * transmission. 399 */ 400 if (asoc->addip_last_asconf) { 401 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 402 goto out; 403 } 404 405 /* Hold the chunk until an ASCONF_ACK is received. */ 406 sctp_chunk_hold(chunk); 407 retval = sctp_primitive_ASCONF(asoc, chunk); 408 if (retval) 409 sctp_chunk_free(chunk); 410 else 411 asoc->addip_last_asconf = chunk; 412 413 out: 414 return retval; 415 } 416 417 /* Add a list of addresses as bind addresses to local endpoint or 418 * association. 419 * 420 * Basically run through each address specified in the addrs/addrcnt 421 * array/length pair, determine if it is IPv6 or IPv4 and call 422 * sctp_do_bind() on it. 423 * 424 * If any of them fails, then the operation will be reversed and the 425 * ones that were added will be removed. 426 * 427 * Only sctp_setsockopt_bindx() is supposed to call this function. 428 */ 429 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 430 { 431 int cnt; 432 int retval = 0; 433 void *addr_buf; 434 struct sockaddr *sa_addr; 435 struct sctp_af *af; 436 437 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 438 sk, addrs, addrcnt); 439 440 addr_buf = addrs; 441 for (cnt = 0; cnt < addrcnt; cnt++) { 442 /* The list may contain either IPv4 or IPv6 address; 443 * determine the address length for walking thru the list. 444 */ 445 sa_addr = (struct sockaddr *)addr_buf; 446 af = sctp_get_af_specific(sa_addr->sa_family); 447 if (!af) { 448 retval = -EINVAL; 449 goto err_bindx_add; 450 } 451 452 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 453 af->sockaddr_len); 454 455 addr_buf += af->sockaddr_len; 456 457 err_bindx_add: 458 if (retval < 0) { 459 /* Failed. Cleanup the ones that have been added */ 460 if (cnt > 0) 461 sctp_bindx_rem(sk, addrs, cnt); 462 return retval; 463 } 464 } 465 466 return retval; 467 } 468 469 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 470 * associations that are part of the endpoint indicating that a list of local 471 * addresses are added to the endpoint. 472 * 473 * If any of the addresses is already in the bind address list of the 474 * association, we do not send the chunk for that association. But it will not 475 * affect other associations. 476 * 477 * Only sctp_setsockopt_bindx() is supposed to call this function. 478 */ 479 static int sctp_send_asconf_add_ip(struct sock *sk, 480 struct sockaddr *addrs, 481 int addrcnt) 482 { 483 struct sctp_sock *sp; 484 struct sctp_endpoint *ep; 485 struct sctp_association *asoc; 486 struct sctp_bind_addr *bp; 487 struct sctp_chunk *chunk; 488 struct sctp_sockaddr_entry *laddr; 489 union sctp_addr *addr; 490 union sctp_addr saveaddr; 491 void *addr_buf; 492 struct sctp_af *af; 493 struct list_head *pos; 494 struct list_head *p; 495 int i; 496 int retval = 0; 497 498 if (!sctp_addip_enable) 499 return retval; 500 501 sp = sctp_sk(sk); 502 ep = sp->ep; 503 504 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 505 __FUNCTION__, sk, addrs, addrcnt); 506 507 list_for_each(pos, &ep->asocs) { 508 asoc = list_entry(pos, struct sctp_association, asocs); 509 510 if (!asoc->peer.asconf_capable) 511 continue; 512 513 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 514 continue; 515 516 if (!sctp_state(asoc, ESTABLISHED)) 517 continue; 518 519 /* Check if any address in the packed array of addresses is 520 * in the bind address list of the association. If so, 521 * do not send the asconf chunk to its peer, but continue with 522 * other associations. 523 */ 524 addr_buf = addrs; 525 for (i = 0; i < addrcnt; i++) { 526 addr = (union sctp_addr *)addr_buf; 527 af = sctp_get_af_specific(addr->v4.sin_family); 528 if (!af) { 529 retval = -EINVAL; 530 goto out; 531 } 532 533 if (sctp_assoc_lookup_laddr(asoc, addr)) 534 break; 535 536 addr_buf += af->sockaddr_len; 537 } 538 if (i < addrcnt) 539 continue; 540 541 /* Use the first address in bind addr list of association as 542 * Address Parameter of ASCONF CHUNK. 543 */ 544 sctp_read_lock(&asoc->base.addr_lock); 545 bp = &asoc->base.bind_addr; 546 p = bp->address_list.next; 547 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 548 sctp_read_unlock(&asoc->base.addr_lock); 549 550 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 551 addrcnt, SCTP_PARAM_ADD_IP); 552 if (!chunk) { 553 retval = -ENOMEM; 554 goto out; 555 } 556 557 retval = sctp_send_asconf(asoc, chunk); 558 if (retval) 559 goto out; 560 561 /* Add the new addresses to the bind address list with 562 * use_as_src set to 0. 563 */ 564 sctp_local_bh_disable(); 565 sctp_write_lock(&asoc->base.addr_lock); 566 addr_buf = addrs; 567 for (i = 0; i < addrcnt; i++) { 568 addr = (union sctp_addr *)addr_buf; 569 af = sctp_get_af_specific(addr->v4.sin_family); 570 memcpy(&saveaddr, addr, af->sockaddr_len); 571 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 572 GFP_ATOMIC); 573 addr_buf += af->sockaddr_len; 574 } 575 sctp_write_unlock(&asoc->base.addr_lock); 576 sctp_local_bh_enable(); 577 } 578 579 out: 580 return retval; 581 } 582 583 /* Remove a list of addresses from bind addresses list. Do not remove the 584 * last address. 585 * 586 * Basically run through each address specified in the addrs/addrcnt 587 * array/length pair, determine if it is IPv6 or IPv4 and call 588 * sctp_del_bind() on it. 589 * 590 * If any of them fails, then the operation will be reversed and the 591 * ones that were removed will be added back. 592 * 593 * At least one address has to be left; if only one address is 594 * available, the operation will return -EBUSY. 595 * 596 * Only sctp_setsockopt_bindx() is supposed to call this function. 597 */ 598 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 599 { 600 struct sctp_sock *sp = sctp_sk(sk); 601 struct sctp_endpoint *ep = sp->ep; 602 int cnt; 603 struct sctp_bind_addr *bp = &ep->base.bind_addr; 604 int retval = 0; 605 void *addr_buf; 606 union sctp_addr *sa_addr; 607 struct sctp_af *af; 608 609 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 610 sk, addrs, addrcnt); 611 612 addr_buf = addrs; 613 for (cnt = 0; cnt < addrcnt; cnt++) { 614 /* If the bind address list is empty or if there is only one 615 * bind address, there is nothing more to be removed (we need 616 * at least one address here). 617 */ 618 if (list_empty(&bp->address_list) || 619 (sctp_list_single_entry(&bp->address_list))) { 620 retval = -EBUSY; 621 goto err_bindx_rem; 622 } 623 624 sa_addr = (union sctp_addr *)addr_buf; 625 af = sctp_get_af_specific(sa_addr->sa.sa_family); 626 if (!af) { 627 retval = -EINVAL; 628 goto err_bindx_rem; 629 } 630 if (sa_addr->v4.sin_port != htons(bp->port)) { 631 retval = -EINVAL; 632 goto err_bindx_rem; 633 } 634 635 /* FIXME - There is probably a need to check if sk->sk_saddr and 636 * sk->sk_rcv_addr are currently set to one of the addresses to 637 * be removed. This is something which needs to be looked into 638 * when we are fixing the outstanding issues with multi-homing 639 * socket routing and failover schemes. Refer to comments in 640 * sctp_do_bind(). -daisy 641 */ 642 sctp_local_bh_disable(); 643 sctp_write_lock(&ep->base.addr_lock); 644 645 retval = sctp_del_bind_addr(bp, sa_addr); 646 647 sctp_write_unlock(&ep->base.addr_lock); 648 sctp_local_bh_enable(); 649 650 addr_buf += af->sockaddr_len; 651 err_bindx_rem: 652 if (retval < 0) { 653 /* Failed. Add the ones that has been removed back */ 654 if (cnt > 0) 655 sctp_bindx_add(sk, addrs, cnt); 656 return retval; 657 } 658 } 659 660 return retval; 661 } 662 663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 664 * the associations that are part of the endpoint indicating that a list of 665 * local addresses are removed from the endpoint. 666 * 667 * If any of the addresses is already in the bind address list of the 668 * association, we do not send the chunk for that association. But it will not 669 * affect other associations. 670 * 671 * Only sctp_setsockopt_bindx() is supposed to call this function. 672 */ 673 static int sctp_send_asconf_del_ip(struct sock *sk, 674 struct sockaddr *addrs, 675 int addrcnt) 676 { 677 struct sctp_sock *sp; 678 struct sctp_endpoint *ep; 679 struct sctp_association *asoc; 680 struct sctp_transport *transport; 681 struct sctp_bind_addr *bp; 682 struct sctp_chunk *chunk; 683 union sctp_addr *laddr; 684 void *addr_buf; 685 struct sctp_af *af; 686 struct list_head *pos, *pos1; 687 struct sctp_sockaddr_entry *saddr; 688 int i; 689 int retval = 0; 690 691 if (!sctp_addip_enable) 692 return retval; 693 694 sp = sctp_sk(sk); 695 ep = sp->ep; 696 697 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 698 __FUNCTION__, sk, addrs, addrcnt); 699 700 list_for_each(pos, &ep->asocs) { 701 asoc = list_entry(pos, struct sctp_association, asocs); 702 703 if (!asoc->peer.asconf_capable) 704 continue; 705 706 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 707 continue; 708 709 if (!sctp_state(asoc, ESTABLISHED)) 710 continue; 711 712 /* Check if any address in the packed array of addresses is 713 * not present in the bind address list of the association. 714 * If so, do not send the asconf chunk to its peer, but 715 * continue with other associations. 716 */ 717 addr_buf = addrs; 718 for (i = 0; i < addrcnt; i++) { 719 laddr = (union sctp_addr *)addr_buf; 720 af = sctp_get_af_specific(laddr->v4.sin_family); 721 if (!af) { 722 retval = -EINVAL; 723 goto out; 724 } 725 726 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 727 break; 728 729 addr_buf += af->sockaddr_len; 730 } 731 if (i < addrcnt) 732 continue; 733 734 /* Find one address in the association's bind address list 735 * that is not in the packed array of addresses. This is to 736 * make sure that we do not delete all the addresses in the 737 * association. 738 */ 739 sctp_read_lock(&asoc->base.addr_lock); 740 bp = &asoc->base.bind_addr; 741 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 742 addrcnt, sp); 743 sctp_read_unlock(&asoc->base.addr_lock); 744 if (!laddr) 745 continue; 746 747 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 748 SCTP_PARAM_DEL_IP); 749 if (!chunk) { 750 retval = -ENOMEM; 751 goto out; 752 } 753 754 /* Reset use_as_src flag for the addresses in the bind address 755 * list that are to be deleted. 756 */ 757 sctp_local_bh_disable(); 758 sctp_write_lock(&asoc->base.addr_lock); 759 addr_buf = addrs; 760 for (i = 0; i < addrcnt; i++) { 761 laddr = (union sctp_addr *)addr_buf; 762 af = sctp_get_af_specific(laddr->v4.sin_family); 763 list_for_each(pos1, &bp->address_list) { 764 saddr = list_entry(pos1, 765 struct sctp_sockaddr_entry, 766 list); 767 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 768 saddr->use_as_src = 0; 769 } 770 addr_buf += af->sockaddr_len; 771 } 772 sctp_write_unlock(&asoc->base.addr_lock); 773 sctp_local_bh_enable(); 774 775 /* Update the route and saddr entries for all the transports 776 * as some of the addresses in the bind address list are 777 * about to be deleted and cannot be used as source addresses. 778 */ 779 list_for_each(pos1, &asoc->peer.transport_addr_list) { 780 transport = list_entry(pos1, struct sctp_transport, 781 transports); 782 dst_release(transport->dst); 783 sctp_transport_route(transport, NULL, 784 sctp_sk(asoc->base.sk)); 785 } 786 787 retval = sctp_send_asconf(asoc, chunk); 788 } 789 out: 790 return retval; 791 } 792 793 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 794 * 795 * API 8.1 796 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 797 * int flags); 798 * 799 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 800 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 801 * or IPv6 addresses. 802 * 803 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 804 * Section 3.1.2 for this usage. 805 * 806 * addrs is a pointer to an array of one or more socket addresses. Each 807 * address is contained in its appropriate structure (i.e. struct 808 * sockaddr_in or struct sockaddr_in6) the family of the address type 809 * must be used to distinguish the address length (note that this 810 * representation is termed a "packed array" of addresses). The caller 811 * specifies the number of addresses in the array with addrcnt. 812 * 813 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 814 * -1, and sets errno to the appropriate error code. 815 * 816 * For SCTP, the port given in each socket address must be the same, or 817 * sctp_bindx() will fail, setting errno to EINVAL. 818 * 819 * The flags parameter is formed from the bitwise OR of zero or more of 820 * the following currently defined flags: 821 * 822 * SCTP_BINDX_ADD_ADDR 823 * 824 * SCTP_BINDX_REM_ADDR 825 * 826 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 827 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 828 * addresses from the association. The two flags are mutually exclusive; 829 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 830 * not remove all addresses from an association; sctp_bindx() will 831 * reject such an attempt with EINVAL. 832 * 833 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 834 * additional addresses with an endpoint after calling bind(). Or use 835 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 836 * socket is associated with so that no new association accepted will be 837 * associated with those addresses. If the endpoint supports dynamic 838 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 839 * endpoint to send the appropriate message to the peer to change the 840 * peers address lists. 841 * 842 * Adding and removing addresses from a connected association is 843 * optional functionality. Implementations that do not support this 844 * functionality should return EOPNOTSUPP. 845 * 846 * Basically do nothing but copying the addresses from user to kernel 847 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 848 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 849 * from userspace. 850 * 851 * We don't use copy_from_user() for optimization: we first do the 852 * sanity checks (buffer size -fast- and access check-healthy 853 * pointer); if all of those succeed, then we can alloc the memory 854 * (expensive operation) needed to copy the data to kernel. Then we do 855 * the copying without checking the user space area 856 * (__copy_from_user()). 857 * 858 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 859 * it. 860 * 861 * sk The sk of the socket 862 * addrs The pointer to the addresses in user land 863 * addrssize Size of the addrs buffer 864 * op Operation to perform (add or remove, see the flags of 865 * sctp_bindx) 866 * 867 * Returns 0 if ok, <0 errno code on error. 868 */ 869 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 870 struct sockaddr __user *addrs, 871 int addrs_size, int op) 872 { 873 struct sockaddr *kaddrs; 874 int err; 875 int addrcnt = 0; 876 int walk_size = 0; 877 struct sockaddr *sa_addr; 878 void *addr_buf; 879 struct sctp_af *af; 880 881 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 882 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 883 884 if (unlikely(addrs_size <= 0)) 885 return -EINVAL; 886 887 /* Check the user passed a healthy pointer. */ 888 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 889 return -EFAULT; 890 891 /* Alloc space for the address array in kernel memory. */ 892 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 893 if (unlikely(!kaddrs)) 894 return -ENOMEM; 895 896 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 897 kfree(kaddrs); 898 return -EFAULT; 899 } 900 901 /* Walk through the addrs buffer and count the number of addresses. */ 902 addr_buf = kaddrs; 903 while (walk_size < addrs_size) { 904 sa_addr = (struct sockaddr *)addr_buf; 905 af = sctp_get_af_specific(sa_addr->sa_family); 906 907 /* If the address family is not supported or if this address 908 * causes the address buffer to overflow return EINVAL. 909 */ 910 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 911 kfree(kaddrs); 912 return -EINVAL; 913 } 914 addrcnt++; 915 addr_buf += af->sockaddr_len; 916 walk_size += af->sockaddr_len; 917 } 918 919 /* Do the work. */ 920 switch (op) { 921 case SCTP_BINDX_ADD_ADDR: 922 err = sctp_bindx_add(sk, kaddrs, addrcnt); 923 if (err) 924 goto out; 925 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 926 break; 927 928 case SCTP_BINDX_REM_ADDR: 929 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 930 if (err) 931 goto out; 932 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 933 break; 934 935 default: 936 err = -EINVAL; 937 break; 938 }; 939 940 out: 941 kfree(kaddrs); 942 943 return err; 944 } 945 946 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 947 * 948 * Common routine for handling connect() and sctp_connectx(). 949 * Connect will come in with just a single address. 950 */ 951 static int __sctp_connect(struct sock* sk, 952 struct sockaddr *kaddrs, 953 int addrs_size) 954 { 955 struct sctp_sock *sp; 956 struct sctp_endpoint *ep; 957 struct sctp_association *asoc = NULL; 958 struct sctp_association *asoc2; 959 struct sctp_transport *transport; 960 union sctp_addr to; 961 struct sctp_af *af; 962 sctp_scope_t scope; 963 long timeo; 964 int err = 0; 965 int addrcnt = 0; 966 int walk_size = 0; 967 union sctp_addr *sa_addr; 968 void *addr_buf; 969 970 sp = sctp_sk(sk); 971 ep = sp->ep; 972 973 /* connect() cannot be done on a socket that is already in ESTABLISHED 974 * state - UDP-style peeled off socket or a TCP-style socket that 975 * is already connected. 976 * It cannot be done even on a TCP-style listening socket. 977 */ 978 if (sctp_sstate(sk, ESTABLISHED) || 979 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 980 err = -EISCONN; 981 goto out_free; 982 } 983 984 /* Walk through the addrs buffer and count the number of addresses. */ 985 addr_buf = kaddrs; 986 while (walk_size < addrs_size) { 987 sa_addr = (union sctp_addr *)addr_buf; 988 af = sctp_get_af_specific(sa_addr->sa.sa_family); 989 990 /* If the address family is not supported or if this address 991 * causes the address buffer to overflow return EINVAL. 992 */ 993 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 994 err = -EINVAL; 995 goto out_free; 996 } 997 998 err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len); 999 if (err) 1000 goto out_free; 1001 1002 memcpy(&to, sa_addr, af->sockaddr_len); 1003 1004 /* Check if there already is a matching association on the 1005 * endpoint (other than the one created here). 1006 */ 1007 asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport); 1008 if (asoc2 && asoc2 != asoc) { 1009 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1010 err = -EISCONN; 1011 else 1012 err = -EALREADY; 1013 goto out_free; 1014 } 1015 1016 /* If we could not find a matching association on the endpoint, 1017 * make sure that there is no peeled-off association matching 1018 * the peer address even on another socket. 1019 */ 1020 if (sctp_endpoint_is_peeled_off(ep, sa_addr)) { 1021 err = -EADDRNOTAVAIL; 1022 goto out_free; 1023 } 1024 1025 if (!asoc) { 1026 /* If a bind() or sctp_bindx() is not called prior to 1027 * an sctp_connectx() call, the system picks an 1028 * ephemeral port and will choose an address set 1029 * equivalent to binding with a wildcard address. 1030 */ 1031 if (!ep->base.bind_addr.port) { 1032 if (sctp_autobind(sk)) { 1033 err = -EAGAIN; 1034 goto out_free; 1035 } 1036 } else { 1037 /* 1038 * If an unprivileged user inherits a 1-many 1039 * style socket with open associations on a 1040 * privileged port, it MAY be permitted to 1041 * accept new associations, but it SHOULD NOT 1042 * be permitted to open new associations. 1043 */ 1044 if (ep->base.bind_addr.port < PROT_SOCK && 1045 !capable(CAP_NET_BIND_SERVICE)) { 1046 err = -EACCES; 1047 goto out_free; 1048 } 1049 } 1050 1051 scope = sctp_scope(sa_addr); 1052 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1053 if (!asoc) { 1054 err = -ENOMEM; 1055 goto out_free; 1056 } 1057 } 1058 1059 /* Prime the peer's transport structures. */ 1060 transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL, 1061 SCTP_UNKNOWN); 1062 if (!transport) { 1063 err = -ENOMEM; 1064 goto out_free; 1065 } 1066 1067 addrcnt++; 1068 addr_buf += af->sockaddr_len; 1069 walk_size += af->sockaddr_len; 1070 } 1071 1072 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1073 if (err < 0) { 1074 goto out_free; 1075 } 1076 1077 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1078 if (err < 0) { 1079 goto out_free; 1080 } 1081 1082 /* Initialize sk's dport and daddr for getpeername() */ 1083 inet_sk(sk)->dport = htons(asoc->peer.port); 1084 af = sctp_get_af_specific(to.sa.sa_family); 1085 af->to_sk_daddr(&to, sk); 1086 sk->sk_err = 0; 1087 1088 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 1089 err = sctp_wait_for_connect(asoc, &timeo); 1090 1091 /* Don't free association on exit. */ 1092 asoc = NULL; 1093 1094 out_free: 1095 1096 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1097 " kaddrs: %p err: %d\n", 1098 asoc, kaddrs, err); 1099 if (asoc) 1100 sctp_association_free(asoc); 1101 return err; 1102 } 1103 1104 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1105 * 1106 * API 8.9 1107 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1108 * 1109 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1110 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1111 * or IPv6 addresses. 1112 * 1113 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1114 * Section 3.1.2 for this usage. 1115 * 1116 * addrs is a pointer to an array of one or more socket addresses. Each 1117 * address is contained in its appropriate structure (i.e. struct 1118 * sockaddr_in or struct sockaddr_in6) the family of the address type 1119 * must be used to distengish the address length (note that this 1120 * representation is termed a "packed array" of addresses). The caller 1121 * specifies the number of addresses in the array with addrcnt. 1122 * 1123 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1124 * -1, and sets errno to the appropriate error code. 1125 * 1126 * For SCTP, the port given in each socket address must be the same, or 1127 * sctp_connectx() will fail, setting errno to EINVAL. 1128 * 1129 * An application can use sctp_connectx to initiate an association with 1130 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1131 * allows a caller to specify multiple addresses at which a peer can be 1132 * reached. The way the SCTP stack uses the list of addresses to set up 1133 * the association is implementation dependant. This function only 1134 * specifies that the stack will try to make use of all the addresses in 1135 * the list when needed. 1136 * 1137 * Note that the list of addresses passed in is only used for setting up 1138 * the association. It does not necessarily equal the set of addresses 1139 * the peer uses for the resulting association. If the caller wants to 1140 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1141 * retrieve them after the association has been set up. 1142 * 1143 * Basically do nothing but copying the addresses from user to kernel 1144 * land and invoking either sctp_connectx(). This is used for tunneling 1145 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1146 * 1147 * We don't use copy_from_user() for optimization: we first do the 1148 * sanity checks (buffer size -fast- and access check-healthy 1149 * pointer); if all of those succeed, then we can alloc the memory 1150 * (expensive operation) needed to copy the data to kernel. Then we do 1151 * the copying without checking the user space area 1152 * (__copy_from_user()). 1153 * 1154 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1155 * it. 1156 * 1157 * sk The sk of the socket 1158 * addrs The pointer to the addresses in user land 1159 * addrssize Size of the addrs buffer 1160 * 1161 * Returns 0 if ok, <0 errno code on error. 1162 */ 1163 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1164 struct sockaddr __user *addrs, 1165 int addrs_size) 1166 { 1167 int err = 0; 1168 struct sockaddr *kaddrs; 1169 1170 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1171 __FUNCTION__, sk, addrs, addrs_size); 1172 1173 if (unlikely(addrs_size <= 0)) 1174 return -EINVAL; 1175 1176 /* Check the user passed a healthy pointer. */ 1177 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1178 return -EFAULT; 1179 1180 /* Alloc space for the address array in kernel memory. */ 1181 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1182 if (unlikely(!kaddrs)) 1183 return -ENOMEM; 1184 1185 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1186 err = -EFAULT; 1187 } else { 1188 err = __sctp_connect(sk, kaddrs, addrs_size); 1189 } 1190 1191 kfree(kaddrs); 1192 return err; 1193 } 1194 1195 /* API 3.1.4 close() - UDP Style Syntax 1196 * Applications use close() to perform graceful shutdown (as described in 1197 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1198 * by a UDP-style socket. 1199 * 1200 * The syntax is 1201 * 1202 * ret = close(int sd); 1203 * 1204 * sd - the socket descriptor of the associations to be closed. 1205 * 1206 * To gracefully shutdown a specific association represented by the 1207 * UDP-style socket, an application should use the sendmsg() call, 1208 * passing no user data, but including the appropriate flag in the 1209 * ancillary data (see Section xxxx). 1210 * 1211 * If sd in the close() call is a branched-off socket representing only 1212 * one association, the shutdown is performed on that association only. 1213 * 1214 * 4.1.6 close() - TCP Style Syntax 1215 * 1216 * Applications use close() to gracefully close down an association. 1217 * 1218 * The syntax is: 1219 * 1220 * int close(int sd); 1221 * 1222 * sd - the socket descriptor of the association to be closed. 1223 * 1224 * After an application calls close() on a socket descriptor, no further 1225 * socket operations will succeed on that descriptor. 1226 * 1227 * API 7.1.4 SO_LINGER 1228 * 1229 * An application using the TCP-style socket can use this option to 1230 * perform the SCTP ABORT primitive. The linger option structure is: 1231 * 1232 * struct linger { 1233 * int l_onoff; // option on/off 1234 * int l_linger; // linger time 1235 * }; 1236 * 1237 * To enable the option, set l_onoff to 1. If the l_linger value is set 1238 * to 0, calling close() is the same as the ABORT primitive. If the 1239 * value is set to a negative value, the setsockopt() call will return 1240 * an error. If the value is set to a positive value linger_time, the 1241 * close() can be blocked for at most linger_time ms. If the graceful 1242 * shutdown phase does not finish during this period, close() will 1243 * return but the graceful shutdown phase continues in the system. 1244 */ 1245 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1246 { 1247 struct sctp_endpoint *ep; 1248 struct sctp_association *asoc; 1249 struct list_head *pos, *temp; 1250 1251 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1252 1253 sctp_lock_sock(sk); 1254 sk->sk_shutdown = SHUTDOWN_MASK; 1255 1256 ep = sctp_sk(sk)->ep; 1257 1258 /* Walk all associations on an endpoint. */ 1259 list_for_each_safe(pos, temp, &ep->asocs) { 1260 asoc = list_entry(pos, struct sctp_association, asocs); 1261 1262 if (sctp_style(sk, TCP)) { 1263 /* A closed association can still be in the list if 1264 * it belongs to a TCP-style listening socket that is 1265 * not yet accepted. If so, free it. If not, send an 1266 * ABORT or SHUTDOWN based on the linger options. 1267 */ 1268 if (sctp_state(asoc, CLOSED)) { 1269 sctp_unhash_established(asoc); 1270 sctp_association_free(asoc); 1271 continue; 1272 } 1273 } 1274 1275 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1276 struct sctp_chunk *chunk; 1277 1278 chunk = sctp_make_abort_user(asoc, NULL, 0); 1279 if (chunk) 1280 sctp_primitive_ABORT(asoc, chunk); 1281 } else 1282 sctp_primitive_SHUTDOWN(asoc, NULL); 1283 } 1284 1285 /* Clean up any skbs sitting on the receive queue. */ 1286 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1287 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1288 1289 /* On a TCP-style socket, block for at most linger_time if set. */ 1290 if (sctp_style(sk, TCP) && timeout) 1291 sctp_wait_for_close(sk, timeout); 1292 1293 /* This will run the backlog queue. */ 1294 sctp_release_sock(sk); 1295 1296 /* Supposedly, no process has access to the socket, but 1297 * the net layers still may. 1298 */ 1299 sctp_local_bh_disable(); 1300 sctp_bh_lock_sock(sk); 1301 1302 /* Hold the sock, since sk_common_release() will put sock_put() 1303 * and we have just a little more cleanup. 1304 */ 1305 sock_hold(sk); 1306 sk_common_release(sk); 1307 1308 sctp_bh_unlock_sock(sk); 1309 sctp_local_bh_enable(); 1310 1311 sock_put(sk); 1312 1313 SCTP_DBG_OBJCNT_DEC(sock); 1314 } 1315 1316 /* Handle EPIPE error. */ 1317 static int sctp_error(struct sock *sk, int flags, int err) 1318 { 1319 if (err == -EPIPE) 1320 err = sock_error(sk) ? : -EPIPE; 1321 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1322 send_sig(SIGPIPE, current, 0); 1323 return err; 1324 } 1325 1326 /* API 3.1.3 sendmsg() - UDP Style Syntax 1327 * 1328 * An application uses sendmsg() and recvmsg() calls to transmit data to 1329 * and receive data from its peer. 1330 * 1331 * ssize_t sendmsg(int socket, const struct msghdr *message, 1332 * int flags); 1333 * 1334 * socket - the socket descriptor of the endpoint. 1335 * message - pointer to the msghdr structure which contains a single 1336 * user message and possibly some ancillary data. 1337 * 1338 * See Section 5 for complete description of the data 1339 * structures. 1340 * 1341 * flags - flags sent or received with the user message, see Section 1342 * 5 for complete description of the flags. 1343 * 1344 * Note: This function could use a rewrite especially when explicit 1345 * connect support comes in. 1346 */ 1347 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1348 1349 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1350 1351 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1352 struct msghdr *msg, size_t msg_len) 1353 { 1354 struct sctp_sock *sp; 1355 struct sctp_endpoint *ep; 1356 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1357 struct sctp_transport *transport, *chunk_tp; 1358 struct sctp_chunk *chunk; 1359 union sctp_addr to; 1360 struct sockaddr *msg_name = NULL; 1361 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1362 struct sctp_sndrcvinfo *sinfo; 1363 struct sctp_initmsg *sinit; 1364 sctp_assoc_t associd = 0; 1365 sctp_cmsgs_t cmsgs = { NULL }; 1366 int err; 1367 sctp_scope_t scope; 1368 long timeo; 1369 __u16 sinfo_flags = 0; 1370 struct sctp_datamsg *datamsg; 1371 struct list_head *pos; 1372 int msg_flags = msg->msg_flags; 1373 1374 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1375 sk, msg, msg_len); 1376 1377 err = 0; 1378 sp = sctp_sk(sk); 1379 ep = sp->ep; 1380 1381 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1382 1383 /* We cannot send a message over a TCP-style listening socket. */ 1384 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1385 err = -EPIPE; 1386 goto out_nounlock; 1387 } 1388 1389 /* Parse out the SCTP CMSGs. */ 1390 err = sctp_msghdr_parse(msg, &cmsgs); 1391 1392 if (err) { 1393 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1394 goto out_nounlock; 1395 } 1396 1397 /* Fetch the destination address for this packet. This 1398 * address only selects the association--it is not necessarily 1399 * the address we will send to. 1400 * For a peeled-off socket, msg_name is ignored. 1401 */ 1402 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1403 int msg_namelen = msg->msg_namelen; 1404 1405 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1406 msg_namelen); 1407 if (err) 1408 return err; 1409 1410 if (msg_namelen > sizeof(to)) 1411 msg_namelen = sizeof(to); 1412 memcpy(&to, msg->msg_name, msg_namelen); 1413 msg_name = msg->msg_name; 1414 } 1415 1416 sinfo = cmsgs.info; 1417 sinit = cmsgs.init; 1418 1419 /* Did the user specify SNDRCVINFO? */ 1420 if (sinfo) { 1421 sinfo_flags = sinfo->sinfo_flags; 1422 associd = sinfo->sinfo_assoc_id; 1423 } 1424 1425 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1426 msg_len, sinfo_flags); 1427 1428 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1429 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1430 err = -EINVAL; 1431 goto out_nounlock; 1432 } 1433 1434 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1435 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1436 * If SCTP_ABORT is set, the message length could be non zero with 1437 * the msg_iov set to the user abort reason. 1438 */ 1439 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1440 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1441 err = -EINVAL; 1442 goto out_nounlock; 1443 } 1444 1445 /* If SCTP_ADDR_OVER is set, there must be an address 1446 * specified in msg_name. 1447 */ 1448 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1449 err = -EINVAL; 1450 goto out_nounlock; 1451 } 1452 1453 transport = NULL; 1454 1455 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1456 1457 sctp_lock_sock(sk); 1458 1459 /* If a msg_name has been specified, assume this is to be used. */ 1460 if (msg_name) { 1461 /* Look for a matching association on the endpoint. */ 1462 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1463 if (!asoc) { 1464 /* If we could not find a matching association on the 1465 * endpoint, make sure that it is not a TCP-style 1466 * socket that already has an association or there is 1467 * no peeled-off association on another socket. 1468 */ 1469 if ((sctp_style(sk, TCP) && 1470 sctp_sstate(sk, ESTABLISHED)) || 1471 sctp_endpoint_is_peeled_off(ep, &to)) { 1472 err = -EADDRNOTAVAIL; 1473 goto out_unlock; 1474 } 1475 } 1476 } else { 1477 asoc = sctp_id2assoc(sk, associd); 1478 if (!asoc) { 1479 err = -EPIPE; 1480 goto out_unlock; 1481 } 1482 } 1483 1484 if (asoc) { 1485 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1486 1487 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1488 * socket that has an association in CLOSED state. This can 1489 * happen when an accepted socket has an association that is 1490 * already CLOSED. 1491 */ 1492 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1493 err = -EPIPE; 1494 goto out_unlock; 1495 } 1496 1497 if (sinfo_flags & SCTP_EOF) { 1498 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1499 asoc); 1500 sctp_primitive_SHUTDOWN(asoc, NULL); 1501 err = 0; 1502 goto out_unlock; 1503 } 1504 if (sinfo_flags & SCTP_ABORT) { 1505 struct sctp_chunk *chunk; 1506 1507 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1508 if (!chunk) { 1509 err = -ENOMEM; 1510 goto out_unlock; 1511 } 1512 1513 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1514 sctp_primitive_ABORT(asoc, chunk); 1515 err = 0; 1516 goto out_unlock; 1517 } 1518 } 1519 1520 /* Do we need to create the association? */ 1521 if (!asoc) { 1522 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1523 1524 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1525 err = -EINVAL; 1526 goto out_unlock; 1527 } 1528 1529 /* Check for invalid stream against the stream counts, 1530 * either the default or the user specified stream counts. 1531 */ 1532 if (sinfo) { 1533 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1534 /* Check against the defaults. */ 1535 if (sinfo->sinfo_stream >= 1536 sp->initmsg.sinit_num_ostreams) { 1537 err = -EINVAL; 1538 goto out_unlock; 1539 } 1540 } else { 1541 /* Check against the requested. */ 1542 if (sinfo->sinfo_stream >= 1543 sinit->sinit_num_ostreams) { 1544 err = -EINVAL; 1545 goto out_unlock; 1546 } 1547 } 1548 } 1549 1550 /* 1551 * API 3.1.2 bind() - UDP Style Syntax 1552 * If a bind() or sctp_bindx() is not called prior to a 1553 * sendmsg() call that initiates a new association, the 1554 * system picks an ephemeral port and will choose an address 1555 * set equivalent to binding with a wildcard address. 1556 */ 1557 if (!ep->base.bind_addr.port) { 1558 if (sctp_autobind(sk)) { 1559 err = -EAGAIN; 1560 goto out_unlock; 1561 } 1562 } else { 1563 /* 1564 * If an unprivileged user inherits a one-to-many 1565 * style socket with open associations on a privileged 1566 * port, it MAY be permitted to accept new associations, 1567 * but it SHOULD NOT be permitted to open new 1568 * associations. 1569 */ 1570 if (ep->base.bind_addr.port < PROT_SOCK && 1571 !capable(CAP_NET_BIND_SERVICE)) { 1572 err = -EACCES; 1573 goto out_unlock; 1574 } 1575 } 1576 1577 scope = sctp_scope(&to); 1578 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1579 if (!new_asoc) { 1580 err = -ENOMEM; 1581 goto out_unlock; 1582 } 1583 asoc = new_asoc; 1584 1585 /* If the SCTP_INIT ancillary data is specified, set all 1586 * the association init values accordingly. 1587 */ 1588 if (sinit) { 1589 if (sinit->sinit_num_ostreams) { 1590 asoc->c.sinit_num_ostreams = 1591 sinit->sinit_num_ostreams; 1592 } 1593 if (sinit->sinit_max_instreams) { 1594 asoc->c.sinit_max_instreams = 1595 sinit->sinit_max_instreams; 1596 } 1597 if (sinit->sinit_max_attempts) { 1598 asoc->max_init_attempts 1599 = sinit->sinit_max_attempts; 1600 } 1601 if (sinit->sinit_max_init_timeo) { 1602 asoc->max_init_timeo = 1603 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1604 } 1605 } 1606 1607 /* Prime the peer's transport structures. */ 1608 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1609 if (!transport) { 1610 err = -ENOMEM; 1611 goto out_free; 1612 } 1613 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1614 if (err < 0) { 1615 err = -ENOMEM; 1616 goto out_free; 1617 } 1618 } 1619 1620 /* ASSERT: we have a valid association at this point. */ 1621 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1622 1623 if (!sinfo) { 1624 /* If the user didn't specify SNDRCVINFO, make up one with 1625 * some defaults. 1626 */ 1627 default_sinfo.sinfo_stream = asoc->default_stream; 1628 default_sinfo.sinfo_flags = asoc->default_flags; 1629 default_sinfo.sinfo_ppid = asoc->default_ppid; 1630 default_sinfo.sinfo_context = asoc->default_context; 1631 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1632 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1633 sinfo = &default_sinfo; 1634 } 1635 1636 /* API 7.1.7, the sndbuf size per association bounds the 1637 * maximum size of data that can be sent in a single send call. 1638 */ 1639 if (msg_len > sk->sk_sndbuf) { 1640 err = -EMSGSIZE; 1641 goto out_free; 1642 } 1643 1644 /* If fragmentation is disabled and the message length exceeds the 1645 * association fragmentation point, return EMSGSIZE. The I-D 1646 * does not specify what this error is, but this looks like 1647 * a great fit. 1648 */ 1649 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1650 err = -EMSGSIZE; 1651 goto out_free; 1652 } 1653 1654 if (sinfo) { 1655 /* Check for invalid stream. */ 1656 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1657 err = -EINVAL; 1658 goto out_free; 1659 } 1660 } 1661 1662 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1663 if (!sctp_wspace(asoc)) { 1664 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1665 if (err) 1666 goto out_free; 1667 } 1668 1669 /* If an address is passed with the sendto/sendmsg call, it is used 1670 * to override the primary destination address in the TCP model, or 1671 * when SCTP_ADDR_OVER flag is set in the UDP model. 1672 */ 1673 if ((sctp_style(sk, TCP) && msg_name) || 1674 (sinfo_flags & SCTP_ADDR_OVER)) { 1675 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1676 if (!chunk_tp) { 1677 err = -EINVAL; 1678 goto out_free; 1679 } 1680 } else 1681 chunk_tp = NULL; 1682 1683 /* Auto-connect, if we aren't connected already. */ 1684 if (sctp_state(asoc, CLOSED)) { 1685 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1686 if (err < 0) 1687 goto out_free; 1688 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1689 } 1690 1691 /* Break the message into multiple chunks of maximum size. */ 1692 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1693 if (!datamsg) { 1694 err = -ENOMEM; 1695 goto out_free; 1696 } 1697 1698 /* Now send the (possibly) fragmented message. */ 1699 list_for_each(pos, &datamsg->chunks) { 1700 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1701 sctp_datamsg_track(chunk); 1702 1703 /* Do accounting for the write space. */ 1704 sctp_set_owner_w(chunk); 1705 1706 chunk->transport = chunk_tp; 1707 1708 /* Send it to the lower layers. Note: all chunks 1709 * must either fail or succeed. The lower layer 1710 * works that way today. Keep it that way or this 1711 * breaks. 1712 */ 1713 err = sctp_primitive_SEND(asoc, chunk); 1714 /* Did the lower layer accept the chunk? */ 1715 if (err) 1716 sctp_chunk_free(chunk); 1717 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1718 } 1719 1720 sctp_datamsg_free(datamsg); 1721 if (err) 1722 goto out_free; 1723 else 1724 err = msg_len; 1725 1726 /* If we are already past ASSOCIATE, the lower 1727 * layers are responsible for association cleanup. 1728 */ 1729 goto out_unlock; 1730 1731 out_free: 1732 if (new_asoc) 1733 sctp_association_free(asoc); 1734 out_unlock: 1735 sctp_release_sock(sk); 1736 1737 out_nounlock: 1738 return sctp_error(sk, msg_flags, err); 1739 1740 #if 0 1741 do_sock_err: 1742 if (msg_len) 1743 err = msg_len; 1744 else 1745 err = sock_error(sk); 1746 goto out; 1747 1748 do_interrupted: 1749 if (msg_len) 1750 err = msg_len; 1751 goto out; 1752 #endif /* 0 */ 1753 } 1754 1755 /* This is an extended version of skb_pull() that removes the data from the 1756 * start of a skb even when data is spread across the list of skb's in the 1757 * frag_list. len specifies the total amount of data that needs to be removed. 1758 * when 'len' bytes could be removed from the skb, it returns 0. 1759 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1760 * could not be removed. 1761 */ 1762 static int sctp_skb_pull(struct sk_buff *skb, int len) 1763 { 1764 struct sk_buff *list; 1765 int skb_len = skb_headlen(skb); 1766 int rlen; 1767 1768 if (len <= skb_len) { 1769 __skb_pull(skb, len); 1770 return 0; 1771 } 1772 len -= skb_len; 1773 __skb_pull(skb, skb_len); 1774 1775 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1776 rlen = sctp_skb_pull(list, len); 1777 skb->len -= (len-rlen); 1778 skb->data_len -= (len-rlen); 1779 1780 if (!rlen) 1781 return 0; 1782 1783 len = rlen; 1784 } 1785 1786 return len; 1787 } 1788 1789 /* API 3.1.3 recvmsg() - UDP Style Syntax 1790 * 1791 * ssize_t recvmsg(int socket, struct msghdr *message, 1792 * int flags); 1793 * 1794 * socket - the socket descriptor of the endpoint. 1795 * message - pointer to the msghdr structure which contains a single 1796 * user message and possibly some ancillary data. 1797 * 1798 * See Section 5 for complete description of the data 1799 * structures. 1800 * 1801 * flags - flags sent or received with the user message, see Section 1802 * 5 for complete description of the flags. 1803 */ 1804 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1805 1806 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1807 struct msghdr *msg, size_t len, int noblock, 1808 int flags, int *addr_len) 1809 { 1810 struct sctp_ulpevent *event = NULL; 1811 struct sctp_sock *sp = sctp_sk(sk); 1812 struct sk_buff *skb; 1813 int copied; 1814 int err = 0; 1815 int skb_len; 1816 1817 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1818 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1819 "len", len, "knoblauch", noblock, 1820 "flags", flags, "addr_len", addr_len); 1821 1822 sctp_lock_sock(sk); 1823 1824 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1825 err = -ENOTCONN; 1826 goto out; 1827 } 1828 1829 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1830 if (!skb) 1831 goto out; 1832 1833 /* Get the total length of the skb including any skb's in the 1834 * frag_list. 1835 */ 1836 skb_len = skb->len; 1837 1838 copied = skb_len; 1839 if (copied > len) 1840 copied = len; 1841 1842 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1843 1844 event = sctp_skb2event(skb); 1845 1846 if (err) 1847 goto out_free; 1848 1849 sock_recv_timestamp(msg, sk, skb); 1850 if (sctp_ulpevent_is_notification(event)) { 1851 msg->msg_flags |= MSG_NOTIFICATION; 1852 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1853 } else { 1854 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1855 } 1856 1857 /* Check if we allow SCTP_SNDRCVINFO. */ 1858 if (sp->subscribe.sctp_data_io_event) 1859 sctp_ulpevent_read_sndrcvinfo(event, msg); 1860 #if 0 1861 /* FIXME: we should be calling IP/IPv6 layers. */ 1862 if (sk->sk_protinfo.af_inet.cmsg_flags) 1863 ip_cmsg_recv(msg, skb); 1864 #endif 1865 1866 err = copied; 1867 1868 /* If skb's length exceeds the user's buffer, update the skb and 1869 * push it back to the receive_queue so that the next call to 1870 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1871 */ 1872 if (skb_len > copied) { 1873 msg->msg_flags &= ~MSG_EOR; 1874 if (flags & MSG_PEEK) 1875 goto out_free; 1876 sctp_skb_pull(skb, copied); 1877 skb_queue_head(&sk->sk_receive_queue, skb); 1878 1879 /* When only partial message is copied to the user, increase 1880 * rwnd by that amount. If all the data in the skb is read, 1881 * rwnd is updated when the event is freed. 1882 */ 1883 sctp_assoc_rwnd_increase(event->asoc, copied); 1884 goto out; 1885 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1886 (event->msg_flags & MSG_EOR)) 1887 msg->msg_flags |= MSG_EOR; 1888 else 1889 msg->msg_flags &= ~MSG_EOR; 1890 1891 out_free: 1892 if (flags & MSG_PEEK) { 1893 /* Release the skb reference acquired after peeking the skb in 1894 * sctp_skb_recv_datagram(). 1895 */ 1896 kfree_skb(skb); 1897 } else { 1898 /* Free the event which includes releasing the reference to 1899 * the owner of the skb, freeing the skb and updating the 1900 * rwnd. 1901 */ 1902 sctp_ulpevent_free(event); 1903 } 1904 out: 1905 sctp_release_sock(sk); 1906 return err; 1907 } 1908 1909 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1910 * 1911 * This option is a on/off flag. If enabled no SCTP message 1912 * fragmentation will be performed. Instead if a message being sent 1913 * exceeds the current PMTU size, the message will NOT be sent and 1914 * instead a error will be indicated to the user. 1915 */ 1916 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1917 char __user *optval, int optlen) 1918 { 1919 int val; 1920 1921 if (optlen < sizeof(int)) 1922 return -EINVAL; 1923 1924 if (get_user(val, (int __user *)optval)) 1925 return -EFAULT; 1926 1927 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1928 1929 return 0; 1930 } 1931 1932 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1933 int optlen) 1934 { 1935 if (optlen != sizeof(struct sctp_event_subscribe)) 1936 return -EINVAL; 1937 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1938 return -EFAULT; 1939 return 0; 1940 } 1941 1942 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1943 * 1944 * This socket option is applicable to the UDP-style socket only. When 1945 * set it will cause associations that are idle for more than the 1946 * specified number of seconds to automatically close. An association 1947 * being idle is defined an association that has NOT sent or received 1948 * user data. The special value of '0' indicates that no automatic 1949 * close of any associations should be performed. The option expects an 1950 * integer defining the number of seconds of idle time before an 1951 * association is closed. 1952 */ 1953 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1954 int optlen) 1955 { 1956 struct sctp_sock *sp = sctp_sk(sk); 1957 1958 /* Applicable to UDP-style socket only */ 1959 if (sctp_style(sk, TCP)) 1960 return -EOPNOTSUPP; 1961 if (optlen != sizeof(int)) 1962 return -EINVAL; 1963 if (copy_from_user(&sp->autoclose, optval, optlen)) 1964 return -EFAULT; 1965 1966 return 0; 1967 } 1968 1969 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1970 * 1971 * Applications can enable or disable heartbeats for any peer address of 1972 * an association, modify an address's heartbeat interval, force a 1973 * heartbeat to be sent immediately, and adjust the address's maximum 1974 * number of retransmissions sent before an address is considered 1975 * unreachable. The following structure is used to access and modify an 1976 * address's parameters: 1977 * 1978 * struct sctp_paddrparams { 1979 * sctp_assoc_t spp_assoc_id; 1980 * struct sockaddr_storage spp_address; 1981 * uint32_t spp_hbinterval; 1982 * uint16_t spp_pathmaxrxt; 1983 * uint32_t spp_pathmtu; 1984 * uint32_t spp_sackdelay; 1985 * uint32_t spp_flags; 1986 * }; 1987 * 1988 * spp_assoc_id - (one-to-many style socket) This is filled in the 1989 * application, and identifies the association for 1990 * this query. 1991 * spp_address - This specifies which address is of interest. 1992 * spp_hbinterval - This contains the value of the heartbeat interval, 1993 * in milliseconds. If a value of zero 1994 * is present in this field then no changes are to 1995 * be made to this parameter. 1996 * spp_pathmaxrxt - This contains the maximum number of 1997 * retransmissions before this address shall be 1998 * considered unreachable. If a value of zero 1999 * is present in this field then no changes are to 2000 * be made to this parameter. 2001 * spp_pathmtu - When Path MTU discovery is disabled the value 2002 * specified here will be the "fixed" path mtu. 2003 * Note that if the spp_address field is empty 2004 * then all associations on this address will 2005 * have this fixed path mtu set upon them. 2006 * 2007 * spp_sackdelay - When delayed sack is enabled, this value specifies 2008 * the number of milliseconds that sacks will be delayed 2009 * for. This value will apply to all addresses of an 2010 * association if the spp_address field is empty. Note 2011 * also, that if delayed sack is enabled and this 2012 * value is set to 0, no change is made to the last 2013 * recorded delayed sack timer value. 2014 * 2015 * spp_flags - These flags are used to control various features 2016 * on an association. The flag field may contain 2017 * zero or more of the following options. 2018 * 2019 * SPP_HB_ENABLE - Enable heartbeats on the 2020 * specified address. Note that if the address 2021 * field is empty all addresses for the association 2022 * have heartbeats enabled upon them. 2023 * 2024 * SPP_HB_DISABLE - Disable heartbeats on the 2025 * speicifed address. Note that if the address 2026 * field is empty all addresses for the association 2027 * will have their heartbeats disabled. Note also 2028 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2029 * mutually exclusive, only one of these two should 2030 * be specified. Enabling both fields will have 2031 * undetermined results. 2032 * 2033 * SPP_HB_DEMAND - Request a user initiated heartbeat 2034 * to be made immediately. 2035 * 2036 * SPP_PMTUD_ENABLE - This field will enable PMTU 2037 * discovery upon the specified address. Note that 2038 * if the address feild is empty then all addresses 2039 * on the association are effected. 2040 * 2041 * SPP_PMTUD_DISABLE - This field will disable PMTU 2042 * discovery upon the specified address. Note that 2043 * if the address feild is empty then all addresses 2044 * on the association are effected. Not also that 2045 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2046 * exclusive. Enabling both will have undetermined 2047 * results. 2048 * 2049 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2050 * on delayed sack. The time specified in spp_sackdelay 2051 * is used to specify the sack delay for this address. Note 2052 * that if spp_address is empty then all addresses will 2053 * enable delayed sack and take on the sack delay 2054 * value specified in spp_sackdelay. 2055 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2056 * off delayed sack. If the spp_address field is blank then 2057 * delayed sack is disabled for the entire association. Note 2058 * also that this field is mutually exclusive to 2059 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2060 * results. 2061 */ 2062 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2063 struct sctp_transport *trans, 2064 struct sctp_association *asoc, 2065 struct sctp_sock *sp, 2066 int hb_change, 2067 int pmtud_change, 2068 int sackdelay_change) 2069 { 2070 int error; 2071 2072 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2073 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2074 if (error) 2075 return error; 2076 } 2077 2078 if (params->spp_hbinterval) { 2079 if (trans) { 2080 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2081 } else if (asoc) { 2082 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2083 } else { 2084 sp->hbinterval = params->spp_hbinterval; 2085 } 2086 } 2087 2088 if (hb_change) { 2089 if (trans) { 2090 trans->param_flags = 2091 (trans->param_flags & ~SPP_HB) | hb_change; 2092 } else if (asoc) { 2093 asoc->param_flags = 2094 (asoc->param_flags & ~SPP_HB) | hb_change; 2095 } else { 2096 sp->param_flags = 2097 (sp->param_flags & ~SPP_HB) | hb_change; 2098 } 2099 } 2100 2101 if (params->spp_pathmtu) { 2102 if (trans) { 2103 trans->pathmtu = params->spp_pathmtu; 2104 sctp_assoc_sync_pmtu(asoc); 2105 } else if (asoc) { 2106 asoc->pathmtu = params->spp_pathmtu; 2107 sctp_frag_point(sp, params->spp_pathmtu); 2108 } else { 2109 sp->pathmtu = params->spp_pathmtu; 2110 } 2111 } 2112 2113 if (pmtud_change) { 2114 if (trans) { 2115 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2116 (params->spp_flags & SPP_PMTUD_ENABLE); 2117 trans->param_flags = 2118 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2119 if (update) { 2120 sctp_transport_pmtu(trans); 2121 sctp_assoc_sync_pmtu(asoc); 2122 } 2123 } else if (asoc) { 2124 asoc->param_flags = 2125 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2126 } else { 2127 sp->param_flags = 2128 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2129 } 2130 } 2131 2132 if (params->spp_sackdelay) { 2133 if (trans) { 2134 trans->sackdelay = 2135 msecs_to_jiffies(params->spp_sackdelay); 2136 } else if (asoc) { 2137 asoc->sackdelay = 2138 msecs_to_jiffies(params->spp_sackdelay); 2139 } else { 2140 sp->sackdelay = params->spp_sackdelay; 2141 } 2142 } 2143 2144 if (sackdelay_change) { 2145 if (trans) { 2146 trans->param_flags = 2147 (trans->param_flags & ~SPP_SACKDELAY) | 2148 sackdelay_change; 2149 } else if (asoc) { 2150 asoc->param_flags = 2151 (asoc->param_flags & ~SPP_SACKDELAY) | 2152 sackdelay_change; 2153 } else { 2154 sp->param_flags = 2155 (sp->param_flags & ~SPP_SACKDELAY) | 2156 sackdelay_change; 2157 } 2158 } 2159 2160 if (params->spp_pathmaxrxt) { 2161 if (trans) { 2162 trans->pathmaxrxt = params->spp_pathmaxrxt; 2163 } else if (asoc) { 2164 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2165 } else { 2166 sp->pathmaxrxt = params->spp_pathmaxrxt; 2167 } 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2174 char __user *optval, int optlen) 2175 { 2176 struct sctp_paddrparams params; 2177 struct sctp_transport *trans = NULL; 2178 struct sctp_association *asoc = NULL; 2179 struct sctp_sock *sp = sctp_sk(sk); 2180 int error; 2181 int hb_change, pmtud_change, sackdelay_change; 2182 2183 if (optlen != sizeof(struct sctp_paddrparams)) 2184 return - EINVAL; 2185 2186 if (copy_from_user(¶ms, optval, optlen)) 2187 return -EFAULT; 2188 2189 /* Validate flags and value parameters. */ 2190 hb_change = params.spp_flags & SPP_HB; 2191 pmtud_change = params.spp_flags & SPP_PMTUD; 2192 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2193 2194 if (hb_change == SPP_HB || 2195 pmtud_change == SPP_PMTUD || 2196 sackdelay_change == SPP_SACKDELAY || 2197 params.spp_sackdelay > 500 || 2198 (params.spp_pathmtu 2199 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2200 return -EINVAL; 2201 2202 /* If an address other than INADDR_ANY is specified, and 2203 * no transport is found, then the request is invalid. 2204 */ 2205 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2206 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2207 params.spp_assoc_id); 2208 if (!trans) 2209 return -EINVAL; 2210 } 2211 2212 /* Get association, if assoc_id != 0 and the socket is a one 2213 * to many style socket, and an association was not found, then 2214 * the id was invalid. 2215 */ 2216 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2217 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2218 return -EINVAL; 2219 2220 /* Heartbeat demand can only be sent on a transport or 2221 * association, but not a socket. 2222 */ 2223 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2224 return -EINVAL; 2225 2226 /* Process parameters. */ 2227 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2228 hb_change, pmtud_change, 2229 sackdelay_change); 2230 2231 if (error) 2232 return error; 2233 2234 /* If changes are for association, also apply parameters to each 2235 * transport. 2236 */ 2237 if (!trans && asoc) { 2238 struct list_head *pos; 2239 2240 list_for_each(pos, &asoc->peer.transport_addr_list) { 2241 trans = list_entry(pos, struct sctp_transport, 2242 transports); 2243 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2244 hb_change, pmtud_change, 2245 sackdelay_change); 2246 } 2247 } 2248 2249 return 0; 2250 } 2251 2252 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2253 * 2254 * This options will get or set the delayed ack timer. The time is set 2255 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2256 * endpoints default delayed ack timer value. If the assoc_id field is 2257 * non-zero, then the set or get effects the specified association. 2258 * 2259 * struct sctp_assoc_value { 2260 * sctp_assoc_t assoc_id; 2261 * uint32_t assoc_value; 2262 * }; 2263 * 2264 * assoc_id - This parameter, indicates which association the 2265 * user is preforming an action upon. Note that if 2266 * this field's value is zero then the endpoints 2267 * default value is changed (effecting future 2268 * associations only). 2269 * 2270 * assoc_value - This parameter contains the number of milliseconds 2271 * that the user is requesting the delayed ACK timer 2272 * be set to. Note that this value is defined in 2273 * the standard to be between 200 and 500 milliseconds. 2274 * 2275 * Note: a value of zero will leave the value alone, 2276 * but disable SACK delay. A non-zero value will also 2277 * enable SACK delay. 2278 */ 2279 2280 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2281 char __user *optval, int optlen) 2282 { 2283 struct sctp_assoc_value params; 2284 struct sctp_transport *trans = NULL; 2285 struct sctp_association *asoc = NULL; 2286 struct sctp_sock *sp = sctp_sk(sk); 2287 2288 if (optlen != sizeof(struct sctp_assoc_value)) 2289 return - EINVAL; 2290 2291 if (copy_from_user(¶ms, optval, optlen)) 2292 return -EFAULT; 2293 2294 /* Validate value parameter. */ 2295 if (params.assoc_value > 500) 2296 return -EINVAL; 2297 2298 /* Get association, if assoc_id != 0 and the socket is a one 2299 * to many style socket, and an association was not found, then 2300 * the id was invalid. 2301 */ 2302 asoc = sctp_id2assoc(sk, params.assoc_id); 2303 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2304 return -EINVAL; 2305 2306 if (params.assoc_value) { 2307 if (asoc) { 2308 asoc->sackdelay = 2309 msecs_to_jiffies(params.assoc_value); 2310 asoc->param_flags = 2311 (asoc->param_flags & ~SPP_SACKDELAY) | 2312 SPP_SACKDELAY_ENABLE; 2313 } else { 2314 sp->sackdelay = params.assoc_value; 2315 sp->param_flags = 2316 (sp->param_flags & ~SPP_SACKDELAY) | 2317 SPP_SACKDELAY_ENABLE; 2318 } 2319 } else { 2320 if (asoc) { 2321 asoc->param_flags = 2322 (asoc->param_flags & ~SPP_SACKDELAY) | 2323 SPP_SACKDELAY_DISABLE; 2324 } else { 2325 sp->param_flags = 2326 (sp->param_flags & ~SPP_SACKDELAY) | 2327 SPP_SACKDELAY_DISABLE; 2328 } 2329 } 2330 2331 /* If change is for association, also apply to each transport. */ 2332 if (asoc) { 2333 struct list_head *pos; 2334 2335 list_for_each(pos, &asoc->peer.transport_addr_list) { 2336 trans = list_entry(pos, struct sctp_transport, 2337 transports); 2338 if (params.assoc_value) { 2339 trans->sackdelay = 2340 msecs_to_jiffies(params.assoc_value); 2341 trans->param_flags = 2342 (trans->param_flags & ~SPP_SACKDELAY) | 2343 SPP_SACKDELAY_ENABLE; 2344 } else { 2345 trans->param_flags = 2346 (trans->param_flags & ~SPP_SACKDELAY) | 2347 SPP_SACKDELAY_DISABLE; 2348 } 2349 } 2350 } 2351 2352 return 0; 2353 } 2354 2355 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2356 * 2357 * Applications can specify protocol parameters for the default association 2358 * initialization. The option name argument to setsockopt() and getsockopt() 2359 * is SCTP_INITMSG. 2360 * 2361 * Setting initialization parameters is effective only on an unconnected 2362 * socket (for UDP-style sockets only future associations are effected 2363 * by the change). With TCP-style sockets, this option is inherited by 2364 * sockets derived from a listener socket. 2365 */ 2366 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2367 { 2368 struct sctp_initmsg sinit; 2369 struct sctp_sock *sp = sctp_sk(sk); 2370 2371 if (optlen != sizeof(struct sctp_initmsg)) 2372 return -EINVAL; 2373 if (copy_from_user(&sinit, optval, optlen)) 2374 return -EFAULT; 2375 2376 if (sinit.sinit_num_ostreams) 2377 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2378 if (sinit.sinit_max_instreams) 2379 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2380 if (sinit.sinit_max_attempts) 2381 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2382 if (sinit.sinit_max_init_timeo) 2383 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2384 2385 return 0; 2386 } 2387 2388 /* 2389 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2390 * 2391 * Applications that wish to use the sendto() system call may wish to 2392 * specify a default set of parameters that would normally be supplied 2393 * through the inclusion of ancillary data. This socket option allows 2394 * such an application to set the default sctp_sndrcvinfo structure. 2395 * The application that wishes to use this socket option simply passes 2396 * in to this call the sctp_sndrcvinfo structure defined in Section 2397 * 5.2.2) The input parameters accepted by this call include 2398 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2399 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2400 * to this call if the caller is using the UDP model. 2401 */ 2402 static int sctp_setsockopt_default_send_param(struct sock *sk, 2403 char __user *optval, int optlen) 2404 { 2405 struct sctp_sndrcvinfo info; 2406 struct sctp_association *asoc; 2407 struct sctp_sock *sp = sctp_sk(sk); 2408 2409 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2410 return -EINVAL; 2411 if (copy_from_user(&info, optval, optlen)) 2412 return -EFAULT; 2413 2414 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2415 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2416 return -EINVAL; 2417 2418 if (asoc) { 2419 asoc->default_stream = info.sinfo_stream; 2420 asoc->default_flags = info.sinfo_flags; 2421 asoc->default_ppid = info.sinfo_ppid; 2422 asoc->default_context = info.sinfo_context; 2423 asoc->default_timetolive = info.sinfo_timetolive; 2424 } else { 2425 sp->default_stream = info.sinfo_stream; 2426 sp->default_flags = info.sinfo_flags; 2427 sp->default_ppid = info.sinfo_ppid; 2428 sp->default_context = info.sinfo_context; 2429 sp->default_timetolive = info.sinfo_timetolive; 2430 } 2431 2432 return 0; 2433 } 2434 2435 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2436 * 2437 * Requests that the local SCTP stack use the enclosed peer address as 2438 * the association primary. The enclosed address must be one of the 2439 * association peer's addresses. 2440 */ 2441 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2442 int optlen) 2443 { 2444 struct sctp_prim prim; 2445 struct sctp_transport *trans; 2446 2447 if (optlen != sizeof(struct sctp_prim)) 2448 return -EINVAL; 2449 2450 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2451 return -EFAULT; 2452 2453 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2454 if (!trans) 2455 return -EINVAL; 2456 2457 sctp_assoc_set_primary(trans->asoc, trans); 2458 2459 return 0; 2460 } 2461 2462 /* 2463 * 7.1.5 SCTP_NODELAY 2464 * 2465 * Turn on/off any Nagle-like algorithm. This means that packets are 2466 * generally sent as soon as possible and no unnecessary delays are 2467 * introduced, at the cost of more packets in the network. Expects an 2468 * integer boolean flag. 2469 */ 2470 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2471 int optlen) 2472 { 2473 int val; 2474 2475 if (optlen < sizeof(int)) 2476 return -EINVAL; 2477 if (get_user(val, (int __user *)optval)) 2478 return -EFAULT; 2479 2480 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2481 return 0; 2482 } 2483 2484 /* 2485 * 2486 * 7.1.1 SCTP_RTOINFO 2487 * 2488 * The protocol parameters used to initialize and bound retransmission 2489 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2490 * and modify these parameters. 2491 * All parameters are time values, in milliseconds. A value of 0, when 2492 * modifying the parameters, indicates that the current value should not 2493 * be changed. 2494 * 2495 */ 2496 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2497 struct sctp_rtoinfo rtoinfo; 2498 struct sctp_association *asoc; 2499 2500 if (optlen != sizeof (struct sctp_rtoinfo)) 2501 return -EINVAL; 2502 2503 if (copy_from_user(&rtoinfo, optval, optlen)) 2504 return -EFAULT; 2505 2506 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2507 2508 /* Set the values to the specific association */ 2509 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2510 return -EINVAL; 2511 2512 if (asoc) { 2513 if (rtoinfo.srto_initial != 0) 2514 asoc->rto_initial = 2515 msecs_to_jiffies(rtoinfo.srto_initial); 2516 if (rtoinfo.srto_max != 0) 2517 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2518 if (rtoinfo.srto_min != 0) 2519 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2520 } else { 2521 /* If there is no association or the association-id = 0 2522 * set the values to the endpoint. 2523 */ 2524 struct sctp_sock *sp = sctp_sk(sk); 2525 2526 if (rtoinfo.srto_initial != 0) 2527 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2528 if (rtoinfo.srto_max != 0) 2529 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2530 if (rtoinfo.srto_min != 0) 2531 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2532 } 2533 2534 return 0; 2535 } 2536 2537 /* 2538 * 2539 * 7.1.2 SCTP_ASSOCINFO 2540 * 2541 * This option is used to tune the the maximum retransmission attempts 2542 * of the association. 2543 * Returns an error if the new association retransmission value is 2544 * greater than the sum of the retransmission value of the peer. 2545 * See [SCTP] for more information. 2546 * 2547 */ 2548 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2549 { 2550 2551 struct sctp_assocparams assocparams; 2552 struct sctp_association *asoc; 2553 2554 if (optlen != sizeof(struct sctp_assocparams)) 2555 return -EINVAL; 2556 if (copy_from_user(&assocparams, optval, optlen)) 2557 return -EFAULT; 2558 2559 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2560 2561 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2562 return -EINVAL; 2563 2564 /* Set the values to the specific association */ 2565 if (asoc) { 2566 if (assocparams.sasoc_asocmaxrxt != 0) { 2567 __u32 path_sum = 0; 2568 int paths = 0; 2569 struct list_head *pos; 2570 struct sctp_transport *peer_addr; 2571 2572 list_for_each(pos, &asoc->peer.transport_addr_list) { 2573 peer_addr = list_entry(pos, 2574 struct sctp_transport, 2575 transports); 2576 path_sum += peer_addr->pathmaxrxt; 2577 paths++; 2578 } 2579 2580 /* Only validate asocmaxrxt if we have more then 2581 * one path/transport. We do this because path 2582 * retransmissions are only counted when we have more 2583 * then one path. 2584 */ 2585 if (paths > 1 && 2586 assocparams.sasoc_asocmaxrxt > path_sum) 2587 return -EINVAL; 2588 2589 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2590 } 2591 2592 if (assocparams.sasoc_cookie_life != 0) { 2593 asoc->cookie_life.tv_sec = 2594 assocparams.sasoc_cookie_life / 1000; 2595 asoc->cookie_life.tv_usec = 2596 (assocparams.sasoc_cookie_life % 1000) 2597 * 1000; 2598 } 2599 } else { 2600 /* Set the values to the endpoint */ 2601 struct sctp_sock *sp = sctp_sk(sk); 2602 2603 if (assocparams.sasoc_asocmaxrxt != 0) 2604 sp->assocparams.sasoc_asocmaxrxt = 2605 assocparams.sasoc_asocmaxrxt; 2606 if (assocparams.sasoc_cookie_life != 0) 2607 sp->assocparams.sasoc_cookie_life = 2608 assocparams.sasoc_cookie_life; 2609 } 2610 return 0; 2611 } 2612 2613 /* 2614 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2615 * 2616 * This socket option is a boolean flag which turns on or off mapped V4 2617 * addresses. If this option is turned on and the socket is type 2618 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2619 * If this option is turned off, then no mapping will be done of V4 2620 * addresses and a user will receive both PF_INET6 and PF_INET type 2621 * addresses on the socket. 2622 */ 2623 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2624 { 2625 int val; 2626 struct sctp_sock *sp = sctp_sk(sk); 2627 2628 if (optlen < sizeof(int)) 2629 return -EINVAL; 2630 if (get_user(val, (int __user *)optval)) 2631 return -EFAULT; 2632 if (val) 2633 sp->v4mapped = 1; 2634 else 2635 sp->v4mapped = 0; 2636 2637 return 0; 2638 } 2639 2640 /* 2641 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2642 * 2643 * This socket option specifies the maximum size to put in any outgoing 2644 * SCTP chunk. If a message is larger than this size it will be 2645 * fragmented by SCTP into the specified size. Note that the underlying 2646 * SCTP implementation may fragment into smaller sized chunks when the 2647 * PMTU of the underlying association is smaller than the value set by 2648 * the user. 2649 */ 2650 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2651 { 2652 struct sctp_association *asoc; 2653 struct list_head *pos; 2654 struct sctp_sock *sp = sctp_sk(sk); 2655 int val; 2656 2657 if (optlen < sizeof(int)) 2658 return -EINVAL; 2659 if (get_user(val, (int __user *)optval)) 2660 return -EFAULT; 2661 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2662 return -EINVAL; 2663 sp->user_frag = val; 2664 2665 /* Update the frag_point of the existing associations. */ 2666 list_for_each(pos, &(sp->ep->asocs)) { 2667 asoc = list_entry(pos, struct sctp_association, asocs); 2668 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2669 } 2670 2671 return 0; 2672 } 2673 2674 2675 /* 2676 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2677 * 2678 * Requests that the peer mark the enclosed address as the association 2679 * primary. The enclosed address must be one of the association's 2680 * locally bound addresses. The following structure is used to make a 2681 * set primary request: 2682 */ 2683 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2684 int optlen) 2685 { 2686 struct sctp_sock *sp; 2687 struct sctp_endpoint *ep; 2688 struct sctp_association *asoc = NULL; 2689 struct sctp_setpeerprim prim; 2690 struct sctp_chunk *chunk; 2691 int err; 2692 2693 sp = sctp_sk(sk); 2694 ep = sp->ep; 2695 2696 if (!sctp_addip_enable) 2697 return -EPERM; 2698 2699 if (optlen != sizeof(struct sctp_setpeerprim)) 2700 return -EINVAL; 2701 2702 if (copy_from_user(&prim, optval, optlen)) 2703 return -EFAULT; 2704 2705 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2706 if (!asoc) 2707 return -EINVAL; 2708 2709 if (!asoc->peer.asconf_capable) 2710 return -EPERM; 2711 2712 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2713 return -EPERM; 2714 2715 if (!sctp_state(asoc, ESTABLISHED)) 2716 return -ENOTCONN; 2717 2718 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2719 return -EADDRNOTAVAIL; 2720 2721 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2722 chunk = sctp_make_asconf_set_prim(asoc, 2723 (union sctp_addr *)&prim.sspp_addr); 2724 if (!chunk) 2725 return -ENOMEM; 2726 2727 err = sctp_send_asconf(asoc, chunk); 2728 2729 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2730 2731 return err; 2732 } 2733 2734 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval, 2735 int optlen) 2736 { 2737 struct sctp_setadaption adaption; 2738 2739 if (optlen != sizeof(struct sctp_setadaption)) 2740 return -EINVAL; 2741 if (copy_from_user(&adaption, optval, optlen)) 2742 return -EFAULT; 2743 2744 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind; 2745 2746 return 0; 2747 } 2748 2749 /* API 6.2 setsockopt(), getsockopt() 2750 * 2751 * Applications use setsockopt() and getsockopt() to set or retrieve 2752 * socket options. Socket options are used to change the default 2753 * behavior of sockets calls. They are described in Section 7. 2754 * 2755 * The syntax is: 2756 * 2757 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2758 * int __user *optlen); 2759 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2760 * int optlen); 2761 * 2762 * sd - the socket descript. 2763 * level - set to IPPROTO_SCTP for all SCTP options. 2764 * optname - the option name. 2765 * optval - the buffer to store the value of the option. 2766 * optlen - the size of the buffer. 2767 */ 2768 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2769 char __user *optval, int optlen) 2770 { 2771 int retval = 0; 2772 2773 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2774 sk, optname); 2775 2776 /* I can hardly begin to describe how wrong this is. This is 2777 * so broken as to be worse than useless. The API draft 2778 * REALLY is NOT helpful here... I am not convinced that the 2779 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2780 * are at all well-founded. 2781 */ 2782 if (level != SOL_SCTP) { 2783 struct sctp_af *af = sctp_sk(sk)->pf->af; 2784 retval = af->setsockopt(sk, level, optname, optval, optlen); 2785 goto out_nounlock; 2786 } 2787 2788 sctp_lock_sock(sk); 2789 2790 switch (optname) { 2791 case SCTP_SOCKOPT_BINDX_ADD: 2792 /* 'optlen' is the size of the addresses buffer. */ 2793 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2794 optlen, SCTP_BINDX_ADD_ADDR); 2795 break; 2796 2797 case SCTP_SOCKOPT_BINDX_REM: 2798 /* 'optlen' is the size of the addresses buffer. */ 2799 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2800 optlen, SCTP_BINDX_REM_ADDR); 2801 break; 2802 2803 case SCTP_SOCKOPT_CONNECTX: 2804 /* 'optlen' is the size of the addresses buffer. */ 2805 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2806 optlen); 2807 break; 2808 2809 case SCTP_DISABLE_FRAGMENTS: 2810 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2811 break; 2812 2813 case SCTP_EVENTS: 2814 retval = sctp_setsockopt_events(sk, optval, optlen); 2815 break; 2816 2817 case SCTP_AUTOCLOSE: 2818 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2819 break; 2820 2821 case SCTP_PEER_ADDR_PARAMS: 2822 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2823 break; 2824 2825 case SCTP_DELAYED_ACK_TIME: 2826 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 2827 break; 2828 2829 case SCTP_INITMSG: 2830 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2831 break; 2832 case SCTP_DEFAULT_SEND_PARAM: 2833 retval = sctp_setsockopt_default_send_param(sk, optval, 2834 optlen); 2835 break; 2836 case SCTP_PRIMARY_ADDR: 2837 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2838 break; 2839 case SCTP_SET_PEER_PRIMARY_ADDR: 2840 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2841 break; 2842 case SCTP_NODELAY: 2843 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2844 break; 2845 case SCTP_RTOINFO: 2846 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2847 break; 2848 case SCTP_ASSOCINFO: 2849 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2850 break; 2851 case SCTP_I_WANT_MAPPED_V4_ADDR: 2852 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2853 break; 2854 case SCTP_MAXSEG: 2855 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2856 break; 2857 case SCTP_ADAPTION_LAYER: 2858 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen); 2859 break; 2860 2861 default: 2862 retval = -ENOPROTOOPT; 2863 break; 2864 }; 2865 2866 sctp_release_sock(sk); 2867 2868 out_nounlock: 2869 return retval; 2870 } 2871 2872 /* API 3.1.6 connect() - UDP Style Syntax 2873 * 2874 * An application may use the connect() call in the UDP model to initiate an 2875 * association without sending data. 2876 * 2877 * The syntax is: 2878 * 2879 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2880 * 2881 * sd: the socket descriptor to have a new association added to. 2882 * 2883 * nam: the address structure (either struct sockaddr_in or struct 2884 * sockaddr_in6 defined in RFC2553 [7]). 2885 * 2886 * len: the size of the address. 2887 */ 2888 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 2889 int addr_len) 2890 { 2891 int err = 0; 2892 struct sctp_af *af; 2893 2894 sctp_lock_sock(sk); 2895 2896 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 2897 __FUNCTION__, sk, addr, addr_len); 2898 2899 /* Validate addr_len before calling common connect/connectx routine. */ 2900 af = sctp_get_af_specific(addr->sa_family); 2901 if (!af || addr_len < af->sockaddr_len) { 2902 err = -EINVAL; 2903 } else { 2904 /* Pass correct addr len to common routine (so it knows there 2905 * is only one address being passed. 2906 */ 2907 err = __sctp_connect(sk, addr, af->sockaddr_len); 2908 } 2909 2910 sctp_release_sock(sk); 2911 return err; 2912 } 2913 2914 /* FIXME: Write comments. */ 2915 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2916 { 2917 return -EOPNOTSUPP; /* STUB */ 2918 } 2919 2920 /* 4.1.4 accept() - TCP Style Syntax 2921 * 2922 * Applications use accept() call to remove an established SCTP 2923 * association from the accept queue of the endpoint. A new socket 2924 * descriptor will be returned from accept() to represent the newly 2925 * formed association. 2926 */ 2927 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2928 { 2929 struct sctp_sock *sp; 2930 struct sctp_endpoint *ep; 2931 struct sock *newsk = NULL; 2932 struct sctp_association *asoc; 2933 long timeo; 2934 int error = 0; 2935 2936 sctp_lock_sock(sk); 2937 2938 sp = sctp_sk(sk); 2939 ep = sp->ep; 2940 2941 if (!sctp_style(sk, TCP)) { 2942 error = -EOPNOTSUPP; 2943 goto out; 2944 } 2945 2946 if (!sctp_sstate(sk, LISTENING)) { 2947 error = -EINVAL; 2948 goto out; 2949 } 2950 2951 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 2952 2953 error = sctp_wait_for_accept(sk, timeo); 2954 if (error) 2955 goto out; 2956 2957 /* We treat the list of associations on the endpoint as the accept 2958 * queue and pick the first association on the list. 2959 */ 2960 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 2961 2962 newsk = sp->pf->create_accept_sk(sk, asoc); 2963 if (!newsk) { 2964 error = -ENOMEM; 2965 goto out; 2966 } 2967 2968 /* Populate the fields of the newsk from the oldsk and migrate the 2969 * asoc to the newsk. 2970 */ 2971 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 2972 2973 out: 2974 sctp_release_sock(sk); 2975 *err = error; 2976 return newsk; 2977 } 2978 2979 /* The SCTP ioctl handler. */ 2980 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 2981 { 2982 return -ENOIOCTLCMD; 2983 } 2984 2985 /* This is the function which gets called during socket creation to 2986 * initialized the SCTP-specific portion of the sock. 2987 * The sock structure should already be zero-filled memory. 2988 */ 2989 SCTP_STATIC int sctp_init_sock(struct sock *sk) 2990 { 2991 struct sctp_endpoint *ep; 2992 struct sctp_sock *sp; 2993 2994 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 2995 2996 sp = sctp_sk(sk); 2997 2998 /* Initialize the SCTP per socket area. */ 2999 switch (sk->sk_type) { 3000 case SOCK_SEQPACKET: 3001 sp->type = SCTP_SOCKET_UDP; 3002 break; 3003 case SOCK_STREAM: 3004 sp->type = SCTP_SOCKET_TCP; 3005 break; 3006 default: 3007 return -ESOCKTNOSUPPORT; 3008 } 3009 3010 /* Initialize default send parameters. These parameters can be 3011 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3012 */ 3013 sp->default_stream = 0; 3014 sp->default_ppid = 0; 3015 sp->default_flags = 0; 3016 sp->default_context = 0; 3017 sp->default_timetolive = 0; 3018 3019 /* Initialize default setup parameters. These parameters 3020 * can be modified with the SCTP_INITMSG socket option or 3021 * overridden by the SCTP_INIT CMSG. 3022 */ 3023 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3024 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3025 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3026 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3027 3028 /* Initialize default RTO related parameters. These parameters can 3029 * be modified for with the SCTP_RTOINFO socket option. 3030 */ 3031 sp->rtoinfo.srto_initial = sctp_rto_initial; 3032 sp->rtoinfo.srto_max = sctp_rto_max; 3033 sp->rtoinfo.srto_min = sctp_rto_min; 3034 3035 /* Initialize default association related parameters. These parameters 3036 * can be modified with the SCTP_ASSOCINFO socket option. 3037 */ 3038 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3039 sp->assocparams.sasoc_number_peer_destinations = 0; 3040 sp->assocparams.sasoc_peer_rwnd = 0; 3041 sp->assocparams.sasoc_local_rwnd = 0; 3042 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3043 3044 /* Initialize default event subscriptions. By default, all the 3045 * options are off. 3046 */ 3047 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3048 3049 /* Default Peer Address Parameters. These defaults can 3050 * be modified via SCTP_PEER_ADDR_PARAMS 3051 */ 3052 sp->hbinterval = sctp_hb_interval; 3053 sp->pathmaxrxt = sctp_max_retrans_path; 3054 sp->pathmtu = 0; // allow default discovery 3055 sp->sackdelay = sctp_sack_timeout; 3056 sp->param_flags = SPP_HB_ENABLE | 3057 SPP_PMTUD_ENABLE | 3058 SPP_SACKDELAY_ENABLE; 3059 3060 /* If enabled no SCTP message fragmentation will be performed. 3061 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3062 */ 3063 sp->disable_fragments = 0; 3064 3065 /* Enable Nagle algorithm by default. */ 3066 sp->nodelay = 0; 3067 3068 /* Enable by default. */ 3069 sp->v4mapped = 1; 3070 3071 /* Auto-close idle associations after the configured 3072 * number of seconds. A value of 0 disables this 3073 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3074 * for UDP-style sockets only. 3075 */ 3076 sp->autoclose = 0; 3077 3078 /* User specified fragmentation limit. */ 3079 sp->user_frag = 0; 3080 3081 sp->adaption_ind = 0; 3082 3083 sp->pf = sctp_get_pf_specific(sk->sk_family); 3084 3085 /* Control variables for partial data delivery. */ 3086 sp->pd_mode = 0; 3087 skb_queue_head_init(&sp->pd_lobby); 3088 3089 /* Create a per socket endpoint structure. Even if we 3090 * change the data structure relationships, this may still 3091 * be useful for storing pre-connect address information. 3092 */ 3093 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3094 if (!ep) 3095 return -ENOMEM; 3096 3097 sp->ep = ep; 3098 sp->hmac = NULL; 3099 3100 SCTP_DBG_OBJCNT_INC(sock); 3101 return 0; 3102 } 3103 3104 /* Cleanup any SCTP per socket resources. */ 3105 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3106 { 3107 struct sctp_endpoint *ep; 3108 3109 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3110 3111 /* Release our hold on the endpoint. */ 3112 ep = sctp_sk(sk)->ep; 3113 sctp_endpoint_free(ep); 3114 3115 return 0; 3116 } 3117 3118 /* API 4.1.7 shutdown() - TCP Style Syntax 3119 * int shutdown(int socket, int how); 3120 * 3121 * sd - the socket descriptor of the association to be closed. 3122 * how - Specifies the type of shutdown. The values are 3123 * as follows: 3124 * SHUT_RD 3125 * Disables further receive operations. No SCTP 3126 * protocol action is taken. 3127 * SHUT_WR 3128 * Disables further send operations, and initiates 3129 * the SCTP shutdown sequence. 3130 * SHUT_RDWR 3131 * Disables further send and receive operations 3132 * and initiates the SCTP shutdown sequence. 3133 */ 3134 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3135 { 3136 struct sctp_endpoint *ep; 3137 struct sctp_association *asoc; 3138 3139 if (!sctp_style(sk, TCP)) 3140 return; 3141 3142 if (how & SEND_SHUTDOWN) { 3143 ep = sctp_sk(sk)->ep; 3144 if (!list_empty(&ep->asocs)) { 3145 asoc = list_entry(ep->asocs.next, 3146 struct sctp_association, asocs); 3147 sctp_primitive_SHUTDOWN(asoc, NULL); 3148 } 3149 } 3150 } 3151 3152 /* 7.2.1 Association Status (SCTP_STATUS) 3153 3154 * Applications can retrieve current status information about an 3155 * association, including association state, peer receiver window size, 3156 * number of unacked data chunks, and number of data chunks pending 3157 * receipt. This information is read-only. 3158 */ 3159 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3160 char __user *optval, 3161 int __user *optlen) 3162 { 3163 struct sctp_status status; 3164 struct sctp_association *asoc = NULL; 3165 struct sctp_transport *transport; 3166 sctp_assoc_t associd; 3167 int retval = 0; 3168 3169 if (len != sizeof(status)) { 3170 retval = -EINVAL; 3171 goto out; 3172 } 3173 3174 if (copy_from_user(&status, optval, sizeof(status))) { 3175 retval = -EFAULT; 3176 goto out; 3177 } 3178 3179 associd = status.sstat_assoc_id; 3180 asoc = sctp_id2assoc(sk, associd); 3181 if (!asoc) { 3182 retval = -EINVAL; 3183 goto out; 3184 } 3185 3186 transport = asoc->peer.primary_path; 3187 3188 status.sstat_assoc_id = sctp_assoc2id(asoc); 3189 status.sstat_state = asoc->state; 3190 status.sstat_rwnd = asoc->peer.rwnd; 3191 status.sstat_unackdata = asoc->unack_data; 3192 3193 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3194 status.sstat_instrms = asoc->c.sinit_max_instreams; 3195 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3196 status.sstat_fragmentation_point = asoc->frag_point; 3197 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3198 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3199 transport->af_specific->sockaddr_len); 3200 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3201 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3202 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3203 status.sstat_primary.spinfo_state = transport->state; 3204 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3205 status.sstat_primary.spinfo_srtt = transport->srtt; 3206 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3207 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3208 3209 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3210 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3211 3212 if (put_user(len, optlen)) { 3213 retval = -EFAULT; 3214 goto out; 3215 } 3216 3217 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3218 len, status.sstat_state, status.sstat_rwnd, 3219 status.sstat_assoc_id); 3220 3221 if (copy_to_user(optval, &status, len)) { 3222 retval = -EFAULT; 3223 goto out; 3224 } 3225 3226 out: 3227 return (retval); 3228 } 3229 3230 3231 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3232 * 3233 * Applications can retrieve information about a specific peer address 3234 * of an association, including its reachability state, congestion 3235 * window, and retransmission timer values. This information is 3236 * read-only. 3237 */ 3238 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3239 char __user *optval, 3240 int __user *optlen) 3241 { 3242 struct sctp_paddrinfo pinfo; 3243 struct sctp_transport *transport; 3244 int retval = 0; 3245 3246 if (len != sizeof(pinfo)) { 3247 retval = -EINVAL; 3248 goto out; 3249 } 3250 3251 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 3252 retval = -EFAULT; 3253 goto out; 3254 } 3255 3256 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3257 pinfo.spinfo_assoc_id); 3258 if (!transport) 3259 return -EINVAL; 3260 3261 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3262 pinfo.spinfo_state = transport->state; 3263 pinfo.spinfo_cwnd = transport->cwnd; 3264 pinfo.spinfo_srtt = transport->srtt; 3265 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3266 pinfo.spinfo_mtu = transport->pathmtu; 3267 3268 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3269 pinfo.spinfo_state = SCTP_ACTIVE; 3270 3271 if (put_user(len, optlen)) { 3272 retval = -EFAULT; 3273 goto out; 3274 } 3275 3276 if (copy_to_user(optval, &pinfo, len)) { 3277 retval = -EFAULT; 3278 goto out; 3279 } 3280 3281 out: 3282 return (retval); 3283 } 3284 3285 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3286 * 3287 * This option is a on/off flag. If enabled no SCTP message 3288 * fragmentation will be performed. Instead if a message being sent 3289 * exceeds the current PMTU size, the message will NOT be sent and 3290 * instead a error will be indicated to the user. 3291 */ 3292 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3293 char __user *optval, int __user *optlen) 3294 { 3295 int val; 3296 3297 if (len < sizeof(int)) 3298 return -EINVAL; 3299 3300 len = sizeof(int); 3301 val = (sctp_sk(sk)->disable_fragments == 1); 3302 if (put_user(len, optlen)) 3303 return -EFAULT; 3304 if (copy_to_user(optval, &val, len)) 3305 return -EFAULT; 3306 return 0; 3307 } 3308 3309 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3310 * 3311 * This socket option is used to specify various notifications and 3312 * ancillary data the user wishes to receive. 3313 */ 3314 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3315 int __user *optlen) 3316 { 3317 if (len != sizeof(struct sctp_event_subscribe)) 3318 return -EINVAL; 3319 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3320 return -EFAULT; 3321 return 0; 3322 } 3323 3324 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3325 * 3326 * This socket option is applicable to the UDP-style socket only. When 3327 * set it will cause associations that are idle for more than the 3328 * specified number of seconds to automatically close. An association 3329 * being idle is defined an association that has NOT sent or received 3330 * user data. The special value of '0' indicates that no automatic 3331 * close of any associations should be performed. The option expects an 3332 * integer defining the number of seconds of idle time before an 3333 * association is closed. 3334 */ 3335 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3336 { 3337 /* Applicable to UDP-style socket only */ 3338 if (sctp_style(sk, TCP)) 3339 return -EOPNOTSUPP; 3340 if (len != sizeof(int)) 3341 return -EINVAL; 3342 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 3343 return -EFAULT; 3344 return 0; 3345 } 3346 3347 /* Helper routine to branch off an association to a new socket. */ 3348 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3349 struct socket **sockp) 3350 { 3351 struct sock *sk = asoc->base.sk; 3352 struct socket *sock; 3353 struct inet_sock *inetsk; 3354 int err = 0; 3355 3356 /* An association cannot be branched off from an already peeled-off 3357 * socket, nor is this supported for tcp style sockets. 3358 */ 3359 if (!sctp_style(sk, UDP)) 3360 return -EINVAL; 3361 3362 /* Create a new socket. */ 3363 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3364 if (err < 0) 3365 return err; 3366 3367 /* Populate the fields of the newsk from the oldsk and migrate the 3368 * asoc to the newsk. 3369 */ 3370 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3371 3372 /* Make peeled-off sockets more like 1-1 accepted sockets. 3373 * Set the daddr and initialize id to something more random 3374 */ 3375 inetsk = inet_sk(sock->sk); 3376 inetsk->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr; 3377 inetsk->id = asoc->next_tsn ^ jiffies; 3378 3379 *sockp = sock; 3380 3381 return err; 3382 } 3383 3384 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3385 { 3386 sctp_peeloff_arg_t peeloff; 3387 struct socket *newsock; 3388 int retval = 0; 3389 struct sctp_association *asoc; 3390 3391 if (len != sizeof(sctp_peeloff_arg_t)) 3392 return -EINVAL; 3393 if (copy_from_user(&peeloff, optval, len)) 3394 return -EFAULT; 3395 3396 asoc = sctp_id2assoc(sk, peeloff.associd); 3397 if (!asoc) { 3398 retval = -EINVAL; 3399 goto out; 3400 } 3401 3402 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3403 3404 retval = sctp_do_peeloff(asoc, &newsock); 3405 if (retval < 0) 3406 goto out; 3407 3408 /* Map the socket to an unused fd that can be returned to the user. */ 3409 retval = sock_map_fd(newsock); 3410 if (retval < 0) { 3411 sock_release(newsock); 3412 goto out; 3413 } 3414 3415 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3416 __FUNCTION__, sk, asoc, newsock->sk, retval); 3417 3418 /* Return the fd mapped to the new socket. */ 3419 peeloff.sd = retval; 3420 if (copy_to_user(optval, &peeloff, len)) 3421 retval = -EFAULT; 3422 3423 out: 3424 return retval; 3425 } 3426 3427 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3428 * 3429 * Applications can enable or disable heartbeats for any peer address of 3430 * an association, modify an address's heartbeat interval, force a 3431 * heartbeat to be sent immediately, and adjust the address's maximum 3432 * number of retransmissions sent before an address is considered 3433 * unreachable. The following structure is used to access and modify an 3434 * address's parameters: 3435 * 3436 * struct sctp_paddrparams { 3437 * sctp_assoc_t spp_assoc_id; 3438 * struct sockaddr_storage spp_address; 3439 * uint32_t spp_hbinterval; 3440 * uint16_t spp_pathmaxrxt; 3441 * uint32_t spp_pathmtu; 3442 * uint32_t spp_sackdelay; 3443 * uint32_t spp_flags; 3444 * }; 3445 * 3446 * spp_assoc_id - (one-to-many style socket) This is filled in the 3447 * application, and identifies the association for 3448 * this query. 3449 * spp_address - This specifies which address is of interest. 3450 * spp_hbinterval - This contains the value of the heartbeat interval, 3451 * in milliseconds. If a value of zero 3452 * is present in this field then no changes are to 3453 * be made to this parameter. 3454 * spp_pathmaxrxt - This contains the maximum number of 3455 * retransmissions before this address shall be 3456 * considered unreachable. If a value of zero 3457 * is present in this field then no changes are to 3458 * be made to this parameter. 3459 * spp_pathmtu - When Path MTU discovery is disabled the value 3460 * specified here will be the "fixed" path mtu. 3461 * Note that if the spp_address field is empty 3462 * then all associations on this address will 3463 * have this fixed path mtu set upon them. 3464 * 3465 * spp_sackdelay - When delayed sack is enabled, this value specifies 3466 * the number of milliseconds that sacks will be delayed 3467 * for. This value will apply to all addresses of an 3468 * association if the spp_address field is empty. Note 3469 * also, that if delayed sack is enabled and this 3470 * value is set to 0, no change is made to the last 3471 * recorded delayed sack timer value. 3472 * 3473 * spp_flags - These flags are used to control various features 3474 * on an association. The flag field may contain 3475 * zero or more of the following options. 3476 * 3477 * SPP_HB_ENABLE - Enable heartbeats on the 3478 * specified address. Note that if the address 3479 * field is empty all addresses for the association 3480 * have heartbeats enabled upon them. 3481 * 3482 * SPP_HB_DISABLE - Disable heartbeats on the 3483 * speicifed address. Note that if the address 3484 * field is empty all addresses for the association 3485 * will have their heartbeats disabled. Note also 3486 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3487 * mutually exclusive, only one of these two should 3488 * be specified. Enabling both fields will have 3489 * undetermined results. 3490 * 3491 * SPP_HB_DEMAND - Request a user initiated heartbeat 3492 * to be made immediately. 3493 * 3494 * SPP_PMTUD_ENABLE - This field will enable PMTU 3495 * discovery upon the specified address. Note that 3496 * if the address feild is empty then all addresses 3497 * on the association are effected. 3498 * 3499 * SPP_PMTUD_DISABLE - This field will disable PMTU 3500 * discovery upon the specified address. Note that 3501 * if the address feild is empty then all addresses 3502 * on the association are effected. Not also that 3503 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3504 * exclusive. Enabling both will have undetermined 3505 * results. 3506 * 3507 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3508 * on delayed sack. The time specified in spp_sackdelay 3509 * is used to specify the sack delay for this address. Note 3510 * that if spp_address is empty then all addresses will 3511 * enable delayed sack and take on the sack delay 3512 * value specified in spp_sackdelay. 3513 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3514 * off delayed sack. If the spp_address field is blank then 3515 * delayed sack is disabled for the entire association. Note 3516 * also that this field is mutually exclusive to 3517 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3518 * results. 3519 */ 3520 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3521 char __user *optval, int __user *optlen) 3522 { 3523 struct sctp_paddrparams params; 3524 struct sctp_transport *trans = NULL; 3525 struct sctp_association *asoc = NULL; 3526 struct sctp_sock *sp = sctp_sk(sk); 3527 3528 if (len != sizeof(struct sctp_paddrparams)) 3529 return -EINVAL; 3530 3531 if (copy_from_user(¶ms, optval, len)) 3532 return -EFAULT; 3533 3534 /* If an address other than INADDR_ANY is specified, and 3535 * no transport is found, then the request is invalid. 3536 */ 3537 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3538 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3539 params.spp_assoc_id); 3540 if (!trans) { 3541 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3542 return -EINVAL; 3543 } 3544 } 3545 3546 /* Get association, if assoc_id != 0 and the socket is a one 3547 * to many style socket, and an association was not found, then 3548 * the id was invalid. 3549 */ 3550 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3551 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3552 SCTP_DEBUG_PRINTK("Failed no association\n"); 3553 return -EINVAL; 3554 } 3555 3556 if (trans) { 3557 /* Fetch transport values. */ 3558 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3559 params.spp_pathmtu = trans->pathmtu; 3560 params.spp_pathmaxrxt = trans->pathmaxrxt; 3561 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3562 3563 /*draft-11 doesn't say what to return in spp_flags*/ 3564 params.spp_flags = trans->param_flags; 3565 } else if (asoc) { 3566 /* Fetch association values. */ 3567 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3568 params.spp_pathmtu = asoc->pathmtu; 3569 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3570 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3571 3572 /*draft-11 doesn't say what to return in spp_flags*/ 3573 params.spp_flags = asoc->param_flags; 3574 } else { 3575 /* Fetch socket values. */ 3576 params.spp_hbinterval = sp->hbinterval; 3577 params.spp_pathmtu = sp->pathmtu; 3578 params.spp_sackdelay = sp->sackdelay; 3579 params.spp_pathmaxrxt = sp->pathmaxrxt; 3580 3581 /*draft-11 doesn't say what to return in spp_flags*/ 3582 params.spp_flags = sp->param_flags; 3583 } 3584 3585 if (copy_to_user(optval, ¶ms, len)) 3586 return -EFAULT; 3587 3588 if (put_user(len, optlen)) 3589 return -EFAULT; 3590 3591 return 0; 3592 } 3593 3594 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3595 * 3596 * This options will get or set the delayed ack timer. The time is set 3597 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3598 * endpoints default delayed ack timer value. If the assoc_id field is 3599 * non-zero, then the set or get effects the specified association. 3600 * 3601 * struct sctp_assoc_value { 3602 * sctp_assoc_t assoc_id; 3603 * uint32_t assoc_value; 3604 * }; 3605 * 3606 * assoc_id - This parameter, indicates which association the 3607 * user is preforming an action upon. Note that if 3608 * this field's value is zero then the endpoints 3609 * default value is changed (effecting future 3610 * associations only). 3611 * 3612 * assoc_value - This parameter contains the number of milliseconds 3613 * that the user is requesting the delayed ACK timer 3614 * be set to. Note that this value is defined in 3615 * the standard to be between 200 and 500 milliseconds. 3616 * 3617 * Note: a value of zero will leave the value alone, 3618 * but disable SACK delay. A non-zero value will also 3619 * enable SACK delay. 3620 */ 3621 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3622 char __user *optval, 3623 int __user *optlen) 3624 { 3625 struct sctp_assoc_value params; 3626 struct sctp_association *asoc = NULL; 3627 struct sctp_sock *sp = sctp_sk(sk); 3628 3629 if (len != sizeof(struct sctp_assoc_value)) 3630 return - EINVAL; 3631 3632 if (copy_from_user(¶ms, optval, len)) 3633 return -EFAULT; 3634 3635 /* Get association, if assoc_id != 0 and the socket is a one 3636 * to many style socket, and an association was not found, then 3637 * the id was invalid. 3638 */ 3639 asoc = sctp_id2assoc(sk, params.assoc_id); 3640 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3641 return -EINVAL; 3642 3643 if (asoc) { 3644 /* Fetch association values. */ 3645 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3646 params.assoc_value = jiffies_to_msecs( 3647 asoc->sackdelay); 3648 else 3649 params.assoc_value = 0; 3650 } else { 3651 /* Fetch socket values. */ 3652 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3653 params.assoc_value = sp->sackdelay; 3654 else 3655 params.assoc_value = 0; 3656 } 3657 3658 if (copy_to_user(optval, ¶ms, len)) 3659 return -EFAULT; 3660 3661 if (put_user(len, optlen)) 3662 return -EFAULT; 3663 3664 return 0; 3665 } 3666 3667 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3668 * 3669 * Applications can specify protocol parameters for the default association 3670 * initialization. The option name argument to setsockopt() and getsockopt() 3671 * is SCTP_INITMSG. 3672 * 3673 * Setting initialization parameters is effective only on an unconnected 3674 * socket (for UDP-style sockets only future associations are effected 3675 * by the change). With TCP-style sockets, this option is inherited by 3676 * sockets derived from a listener socket. 3677 */ 3678 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3679 { 3680 if (len != sizeof(struct sctp_initmsg)) 3681 return -EINVAL; 3682 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3683 return -EFAULT; 3684 return 0; 3685 } 3686 3687 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3688 char __user *optval, 3689 int __user *optlen) 3690 { 3691 sctp_assoc_t id; 3692 struct sctp_association *asoc; 3693 struct list_head *pos; 3694 int cnt = 0; 3695 3696 if (len != sizeof(sctp_assoc_t)) 3697 return -EINVAL; 3698 3699 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3700 return -EFAULT; 3701 3702 /* For UDP-style sockets, id specifies the association to query. */ 3703 asoc = sctp_id2assoc(sk, id); 3704 if (!asoc) 3705 return -EINVAL; 3706 3707 list_for_each(pos, &asoc->peer.transport_addr_list) { 3708 cnt ++; 3709 } 3710 3711 return cnt; 3712 } 3713 3714 /* 3715 * Old API for getting list of peer addresses. Does not work for 32-bit 3716 * programs running on a 64-bit kernel 3717 */ 3718 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3719 char __user *optval, 3720 int __user *optlen) 3721 { 3722 struct sctp_association *asoc; 3723 struct list_head *pos; 3724 int cnt = 0; 3725 struct sctp_getaddrs_old getaddrs; 3726 struct sctp_transport *from; 3727 void __user *to; 3728 union sctp_addr temp; 3729 struct sctp_sock *sp = sctp_sk(sk); 3730 int addrlen; 3731 3732 if (len != sizeof(struct sctp_getaddrs_old)) 3733 return -EINVAL; 3734 3735 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3736 return -EFAULT; 3737 3738 if (getaddrs.addr_num <= 0) return -EINVAL; 3739 3740 /* For UDP-style sockets, id specifies the association to query. */ 3741 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3742 if (!asoc) 3743 return -EINVAL; 3744 3745 to = (void __user *)getaddrs.addrs; 3746 list_for_each(pos, &asoc->peer.transport_addr_list) { 3747 from = list_entry(pos, struct sctp_transport, transports); 3748 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3749 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3750 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3751 if (copy_to_user(to, &temp, addrlen)) 3752 return -EFAULT; 3753 to += addrlen ; 3754 cnt ++; 3755 if (cnt >= getaddrs.addr_num) break; 3756 } 3757 getaddrs.addr_num = cnt; 3758 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3759 return -EFAULT; 3760 3761 return 0; 3762 } 3763 3764 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3765 char __user *optval, int __user *optlen) 3766 { 3767 struct sctp_association *asoc; 3768 struct list_head *pos; 3769 int cnt = 0; 3770 struct sctp_getaddrs getaddrs; 3771 struct sctp_transport *from; 3772 void __user *to; 3773 union sctp_addr temp; 3774 struct sctp_sock *sp = sctp_sk(sk); 3775 int addrlen; 3776 size_t space_left; 3777 int bytes_copied; 3778 3779 if (len < sizeof(struct sctp_getaddrs)) 3780 return -EINVAL; 3781 3782 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3783 return -EFAULT; 3784 3785 /* For UDP-style sockets, id specifies the association to query. */ 3786 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3787 if (!asoc) 3788 return -EINVAL; 3789 3790 to = optval + offsetof(struct sctp_getaddrs,addrs); 3791 space_left = len - sizeof(struct sctp_getaddrs) - 3792 offsetof(struct sctp_getaddrs,addrs); 3793 3794 list_for_each(pos, &asoc->peer.transport_addr_list) { 3795 from = list_entry(pos, struct sctp_transport, transports); 3796 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3797 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3798 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3799 if(space_left < addrlen) 3800 return -ENOMEM; 3801 if (copy_to_user(to, &temp, addrlen)) 3802 return -EFAULT; 3803 to += addrlen; 3804 cnt++; 3805 space_left -= addrlen; 3806 } 3807 3808 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3809 return -EFAULT; 3810 bytes_copied = ((char __user *)to) - optval; 3811 if (put_user(bytes_copied, optlen)) 3812 return -EFAULT; 3813 3814 return 0; 3815 } 3816 3817 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 3818 char __user *optval, 3819 int __user *optlen) 3820 { 3821 sctp_assoc_t id; 3822 struct sctp_bind_addr *bp; 3823 struct sctp_association *asoc; 3824 struct list_head *pos; 3825 struct sctp_sockaddr_entry *addr; 3826 rwlock_t *addr_lock; 3827 unsigned long flags; 3828 int cnt = 0; 3829 3830 if (len != sizeof(sctp_assoc_t)) 3831 return -EINVAL; 3832 3833 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3834 return -EFAULT; 3835 3836 /* 3837 * For UDP-style sockets, id specifies the association to query. 3838 * If the id field is set to the value '0' then the locally bound 3839 * addresses are returned without regard to any particular 3840 * association. 3841 */ 3842 if (0 == id) { 3843 bp = &sctp_sk(sk)->ep->base.bind_addr; 3844 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3845 } else { 3846 asoc = sctp_id2assoc(sk, id); 3847 if (!asoc) 3848 return -EINVAL; 3849 bp = &asoc->base.bind_addr; 3850 addr_lock = &asoc->base.addr_lock; 3851 } 3852 3853 sctp_read_lock(addr_lock); 3854 3855 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3856 * addresses from the global local address list. 3857 */ 3858 if (sctp_list_single_entry(&bp->address_list)) { 3859 addr = list_entry(bp->address_list.next, 3860 struct sctp_sockaddr_entry, list); 3861 if (sctp_is_any(&addr->a)) { 3862 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3863 list_for_each(pos, &sctp_local_addr_list) { 3864 addr = list_entry(pos, 3865 struct sctp_sockaddr_entry, 3866 list); 3867 if ((PF_INET == sk->sk_family) && 3868 (AF_INET6 == addr->a.sa.sa_family)) 3869 continue; 3870 cnt++; 3871 } 3872 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3873 flags); 3874 } else { 3875 cnt = 1; 3876 } 3877 goto done; 3878 } 3879 3880 list_for_each(pos, &bp->address_list) { 3881 cnt ++; 3882 } 3883 3884 done: 3885 sctp_read_unlock(addr_lock); 3886 return cnt; 3887 } 3888 3889 /* Helper function that copies local addresses to user and returns the number 3890 * of addresses copied. 3891 */ 3892 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs, 3893 void __user *to) 3894 { 3895 struct list_head *pos; 3896 struct sctp_sockaddr_entry *addr; 3897 unsigned long flags; 3898 union sctp_addr temp; 3899 int cnt = 0; 3900 int addrlen; 3901 3902 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3903 list_for_each(pos, &sctp_local_addr_list) { 3904 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3905 if ((PF_INET == sk->sk_family) && 3906 (AF_INET6 == addr->a.sa.sa_family)) 3907 continue; 3908 memcpy(&temp, &addr->a, sizeof(temp)); 3909 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3910 &temp); 3911 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3912 if (copy_to_user(to, &temp, addrlen)) { 3913 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3914 flags); 3915 return -EFAULT; 3916 } 3917 to += addrlen; 3918 cnt ++; 3919 if (cnt >= max_addrs) break; 3920 } 3921 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3922 3923 return cnt; 3924 } 3925 3926 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, 3927 void __user **to, size_t space_left) 3928 { 3929 struct list_head *pos; 3930 struct sctp_sockaddr_entry *addr; 3931 unsigned long flags; 3932 union sctp_addr temp; 3933 int cnt = 0; 3934 int addrlen; 3935 3936 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3937 list_for_each(pos, &sctp_local_addr_list) { 3938 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3939 if ((PF_INET == sk->sk_family) && 3940 (AF_INET6 == addr->a.sa.sa_family)) 3941 continue; 3942 memcpy(&temp, &addr->a, sizeof(temp)); 3943 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3944 &temp); 3945 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3946 if(space_left<addrlen) 3947 return -ENOMEM; 3948 if (copy_to_user(*to, &temp, addrlen)) { 3949 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3950 flags); 3951 return -EFAULT; 3952 } 3953 *to += addrlen; 3954 cnt ++; 3955 space_left -= addrlen; 3956 } 3957 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3958 3959 return cnt; 3960 } 3961 3962 /* Old API for getting list of local addresses. Does not work for 32-bit 3963 * programs running on a 64-bit kernel 3964 */ 3965 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 3966 char __user *optval, int __user *optlen) 3967 { 3968 struct sctp_bind_addr *bp; 3969 struct sctp_association *asoc; 3970 struct list_head *pos; 3971 int cnt = 0; 3972 struct sctp_getaddrs_old getaddrs; 3973 struct sctp_sockaddr_entry *addr; 3974 void __user *to; 3975 union sctp_addr temp; 3976 struct sctp_sock *sp = sctp_sk(sk); 3977 int addrlen; 3978 rwlock_t *addr_lock; 3979 int err = 0; 3980 3981 if (len != sizeof(struct sctp_getaddrs_old)) 3982 return -EINVAL; 3983 3984 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3985 return -EFAULT; 3986 3987 if (getaddrs.addr_num <= 0) return -EINVAL; 3988 /* 3989 * For UDP-style sockets, id specifies the association to query. 3990 * If the id field is set to the value '0' then the locally bound 3991 * addresses are returned without regard to any particular 3992 * association. 3993 */ 3994 if (0 == getaddrs.assoc_id) { 3995 bp = &sctp_sk(sk)->ep->base.bind_addr; 3996 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3997 } else { 3998 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3999 if (!asoc) 4000 return -EINVAL; 4001 bp = &asoc->base.bind_addr; 4002 addr_lock = &asoc->base.addr_lock; 4003 } 4004 4005 to = getaddrs.addrs; 4006 4007 sctp_read_lock(addr_lock); 4008 4009 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4010 * addresses from the global local address list. 4011 */ 4012 if (sctp_list_single_entry(&bp->address_list)) { 4013 addr = list_entry(bp->address_list.next, 4014 struct sctp_sockaddr_entry, list); 4015 if (sctp_is_any(&addr->a)) { 4016 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port, 4017 getaddrs.addr_num, 4018 to); 4019 if (cnt < 0) { 4020 err = cnt; 4021 goto unlock; 4022 } 4023 goto copy_getaddrs; 4024 } 4025 } 4026 4027 list_for_each(pos, &bp->address_list) { 4028 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4029 memcpy(&temp, &addr->a, sizeof(temp)); 4030 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4031 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4032 if (copy_to_user(to, &temp, addrlen)) { 4033 err = -EFAULT; 4034 goto unlock; 4035 } 4036 to += addrlen; 4037 cnt ++; 4038 if (cnt >= getaddrs.addr_num) break; 4039 } 4040 4041 copy_getaddrs: 4042 getaddrs.addr_num = cnt; 4043 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 4044 err = -EFAULT; 4045 4046 unlock: 4047 sctp_read_unlock(addr_lock); 4048 return err; 4049 } 4050 4051 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4052 char __user *optval, int __user *optlen) 4053 { 4054 struct sctp_bind_addr *bp; 4055 struct sctp_association *asoc; 4056 struct list_head *pos; 4057 int cnt = 0; 4058 struct sctp_getaddrs getaddrs; 4059 struct sctp_sockaddr_entry *addr; 4060 void __user *to; 4061 union sctp_addr temp; 4062 struct sctp_sock *sp = sctp_sk(sk); 4063 int addrlen; 4064 rwlock_t *addr_lock; 4065 int err = 0; 4066 size_t space_left; 4067 int bytes_copied; 4068 4069 if (len <= sizeof(struct sctp_getaddrs)) 4070 return -EINVAL; 4071 4072 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4073 return -EFAULT; 4074 4075 /* 4076 * For UDP-style sockets, id specifies the association to query. 4077 * If the id field is set to the value '0' then the locally bound 4078 * addresses are returned without regard to any particular 4079 * association. 4080 */ 4081 if (0 == getaddrs.assoc_id) { 4082 bp = &sctp_sk(sk)->ep->base.bind_addr; 4083 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4084 } else { 4085 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4086 if (!asoc) 4087 return -EINVAL; 4088 bp = &asoc->base.bind_addr; 4089 addr_lock = &asoc->base.addr_lock; 4090 } 4091 4092 to = optval + offsetof(struct sctp_getaddrs,addrs); 4093 space_left = len - sizeof(struct sctp_getaddrs) - 4094 offsetof(struct sctp_getaddrs,addrs); 4095 4096 sctp_read_lock(addr_lock); 4097 4098 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4099 * addresses from the global local address list. 4100 */ 4101 if (sctp_list_single_entry(&bp->address_list)) { 4102 addr = list_entry(bp->address_list.next, 4103 struct sctp_sockaddr_entry, list); 4104 if (sctp_is_any(&addr->a)) { 4105 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 4106 &to, space_left); 4107 if (cnt < 0) { 4108 err = cnt; 4109 goto unlock; 4110 } 4111 goto copy_getaddrs; 4112 } 4113 } 4114 4115 list_for_each(pos, &bp->address_list) { 4116 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4117 memcpy(&temp, &addr->a, sizeof(temp)); 4118 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4119 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4120 if(space_left < addrlen) 4121 return -ENOMEM; /*fixme: right error?*/ 4122 if (copy_to_user(to, &temp, addrlen)) { 4123 err = -EFAULT; 4124 goto unlock; 4125 } 4126 to += addrlen; 4127 cnt ++; 4128 space_left -= addrlen; 4129 } 4130 4131 copy_getaddrs: 4132 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4133 return -EFAULT; 4134 bytes_copied = ((char __user *)to) - optval; 4135 if (put_user(bytes_copied, optlen)) 4136 return -EFAULT; 4137 4138 unlock: 4139 sctp_read_unlock(addr_lock); 4140 return err; 4141 } 4142 4143 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4144 * 4145 * Requests that the local SCTP stack use the enclosed peer address as 4146 * the association primary. The enclosed address must be one of the 4147 * association peer's addresses. 4148 */ 4149 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4150 char __user *optval, int __user *optlen) 4151 { 4152 struct sctp_prim prim; 4153 struct sctp_association *asoc; 4154 struct sctp_sock *sp = sctp_sk(sk); 4155 4156 if (len != sizeof(struct sctp_prim)) 4157 return -EINVAL; 4158 4159 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 4160 return -EFAULT; 4161 4162 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4163 if (!asoc) 4164 return -EINVAL; 4165 4166 if (!asoc->peer.primary_path) 4167 return -ENOTCONN; 4168 4169 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4170 asoc->peer.primary_path->af_specific->sockaddr_len); 4171 4172 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4173 (union sctp_addr *)&prim.ssp_addr); 4174 4175 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 4176 return -EFAULT; 4177 4178 return 0; 4179 } 4180 4181 /* 4182 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER) 4183 * 4184 * Requests that the local endpoint set the specified Adaption Layer 4185 * Indication parameter for all future INIT and INIT-ACK exchanges. 4186 */ 4187 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len, 4188 char __user *optval, int __user *optlen) 4189 { 4190 struct sctp_setadaption adaption; 4191 4192 if (len != sizeof(struct sctp_setadaption)) 4193 return -EINVAL; 4194 4195 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind; 4196 if (copy_to_user(optval, &adaption, len)) 4197 return -EFAULT; 4198 4199 return 0; 4200 } 4201 4202 /* 4203 * 4204 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4205 * 4206 * Applications that wish to use the sendto() system call may wish to 4207 * specify a default set of parameters that would normally be supplied 4208 * through the inclusion of ancillary data. This socket option allows 4209 * such an application to set the default sctp_sndrcvinfo structure. 4210 4211 4212 * The application that wishes to use this socket option simply passes 4213 * in to this call the sctp_sndrcvinfo structure defined in Section 4214 * 5.2.2) The input parameters accepted by this call include 4215 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4216 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4217 * to this call if the caller is using the UDP model. 4218 * 4219 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4220 */ 4221 static int sctp_getsockopt_default_send_param(struct sock *sk, 4222 int len, char __user *optval, 4223 int __user *optlen) 4224 { 4225 struct sctp_sndrcvinfo info; 4226 struct sctp_association *asoc; 4227 struct sctp_sock *sp = sctp_sk(sk); 4228 4229 if (len != sizeof(struct sctp_sndrcvinfo)) 4230 return -EINVAL; 4231 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 4232 return -EFAULT; 4233 4234 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4235 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4236 return -EINVAL; 4237 4238 if (asoc) { 4239 info.sinfo_stream = asoc->default_stream; 4240 info.sinfo_flags = asoc->default_flags; 4241 info.sinfo_ppid = asoc->default_ppid; 4242 info.sinfo_context = asoc->default_context; 4243 info.sinfo_timetolive = asoc->default_timetolive; 4244 } else { 4245 info.sinfo_stream = sp->default_stream; 4246 info.sinfo_flags = sp->default_flags; 4247 info.sinfo_ppid = sp->default_ppid; 4248 info.sinfo_context = sp->default_context; 4249 info.sinfo_timetolive = sp->default_timetolive; 4250 } 4251 4252 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 4253 return -EFAULT; 4254 4255 return 0; 4256 } 4257 4258 /* 4259 * 4260 * 7.1.5 SCTP_NODELAY 4261 * 4262 * Turn on/off any Nagle-like algorithm. This means that packets are 4263 * generally sent as soon as possible and no unnecessary delays are 4264 * introduced, at the cost of more packets in the network. Expects an 4265 * integer boolean flag. 4266 */ 4267 4268 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4269 char __user *optval, int __user *optlen) 4270 { 4271 int val; 4272 4273 if (len < sizeof(int)) 4274 return -EINVAL; 4275 4276 len = sizeof(int); 4277 val = (sctp_sk(sk)->nodelay == 1); 4278 if (put_user(len, optlen)) 4279 return -EFAULT; 4280 if (copy_to_user(optval, &val, len)) 4281 return -EFAULT; 4282 return 0; 4283 } 4284 4285 /* 4286 * 4287 * 7.1.1 SCTP_RTOINFO 4288 * 4289 * The protocol parameters used to initialize and bound retransmission 4290 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4291 * and modify these parameters. 4292 * All parameters are time values, in milliseconds. A value of 0, when 4293 * modifying the parameters, indicates that the current value should not 4294 * be changed. 4295 * 4296 */ 4297 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4298 char __user *optval, 4299 int __user *optlen) { 4300 struct sctp_rtoinfo rtoinfo; 4301 struct sctp_association *asoc; 4302 4303 if (len != sizeof (struct sctp_rtoinfo)) 4304 return -EINVAL; 4305 4306 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 4307 return -EFAULT; 4308 4309 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4310 4311 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4312 return -EINVAL; 4313 4314 /* Values corresponding to the specific association. */ 4315 if (asoc) { 4316 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4317 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4318 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4319 } else { 4320 /* Values corresponding to the endpoint. */ 4321 struct sctp_sock *sp = sctp_sk(sk); 4322 4323 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4324 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4325 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4326 } 4327 4328 if (put_user(len, optlen)) 4329 return -EFAULT; 4330 4331 if (copy_to_user(optval, &rtoinfo, len)) 4332 return -EFAULT; 4333 4334 return 0; 4335 } 4336 4337 /* 4338 * 4339 * 7.1.2 SCTP_ASSOCINFO 4340 * 4341 * This option is used to tune the the maximum retransmission attempts 4342 * of the association. 4343 * Returns an error if the new association retransmission value is 4344 * greater than the sum of the retransmission value of the peer. 4345 * See [SCTP] for more information. 4346 * 4347 */ 4348 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4349 char __user *optval, 4350 int __user *optlen) 4351 { 4352 4353 struct sctp_assocparams assocparams; 4354 struct sctp_association *asoc; 4355 struct list_head *pos; 4356 int cnt = 0; 4357 4358 if (len != sizeof (struct sctp_assocparams)) 4359 return -EINVAL; 4360 4361 if (copy_from_user(&assocparams, optval, 4362 sizeof (struct sctp_assocparams))) 4363 return -EFAULT; 4364 4365 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4366 4367 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4368 return -EINVAL; 4369 4370 /* Values correspoinding to the specific association */ 4371 if (asoc) { 4372 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4373 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4374 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4375 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4376 * 1000) + 4377 (asoc->cookie_life.tv_usec 4378 / 1000); 4379 4380 list_for_each(pos, &asoc->peer.transport_addr_list) { 4381 cnt ++; 4382 } 4383 4384 assocparams.sasoc_number_peer_destinations = cnt; 4385 } else { 4386 /* Values corresponding to the endpoint */ 4387 struct sctp_sock *sp = sctp_sk(sk); 4388 4389 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4390 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4391 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4392 assocparams.sasoc_cookie_life = 4393 sp->assocparams.sasoc_cookie_life; 4394 assocparams.sasoc_number_peer_destinations = 4395 sp->assocparams. 4396 sasoc_number_peer_destinations; 4397 } 4398 4399 if (put_user(len, optlen)) 4400 return -EFAULT; 4401 4402 if (copy_to_user(optval, &assocparams, len)) 4403 return -EFAULT; 4404 4405 return 0; 4406 } 4407 4408 /* 4409 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4410 * 4411 * This socket option is a boolean flag which turns on or off mapped V4 4412 * addresses. If this option is turned on and the socket is type 4413 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4414 * If this option is turned off, then no mapping will be done of V4 4415 * addresses and a user will receive both PF_INET6 and PF_INET type 4416 * addresses on the socket. 4417 */ 4418 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4419 char __user *optval, int __user *optlen) 4420 { 4421 int val; 4422 struct sctp_sock *sp = sctp_sk(sk); 4423 4424 if (len < sizeof(int)) 4425 return -EINVAL; 4426 4427 len = sizeof(int); 4428 val = sp->v4mapped; 4429 if (put_user(len, optlen)) 4430 return -EFAULT; 4431 if (copy_to_user(optval, &val, len)) 4432 return -EFAULT; 4433 4434 return 0; 4435 } 4436 4437 /* 4438 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4439 * 4440 * This socket option specifies the maximum size to put in any outgoing 4441 * SCTP chunk. If a message is larger than this size it will be 4442 * fragmented by SCTP into the specified size. Note that the underlying 4443 * SCTP implementation may fragment into smaller sized chunks when the 4444 * PMTU of the underlying association is smaller than the value set by 4445 * the user. 4446 */ 4447 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4448 char __user *optval, int __user *optlen) 4449 { 4450 int val; 4451 4452 if (len < sizeof(int)) 4453 return -EINVAL; 4454 4455 len = sizeof(int); 4456 4457 val = sctp_sk(sk)->user_frag; 4458 if (put_user(len, optlen)) 4459 return -EFAULT; 4460 if (copy_to_user(optval, &val, len)) 4461 return -EFAULT; 4462 4463 return 0; 4464 } 4465 4466 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4467 char __user *optval, int __user *optlen) 4468 { 4469 int retval = 0; 4470 int len; 4471 4472 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4473 sk, optname); 4474 4475 /* I can hardly begin to describe how wrong this is. This is 4476 * so broken as to be worse than useless. The API draft 4477 * REALLY is NOT helpful here... I am not convinced that the 4478 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4479 * are at all well-founded. 4480 */ 4481 if (level != SOL_SCTP) { 4482 struct sctp_af *af = sctp_sk(sk)->pf->af; 4483 4484 retval = af->getsockopt(sk, level, optname, optval, optlen); 4485 return retval; 4486 } 4487 4488 if (get_user(len, optlen)) 4489 return -EFAULT; 4490 4491 sctp_lock_sock(sk); 4492 4493 switch (optname) { 4494 case SCTP_STATUS: 4495 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4496 break; 4497 case SCTP_DISABLE_FRAGMENTS: 4498 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4499 optlen); 4500 break; 4501 case SCTP_EVENTS: 4502 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4503 break; 4504 case SCTP_AUTOCLOSE: 4505 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4506 break; 4507 case SCTP_SOCKOPT_PEELOFF: 4508 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4509 break; 4510 case SCTP_PEER_ADDR_PARAMS: 4511 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4512 optlen); 4513 break; 4514 case SCTP_DELAYED_ACK_TIME: 4515 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4516 optlen); 4517 break; 4518 case SCTP_INITMSG: 4519 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4520 break; 4521 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4522 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4523 optlen); 4524 break; 4525 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4526 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4527 optlen); 4528 break; 4529 case SCTP_GET_PEER_ADDRS_OLD: 4530 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4531 optlen); 4532 break; 4533 case SCTP_GET_LOCAL_ADDRS_OLD: 4534 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4535 optlen); 4536 break; 4537 case SCTP_GET_PEER_ADDRS: 4538 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4539 optlen); 4540 break; 4541 case SCTP_GET_LOCAL_ADDRS: 4542 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4543 optlen); 4544 break; 4545 case SCTP_DEFAULT_SEND_PARAM: 4546 retval = sctp_getsockopt_default_send_param(sk, len, 4547 optval, optlen); 4548 break; 4549 case SCTP_PRIMARY_ADDR: 4550 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4551 break; 4552 case SCTP_NODELAY: 4553 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4554 break; 4555 case SCTP_RTOINFO: 4556 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4557 break; 4558 case SCTP_ASSOCINFO: 4559 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4560 break; 4561 case SCTP_I_WANT_MAPPED_V4_ADDR: 4562 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4563 break; 4564 case SCTP_MAXSEG: 4565 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4566 break; 4567 case SCTP_GET_PEER_ADDR_INFO: 4568 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4569 optlen); 4570 break; 4571 case SCTP_ADAPTION_LAYER: 4572 retval = sctp_getsockopt_adaption_layer(sk, len, optval, 4573 optlen); 4574 break; 4575 default: 4576 retval = -ENOPROTOOPT; 4577 break; 4578 }; 4579 4580 sctp_release_sock(sk); 4581 return retval; 4582 } 4583 4584 static void sctp_hash(struct sock *sk) 4585 { 4586 /* STUB */ 4587 } 4588 4589 static void sctp_unhash(struct sock *sk) 4590 { 4591 /* STUB */ 4592 } 4593 4594 /* Check if port is acceptable. Possibly find first available port. 4595 * 4596 * The port hash table (contained in the 'global' SCTP protocol storage 4597 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4598 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4599 * list (the list number is the port number hashed out, so as you 4600 * would expect from a hash function, all the ports in a given list have 4601 * such a number that hashes out to the same list number; you were 4602 * expecting that, right?); so each list has a set of ports, with a 4603 * link to the socket (struct sock) that uses it, the port number and 4604 * a fastreuse flag (FIXME: NPI ipg). 4605 */ 4606 static struct sctp_bind_bucket *sctp_bucket_create( 4607 struct sctp_bind_hashbucket *head, unsigned short snum); 4608 4609 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4610 { 4611 struct sctp_bind_hashbucket *head; /* hash list */ 4612 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4613 unsigned short snum; 4614 int ret; 4615 4616 snum = ntohs(addr->v4.sin_port); 4617 4618 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4619 sctp_local_bh_disable(); 4620 4621 if (snum == 0) { 4622 /* Search for an available port. 4623 * 4624 * 'sctp_port_rover' was the last port assigned, so 4625 * we start to search from 'sctp_port_rover + 4626 * 1'. What we do is first check if port 'rover' is 4627 * already in the hash table; if not, we use that; if 4628 * it is, we try next. 4629 */ 4630 int low = sysctl_local_port_range[0]; 4631 int high = sysctl_local_port_range[1]; 4632 int remaining = (high - low) + 1; 4633 int rover; 4634 int index; 4635 4636 sctp_spin_lock(&sctp_port_alloc_lock); 4637 rover = sctp_port_rover; 4638 do { 4639 rover++; 4640 if ((rover < low) || (rover > high)) 4641 rover = low; 4642 index = sctp_phashfn(rover); 4643 head = &sctp_port_hashtable[index]; 4644 sctp_spin_lock(&head->lock); 4645 for (pp = head->chain; pp; pp = pp->next) 4646 if (pp->port == rover) 4647 goto next; 4648 break; 4649 next: 4650 sctp_spin_unlock(&head->lock); 4651 } while (--remaining > 0); 4652 sctp_port_rover = rover; 4653 sctp_spin_unlock(&sctp_port_alloc_lock); 4654 4655 /* Exhausted local port range during search? */ 4656 ret = 1; 4657 if (remaining <= 0) 4658 goto fail; 4659 4660 /* OK, here is the one we will use. HEAD (the port 4661 * hash table list entry) is non-NULL and we hold it's 4662 * mutex. 4663 */ 4664 snum = rover; 4665 } else { 4666 /* We are given an specific port number; we verify 4667 * that it is not being used. If it is used, we will 4668 * exahust the search in the hash list corresponding 4669 * to the port number (snum) - we detect that with the 4670 * port iterator, pp being NULL. 4671 */ 4672 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 4673 sctp_spin_lock(&head->lock); 4674 for (pp = head->chain; pp; pp = pp->next) { 4675 if (pp->port == snum) 4676 goto pp_found; 4677 } 4678 } 4679 pp = NULL; 4680 goto pp_not_found; 4681 pp_found: 4682 if (!hlist_empty(&pp->owner)) { 4683 /* We had a port hash table hit - there is an 4684 * available port (pp != NULL) and it is being 4685 * used by other socket (pp->owner not empty); that other 4686 * socket is going to be sk2. 4687 */ 4688 int reuse = sk->sk_reuse; 4689 struct sock *sk2; 4690 struct hlist_node *node; 4691 4692 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 4693 if (pp->fastreuse && sk->sk_reuse) 4694 goto success; 4695 4696 /* Run through the list of sockets bound to the port 4697 * (pp->port) [via the pointers bind_next and 4698 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 4699 * we get the endpoint they describe and run through 4700 * the endpoint's list of IP (v4 or v6) addresses, 4701 * comparing each of the addresses with the address of 4702 * the socket sk. If we find a match, then that means 4703 * that this port/socket (sk) combination are already 4704 * in an endpoint. 4705 */ 4706 sk_for_each_bound(sk2, node, &pp->owner) { 4707 struct sctp_endpoint *ep2; 4708 ep2 = sctp_sk(sk2)->ep; 4709 4710 if (reuse && sk2->sk_reuse) 4711 continue; 4712 4713 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 4714 sctp_sk(sk))) { 4715 ret = (long)sk2; 4716 goto fail_unlock; 4717 } 4718 } 4719 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 4720 } 4721 pp_not_found: 4722 /* If there was a hash table miss, create a new port. */ 4723 ret = 1; 4724 if (!pp && !(pp = sctp_bucket_create(head, snum))) 4725 goto fail_unlock; 4726 4727 /* In either case (hit or miss), make sure fastreuse is 1 only 4728 * if sk->sk_reuse is too (that is, if the caller requested 4729 * SO_REUSEADDR on this socket -sk-). 4730 */ 4731 if (hlist_empty(&pp->owner)) 4732 pp->fastreuse = sk->sk_reuse ? 1 : 0; 4733 else if (pp->fastreuse && !sk->sk_reuse) 4734 pp->fastreuse = 0; 4735 4736 /* We are set, so fill up all the data in the hash table 4737 * entry, tie the socket list information with the rest of the 4738 * sockets FIXME: Blurry, NPI (ipg). 4739 */ 4740 success: 4741 inet_sk(sk)->num = snum; 4742 if (!sctp_sk(sk)->bind_hash) { 4743 sk_add_bind_node(sk, &pp->owner); 4744 sctp_sk(sk)->bind_hash = pp; 4745 } 4746 ret = 0; 4747 4748 fail_unlock: 4749 sctp_spin_unlock(&head->lock); 4750 4751 fail: 4752 sctp_local_bh_enable(); 4753 return ret; 4754 } 4755 4756 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 4757 * port is requested. 4758 */ 4759 static int sctp_get_port(struct sock *sk, unsigned short snum) 4760 { 4761 long ret; 4762 union sctp_addr addr; 4763 struct sctp_af *af = sctp_sk(sk)->pf->af; 4764 4765 /* Set up a dummy address struct from the sk. */ 4766 af->from_sk(&addr, sk); 4767 addr.v4.sin_port = htons(snum); 4768 4769 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 4770 ret = sctp_get_port_local(sk, &addr); 4771 4772 return (ret ? 1 : 0); 4773 } 4774 4775 /* 4776 * 3.1.3 listen() - UDP Style Syntax 4777 * 4778 * By default, new associations are not accepted for UDP style sockets. 4779 * An application uses listen() to mark a socket as being able to 4780 * accept new associations. 4781 */ 4782 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 4783 { 4784 struct sctp_sock *sp = sctp_sk(sk); 4785 struct sctp_endpoint *ep = sp->ep; 4786 4787 /* Only UDP style sockets that are not peeled off are allowed to 4788 * listen(). 4789 */ 4790 if (!sctp_style(sk, UDP)) 4791 return -EINVAL; 4792 4793 /* If backlog is zero, disable listening. */ 4794 if (!backlog) { 4795 if (sctp_sstate(sk, CLOSED)) 4796 return 0; 4797 4798 sctp_unhash_endpoint(ep); 4799 sk->sk_state = SCTP_SS_CLOSED; 4800 } 4801 4802 /* Return if we are already listening. */ 4803 if (sctp_sstate(sk, LISTENING)) 4804 return 0; 4805 4806 /* 4807 * If a bind() or sctp_bindx() is not called prior to a listen() 4808 * call that allows new associations to be accepted, the system 4809 * picks an ephemeral port and will choose an address set equivalent 4810 * to binding with a wildcard address. 4811 * 4812 * This is not currently spelled out in the SCTP sockets 4813 * extensions draft, but follows the practice as seen in TCP 4814 * sockets. 4815 */ 4816 if (!ep->base.bind_addr.port) { 4817 if (sctp_autobind(sk)) 4818 return -EAGAIN; 4819 } 4820 sk->sk_state = SCTP_SS_LISTENING; 4821 sctp_hash_endpoint(ep); 4822 return 0; 4823 } 4824 4825 /* 4826 * 4.1.3 listen() - TCP Style Syntax 4827 * 4828 * Applications uses listen() to ready the SCTP endpoint for accepting 4829 * inbound associations. 4830 */ 4831 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 4832 { 4833 struct sctp_sock *sp = sctp_sk(sk); 4834 struct sctp_endpoint *ep = sp->ep; 4835 4836 /* If backlog is zero, disable listening. */ 4837 if (!backlog) { 4838 if (sctp_sstate(sk, CLOSED)) 4839 return 0; 4840 4841 sctp_unhash_endpoint(ep); 4842 sk->sk_state = SCTP_SS_CLOSED; 4843 } 4844 4845 if (sctp_sstate(sk, LISTENING)) 4846 return 0; 4847 4848 /* 4849 * If a bind() or sctp_bindx() is not called prior to a listen() 4850 * call that allows new associations to be accepted, the system 4851 * picks an ephemeral port and will choose an address set equivalent 4852 * to binding with a wildcard address. 4853 * 4854 * This is not currently spelled out in the SCTP sockets 4855 * extensions draft, but follows the practice as seen in TCP 4856 * sockets. 4857 */ 4858 if (!ep->base.bind_addr.port) { 4859 if (sctp_autobind(sk)) 4860 return -EAGAIN; 4861 } 4862 sk->sk_state = SCTP_SS_LISTENING; 4863 sk->sk_max_ack_backlog = backlog; 4864 sctp_hash_endpoint(ep); 4865 return 0; 4866 } 4867 4868 /* 4869 * Move a socket to LISTENING state. 4870 */ 4871 int sctp_inet_listen(struct socket *sock, int backlog) 4872 { 4873 struct sock *sk = sock->sk; 4874 struct crypto_hash *tfm = NULL; 4875 int err = -EINVAL; 4876 4877 if (unlikely(backlog < 0)) 4878 goto out; 4879 4880 sctp_lock_sock(sk); 4881 4882 if (sock->state != SS_UNCONNECTED) 4883 goto out; 4884 4885 /* Allocate HMAC for generating cookie. */ 4886 if (sctp_hmac_alg) { 4887 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 4888 if (!tfm) { 4889 err = -ENOSYS; 4890 goto out; 4891 } 4892 } 4893 4894 switch (sock->type) { 4895 case SOCK_SEQPACKET: 4896 err = sctp_seqpacket_listen(sk, backlog); 4897 break; 4898 case SOCK_STREAM: 4899 err = sctp_stream_listen(sk, backlog); 4900 break; 4901 default: 4902 break; 4903 }; 4904 if (err) 4905 goto cleanup; 4906 4907 /* Store away the transform reference. */ 4908 sctp_sk(sk)->hmac = tfm; 4909 out: 4910 sctp_release_sock(sk); 4911 return err; 4912 cleanup: 4913 crypto_free_hash(tfm); 4914 goto out; 4915 } 4916 4917 /* 4918 * This function is done by modeling the current datagram_poll() and the 4919 * tcp_poll(). Note that, based on these implementations, we don't 4920 * lock the socket in this function, even though it seems that, 4921 * ideally, locking or some other mechanisms can be used to ensure 4922 * the integrity of the counters (sndbuf and wmem_alloc) used 4923 * in this place. We assume that we don't need locks either until proven 4924 * otherwise. 4925 * 4926 * Another thing to note is that we include the Async I/O support 4927 * here, again, by modeling the current TCP/UDP code. We don't have 4928 * a good way to test with it yet. 4929 */ 4930 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 4931 { 4932 struct sock *sk = sock->sk; 4933 struct sctp_sock *sp = sctp_sk(sk); 4934 unsigned int mask; 4935 4936 poll_wait(file, sk->sk_sleep, wait); 4937 4938 /* A TCP-style listening socket becomes readable when the accept queue 4939 * is not empty. 4940 */ 4941 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4942 return (!list_empty(&sp->ep->asocs)) ? 4943 (POLLIN | POLLRDNORM) : 0; 4944 4945 mask = 0; 4946 4947 /* Is there any exceptional events? */ 4948 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 4949 mask |= POLLERR; 4950 if (sk->sk_shutdown & RCV_SHUTDOWN) 4951 mask |= POLLRDHUP; 4952 if (sk->sk_shutdown == SHUTDOWN_MASK) 4953 mask |= POLLHUP; 4954 4955 /* Is it readable? Reconsider this code with TCP-style support. */ 4956 if (!skb_queue_empty(&sk->sk_receive_queue) || 4957 (sk->sk_shutdown & RCV_SHUTDOWN)) 4958 mask |= POLLIN | POLLRDNORM; 4959 4960 /* The association is either gone or not ready. */ 4961 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 4962 return mask; 4963 4964 /* Is it writable? */ 4965 if (sctp_writeable(sk)) { 4966 mask |= POLLOUT | POLLWRNORM; 4967 } else { 4968 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 4969 /* 4970 * Since the socket is not locked, the buffer 4971 * might be made available after the writeable check and 4972 * before the bit is set. This could cause a lost I/O 4973 * signal. tcp_poll() has a race breaker for this race 4974 * condition. Based on their implementation, we put 4975 * in the following code to cover it as well. 4976 */ 4977 if (sctp_writeable(sk)) 4978 mask |= POLLOUT | POLLWRNORM; 4979 } 4980 return mask; 4981 } 4982 4983 /******************************************************************** 4984 * 2nd Level Abstractions 4985 ********************************************************************/ 4986 4987 static struct sctp_bind_bucket *sctp_bucket_create( 4988 struct sctp_bind_hashbucket *head, unsigned short snum) 4989 { 4990 struct sctp_bind_bucket *pp; 4991 4992 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 4993 SCTP_DBG_OBJCNT_INC(bind_bucket); 4994 if (pp) { 4995 pp->port = snum; 4996 pp->fastreuse = 0; 4997 INIT_HLIST_HEAD(&pp->owner); 4998 if ((pp->next = head->chain) != NULL) 4999 pp->next->pprev = &pp->next; 5000 head->chain = pp; 5001 pp->pprev = &head->chain; 5002 } 5003 return pp; 5004 } 5005 5006 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5007 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5008 { 5009 if (pp && hlist_empty(&pp->owner)) { 5010 if (pp->next) 5011 pp->next->pprev = pp->pprev; 5012 *(pp->pprev) = pp->next; 5013 kmem_cache_free(sctp_bucket_cachep, pp); 5014 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5015 } 5016 } 5017 5018 /* Release this socket's reference to a local port. */ 5019 static inline void __sctp_put_port(struct sock *sk) 5020 { 5021 struct sctp_bind_hashbucket *head = 5022 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5023 struct sctp_bind_bucket *pp; 5024 5025 sctp_spin_lock(&head->lock); 5026 pp = sctp_sk(sk)->bind_hash; 5027 __sk_del_bind_node(sk); 5028 sctp_sk(sk)->bind_hash = NULL; 5029 inet_sk(sk)->num = 0; 5030 sctp_bucket_destroy(pp); 5031 sctp_spin_unlock(&head->lock); 5032 } 5033 5034 void sctp_put_port(struct sock *sk) 5035 { 5036 sctp_local_bh_disable(); 5037 __sctp_put_port(sk); 5038 sctp_local_bh_enable(); 5039 } 5040 5041 /* 5042 * The system picks an ephemeral port and choose an address set equivalent 5043 * to binding with a wildcard address. 5044 * One of those addresses will be the primary address for the association. 5045 * This automatically enables the multihoming capability of SCTP. 5046 */ 5047 static int sctp_autobind(struct sock *sk) 5048 { 5049 union sctp_addr autoaddr; 5050 struct sctp_af *af; 5051 __be16 port; 5052 5053 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5054 af = sctp_sk(sk)->pf->af; 5055 5056 port = htons(inet_sk(sk)->num); 5057 af->inaddr_any(&autoaddr, port); 5058 5059 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5060 } 5061 5062 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5063 * 5064 * From RFC 2292 5065 * 4.2 The cmsghdr Structure * 5066 * 5067 * When ancillary data is sent or received, any number of ancillary data 5068 * objects can be specified by the msg_control and msg_controllen members of 5069 * the msghdr structure, because each object is preceded by 5070 * a cmsghdr structure defining the object's length (the cmsg_len member). 5071 * Historically Berkeley-derived implementations have passed only one object 5072 * at a time, but this API allows multiple objects to be 5073 * passed in a single call to sendmsg() or recvmsg(). The following example 5074 * shows two ancillary data objects in a control buffer. 5075 * 5076 * |<--------------------------- msg_controllen -------------------------->| 5077 * | | 5078 * 5079 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5080 * 5081 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5082 * | | | 5083 * 5084 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5085 * 5086 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5087 * | | | | | 5088 * 5089 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5090 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5091 * 5092 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5093 * 5094 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5095 * ^ 5096 * | 5097 * 5098 * msg_control 5099 * points here 5100 */ 5101 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5102 sctp_cmsgs_t *cmsgs) 5103 { 5104 struct cmsghdr *cmsg; 5105 5106 for (cmsg = CMSG_FIRSTHDR(msg); 5107 cmsg != NULL; 5108 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5109 if (!CMSG_OK(msg, cmsg)) 5110 return -EINVAL; 5111 5112 /* Should we parse this header or ignore? */ 5113 if (cmsg->cmsg_level != IPPROTO_SCTP) 5114 continue; 5115 5116 /* Strictly check lengths following example in SCM code. */ 5117 switch (cmsg->cmsg_type) { 5118 case SCTP_INIT: 5119 /* SCTP Socket API Extension 5120 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5121 * 5122 * This cmsghdr structure provides information for 5123 * initializing new SCTP associations with sendmsg(). 5124 * The SCTP_INITMSG socket option uses this same data 5125 * structure. This structure is not used for 5126 * recvmsg(). 5127 * 5128 * cmsg_level cmsg_type cmsg_data[] 5129 * ------------ ------------ ---------------------- 5130 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5131 */ 5132 if (cmsg->cmsg_len != 5133 CMSG_LEN(sizeof(struct sctp_initmsg))) 5134 return -EINVAL; 5135 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5136 break; 5137 5138 case SCTP_SNDRCV: 5139 /* SCTP Socket API Extension 5140 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5141 * 5142 * This cmsghdr structure specifies SCTP options for 5143 * sendmsg() and describes SCTP header information 5144 * about a received message through recvmsg(). 5145 * 5146 * cmsg_level cmsg_type cmsg_data[] 5147 * ------------ ------------ ---------------------- 5148 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5149 */ 5150 if (cmsg->cmsg_len != 5151 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5152 return -EINVAL; 5153 5154 cmsgs->info = 5155 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5156 5157 /* Minimally, validate the sinfo_flags. */ 5158 if (cmsgs->info->sinfo_flags & 5159 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5160 SCTP_ABORT | SCTP_EOF)) 5161 return -EINVAL; 5162 break; 5163 5164 default: 5165 return -EINVAL; 5166 }; 5167 } 5168 return 0; 5169 } 5170 5171 /* 5172 * Wait for a packet.. 5173 * Note: This function is the same function as in core/datagram.c 5174 * with a few modifications to make lksctp work. 5175 */ 5176 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5177 { 5178 int error; 5179 DEFINE_WAIT(wait); 5180 5181 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5182 5183 /* Socket errors? */ 5184 error = sock_error(sk); 5185 if (error) 5186 goto out; 5187 5188 if (!skb_queue_empty(&sk->sk_receive_queue)) 5189 goto ready; 5190 5191 /* Socket shut down? */ 5192 if (sk->sk_shutdown & RCV_SHUTDOWN) 5193 goto out; 5194 5195 /* Sequenced packets can come disconnected. If so we report the 5196 * problem. 5197 */ 5198 error = -ENOTCONN; 5199 5200 /* Is there a good reason to think that we may receive some data? */ 5201 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5202 goto out; 5203 5204 /* Handle signals. */ 5205 if (signal_pending(current)) 5206 goto interrupted; 5207 5208 /* Let another process have a go. Since we are going to sleep 5209 * anyway. Note: This may cause odd behaviors if the message 5210 * does not fit in the user's buffer, but this seems to be the 5211 * only way to honor MSG_DONTWAIT realistically. 5212 */ 5213 sctp_release_sock(sk); 5214 *timeo_p = schedule_timeout(*timeo_p); 5215 sctp_lock_sock(sk); 5216 5217 ready: 5218 finish_wait(sk->sk_sleep, &wait); 5219 return 0; 5220 5221 interrupted: 5222 error = sock_intr_errno(*timeo_p); 5223 5224 out: 5225 finish_wait(sk->sk_sleep, &wait); 5226 *err = error; 5227 return error; 5228 } 5229 5230 /* Receive a datagram. 5231 * Note: This is pretty much the same routine as in core/datagram.c 5232 * with a few changes to make lksctp work. 5233 */ 5234 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5235 int noblock, int *err) 5236 { 5237 int error; 5238 struct sk_buff *skb; 5239 long timeo; 5240 5241 timeo = sock_rcvtimeo(sk, noblock); 5242 5243 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5244 timeo, MAX_SCHEDULE_TIMEOUT); 5245 5246 do { 5247 /* Again only user level code calls this function, 5248 * so nothing interrupt level 5249 * will suddenly eat the receive_queue. 5250 * 5251 * Look at current nfs client by the way... 5252 * However, this function was corrent in any case. 8) 5253 */ 5254 if (flags & MSG_PEEK) { 5255 spin_lock_bh(&sk->sk_receive_queue.lock); 5256 skb = skb_peek(&sk->sk_receive_queue); 5257 if (skb) 5258 atomic_inc(&skb->users); 5259 spin_unlock_bh(&sk->sk_receive_queue.lock); 5260 } else { 5261 skb = skb_dequeue(&sk->sk_receive_queue); 5262 } 5263 5264 if (skb) 5265 return skb; 5266 5267 /* Caller is allowed not to check sk->sk_err before calling. */ 5268 error = sock_error(sk); 5269 if (error) 5270 goto no_packet; 5271 5272 if (sk->sk_shutdown & RCV_SHUTDOWN) 5273 break; 5274 5275 /* User doesn't want to wait. */ 5276 error = -EAGAIN; 5277 if (!timeo) 5278 goto no_packet; 5279 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5280 5281 return NULL; 5282 5283 no_packet: 5284 *err = error; 5285 return NULL; 5286 } 5287 5288 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5289 static void __sctp_write_space(struct sctp_association *asoc) 5290 { 5291 struct sock *sk = asoc->base.sk; 5292 struct socket *sock = sk->sk_socket; 5293 5294 if ((sctp_wspace(asoc) > 0) && sock) { 5295 if (waitqueue_active(&asoc->wait)) 5296 wake_up_interruptible(&asoc->wait); 5297 5298 if (sctp_writeable(sk)) { 5299 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5300 wake_up_interruptible(sk->sk_sleep); 5301 5302 /* Note that we try to include the Async I/O support 5303 * here by modeling from the current TCP/UDP code. 5304 * We have not tested with it yet. 5305 */ 5306 if (sock->fasync_list && 5307 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5308 sock_wake_async(sock, 2, POLL_OUT); 5309 } 5310 } 5311 } 5312 5313 /* Do accounting for the sndbuf space. 5314 * Decrement the used sndbuf space of the corresponding association by the 5315 * data size which was just transmitted(freed). 5316 */ 5317 static void sctp_wfree(struct sk_buff *skb) 5318 { 5319 struct sctp_association *asoc; 5320 struct sctp_chunk *chunk; 5321 struct sock *sk; 5322 5323 /* Get the saved chunk pointer. */ 5324 chunk = *((struct sctp_chunk **)(skb->cb)); 5325 asoc = chunk->asoc; 5326 sk = asoc->base.sk; 5327 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5328 sizeof(struct sk_buff) + 5329 sizeof(struct sctp_chunk); 5330 5331 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5332 5333 sock_wfree(skb); 5334 __sctp_write_space(asoc); 5335 5336 sctp_association_put(asoc); 5337 } 5338 5339 /* Do accounting for the receive space on the socket. 5340 * Accounting for the association is done in ulpevent.c 5341 * We set this as a destructor for the cloned data skbs so that 5342 * accounting is done at the correct time. 5343 */ 5344 void sctp_sock_rfree(struct sk_buff *skb) 5345 { 5346 struct sock *sk = skb->sk; 5347 struct sctp_ulpevent *event = sctp_skb2event(skb); 5348 5349 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 5350 } 5351 5352 5353 /* Helper function to wait for space in the sndbuf. */ 5354 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5355 size_t msg_len) 5356 { 5357 struct sock *sk = asoc->base.sk; 5358 int err = 0; 5359 long current_timeo = *timeo_p; 5360 DEFINE_WAIT(wait); 5361 5362 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5363 asoc, (long)(*timeo_p), msg_len); 5364 5365 /* Increment the association's refcnt. */ 5366 sctp_association_hold(asoc); 5367 5368 /* Wait on the association specific sndbuf space. */ 5369 for (;;) { 5370 prepare_to_wait_exclusive(&asoc->wait, &wait, 5371 TASK_INTERRUPTIBLE); 5372 if (!*timeo_p) 5373 goto do_nonblock; 5374 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5375 asoc->base.dead) 5376 goto do_error; 5377 if (signal_pending(current)) 5378 goto do_interrupted; 5379 if (msg_len <= sctp_wspace(asoc)) 5380 break; 5381 5382 /* Let another process have a go. Since we are going 5383 * to sleep anyway. 5384 */ 5385 sctp_release_sock(sk); 5386 current_timeo = schedule_timeout(current_timeo); 5387 BUG_ON(sk != asoc->base.sk); 5388 sctp_lock_sock(sk); 5389 5390 *timeo_p = current_timeo; 5391 } 5392 5393 out: 5394 finish_wait(&asoc->wait, &wait); 5395 5396 /* Release the association's refcnt. */ 5397 sctp_association_put(asoc); 5398 5399 return err; 5400 5401 do_error: 5402 err = -EPIPE; 5403 goto out; 5404 5405 do_interrupted: 5406 err = sock_intr_errno(*timeo_p); 5407 goto out; 5408 5409 do_nonblock: 5410 err = -EAGAIN; 5411 goto out; 5412 } 5413 5414 /* If socket sndbuf has changed, wake up all per association waiters. */ 5415 void sctp_write_space(struct sock *sk) 5416 { 5417 struct sctp_association *asoc; 5418 struct list_head *pos; 5419 5420 /* Wake up the tasks in each wait queue. */ 5421 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5422 asoc = list_entry(pos, struct sctp_association, asocs); 5423 __sctp_write_space(asoc); 5424 } 5425 } 5426 5427 /* Is there any sndbuf space available on the socket? 5428 * 5429 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5430 * associations on the same socket. For a UDP-style socket with 5431 * multiple associations, it is possible for it to be "unwriteable" 5432 * prematurely. I assume that this is acceptable because 5433 * a premature "unwriteable" is better than an accidental "writeable" which 5434 * would cause an unwanted block under certain circumstances. For the 1-1 5435 * UDP-style sockets or TCP-style sockets, this code should work. 5436 * - Daisy 5437 */ 5438 static int sctp_writeable(struct sock *sk) 5439 { 5440 int amt = 0; 5441 5442 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5443 if (amt < 0) 5444 amt = 0; 5445 return amt; 5446 } 5447 5448 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5449 * returns immediately with EINPROGRESS. 5450 */ 5451 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5452 { 5453 struct sock *sk = asoc->base.sk; 5454 int err = 0; 5455 long current_timeo = *timeo_p; 5456 DEFINE_WAIT(wait); 5457 5458 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5459 (long)(*timeo_p)); 5460 5461 /* Increment the association's refcnt. */ 5462 sctp_association_hold(asoc); 5463 5464 for (;;) { 5465 prepare_to_wait_exclusive(&asoc->wait, &wait, 5466 TASK_INTERRUPTIBLE); 5467 if (!*timeo_p) 5468 goto do_nonblock; 5469 if (sk->sk_shutdown & RCV_SHUTDOWN) 5470 break; 5471 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5472 asoc->base.dead) 5473 goto do_error; 5474 if (signal_pending(current)) 5475 goto do_interrupted; 5476 5477 if (sctp_state(asoc, ESTABLISHED)) 5478 break; 5479 5480 /* Let another process have a go. Since we are going 5481 * to sleep anyway. 5482 */ 5483 sctp_release_sock(sk); 5484 current_timeo = schedule_timeout(current_timeo); 5485 sctp_lock_sock(sk); 5486 5487 *timeo_p = current_timeo; 5488 } 5489 5490 out: 5491 finish_wait(&asoc->wait, &wait); 5492 5493 /* Release the association's refcnt. */ 5494 sctp_association_put(asoc); 5495 5496 return err; 5497 5498 do_error: 5499 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5500 err = -ETIMEDOUT; 5501 else 5502 err = -ECONNREFUSED; 5503 goto out; 5504 5505 do_interrupted: 5506 err = sock_intr_errno(*timeo_p); 5507 goto out; 5508 5509 do_nonblock: 5510 err = -EINPROGRESS; 5511 goto out; 5512 } 5513 5514 static int sctp_wait_for_accept(struct sock *sk, long timeo) 5515 { 5516 struct sctp_endpoint *ep; 5517 int err = 0; 5518 DEFINE_WAIT(wait); 5519 5520 ep = sctp_sk(sk)->ep; 5521 5522 5523 for (;;) { 5524 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5525 TASK_INTERRUPTIBLE); 5526 5527 if (list_empty(&ep->asocs)) { 5528 sctp_release_sock(sk); 5529 timeo = schedule_timeout(timeo); 5530 sctp_lock_sock(sk); 5531 } 5532 5533 err = -EINVAL; 5534 if (!sctp_sstate(sk, LISTENING)) 5535 break; 5536 5537 err = 0; 5538 if (!list_empty(&ep->asocs)) 5539 break; 5540 5541 err = sock_intr_errno(timeo); 5542 if (signal_pending(current)) 5543 break; 5544 5545 err = -EAGAIN; 5546 if (!timeo) 5547 break; 5548 } 5549 5550 finish_wait(sk->sk_sleep, &wait); 5551 5552 return err; 5553 } 5554 5555 void sctp_wait_for_close(struct sock *sk, long timeout) 5556 { 5557 DEFINE_WAIT(wait); 5558 5559 do { 5560 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5561 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5562 break; 5563 sctp_release_sock(sk); 5564 timeout = schedule_timeout(timeout); 5565 sctp_lock_sock(sk); 5566 } while (!signal_pending(current) && timeout); 5567 5568 finish_wait(sk->sk_sleep, &wait); 5569 } 5570 5571 /* Populate the fields of the newsk from the oldsk and migrate the assoc 5572 * and its messages to the newsk. 5573 */ 5574 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5575 struct sctp_association *assoc, 5576 sctp_socket_type_t type) 5577 { 5578 struct sctp_sock *oldsp = sctp_sk(oldsk); 5579 struct sctp_sock *newsp = sctp_sk(newsk); 5580 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5581 struct sctp_endpoint *newep = newsp->ep; 5582 struct sk_buff *skb, *tmp; 5583 struct sctp_ulpevent *event; 5584 int flags = 0; 5585 5586 /* Migrate socket buffer sizes and all the socket level options to the 5587 * new socket. 5588 */ 5589 newsk->sk_sndbuf = oldsk->sk_sndbuf; 5590 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 5591 /* Brute force copy old sctp opt. */ 5592 inet_sk_copy_descendant(newsk, oldsk); 5593 5594 /* Restore the ep value that was overwritten with the above structure 5595 * copy. 5596 */ 5597 newsp->ep = newep; 5598 newsp->hmac = NULL; 5599 5600 /* Hook this new socket in to the bind_hash list. */ 5601 pp = sctp_sk(oldsk)->bind_hash; 5602 sk_add_bind_node(newsk, &pp->owner); 5603 sctp_sk(newsk)->bind_hash = pp; 5604 inet_sk(newsk)->num = inet_sk(oldsk)->num; 5605 5606 /* Copy the bind_addr list from the original endpoint to the new 5607 * endpoint so that we can handle restarts properly 5608 */ 5609 if (PF_INET6 == assoc->base.sk->sk_family) 5610 flags = SCTP_ADDR6_ALLOWED; 5611 if (assoc->peer.ipv4_address) 5612 flags |= SCTP_ADDR4_PEERSUPP; 5613 if (assoc->peer.ipv6_address) 5614 flags |= SCTP_ADDR6_PEERSUPP; 5615 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 5616 &oldsp->ep->base.bind_addr, 5617 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 5618 5619 /* Move any messages in the old socket's receive queue that are for the 5620 * peeled off association to the new socket's receive queue. 5621 */ 5622 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 5623 event = sctp_skb2event(skb); 5624 if (event->asoc == assoc) { 5625 sctp_sock_rfree(skb); 5626 __skb_unlink(skb, &oldsk->sk_receive_queue); 5627 __skb_queue_tail(&newsk->sk_receive_queue, skb); 5628 sctp_skb_set_owner_r(skb, newsk); 5629 } 5630 } 5631 5632 /* Clean up any messages pending delivery due to partial 5633 * delivery. Three cases: 5634 * 1) No partial deliver; no work. 5635 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 5636 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 5637 */ 5638 skb_queue_head_init(&newsp->pd_lobby); 5639 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 5640 5641 if (sctp_sk(oldsk)->pd_mode) { 5642 struct sk_buff_head *queue; 5643 5644 /* Decide which queue to move pd_lobby skbs to. */ 5645 if (assoc->ulpq.pd_mode) { 5646 queue = &newsp->pd_lobby; 5647 } else 5648 queue = &newsk->sk_receive_queue; 5649 5650 /* Walk through the pd_lobby, looking for skbs that 5651 * need moved to the new socket. 5652 */ 5653 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 5654 event = sctp_skb2event(skb); 5655 if (event->asoc == assoc) { 5656 sctp_sock_rfree(skb); 5657 __skb_unlink(skb, &oldsp->pd_lobby); 5658 __skb_queue_tail(queue, skb); 5659 sctp_skb_set_owner_r(skb, newsk); 5660 } 5661 } 5662 5663 /* Clear up any skbs waiting for the partial 5664 * delivery to finish. 5665 */ 5666 if (assoc->ulpq.pd_mode) 5667 sctp_clear_pd(oldsk); 5668 5669 } 5670 5671 /* Set the type of socket to indicate that it is peeled off from the 5672 * original UDP-style socket or created with the accept() call on a 5673 * TCP-style socket.. 5674 */ 5675 newsp->type = type; 5676 5677 /* Mark the new socket "in-use" by the user so that any packets 5678 * that may arrive on the association after we've moved it are 5679 * queued to the backlog. This prevents a potential race between 5680 * backlog processing on the old socket and new-packet processing 5681 * on the new socket. 5682 */ 5683 sctp_lock_sock(newsk); 5684 sctp_assoc_migrate(assoc, newsk); 5685 5686 /* If the association on the newsk is already closed before accept() 5687 * is called, set RCV_SHUTDOWN flag. 5688 */ 5689 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 5690 newsk->sk_shutdown |= RCV_SHUTDOWN; 5691 5692 newsk->sk_state = SCTP_SS_ESTABLISHED; 5693 sctp_release_sock(newsk); 5694 } 5695 5696 /* This proto struct describes the ULP interface for SCTP. */ 5697 struct proto sctp_prot = { 5698 .name = "SCTP", 5699 .owner = THIS_MODULE, 5700 .close = sctp_close, 5701 .connect = sctp_connect, 5702 .disconnect = sctp_disconnect, 5703 .accept = sctp_accept, 5704 .ioctl = sctp_ioctl, 5705 .init = sctp_init_sock, 5706 .destroy = sctp_destroy_sock, 5707 .shutdown = sctp_shutdown, 5708 .setsockopt = sctp_setsockopt, 5709 .getsockopt = sctp_getsockopt, 5710 .sendmsg = sctp_sendmsg, 5711 .recvmsg = sctp_recvmsg, 5712 .bind = sctp_bind, 5713 .backlog_rcv = sctp_backlog_rcv, 5714 .hash = sctp_hash, 5715 .unhash = sctp_unhash, 5716 .get_port = sctp_get_port, 5717 .obj_size = sizeof(struct sctp_sock), 5718 }; 5719 5720 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5721 struct proto sctpv6_prot = { 5722 .name = "SCTPv6", 5723 .owner = THIS_MODULE, 5724 .close = sctp_close, 5725 .connect = sctp_connect, 5726 .disconnect = sctp_disconnect, 5727 .accept = sctp_accept, 5728 .ioctl = sctp_ioctl, 5729 .init = sctp_init_sock, 5730 .destroy = sctp_destroy_sock, 5731 .shutdown = sctp_shutdown, 5732 .setsockopt = sctp_setsockopt, 5733 .getsockopt = sctp_getsockopt, 5734 .sendmsg = sctp_sendmsg, 5735 .recvmsg = sctp_recvmsg, 5736 .bind = sctp_bind, 5737 .backlog_rcv = sctp_backlog_rcv, 5738 .hash = sctp_hash, 5739 .unhash = sctp_unhash, 5740 .get_port = sctp_get_port, 5741 .obj_size = sizeof(struct sctp6_sock), 5742 }; 5743 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 5744