1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 struct percpu_counter sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = sk_wmem_alloc_get(asoc->base.sk); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 } 1084 1085 /* Prime the peer's transport structures. */ 1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1087 SCTP_UNKNOWN); 1088 if (!transport) { 1089 err = -ENOMEM; 1090 goto out_free; 1091 } 1092 1093 addrcnt++; 1094 addr_buf += af->sockaddr_len; 1095 walk_size += af->sockaddr_len; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1099 if (err < 0) { 1100 goto out_free; 1101 } 1102 1103 /* In case the user of sctp_connectx() wants an association 1104 * id back, assign one now. 1105 */ 1106 if (assoc_id) { 1107 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1108 if (err < 0) 1109 goto out_free; 1110 } 1111 1112 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1113 if (err < 0) { 1114 goto out_free; 1115 } 1116 1117 /* Initialize sk's dport and daddr for getpeername() */ 1118 inet_sk(sk)->dport = htons(asoc->peer.port); 1119 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1120 af->to_sk_daddr(sa_addr, sk); 1121 sk->sk_err = 0; 1122 1123 /* in-kernel sockets don't generally have a file allocated to them 1124 * if all they do is call sock_create_kern(). 1125 */ 1126 if (sk->sk_socket->file) 1127 f_flags = sk->sk_socket->file->f_flags; 1128 1129 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1130 1131 err = sctp_wait_for_connect(asoc, &timeo); 1132 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1133 *assoc_id = asoc->assoc_id; 1134 1135 /* Don't free association on exit. */ 1136 asoc = NULL; 1137 1138 out_free: 1139 1140 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1141 " kaddrs: %p err: %d\n", 1142 asoc, kaddrs, err); 1143 if (asoc) 1144 sctp_association_free(asoc); 1145 return err; 1146 } 1147 1148 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1149 * 1150 * API 8.9 1151 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1152 * sctp_assoc_t *asoc); 1153 * 1154 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1155 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1156 * or IPv6 addresses. 1157 * 1158 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1159 * Section 3.1.2 for this usage. 1160 * 1161 * addrs is a pointer to an array of one or more socket addresses. Each 1162 * address is contained in its appropriate structure (i.e. struct 1163 * sockaddr_in or struct sockaddr_in6) the family of the address type 1164 * must be used to distengish the address length (note that this 1165 * representation is termed a "packed array" of addresses). The caller 1166 * specifies the number of addresses in the array with addrcnt. 1167 * 1168 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1169 * the association id of the new association. On failure, sctp_connectx() 1170 * returns -1, and sets errno to the appropriate error code. The assoc_id 1171 * is not touched by the kernel. 1172 * 1173 * For SCTP, the port given in each socket address must be the same, or 1174 * sctp_connectx() will fail, setting errno to EINVAL. 1175 * 1176 * An application can use sctp_connectx to initiate an association with 1177 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1178 * allows a caller to specify multiple addresses at which a peer can be 1179 * reached. The way the SCTP stack uses the list of addresses to set up 1180 * the association is implementation dependant. This function only 1181 * specifies that the stack will try to make use of all the addresses in 1182 * the list when needed. 1183 * 1184 * Note that the list of addresses passed in is only used for setting up 1185 * the association. It does not necessarily equal the set of addresses 1186 * the peer uses for the resulting association. If the caller wants to 1187 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1188 * retrieve them after the association has been set up. 1189 * 1190 * Basically do nothing but copying the addresses from user to kernel 1191 * land and invoking either sctp_connectx(). This is used for tunneling 1192 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1193 * 1194 * We don't use copy_from_user() for optimization: we first do the 1195 * sanity checks (buffer size -fast- and access check-healthy 1196 * pointer); if all of those succeed, then we can alloc the memory 1197 * (expensive operation) needed to copy the data to kernel. Then we do 1198 * the copying without checking the user space area 1199 * (__copy_from_user()). 1200 * 1201 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1202 * it. 1203 * 1204 * sk The sk of the socket 1205 * addrs The pointer to the addresses in user land 1206 * addrssize Size of the addrs buffer 1207 * 1208 * Returns >=0 if ok, <0 errno code on error. 1209 */ 1210 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1211 struct sockaddr __user *addrs, 1212 int addrs_size, 1213 sctp_assoc_t *assoc_id) 1214 { 1215 int err = 0; 1216 struct sockaddr *kaddrs; 1217 1218 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1219 __func__, sk, addrs, addrs_size); 1220 1221 if (unlikely(addrs_size <= 0)) 1222 return -EINVAL; 1223 1224 /* Check the user passed a healthy pointer. */ 1225 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1226 return -EFAULT; 1227 1228 /* Alloc space for the address array in kernel memory. */ 1229 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1230 if (unlikely(!kaddrs)) 1231 return -ENOMEM; 1232 1233 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1234 err = -EFAULT; 1235 } else { 1236 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1237 } 1238 1239 kfree(kaddrs); 1240 1241 return err; 1242 } 1243 1244 /* 1245 * This is an older interface. It's kept for backward compatibility 1246 * to the option that doesn't provide association id. 1247 */ 1248 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1249 struct sockaddr __user *addrs, 1250 int addrs_size) 1251 { 1252 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1253 } 1254 1255 /* 1256 * New interface for the API. The since the API is done with a socket 1257 * option, to make it simple we feed back the association id is as a return 1258 * indication to the call. Error is always negative and association id is 1259 * always positive. 1260 */ 1261 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1262 struct sockaddr __user *addrs, 1263 int addrs_size) 1264 { 1265 sctp_assoc_t assoc_id = 0; 1266 int err = 0; 1267 1268 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1269 1270 if (err) 1271 return err; 1272 else 1273 return assoc_id; 1274 } 1275 1276 /* 1277 * New (hopefully final) interface for the API. The option buffer is used 1278 * both for the returned association id and the addresses. 1279 */ 1280 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1281 char __user *optval, 1282 int __user *optlen) 1283 { 1284 sctp_assoc_t assoc_id = 0; 1285 int err = 0; 1286 1287 if (len < sizeof(assoc_id)) 1288 return -EINVAL; 1289 1290 err = __sctp_setsockopt_connectx(sk, 1291 (struct sockaddr __user *)(optval + sizeof(assoc_id)), 1292 len - sizeof(assoc_id), &assoc_id); 1293 1294 if (err == 0 || err == -EINPROGRESS) { 1295 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1296 return -EFAULT; 1297 if (put_user(sizeof(assoc_id), optlen)) 1298 return -EFAULT; 1299 } 1300 1301 return err; 1302 } 1303 1304 /* API 3.1.4 close() - UDP Style Syntax 1305 * Applications use close() to perform graceful shutdown (as described in 1306 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1307 * by a UDP-style socket. 1308 * 1309 * The syntax is 1310 * 1311 * ret = close(int sd); 1312 * 1313 * sd - the socket descriptor of the associations to be closed. 1314 * 1315 * To gracefully shutdown a specific association represented by the 1316 * UDP-style socket, an application should use the sendmsg() call, 1317 * passing no user data, but including the appropriate flag in the 1318 * ancillary data (see Section xxxx). 1319 * 1320 * If sd in the close() call is a branched-off socket representing only 1321 * one association, the shutdown is performed on that association only. 1322 * 1323 * 4.1.6 close() - TCP Style Syntax 1324 * 1325 * Applications use close() to gracefully close down an association. 1326 * 1327 * The syntax is: 1328 * 1329 * int close(int sd); 1330 * 1331 * sd - the socket descriptor of the association to be closed. 1332 * 1333 * After an application calls close() on a socket descriptor, no further 1334 * socket operations will succeed on that descriptor. 1335 * 1336 * API 7.1.4 SO_LINGER 1337 * 1338 * An application using the TCP-style socket can use this option to 1339 * perform the SCTP ABORT primitive. The linger option structure is: 1340 * 1341 * struct linger { 1342 * int l_onoff; // option on/off 1343 * int l_linger; // linger time 1344 * }; 1345 * 1346 * To enable the option, set l_onoff to 1. If the l_linger value is set 1347 * to 0, calling close() is the same as the ABORT primitive. If the 1348 * value is set to a negative value, the setsockopt() call will return 1349 * an error. If the value is set to a positive value linger_time, the 1350 * close() can be blocked for at most linger_time ms. If the graceful 1351 * shutdown phase does not finish during this period, close() will 1352 * return but the graceful shutdown phase continues in the system. 1353 */ 1354 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1355 { 1356 struct sctp_endpoint *ep; 1357 struct sctp_association *asoc; 1358 struct list_head *pos, *temp; 1359 1360 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1361 1362 sctp_lock_sock(sk); 1363 sk->sk_shutdown = SHUTDOWN_MASK; 1364 1365 ep = sctp_sk(sk)->ep; 1366 1367 /* Walk all associations on an endpoint. */ 1368 list_for_each_safe(pos, temp, &ep->asocs) { 1369 asoc = list_entry(pos, struct sctp_association, asocs); 1370 1371 if (sctp_style(sk, TCP)) { 1372 /* A closed association can still be in the list if 1373 * it belongs to a TCP-style listening socket that is 1374 * not yet accepted. If so, free it. If not, send an 1375 * ABORT or SHUTDOWN based on the linger options. 1376 */ 1377 if (sctp_state(asoc, CLOSED)) { 1378 sctp_unhash_established(asoc); 1379 sctp_association_free(asoc); 1380 continue; 1381 } 1382 } 1383 1384 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1385 struct sctp_chunk *chunk; 1386 1387 chunk = sctp_make_abort_user(asoc, NULL, 0); 1388 if (chunk) 1389 sctp_primitive_ABORT(asoc, chunk); 1390 } else 1391 sctp_primitive_SHUTDOWN(asoc, NULL); 1392 } 1393 1394 /* Clean up any skbs sitting on the receive queue. */ 1395 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1396 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1397 1398 /* On a TCP-style socket, block for at most linger_time if set. */ 1399 if (sctp_style(sk, TCP) && timeout) 1400 sctp_wait_for_close(sk, timeout); 1401 1402 /* This will run the backlog queue. */ 1403 sctp_release_sock(sk); 1404 1405 /* Supposedly, no process has access to the socket, but 1406 * the net layers still may. 1407 */ 1408 sctp_local_bh_disable(); 1409 sctp_bh_lock_sock(sk); 1410 1411 /* Hold the sock, since sk_common_release() will put sock_put() 1412 * and we have just a little more cleanup. 1413 */ 1414 sock_hold(sk); 1415 sk_common_release(sk); 1416 1417 sctp_bh_unlock_sock(sk); 1418 sctp_local_bh_enable(); 1419 1420 sock_put(sk); 1421 1422 SCTP_DBG_OBJCNT_DEC(sock); 1423 } 1424 1425 /* Handle EPIPE error. */ 1426 static int sctp_error(struct sock *sk, int flags, int err) 1427 { 1428 if (err == -EPIPE) 1429 err = sock_error(sk) ? : -EPIPE; 1430 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1431 send_sig(SIGPIPE, current, 0); 1432 return err; 1433 } 1434 1435 /* API 3.1.3 sendmsg() - UDP Style Syntax 1436 * 1437 * An application uses sendmsg() and recvmsg() calls to transmit data to 1438 * and receive data from its peer. 1439 * 1440 * ssize_t sendmsg(int socket, const struct msghdr *message, 1441 * int flags); 1442 * 1443 * socket - the socket descriptor of the endpoint. 1444 * message - pointer to the msghdr structure which contains a single 1445 * user message and possibly some ancillary data. 1446 * 1447 * See Section 5 for complete description of the data 1448 * structures. 1449 * 1450 * flags - flags sent or received with the user message, see Section 1451 * 5 for complete description of the flags. 1452 * 1453 * Note: This function could use a rewrite especially when explicit 1454 * connect support comes in. 1455 */ 1456 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1457 1458 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1459 1460 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1461 struct msghdr *msg, size_t msg_len) 1462 { 1463 struct sctp_sock *sp; 1464 struct sctp_endpoint *ep; 1465 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1466 struct sctp_transport *transport, *chunk_tp; 1467 struct sctp_chunk *chunk; 1468 union sctp_addr to; 1469 struct sockaddr *msg_name = NULL; 1470 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1471 struct sctp_sndrcvinfo *sinfo; 1472 struct sctp_initmsg *sinit; 1473 sctp_assoc_t associd = 0; 1474 sctp_cmsgs_t cmsgs = { NULL }; 1475 int err; 1476 sctp_scope_t scope; 1477 long timeo; 1478 __u16 sinfo_flags = 0; 1479 struct sctp_datamsg *datamsg; 1480 int msg_flags = msg->msg_flags; 1481 1482 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1483 sk, msg, msg_len); 1484 1485 err = 0; 1486 sp = sctp_sk(sk); 1487 ep = sp->ep; 1488 1489 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1490 1491 /* We cannot send a message over a TCP-style listening socket. */ 1492 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1493 err = -EPIPE; 1494 goto out_nounlock; 1495 } 1496 1497 /* Parse out the SCTP CMSGs. */ 1498 err = sctp_msghdr_parse(msg, &cmsgs); 1499 1500 if (err) { 1501 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1502 goto out_nounlock; 1503 } 1504 1505 /* Fetch the destination address for this packet. This 1506 * address only selects the association--it is not necessarily 1507 * the address we will send to. 1508 * For a peeled-off socket, msg_name is ignored. 1509 */ 1510 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1511 int msg_namelen = msg->msg_namelen; 1512 1513 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1514 msg_namelen); 1515 if (err) 1516 return err; 1517 1518 if (msg_namelen > sizeof(to)) 1519 msg_namelen = sizeof(to); 1520 memcpy(&to, msg->msg_name, msg_namelen); 1521 msg_name = msg->msg_name; 1522 } 1523 1524 sinfo = cmsgs.info; 1525 sinit = cmsgs.init; 1526 1527 /* Did the user specify SNDRCVINFO? */ 1528 if (sinfo) { 1529 sinfo_flags = sinfo->sinfo_flags; 1530 associd = sinfo->sinfo_assoc_id; 1531 } 1532 1533 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1534 msg_len, sinfo_flags); 1535 1536 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1537 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1538 err = -EINVAL; 1539 goto out_nounlock; 1540 } 1541 1542 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1543 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1544 * If SCTP_ABORT is set, the message length could be non zero with 1545 * the msg_iov set to the user abort reason. 1546 */ 1547 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1548 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1549 err = -EINVAL; 1550 goto out_nounlock; 1551 } 1552 1553 /* If SCTP_ADDR_OVER is set, there must be an address 1554 * specified in msg_name. 1555 */ 1556 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1557 err = -EINVAL; 1558 goto out_nounlock; 1559 } 1560 1561 transport = NULL; 1562 1563 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1564 1565 sctp_lock_sock(sk); 1566 1567 /* If a msg_name has been specified, assume this is to be used. */ 1568 if (msg_name) { 1569 /* Look for a matching association on the endpoint. */ 1570 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1571 if (!asoc) { 1572 /* If we could not find a matching association on the 1573 * endpoint, make sure that it is not a TCP-style 1574 * socket that already has an association or there is 1575 * no peeled-off association on another socket. 1576 */ 1577 if ((sctp_style(sk, TCP) && 1578 sctp_sstate(sk, ESTABLISHED)) || 1579 sctp_endpoint_is_peeled_off(ep, &to)) { 1580 err = -EADDRNOTAVAIL; 1581 goto out_unlock; 1582 } 1583 } 1584 } else { 1585 asoc = sctp_id2assoc(sk, associd); 1586 if (!asoc) { 1587 err = -EPIPE; 1588 goto out_unlock; 1589 } 1590 } 1591 1592 if (asoc) { 1593 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1594 1595 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1596 * socket that has an association in CLOSED state. This can 1597 * happen when an accepted socket has an association that is 1598 * already CLOSED. 1599 */ 1600 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1601 err = -EPIPE; 1602 goto out_unlock; 1603 } 1604 1605 if (sinfo_flags & SCTP_EOF) { 1606 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1607 asoc); 1608 sctp_primitive_SHUTDOWN(asoc, NULL); 1609 err = 0; 1610 goto out_unlock; 1611 } 1612 if (sinfo_flags & SCTP_ABORT) { 1613 1614 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1615 if (!chunk) { 1616 err = -ENOMEM; 1617 goto out_unlock; 1618 } 1619 1620 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1621 sctp_primitive_ABORT(asoc, chunk); 1622 err = 0; 1623 goto out_unlock; 1624 } 1625 } 1626 1627 /* Do we need to create the association? */ 1628 if (!asoc) { 1629 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1630 1631 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1632 err = -EINVAL; 1633 goto out_unlock; 1634 } 1635 1636 /* Check for invalid stream against the stream counts, 1637 * either the default or the user specified stream counts. 1638 */ 1639 if (sinfo) { 1640 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1641 /* Check against the defaults. */ 1642 if (sinfo->sinfo_stream >= 1643 sp->initmsg.sinit_num_ostreams) { 1644 err = -EINVAL; 1645 goto out_unlock; 1646 } 1647 } else { 1648 /* Check against the requested. */ 1649 if (sinfo->sinfo_stream >= 1650 sinit->sinit_num_ostreams) { 1651 err = -EINVAL; 1652 goto out_unlock; 1653 } 1654 } 1655 } 1656 1657 /* 1658 * API 3.1.2 bind() - UDP Style Syntax 1659 * If a bind() or sctp_bindx() is not called prior to a 1660 * sendmsg() call that initiates a new association, the 1661 * system picks an ephemeral port and will choose an address 1662 * set equivalent to binding with a wildcard address. 1663 */ 1664 if (!ep->base.bind_addr.port) { 1665 if (sctp_autobind(sk)) { 1666 err = -EAGAIN; 1667 goto out_unlock; 1668 } 1669 } else { 1670 /* 1671 * If an unprivileged user inherits a one-to-many 1672 * style socket with open associations on a privileged 1673 * port, it MAY be permitted to accept new associations, 1674 * but it SHOULD NOT be permitted to open new 1675 * associations. 1676 */ 1677 if (ep->base.bind_addr.port < PROT_SOCK && 1678 !capable(CAP_NET_BIND_SERVICE)) { 1679 err = -EACCES; 1680 goto out_unlock; 1681 } 1682 } 1683 1684 scope = sctp_scope(&to); 1685 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1686 if (!new_asoc) { 1687 err = -ENOMEM; 1688 goto out_unlock; 1689 } 1690 asoc = new_asoc; 1691 1692 /* If the SCTP_INIT ancillary data is specified, set all 1693 * the association init values accordingly. 1694 */ 1695 if (sinit) { 1696 if (sinit->sinit_num_ostreams) { 1697 asoc->c.sinit_num_ostreams = 1698 sinit->sinit_num_ostreams; 1699 } 1700 if (sinit->sinit_max_instreams) { 1701 asoc->c.sinit_max_instreams = 1702 sinit->sinit_max_instreams; 1703 } 1704 if (sinit->sinit_max_attempts) { 1705 asoc->max_init_attempts 1706 = sinit->sinit_max_attempts; 1707 } 1708 if (sinit->sinit_max_init_timeo) { 1709 asoc->max_init_timeo = 1710 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1711 } 1712 } 1713 1714 /* Prime the peer's transport structures. */ 1715 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1716 if (!transport) { 1717 err = -ENOMEM; 1718 goto out_free; 1719 } 1720 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1721 if (err < 0) { 1722 err = -ENOMEM; 1723 goto out_free; 1724 } 1725 } 1726 1727 /* ASSERT: we have a valid association at this point. */ 1728 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1729 1730 if (!sinfo) { 1731 /* If the user didn't specify SNDRCVINFO, make up one with 1732 * some defaults. 1733 */ 1734 default_sinfo.sinfo_stream = asoc->default_stream; 1735 default_sinfo.sinfo_flags = asoc->default_flags; 1736 default_sinfo.sinfo_ppid = asoc->default_ppid; 1737 default_sinfo.sinfo_context = asoc->default_context; 1738 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1739 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1740 sinfo = &default_sinfo; 1741 } 1742 1743 /* API 7.1.7, the sndbuf size per association bounds the 1744 * maximum size of data that can be sent in a single send call. 1745 */ 1746 if (msg_len > sk->sk_sndbuf) { 1747 err = -EMSGSIZE; 1748 goto out_free; 1749 } 1750 1751 if (asoc->pmtu_pending) 1752 sctp_assoc_pending_pmtu(asoc); 1753 1754 /* If fragmentation is disabled and the message length exceeds the 1755 * association fragmentation point, return EMSGSIZE. The I-D 1756 * does not specify what this error is, but this looks like 1757 * a great fit. 1758 */ 1759 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1760 err = -EMSGSIZE; 1761 goto out_free; 1762 } 1763 1764 if (sinfo) { 1765 /* Check for invalid stream. */ 1766 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1767 err = -EINVAL; 1768 goto out_free; 1769 } 1770 } 1771 1772 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1773 if (!sctp_wspace(asoc)) { 1774 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1775 if (err) 1776 goto out_free; 1777 } 1778 1779 /* If an address is passed with the sendto/sendmsg call, it is used 1780 * to override the primary destination address in the TCP model, or 1781 * when SCTP_ADDR_OVER flag is set in the UDP model. 1782 */ 1783 if ((sctp_style(sk, TCP) && msg_name) || 1784 (sinfo_flags & SCTP_ADDR_OVER)) { 1785 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1786 if (!chunk_tp) { 1787 err = -EINVAL; 1788 goto out_free; 1789 } 1790 } else 1791 chunk_tp = NULL; 1792 1793 /* Auto-connect, if we aren't connected already. */ 1794 if (sctp_state(asoc, CLOSED)) { 1795 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1796 if (err < 0) 1797 goto out_free; 1798 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1799 } 1800 1801 /* Break the message into multiple chunks of maximum size. */ 1802 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1803 if (!datamsg) { 1804 err = -ENOMEM; 1805 goto out_free; 1806 } 1807 1808 /* Now send the (possibly) fragmented message. */ 1809 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1810 sctp_chunk_hold(chunk); 1811 1812 /* Do accounting for the write space. */ 1813 sctp_set_owner_w(chunk); 1814 1815 chunk->transport = chunk_tp; 1816 1817 /* Send it to the lower layers. Note: all chunks 1818 * must either fail or succeed. The lower layer 1819 * works that way today. Keep it that way or this 1820 * breaks. 1821 */ 1822 err = sctp_primitive_SEND(asoc, chunk); 1823 /* Did the lower layer accept the chunk? */ 1824 if (err) 1825 sctp_chunk_free(chunk); 1826 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1827 } 1828 1829 sctp_datamsg_put(datamsg); 1830 if (err) 1831 goto out_free; 1832 else 1833 err = msg_len; 1834 1835 /* If we are already past ASSOCIATE, the lower 1836 * layers are responsible for association cleanup. 1837 */ 1838 goto out_unlock; 1839 1840 out_free: 1841 if (new_asoc) 1842 sctp_association_free(asoc); 1843 out_unlock: 1844 sctp_release_sock(sk); 1845 1846 out_nounlock: 1847 return sctp_error(sk, msg_flags, err); 1848 1849 #if 0 1850 do_sock_err: 1851 if (msg_len) 1852 err = msg_len; 1853 else 1854 err = sock_error(sk); 1855 goto out; 1856 1857 do_interrupted: 1858 if (msg_len) 1859 err = msg_len; 1860 goto out; 1861 #endif /* 0 */ 1862 } 1863 1864 /* This is an extended version of skb_pull() that removes the data from the 1865 * start of a skb even when data is spread across the list of skb's in the 1866 * frag_list. len specifies the total amount of data that needs to be removed. 1867 * when 'len' bytes could be removed from the skb, it returns 0. 1868 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1869 * could not be removed. 1870 */ 1871 static int sctp_skb_pull(struct sk_buff *skb, int len) 1872 { 1873 struct sk_buff *list; 1874 int skb_len = skb_headlen(skb); 1875 int rlen; 1876 1877 if (len <= skb_len) { 1878 __skb_pull(skb, len); 1879 return 0; 1880 } 1881 len -= skb_len; 1882 __skb_pull(skb, skb_len); 1883 1884 skb_walk_frags(skb, list) { 1885 rlen = sctp_skb_pull(list, len); 1886 skb->len -= (len-rlen); 1887 skb->data_len -= (len-rlen); 1888 1889 if (!rlen) 1890 return 0; 1891 1892 len = rlen; 1893 } 1894 1895 return len; 1896 } 1897 1898 /* API 3.1.3 recvmsg() - UDP Style Syntax 1899 * 1900 * ssize_t recvmsg(int socket, struct msghdr *message, 1901 * int flags); 1902 * 1903 * socket - the socket descriptor of the endpoint. 1904 * message - pointer to the msghdr structure which contains a single 1905 * user message and possibly some ancillary data. 1906 * 1907 * See Section 5 for complete description of the data 1908 * structures. 1909 * 1910 * flags - flags sent or received with the user message, see Section 1911 * 5 for complete description of the flags. 1912 */ 1913 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1914 1915 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1916 struct msghdr *msg, size_t len, int noblock, 1917 int flags, int *addr_len) 1918 { 1919 struct sctp_ulpevent *event = NULL; 1920 struct sctp_sock *sp = sctp_sk(sk); 1921 struct sk_buff *skb; 1922 int copied; 1923 int err = 0; 1924 int skb_len; 1925 1926 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1927 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1928 "len", len, "knoblauch", noblock, 1929 "flags", flags, "addr_len", addr_len); 1930 1931 sctp_lock_sock(sk); 1932 1933 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1934 err = -ENOTCONN; 1935 goto out; 1936 } 1937 1938 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1939 if (!skb) 1940 goto out; 1941 1942 /* Get the total length of the skb including any skb's in the 1943 * frag_list. 1944 */ 1945 skb_len = skb->len; 1946 1947 copied = skb_len; 1948 if (copied > len) 1949 copied = len; 1950 1951 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1952 1953 event = sctp_skb2event(skb); 1954 1955 if (err) 1956 goto out_free; 1957 1958 sock_recv_timestamp(msg, sk, skb); 1959 if (sctp_ulpevent_is_notification(event)) { 1960 msg->msg_flags |= MSG_NOTIFICATION; 1961 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1962 } else { 1963 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1964 } 1965 1966 /* Check if we allow SCTP_SNDRCVINFO. */ 1967 if (sp->subscribe.sctp_data_io_event) 1968 sctp_ulpevent_read_sndrcvinfo(event, msg); 1969 #if 0 1970 /* FIXME: we should be calling IP/IPv6 layers. */ 1971 if (sk->sk_protinfo.af_inet.cmsg_flags) 1972 ip_cmsg_recv(msg, skb); 1973 #endif 1974 1975 err = copied; 1976 1977 /* If skb's length exceeds the user's buffer, update the skb and 1978 * push it back to the receive_queue so that the next call to 1979 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1980 */ 1981 if (skb_len > copied) { 1982 msg->msg_flags &= ~MSG_EOR; 1983 if (flags & MSG_PEEK) 1984 goto out_free; 1985 sctp_skb_pull(skb, copied); 1986 skb_queue_head(&sk->sk_receive_queue, skb); 1987 1988 /* When only partial message is copied to the user, increase 1989 * rwnd by that amount. If all the data in the skb is read, 1990 * rwnd is updated when the event is freed. 1991 */ 1992 if (!sctp_ulpevent_is_notification(event)) 1993 sctp_assoc_rwnd_increase(event->asoc, copied); 1994 goto out; 1995 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1996 (event->msg_flags & MSG_EOR)) 1997 msg->msg_flags |= MSG_EOR; 1998 else 1999 msg->msg_flags &= ~MSG_EOR; 2000 2001 out_free: 2002 if (flags & MSG_PEEK) { 2003 /* Release the skb reference acquired after peeking the skb in 2004 * sctp_skb_recv_datagram(). 2005 */ 2006 kfree_skb(skb); 2007 } else { 2008 /* Free the event which includes releasing the reference to 2009 * the owner of the skb, freeing the skb and updating the 2010 * rwnd. 2011 */ 2012 sctp_ulpevent_free(event); 2013 } 2014 out: 2015 sctp_release_sock(sk); 2016 return err; 2017 } 2018 2019 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2020 * 2021 * This option is a on/off flag. If enabled no SCTP message 2022 * fragmentation will be performed. Instead if a message being sent 2023 * exceeds the current PMTU size, the message will NOT be sent and 2024 * instead a error will be indicated to the user. 2025 */ 2026 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2027 char __user *optval, int optlen) 2028 { 2029 int val; 2030 2031 if (optlen < sizeof(int)) 2032 return -EINVAL; 2033 2034 if (get_user(val, (int __user *)optval)) 2035 return -EFAULT; 2036 2037 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2038 2039 return 0; 2040 } 2041 2042 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2043 int optlen) 2044 { 2045 if (optlen > sizeof(struct sctp_event_subscribe)) 2046 return -EINVAL; 2047 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2048 return -EFAULT; 2049 return 0; 2050 } 2051 2052 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2053 * 2054 * This socket option is applicable to the UDP-style socket only. When 2055 * set it will cause associations that are idle for more than the 2056 * specified number of seconds to automatically close. An association 2057 * being idle is defined an association that has NOT sent or received 2058 * user data. The special value of '0' indicates that no automatic 2059 * close of any associations should be performed. The option expects an 2060 * integer defining the number of seconds of idle time before an 2061 * association is closed. 2062 */ 2063 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2064 int optlen) 2065 { 2066 struct sctp_sock *sp = sctp_sk(sk); 2067 2068 /* Applicable to UDP-style socket only */ 2069 if (sctp_style(sk, TCP)) 2070 return -EOPNOTSUPP; 2071 if (optlen != sizeof(int)) 2072 return -EINVAL; 2073 if (copy_from_user(&sp->autoclose, optval, optlen)) 2074 return -EFAULT; 2075 2076 return 0; 2077 } 2078 2079 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2080 * 2081 * Applications can enable or disable heartbeats for any peer address of 2082 * an association, modify an address's heartbeat interval, force a 2083 * heartbeat to be sent immediately, and adjust the address's maximum 2084 * number of retransmissions sent before an address is considered 2085 * unreachable. The following structure is used to access and modify an 2086 * address's parameters: 2087 * 2088 * struct sctp_paddrparams { 2089 * sctp_assoc_t spp_assoc_id; 2090 * struct sockaddr_storage spp_address; 2091 * uint32_t spp_hbinterval; 2092 * uint16_t spp_pathmaxrxt; 2093 * uint32_t spp_pathmtu; 2094 * uint32_t spp_sackdelay; 2095 * uint32_t spp_flags; 2096 * }; 2097 * 2098 * spp_assoc_id - (one-to-many style socket) This is filled in the 2099 * application, and identifies the association for 2100 * this query. 2101 * spp_address - This specifies which address is of interest. 2102 * spp_hbinterval - This contains the value of the heartbeat interval, 2103 * in milliseconds. If a value of zero 2104 * is present in this field then no changes are to 2105 * be made to this parameter. 2106 * spp_pathmaxrxt - This contains the maximum number of 2107 * retransmissions before this address shall be 2108 * considered unreachable. If a value of zero 2109 * is present in this field then no changes are to 2110 * be made to this parameter. 2111 * spp_pathmtu - When Path MTU discovery is disabled the value 2112 * specified here will be the "fixed" path mtu. 2113 * Note that if the spp_address field is empty 2114 * then all associations on this address will 2115 * have this fixed path mtu set upon them. 2116 * 2117 * spp_sackdelay - When delayed sack is enabled, this value specifies 2118 * the number of milliseconds that sacks will be delayed 2119 * for. This value will apply to all addresses of an 2120 * association if the spp_address field is empty. Note 2121 * also, that if delayed sack is enabled and this 2122 * value is set to 0, no change is made to the last 2123 * recorded delayed sack timer value. 2124 * 2125 * spp_flags - These flags are used to control various features 2126 * on an association. The flag field may contain 2127 * zero or more of the following options. 2128 * 2129 * SPP_HB_ENABLE - Enable heartbeats on the 2130 * specified address. Note that if the address 2131 * field is empty all addresses for the association 2132 * have heartbeats enabled upon them. 2133 * 2134 * SPP_HB_DISABLE - Disable heartbeats on the 2135 * speicifed address. Note that if the address 2136 * field is empty all addresses for the association 2137 * will have their heartbeats disabled. Note also 2138 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2139 * mutually exclusive, only one of these two should 2140 * be specified. Enabling both fields will have 2141 * undetermined results. 2142 * 2143 * SPP_HB_DEMAND - Request a user initiated heartbeat 2144 * to be made immediately. 2145 * 2146 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2147 * heartbeat delayis to be set to the value of 0 2148 * milliseconds. 2149 * 2150 * SPP_PMTUD_ENABLE - This field will enable PMTU 2151 * discovery upon the specified address. Note that 2152 * if the address feild is empty then all addresses 2153 * on the association are effected. 2154 * 2155 * SPP_PMTUD_DISABLE - This field will disable PMTU 2156 * discovery upon the specified address. Note that 2157 * if the address feild is empty then all addresses 2158 * on the association are effected. Not also that 2159 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2160 * exclusive. Enabling both will have undetermined 2161 * results. 2162 * 2163 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2164 * on delayed sack. The time specified in spp_sackdelay 2165 * is used to specify the sack delay for this address. Note 2166 * that if spp_address is empty then all addresses will 2167 * enable delayed sack and take on the sack delay 2168 * value specified in spp_sackdelay. 2169 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2170 * off delayed sack. If the spp_address field is blank then 2171 * delayed sack is disabled for the entire association. Note 2172 * also that this field is mutually exclusive to 2173 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2174 * results. 2175 */ 2176 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2177 struct sctp_transport *trans, 2178 struct sctp_association *asoc, 2179 struct sctp_sock *sp, 2180 int hb_change, 2181 int pmtud_change, 2182 int sackdelay_change) 2183 { 2184 int error; 2185 2186 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2187 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2188 if (error) 2189 return error; 2190 } 2191 2192 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2193 * this field is ignored. Note also that a value of zero indicates 2194 * the current setting should be left unchanged. 2195 */ 2196 if (params->spp_flags & SPP_HB_ENABLE) { 2197 2198 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2199 * set. This lets us use 0 value when this flag 2200 * is set. 2201 */ 2202 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2203 params->spp_hbinterval = 0; 2204 2205 if (params->spp_hbinterval || 2206 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2207 if (trans) { 2208 trans->hbinterval = 2209 msecs_to_jiffies(params->spp_hbinterval); 2210 } else if (asoc) { 2211 asoc->hbinterval = 2212 msecs_to_jiffies(params->spp_hbinterval); 2213 } else { 2214 sp->hbinterval = params->spp_hbinterval; 2215 } 2216 } 2217 } 2218 2219 if (hb_change) { 2220 if (trans) { 2221 trans->param_flags = 2222 (trans->param_flags & ~SPP_HB) | hb_change; 2223 } else if (asoc) { 2224 asoc->param_flags = 2225 (asoc->param_flags & ~SPP_HB) | hb_change; 2226 } else { 2227 sp->param_flags = 2228 (sp->param_flags & ~SPP_HB) | hb_change; 2229 } 2230 } 2231 2232 /* When Path MTU discovery is disabled the value specified here will 2233 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2234 * include the flag SPP_PMTUD_DISABLE for this field to have any 2235 * effect). 2236 */ 2237 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2238 if (trans) { 2239 trans->pathmtu = params->spp_pathmtu; 2240 sctp_assoc_sync_pmtu(asoc); 2241 } else if (asoc) { 2242 asoc->pathmtu = params->spp_pathmtu; 2243 sctp_frag_point(sp, params->spp_pathmtu); 2244 } else { 2245 sp->pathmtu = params->spp_pathmtu; 2246 } 2247 } 2248 2249 if (pmtud_change) { 2250 if (trans) { 2251 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2252 (params->spp_flags & SPP_PMTUD_ENABLE); 2253 trans->param_flags = 2254 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2255 if (update) { 2256 sctp_transport_pmtu(trans); 2257 sctp_assoc_sync_pmtu(asoc); 2258 } 2259 } else if (asoc) { 2260 asoc->param_flags = 2261 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2262 } else { 2263 sp->param_flags = 2264 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2265 } 2266 } 2267 2268 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2269 * value of this field is ignored. Note also that a value of zero 2270 * indicates the current setting should be left unchanged. 2271 */ 2272 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2273 if (trans) { 2274 trans->sackdelay = 2275 msecs_to_jiffies(params->spp_sackdelay); 2276 } else if (asoc) { 2277 asoc->sackdelay = 2278 msecs_to_jiffies(params->spp_sackdelay); 2279 } else { 2280 sp->sackdelay = params->spp_sackdelay; 2281 } 2282 } 2283 2284 if (sackdelay_change) { 2285 if (trans) { 2286 trans->param_flags = 2287 (trans->param_flags & ~SPP_SACKDELAY) | 2288 sackdelay_change; 2289 } else if (asoc) { 2290 asoc->param_flags = 2291 (asoc->param_flags & ~SPP_SACKDELAY) | 2292 sackdelay_change; 2293 } else { 2294 sp->param_flags = 2295 (sp->param_flags & ~SPP_SACKDELAY) | 2296 sackdelay_change; 2297 } 2298 } 2299 2300 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2301 * of this field is ignored. Note also that a value of zero 2302 * indicates the current setting should be left unchanged. 2303 */ 2304 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2305 if (trans) { 2306 trans->pathmaxrxt = params->spp_pathmaxrxt; 2307 } else if (asoc) { 2308 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2309 } else { 2310 sp->pathmaxrxt = params->spp_pathmaxrxt; 2311 } 2312 } 2313 2314 return 0; 2315 } 2316 2317 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2318 char __user *optval, int optlen) 2319 { 2320 struct sctp_paddrparams params; 2321 struct sctp_transport *trans = NULL; 2322 struct sctp_association *asoc = NULL; 2323 struct sctp_sock *sp = sctp_sk(sk); 2324 int error; 2325 int hb_change, pmtud_change, sackdelay_change; 2326 2327 if (optlen != sizeof(struct sctp_paddrparams)) 2328 return - EINVAL; 2329 2330 if (copy_from_user(¶ms, optval, optlen)) 2331 return -EFAULT; 2332 2333 /* Validate flags and value parameters. */ 2334 hb_change = params.spp_flags & SPP_HB; 2335 pmtud_change = params.spp_flags & SPP_PMTUD; 2336 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2337 2338 if (hb_change == SPP_HB || 2339 pmtud_change == SPP_PMTUD || 2340 sackdelay_change == SPP_SACKDELAY || 2341 params.spp_sackdelay > 500 || 2342 (params.spp_pathmtu 2343 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2344 return -EINVAL; 2345 2346 /* If an address other than INADDR_ANY is specified, and 2347 * no transport is found, then the request is invalid. 2348 */ 2349 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2350 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2351 params.spp_assoc_id); 2352 if (!trans) 2353 return -EINVAL; 2354 } 2355 2356 /* Get association, if assoc_id != 0 and the socket is a one 2357 * to many style socket, and an association was not found, then 2358 * the id was invalid. 2359 */ 2360 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2361 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2362 return -EINVAL; 2363 2364 /* Heartbeat demand can only be sent on a transport or 2365 * association, but not a socket. 2366 */ 2367 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2368 return -EINVAL; 2369 2370 /* Process parameters. */ 2371 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2372 hb_change, pmtud_change, 2373 sackdelay_change); 2374 2375 if (error) 2376 return error; 2377 2378 /* If changes are for association, also apply parameters to each 2379 * transport. 2380 */ 2381 if (!trans && asoc) { 2382 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2383 transports) { 2384 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2385 hb_change, pmtud_change, 2386 sackdelay_change); 2387 } 2388 } 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2395 * 2396 * This option will effect the way delayed acks are performed. This 2397 * option allows you to get or set the delayed ack time, in 2398 * milliseconds. It also allows changing the delayed ack frequency. 2399 * Changing the frequency to 1 disables the delayed sack algorithm. If 2400 * the assoc_id is 0, then this sets or gets the endpoints default 2401 * values. If the assoc_id field is non-zero, then the set or get 2402 * effects the specified association for the one to many model (the 2403 * assoc_id field is ignored by the one to one model). Note that if 2404 * sack_delay or sack_freq are 0 when setting this option, then the 2405 * current values will remain unchanged. 2406 * 2407 * struct sctp_sack_info { 2408 * sctp_assoc_t sack_assoc_id; 2409 * uint32_t sack_delay; 2410 * uint32_t sack_freq; 2411 * }; 2412 * 2413 * sack_assoc_id - This parameter, indicates which association the user 2414 * is performing an action upon. Note that if this field's value is 2415 * zero then the endpoints default value is changed (effecting future 2416 * associations only). 2417 * 2418 * sack_delay - This parameter contains the number of milliseconds that 2419 * the user is requesting the delayed ACK timer be set to. Note that 2420 * this value is defined in the standard to be between 200 and 500 2421 * milliseconds. 2422 * 2423 * sack_freq - This parameter contains the number of packets that must 2424 * be received before a sack is sent without waiting for the delay 2425 * timer to expire. The default value for this is 2, setting this 2426 * value to 1 will disable the delayed sack algorithm. 2427 */ 2428 2429 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2430 char __user *optval, int optlen) 2431 { 2432 struct sctp_sack_info params; 2433 struct sctp_transport *trans = NULL; 2434 struct sctp_association *asoc = NULL; 2435 struct sctp_sock *sp = sctp_sk(sk); 2436 2437 if (optlen == sizeof(struct sctp_sack_info)) { 2438 if (copy_from_user(¶ms, optval, optlen)) 2439 return -EFAULT; 2440 2441 if (params.sack_delay == 0 && params.sack_freq == 0) 2442 return 0; 2443 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2444 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 2445 "in delayed_ack socket option deprecated\n"); 2446 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 2447 if (copy_from_user(¶ms, optval, optlen)) 2448 return -EFAULT; 2449 2450 if (params.sack_delay == 0) 2451 params.sack_freq = 1; 2452 else 2453 params.sack_freq = 0; 2454 } else 2455 return - EINVAL; 2456 2457 /* Validate value parameter. */ 2458 if (params.sack_delay > 500) 2459 return -EINVAL; 2460 2461 /* Get association, if sack_assoc_id != 0 and the socket is a one 2462 * to many style socket, and an association was not found, then 2463 * the id was invalid. 2464 */ 2465 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2466 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2467 return -EINVAL; 2468 2469 if (params.sack_delay) { 2470 if (asoc) { 2471 asoc->sackdelay = 2472 msecs_to_jiffies(params.sack_delay); 2473 asoc->param_flags = 2474 (asoc->param_flags & ~SPP_SACKDELAY) | 2475 SPP_SACKDELAY_ENABLE; 2476 } else { 2477 sp->sackdelay = params.sack_delay; 2478 sp->param_flags = 2479 (sp->param_flags & ~SPP_SACKDELAY) | 2480 SPP_SACKDELAY_ENABLE; 2481 } 2482 } 2483 2484 if (params.sack_freq == 1) { 2485 if (asoc) { 2486 asoc->param_flags = 2487 (asoc->param_flags & ~SPP_SACKDELAY) | 2488 SPP_SACKDELAY_DISABLE; 2489 } else { 2490 sp->param_flags = 2491 (sp->param_flags & ~SPP_SACKDELAY) | 2492 SPP_SACKDELAY_DISABLE; 2493 } 2494 } else if (params.sack_freq > 1) { 2495 if (asoc) { 2496 asoc->sackfreq = params.sack_freq; 2497 asoc->param_flags = 2498 (asoc->param_flags & ~SPP_SACKDELAY) | 2499 SPP_SACKDELAY_ENABLE; 2500 } else { 2501 sp->sackfreq = params.sack_freq; 2502 sp->param_flags = 2503 (sp->param_flags & ~SPP_SACKDELAY) | 2504 SPP_SACKDELAY_ENABLE; 2505 } 2506 } 2507 2508 /* If change is for association, also apply to each transport. */ 2509 if (asoc) { 2510 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2511 transports) { 2512 if (params.sack_delay) { 2513 trans->sackdelay = 2514 msecs_to_jiffies(params.sack_delay); 2515 trans->param_flags = 2516 (trans->param_flags & ~SPP_SACKDELAY) | 2517 SPP_SACKDELAY_ENABLE; 2518 } 2519 if (params.sack_freq == 1) { 2520 trans->param_flags = 2521 (trans->param_flags & ~SPP_SACKDELAY) | 2522 SPP_SACKDELAY_DISABLE; 2523 } else if (params.sack_freq > 1) { 2524 trans->sackfreq = params.sack_freq; 2525 trans->param_flags = 2526 (trans->param_flags & ~SPP_SACKDELAY) | 2527 SPP_SACKDELAY_ENABLE; 2528 } 2529 } 2530 } 2531 2532 return 0; 2533 } 2534 2535 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2536 * 2537 * Applications can specify protocol parameters for the default association 2538 * initialization. The option name argument to setsockopt() and getsockopt() 2539 * is SCTP_INITMSG. 2540 * 2541 * Setting initialization parameters is effective only on an unconnected 2542 * socket (for UDP-style sockets only future associations are effected 2543 * by the change). With TCP-style sockets, this option is inherited by 2544 * sockets derived from a listener socket. 2545 */ 2546 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2547 { 2548 struct sctp_initmsg sinit; 2549 struct sctp_sock *sp = sctp_sk(sk); 2550 2551 if (optlen != sizeof(struct sctp_initmsg)) 2552 return -EINVAL; 2553 if (copy_from_user(&sinit, optval, optlen)) 2554 return -EFAULT; 2555 2556 if (sinit.sinit_num_ostreams) 2557 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2558 if (sinit.sinit_max_instreams) 2559 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2560 if (sinit.sinit_max_attempts) 2561 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2562 if (sinit.sinit_max_init_timeo) 2563 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2564 2565 return 0; 2566 } 2567 2568 /* 2569 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2570 * 2571 * Applications that wish to use the sendto() system call may wish to 2572 * specify a default set of parameters that would normally be supplied 2573 * through the inclusion of ancillary data. This socket option allows 2574 * such an application to set the default sctp_sndrcvinfo structure. 2575 * The application that wishes to use this socket option simply passes 2576 * in to this call the sctp_sndrcvinfo structure defined in Section 2577 * 5.2.2) The input parameters accepted by this call include 2578 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2579 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2580 * to this call if the caller is using the UDP model. 2581 */ 2582 static int sctp_setsockopt_default_send_param(struct sock *sk, 2583 char __user *optval, int optlen) 2584 { 2585 struct sctp_sndrcvinfo info; 2586 struct sctp_association *asoc; 2587 struct sctp_sock *sp = sctp_sk(sk); 2588 2589 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2590 return -EINVAL; 2591 if (copy_from_user(&info, optval, optlen)) 2592 return -EFAULT; 2593 2594 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2595 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2596 return -EINVAL; 2597 2598 if (asoc) { 2599 asoc->default_stream = info.sinfo_stream; 2600 asoc->default_flags = info.sinfo_flags; 2601 asoc->default_ppid = info.sinfo_ppid; 2602 asoc->default_context = info.sinfo_context; 2603 asoc->default_timetolive = info.sinfo_timetolive; 2604 } else { 2605 sp->default_stream = info.sinfo_stream; 2606 sp->default_flags = info.sinfo_flags; 2607 sp->default_ppid = info.sinfo_ppid; 2608 sp->default_context = info.sinfo_context; 2609 sp->default_timetolive = info.sinfo_timetolive; 2610 } 2611 2612 return 0; 2613 } 2614 2615 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2616 * 2617 * Requests that the local SCTP stack use the enclosed peer address as 2618 * the association primary. The enclosed address must be one of the 2619 * association peer's addresses. 2620 */ 2621 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2622 int optlen) 2623 { 2624 struct sctp_prim prim; 2625 struct sctp_transport *trans; 2626 2627 if (optlen != sizeof(struct sctp_prim)) 2628 return -EINVAL; 2629 2630 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2631 return -EFAULT; 2632 2633 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2634 if (!trans) 2635 return -EINVAL; 2636 2637 sctp_assoc_set_primary(trans->asoc, trans); 2638 2639 return 0; 2640 } 2641 2642 /* 2643 * 7.1.5 SCTP_NODELAY 2644 * 2645 * Turn on/off any Nagle-like algorithm. This means that packets are 2646 * generally sent as soon as possible and no unnecessary delays are 2647 * introduced, at the cost of more packets in the network. Expects an 2648 * integer boolean flag. 2649 */ 2650 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2651 int optlen) 2652 { 2653 int val; 2654 2655 if (optlen < sizeof(int)) 2656 return -EINVAL; 2657 if (get_user(val, (int __user *)optval)) 2658 return -EFAULT; 2659 2660 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2661 return 0; 2662 } 2663 2664 /* 2665 * 2666 * 7.1.1 SCTP_RTOINFO 2667 * 2668 * The protocol parameters used to initialize and bound retransmission 2669 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2670 * and modify these parameters. 2671 * All parameters are time values, in milliseconds. A value of 0, when 2672 * modifying the parameters, indicates that the current value should not 2673 * be changed. 2674 * 2675 */ 2676 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2677 struct sctp_rtoinfo rtoinfo; 2678 struct sctp_association *asoc; 2679 2680 if (optlen != sizeof (struct sctp_rtoinfo)) 2681 return -EINVAL; 2682 2683 if (copy_from_user(&rtoinfo, optval, optlen)) 2684 return -EFAULT; 2685 2686 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2687 2688 /* Set the values to the specific association */ 2689 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2690 return -EINVAL; 2691 2692 if (asoc) { 2693 if (rtoinfo.srto_initial != 0) 2694 asoc->rto_initial = 2695 msecs_to_jiffies(rtoinfo.srto_initial); 2696 if (rtoinfo.srto_max != 0) 2697 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2698 if (rtoinfo.srto_min != 0) 2699 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2700 } else { 2701 /* If there is no association or the association-id = 0 2702 * set the values to the endpoint. 2703 */ 2704 struct sctp_sock *sp = sctp_sk(sk); 2705 2706 if (rtoinfo.srto_initial != 0) 2707 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2708 if (rtoinfo.srto_max != 0) 2709 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2710 if (rtoinfo.srto_min != 0) 2711 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2712 } 2713 2714 return 0; 2715 } 2716 2717 /* 2718 * 2719 * 7.1.2 SCTP_ASSOCINFO 2720 * 2721 * This option is used to tune the maximum retransmission attempts 2722 * of the association. 2723 * Returns an error if the new association retransmission value is 2724 * greater than the sum of the retransmission value of the peer. 2725 * See [SCTP] for more information. 2726 * 2727 */ 2728 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2729 { 2730 2731 struct sctp_assocparams assocparams; 2732 struct sctp_association *asoc; 2733 2734 if (optlen != sizeof(struct sctp_assocparams)) 2735 return -EINVAL; 2736 if (copy_from_user(&assocparams, optval, optlen)) 2737 return -EFAULT; 2738 2739 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2740 2741 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2742 return -EINVAL; 2743 2744 /* Set the values to the specific association */ 2745 if (asoc) { 2746 if (assocparams.sasoc_asocmaxrxt != 0) { 2747 __u32 path_sum = 0; 2748 int paths = 0; 2749 struct sctp_transport *peer_addr; 2750 2751 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2752 transports) { 2753 path_sum += peer_addr->pathmaxrxt; 2754 paths++; 2755 } 2756 2757 /* Only validate asocmaxrxt if we have more than 2758 * one path/transport. We do this because path 2759 * retransmissions are only counted when we have more 2760 * then one path. 2761 */ 2762 if (paths > 1 && 2763 assocparams.sasoc_asocmaxrxt > path_sum) 2764 return -EINVAL; 2765 2766 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2767 } 2768 2769 if (assocparams.sasoc_cookie_life != 0) { 2770 asoc->cookie_life.tv_sec = 2771 assocparams.sasoc_cookie_life / 1000; 2772 asoc->cookie_life.tv_usec = 2773 (assocparams.sasoc_cookie_life % 1000) 2774 * 1000; 2775 } 2776 } else { 2777 /* Set the values to the endpoint */ 2778 struct sctp_sock *sp = sctp_sk(sk); 2779 2780 if (assocparams.sasoc_asocmaxrxt != 0) 2781 sp->assocparams.sasoc_asocmaxrxt = 2782 assocparams.sasoc_asocmaxrxt; 2783 if (assocparams.sasoc_cookie_life != 0) 2784 sp->assocparams.sasoc_cookie_life = 2785 assocparams.sasoc_cookie_life; 2786 } 2787 return 0; 2788 } 2789 2790 /* 2791 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2792 * 2793 * This socket option is a boolean flag which turns on or off mapped V4 2794 * addresses. If this option is turned on and the socket is type 2795 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2796 * If this option is turned off, then no mapping will be done of V4 2797 * addresses and a user will receive both PF_INET6 and PF_INET type 2798 * addresses on the socket. 2799 */ 2800 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2801 { 2802 int val; 2803 struct sctp_sock *sp = sctp_sk(sk); 2804 2805 if (optlen < sizeof(int)) 2806 return -EINVAL; 2807 if (get_user(val, (int __user *)optval)) 2808 return -EFAULT; 2809 if (val) 2810 sp->v4mapped = 1; 2811 else 2812 sp->v4mapped = 0; 2813 2814 return 0; 2815 } 2816 2817 /* 2818 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2819 * This option will get or set the maximum size to put in any outgoing 2820 * SCTP DATA chunk. If a message is larger than this size it will be 2821 * fragmented by SCTP into the specified size. Note that the underlying 2822 * SCTP implementation may fragment into smaller sized chunks when the 2823 * PMTU of the underlying association is smaller than the value set by 2824 * the user. The default value for this option is '0' which indicates 2825 * the user is NOT limiting fragmentation and only the PMTU will effect 2826 * SCTP's choice of DATA chunk size. Note also that values set larger 2827 * than the maximum size of an IP datagram will effectively let SCTP 2828 * control fragmentation (i.e. the same as setting this option to 0). 2829 * 2830 * The following structure is used to access and modify this parameter: 2831 * 2832 * struct sctp_assoc_value { 2833 * sctp_assoc_t assoc_id; 2834 * uint32_t assoc_value; 2835 * }; 2836 * 2837 * assoc_id: This parameter is ignored for one-to-one style sockets. 2838 * For one-to-many style sockets this parameter indicates which 2839 * association the user is performing an action upon. Note that if 2840 * this field's value is zero then the endpoints default value is 2841 * changed (effecting future associations only). 2842 * assoc_value: This parameter specifies the maximum size in bytes. 2843 */ 2844 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2845 { 2846 struct sctp_assoc_value params; 2847 struct sctp_association *asoc; 2848 struct sctp_sock *sp = sctp_sk(sk); 2849 int val; 2850 2851 if (optlen == sizeof(int)) { 2852 printk(KERN_WARNING 2853 "SCTP: Use of int in maxseg socket option deprecated\n"); 2854 printk(KERN_WARNING 2855 "SCTP: Use struct sctp_assoc_value instead\n"); 2856 if (copy_from_user(&val, optval, optlen)) 2857 return -EFAULT; 2858 params.assoc_id = 0; 2859 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2860 if (copy_from_user(¶ms, optval, optlen)) 2861 return -EFAULT; 2862 val = params.assoc_value; 2863 } else 2864 return -EINVAL; 2865 2866 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2867 return -EINVAL; 2868 2869 asoc = sctp_id2assoc(sk, params.assoc_id); 2870 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2871 return -EINVAL; 2872 2873 if (asoc) { 2874 if (val == 0) { 2875 val = asoc->pathmtu; 2876 val -= sp->pf->af->net_header_len; 2877 val -= sizeof(struct sctphdr) + 2878 sizeof(struct sctp_data_chunk); 2879 } 2880 2881 asoc->frag_point = val; 2882 } else { 2883 sp->user_frag = val; 2884 2885 /* Update the frag_point of the existing associations. */ 2886 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 2887 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2888 } 2889 } 2890 2891 return 0; 2892 } 2893 2894 2895 /* 2896 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2897 * 2898 * Requests that the peer mark the enclosed address as the association 2899 * primary. The enclosed address must be one of the association's 2900 * locally bound addresses. The following structure is used to make a 2901 * set primary request: 2902 */ 2903 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2904 int optlen) 2905 { 2906 struct sctp_sock *sp; 2907 struct sctp_endpoint *ep; 2908 struct sctp_association *asoc = NULL; 2909 struct sctp_setpeerprim prim; 2910 struct sctp_chunk *chunk; 2911 int err; 2912 2913 sp = sctp_sk(sk); 2914 ep = sp->ep; 2915 2916 if (!sctp_addip_enable) 2917 return -EPERM; 2918 2919 if (optlen != sizeof(struct sctp_setpeerprim)) 2920 return -EINVAL; 2921 2922 if (copy_from_user(&prim, optval, optlen)) 2923 return -EFAULT; 2924 2925 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2926 if (!asoc) 2927 return -EINVAL; 2928 2929 if (!asoc->peer.asconf_capable) 2930 return -EPERM; 2931 2932 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2933 return -EPERM; 2934 2935 if (!sctp_state(asoc, ESTABLISHED)) 2936 return -ENOTCONN; 2937 2938 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2939 return -EADDRNOTAVAIL; 2940 2941 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2942 chunk = sctp_make_asconf_set_prim(asoc, 2943 (union sctp_addr *)&prim.sspp_addr); 2944 if (!chunk) 2945 return -ENOMEM; 2946 2947 err = sctp_send_asconf(asoc, chunk); 2948 2949 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2950 2951 return err; 2952 } 2953 2954 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2955 int optlen) 2956 { 2957 struct sctp_setadaptation adaptation; 2958 2959 if (optlen != sizeof(struct sctp_setadaptation)) 2960 return -EINVAL; 2961 if (copy_from_user(&adaptation, optval, optlen)) 2962 return -EFAULT; 2963 2964 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2965 2966 return 0; 2967 } 2968 2969 /* 2970 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2971 * 2972 * The context field in the sctp_sndrcvinfo structure is normally only 2973 * used when a failed message is retrieved holding the value that was 2974 * sent down on the actual send call. This option allows the setting of 2975 * a default context on an association basis that will be received on 2976 * reading messages from the peer. This is especially helpful in the 2977 * one-2-many model for an application to keep some reference to an 2978 * internal state machine that is processing messages on the 2979 * association. Note that the setting of this value only effects 2980 * received messages from the peer and does not effect the value that is 2981 * saved with outbound messages. 2982 */ 2983 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2984 int optlen) 2985 { 2986 struct sctp_assoc_value params; 2987 struct sctp_sock *sp; 2988 struct sctp_association *asoc; 2989 2990 if (optlen != sizeof(struct sctp_assoc_value)) 2991 return -EINVAL; 2992 if (copy_from_user(¶ms, optval, optlen)) 2993 return -EFAULT; 2994 2995 sp = sctp_sk(sk); 2996 2997 if (params.assoc_id != 0) { 2998 asoc = sctp_id2assoc(sk, params.assoc_id); 2999 if (!asoc) 3000 return -EINVAL; 3001 asoc->default_rcv_context = params.assoc_value; 3002 } else { 3003 sp->default_rcv_context = params.assoc_value; 3004 } 3005 3006 return 0; 3007 } 3008 3009 /* 3010 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3011 * 3012 * This options will at a minimum specify if the implementation is doing 3013 * fragmented interleave. Fragmented interleave, for a one to many 3014 * socket, is when subsequent calls to receive a message may return 3015 * parts of messages from different associations. Some implementations 3016 * may allow you to turn this value on or off. If so, when turned off, 3017 * no fragment interleave will occur (which will cause a head of line 3018 * blocking amongst multiple associations sharing the same one to many 3019 * socket). When this option is turned on, then each receive call may 3020 * come from a different association (thus the user must receive data 3021 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3022 * association each receive belongs to. 3023 * 3024 * This option takes a boolean value. A non-zero value indicates that 3025 * fragmented interleave is on. A value of zero indicates that 3026 * fragmented interleave is off. 3027 * 3028 * Note that it is important that an implementation that allows this 3029 * option to be turned on, have it off by default. Otherwise an unaware 3030 * application using the one to many model may become confused and act 3031 * incorrectly. 3032 */ 3033 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3034 char __user *optval, 3035 int optlen) 3036 { 3037 int val; 3038 3039 if (optlen != sizeof(int)) 3040 return -EINVAL; 3041 if (get_user(val, (int __user *)optval)) 3042 return -EFAULT; 3043 3044 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3051 * (SCTP_PARTIAL_DELIVERY_POINT) 3052 * 3053 * This option will set or get the SCTP partial delivery point. This 3054 * point is the size of a message where the partial delivery API will be 3055 * invoked to help free up rwnd space for the peer. Setting this to a 3056 * lower value will cause partial deliveries to happen more often. The 3057 * calls argument is an integer that sets or gets the partial delivery 3058 * point. Note also that the call will fail if the user attempts to set 3059 * this value larger than the socket receive buffer size. 3060 * 3061 * Note that any single message having a length smaller than or equal to 3062 * the SCTP partial delivery point will be delivered in one single read 3063 * call as long as the user provided buffer is large enough to hold the 3064 * message. 3065 */ 3066 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3067 char __user *optval, 3068 int optlen) 3069 { 3070 u32 val; 3071 3072 if (optlen != sizeof(u32)) 3073 return -EINVAL; 3074 if (get_user(val, (int __user *)optval)) 3075 return -EFAULT; 3076 3077 /* Note: We double the receive buffer from what the user sets 3078 * it to be, also initial rwnd is based on rcvbuf/2. 3079 */ 3080 if (val > (sk->sk_rcvbuf >> 1)) 3081 return -EINVAL; 3082 3083 sctp_sk(sk)->pd_point = val; 3084 3085 return 0; /* is this the right error code? */ 3086 } 3087 3088 /* 3089 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3090 * 3091 * This option will allow a user to change the maximum burst of packets 3092 * that can be emitted by this association. Note that the default value 3093 * is 4, and some implementations may restrict this setting so that it 3094 * can only be lowered. 3095 * 3096 * NOTE: This text doesn't seem right. Do this on a socket basis with 3097 * future associations inheriting the socket value. 3098 */ 3099 static int sctp_setsockopt_maxburst(struct sock *sk, 3100 char __user *optval, 3101 int optlen) 3102 { 3103 struct sctp_assoc_value params; 3104 struct sctp_sock *sp; 3105 struct sctp_association *asoc; 3106 int val; 3107 int assoc_id = 0; 3108 3109 if (optlen == sizeof(int)) { 3110 printk(KERN_WARNING 3111 "SCTP: Use of int in max_burst socket option deprecated\n"); 3112 printk(KERN_WARNING 3113 "SCTP: Use struct sctp_assoc_value instead\n"); 3114 if (copy_from_user(&val, optval, optlen)) 3115 return -EFAULT; 3116 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3117 if (copy_from_user(¶ms, optval, optlen)) 3118 return -EFAULT; 3119 val = params.assoc_value; 3120 assoc_id = params.assoc_id; 3121 } else 3122 return -EINVAL; 3123 3124 sp = sctp_sk(sk); 3125 3126 if (assoc_id != 0) { 3127 asoc = sctp_id2assoc(sk, assoc_id); 3128 if (!asoc) 3129 return -EINVAL; 3130 asoc->max_burst = val; 3131 } else 3132 sp->max_burst = val; 3133 3134 return 0; 3135 } 3136 3137 /* 3138 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3139 * 3140 * This set option adds a chunk type that the user is requesting to be 3141 * received only in an authenticated way. Changes to the list of chunks 3142 * will only effect future associations on the socket. 3143 */ 3144 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3145 char __user *optval, 3146 int optlen) 3147 { 3148 struct sctp_authchunk val; 3149 3150 if (!sctp_auth_enable) 3151 return -EACCES; 3152 3153 if (optlen != sizeof(struct sctp_authchunk)) 3154 return -EINVAL; 3155 if (copy_from_user(&val, optval, optlen)) 3156 return -EFAULT; 3157 3158 switch (val.sauth_chunk) { 3159 case SCTP_CID_INIT: 3160 case SCTP_CID_INIT_ACK: 3161 case SCTP_CID_SHUTDOWN_COMPLETE: 3162 case SCTP_CID_AUTH: 3163 return -EINVAL; 3164 } 3165 3166 /* add this chunk id to the endpoint */ 3167 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3168 } 3169 3170 /* 3171 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3172 * 3173 * This option gets or sets the list of HMAC algorithms that the local 3174 * endpoint requires the peer to use. 3175 */ 3176 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3177 char __user *optval, 3178 int optlen) 3179 { 3180 struct sctp_hmacalgo *hmacs; 3181 u32 idents; 3182 int err; 3183 3184 if (!sctp_auth_enable) 3185 return -EACCES; 3186 3187 if (optlen < sizeof(struct sctp_hmacalgo)) 3188 return -EINVAL; 3189 3190 hmacs = kmalloc(optlen, GFP_KERNEL); 3191 if (!hmacs) 3192 return -ENOMEM; 3193 3194 if (copy_from_user(hmacs, optval, optlen)) { 3195 err = -EFAULT; 3196 goto out; 3197 } 3198 3199 idents = hmacs->shmac_num_idents; 3200 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3201 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3202 err = -EINVAL; 3203 goto out; 3204 } 3205 3206 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3207 out: 3208 kfree(hmacs); 3209 return err; 3210 } 3211 3212 /* 3213 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3214 * 3215 * This option will set a shared secret key which is used to build an 3216 * association shared key. 3217 */ 3218 static int sctp_setsockopt_auth_key(struct sock *sk, 3219 char __user *optval, 3220 int optlen) 3221 { 3222 struct sctp_authkey *authkey; 3223 struct sctp_association *asoc; 3224 int ret; 3225 3226 if (!sctp_auth_enable) 3227 return -EACCES; 3228 3229 if (optlen <= sizeof(struct sctp_authkey)) 3230 return -EINVAL; 3231 3232 authkey = kmalloc(optlen, GFP_KERNEL); 3233 if (!authkey) 3234 return -ENOMEM; 3235 3236 if (copy_from_user(authkey, optval, optlen)) { 3237 ret = -EFAULT; 3238 goto out; 3239 } 3240 3241 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3242 ret = -EINVAL; 3243 goto out; 3244 } 3245 3246 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3247 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3248 ret = -EINVAL; 3249 goto out; 3250 } 3251 3252 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3253 out: 3254 kfree(authkey); 3255 return ret; 3256 } 3257 3258 /* 3259 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3260 * 3261 * This option will get or set the active shared key to be used to build 3262 * the association shared key. 3263 */ 3264 static int sctp_setsockopt_active_key(struct sock *sk, 3265 char __user *optval, 3266 int optlen) 3267 { 3268 struct sctp_authkeyid val; 3269 struct sctp_association *asoc; 3270 3271 if (!sctp_auth_enable) 3272 return -EACCES; 3273 3274 if (optlen != sizeof(struct sctp_authkeyid)) 3275 return -EINVAL; 3276 if (copy_from_user(&val, optval, optlen)) 3277 return -EFAULT; 3278 3279 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3280 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3281 return -EINVAL; 3282 3283 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3284 val.scact_keynumber); 3285 } 3286 3287 /* 3288 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3289 * 3290 * This set option will delete a shared secret key from use. 3291 */ 3292 static int sctp_setsockopt_del_key(struct sock *sk, 3293 char __user *optval, 3294 int optlen) 3295 { 3296 struct sctp_authkeyid val; 3297 struct sctp_association *asoc; 3298 3299 if (!sctp_auth_enable) 3300 return -EACCES; 3301 3302 if (optlen != sizeof(struct sctp_authkeyid)) 3303 return -EINVAL; 3304 if (copy_from_user(&val, optval, optlen)) 3305 return -EFAULT; 3306 3307 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3308 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3309 return -EINVAL; 3310 3311 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3312 val.scact_keynumber); 3313 3314 } 3315 3316 3317 /* API 6.2 setsockopt(), getsockopt() 3318 * 3319 * Applications use setsockopt() and getsockopt() to set or retrieve 3320 * socket options. Socket options are used to change the default 3321 * behavior of sockets calls. They are described in Section 7. 3322 * 3323 * The syntax is: 3324 * 3325 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3326 * int __user *optlen); 3327 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3328 * int optlen); 3329 * 3330 * sd - the socket descript. 3331 * level - set to IPPROTO_SCTP for all SCTP options. 3332 * optname - the option name. 3333 * optval - the buffer to store the value of the option. 3334 * optlen - the size of the buffer. 3335 */ 3336 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3337 char __user *optval, int optlen) 3338 { 3339 int retval = 0; 3340 3341 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3342 sk, optname); 3343 3344 /* I can hardly begin to describe how wrong this is. This is 3345 * so broken as to be worse than useless. The API draft 3346 * REALLY is NOT helpful here... I am not convinced that the 3347 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3348 * are at all well-founded. 3349 */ 3350 if (level != SOL_SCTP) { 3351 struct sctp_af *af = sctp_sk(sk)->pf->af; 3352 retval = af->setsockopt(sk, level, optname, optval, optlen); 3353 goto out_nounlock; 3354 } 3355 3356 sctp_lock_sock(sk); 3357 3358 switch (optname) { 3359 case SCTP_SOCKOPT_BINDX_ADD: 3360 /* 'optlen' is the size of the addresses buffer. */ 3361 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3362 optlen, SCTP_BINDX_ADD_ADDR); 3363 break; 3364 3365 case SCTP_SOCKOPT_BINDX_REM: 3366 /* 'optlen' is the size of the addresses buffer. */ 3367 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3368 optlen, SCTP_BINDX_REM_ADDR); 3369 break; 3370 3371 case SCTP_SOCKOPT_CONNECTX_OLD: 3372 /* 'optlen' is the size of the addresses buffer. */ 3373 retval = sctp_setsockopt_connectx_old(sk, 3374 (struct sockaddr __user *)optval, 3375 optlen); 3376 break; 3377 3378 case SCTP_SOCKOPT_CONNECTX: 3379 /* 'optlen' is the size of the addresses buffer. */ 3380 retval = sctp_setsockopt_connectx(sk, 3381 (struct sockaddr __user *)optval, 3382 optlen); 3383 break; 3384 3385 case SCTP_DISABLE_FRAGMENTS: 3386 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3387 break; 3388 3389 case SCTP_EVENTS: 3390 retval = sctp_setsockopt_events(sk, optval, optlen); 3391 break; 3392 3393 case SCTP_AUTOCLOSE: 3394 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3395 break; 3396 3397 case SCTP_PEER_ADDR_PARAMS: 3398 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3399 break; 3400 3401 case SCTP_DELAYED_ACK: 3402 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3403 break; 3404 case SCTP_PARTIAL_DELIVERY_POINT: 3405 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3406 break; 3407 3408 case SCTP_INITMSG: 3409 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3410 break; 3411 case SCTP_DEFAULT_SEND_PARAM: 3412 retval = sctp_setsockopt_default_send_param(sk, optval, 3413 optlen); 3414 break; 3415 case SCTP_PRIMARY_ADDR: 3416 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3417 break; 3418 case SCTP_SET_PEER_PRIMARY_ADDR: 3419 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3420 break; 3421 case SCTP_NODELAY: 3422 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3423 break; 3424 case SCTP_RTOINFO: 3425 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3426 break; 3427 case SCTP_ASSOCINFO: 3428 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3429 break; 3430 case SCTP_I_WANT_MAPPED_V4_ADDR: 3431 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3432 break; 3433 case SCTP_MAXSEG: 3434 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3435 break; 3436 case SCTP_ADAPTATION_LAYER: 3437 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3438 break; 3439 case SCTP_CONTEXT: 3440 retval = sctp_setsockopt_context(sk, optval, optlen); 3441 break; 3442 case SCTP_FRAGMENT_INTERLEAVE: 3443 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3444 break; 3445 case SCTP_MAX_BURST: 3446 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3447 break; 3448 case SCTP_AUTH_CHUNK: 3449 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3450 break; 3451 case SCTP_HMAC_IDENT: 3452 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3453 break; 3454 case SCTP_AUTH_KEY: 3455 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3456 break; 3457 case SCTP_AUTH_ACTIVE_KEY: 3458 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3459 break; 3460 case SCTP_AUTH_DELETE_KEY: 3461 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3462 break; 3463 default: 3464 retval = -ENOPROTOOPT; 3465 break; 3466 } 3467 3468 sctp_release_sock(sk); 3469 3470 out_nounlock: 3471 return retval; 3472 } 3473 3474 /* API 3.1.6 connect() - UDP Style Syntax 3475 * 3476 * An application may use the connect() call in the UDP model to initiate an 3477 * association without sending data. 3478 * 3479 * The syntax is: 3480 * 3481 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3482 * 3483 * sd: the socket descriptor to have a new association added to. 3484 * 3485 * nam: the address structure (either struct sockaddr_in or struct 3486 * sockaddr_in6 defined in RFC2553 [7]). 3487 * 3488 * len: the size of the address. 3489 */ 3490 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3491 int addr_len) 3492 { 3493 int err = 0; 3494 struct sctp_af *af; 3495 3496 sctp_lock_sock(sk); 3497 3498 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3499 __func__, sk, addr, addr_len); 3500 3501 /* Validate addr_len before calling common connect/connectx routine. */ 3502 af = sctp_get_af_specific(addr->sa_family); 3503 if (!af || addr_len < af->sockaddr_len) { 3504 err = -EINVAL; 3505 } else { 3506 /* Pass correct addr len to common routine (so it knows there 3507 * is only one address being passed. 3508 */ 3509 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3510 } 3511 3512 sctp_release_sock(sk); 3513 return err; 3514 } 3515 3516 /* FIXME: Write comments. */ 3517 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3518 { 3519 return -EOPNOTSUPP; /* STUB */ 3520 } 3521 3522 /* 4.1.4 accept() - TCP Style Syntax 3523 * 3524 * Applications use accept() call to remove an established SCTP 3525 * association from the accept queue of the endpoint. A new socket 3526 * descriptor will be returned from accept() to represent the newly 3527 * formed association. 3528 */ 3529 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3530 { 3531 struct sctp_sock *sp; 3532 struct sctp_endpoint *ep; 3533 struct sock *newsk = NULL; 3534 struct sctp_association *asoc; 3535 long timeo; 3536 int error = 0; 3537 3538 sctp_lock_sock(sk); 3539 3540 sp = sctp_sk(sk); 3541 ep = sp->ep; 3542 3543 if (!sctp_style(sk, TCP)) { 3544 error = -EOPNOTSUPP; 3545 goto out; 3546 } 3547 3548 if (!sctp_sstate(sk, LISTENING)) { 3549 error = -EINVAL; 3550 goto out; 3551 } 3552 3553 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3554 3555 error = sctp_wait_for_accept(sk, timeo); 3556 if (error) 3557 goto out; 3558 3559 /* We treat the list of associations on the endpoint as the accept 3560 * queue and pick the first association on the list. 3561 */ 3562 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3563 3564 newsk = sp->pf->create_accept_sk(sk, asoc); 3565 if (!newsk) { 3566 error = -ENOMEM; 3567 goto out; 3568 } 3569 3570 /* Populate the fields of the newsk from the oldsk and migrate the 3571 * asoc to the newsk. 3572 */ 3573 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3574 3575 out: 3576 sctp_release_sock(sk); 3577 *err = error; 3578 return newsk; 3579 } 3580 3581 /* The SCTP ioctl handler. */ 3582 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3583 { 3584 return -ENOIOCTLCMD; 3585 } 3586 3587 /* This is the function which gets called during socket creation to 3588 * initialized the SCTP-specific portion of the sock. 3589 * The sock structure should already be zero-filled memory. 3590 */ 3591 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3592 { 3593 struct sctp_endpoint *ep; 3594 struct sctp_sock *sp; 3595 3596 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3597 3598 sp = sctp_sk(sk); 3599 3600 /* Initialize the SCTP per socket area. */ 3601 switch (sk->sk_type) { 3602 case SOCK_SEQPACKET: 3603 sp->type = SCTP_SOCKET_UDP; 3604 break; 3605 case SOCK_STREAM: 3606 sp->type = SCTP_SOCKET_TCP; 3607 break; 3608 default: 3609 return -ESOCKTNOSUPPORT; 3610 } 3611 3612 /* Initialize default send parameters. These parameters can be 3613 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3614 */ 3615 sp->default_stream = 0; 3616 sp->default_ppid = 0; 3617 sp->default_flags = 0; 3618 sp->default_context = 0; 3619 sp->default_timetolive = 0; 3620 3621 sp->default_rcv_context = 0; 3622 sp->max_burst = sctp_max_burst; 3623 3624 /* Initialize default setup parameters. These parameters 3625 * can be modified with the SCTP_INITMSG socket option or 3626 * overridden by the SCTP_INIT CMSG. 3627 */ 3628 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3629 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3630 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3631 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3632 3633 /* Initialize default RTO related parameters. These parameters can 3634 * be modified for with the SCTP_RTOINFO socket option. 3635 */ 3636 sp->rtoinfo.srto_initial = sctp_rto_initial; 3637 sp->rtoinfo.srto_max = sctp_rto_max; 3638 sp->rtoinfo.srto_min = sctp_rto_min; 3639 3640 /* Initialize default association related parameters. These parameters 3641 * can be modified with the SCTP_ASSOCINFO socket option. 3642 */ 3643 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3644 sp->assocparams.sasoc_number_peer_destinations = 0; 3645 sp->assocparams.sasoc_peer_rwnd = 0; 3646 sp->assocparams.sasoc_local_rwnd = 0; 3647 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3648 3649 /* Initialize default event subscriptions. By default, all the 3650 * options are off. 3651 */ 3652 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3653 3654 /* Default Peer Address Parameters. These defaults can 3655 * be modified via SCTP_PEER_ADDR_PARAMS 3656 */ 3657 sp->hbinterval = sctp_hb_interval; 3658 sp->pathmaxrxt = sctp_max_retrans_path; 3659 sp->pathmtu = 0; // allow default discovery 3660 sp->sackdelay = sctp_sack_timeout; 3661 sp->sackfreq = 2; 3662 sp->param_flags = SPP_HB_ENABLE | 3663 SPP_PMTUD_ENABLE | 3664 SPP_SACKDELAY_ENABLE; 3665 3666 /* If enabled no SCTP message fragmentation will be performed. 3667 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3668 */ 3669 sp->disable_fragments = 0; 3670 3671 /* Enable Nagle algorithm by default. */ 3672 sp->nodelay = 0; 3673 3674 /* Enable by default. */ 3675 sp->v4mapped = 1; 3676 3677 /* Auto-close idle associations after the configured 3678 * number of seconds. A value of 0 disables this 3679 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3680 * for UDP-style sockets only. 3681 */ 3682 sp->autoclose = 0; 3683 3684 /* User specified fragmentation limit. */ 3685 sp->user_frag = 0; 3686 3687 sp->adaptation_ind = 0; 3688 3689 sp->pf = sctp_get_pf_specific(sk->sk_family); 3690 3691 /* Control variables for partial data delivery. */ 3692 atomic_set(&sp->pd_mode, 0); 3693 skb_queue_head_init(&sp->pd_lobby); 3694 sp->frag_interleave = 0; 3695 3696 /* Create a per socket endpoint structure. Even if we 3697 * change the data structure relationships, this may still 3698 * be useful for storing pre-connect address information. 3699 */ 3700 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3701 if (!ep) 3702 return -ENOMEM; 3703 3704 sp->ep = ep; 3705 sp->hmac = NULL; 3706 3707 SCTP_DBG_OBJCNT_INC(sock); 3708 percpu_counter_inc(&sctp_sockets_allocated); 3709 3710 local_bh_disable(); 3711 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3712 local_bh_enable(); 3713 3714 return 0; 3715 } 3716 3717 /* Cleanup any SCTP per socket resources. */ 3718 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3719 { 3720 struct sctp_endpoint *ep; 3721 3722 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3723 3724 /* Release our hold on the endpoint. */ 3725 ep = sctp_sk(sk)->ep; 3726 sctp_endpoint_free(ep); 3727 percpu_counter_dec(&sctp_sockets_allocated); 3728 local_bh_disable(); 3729 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3730 local_bh_enable(); 3731 } 3732 3733 /* API 4.1.7 shutdown() - TCP Style Syntax 3734 * int shutdown(int socket, int how); 3735 * 3736 * sd - the socket descriptor of the association to be closed. 3737 * how - Specifies the type of shutdown. The values are 3738 * as follows: 3739 * SHUT_RD 3740 * Disables further receive operations. No SCTP 3741 * protocol action is taken. 3742 * SHUT_WR 3743 * Disables further send operations, and initiates 3744 * the SCTP shutdown sequence. 3745 * SHUT_RDWR 3746 * Disables further send and receive operations 3747 * and initiates the SCTP shutdown sequence. 3748 */ 3749 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3750 { 3751 struct sctp_endpoint *ep; 3752 struct sctp_association *asoc; 3753 3754 if (!sctp_style(sk, TCP)) 3755 return; 3756 3757 if (how & SEND_SHUTDOWN) { 3758 ep = sctp_sk(sk)->ep; 3759 if (!list_empty(&ep->asocs)) { 3760 asoc = list_entry(ep->asocs.next, 3761 struct sctp_association, asocs); 3762 sctp_primitive_SHUTDOWN(asoc, NULL); 3763 } 3764 } 3765 } 3766 3767 /* 7.2.1 Association Status (SCTP_STATUS) 3768 3769 * Applications can retrieve current status information about an 3770 * association, including association state, peer receiver window size, 3771 * number of unacked data chunks, and number of data chunks pending 3772 * receipt. This information is read-only. 3773 */ 3774 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3775 char __user *optval, 3776 int __user *optlen) 3777 { 3778 struct sctp_status status; 3779 struct sctp_association *asoc = NULL; 3780 struct sctp_transport *transport; 3781 sctp_assoc_t associd; 3782 int retval = 0; 3783 3784 if (len < sizeof(status)) { 3785 retval = -EINVAL; 3786 goto out; 3787 } 3788 3789 len = sizeof(status); 3790 if (copy_from_user(&status, optval, len)) { 3791 retval = -EFAULT; 3792 goto out; 3793 } 3794 3795 associd = status.sstat_assoc_id; 3796 asoc = sctp_id2assoc(sk, associd); 3797 if (!asoc) { 3798 retval = -EINVAL; 3799 goto out; 3800 } 3801 3802 transport = asoc->peer.primary_path; 3803 3804 status.sstat_assoc_id = sctp_assoc2id(asoc); 3805 status.sstat_state = asoc->state; 3806 status.sstat_rwnd = asoc->peer.rwnd; 3807 status.sstat_unackdata = asoc->unack_data; 3808 3809 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3810 status.sstat_instrms = asoc->c.sinit_max_instreams; 3811 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3812 status.sstat_fragmentation_point = asoc->frag_point; 3813 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3814 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3815 transport->af_specific->sockaddr_len); 3816 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3817 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3818 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3819 status.sstat_primary.spinfo_state = transport->state; 3820 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3821 status.sstat_primary.spinfo_srtt = transport->srtt; 3822 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3823 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3824 3825 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3826 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3827 3828 if (put_user(len, optlen)) { 3829 retval = -EFAULT; 3830 goto out; 3831 } 3832 3833 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3834 len, status.sstat_state, status.sstat_rwnd, 3835 status.sstat_assoc_id); 3836 3837 if (copy_to_user(optval, &status, len)) { 3838 retval = -EFAULT; 3839 goto out; 3840 } 3841 3842 out: 3843 return (retval); 3844 } 3845 3846 3847 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3848 * 3849 * Applications can retrieve information about a specific peer address 3850 * of an association, including its reachability state, congestion 3851 * window, and retransmission timer values. This information is 3852 * read-only. 3853 */ 3854 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3855 char __user *optval, 3856 int __user *optlen) 3857 { 3858 struct sctp_paddrinfo pinfo; 3859 struct sctp_transport *transport; 3860 int retval = 0; 3861 3862 if (len < sizeof(pinfo)) { 3863 retval = -EINVAL; 3864 goto out; 3865 } 3866 3867 len = sizeof(pinfo); 3868 if (copy_from_user(&pinfo, optval, len)) { 3869 retval = -EFAULT; 3870 goto out; 3871 } 3872 3873 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3874 pinfo.spinfo_assoc_id); 3875 if (!transport) 3876 return -EINVAL; 3877 3878 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3879 pinfo.spinfo_state = transport->state; 3880 pinfo.spinfo_cwnd = transport->cwnd; 3881 pinfo.spinfo_srtt = transport->srtt; 3882 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3883 pinfo.spinfo_mtu = transport->pathmtu; 3884 3885 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3886 pinfo.spinfo_state = SCTP_ACTIVE; 3887 3888 if (put_user(len, optlen)) { 3889 retval = -EFAULT; 3890 goto out; 3891 } 3892 3893 if (copy_to_user(optval, &pinfo, len)) { 3894 retval = -EFAULT; 3895 goto out; 3896 } 3897 3898 out: 3899 return (retval); 3900 } 3901 3902 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3903 * 3904 * This option is a on/off flag. If enabled no SCTP message 3905 * fragmentation will be performed. Instead if a message being sent 3906 * exceeds the current PMTU size, the message will NOT be sent and 3907 * instead a error will be indicated to the user. 3908 */ 3909 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3910 char __user *optval, int __user *optlen) 3911 { 3912 int val; 3913 3914 if (len < sizeof(int)) 3915 return -EINVAL; 3916 3917 len = sizeof(int); 3918 val = (sctp_sk(sk)->disable_fragments == 1); 3919 if (put_user(len, optlen)) 3920 return -EFAULT; 3921 if (copy_to_user(optval, &val, len)) 3922 return -EFAULT; 3923 return 0; 3924 } 3925 3926 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3927 * 3928 * This socket option is used to specify various notifications and 3929 * ancillary data the user wishes to receive. 3930 */ 3931 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3932 int __user *optlen) 3933 { 3934 if (len < sizeof(struct sctp_event_subscribe)) 3935 return -EINVAL; 3936 len = sizeof(struct sctp_event_subscribe); 3937 if (put_user(len, optlen)) 3938 return -EFAULT; 3939 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3940 return -EFAULT; 3941 return 0; 3942 } 3943 3944 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3945 * 3946 * This socket option is applicable to the UDP-style socket only. When 3947 * set it will cause associations that are idle for more than the 3948 * specified number of seconds to automatically close. An association 3949 * being idle is defined an association that has NOT sent or received 3950 * user data. The special value of '0' indicates that no automatic 3951 * close of any associations should be performed. The option expects an 3952 * integer defining the number of seconds of idle time before an 3953 * association is closed. 3954 */ 3955 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3956 { 3957 /* Applicable to UDP-style socket only */ 3958 if (sctp_style(sk, TCP)) 3959 return -EOPNOTSUPP; 3960 if (len < sizeof(int)) 3961 return -EINVAL; 3962 len = sizeof(int); 3963 if (put_user(len, optlen)) 3964 return -EFAULT; 3965 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3966 return -EFAULT; 3967 return 0; 3968 } 3969 3970 /* Helper routine to branch off an association to a new socket. */ 3971 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3972 struct socket **sockp) 3973 { 3974 struct sock *sk = asoc->base.sk; 3975 struct socket *sock; 3976 struct sctp_af *af; 3977 int err = 0; 3978 3979 /* An association cannot be branched off from an already peeled-off 3980 * socket, nor is this supported for tcp style sockets. 3981 */ 3982 if (!sctp_style(sk, UDP)) 3983 return -EINVAL; 3984 3985 /* Create a new socket. */ 3986 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3987 if (err < 0) 3988 return err; 3989 3990 sctp_copy_sock(sock->sk, sk, asoc); 3991 3992 /* Make peeled-off sockets more like 1-1 accepted sockets. 3993 * Set the daddr and initialize id to something more random 3994 */ 3995 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3996 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3997 3998 /* Populate the fields of the newsk from the oldsk and migrate the 3999 * asoc to the newsk. 4000 */ 4001 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4002 4003 *sockp = sock; 4004 4005 return err; 4006 } 4007 4008 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4009 { 4010 sctp_peeloff_arg_t peeloff; 4011 struct socket *newsock; 4012 int retval = 0; 4013 struct sctp_association *asoc; 4014 4015 if (len < sizeof(sctp_peeloff_arg_t)) 4016 return -EINVAL; 4017 len = sizeof(sctp_peeloff_arg_t); 4018 if (copy_from_user(&peeloff, optval, len)) 4019 return -EFAULT; 4020 4021 asoc = sctp_id2assoc(sk, peeloff.associd); 4022 if (!asoc) { 4023 retval = -EINVAL; 4024 goto out; 4025 } 4026 4027 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4028 4029 retval = sctp_do_peeloff(asoc, &newsock); 4030 if (retval < 0) 4031 goto out; 4032 4033 /* Map the socket to an unused fd that can be returned to the user. */ 4034 retval = sock_map_fd(newsock, 0); 4035 if (retval < 0) { 4036 sock_release(newsock); 4037 goto out; 4038 } 4039 4040 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4041 __func__, sk, asoc, newsock->sk, retval); 4042 4043 /* Return the fd mapped to the new socket. */ 4044 peeloff.sd = retval; 4045 if (put_user(len, optlen)) 4046 return -EFAULT; 4047 if (copy_to_user(optval, &peeloff, len)) 4048 retval = -EFAULT; 4049 4050 out: 4051 return retval; 4052 } 4053 4054 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4055 * 4056 * Applications can enable or disable heartbeats for any peer address of 4057 * an association, modify an address's heartbeat interval, force a 4058 * heartbeat to be sent immediately, and adjust the address's maximum 4059 * number of retransmissions sent before an address is considered 4060 * unreachable. The following structure is used to access and modify an 4061 * address's parameters: 4062 * 4063 * struct sctp_paddrparams { 4064 * sctp_assoc_t spp_assoc_id; 4065 * struct sockaddr_storage spp_address; 4066 * uint32_t spp_hbinterval; 4067 * uint16_t spp_pathmaxrxt; 4068 * uint32_t spp_pathmtu; 4069 * uint32_t spp_sackdelay; 4070 * uint32_t spp_flags; 4071 * }; 4072 * 4073 * spp_assoc_id - (one-to-many style socket) This is filled in the 4074 * application, and identifies the association for 4075 * this query. 4076 * spp_address - This specifies which address is of interest. 4077 * spp_hbinterval - This contains the value of the heartbeat interval, 4078 * in milliseconds. If a value of zero 4079 * is present in this field then no changes are to 4080 * be made to this parameter. 4081 * spp_pathmaxrxt - This contains the maximum number of 4082 * retransmissions before this address shall be 4083 * considered unreachable. If a value of zero 4084 * is present in this field then no changes are to 4085 * be made to this parameter. 4086 * spp_pathmtu - When Path MTU discovery is disabled the value 4087 * specified here will be the "fixed" path mtu. 4088 * Note that if the spp_address field is empty 4089 * then all associations on this address will 4090 * have this fixed path mtu set upon them. 4091 * 4092 * spp_sackdelay - When delayed sack is enabled, this value specifies 4093 * the number of milliseconds that sacks will be delayed 4094 * for. This value will apply to all addresses of an 4095 * association if the spp_address field is empty. Note 4096 * also, that if delayed sack is enabled and this 4097 * value is set to 0, no change is made to the last 4098 * recorded delayed sack timer value. 4099 * 4100 * spp_flags - These flags are used to control various features 4101 * on an association. The flag field may contain 4102 * zero or more of the following options. 4103 * 4104 * SPP_HB_ENABLE - Enable heartbeats on the 4105 * specified address. Note that if the address 4106 * field is empty all addresses for the association 4107 * have heartbeats enabled upon them. 4108 * 4109 * SPP_HB_DISABLE - Disable heartbeats on the 4110 * speicifed address. Note that if the address 4111 * field is empty all addresses for the association 4112 * will have their heartbeats disabled. Note also 4113 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4114 * mutually exclusive, only one of these two should 4115 * be specified. Enabling both fields will have 4116 * undetermined results. 4117 * 4118 * SPP_HB_DEMAND - Request a user initiated heartbeat 4119 * to be made immediately. 4120 * 4121 * SPP_PMTUD_ENABLE - This field will enable PMTU 4122 * discovery upon the specified address. Note that 4123 * if the address feild is empty then all addresses 4124 * on the association are effected. 4125 * 4126 * SPP_PMTUD_DISABLE - This field will disable PMTU 4127 * discovery upon the specified address. Note that 4128 * if the address feild is empty then all addresses 4129 * on the association are effected. Not also that 4130 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4131 * exclusive. Enabling both will have undetermined 4132 * results. 4133 * 4134 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4135 * on delayed sack. The time specified in spp_sackdelay 4136 * is used to specify the sack delay for this address. Note 4137 * that if spp_address is empty then all addresses will 4138 * enable delayed sack and take on the sack delay 4139 * value specified in spp_sackdelay. 4140 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4141 * off delayed sack. If the spp_address field is blank then 4142 * delayed sack is disabled for the entire association. Note 4143 * also that this field is mutually exclusive to 4144 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4145 * results. 4146 */ 4147 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4148 char __user *optval, int __user *optlen) 4149 { 4150 struct sctp_paddrparams params; 4151 struct sctp_transport *trans = NULL; 4152 struct sctp_association *asoc = NULL; 4153 struct sctp_sock *sp = sctp_sk(sk); 4154 4155 if (len < sizeof(struct sctp_paddrparams)) 4156 return -EINVAL; 4157 len = sizeof(struct sctp_paddrparams); 4158 if (copy_from_user(¶ms, optval, len)) 4159 return -EFAULT; 4160 4161 /* If an address other than INADDR_ANY is specified, and 4162 * no transport is found, then the request is invalid. 4163 */ 4164 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4165 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4166 params.spp_assoc_id); 4167 if (!trans) { 4168 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4169 return -EINVAL; 4170 } 4171 } 4172 4173 /* Get association, if assoc_id != 0 and the socket is a one 4174 * to many style socket, and an association was not found, then 4175 * the id was invalid. 4176 */ 4177 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4178 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4179 SCTP_DEBUG_PRINTK("Failed no association\n"); 4180 return -EINVAL; 4181 } 4182 4183 if (trans) { 4184 /* Fetch transport values. */ 4185 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4186 params.spp_pathmtu = trans->pathmtu; 4187 params.spp_pathmaxrxt = trans->pathmaxrxt; 4188 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4189 4190 /*draft-11 doesn't say what to return in spp_flags*/ 4191 params.spp_flags = trans->param_flags; 4192 } else if (asoc) { 4193 /* Fetch association values. */ 4194 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4195 params.spp_pathmtu = asoc->pathmtu; 4196 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4197 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4198 4199 /*draft-11 doesn't say what to return in spp_flags*/ 4200 params.spp_flags = asoc->param_flags; 4201 } else { 4202 /* Fetch socket values. */ 4203 params.spp_hbinterval = sp->hbinterval; 4204 params.spp_pathmtu = sp->pathmtu; 4205 params.spp_sackdelay = sp->sackdelay; 4206 params.spp_pathmaxrxt = sp->pathmaxrxt; 4207 4208 /*draft-11 doesn't say what to return in spp_flags*/ 4209 params.spp_flags = sp->param_flags; 4210 } 4211 4212 if (copy_to_user(optval, ¶ms, len)) 4213 return -EFAULT; 4214 4215 if (put_user(len, optlen)) 4216 return -EFAULT; 4217 4218 return 0; 4219 } 4220 4221 /* 4222 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4223 * 4224 * This option will effect the way delayed acks are performed. This 4225 * option allows you to get or set the delayed ack time, in 4226 * milliseconds. It also allows changing the delayed ack frequency. 4227 * Changing the frequency to 1 disables the delayed sack algorithm. If 4228 * the assoc_id is 0, then this sets or gets the endpoints default 4229 * values. If the assoc_id field is non-zero, then the set or get 4230 * effects the specified association for the one to many model (the 4231 * assoc_id field is ignored by the one to one model). Note that if 4232 * sack_delay or sack_freq are 0 when setting this option, then the 4233 * current values will remain unchanged. 4234 * 4235 * struct sctp_sack_info { 4236 * sctp_assoc_t sack_assoc_id; 4237 * uint32_t sack_delay; 4238 * uint32_t sack_freq; 4239 * }; 4240 * 4241 * sack_assoc_id - This parameter, indicates which association the user 4242 * is performing an action upon. Note that if this field's value is 4243 * zero then the endpoints default value is changed (effecting future 4244 * associations only). 4245 * 4246 * sack_delay - This parameter contains the number of milliseconds that 4247 * the user is requesting the delayed ACK timer be set to. Note that 4248 * this value is defined in the standard to be between 200 and 500 4249 * milliseconds. 4250 * 4251 * sack_freq - This parameter contains the number of packets that must 4252 * be received before a sack is sent without waiting for the delay 4253 * timer to expire. The default value for this is 2, setting this 4254 * value to 1 will disable the delayed sack algorithm. 4255 */ 4256 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4257 char __user *optval, 4258 int __user *optlen) 4259 { 4260 struct sctp_sack_info params; 4261 struct sctp_association *asoc = NULL; 4262 struct sctp_sock *sp = sctp_sk(sk); 4263 4264 if (len >= sizeof(struct sctp_sack_info)) { 4265 len = sizeof(struct sctp_sack_info); 4266 4267 if (copy_from_user(¶ms, optval, len)) 4268 return -EFAULT; 4269 } else if (len == sizeof(struct sctp_assoc_value)) { 4270 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 4271 "in delayed_ack socket option deprecated\n"); 4272 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 4273 if (copy_from_user(¶ms, optval, len)) 4274 return -EFAULT; 4275 } else 4276 return - EINVAL; 4277 4278 /* Get association, if sack_assoc_id != 0 and the socket is a one 4279 * to many style socket, and an association was not found, then 4280 * the id was invalid. 4281 */ 4282 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4283 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4284 return -EINVAL; 4285 4286 if (asoc) { 4287 /* Fetch association values. */ 4288 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4289 params.sack_delay = jiffies_to_msecs( 4290 asoc->sackdelay); 4291 params.sack_freq = asoc->sackfreq; 4292 4293 } else { 4294 params.sack_delay = 0; 4295 params.sack_freq = 1; 4296 } 4297 } else { 4298 /* Fetch socket values. */ 4299 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4300 params.sack_delay = sp->sackdelay; 4301 params.sack_freq = sp->sackfreq; 4302 } else { 4303 params.sack_delay = 0; 4304 params.sack_freq = 1; 4305 } 4306 } 4307 4308 if (copy_to_user(optval, ¶ms, len)) 4309 return -EFAULT; 4310 4311 if (put_user(len, optlen)) 4312 return -EFAULT; 4313 4314 return 0; 4315 } 4316 4317 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4318 * 4319 * Applications can specify protocol parameters for the default association 4320 * initialization. The option name argument to setsockopt() and getsockopt() 4321 * is SCTP_INITMSG. 4322 * 4323 * Setting initialization parameters is effective only on an unconnected 4324 * socket (for UDP-style sockets only future associations are effected 4325 * by the change). With TCP-style sockets, this option is inherited by 4326 * sockets derived from a listener socket. 4327 */ 4328 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4329 { 4330 if (len < sizeof(struct sctp_initmsg)) 4331 return -EINVAL; 4332 len = sizeof(struct sctp_initmsg); 4333 if (put_user(len, optlen)) 4334 return -EFAULT; 4335 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4336 return -EFAULT; 4337 return 0; 4338 } 4339 4340 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4341 char __user *optval, 4342 int __user *optlen) 4343 { 4344 sctp_assoc_t id; 4345 struct sctp_association *asoc; 4346 struct list_head *pos; 4347 int cnt = 0; 4348 4349 if (len < sizeof(sctp_assoc_t)) 4350 return -EINVAL; 4351 4352 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4353 return -EFAULT; 4354 4355 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD " 4356 "socket option deprecated\n"); 4357 /* For UDP-style sockets, id specifies the association to query. */ 4358 asoc = sctp_id2assoc(sk, id); 4359 if (!asoc) 4360 return -EINVAL; 4361 4362 list_for_each(pos, &asoc->peer.transport_addr_list) { 4363 cnt ++; 4364 } 4365 4366 return cnt; 4367 } 4368 4369 /* 4370 * Old API for getting list of peer addresses. Does not work for 32-bit 4371 * programs running on a 64-bit kernel 4372 */ 4373 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4374 char __user *optval, 4375 int __user *optlen) 4376 { 4377 struct sctp_association *asoc; 4378 int cnt = 0; 4379 struct sctp_getaddrs_old getaddrs; 4380 struct sctp_transport *from; 4381 void __user *to; 4382 union sctp_addr temp; 4383 struct sctp_sock *sp = sctp_sk(sk); 4384 int addrlen; 4385 4386 if (len < sizeof(struct sctp_getaddrs_old)) 4387 return -EINVAL; 4388 4389 len = sizeof(struct sctp_getaddrs_old); 4390 4391 if (copy_from_user(&getaddrs, optval, len)) 4392 return -EFAULT; 4393 4394 if (getaddrs.addr_num <= 0) return -EINVAL; 4395 4396 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD " 4397 "socket option deprecated\n"); 4398 4399 /* For UDP-style sockets, id specifies the association to query. */ 4400 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4401 if (!asoc) 4402 return -EINVAL; 4403 4404 to = (void __user *)getaddrs.addrs; 4405 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4406 transports) { 4407 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4408 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4409 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4410 if (copy_to_user(to, &temp, addrlen)) 4411 return -EFAULT; 4412 to += addrlen ; 4413 cnt ++; 4414 if (cnt >= getaddrs.addr_num) break; 4415 } 4416 getaddrs.addr_num = cnt; 4417 if (put_user(len, optlen)) 4418 return -EFAULT; 4419 if (copy_to_user(optval, &getaddrs, len)) 4420 return -EFAULT; 4421 4422 return 0; 4423 } 4424 4425 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4426 char __user *optval, int __user *optlen) 4427 { 4428 struct sctp_association *asoc; 4429 int cnt = 0; 4430 struct sctp_getaddrs getaddrs; 4431 struct sctp_transport *from; 4432 void __user *to; 4433 union sctp_addr temp; 4434 struct sctp_sock *sp = sctp_sk(sk); 4435 int addrlen; 4436 size_t space_left; 4437 int bytes_copied; 4438 4439 if (len < sizeof(struct sctp_getaddrs)) 4440 return -EINVAL; 4441 4442 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4443 return -EFAULT; 4444 4445 /* For UDP-style sockets, id specifies the association to query. */ 4446 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4447 if (!asoc) 4448 return -EINVAL; 4449 4450 to = optval + offsetof(struct sctp_getaddrs,addrs); 4451 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4452 4453 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4454 transports) { 4455 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4456 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4457 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4458 if (space_left < addrlen) 4459 return -ENOMEM; 4460 if (copy_to_user(to, &temp, addrlen)) 4461 return -EFAULT; 4462 to += addrlen; 4463 cnt++; 4464 space_left -= addrlen; 4465 } 4466 4467 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4468 return -EFAULT; 4469 bytes_copied = ((char __user *)to) - optval; 4470 if (put_user(bytes_copied, optlen)) 4471 return -EFAULT; 4472 4473 return 0; 4474 } 4475 4476 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4477 char __user *optval, 4478 int __user *optlen) 4479 { 4480 sctp_assoc_t id; 4481 struct sctp_bind_addr *bp; 4482 struct sctp_association *asoc; 4483 struct sctp_sockaddr_entry *addr; 4484 int cnt = 0; 4485 4486 if (len < sizeof(sctp_assoc_t)) 4487 return -EINVAL; 4488 4489 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4490 return -EFAULT; 4491 4492 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD " 4493 "socket option deprecated\n"); 4494 4495 /* 4496 * For UDP-style sockets, id specifies the association to query. 4497 * If the id field is set to the value '0' then the locally bound 4498 * addresses are returned without regard to any particular 4499 * association. 4500 */ 4501 if (0 == id) { 4502 bp = &sctp_sk(sk)->ep->base.bind_addr; 4503 } else { 4504 asoc = sctp_id2assoc(sk, id); 4505 if (!asoc) 4506 return -EINVAL; 4507 bp = &asoc->base.bind_addr; 4508 } 4509 4510 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4511 * addresses from the global local address list. 4512 */ 4513 if (sctp_list_single_entry(&bp->address_list)) { 4514 addr = list_entry(bp->address_list.next, 4515 struct sctp_sockaddr_entry, list); 4516 if (sctp_is_any(sk, &addr->a)) { 4517 rcu_read_lock(); 4518 list_for_each_entry_rcu(addr, 4519 &sctp_local_addr_list, list) { 4520 if (!addr->valid) 4521 continue; 4522 4523 if ((PF_INET == sk->sk_family) && 4524 (AF_INET6 == addr->a.sa.sa_family)) 4525 continue; 4526 4527 if ((PF_INET6 == sk->sk_family) && 4528 inet_v6_ipv6only(sk) && 4529 (AF_INET == addr->a.sa.sa_family)) 4530 continue; 4531 4532 cnt++; 4533 } 4534 rcu_read_unlock(); 4535 } else { 4536 cnt = 1; 4537 } 4538 goto done; 4539 } 4540 4541 /* Protection on the bound address list is not needed, 4542 * since in the socket option context we hold the socket lock, 4543 * so there is no way that the bound address list can change. 4544 */ 4545 list_for_each_entry(addr, &bp->address_list, list) { 4546 cnt ++; 4547 } 4548 done: 4549 return cnt; 4550 } 4551 4552 /* Helper function that copies local addresses to user and returns the number 4553 * of addresses copied. 4554 */ 4555 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4556 int max_addrs, void *to, 4557 int *bytes_copied) 4558 { 4559 struct sctp_sockaddr_entry *addr; 4560 union sctp_addr temp; 4561 int cnt = 0; 4562 int addrlen; 4563 4564 rcu_read_lock(); 4565 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4566 if (!addr->valid) 4567 continue; 4568 4569 if ((PF_INET == sk->sk_family) && 4570 (AF_INET6 == addr->a.sa.sa_family)) 4571 continue; 4572 if ((PF_INET6 == sk->sk_family) && 4573 inet_v6_ipv6only(sk) && 4574 (AF_INET == addr->a.sa.sa_family)) 4575 continue; 4576 memcpy(&temp, &addr->a, sizeof(temp)); 4577 if (!temp.v4.sin_port) 4578 temp.v4.sin_port = htons(port); 4579 4580 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4581 &temp); 4582 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4583 memcpy(to, &temp, addrlen); 4584 4585 to += addrlen; 4586 *bytes_copied += addrlen; 4587 cnt ++; 4588 if (cnt >= max_addrs) break; 4589 } 4590 rcu_read_unlock(); 4591 4592 return cnt; 4593 } 4594 4595 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4596 size_t space_left, int *bytes_copied) 4597 { 4598 struct sctp_sockaddr_entry *addr; 4599 union sctp_addr temp; 4600 int cnt = 0; 4601 int addrlen; 4602 4603 rcu_read_lock(); 4604 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4605 if (!addr->valid) 4606 continue; 4607 4608 if ((PF_INET == sk->sk_family) && 4609 (AF_INET6 == addr->a.sa.sa_family)) 4610 continue; 4611 if ((PF_INET6 == sk->sk_family) && 4612 inet_v6_ipv6only(sk) && 4613 (AF_INET == addr->a.sa.sa_family)) 4614 continue; 4615 memcpy(&temp, &addr->a, sizeof(temp)); 4616 if (!temp.v4.sin_port) 4617 temp.v4.sin_port = htons(port); 4618 4619 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4620 &temp); 4621 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4622 if (space_left < addrlen) { 4623 cnt = -ENOMEM; 4624 break; 4625 } 4626 memcpy(to, &temp, addrlen); 4627 4628 to += addrlen; 4629 cnt ++; 4630 space_left -= addrlen; 4631 *bytes_copied += addrlen; 4632 } 4633 rcu_read_unlock(); 4634 4635 return cnt; 4636 } 4637 4638 /* Old API for getting list of local addresses. Does not work for 32-bit 4639 * programs running on a 64-bit kernel 4640 */ 4641 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4642 char __user *optval, int __user *optlen) 4643 { 4644 struct sctp_bind_addr *bp; 4645 struct sctp_association *asoc; 4646 int cnt = 0; 4647 struct sctp_getaddrs_old getaddrs; 4648 struct sctp_sockaddr_entry *addr; 4649 void __user *to; 4650 union sctp_addr temp; 4651 struct sctp_sock *sp = sctp_sk(sk); 4652 int addrlen; 4653 int err = 0; 4654 void *addrs; 4655 void *buf; 4656 int bytes_copied = 0; 4657 4658 if (len < sizeof(struct sctp_getaddrs_old)) 4659 return -EINVAL; 4660 4661 len = sizeof(struct sctp_getaddrs_old); 4662 if (copy_from_user(&getaddrs, optval, len)) 4663 return -EFAULT; 4664 4665 if (getaddrs.addr_num <= 0 || 4666 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr))) 4667 return -EINVAL; 4668 4669 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD " 4670 "socket option deprecated\n"); 4671 4672 /* 4673 * For UDP-style sockets, id specifies the association to query. 4674 * If the id field is set to the value '0' then the locally bound 4675 * addresses are returned without regard to any particular 4676 * association. 4677 */ 4678 if (0 == getaddrs.assoc_id) { 4679 bp = &sctp_sk(sk)->ep->base.bind_addr; 4680 } else { 4681 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4682 if (!asoc) 4683 return -EINVAL; 4684 bp = &asoc->base.bind_addr; 4685 } 4686 4687 to = getaddrs.addrs; 4688 4689 /* Allocate space for a local instance of packed array to hold all 4690 * the data. We store addresses here first and then put write them 4691 * to the user in one shot. 4692 */ 4693 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4694 GFP_KERNEL); 4695 if (!addrs) 4696 return -ENOMEM; 4697 4698 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4699 * addresses from the global local address list. 4700 */ 4701 if (sctp_list_single_entry(&bp->address_list)) { 4702 addr = list_entry(bp->address_list.next, 4703 struct sctp_sockaddr_entry, list); 4704 if (sctp_is_any(sk, &addr->a)) { 4705 cnt = sctp_copy_laddrs_old(sk, bp->port, 4706 getaddrs.addr_num, 4707 addrs, &bytes_copied); 4708 goto copy_getaddrs; 4709 } 4710 } 4711 4712 buf = addrs; 4713 /* Protection on the bound address list is not needed since 4714 * in the socket option context we hold a socket lock and 4715 * thus the bound address list can't change. 4716 */ 4717 list_for_each_entry(addr, &bp->address_list, list) { 4718 memcpy(&temp, &addr->a, sizeof(temp)); 4719 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4720 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4721 memcpy(buf, &temp, addrlen); 4722 buf += addrlen; 4723 bytes_copied += addrlen; 4724 cnt ++; 4725 if (cnt >= getaddrs.addr_num) break; 4726 } 4727 4728 copy_getaddrs: 4729 /* copy the entire address list into the user provided space */ 4730 if (copy_to_user(to, addrs, bytes_copied)) { 4731 err = -EFAULT; 4732 goto error; 4733 } 4734 4735 /* copy the leading structure back to user */ 4736 getaddrs.addr_num = cnt; 4737 if (copy_to_user(optval, &getaddrs, len)) 4738 err = -EFAULT; 4739 4740 error: 4741 kfree(addrs); 4742 return err; 4743 } 4744 4745 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4746 char __user *optval, int __user *optlen) 4747 { 4748 struct sctp_bind_addr *bp; 4749 struct sctp_association *asoc; 4750 int cnt = 0; 4751 struct sctp_getaddrs getaddrs; 4752 struct sctp_sockaddr_entry *addr; 4753 void __user *to; 4754 union sctp_addr temp; 4755 struct sctp_sock *sp = sctp_sk(sk); 4756 int addrlen; 4757 int err = 0; 4758 size_t space_left; 4759 int bytes_copied = 0; 4760 void *addrs; 4761 void *buf; 4762 4763 if (len < sizeof(struct sctp_getaddrs)) 4764 return -EINVAL; 4765 4766 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4767 return -EFAULT; 4768 4769 /* 4770 * For UDP-style sockets, id specifies the association to query. 4771 * If the id field is set to the value '0' then the locally bound 4772 * addresses are returned without regard to any particular 4773 * association. 4774 */ 4775 if (0 == getaddrs.assoc_id) { 4776 bp = &sctp_sk(sk)->ep->base.bind_addr; 4777 } else { 4778 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4779 if (!asoc) 4780 return -EINVAL; 4781 bp = &asoc->base.bind_addr; 4782 } 4783 4784 to = optval + offsetof(struct sctp_getaddrs,addrs); 4785 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4786 4787 addrs = kmalloc(space_left, GFP_KERNEL); 4788 if (!addrs) 4789 return -ENOMEM; 4790 4791 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4792 * addresses from the global local address list. 4793 */ 4794 if (sctp_list_single_entry(&bp->address_list)) { 4795 addr = list_entry(bp->address_list.next, 4796 struct sctp_sockaddr_entry, list); 4797 if (sctp_is_any(sk, &addr->a)) { 4798 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4799 space_left, &bytes_copied); 4800 if (cnt < 0) { 4801 err = cnt; 4802 goto out; 4803 } 4804 goto copy_getaddrs; 4805 } 4806 } 4807 4808 buf = addrs; 4809 /* Protection on the bound address list is not needed since 4810 * in the socket option context we hold a socket lock and 4811 * thus the bound address list can't change. 4812 */ 4813 list_for_each_entry(addr, &bp->address_list, list) { 4814 memcpy(&temp, &addr->a, sizeof(temp)); 4815 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4816 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4817 if (space_left < addrlen) { 4818 err = -ENOMEM; /*fixme: right error?*/ 4819 goto out; 4820 } 4821 memcpy(buf, &temp, addrlen); 4822 buf += addrlen; 4823 bytes_copied += addrlen; 4824 cnt ++; 4825 space_left -= addrlen; 4826 } 4827 4828 copy_getaddrs: 4829 if (copy_to_user(to, addrs, bytes_copied)) { 4830 err = -EFAULT; 4831 goto out; 4832 } 4833 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4834 err = -EFAULT; 4835 goto out; 4836 } 4837 if (put_user(bytes_copied, optlen)) 4838 err = -EFAULT; 4839 out: 4840 kfree(addrs); 4841 return err; 4842 } 4843 4844 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4845 * 4846 * Requests that the local SCTP stack use the enclosed peer address as 4847 * the association primary. The enclosed address must be one of the 4848 * association peer's addresses. 4849 */ 4850 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4851 char __user *optval, int __user *optlen) 4852 { 4853 struct sctp_prim prim; 4854 struct sctp_association *asoc; 4855 struct sctp_sock *sp = sctp_sk(sk); 4856 4857 if (len < sizeof(struct sctp_prim)) 4858 return -EINVAL; 4859 4860 len = sizeof(struct sctp_prim); 4861 4862 if (copy_from_user(&prim, optval, len)) 4863 return -EFAULT; 4864 4865 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4866 if (!asoc) 4867 return -EINVAL; 4868 4869 if (!asoc->peer.primary_path) 4870 return -ENOTCONN; 4871 4872 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4873 asoc->peer.primary_path->af_specific->sockaddr_len); 4874 4875 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4876 (union sctp_addr *)&prim.ssp_addr); 4877 4878 if (put_user(len, optlen)) 4879 return -EFAULT; 4880 if (copy_to_user(optval, &prim, len)) 4881 return -EFAULT; 4882 4883 return 0; 4884 } 4885 4886 /* 4887 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4888 * 4889 * Requests that the local endpoint set the specified Adaptation Layer 4890 * Indication parameter for all future INIT and INIT-ACK exchanges. 4891 */ 4892 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4893 char __user *optval, int __user *optlen) 4894 { 4895 struct sctp_setadaptation adaptation; 4896 4897 if (len < sizeof(struct sctp_setadaptation)) 4898 return -EINVAL; 4899 4900 len = sizeof(struct sctp_setadaptation); 4901 4902 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4903 4904 if (put_user(len, optlen)) 4905 return -EFAULT; 4906 if (copy_to_user(optval, &adaptation, len)) 4907 return -EFAULT; 4908 4909 return 0; 4910 } 4911 4912 /* 4913 * 4914 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4915 * 4916 * Applications that wish to use the sendto() system call may wish to 4917 * specify a default set of parameters that would normally be supplied 4918 * through the inclusion of ancillary data. This socket option allows 4919 * such an application to set the default sctp_sndrcvinfo structure. 4920 4921 4922 * The application that wishes to use this socket option simply passes 4923 * in to this call the sctp_sndrcvinfo structure defined in Section 4924 * 5.2.2) The input parameters accepted by this call include 4925 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4926 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4927 * to this call if the caller is using the UDP model. 4928 * 4929 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4930 */ 4931 static int sctp_getsockopt_default_send_param(struct sock *sk, 4932 int len, char __user *optval, 4933 int __user *optlen) 4934 { 4935 struct sctp_sndrcvinfo info; 4936 struct sctp_association *asoc; 4937 struct sctp_sock *sp = sctp_sk(sk); 4938 4939 if (len < sizeof(struct sctp_sndrcvinfo)) 4940 return -EINVAL; 4941 4942 len = sizeof(struct sctp_sndrcvinfo); 4943 4944 if (copy_from_user(&info, optval, len)) 4945 return -EFAULT; 4946 4947 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4948 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4949 return -EINVAL; 4950 4951 if (asoc) { 4952 info.sinfo_stream = asoc->default_stream; 4953 info.sinfo_flags = asoc->default_flags; 4954 info.sinfo_ppid = asoc->default_ppid; 4955 info.sinfo_context = asoc->default_context; 4956 info.sinfo_timetolive = asoc->default_timetolive; 4957 } else { 4958 info.sinfo_stream = sp->default_stream; 4959 info.sinfo_flags = sp->default_flags; 4960 info.sinfo_ppid = sp->default_ppid; 4961 info.sinfo_context = sp->default_context; 4962 info.sinfo_timetolive = sp->default_timetolive; 4963 } 4964 4965 if (put_user(len, optlen)) 4966 return -EFAULT; 4967 if (copy_to_user(optval, &info, len)) 4968 return -EFAULT; 4969 4970 return 0; 4971 } 4972 4973 /* 4974 * 4975 * 7.1.5 SCTP_NODELAY 4976 * 4977 * Turn on/off any Nagle-like algorithm. This means that packets are 4978 * generally sent as soon as possible and no unnecessary delays are 4979 * introduced, at the cost of more packets in the network. Expects an 4980 * integer boolean flag. 4981 */ 4982 4983 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4984 char __user *optval, int __user *optlen) 4985 { 4986 int val; 4987 4988 if (len < sizeof(int)) 4989 return -EINVAL; 4990 4991 len = sizeof(int); 4992 val = (sctp_sk(sk)->nodelay == 1); 4993 if (put_user(len, optlen)) 4994 return -EFAULT; 4995 if (copy_to_user(optval, &val, len)) 4996 return -EFAULT; 4997 return 0; 4998 } 4999 5000 /* 5001 * 5002 * 7.1.1 SCTP_RTOINFO 5003 * 5004 * The protocol parameters used to initialize and bound retransmission 5005 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5006 * and modify these parameters. 5007 * All parameters are time values, in milliseconds. A value of 0, when 5008 * modifying the parameters, indicates that the current value should not 5009 * be changed. 5010 * 5011 */ 5012 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5013 char __user *optval, 5014 int __user *optlen) { 5015 struct sctp_rtoinfo rtoinfo; 5016 struct sctp_association *asoc; 5017 5018 if (len < sizeof (struct sctp_rtoinfo)) 5019 return -EINVAL; 5020 5021 len = sizeof(struct sctp_rtoinfo); 5022 5023 if (copy_from_user(&rtoinfo, optval, len)) 5024 return -EFAULT; 5025 5026 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5027 5028 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5029 return -EINVAL; 5030 5031 /* Values corresponding to the specific association. */ 5032 if (asoc) { 5033 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5034 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5035 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5036 } else { 5037 /* Values corresponding to the endpoint. */ 5038 struct sctp_sock *sp = sctp_sk(sk); 5039 5040 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5041 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5042 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5043 } 5044 5045 if (put_user(len, optlen)) 5046 return -EFAULT; 5047 5048 if (copy_to_user(optval, &rtoinfo, len)) 5049 return -EFAULT; 5050 5051 return 0; 5052 } 5053 5054 /* 5055 * 5056 * 7.1.2 SCTP_ASSOCINFO 5057 * 5058 * This option is used to tune the maximum retransmission attempts 5059 * of the association. 5060 * Returns an error if the new association retransmission value is 5061 * greater than the sum of the retransmission value of the peer. 5062 * See [SCTP] for more information. 5063 * 5064 */ 5065 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5066 char __user *optval, 5067 int __user *optlen) 5068 { 5069 5070 struct sctp_assocparams assocparams; 5071 struct sctp_association *asoc; 5072 struct list_head *pos; 5073 int cnt = 0; 5074 5075 if (len < sizeof (struct sctp_assocparams)) 5076 return -EINVAL; 5077 5078 len = sizeof(struct sctp_assocparams); 5079 5080 if (copy_from_user(&assocparams, optval, len)) 5081 return -EFAULT; 5082 5083 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5084 5085 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5086 return -EINVAL; 5087 5088 /* Values correspoinding to the specific association */ 5089 if (asoc) { 5090 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5091 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5092 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5093 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5094 * 1000) + 5095 (asoc->cookie_life.tv_usec 5096 / 1000); 5097 5098 list_for_each(pos, &asoc->peer.transport_addr_list) { 5099 cnt ++; 5100 } 5101 5102 assocparams.sasoc_number_peer_destinations = cnt; 5103 } else { 5104 /* Values corresponding to the endpoint */ 5105 struct sctp_sock *sp = sctp_sk(sk); 5106 5107 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5108 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5109 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5110 assocparams.sasoc_cookie_life = 5111 sp->assocparams.sasoc_cookie_life; 5112 assocparams.sasoc_number_peer_destinations = 5113 sp->assocparams. 5114 sasoc_number_peer_destinations; 5115 } 5116 5117 if (put_user(len, optlen)) 5118 return -EFAULT; 5119 5120 if (copy_to_user(optval, &assocparams, len)) 5121 return -EFAULT; 5122 5123 return 0; 5124 } 5125 5126 /* 5127 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5128 * 5129 * This socket option is a boolean flag which turns on or off mapped V4 5130 * addresses. If this option is turned on and the socket is type 5131 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5132 * If this option is turned off, then no mapping will be done of V4 5133 * addresses and a user will receive both PF_INET6 and PF_INET type 5134 * addresses on the socket. 5135 */ 5136 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5137 char __user *optval, int __user *optlen) 5138 { 5139 int val; 5140 struct sctp_sock *sp = sctp_sk(sk); 5141 5142 if (len < sizeof(int)) 5143 return -EINVAL; 5144 5145 len = sizeof(int); 5146 val = sp->v4mapped; 5147 if (put_user(len, optlen)) 5148 return -EFAULT; 5149 if (copy_to_user(optval, &val, len)) 5150 return -EFAULT; 5151 5152 return 0; 5153 } 5154 5155 /* 5156 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5157 * (chapter and verse is quoted at sctp_setsockopt_context()) 5158 */ 5159 static int sctp_getsockopt_context(struct sock *sk, int len, 5160 char __user *optval, int __user *optlen) 5161 { 5162 struct sctp_assoc_value params; 5163 struct sctp_sock *sp; 5164 struct sctp_association *asoc; 5165 5166 if (len < sizeof(struct sctp_assoc_value)) 5167 return -EINVAL; 5168 5169 len = sizeof(struct sctp_assoc_value); 5170 5171 if (copy_from_user(¶ms, optval, len)) 5172 return -EFAULT; 5173 5174 sp = sctp_sk(sk); 5175 5176 if (params.assoc_id != 0) { 5177 asoc = sctp_id2assoc(sk, params.assoc_id); 5178 if (!asoc) 5179 return -EINVAL; 5180 params.assoc_value = asoc->default_rcv_context; 5181 } else { 5182 params.assoc_value = sp->default_rcv_context; 5183 } 5184 5185 if (put_user(len, optlen)) 5186 return -EFAULT; 5187 if (copy_to_user(optval, ¶ms, len)) 5188 return -EFAULT; 5189 5190 return 0; 5191 } 5192 5193 /* 5194 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5195 * This option will get or set the maximum size to put in any outgoing 5196 * SCTP DATA chunk. If a message is larger than this size it will be 5197 * fragmented by SCTP into the specified size. Note that the underlying 5198 * SCTP implementation may fragment into smaller sized chunks when the 5199 * PMTU of the underlying association is smaller than the value set by 5200 * the user. The default value for this option is '0' which indicates 5201 * the user is NOT limiting fragmentation and only the PMTU will effect 5202 * SCTP's choice of DATA chunk size. Note also that values set larger 5203 * than the maximum size of an IP datagram will effectively let SCTP 5204 * control fragmentation (i.e. the same as setting this option to 0). 5205 * 5206 * The following structure is used to access and modify this parameter: 5207 * 5208 * struct sctp_assoc_value { 5209 * sctp_assoc_t assoc_id; 5210 * uint32_t assoc_value; 5211 * }; 5212 * 5213 * assoc_id: This parameter is ignored for one-to-one style sockets. 5214 * For one-to-many style sockets this parameter indicates which 5215 * association the user is performing an action upon. Note that if 5216 * this field's value is zero then the endpoints default value is 5217 * changed (effecting future associations only). 5218 * assoc_value: This parameter specifies the maximum size in bytes. 5219 */ 5220 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5221 char __user *optval, int __user *optlen) 5222 { 5223 struct sctp_assoc_value params; 5224 struct sctp_association *asoc; 5225 5226 if (len == sizeof(int)) { 5227 printk(KERN_WARNING 5228 "SCTP: Use of int in maxseg socket option deprecated\n"); 5229 printk(KERN_WARNING 5230 "SCTP: Use struct sctp_assoc_value instead\n"); 5231 params.assoc_id = 0; 5232 } else if (len >= sizeof(struct sctp_assoc_value)) { 5233 len = sizeof(struct sctp_assoc_value); 5234 if (copy_from_user(¶ms, optval, sizeof(params))) 5235 return -EFAULT; 5236 } else 5237 return -EINVAL; 5238 5239 asoc = sctp_id2assoc(sk, params.assoc_id); 5240 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5241 return -EINVAL; 5242 5243 if (asoc) 5244 params.assoc_value = asoc->frag_point; 5245 else 5246 params.assoc_value = sctp_sk(sk)->user_frag; 5247 5248 if (put_user(len, optlen)) 5249 return -EFAULT; 5250 if (len == sizeof(int)) { 5251 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5252 return -EFAULT; 5253 } else { 5254 if (copy_to_user(optval, ¶ms, len)) 5255 return -EFAULT; 5256 } 5257 5258 return 0; 5259 } 5260 5261 /* 5262 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5263 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5264 */ 5265 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5266 char __user *optval, int __user *optlen) 5267 { 5268 int val; 5269 5270 if (len < sizeof(int)) 5271 return -EINVAL; 5272 5273 len = sizeof(int); 5274 5275 val = sctp_sk(sk)->frag_interleave; 5276 if (put_user(len, optlen)) 5277 return -EFAULT; 5278 if (copy_to_user(optval, &val, len)) 5279 return -EFAULT; 5280 5281 return 0; 5282 } 5283 5284 /* 5285 * 7.1.25. Set or Get the sctp partial delivery point 5286 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5287 */ 5288 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5289 char __user *optval, 5290 int __user *optlen) 5291 { 5292 u32 val; 5293 5294 if (len < sizeof(u32)) 5295 return -EINVAL; 5296 5297 len = sizeof(u32); 5298 5299 val = sctp_sk(sk)->pd_point; 5300 if (put_user(len, optlen)) 5301 return -EFAULT; 5302 if (copy_to_user(optval, &val, len)) 5303 return -EFAULT; 5304 5305 return -ENOTSUPP; 5306 } 5307 5308 /* 5309 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5310 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5311 */ 5312 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5313 char __user *optval, 5314 int __user *optlen) 5315 { 5316 struct sctp_assoc_value params; 5317 struct sctp_sock *sp; 5318 struct sctp_association *asoc; 5319 5320 if (len == sizeof(int)) { 5321 printk(KERN_WARNING 5322 "SCTP: Use of int in max_burst socket option deprecated\n"); 5323 printk(KERN_WARNING 5324 "SCTP: Use struct sctp_assoc_value instead\n"); 5325 params.assoc_id = 0; 5326 } else if (len >= sizeof(struct sctp_assoc_value)) { 5327 len = sizeof(struct sctp_assoc_value); 5328 if (copy_from_user(¶ms, optval, len)) 5329 return -EFAULT; 5330 } else 5331 return -EINVAL; 5332 5333 sp = sctp_sk(sk); 5334 5335 if (params.assoc_id != 0) { 5336 asoc = sctp_id2assoc(sk, params.assoc_id); 5337 if (!asoc) 5338 return -EINVAL; 5339 params.assoc_value = asoc->max_burst; 5340 } else 5341 params.assoc_value = sp->max_burst; 5342 5343 if (len == sizeof(int)) { 5344 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5345 return -EFAULT; 5346 } else { 5347 if (copy_to_user(optval, ¶ms, len)) 5348 return -EFAULT; 5349 } 5350 5351 return 0; 5352 5353 } 5354 5355 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5356 char __user *optval, int __user *optlen) 5357 { 5358 struct sctp_hmacalgo __user *p = (void __user *)optval; 5359 struct sctp_hmac_algo_param *hmacs; 5360 __u16 data_len = 0; 5361 u32 num_idents; 5362 5363 if (!sctp_auth_enable) 5364 return -EACCES; 5365 5366 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5367 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5368 5369 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5370 return -EINVAL; 5371 5372 len = sizeof(struct sctp_hmacalgo) + data_len; 5373 num_idents = data_len / sizeof(u16); 5374 5375 if (put_user(len, optlen)) 5376 return -EFAULT; 5377 if (put_user(num_idents, &p->shmac_num_idents)) 5378 return -EFAULT; 5379 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5380 return -EFAULT; 5381 return 0; 5382 } 5383 5384 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5385 char __user *optval, int __user *optlen) 5386 { 5387 struct sctp_authkeyid val; 5388 struct sctp_association *asoc; 5389 5390 if (!sctp_auth_enable) 5391 return -EACCES; 5392 5393 if (len < sizeof(struct sctp_authkeyid)) 5394 return -EINVAL; 5395 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5396 return -EFAULT; 5397 5398 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5399 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5400 return -EINVAL; 5401 5402 if (asoc) 5403 val.scact_keynumber = asoc->active_key_id; 5404 else 5405 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5406 5407 len = sizeof(struct sctp_authkeyid); 5408 if (put_user(len, optlen)) 5409 return -EFAULT; 5410 if (copy_to_user(optval, &val, len)) 5411 return -EFAULT; 5412 5413 return 0; 5414 } 5415 5416 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5417 char __user *optval, int __user *optlen) 5418 { 5419 struct sctp_authchunks __user *p = (void __user *)optval; 5420 struct sctp_authchunks val; 5421 struct sctp_association *asoc; 5422 struct sctp_chunks_param *ch; 5423 u32 num_chunks = 0; 5424 char __user *to; 5425 5426 if (!sctp_auth_enable) 5427 return -EACCES; 5428 5429 if (len < sizeof(struct sctp_authchunks)) 5430 return -EINVAL; 5431 5432 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5433 return -EFAULT; 5434 5435 to = p->gauth_chunks; 5436 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5437 if (!asoc) 5438 return -EINVAL; 5439 5440 ch = asoc->peer.peer_chunks; 5441 if (!ch) 5442 goto num; 5443 5444 /* See if the user provided enough room for all the data */ 5445 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5446 if (len < num_chunks) 5447 return -EINVAL; 5448 5449 if (copy_to_user(to, ch->chunks, num_chunks)) 5450 return -EFAULT; 5451 num: 5452 len = sizeof(struct sctp_authchunks) + num_chunks; 5453 if (put_user(len, optlen)) return -EFAULT; 5454 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5455 return -EFAULT; 5456 return 0; 5457 } 5458 5459 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5460 char __user *optval, int __user *optlen) 5461 { 5462 struct sctp_authchunks __user *p = (void __user *)optval; 5463 struct sctp_authchunks val; 5464 struct sctp_association *asoc; 5465 struct sctp_chunks_param *ch; 5466 u32 num_chunks = 0; 5467 char __user *to; 5468 5469 if (!sctp_auth_enable) 5470 return -EACCES; 5471 5472 if (len < sizeof(struct sctp_authchunks)) 5473 return -EINVAL; 5474 5475 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5476 return -EFAULT; 5477 5478 to = p->gauth_chunks; 5479 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5480 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5481 return -EINVAL; 5482 5483 if (asoc) 5484 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5485 else 5486 ch = sctp_sk(sk)->ep->auth_chunk_list; 5487 5488 if (!ch) 5489 goto num; 5490 5491 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5492 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5493 return -EINVAL; 5494 5495 if (copy_to_user(to, ch->chunks, num_chunks)) 5496 return -EFAULT; 5497 num: 5498 len = sizeof(struct sctp_authchunks) + num_chunks; 5499 if (put_user(len, optlen)) 5500 return -EFAULT; 5501 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5502 return -EFAULT; 5503 5504 return 0; 5505 } 5506 5507 /* 5508 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5509 * This option gets the current number of associations that are attached 5510 * to a one-to-many style socket. The option value is an uint32_t. 5511 */ 5512 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5513 char __user *optval, int __user *optlen) 5514 { 5515 struct sctp_sock *sp = sctp_sk(sk); 5516 struct sctp_association *asoc; 5517 u32 val = 0; 5518 5519 if (sctp_style(sk, TCP)) 5520 return -EOPNOTSUPP; 5521 5522 if (len < sizeof(u32)) 5523 return -EINVAL; 5524 5525 len = sizeof(u32); 5526 5527 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5528 val++; 5529 } 5530 5531 if (put_user(len, optlen)) 5532 return -EFAULT; 5533 if (copy_to_user(optval, &val, len)) 5534 return -EFAULT; 5535 5536 return 0; 5537 } 5538 5539 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5540 char __user *optval, int __user *optlen) 5541 { 5542 int retval = 0; 5543 int len; 5544 5545 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5546 sk, optname); 5547 5548 /* I can hardly begin to describe how wrong this is. This is 5549 * so broken as to be worse than useless. The API draft 5550 * REALLY is NOT helpful here... I am not convinced that the 5551 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5552 * are at all well-founded. 5553 */ 5554 if (level != SOL_SCTP) { 5555 struct sctp_af *af = sctp_sk(sk)->pf->af; 5556 5557 retval = af->getsockopt(sk, level, optname, optval, optlen); 5558 return retval; 5559 } 5560 5561 if (get_user(len, optlen)) 5562 return -EFAULT; 5563 5564 sctp_lock_sock(sk); 5565 5566 switch (optname) { 5567 case SCTP_STATUS: 5568 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5569 break; 5570 case SCTP_DISABLE_FRAGMENTS: 5571 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5572 optlen); 5573 break; 5574 case SCTP_EVENTS: 5575 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5576 break; 5577 case SCTP_AUTOCLOSE: 5578 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5579 break; 5580 case SCTP_SOCKOPT_PEELOFF: 5581 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5582 break; 5583 case SCTP_PEER_ADDR_PARAMS: 5584 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5585 optlen); 5586 break; 5587 case SCTP_DELAYED_ACK: 5588 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5589 optlen); 5590 break; 5591 case SCTP_INITMSG: 5592 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5593 break; 5594 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5595 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5596 optlen); 5597 break; 5598 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5599 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5600 optlen); 5601 break; 5602 case SCTP_GET_PEER_ADDRS_OLD: 5603 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5604 optlen); 5605 break; 5606 case SCTP_GET_LOCAL_ADDRS_OLD: 5607 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5608 optlen); 5609 break; 5610 case SCTP_GET_PEER_ADDRS: 5611 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5612 optlen); 5613 break; 5614 case SCTP_GET_LOCAL_ADDRS: 5615 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5616 optlen); 5617 break; 5618 case SCTP_SOCKOPT_CONNECTX3: 5619 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5620 break; 5621 case SCTP_DEFAULT_SEND_PARAM: 5622 retval = sctp_getsockopt_default_send_param(sk, len, 5623 optval, optlen); 5624 break; 5625 case SCTP_PRIMARY_ADDR: 5626 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5627 break; 5628 case SCTP_NODELAY: 5629 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5630 break; 5631 case SCTP_RTOINFO: 5632 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5633 break; 5634 case SCTP_ASSOCINFO: 5635 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5636 break; 5637 case SCTP_I_WANT_MAPPED_V4_ADDR: 5638 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5639 break; 5640 case SCTP_MAXSEG: 5641 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5642 break; 5643 case SCTP_GET_PEER_ADDR_INFO: 5644 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5645 optlen); 5646 break; 5647 case SCTP_ADAPTATION_LAYER: 5648 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5649 optlen); 5650 break; 5651 case SCTP_CONTEXT: 5652 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5653 break; 5654 case SCTP_FRAGMENT_INTERLEAVE: 5655 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5656 optlen); 5657 break; 5658 case SCTP_PARTIAL_DELIVERY_POINT: 5659 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5660 optlen); 5661 break; 5662 case SCTP_MAX_BURST: 5663 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5664 break; 5665 case SCTP_AUTH_KEY: 5666 case SCTP_AUTH_CHUNK: 5667 case SCTP_AUTH_DELETE_KEY: 5668 retval = -EOPNOTSUPP; 5669 break; 5670 case SCTP_HMAC_IDENT: 5671 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5672 break; 5673 case SCTP_AUTH_ACTIVE_KEY: 5674 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5675 break; 5676 case SCTP_PEER_AUTH_CHUNKS: 5677 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5678 optlen); 5679 break; 5680 case SCTP_LOCAL_AUTH_CHUNKS: 5681 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5682 optlen); 5683 break; 5684 case SCTP_GET_ASSOC_NUMBER: 5685 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5686 break; 5687 default: 5688 retval = -ENOPROTOOPT; 5689 break; 5690 } 5691 5692 sctp_release_sock(sk); 5693 return retval; 5694 } 5695 5696 static void sctp_hash(struct sock *sk) 5697 { 5698 /* STUB */ 5699 } 5700 5701 static void sctp_unhash(struct sock *sk) 5702 { 5703 /* STUB */ 5704 } 5705 5706 /* Check if port is acceptable. Possibly find first available port. 5707 * 5708 * The port hash table (contained in the 'global' SCTP protocol storage 5709 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5710 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5711 * list (the list number is the port number hashed out, so as you 5712 * would expect from a hash function, all the ports in a given list have 5713 * such a number that hashes out to the same list number; you were 5714 * expecting that, right?); so each list has a set of ports, with a 5715 * link to the socket (struct sock) that uses it, the port number and 5716 * a fastreuse flag (FIXME: NPI ipg). 5717 */ 5718 static struct sctp_bind_bucket *sctp_bucket_create( 5719 struct sctp_bind_hashbucket *head, unsigned short snum); 5720 5721 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5722 { 5723 struct sctp_bind_hashbucket *head; /* hash list */ 5724 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5725 struct hlist_node *node; 5726 unsigned short snum; 5727 int ret; 5728 5729 snum = ntohs(addr->v4.sin_port); 5730 5731 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5732 sctp_local_bh_disable(); 5733 5734 if (snum == 0) { 5735 /* Search for an available port. */ 5736 int low, high, remaining, index; 5737 unsigned int rover; 5738 5739 inet_get_local_port_range(&low, &high); 5740 remaining = (high - low) + 1; 5741 rover = net_random() % remaining + low; 5742 5743 do { 5744 rover++; 5745 if ((rover < low) || (rover > high)) 5746 rover = low; 5747 index = sctp_phashfn(rover); 5748 head = &sctp_port_hashtable[index]; 5749 sctp_spin_lock(&head->lock); 5750 sctp_for_each_hentry(pp, node, &head->chain) 5751 if (pp->port == rover) 5752 goto next; 5753 break; 5754 next: 5755 sctp_spin_unlock(&head->lock); 5756 } while (--remaining > 0); 5757 5758 /* Exhausted local port range during search? */ 5759 ret = 1; 5760 if (remaining <= 0) 5761 goto fail; 5762 5763 /* OK, here is the one we will use. HEAD (the port 5764 * hash table list entry) is non-NULL and we hold it's 5765 * mutex. 5766 */ 5767 snum = rover; 5768 } else { 5769 /* We are given an specific port number; we verify 5770 * that it is not being used. If it is used, we will 5771 * exahust the search in the hash list corresponding 5772 * to the port number (snum) - we detect that with the 5773 * port iterator, pp being NULL. 5774 */ 5775 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5776 sctp_spin_lock(&head->lock); 5777 sctp_for_each_hentry(pp, node, &head->chain) { 5778 if (pp->port == snum) 5779 goto pp_found; 5780 } 5781 } 5782 pp = NULL; 5783 goto pp_not_found; 5784 pp_found: 5785 if (!hlist_empty(&pp->owner)) { 5786 /* We had a port hash table hit - there is an 5787 * available port (pp != NULL) and it is being 5788 * used by other socket (pp->owner not empty); that other 5789 * socket is going to be sk2. 5790 */ 5791 int reuse = sk->sk_reuse; 5792 struct sock *sk2; 5793 struct hlist_node *node; 5794 5795 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5796 if (pp->fastreuse && sk->sk_reuse && 5797 sk->sk_state != SCTP_SS_LISTENING) 5798 goto success; 5799 5800 /* Run through the list of sockets bound to the port 5801 * (pp->port) [via the pointers bind_next and 5802 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5803 * we get the endpoint they describe and run through 5804 * the endpoint's list of IP (v4 or v6) addresses, 5805 * comparing each of the addresses with the address of 5806 * the socket sk. If we find a match, then that means 5807 * that this port/socket (sk) combination are already 5808 * in an endpoint. 5809 */ 5810 sk_for_each_bound(sk2, node, &pp->owner) { 5811 struct sctp_endpoint *ep2; 5812 ep2 = sctp_sk(sk2)->ep; 5813 5814 if (sk == sk2 || 5815 (reuse && sk2->sk_reuse && 5816 sk2->sk_state != SCTP_SS_LISTENING)) 5817 continue; 5818 5819 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5820 sctp_sk(sk2), sctp_sk(sk))) { 5821 ret = (long)sk2; 5822 goto fail_unlock; 5823 } 5824 } 5825 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5826 } 5827 pp_not_found: 5828 /* If there was a hash table miss, create a new port. */ 5829 ret = 1; 5830 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5831 goto fail_unlock; 5832 5833 /* In either case (hit or miss), make sure fastreuse is 1 only 5834 * if sk->sk_reuse is too (that is, if the caller requested 5835 * SO_REUSEADDR on this socket -sk-). 5836 */ 5837 if (hlist_empty(&pp->owner)) { 5838 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5839 pp->fastreuse = 1; 5840 else 5841 pp->fastreuse = 0; 5842 } else if (pp->fastreuse && 5843 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5844 pp->fastreuse = 0; 5845 5846 /* We are set, so fill up all the data in the hash table 5847 * entry, tie the socket list information with the rest of the 5848 * sockets FIXME: Blurry, NPI (ipg). 5849 */ 5850 success: 5851 if (!sctp_sk(sk)->bind_hash) { 5852 inet_sk(sk)->num = snum; 5853 sk_add_bind_node(sk, &pp->owner); 5854 sctp_sk(sk)->bind_hash = pp; 5855 } 5856 ret = 0; 5857 5858 fail_unlock: 5859 sctp_spin_unlock(&head->lock); 5860 5861 fail: 5862 sctp_local_bh_enable(); 5863 return ret; 5864 } 5865 5866 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5867 * port is requested. 5868 */ 5869 static int sctp_get_port(struct sock *sk, unsigned short snum) 5870 { 5871 long ret; 5872 union sctp_addr addr; 5873 struct sctp_af *af = sctp_sk(sk)->pf->af; 5874 5875 /* Set up a dummy address struct from the sk. */ 5876 af->from_sk(&addr, sk); 5877 addr.v4.sin_port = htons(snum); 5878 5879 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5880 ret = sctp_get_port_local(sk, &addr); 5881 5882 return (ret ? 1 : 0); 5883 } 5884 5885 /* 5886 * Move a socket to LISTENING state. 5887 */ 5888 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5889 { 5890 struct sctp_sock *sp = sctp_sk(sk); 5891 struct sctp_endpoint *ep = sp->ep; 5892 struct crypto_hash *tfm = NULL; 5893 5894 /* Allocate HMAC for generating cookie. */ 5895 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5896 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5897 if (IS_ERR(tfm)) { 5898 if (net_ratelimit()) { 5899 printk(KERN_INFO 5900 "SCTP: failed to load transform for %s: %ld\n", 5901 sctp_hmac_alg, PTR_ERR(tfm)); 5902 } 5903 return -ENOSYS; 5904 } 5905 sctp_sk(sk)->hmac = tfm; 5906 } 5907 5908 /* 5909 * If a bind() or sctp_bindx() is not called prior to a listen() 5910 * call that allows new associations to be accepted, the system 5911 * picks an ephemeral port and will choose an address set equivalent 5912 * to binding with a wildcard address. 5913 * 5914 * This is not currently spelled out in the SCTP sockets 5915 * extensions draft, but follows the practice as seen in TCP 5916 * sockets. 5917 * 5918 */ 5919 sk->sk_state = SCTP_SS_LISTENING; 5920 if (!ep->base.bind_addr.port) { 5921 if (sctp_autobind(sk)) 5922 return -EAGAIN; 5923 } else { 5924 if (sctp_get_port(sk, inet_sk(sk)->num)) { 5925 sk->sk_state = SCTP_SS_CLOSED; 5926 return -EADDRINUSE; 5927 } 5928 } 5929 5930 sk->sk_max_ack_backlog = backlog; 5931 sctp_hash_endpoint(ep); 5932 return 0; 5933 } 5934 5935 /* 5936 * 4.1.3 / 5.1.3 listen() 5937 * 5938 * By default, new associations are not accepted for UDP style sockets. 5939 * An application uses listen() to mark a socket as being able to 5940 * accept new associations. 5941 * 5942 * On TCP style sockets, applications use listen() to ready the SCTP 5943 * endpoint for accepting inbound associations. 5944 * 5945 * On both types of endpoints a backlog of '0' disables listening. 5946 * 5947 * Move a socket to LISTENING state. 5948 */ 5949 int sctp_inet_listen(struct socket *sock, int backlog) 5950 { 5951 struct sock *sk = sock->sk; 5952 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5953 int err = -EINVAL; 5954 5955 if (unlikely(backlog < 0)) 5956 return err; 5957 5958 sctp_lock_sock(sk); 5959 5960 /* Peeled-off sockets are not allowed to listen(). */ 5961 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5962 goto out; 5963 5964 if (sock->state != SS_UNCONNECTED) 5965 goto out; 5966 5967 /* If backlog is zero, disable listening. */ 5968 if (!backlog) { 5969 if (sctp_sstate(sk, CLOSED)) 5970 goto out; 5971 5972 err = 0; 5973 sctp_unhash_endpoint(ep); 5974 sk->sk_state = SCTP_SS_CLOSED; 5975 if (sk->sk_reuse) 5976 sctp_sk(sk)->bind_hash->fastreuse = 1; 5977 goto out; 5978 } 5979 5980 /* If we are already listening, just update the backlog */ 5981 if (sctp_sstate(sk, LISTENING)) 5982 sk->sk_max_ack_backlog = backlog; 5983 else { 5984 err = sctp_listen_start(sk, backlog); 5985 if (err) 5986 goto out; 5987 } 5988 5989 err = 0; 5990 out: 5991 sctp_release_sock(sk); 5992 return err; 5993 } 5994 5995 /* 5996 * This function is done by modeling the current datagram_poll() and the 5997 * tcp_poll(). Note that, based on these implementations, we don't 5998 * lock the socket in this function, even though it seems that, 5999 * ideally, locking or some other mechanisms can be used to ensure 6000 * the integrity of the counters (sndbuf and wmem_alloc) used 6001 * in this place. We assume that we don't need locks either until proven 6002 * otherwise. 6003 * 6004 * Another thing to note is that we include the Async I/O support 6005 * here, again, by modeling the current TCP/UDP code. We don't have 6006 * a good way to test with it yet. 6007 */ 6008 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6009 { 6010 struct sock *sk = sock->sk; 6011 struct sctp_sock *sp = sctp_sk(sk); 6012 unsigned int mask; 6013 6014 poll_wait(file, sk->sk_sleep, wait); 6015 6016 /* A TCP-style listening socket becomes readable when the accept queue 6017 * is not empty. 6018 */ 6019 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6020 return (!list_empty(&sp->ep->asocs)) ? 6021 (POLLIN | POLLRDNORM) : 0; 6022 6023 mask = 0; 6024 6025 /* Is there any exceptional events? */ 6026 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6027 mask |= POLLERR; 6028 if (sk->sk_shutdown & RCV_SHUTDOWN) 6029 mask |= POLLRDHUP; 6030 if (sk->sk_shutdown == SHUTDOWN_MASK) 6031 mask |= POLLHUP; 6032 6033 /* Is it readable? Reconsider this code with TCP-style support. */ 6034 if (!skb_queue_empty(&sk->sk_receive_queue) || 6035 (sk->sk_shutdown & RCV_SHUTDOWN)) 6036 mask |= POLLIN | POLLRDNORM; 6037 6038 /* The association is either gone or not ready. */ 6039 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6040 return mask; 6041 6042 /* Is it writable? */ 6043 if (sctp_writeable(sk)) { 6044 mask |= POLLOUT | POLLWRNORM; 6045 } else { 6046 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6047 /* 6048 * Since the socket is not locked, the buffer 6049 * might be made available after the writeable check and 6050 * before the bit is set. This could cause a lost I/O 6051 * signal. tcp_poll() has a race breaker for this race 6052 * condition. Based on their implementation, we put 6053 * in the following code to cover it as well. 6054 */ 6055 if (sctp_writeable(sk)) 6056 mask |= POLLOUT | POLLWRNORM; 6057 } 6058 return mask; 6059 } 6060 6061 /******************************************************************** 6062 * 2nd Level Abstractions 6063 ********************************************************************/ 6064 6065 static struct sctp_bind_bucket *sctp_bucket_create( 6066 struct sctp_bind_hashbucket *head, unsigned short snum) 6067 { 6068 struct sctp_bind_bucket *pp; 6069 6070 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6071 if (pp) { 6072 SCTP_DBG_OBJCNT_INC(bind_bucket); 6073 pp->port = snum; 6074 pp->fastreuse = 0; 6075 INIT_HLIST_HEAD(&pp->owner); 6076 hlist_add_head(&pp->node, &head->chain); 6077 } 6078 return pp; 6079 } 6080 6081 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6082 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6083 { 6084 if (pp && hlist_empty(&pp->owner)) { 6085 __hlist_del(&pp->node); 6086 kmem_cache_free(sctp_bucket_cachep, pp); 6087 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6088 } 6089 } 6090 6091 /* Release this socket's reference to a local port. */ 6092 static inline void __sctp_put_port(struct sock *sk) 6093 { 6094 struct sctp_bind_hashbucket *head = 6095 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 6096 struct sctp_bind_bucket *pp; 6097 6098 sctp_spin_lock(&head->lock); 6099 pp = sctp_sk(sk)->bind_hash; 6100 __sk_del_bind_node(sk); 6101 sctp_sk(sk)->bind_hash = NULL; 6102 inet_sk(sk)->num = 0; 6103 sctp_bucket_destroy(pp); 6104 sctp_spin_unlock(&head->lock); 6105 } 6106 6107 void sctp_put_port(struct sock *sk) 6108 { 6109 sctp_local_bh_disable(); 6110 __sctp_put_port(sk); 6111 sctp_local_bh_enable(); 6112 } 6113 6114 /* 6115 * The system picks an ephemeral port and choose an address set equivalent 6116 * to binding with a wildcard address. 6117 * One of those addresses will be the primary address for the association. 6118 * This automatically enables the multihoming capability of SCTP. 6119 */ 6120 static int sctp_autobind(struct sock *sk) 6121 { 6122 union sctp_addr autoaddr; 6123 struct sctp_af *af; 6124 __be16 port; 6125 6126 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6127 af = sctp_sk(sk)->pf->af; 6128 6129 port = htons(inet_sk(sk)->num); 6130 af->inaddr_any(&autoaddr, port); 6131 6132 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6133 } 6134 6135 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6136 * 6137 * From RFC 2292 6138 * 4.2 The cmsghdr Structure * 6139 * 6140 * When ancillary data is sent or received, any number of ancillary data 6141 * objects can be specified by the msg_control and msg_controllen members of 6142 * the msghdr structure, because each object is preceded by 6143 * a cmsghdr structure defining the object's length (the cmsg_len member). 6144 * Historically Berkeley-derived implementations have passed only one object 6145 * at a time, but this API allows multiple objects to be 6146 * passed in a single call to sendmsg() or recvmsg(). The following example 6147 * shows two ancillary data objects in a control buffer. 6148 * 6149 * |<--------------------------- msg_controllen -------------------------->| 6150 * | | 6151 * 6152 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6153 * 6154 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6155 * | | | 6156 * 6157 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6158 * 6159 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6160 * | | | | | 6161 * 6162 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6163 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6164 * 6165 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6166 * 6167 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6168 * ^ 6169 * | 6170 * 6171 * msg_control 6172 * points here 6173 */ 6174 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6175 sctp_cmsgs_t *cmsgs) 6176 { 6177 struct cmsghdr *cmsg; 6178 struct msghdr *my_msg = (struct msghdr *)msg; 6179 6180 for (cmsg = CMSG_FIRSTHDR(msg); 6181 cmsg != NULL; 6182 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6183 if (!CMSG_OK(my_msg, cmsg)) 6184 return -EINVAL; 6185 6186 /* Should we parse this header or ignore? */ 6187 if (cmsg->cmsg_level != IPPROTO_SCTP) 6188 continue; 6189 6190 /* Strictly check lengths following example in SCM code. */ 6191 switch (cmsg->cmsg_type) { 6192 case SCTP_INIT: 6193 /* SCTP Socket API Extension 6194 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6195 * 6196 * This cmsghdr structure provides information for 6197 * initializing new SCTP associations with sendmsg(). 6198 * The SCTP_INITMSG socket option uses this same data 6199 * structure. This structure is not used for 6200 * recvmsg(). 6201 * 6202 * cmsg_level cmsg_type cmsg_data[] 6203 * ------------ ------------ ---------------------- 6204 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6205 */ 6206 if (cmsg->cmsg_len != 6207 CMSG_LEN(sizeof(struct sctp_initmsg))) 6208 return -EINVAL; 6209 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6210 break; 6211 6212 case SCTP_SNDRCV: 6213 /* SCTP Socket API Extension 6214 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6215 * 6216 * This cmsghdr structure specifies SCTP options for 6217 * sendmsg() and describes SCTP header information 6218 * about a received message through recvmsg(). 6219 * 6220 * cmsg_level cmsg_type cmsg_data[] 6221 * ------------ ------------ ---------------------- 6222 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6223 */ 6224 if (cmsg->cmsg_len != 6225 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6226 return -EINVAL; 6227 6228 cmsgs->info = 6229 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6230 6231 /* Minimally, validate the sinfo_flags. */ 6232 if (cmsgs->info->sinfo_flags & 6233 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6234 SCTP_ABORT | SCTP_EOF)) 6235 return -EINVAL; 6236 break; 6237 6238 default: 6239 return -EINVAL; 6240 } 6241 } 6242 return 0; 6243 } 6244 6245 /* 6246 * Wait for a packet.. 6247 * Note: This function is the same function as in core/datagram.c 6248 * with a few modifications to make lksctp work. 6249 */ 6250 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6251 { 6252 int error; 6253 DEFINE_WAIT(wait); 6254 6255 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6256 6257 /* Socket errors? */ 6258 error = sock_error(sk); 6259 if (error) 6260 goto out; 6261 6262 if (!skb_queue_empty(&sk->sk_receive_queue)) 6263 goto ready; 6264 6265 /* Socket shut down? */ 6266 if (sk->sk_shutdown & RCV_SHUTDOWN) 6267 goto out; 6268 6269 /* Sequenced packets can come disconnected. If so we report the 6270 * problem. 6271 */ 6272 error = -ENOTCONN; 6273 6274 /* Is there a good reason to think that we may receive some data? */ 6275 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6276 goto out; 6277 6278 /* Handle signals. */ 6279 if (signal_pending(current)) 6280 goto interrupted; 6281 6282 /* Let another process have a go. Since we are going to sleep 6283 * anyway. Note: This may cause odd behaviors if the message 6284 * does not fit in the user's buffer, but this seems to be the 6285 * only way to honor MSG_DONTWAIT realistically. 6286 */ 6287 sctp_release_sock(sk); 6288 *timeo_p = schedule_timeout(*timeo_p); 6289 sctp_lock_sock(sk); 6290 6291 ready: 6292 finish_wait(sk->sk_sleep, &wait); 6293 return 0; 6294 6295 interrupted: 6296 error = sock_intr_errno(*timeo_p); 6297 6298 out: 6299 finish_wait(sk->sk_sleep, &wait); 6300 *err = error; 6301 return error; 6302 } 6303 6304 /* Receive a datagram. 6305 * Note: This is pretty much the same routine as in core/datagram.c 6306 * with a few changes to make lksctp work. 6307 */ 6308 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6309 int noblock, int *err) 6310 { 6311 int error; 6312 struct sk_buff *skb; 6313 long timeo; 6314 6315 timeo = sock_rcvtimeo(sk, noblock); 6316 6317 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6318 timeo, MAX_SCHEDULE_TIMEOUT); 6319 6320 do { 6321 /* Again only user level code calls this function, 6322 * so nothing interrupt level 6323 * will suddenly eat the receive_queue. 6324 * 6325 * Look at current nfs client by the way... 6326 * However, this function was corrent in any case. 8) 6327 */ 6328 if (flags & MSG_PEEK) { 6329 spin_lock_bh(&sk->sk_receive_queue.lock); 6330 skb = skb_peek(&sk->sk_receive_queue); 6331 if (skb) 6332 atomic_inc(&skb->users); 6333 spin_unlock_bh(&sk->sk_receive_queue.lock); 6334 } else { 6335 skb = skb_dequeue(&sk->sk_receive_queue); 6336 } 6337 6338 if (skb) 6339 return skb; 6340 6341 /* Caller is allowed not to check sk->sk_err before calling. */ 6342 error = sock_error(sk); 6343 if (error) 6344 goto no_packet; 6345 6346 if (sk->sk_shutdown & RCV_SHUTDOWN) 6347 break; 6348 6349 /* User doesn't want to wait. */ 6350 error = -EAGAIN; 6351 if (!timeo) 6352 goto no_packet; 6353 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6354 6355 return NULL; 6356 6357 no_packet: 6358 *err = error; 6359 return NULL; 6360 } 6361 6362 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6363 static void __sctp_write_space(struct sctp_association *asoc) 6364 { 6365 struct sock *sk = asoc->base.sk; 6366 struct socket *sock = sk->sk_socket; 6367 6368 if ((sctp_wspace(asoc) > 0) && sock) { 6369 if (waitqueue_active(&asoc->wait)) 6370 wake_up_interruptible(&asoc->wait); 6371 6372 if (sctp_writeable(sk)) { 6373 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6374 wake_up_interruptible(sk->sk_sleep); 6375 6376 /* Note that we try to include the Async I/O support 6377 * here by modeling from the current TCP/UDP code. 6378 * We have not tested with it yet. 6379 */ 6380 if (sock->fasync_list && 6381 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6382 sock_wake_async(sock, 6383 SOCK_WAKE_SPACE, POLL_OUT); 6384 } 6385 } 6386 } 6387 6388 /* Do accounting for the sndbuf space. 6389 * Decrement the used sndbuf space of the corresponding association by the 6390 * data size which was just transmitted(freed). 6391 */ 6392 static void sctp_wfree(struct sk_buff *skb) 6393 { 6394 struct sctp_association *asoc; 6395 struct sctp_chunk *chunk; 6396 struct sock *sk; 6397 6398 /* Get the saved chunk pointer. */ 6399 chunk = *((struct sctp_chunk **)(skb->cb)); 6400 asoc = chunk->asoc; 6401 sk = asoc->base.sk; 6402 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6403 sizeof(struct sk_buff) + 6404 sizeof(struct sctp_chunk); 6405 6406 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6407 6408 /* 6409 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6410 */ 6411 sk->sk_wmem_queued -= skb->truesize; 6412 sk_mem_uncharge(sk, skb->truesize); 6413 6414 sock_wfree(skb); 6415 __sctp_write_space(asoc); 6416 6417 sctp_association_put(asoc); 6418 } 6419 6420 /* Do accounting for the receive space on the socket. 6421 * Accounting for the association is done in ulpevent.c 6422 * We set this as a destructor for the cloned data skbs so that 6423 * accounting is done at the correct time. 6424 */ 6425 void sctp_sock_rfree(struct sk_buff *skb) 6426 { 6427 struct sock *sk = skb->sk; 6428 struct sctp_ulpevent *event = sctp_skb2event(skb); 6429 6430 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6431 6432 /* 6433 * Mimic the behavior of sock_rfree 6434 */ 6435 sk_mem_uncharge(sk, event->rmem_len); 6436 } 6437 6438 6439 /* Helper function to wait for space in the sndbuf. */ 6440 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6441 size_t msg_len) 6442 { 6443 struct sock *sk = asoc->base.sk; 6444 int err = 0; 6445 long current_timeo = *timeo_p; 6446 DEFINE_WAIT(wait); 6447 6448 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6449 asoc, (long)(*timeo_p), msg_len); 6450 6451 /* Increment the association's refcnt. */ 6452 sctp_association_hold(asoc); 6453 6454 /* Wait on the association specific sndbuf space. */ 6455 for (;;) { 6456 prepare_to_wait_exclusive(&asoc->wait, &wait, 6457 TASK_INTERRUPTIBLE); 6458 if (!*timeo_p) 6459 goto do_nonblock; 6460 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6461 asoc->base.dead) 6462 goto do_error; 6463 if (signal_pending(current)) 6464 goto do_interrupted; 6465 if (msg_len <= sctp_wspace(asoc)) 6466 break; 6467 6468 /* Let another process have a go. Since we are going 6469 * to sleep anyway. 6470 */ 6471 sctp_release_sock(sk); 6472 current_timeo = schedule_timeout(current_timeo); 6473 BUG_ON(sk != asoc->base.sk); 6474 sctp_lock_sock(sk); 6475 6476 *timeo_p = current_timeo; 6477 } 6478 6479 out: 6480 finish_wait(&asoc->wait, &wait); 6481 6482 /* Release the association's refcnt. */ 6483 sctp_association_put(asoc); 6484 6485 return err; 6486 6487 do_error: 6488 err = -EPIPE; 6489 goto out; 6490 6491 do_interrupted: 6492 err = sock_intr_errno(*timeo_p); 6493 goto out; 6494 6495 do_nonblock: 6496 err = -EAGAIN; 6497 goto out; 6498 } 6499 6500 /* If socket sndbuf has changed, wake up all per association waiters. */ 6501 void sctp_write_space(struct sock *sk) 6502 { 6503 struct sctp_association *asoc; 6504 6505 /* Wake up the tasks in each wait queue. */ 6506 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6507 __sctp_write_space(asoc); 6508 } 6509 } 6510 6511 /* Is there any sndbuf space available on the socket? 6512 * 6513 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6514 * associations on the same socket. For a UDP-style socket with 6515 * multiple associations, it is possible for it to be "unwriteable" 6516 * prematurely. I assume that this is acceptable because 6517 * a premature "unwriteable" is better than an accidental "writeable" which 6518 * would cause an unwanted block under certain circumstances. For the 1-1 6519 * UDP-style sockets or TCP-style sockets, this code should work. 6520 * - Daisy 6521 */ 6522 static int sctp_writeable(struct sock *sk) 6523 { 6524 int amt = 0; 6525 6526 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6527 if (amt < 0) 6528 amt = 0; 6529 return amt; 6530 } 6531 6532 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6533 * returns immediately with EINPROGRESS. 6534 */ 6535 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6536 { 6537 struct sock *sk = asoc->base.sk; 6538 int err = 0; 6539 long current_timeo = *timeo_p; 6540 DEFINE_WAIT(wait); 6541 6542 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6543 (long)(*timeo_p)); 6544 6545 /* Increment the association's refcnt. */ 6546 sctp_association_hold(asoc); 6547 6548 for (;;) { 6549 prepare_to_wait_exclusive(&asoc->wait, &wait, 6550 TASK_INTERRUPTIBLE); 6551 if (!*timeo_p) 6552 goto do_nonblock; 6553 if (sk->sk_shutdown & RCV_SHUTDOWN) 6554 break; 6555 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6556 asoc->base.dead) 6557 goto do_error; 6558 if (signal_pending(current)) 6559 goto do_interrupted; 6560 6561 if (sctp_state(asoc, ESTABLISHED)) 6562 break; 6563 6564 /* Let another process have a go. Since we are going 6565 * to sleep anyway. 6566 */ 6567 sctp_release_sock(sk); 6568 current_timeo = schedule_timeout(current_timeo); 6569 sctp_lock_sock(sk); 6570 6571 *timeo_p = current_timeo; 6572 } 6573 6574 out: 6575 finish_wait(&asoc->wait, &wait); 6576 6577 /* Release the association's refcnt. */ 6578 sctp_association_put(asoc); 6579 6580 return err; 6581 6582 do_error: 6583 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6584 err = -ETIMEDOUT; 6585 else 6586 err = -ECONNREFUSED; 6587 goto out; 6588 6589 do_interrupted: 6590 err = sock_intr_errno(*timeo_p); 6591 goto out; 6592 6593 do_nonblock: 6594 err = -EINPROGRESS; 6595 goto out; 6596 } 6597 6598 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6599 { 6600 struct sctp_endpoint *ep; 6601 int err = 0; 6602 DEFINE_WAIT(wait); 6603 6604 ep = sctp_sk(sk)->ep; 6605 6606 6607 for (;;) { 6608 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6609 TASK_INTERRUPTIBLE); 6610 6611 if (list_empty(&ep->asocs)) { 6612 sctp_release_sock(sk); 6613 timeo = schedule_timeout(timeo); 6614 sctp_lock_sock(sk); 6615 } 6616 6617 err = -EINVAL; 6618 if (!sctp_sstate(sk, LISTENING)) 6619 break; 6620 6621 err = 0; 6622 if (!list_empty(&ep->asocs)) 6623 break; 6624 6625 err = sock_intr_errno(timeo); 6626 if (signal_pending(current)) 6627 break; 6628 6629 err = -EAGAIN; 6630 if (!timeo) 6631 break; 6632 } 6633 6634 finish_wait(sk->sk_sleep, &wait); 6635 6636 return err; 6637 } 6638 6639 static void sctp_wait_for_close(struct sock *sk, long timeout) 6640 { 6641 DEFINE_WAIT(wait); 6642 6643 do { 6644 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6645 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6646 break; 6647 sctp_release_sock(sk); 6648 timeout = schedule_timeout(timeout); 6649 sctp_lock_sock(sk); 6650 } while (!signal_pending(current) && timeout); 6651 6652 finish_wait(sk->sk_sleep, &wait); 6653 } 6654 6655 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6656 { 6657 struct sk_buff *frag; 6658 6659 if (!skb->data_len) 6660 goto done; 6661 6662 /* Don't forget the fragments. */ 6663 skb_walk_frags(skb, frag) 6664 sctp_skb_set_owner_r_frag(frag, sk); 6665 6666 done: 6667 sctp_skb_set_owner_r(skb, sk); 6668 } 6669 6670 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6671 struct sctp_association *asoc) 6672 { 6673 struct inet_sock *inet = inet_sk(sk); 6674 struct inet_sock *newinet = inet_sk(newsk); 6675 6676 newsk->sk_type = sk->sk_type; 6677 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6678 newsk->sk_flags = sk->sk_flags; 6679 newsk->sk_no_check = sk->sk_no_check; 6680 newsk->sk_reuse = sk->sk_reuse; 6681 6682 newsk->sk_shutdown = sk->sk_shutdown; 6683 newsk->sk_destruct = inet_sock_destruct; 6684 newsk->sk_family = sk->sk_family; 6685 newsk->sk_protocol = IPPROTO_SCTP; 6686 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6687 newsk->sk_sndbuf = sk->sk_sndbuf; 6688 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6689 newsk->sk_lingertime = sk->sk_lingertime; 6690 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6691 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6692 6693 newinet = inet_sk(newsk); 6694 6695 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6696 * getsockname() and getpeername() 6697 */ 6698 newinet->sport = inet->sport; 6699 newinet->saddr = inet->saddr; 6700 newinet->rcv_saddr = inet->rcv_saddr; 6701 newinet->dport = htons(asoc->peer.port); 6702 newinet->pmtudisc = inet->pmtudisc; 6703 newinet->id = asoc->next_tsn ^ jiffies; 6704 6705 newinet->uc_ttl = inet->uc_ttl; 6706 newinet->mc_loop = 1; 6707 newinet->mc_ttl = 1; 6708 newinet->mc_index = 0; 6709 newinet->mc_list = NULL; 6710 } 6711 6712 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6713 * and its messages to the newsk. 6714 */ 6715 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6716 struct sctp_association *assoc, 6717 sctp_socket_type_t type) 6718 { 6719 struct sctp_sock *oldsp = sctp_sk(oldsk); 6720 struct sctp_sock *newsp = sctp_sk(newsk); 6721 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6722 struct sctp_endpoint *newep = newsp->ep; 6723 struct sk_buff *skb, *tmp; 6724 struct sctp_ulpevent *event; 6725 struct sctp_bind_hashbucket *head; 6726 6727 /* Migrate socket buffer sizes and all the socket level options to the 6728 * new socket. 6729 */ 6730 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6731 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6732 /* Brute force copy old sctp opt. */ 6733 inet_sk_copy_descendant(newsk, oldsk); 6734 6735 /* Restore the ep value that was overwritten with the above structure 6736 * copy. 6737 */ 6738 newsp->ep = newep; 6739 newsp->hmac = NULL; 6740 6741 /* Hook this new socket in to the bind_hash list. */ 6742 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6743 sctp_local_bh_disable(); 6744 sctp_spin_lock(&head->lock); 6745 pp = sctp_sk(oldsk)->bind_hash; 6746 sk_add_bind_node(newsk, &pp->owner); 6747 sctp_sk(newsk)->bind_hash = pp; 6748 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6749 sctp_spin_unlock(&head->lock); 6750 sctp_local_bh_enable(); 6751 6752 /* Copy the bind_addr list from the original endpoint to the new 6753 * endpoint so that we can handle restarts properly 6754 */ 6755 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6756 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6757 6758 /* Move any messages in the old socket's receive queue that are for the 6759 * peeled off association to the new socket's receive queue. 6760 */ 6761 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6762 event = sctp_skb2event(skb); 6763 if (event->asoc == assoc) { 6764 __skb_unlink(skb, &oldsk->sk_receive_queue); 6765 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6766 sctp_skb_set_owner_r_frag(skb, newsk); 6767 } 6768 } 6769 6770 /* Clean up any messages pending delivery due to partial 6771 * delivery. Three cases: 6772 * 1) No partial deliver; no work. 6773 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6774 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6775 */ 6776 skb_queue_head_init(&newsp->pd_lobby); 6777 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6778 6779 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6780 struct sk_buff_head *queue; 6781 6782 /* Decide which queue to move pd_lobby skbs to. */ 6783 if (assoc->ulpq.pd_mode) { 6784 queue = &newsp->pd_lobby; 6785 } else 6786 queue = &newsk->sk_receive_queue; 6787 6788 /* Walk through the pd_lobby, looking for skbs that 6789 * need moved to the new socket. 6790 */ 6791 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6792 event = sctp_skb2event(skb); 6793 if (event->asoc == assoc) { 6794 __skb_unlink(skb, &oldsp->pd_lobby); 6795 __skb_queue_tail(queue, skb); 6796 sctp_skb_set_owner_r_frag(skb, newsk); 6797 } 6798 } 6799 6800 /* Clear up any skbs waiting for the partial 6801 * delivery to finish. 6802 */ 6803 if (assoc->ulpq.pd_mode) 6804 sctp_clear_pd(oldsk, NULL); 6805 6806 } 6807 6808 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6809 sctp_skb_set_owner_r_frag(skb, newsk); 6810 6811 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6812 sctp_skb_set_owner_r_frag(skb, newsk); 6813 6814 /* Set the type of socket to indicate that it is peeled off from the 6815 * original UDP-style socket or created with the accept() call on a 6816 * TCP-style socket.. 6817 */ 6818 newsp->type = type; 6819 6820 /* Mark the new socket "in-use" by the user so that any packets 6821 * that may arrive on the association after we've moved it are 6822 * queued to the backlog. This prevents a potential race between 6823 * backlog processing on the old socket and new-packet processing 6824 * on the new socket. 6825 * 6826 * The caller has just allocated newsk so we can guarantee that other 6827 * paths won't try to lock it and then oldsk. 6828 */ 6829 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6830 sctp_assoc_migrate(assoc, newsk); 6831 6832 /* If the association on the newsk is already closed before accept() 6833 * is called, set RCV_SHUTDOWN flag. 6834 */ 6835 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6836 newsk->sk_shutdown |= RCV_SHUTDOWN; 6837 6838 newsk->sk_state = SCTP_SS_ESTABLISHED; 6839 sctp_release_sock(newsk); 6840 } 6841 6842 6843 /* This proto struct describes the ULP interface for SCTP. */ 6844 struct proto sctp_prot = { 6845 .name = "SCTP", 6846 .owner = THIS_MODULE, 6847 .close = sctp_close, 6848 .connect = sctp_connect, 6849 .disconnect = sctp_disconnect, 6850 .accept = sctp_accept, 6851 .ioctl = sctp_ioctl, 6852 .init = sctp_init_sock, 6853 .destroy = sctp_destroy_sock, 6854 .shutdown = sctp_shutdown, 6855 .setsockopt = sctp_setsockopt, 6856 .getsockopt = sctp_getsockopt, 6857 .sendmsg = sctp_sendmsg, 6858 .recvmsg = sctp_recvmsg, 6859 .bind = sctp_bind, 6860 .backlog_rcv = sctp_backlog_rcv, 6861 .hash = sctp_hash, 6862 .unhash = sctp_unhash, 6863 .get_port = sctp_get_port, 6864 .obj_size = sizeof(struct sctp_sock), 6865 .sysctl_mem = sysctl_sctp_mem, 6866 .sysctl_rmem = sysctl_sctp_rmem, 6867 .sysctl_wmem = sysctl_sctp_wmem, 6868 .memory_pressure = &sctp_memory_pressure, 6869 .enter_memory_pressure = sctp_enter_memory_pressure, 6870 .memory_allocated = &sctp_memory_allocated, 6871 .sockets_allocated = &sctp_sockets_allocated, 6872 }; 6873 6874 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6875 6876 struct proto sctpv6_prot = { 6877 .name = "SCTPv6", 6878 .owner = THIS_MODULE, 6879 .close = sctp_close, 6880 .connect = sctp_connect, 6881 .disconnect = sctp_disconnect, 6882 .accept = sctp_accept, 6883 .ioctl = sctp_ioctl, 6884 .init = sctp_init_sock, 6885 .destroy = sctp_destroy_sock, 6886 .shutdown = sctp_shutdown, 6887 .setsockopt = sctp_setsockopt, 6888 .getsockopt = sctp_getsockopt, 6889 .sendmsg = sctp_sendmsg, 6890 .recvmsg = sctp_recvmsg, 6891 .bind = sctp_bind, 6892 .backlog_rcv = sctp_backlog_rcv, 6893 .hash = sctp_hash, 6894 .unhash = sctp_unhash, 6895 .get_port = sctp_get_port, 6896 .obj_size = sizeof(struct sctp6_sock), 6897 .sysctl_mem = sysctl_sctp_mem, 6898 .sysctl_rmem = sysctl_sctp_rmem, 6899 .sysctl_wmem = sysctl_sctp_wmem, 6900 .memory_pressure = &sctp_memory_pressure, 6901 .enter_memory_pressure = sctp_enter_memory_pressure, 6902 .memory_allocated = &sctp_memory_allocated, 6903 .sockets_allocated = &sctp_sockets_allocated, 6904 }; 6905 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6906