xref: /linux/net/sctp/socket.c (revision 527d1470744d338c912f94bc1f4dba08ffdff349)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 
70 #include <net/ip.h>
71 #include <net/icmp.h>
72 #include <net/route.h>
73 #include <net/ipv6.h>
74 #include <net/inet_common.h>
75 #include <net/busy_poll.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <linux/export.h>
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82 #include <net/sctp/stream_sched.h>
83 
84 /* Forward declarations for internal helper functions. */
85 static int sctp_writeable(struct sock *sk);
86 static void sctp_wfree(struct sk_buff *skb);
87 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
88 				size_t msg_len);
89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
91 static int sctp_wait_for_accept(struct sock *sk, long timeo);
92 static void sctp_wait_for_close(struct sock *sk, long timeo);
93 static void sctp_destruct_sock(struct sock *sk);
94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
95 					union sctp_addr *addr, int len);
96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf(struct sctp_association *asoc,
101 			    struct sctp_chunk *chunk);
102 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
103 static int sctp_autobind(struct sock *sk);
104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
105 			      struct sctp_association *assoc,
106 			      enum sctp_socket_type type);
107 
108 static unsigned long sctp_memory_pressure;
109 static atomic_long_t sctp_memory_allocated;
110 struct percpu_counter sctp_sockets_allocated;
111 
112 static void sctp_enter_memory_pressure(struct sock *sk)
113 {
114 	sctp_memory_pressure = 1;
115 }
116 
117 
118 /* Get the sndbuf space available at the time on the association.  */
119 static inline int sctp_wspace(struct sctp_association *asoc)
120 {
121 	int amt;
122 
123 	if (asoc->ep->sndbuf_policy)
124 		amt = asoc->sndbuf_used;
125 	else
126 		amt = sk_wmem_alloc_get(asoc->base.sk);
127 
128 	if (amt >= asoc->base.sk->sk_sndbuf) {
129 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
130 			amt = 0;
131 		else {
132 			amt = sk_stream_wspace(asoc->base.sk);
133 			if (amt < 0)
134 				amt = 0;
135 		}
136 	} else {
137 		amt = asoc->base.sk->sk_sndbuf - amt;
138 	}
139 	return amt;
140 }
141 
142 /* Increment the used sndbuf space count of the corresponding association by
143  * the size of the outgoing data chunk.
144  * Also, set the skb destructor for sndbuf accounting later.
145  *
146  * Since it is always 1-1 between chunk and skb, and also a new skb is always
147  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
148  * destructor in the data chunk skb for the purpose of the sndbuf space
149  * tracking.
150  */
151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
152 {
153 	struct sctp_association *asoc = chunk->asoc;
154 	struct sock *sk = asoc->base.sk;
155 
156 	/* The sndbuf space is tracked per association.  */
157 	sctp_association_hold(asoc);
158 
159 	skb_set_owner_w(chunk->skb, sk);
160 
161 	chunk->skb->destructor = sctp_wfree;
162 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
163 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
164 
165 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
166 				sizeof(struct sk_buff) +
167 				sizeof(struct sctp_chunk);
168 
169 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
170 	sk->sk_wmem_queued += chunk->skb->truesize;
171 	sk_mem_charge(sk, chunk->skb->truesize);
172 }
173 
174 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
175 {
176 	skb_orphan(chunk->skb);
177 }
178 
179 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
180 				       void (*cb)(struct sctp_chunk *))
181 
182 {
183 	struct sctp_outq *q = &asoc->outqueue;
184 	struct sctp_transport *t;
185 	struct sctp_chunk *chunk;
186 
187 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
188 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
189 			cb(chunk);
190 
191 	list_for_each_entry(chunk, &q->retransmit, list)
192 		cb(chunk);
193 
194 	list_for_each_entry(chunk, &q->sacked, list)
195 		cb(chunk);
196 
197 	list_for_each_entry(chunk, &q->abandoned, list)
198 		cb(chunk);
199 
200 	list_for_each_entry(chunk, &q->out_chunk_list, list)
201 		cb(chunk);
202 }
203 
204 /* Verify that this is a valid address. */
205 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
206 				   int len)
207 {
208 	struct sctp_af *af;
209 
210 	/* Verify basic sockaddr. */
211 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
212 	if (!af)
213 		return -EINVAL;
214 
215 	/* Is this a valid SCTP address?  */
216 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
217 		return -EINVAL;
218 
219 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
220 		return -EINVAL;
221 
222 	return 0;
223 }
224 
225 /* Look up the association by its id.  If this is not a UDP-style
226  * socket, the ID field is always ignored.
227  */
228 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
229 {
230 	struct sctp_association *asoc = NULL;
231 
232 	/* If this is not a UDP-style socket, assoc id should be ignored. */
233 	if (!sctp_style(sk, UDP)) {
234 		/* Return NULL if the socket state is not ESTABLISHED. It
235 		 * could be a TCP-style listening socket or a socket which
236 		 * hasn't yet called connect() to establish an association.
237 		 */
238 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
239 			return NULL;
240 
241 		/* Get the first and the only association from the list. */
242 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
243 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
244 					  struct sctp_association, asocs);
245 		return asoc;
246 	}
247 
248 	/* Otherwise this is a UDP-style socket. */
249 	if (!id || (id == (sctp_assoc_t)-1))
250 		return NULL;
251 
252 	spin_lock_bh(&sctp_assocs_id_lock);
253 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
254 	spin_unlock_bh(&sctp_assocs_id_lock);
255 
256 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
257 		return NULL;
258 
259 	return asoc;
260 }
261 
262 /* Look up the transport from an address and an assoc id. If both address and
263  * id are specified, the associations matching the address and the id should be
264  * the same.
265  */
266 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
267 					      struct sockaddr_storage *addr,
268 					      sctp_assoc_t id)
269 {
270 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
271 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
272 	union sctp_addr *laddr = (union sctp_addr *)addr;
273 	struct sctp_transport *transport;
274 
275 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
276 		return NULL;
277 
278 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
279 					       laddr,
280 					       &transport);
281 
282 	if (!addr_asoc)
283 		return NULL;
284 
285 	id_asoc = sctp_id2assoc(sk, id);
286 	if (id_asoc && (id_asoc != addr_asoc))
287 		return NULL;
288 
289 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
290 						(union sctp_addr *)addr);
291 
292 	return transport;
293 }
294 
295 /* API 3.1.2 bind() - UDP Style Syntax
296  * The syntax of bind() is,
297  *
298  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
299  *
300  *   sd      - the socket descriptor returned by socket().
301  *   addr    - the address structure (struct sockaddr_in or struct
302  *             sockaddr_in6 [RFC 2553]),
303  *   addr_len - the size of the address structure.
304  */
305 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
306 {
307 	int retval = 0;
308 
309 	lock_sock(sk);
310 
311 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
312 		 addr, addr_len);
313 
314 	/* Disallow binding twice. */
315 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
316 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
317 				      addr_len);
318 	else
319 		retval = -EINVAL;
320 
321 	release_sock(sk);
322 
323 	return retval;
324 }
325 
326 static long sctp_get_port_local(struct sock *, union sctp_addr *);
327 
328 /* Verify this is a valid sockaddr. */
329 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
330 					union sctp_addr *addr, int len)
331 {
332 	struct sctp_af *af;
333 
334 	/* Check minimum size.  */
335 	if (len < sizeof (struct sockaddr))
336 		return NULL;
337 
338 	/* V4 mapped address are really of AF_INET family */
339 	if (addr->sa.sa_family == AF_INET6 &&
340 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
341 		if (!opt->pf->af_supported(AF_INET, opt))
342 			return NULL;
343 	} else {
344 		/* Does this PF support this AF? */
345 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
346 			return NULL;
347 	}
348 
349 	/* If we get this far, af is valid. */
350 	af = sctp_get_af_specific(addr->sa.sa_family);
351 
352 	if (len < af->sockaddr_len)
353 		return NULL;
354 
355 	return af;
356 }
357 
358 /* Bind a local address either to an endpoint or to an association.  */
359 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
360 {
361 	struct net *net = sock_net(sk);
362 	struct sctp_sock *sp = sctp_sk(sk);
363 	struct sctp_endpoint *ep = sp->ep;
364 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
365 	struct sctp_af *af;
366 	unsigned short snum;
367 	int ret = 0;
368 
369 	/* Common sockaddr verification. */
370 	af = sctp_sockaddr_af(sp, addr, len);
371 	if (!af) {
372 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
373 			 __func__, sk, addr, len);
374 		return -EINVAL;
375 	}
376 
377 	snum = ntohs(addr->v4.sin_port);
378 
379 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
380 		 __func__, sk, &addr->sa, bp->port, snum, len);
381 
382 	/* PF specific bind() address verification. */
383 	if (!sp->pf->bind_verify(sp, addr))
384 		return -EADDRNOTAVAIL;
385 
386 	/* We must either be unbound, or bind to the same port.
387 	 * It's OK to allow 0 ports if we are already bound.
388 	 * We'll just inhert an already bound port in this case
389 	 */
390 	if (bp->port) {
391 		if (!snum)
392 			snum = bp->port;
393 		else if (snum != bp->port) {
394 			pr_debug("%s: new port %d doesn't match existing port "
395 				 "%d\n", __func__, snum, bp->port);
396 			return -EINVAL;
397 		}
398 	}
399 
400 	if (snum && snum < inet_prot_sock(net) &&
401 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
402 		return -EACCES;
403 
404 	/* See if the address matches any of the addresses we may have
405 	 * already bound before checking against other endpoints.
406 	 */
407 	if (sctp_bind_addr_match(bp, addr, sp))
408 		return -EINVAL;
409 
410 	/* Make sure we are allowed to bind here.
411 	 * The function sctp_get_port_local() does duplicate address
412 	 * detection.
413 	 */
414 	addr->v4.sin_port = htons(snum);
415 	if ((ret = sctp_get_port_local(sk, addr))) {
416 		return -EADDRINUSE;
417 	}
418 
419 	/* Refresh ephemeral port.  */
420 	if (!bp->port)
421 		bp->port = inet_sk(sk)->inet_num;
422 
423 	/* Add the address to the bind address list.
424 	 * Use GFP_ATOMIC since BHs will be disabled.
425 	 */
426 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
427 				 SCTP_ADDR_SRC, GFP_ATOMIC);
428 
429 	/* Copy back into socket for getsockname() use. */
430 	if (!ret) {
431 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
432 		sp->pf->to_sk_saddr(addr, sk);
433 	}
434 
435 	return ret;
436 }
437 
438  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
439  *
440  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
441  * at any one time.  If a sender, after sending an ASCONF chunk, decides
442  * it needs to transfer another ASCONF Chunk, it MUST wait until the
443  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
444  * subsequent ASCONF. Note this restriction binds each side, so at any
445  * time two ASCONF may be in-transit on any given association (one sent
446  * from each endpoint).
447  */
448 static int sctp_send_asconf(struct sctp_association *asoc,
449 			    struct sctp_chunk *chunk)
450 {
451 	struct net 	*net = sock_net(asoc->base.sk);
452 	int		retval = 0;
453 
454 	/* If there is an outstanding ASCONF chunk, queue it for later
455 	 * transmission.
456 	 */
457 	if (asoc->addip_last_asconf) {
458 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
459 		goto out;
460 	}
461 
462 	/* Hold the chunk until an ASCONF_ACK is received. */
463 	sctp_chunk_hold(chunk);
464 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
465 	if (retval)
466 		sctp_chunk_free(chunk);
467 	else
468 		asoc->addip_last_asconf = chunk;
469 
470 out:
471 	return retval;
472 }
473 
474 /* Add a list of addresses as bind addresses to local endpoint or
475  * association.
476  *
477  * Basically run through each address specified in the addrs/addrcnt
478  * array/length pair, determine if it is IPv6 or IPv4 and call
479  * sctp_do_bind() on it.
480  *
481  * If any of them fails, then the operation will be reversed and the
482  * ones that were added will be removed.
483  *
484  * Only sctp_setsockopt_bindx() is supposed to call this function.
485  */
486 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
487 {
488 	int cnt;
489 	int retval = 0;
490 	void *addr_buf;
491 	struct sockaddr *sa_addr;
492 	struct sctp_af *af;
493 
494 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
495 		 addrs, addrcnt);
496 
497 	addr_buf = addrs;
498 	for (cnt = 0; cnt < addrcnt; cnt++) {
499 		/* The list may contain either IPv4 or IPv6 address;
500 		 * determine the address length for walking thru the list.
501 		 */
502 		sa_addr = addr_buf;
503 		af = sctp_get_af_specific(sa_addr->sa_family);
504 		if (!af) {
505 			retval = -EINVAL;
506 			goto err_bindx_add;
507 		}
508 
509 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
510 				      af->sockaddr_len);
511 
512 		addr_buf += af->sockaddr_len;
513 
514 err_bindx_add:
515 		if (retval < 0) {
516 			/* Failed. Cleanup the ones that have been added */
517 			if (cnt > 0)
518 				sctp_bindx_rem(sk, addrs, cnt);
519 			return retval;
520 		}
521 	}
522 
523 	return retval;
524 }
525 
526 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
527  * associations that are part of the endpoint indicating that a list of local
528  * addresses are added to the endpoint.
529  *
530  * If any of the addresses is already in the bind address list of the
531  * association, we do not send the chunk for that association.  But it will not
532  * affect other associations.
533  *
534  * Only sctp_setsockopt_bindx() is supposed to call this function.
535  */
536 static int sctp_send_asconf_add_ip(struct sock		*sk,
537 				   struct sockaddr	*addrs,
538 				   int 			addrcnt)
539 {
540 	struct net *net = sock_net(sk);
541 	struct sctp_sock		*sp;
542 	struct sctp_endpoint		*ep;
543 	struct sctp_association		*asoc;
544 	struct sctp_bind_addr		*bp;
545 	struct sctp_chunk		*chunk;
546 	struct sctp_sockaddr_entry	*laddr;
547 	union sctp_addr			*addr;
548 	union sctp_addr			saveaddr;
549 	void				*addr_buf;
550 	struct sctp_af			*af;
551 	struct list_head		*p;
552 	int 				i;
553 	int 				retval = 0;
554 
555 	if (!net->sctp.addip_enable)
556 		return retval;
557 
558 	sp = sctp_sk(sk);
559 	ep = sp->ep;
560 
561 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
562 		 __func__, sk, addrs, addrcnt);
563 
564 	list_for_each_entry(asoc, &ep->asocs, asocs) {
565 		if (!asoc->peer.asconf_capable)
566 			continue;
567 
568 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
569 			continue;
570 
571 		if (!sctp_state(asoc, ESTABLISHED))
572 			continue;
573 
574 		/* Check if any address in the packed array of addresses is
575 		 * in the bind address list of the association. If so,
576 		 * do not send the asconf chunk to its peer, but continue with
577 		 * other associations.
578 		 */
579 		addr_buf = addrs;
580 		for (i = 0; i < addrcnt; i++) {
581 			addr = addr_buf;
582 			af = sctp_get_af_specific(addr->v4.sin_family);
583 			if (!af) {
584 				retval = -EINVAL;
585 				goto out;
586 			}
587 
588 			if (sctp_assoc_lookup_laddr(asoc, addr))
589 				break;
590 
591 			addr_buf += af->sockaddr_len;
592 		}
593 		if (i < addrcnt)
594 			continue;
595 
596 		/* Use the first valid address in bind addr list of
597 		 * association as Address Parameter of ASCONF CHUNK.
598 		 */
599 		bp = &asoc->base.bind_addr;
600 		p = bp->address_list.next;
601 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
602 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
603 						   addrcnt, SCTP_PARAM_ADD_IP);
604 		if (!chunk) {
605 			retval = -ENOMEM;
606 			goto out;
607 		}
608 
609 		/* Add the new addresses to the bind address list with
610 		 * use_as_src set to 0.
611 		 */
612 		addr_buf = addrs;
613 		for (i = 0; i < addrcnt; i++) {
614 			addr = addr_buf;
615 			af = sctp_get_af_specific(addr->v4.sin_family);
616 			memcpy(&saveaddr, addr, af->sockaddr_len);
617 			retval = sctp_add_bind_addr(bp, &saveaddr,
618 						    sizeof(saveaddr),
619 						    SCTP_ADDR_NEW, GFP_ATOMIC);
620 			addr_buf += af->sockaddr_len;
621 		}
622 		if (asoc->src_out_of_asoc_ok) {
623 			struct sctp_transport *trans;
624 
625 			list_for_each_entry(trans,
626 			    &asoc->peer.transport_addr_list, transports) {
627 				/* Clear the source and route cache */
628 				sctp_transport_dst_release(trans);
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				sctp_transport_route(trans, NULL,
636 				    sctp_sk(asoc->base.sk));
637 			}
638 		}
639 		retval = sctp_send_asconf(asoc, chunk);
640 	}
641 
642 out:
643 	return retval;
644 }
645 
646 /* Remove a list of addresses from bind addresses list.  Do not remove the
647  * last address.
648  *
649  * Basically run through each address specified in the addrs/addrcnt
650  * array/length pair, determine if it is IPv6 or IPv4 and call
651  * sctp_del_bind() on it.
652  *
653  * If any of them fails, then the operation will be reversed and the
654  * ones that were removed will be added back.
655  *
656  * At least one address has to be left; if only one address is
657  * available, the operation will return -EBUSY.
658  *
659  * Only sctp_setsockopt_bindx() is supposed to call this function.
660  */
661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662 {
663 	struct sctp_sock *sp = sctp_sk(sk);
664 	struct sctp_endpoint *ep = sp->ep;
665 	int cnt;
666 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 	int retval = 0;
668 	void *addr_buf;
669 	union sctp_addr *sa_addr;
670 	struct sctp_af *af;
671 
672 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 		 __func__, sk, addrs, addrcnt);
674 
675 	addr_buf = addrs;
676 	for (cnt = 0; cnt < addrcnt; cnt++) {
677 		/* If the bind address list is empty or if there is only one
678 		 * bind address, there is nothing more to be removed (we need
679 		 * at least one address here).
680 		 */
681 		if (list_empty(&bp->address_list) ||
682 		    (sctp_list_single_entry(&bp->address_list))) {
683 			retval = -EBUSY;
684 			goto err_bindx_rem;
685 		}
686 
687 		sa_addr = addr_buf;
688 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 		if (!af) {
690 			retval = -EINVAL;
691 			goto err_bindx_rem;
692 		}
693 
694 		if (!af->addr_valid(sa_addr, sp, NULL)) {
695 			retval = -EADDRNOTAVAIL;
696 			goto err_bindx_rem;
697 		}
698 
699 		if (sa_addr->v4.sin_port &&
700 		    sa_addr->v4.sin_port != htons(bp->port)) {
701 			retval = -EINVAL;
702 			goto err_bindx_rem;
703 		}
704 
705 		if (!sa_addr->v4.sin_port)
706 			sa_addr->v4.sin_port = htons(bp->port);
707 
708 		/* FIXME - There is probably a need to check if sk->sk_saddr and
709 		 * sk->sk_rcv_addr are currently set to one of the addresses to
710 		 * be removed. This is something which needs to be looked into
711 		 * when we are fixing the outstanding issues with multi-homing
712 		 * socket routing and failover schemes. Refer to comments in
713 		 * sctp_do_bind(). -daisy
714 		 */
715 		retval = sctp_del_bind_addr(bp, sa_addr);
716 
717 		addr_buf += af->sockaddr_len;
718 err_bindx_rem:
719 		if (retval < 0) {
720 			/* Failed. Add the ones that has been removed back */
721 			if (cnt > 0)
722 				sctp_bindx_add(sk, addrs, cnt);
723 			return retval;
724 		}
725 	}
726 
727 	return retval;
728 }
729 
730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731  * the associations that are part of the endpoint indicating that a list of
732  * local addresses are removed from the endpoint.
733  *
734  * If any of the addresses is already in the bind address list of the
735  * association, we do not send the chunk for that association.  But it will not
736  * affect other associations.
737  *
738  * Only sctp_setsockopt_bindx() is supposed to call this function.
739  */
740 static int sctp_send_asconf_del_ip(struct sock		*sk,
741 				   struct sockaddr	*addrs,
742 				   int			addrcnt)
743 {
744 	struct net *net = sock_net(sk);
745 	struct sctp_sock	*sp;
746 	struct sctp_endpoint	*ep;
747 	struct sctp_association	*asoc;
748 	struct sctp_transport	*transport;
749 	struct sctp_bind_addr	*bp;
750 	struct sctp_chunk	*chunk;
751 	union sctp_addr		*laddr;
752 	void			*addr_buf;
753 	struct sctp_af		*af;
754 	struct sctp_sockaddr_entry *saddr;
755 	int 			i;
756 	int 			retval = 0;
757 	int			stored = 0;
758 
759 	chunk = NULL;
760 	if (!net->sctp.addip_enable)
761 		return retval;
762 
763 	sp = sctp_sk(sk);
764 	ep = sp->ep;
765 
766 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
767 		 __func__, sk, addrs, addrcnt);
768 
769 	list_for_each_entry(asoc, &ep->asocs, asocs) {
770 
771 		if (!asoc->peer.asconf_capable)
772 			continue;
773 
774 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
775 			continue;
776 
777 		if (!sctp_state(asoc, ESTABLISHED))
778 			continue;
779 
780 		/* Check if any address in the packed array of addresses is
781 		 * not present in the bind address list of the association.
782 		 * If so, do not send the asconf chunk to its peer, but
783 		 * continue with other associations.
784 		 */
785 		addr_buf = addrs;
786 		for (i = 0; i < addrcnt; i++) {
787 			laddr = addr_buf;
788 			af = sctp_get_af_specific(laddr->v4.sin_family);
789 			if (!af) {
790 				retval = -EINVAL;
791 				goto out;
792 			}
793 
794 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
795 				break;
796 
797 			addr_buf += af->sockaddr_len;
798 		}
799 		if (i < addrcnt)
800 			continue;
801 
802 		/* Find one address in the association's bind address list
803 		 * that is not in the packed array of addresses. This is to
804 		 * make sure that we do not delete all the addresses in the
805 		 * association.
806 		 */
807 		bp = &asoc->base.bind_addr;
808 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
809 					       addrcnt, sp);
810 		if ((laddr == NULL) && (addrcnt == 1)) {
811 			if (asoc->asconf_addr_del_pending)
812 				continue;
813 			asoc->asconf_addr_del_pending =
814 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
815 			if (asoc->asconf_addr_del_pending == NULL) {
816 				retval = -ENOMEM;
817 				goto out;
818 			}
819 			asoc->asconf_addr_del_pending->sa.sa_family =
820 				    addrs->sa_family;
821 			asoc->asconf_addr_del_pending->v4.sin_port =
822 				    htons(bp->port);
823 			if (addrs->sa_family == AF_INET) {
824 				struct sockaddr_in *sin;
825 
826 				sin = (struct sockaddr_in *)addrs;
827 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
828 			} else if (addrs->sa_family == AF_INET6) {
829 				struct sockaddr_in6 *sin6;
830 
831 				sin6 = (struct sockaddr_in6 *)addrs;
832 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
833 			}
834 
835 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
836 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
837 				 asoc->asconf_addr_del_pending);
838 
839 			asoc->src_out_of_asoc_ok = 1;
840 			stored = 1;
841 			goto skip_mkasconf;
842 		}
843 
844 		if (laddr == NULL)
845 			return -EINVAL;
846 
847 		/* We do not need RCU protection throughout this loop
848 		 * because this is done under a socket lock from the
849 		 * setsockopt call.
850 		 */
851 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
852 						   SCTP_PARAM_DEL_IP);
853 		if (!chunk) {
854 			retval = -ENOMEM;
855 			goto out;
856 		}
857 
858 skip_mkasconf:
859 		/* Reset use_as_src flag for the addresses in the bind address
860 		 * list that are to be deleted.
861 		 */
862 		addr_buf = addrs;
863 		for (i = 0; i < addrcnt; i++) {
864 			laddr = addr_buf;
865 			af = sctp_get_af_specific(laddr->v4.sin_family);
866 			list_for_each_entry(saddr, &bp->address_list, list) {
867 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
868 					saddr->state = SCTP_ADDR_DEL;
869 			}
870 			addr_buf += af->sockaddr_len;
871 		}
872 
873 		/* Update the route and saddr entries for all the transports
874 		 * as some of the addresses in the bind address list are
875 		 * about to be deleted and cannot be used as source addresses.
876 		 */
877 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
878 					transports) {
879 			sctp_transport_dst_release(transport);
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * We don't use copy_from_user() for optimization: we first do the
974  * sanity checks (buffer size -fast- and access check-healthy
975  * pointer); if all of those succeed, then we can alloc the memory
976  * (expensive operation) needed to copy the data to kernel. Then we do
977  * the copying without checking the user space area
978  * (__copy_from_user()).
979  *
980  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
981  * it.
982  *
983  * sk        The sk of the socket
984  * addrs     The pointer to the addresses in user land
985  * addrssize Size of the addrs buffer
986  * op        Operation to perform (add or remove, see the flags of
987  *           sctp_bindx)
988  *
989  * Returns 0 if ok, <0 errno code on error.
990  */
991 static int sctp_setsockopt_bindx(struct sock *sk,
992 				 struct sockaddr __user *addrs,
993 				 int addrs_size, int op)
994 {
995 	struct sockaddr *kaddrs;
996 	int err;
997 	int addrcnt = 0;
998 	int walk_size = 0;
999 	struct sockaddr *sa_addr;
1000 	void *addr_buf;
1001 	struct sctp_af *af;
1002 
1003 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1004 		 __func__, sk, addrs, addrs_size, op);
1005 
1006 	if (unlikely(addrs_size <= 0))
1007 		return -EINVAL;
1008 
1009 	/* Check the user passed a healthy pointer.  */
1010 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1011 		return -EFAULT;
1012 
1013 	/* Alloc space for the address array in kernel memory.  */
1014 	kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
1015 	if (unlikely(!kaddrs))
1016 		return -ENOMEM;
1017 
1018 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1019 		kfree(kaddrs);
1020 		return -EFAULT;
1021 	}
1022 
1023 	/* Walk through the addrs buffer and count the number of addresses. */
1024 	addr_buf = kaddrs;
1025 	while (walk_size < addrs_size) {
1026 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1027 			kfree(kaddrs);
1028 			return -EINVAL;
1029 		}
1030 
1031 		sa_addr = addr_buf;
1032 		af = sctp_get_af_specific(sa_addr->sa_family);
1033 
1034 		/* If the address family is not supported or if this address
1035 		 * causes the address buffer to overflow return EINVAL.
1036 		 */
1037 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1038 			kfree(kaddrs);
1039 			return -EINVAL;
1040 		}
1041 		addrcnt++;
1042 		addr_buf += af->sockaddr_len;
1043 		walk_size += af->sockaddr_len;
1044 	}
1045 
1046 	/* Do the work. */
1047 	switch (op) {
1048 	case SCTP_BINDX_ADD_ADDR:
1049 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1050 		if (err)
1051 			goto out;
1052 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1053 		break;
1054 
1055 	case SCTP_BINDX_REM_ADDR:
1056 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1057 		if (err)
1058 			goto out;
1059 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1060 		break;
1061 
1062 	default:
1063 		err = -EINVAL;
1064 		break;
1065 	}
1066 
1067 out:
1068 	kfree(kaddrs);
1069 
1070 	return err;
1071 }
1072 
1073 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1074  *
1075  * Common routine for handling connect() and sctp_connectx().
1076  * Connect will come in with just a single address.
1077  */
1078 static int __sctp_connect(struct sock *sk,
1079 			  struct sockaddr *kaddrs,
1080 			  int addrs_size,
1081 			  sctp_assoc_t *assoc_id)
1082 {
1083 	struct net *net = sock_net(sk);
1084 	struct sctp_sock *sp;
1085 	struct sctp_endpoint *ep;
1086 	struct sctp_association *asoc = NULL;
1087 	struct sctp_association *asoc2;
1088 	struct sctp_transport *transport;
1089 	union sctp_addr to;
1090 	enum sctp_scope scope;
1091 	long timeo;
1092 	int err = 0;
1093 	int addrcnt = 0;
1094 	int walk_size = 0;
1095 	union sctp_addr *sa_addr = NULL;
1096 	void *addr_buf;
1097 	unsigned short port;
1098 	unsigned int f_flags = 0;
1099 
1100 	sp = sctp_sk(sk);
1101 	ep = sp->ep;
1102 
1103 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1104 	 * state - UDP-style peeled off socket or a TCP-style socket that
1105 	 * is already connected.
1106 	 * It cannot be done even on a TCP-style listening socket.
1107 	 */
1108 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1109 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1110 		err = -EISCONN;
1111 		goto out_free;
1112 	}
1113 
1114 	/* Walk through the addrs buffer and count the number of addresses. */
1115 	addr_buf = kaddrs;
1116 	while (walk_size < addrs_size) {
1117 		struct sctp_af *af;
1118 
1119 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1120 			err = -EINVAL;
1121 			goto out_free;
1122 		}
1123 
1124 		sa_addr = addr_buf;
1125 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1126 
1127 		/* If the address family is not supported or if this address
1128 		 * causes the address buffer to overflow return EINVAL.
1129 		 */
1130 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1131 			err = -EINVAL;
1132 			goto out_free;
1133 		}
1134 
1135 		port = ntohs(sa_addr->v4.sin_port);
1136 
1137 		/* Save current address so we can work with it */
1138 		memcpy(&to, sa_addr, af->sockaddr_len);
1139 
1140 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1141 		if (err)
1142 			goto out_free;
1143 
1144 		/* Make sure the destination port is correctly set
1145 		 * in all addresses.
1146 		 */
1147 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1148 			err = -EINVAL;
1149 			goto out_free;
1150 		}
1151 
1152 		/* Check if there already is a matching association on the
1153 		 * endpoint (other than the one created here).
1154 		 */
1155 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1156 		if (asoc2 && asoc2 != asoc) {
1157 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1158 				err = -EISCONN;
1159 			else
1160 				err = -EALREADY;
1161 			goto out_free;
1162 		}
1163 
1164 		/* If we could not find a matching association on the endpoint,
1165 		 * make sure that there is no peeled-off association matching
1166 		 * the peer address even on another socket.
1167 		 */
1168 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1169 			err = -EADDRNOTAVAIL;
1170 			goto out_free;
1171 		}
1172 
1173 		if (!asoc) {
1174 			/* If a bind() or sctp_bindx() is not called prior to
1175 			 * an sctp_connectx() call, the system picks an
1176 			 * ephemeral port and will choose an address set
1177 			 * equivalent to binding with a wildcard address.
1178 			 */
1179 			if (!ep->base.bind_addr.port) {
1180 				if (sctp_autobind(sk)) {
1181 					err = -EAGAIN;
1182 					goto out_free;
1183 				}
1184 			} else {
1185 				/*
1186 				 * If an unprivileged user inherits a 1-many
1187 				 * style socket with open associations on a
1188 				 * privileged port, it MAY be permitted to
1189 				 * accept new associations, but it SHOULD NOT
1190 				 * be permitted to open new associations.
1191 				 */
1192 				if (ep->base.bind_addr.port <
1193 				    inet_prot_sock(net) &&
1194 				    !ns_capable(net->user_ns,
1195 				    CAP_NET_BIND_SERVICE)) {
1196 					err = -EACCES;
1197 					goto out_free;
1198 				}
1199 			}
1200 
1201 			scope = sctp_scope(&to);
1202 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1203 			if (!asoc) {
1204 				err = -ENOMEM;
1205 				goto out_free;
1206 			}
1207 
1208 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1209 							      GFP_KERNEL);
1210 			if (err < 0) {
1211 				goto out_free;
1212 			}
1213 
1214 		}
1215 
1216 		/* Prime the peer's transport structures.  */
1217 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1218 						SCTP_UNKNOWN);
1219 		if (!transport) {
1220 			err = -ENOMEM;
1221 			goto out_free;
1222 		}
1223 
1224 		addrcnt++;
1225 		addr_buf += af->sockaddr_len;
1226 		walk_size += af->sockaddr_len;
1227 	}
1228 
1229 	/* In case the user of sctp_connectx() wants an association
1230 	 * id back, assign one now.
1231 	 */
1232 	if (assoc_id) {
1233 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1234 		if (err < 0)
1235 			goto out_free;
1236 	}
1237 
1238 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1239 	if (err < 0) {
1240 		goto out_free;
1241 	}
1242 
1243 	/* Initialize sk's dport and daddr for getpeername() */
1244 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1245 	sp->pf->to_sk_daddr(sa_addr, sk);
1246 	sk->sk_err = 0;
1247 
1248 	/* in-kernel sockets don't generally have a file allocated to them
1249 	 * if all they do is call sock_create_kern().
1250 	 */
1251 	if (sk->sk_socket->file)
1252 		f_flags = sk->sk_socket->file->f_flags;
1253 
1254 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1255 
1256 	if (assoc_id)
1257 		*assoc_id = asoc->assoc_id;
1258 	err = sctp_wait_for_connect(asoc, &timeo);
1259 	/* Note: the asoc may be freed after the return of
1260 	 * sctp_wait_for_connect.
1261 	 */
1262 
1263 	/* Don't free association on exit. */
1264 	asoc = NULL;
1265 
1266 out_free:
1267 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1268 		 __func__, asoc, kaddrs, err);
1269 
1270 	if (asoc) {
1271 		/* sctp_primitive_ASSOCIATE may have added this association
1272 		 * To the hash table, try to unhash it, just in case, its a noop
1273 		 * if it wasn't hashed so we're safe
1274 		 */
1275 		sctp_association_free(asoc);
1276 	}
1277 	return err;
1278 }
1279 
1280 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1281  *
1282  * API 8.9
1283  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1284  * 			sctp_assoc_t *asoc);
1285  *
1286  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1287  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1288  * or IPv6 addresses.
1289  *
1290  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1291  * Section 3.1.2 for this usage.
1292  *
1293  * addrs is a pointer to an array of one or more socket addresses. Each
1294  * address is contained in its appropriate structure (i.e. struct
1295  * sockaddr_in or struct sockaddr_in6) the family of the address type
1296  * must be used to distengish the address length (note that this
1297  * representation is termed a "packed array" of addresses). The caller
1298  * specifies the number of addresses in the array with addrcnt.
1299  *
1300  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1301  * the association id of the new association.  On failure, sctp_connectx()
1302  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1303  * is not touched by the kernel.
1304  *
1305  * For SCTP, the port given in each socket address must be the same, or
1306  * sctp_connectx() will fail, setting errno to EINVAL.
1307  *
1308  * An application can use sctp_connectx to initiate an association with
1309  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1310  * allows a caller to specify multiple addresses at which a peer can be
1311  * reached.  The way the SCTP stack uses the list of addresses to set up
1312  * the association is implementation dependent.  This function only
1313  * specifies that the stack will try to make use of all the addresses in
1314  * the list when needed.
1315  *
1316  * Note that the list of addresses passed in is only used for setting up
1317  * the association.  It does not necessarily equal the set of addresses
1318  * the peer uses for the resulting association.  If the caller wants to
1319  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1320  * retrieve them after the association has been set up.
1321  *
1322  * Basically do nothing but copying the addresses from user to kernel
1323  * land and invoking either sctp_connectx(). This is used for tunneling
1324  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1325  *
1326  * We don't use copy_from_user() for optimization: we first do the
1327  * sanity checks (buffer size -fast- and access check-healthy
1328  * pointer); if all of those succeed, then we can alloc the memory
1329  * (expensive operation) needed to copy the data to kernel. Then we do
1330  * the copying without checking the user space area
1331  * (__copy_from_user()).
1332  *
1333  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1334  * it.
1335  *
1336  * sk        The sk of the socket
1337  * addrs     The pointer to the addresses in user land
1338  * addrssize Size of the addrs buffer
1339  *
1340  * Returns >=0 if ok, <0 errno code on error.
1341  */
1342 static int __sctp_setsockopt_connectx(struct sock *sk,
1343 				      struct sockaddr __user *addrs,
1344 				      int addrs_size,
1345 				      sctp_assoc_t *assoc_id)
1346 {
1347 	struct sockaddr *kaddrs;
1348 	gfp_t gfp = GFP_KERNEL;
1349 	int err = 0;
1350 
1351 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1352 		 __func__, sk, addrs, addrs_size);
1353 
1354 	if (unlikely(addrs_size <= 0))
1355 		return -EINVAL;
1356 
1357 	/* Check the user passed a healthy pointer.  */
1358 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1359 		return -EFAULT;
1360 
1361 	/* Alloc space for the address array in kernel memory.  */
1362 	if (sk->sk_socket->file)
1363 		gfp = GFP_USER | __GFP_NOWARN;
1364 	kaddrs = kmalloc(addrs_size, gfp);
1365 	if (unlikely(!kaddrs))
1366 		return -ENOMEM;
1367 
1368 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1369 		err = -EFAULT;
1370 	} else {
1371 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1372 	}
1373 
1374 	kfree(kaddrs);
1375 
1376 	return err;
1377 }
1378 
1379 /*
1380  * This is an older interface.  It's kept for backward compatibility
1381  * to the option that doesn't provide association id.
1382  */
1383 static int sctp_setsockopt_connectx_old(struct sock *sk,
1384 					struct sockaddr __user *addrs,
1385 					int addrs_size)
1386 {
1387 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1388 }
1389 
1390 /*
1391  * New interface for the API.  The since the API is done with a socket
1392  * option, to make it simple we feed back the association id is as a return
1393  * indication to the call.  Error is always negative and association id is
1394  * always positive.
1395  */
1396 static int sctp_setsockopt_connectx(struct sock *sk,
1397 				    struct sockaddr __user *addrs,
1398 				    int addrs_size)
1399 {
1400 	sctp_assoc_t assoc_id = 0;
1401 	int err = 0;
1402 
1403 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1404 
1405 	if (err)
1406 		return err;
1407 	else
1408 		return assoc_id;
1409 }
1410 
1411 /*
1412  * New (hopefully final) interface for the API.
1413  * We use the sctp_getaddrs_old structure so that use-space library
1414  * can avoid any unnecessary allocations. The only different part
1415  * is that we store the actual length of the address buffer into the
1416  * addrs_num structure member. That way we can re-use the existing
1417  * code.
1418  */
1419 #ifdef CONFIG_COMPAT
1420 struct compat_sctp_getaddrs_old {
1421 	sctp_assoc_t	assoc_id;
1422 	s32		addr_num;
1423 	compat_uptr_t	addrs;		/* struct sockaddr * */
1424 };
1425 #endif
1426 
1427 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1428 				     char __user *optval,
1429 				     int __user *optlen)
1430 {
1431 	struct sctp_getaddrs_old param;
1432 	sctp_assoc_t assoc_id = 0;
1433 	int err = 0;
1434 
1435 #ifdef CONFIG_COMPAT
1436 	if (in_compat_syscall()) {
1437 		struct compat_sctp_getaddrs_old param32;
1438 
1439 		if (len < sizeof(param32))
1440 			return -EINVAL;
1441 		if (copy_from_user(&param32, optval, sizeof(param32)))
1442 			return -EFAULT;
1443 
1444 		param.assoc_id = param32.assoc_id;
1445 		param.addr_num = param32.addr_num;
1446 		param.addrs = compat_ptr(param32.addrs);
1447 	} else
1448 #endif
1449 	{
1450 		if (len < sizeof(param))
1451 			return -EINVAL;
1452 		if (copy_from_user(&param, optval, sizeof(param)))
1453 			return -EFAULT;
1454 	}
1455 
1456 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1457 					 param.addrs, param.addr_num,
1458 					 &assoc_id);
1459 	if (err == 0 || err == -EINPROGRESS) {
1460 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1461 			return -EFAULT;
1462 		if (put_user(sizeof(assoc_id), optlen))
1463 			return -EFAULT;
1464 	}
1465 
1466 	return err;
1467 }
1468 
1469 /* API 3.1.4 close() - UDP Style Syntax
1470  * Applications use close() to perform graceful shutdown (as described in
1471  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1472  * by a UDP-style socket.
1473  *
1474  * The syntax is
1475  *
1476  *   ret = close(int sd);
1477  *
1478  *   sd      - the socket descriptor of the associations to be closed.
1479  *
1480  * To gracefully shutdown a specific association represented by the
1481  * UDP-style socket, an application should use the sendmsg() call,
1482  * passing no user data, but including the appropriate flag in the
1483  * ancillary data (see Section xxxx).
1484  *
1485  * If sd in the close() call is a branched-off socket representing only
1486  * one association, the shutdown is performed on that association only.
1487  *
1488  * 4.1.6 close() - TCP Style Syntax
1489  *
1490  * Applications use close() to gracefully close down an association.
1491  *
1492  * The syntax is:
1493  *
1494  *    int close(int sd);
1495  *
1496  *      sd      - the socket descriptor of the association to be closed.
1497  *
1498  * After an application calls close() on a socket descriptor, no further
1499  * socket operations will succeed on that descriptor.
1500  *
1501  * API 7.1.4 SO_LINGER
1502  *
1503  * An application using the TCP-style socket can use this option to
1504  * perform the SCTP ABORT primitive.  The linger option structure is:
1505  *
1506  *  struct  linger {
1507  *     int     l_onoff;                // option on/off
1508  *     int     l_linger;               // linger time
1509  * };
1510  *
1511  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1512  * to 0, calling close() is the same as the ABORT primitive.  If the
1513  * value is set to a negative value, the setsockopt() call will return
1514  * an error.  If the value is set to a positive value linger_time, the
1515  * close() can be blocked for at most linger_time ms.  If the graceful
1516  * shutdown phase does not finish during this period, close() will
1517  * return but the graceful shutdown phase continues in the system.
1518  */
1519 static void sctp_close(struct sock *sk, long timeout)
1520 {
1521 	struct net *net = sock_net(sk);
1522 	struct sctp_endpoint *ep;
1523 	struct sctp_association *asoc;
1524 	struct list_head *pos, *temp;
1525 	unsigned int data_was_unread;
1526 
1527 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1528 
1529 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1530 	sk->sk_shutdown = SHUTDOWN_MASK;
1531 	sk->sk_state = SCTP_SS_CLOSING;
1532 
1533 	ep = sctp_sk(sk)->ep;
1534 
1535 	/* Clean up any skbs sitting on the receive queue.  */
1536 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1537 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1538 
1539 	/* Walk all associations on an endpoint.  */
1540 	list_for_each_safe(pos, temp, &ep->asocs) {
1541 		asoc = list_entry(pos, struct sctp_association, asocs);
1542 
1543 		if (sctp_style(sk, TCP)) {
1544 			/* A closed association can still be in the list if
1545 			 * it belongs to a TCP-style listening socket that is
1546 			 * not yet accepted. If so, free it. If not, send an
1547 			 * ABORT or SHUTDOWN based on the linger options.
1548 			 */
1549 			if (sctp_state(asoc, CLOSED)) {
1550 				sctp_association_free(asoc);
1551 				continue;
1552 			}
1553 		}
1554 
1555 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1556 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1557 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1558 			struct sctp_chunk *chunk;
1559 
1560 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1561 			sctp_primitive_ABORT(net, asoc, chunk);
1562 		} else
1563 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1564 	}
1565 
1566 	/* On a TCP-style socket, block for at most linger_time if set. */
1567 	if (sctp_style(sk, TCP) && timeout)
1568 		sctp_wait_for_close(sk, timeout);
1569 
1570 	/* This will run the backlog queue.  */
1571 	release_sock(sk);
1572 
1573 	/* Supposedly, no process has access to the socket, but
1574 	 * the net layers still may.
1575 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1576 	 * held and that should be grabbed before socket lock.
1577 	 */
1578 	spin_lock_bh(&net->sctp.addr_wq_lock);
1579 	bh_lock_sock_nested(sk);
1580 
1581 	/* Hold the sock, since sk_common_release() will put sock_put()
1582 	 * and we have just a little more cleanup.
1583 	 */
1584 	sock_hold(sk);
1585 	sk_common_release(sk);
1586 
1587 	bh_unlock_sock(sk);
1588 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1589 
1590 	sock_put(sk);
1591 
1592 	SCTP_DBG_OBJCNT_DEC(sock);
1593 }
1594 
1595 /* Handle EPIPE error. */
1596 static int sctp_error(struct sock *sk, int flags, int err)
1597 {
1598 	if (err == -EPIPE)
1599 		err = sock_error(sk) ? : -EPIPE;
1600 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1601 		send_sig(SIGPIPE, current, 0);
1602 	return err;
1603 }
1604 
1605 /* API 3.1.3 sendmsg() - UDP Style Syntax
1606  *
1607  * An application uses sendmsg() and recvmsg() calls to transmit data to
1608  * and receive data from its peer.
1609  *
1610  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1611  *                  int flags);
1612  *
1613  *  socket  - the socket descriptor of the endpoint.
1614  *  message - pointer to the msghdr structure which contains a single
1615  *            user message and possibly some ancillary data.
1616  *
1617  *            See Section 5 for complete description of the data
1618  *            structures.
1619  *
1620  *  flags   - flags sent or received with the user message, see Section
1621  *            5 for complete description of the flags.
1622  *
1623  * Note:  This function could use a rewrite especially when explicit
1624  * connect support comes in.
1625  */
1626 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1627 
1628 static int sctp_msghdr_parse(const struct msghdr *msg,
1629 			     struct sctp_cmsgs *cmsgs);
1630 
1631 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1632 {
1633 	struct net *net = sock_net(sk);
1634 	struct sctp_sock *sp;
1635 	struct sctp_endpoint *ep;
1636 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1637 	struct sctp_transport *transport, *chunk_tp;
1638 	struct sctp_chunk *chunk;
1639 	union sctp_addr to;
1640 	struct sockaddr *msg_name = NULL;
1641 	struct sctp_sndrcvinfo default_sinfo;
1642 	struct sctp_sndrcvinfo *sinfo;
1643 	struct sctp_initmsg *sinit;
1644 	sctp_assoc_t associd = 0;
1645 	struct sctp_cmsgs cmsgs = { NULL };
1646 	enum sctp_scope scope;
1647 	bool fill_sinfo_ttl = false, wait_connect = false;
1648 	struct sctp_datamsg *datamsg;
1649 	int msg_flags = msg->msg_flags;
1650 	__u16 sinfo_flags = 0;
1651 	long timeo;
1652 	int err;
1653 
1654 	err = 0;
1655 	sp = sctp_sk(sk);
1656 	ep = sp->ep;
1657 
1658 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1659 		 msg, msg_len, ep);
1660 
1661 	/* We cannot send a message over a TCP-style listening socket. */
1662 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1663 		err = -EPIPE;
1664 		goto out_nounlock;
1665 	}
1666 
1667 	/* Parse out the SCTP CMSGs.  */
1668 	err = sctp_msghdr_parse(msg, &cmsgs);
1669 	if (err) {
1670 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1671 		goto out_nounlock;
1672 	}
1673 
1674 	/* Fetch the destination address for this packet.  This
1675 	 * address only selects the association--it is not necessarily
1676 	 * the address we will send to.
1677 	 * For a peeled-off socket, msg_name is ignored.
1678 	 */
1679 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1680 		int msg_namelen = msg->msg_namelen;
1681 
1682 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1683 				       msg_namelen);
1684 		if (err)
1685 			return err;
1686 
1687 		if (msg_namelen > sizeof(to))
1688 			msg_namelen = sizeof(to);
1689 		memcpy(&to, msg->msg_name, msg_namelen);
1690 		msg_name = msg->msg_name;
1691 	}
1692 
1693 	sinit = cmsgs.init;
1694 	if (cmsgs.sinfo != NULL) {
1695 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1696 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1697 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1698 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1699 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1700 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1701 
1702 		sinfo = &default_sinfo;
1703 		fill_sinfo_ttl = true;
1704 	} else {
1705 		sinfo = cmsgs.srinfo;
1706 	}
1707 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1708 	if (sinfo) {
1709 		sinfo_flags = sinfo->sinfo_flags;
1710 		associd = sinfo->sinfo_assoc_id;
1711 	}
1712 
1713 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1714 		 msg_len, sinfo_flags);
1715 
1716 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1717 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1718 		err = -EINVAL;
1719 		goto out_nounlock;
1720 	}
1721 
1722 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1723 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1724 	 * If SCTP_ABORT is set, the message length could be non zero with
1725 	 * the msg_iov set to the user abort reason.
1726 	 */
1727 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1728 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1729 		err = -EINVAL;
1730 		goto out_nounlock;
1731 	}
1732 
1733 	/* If SCTP_ADDR_OVER is set, there must be an address
1734 	 * specified in msg_name.
1735 	 */
1736 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1737 		err = -EINVAL;
1738 		goto out_nounlock;
1739 	}
1740 
1741 	transport = NULL;
1742 
1743 	pr_debug("%s: about to look up association\n", __func__);
1744 
1745 	lock_sock(sk);
1746 
1747 	/* If a msg_name has been specified, assume this is to be used.  */
1748 	if (msg_name) {
1749 		/* Look for a matching association on the endpoint. */
1750 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1751 
1752 		/* If we could not find a matching association on the
1753 		 * endpoint, make sure that it is not a TCP-style
1754 		 * socket that already has an association or there is
1755 		 * no peeled-off association on another socket.
1756 		 */
1757 		if (!asoc &&
1758 		    ((sctp_style(sk, TCP) &&
1759 		      (sctp_sstate(sk, ESTABLISHED) ||
1760 		       sctp_sstate(sk, CLOSING))) ||
1761 		     sctp_endpoint_is_peeled_off(ep, &to))) {
1762 			err = -EADDRNOTAVAIL;
1763 			goto out_unlock;
1764 		}
1765 	} else {
1766 		asoc = sctp_id2assoc(sk, associd);
1767 		if (!asoc) {
1768 			err = -EPIPE;
1769 			goto out_unlock;
1770 		}
1771 	}
1772 
1773 	if (asoc) {
1774 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1775 
1776 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1777 		 * socket that has an association in CLOSED state. This can
1778 		 * happen when an accepted socket has an association that is
1779 		 * already CLOSED.
1780 		 */
1781 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1782 			err = -EPIPE;
1783 			goto out_unlock;
1784 		}
1785 
1786 		if (sinfo_flags & SCTP_EOF) {
1787 			pr_debug("%s: shutting down association:%p\n",
1788 				 __func__, asoc);
1789 
1790 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1791 			err = 0;
1792 			goto out_unlock;
1793 		}
1794 		if (sinfo_flags & SCTP_ABORT) {
1795 
1796 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1797 			if (!chunk) {
1798 				err = -ENOMEM;
1799 				goto out_unlock;
1800 			}
1801 
1802 			pr_debug("%s: aborting association:%p\n",
1803 				 __func__, asoc);
1804 
1805 			sctp_primitive_ABORT(net, asoc, chunk);
1806 			err = 0;
1807 			goto out_unlock;
1808 		}
1809 	}
1810 
1811 	/* Do we need to create the association?  */
1812 	if (!asoc) {
1813 		pr_debug("%s: there is no association yet\n", __func__);
1814 
1815 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1816 			err = -EINVAL;
1817 			goto out_unlock;
1818 		}
1819 
1820 		/* Check for invalid stream against the stream counts,
1821 		 * either the default or the user specified stream counts.
1822 		 */
1823 		if (sinfo) {
1824 			if (!sinit || !sinit->sinit_num_ostreams) {
1825 				/* Check against the defaults. */
1826 				if (sinfo->sinfo_stream >=
1827 				    sp->initmsg.sinit_num_ostreams) {
1828 					err = -EINVAL;
1829 					goto out_unlock;
1830 				}
1831 			} else {
1832 				/* Check against the requested.  */
1833 				if (sinfo->sinfo_stream >=
1834 				    sinit->sinit_num_ostreams) {
1835 					err = -EINVAL;
1836 					goto out_unlock;
1837 				}
1838 			}
1839 		}
1840 
1841 		/*
1842 		 * API 3.1.2 bind() - UDP Style Syntax
1843 		 * If a bind() or sctp_bindx() is not called prior to a
1844 		 * sendmsg() call that initiates a new association, the
1845 		 * system picks an ephemeral port and will choose an address
1846 		 * set equivalent to binding with a wildcard address.
1847 		 */
1848 		if (!ep->base.bind_addr.port) {
1849 			if (sctp_autobind(sk)) {
1850 				err = -EAGAIN;
1851 				goto out_unlock;
1852 			}
1853 		} else {
1854 			/*
1855 			 * If an unprivileged user inherits a one-to-many
1856 			 * style socket with open associations on a privileged
1857 			 * port, it MAY be permitted to accept new associations,
1858 			 * but it SHOULD NOT be permitted to open new
1859 			 * associations.
1860 			 */
1861 			if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1862 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1863 				err = -EACCES;
1864 				goto out_unlock;
1865 			}
1866 		}
1867 
1868 		scope = sctp_scope(&to);
1869 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1870 		if (!new_asoc) {
1871 			err = -ENOMEM;
1872 			goto out_unlock;
1873 		}
1874 		asoc = new_asoc;
1875 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1876 		if (err < 0) {
1877 			err = -ENOMEM;
1878 			goto out_free;
1879 		}
1880 
1881 		/* If the SCTP_INIT ancillary data is specified, set all
1882 		 * the association init values accordingly.
1883 		 */
1884 		if (sinit) {
1885 			if (sinit->sinit_num_ostreams) {
1886 				asoc->c.sinit_num_ostreams =
1887 					sinit->sinit_num_ostreams;
1888 			}
1889 			if (sinit->sinit_max_instreams) {
1890 				asoc->c.sinit_max_instreams =
1891 					sinit->sinit_max_instreams;
1892 			}
1893 			if (sinit->sinit_max_attempts) {
1894 				asoc->max_init_attempts
1895 					= sinit->sinit_max_attempts;
1896 			}
1897 			if (sinit->sinit_max_init_timeo) {
1898 				asoc->max_init_timeo =
1899 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1900 			}
1901 		}
1902 
1903 		/* Prime the peer's transport structures.  */
1904 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1905 		if (!transport) {
1906 			err = -ENOMEM;
1907 			goto out_free;
1908 		}
1909 	}
1910 
1911 	/* ASSERT: we have a valid association at this point.  */
1912 	pr_debug("%s: we have a valid association\n", __func__);
1913 
1914 	if (!sinfo) {
1915 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1916 		 * one with some defaults.
1917 		 */
1918 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1919 		default_sinfo.sinfo_stream = asoc->default_stream;
1920 		default_sinfo.sinfo_flags = asoc->default_flags;
1921 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1922 		default_sinfo.sinfo_context = asoc->default_context;
1923 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1924 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1925 
1926 		sinfo = &default_sinfo;
1927 	} else if (fill_sinfo_ttl) {
1928 		/* In case SNDINFO was specified, we still need to fill
1929 		 * it with a default ttl from the assoc here.
1930 		 */
1931 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1932 	}
1933 
1934 	/* API 7.1.7, the sndbuf size per association bounds the
1935 	 * maximum size of data that can be sent in a single send call.
1936 	 */
1937 	if (msg_len > sk->sk_sndbuf) {
1938 		err = -EMSGSIZE;
1939 		goto out_free;
1940 	}
1941 
1942 	if (asoc->pmtu_pending)
1943 		sctp_assoc_pending_pmtu(asoc);
1944 
1945 	/* If fragmentation is disabled and the message length exceeds the
1946 	 * association fragmentation point, return EMSGSIZE.  The I-D
1947 	 * does not specify what this error is, but this looks like
1948 	 * a great fit.
1949 	 */
1950 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1951 		err = -EMSGSIZE;
1952 		goto out_free;
1953 	}
1954 
1955 	/* Check for invalid stream. */
1956 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1957 		err = -EINVAL;
1958 		goto out_free;
1959 	}
1960 
1961 	/* Allocate sctp_stream_out_ext if not already done */
1962 	if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) {
1963 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1964 		if (err)
1965 			goto out_free;
1966 	}
1967 
1968 	if (sctp_wspace(asoc) < msg_len)
1969 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1970 
1971 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1972 	if (!sctp_wspace(asoc)) {
1973 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1974 		if (err)
1975 			goto out_free;
1976 	}
1977 
1978 	/* If an address is passed with the sendto/sendmsg call, it is used
1979 	 * to override the primary destination address in the TCP model, or
1980 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1981 	 */
1982 	if ((sctp_style(sk, TCP) && msg_name) ||
1983 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1984 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1985 		if (!chunk_tp) {
1986 			err = -EINVAL;
1987 			goto out_free;
1988 		}
1989 	} else
1990 		chunk_tp = NULL;
1991 
1992 	/* Auto-connect, if we aren't connected already. */
1993 	if (sctp_state(asoc, CLOSED)) {
1994 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1995 		if (err < 0)
1996 			goto out_free;
1997 
1998 		wait_connect = true;
1999 		pr_debug("%s: we associated primitively\n", __func__);
2000 	}
2001 
2002 	/* Break the message into multiple chunks of maximum size. */
2003 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
2004 	if (IS_ERR(datamsg)) {
2005 		err = PTR_ERR(datamsg);
2006 		goto out_free;
2007 	}
2008 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
2009 
2010 	/* Now send the (possibly) fragmented message. */
2011 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
2012 		sctp_chunk_hold(chunk);
2013 
2014 		/* Do accounting for the write space.  */
2015 		sctp_set_owner_w(chunk);
2016 
2017 		chunk->transport = chunk_tp;
2018 	}
2019 
2020 	/* Send it to the lower layers.  Note:  all chunks
2021 	 * must either fail or succeed.   The lower layer
2022 	 * works that way today.  Keep it that way or this
2023 	 * breaks.
2024 	 */
2025 	err = sctp_primitive_SEND(net, asoc, datamsg);
2026 	/* Did the lower layer accept the chunk? */
2027 	if (err) {
2028 		sctp_datamsg_free(datamsg);
2029 		goto out_free;
2030 	}
2031 
2032 	pr_debug("%s: we sent primitively\n", __func__);
2033 
2034 	sctp_datamsg_put(datamsg);
2035 	err = msg_len;
2036 
2037 	if (unlikely(wait_connect)) {
2038 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
2039 		sctp_wait_for_connect(asoc, &timeo);
2040 	}
2041 
2042 	/* If we are already past ASSOCIATE, the lower
2043 	 * layers are responsible for association cleanup.
2044 	 */
2045 	goto out_unlock;
2046 
2047 out_free:
2048 	if (new_asoc)
2049 		sctp_association_free(asoc);
2050 out_unlock:
2051 	release_sock(sk);
2052 
2053 out_nounlock:
2054 	return sctp_error(sk, msg_flags, err);
2055 
2056 #if 0
2057 do_sock_err:
2058 	if (msg_len)
2059 		err = msg_len;
2060 	else
2061 		err = sock_error(sk);
2062 	goto out;
2063 
2064 do_interrupted:
2065 	if (msg_len)
2066 		err = msg_len;
2067 	goto out;
2068 #endif /* 0 */
2069 }
2070 
2071 /* This is an extended version of skb_pull() that removes the data from the
2072  * start of a skb even when data is spread across the list of skb's in the
2073  * frag_list. len specifies the total amount of data that needs to be removed.
2074  * when 'len' bytes could be removed from the skb, it returns 0.
2075  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2076  * could not be removed.
2077  */
2078 static int sctp_skb_pull(struct sk_buff *skb, int len)
2079 {
2080 	struct sk_buff *list;
2081 	int skb_len = skb_headlen(skb);
2082 	int rlen;
2083 
2084 	if (len <= skb_len) {
2085 		__skb_pull(skb, len);
2086 		return 0;
2087 	}
2088 	len -= skb_len;
2089 	__skb_pull(skb, skb_len);
2090 
2091 	skb_walk_frags(skb, list) {
2092 		rlen = sctp_skb_pull(list, len);
2093 		skb->len -= (len-rlen);
2094 		skb->data_len -= (len-rlen);
2095 
2096 		if (!rlen)
2097 			return 0;
2098 
2099 		len = rlen;
2100 	}
2101 
2102 	return len;
2103 }
2104 
2105 /* API 3.1.3  recvmsg() - UDP Style Syntax
2106  *
2107  *  ssize_t recvmsg(int socket, struct msghdr *message,
2108  *                    int flags);
2109  *
2110  *  socket  - the socket descriptor of the endpoint.
2111  *  message - pointer to the msghdr structure which contains a single
2112  *            user message and possibly some ancillary data.
2113  *
2114  *            See Section 5 for complete description of the data
2115  *            structures.
2116  *
2117  *  flags   - flags sent or received with the user message, see Section
2118  *            5 for complete description of the flags.
2119  */
2120 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2121 			int noblock, int flags, int *addr_len)
2122 {
2123 	struct sctp_ulpevent *event = NULL;
2124 	struct sctp_sock *sp = sctp_sk(sk);
2125 	struct sk_buff *skb, *head_skb;
2126 	int copied;
2127 	int err = 0;
2128 	int skb_len;
2129 
2130 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2131 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2132 		 addr_len);
2133 
2134 	lock_sock(sk);
2135 
2136 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2137 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2138 		err = -ENOTCONN;
2139 		goto out;
2140 	}
2141 
2142 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2143 	if (!skb)
2144 		goto out;
2145 
2146 	/* Get the total length of the skb including any skb's in the
2147 	 * frag_list.
2148 	 */
2149 	skb_len = skb->len;
2150 
2151 	copied = skb_len;
2152 	if (copied > len)
2153 		copied = len;
2154 
2155 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2156 
2157 	event = sctp_skb2event(skb);
2158 
2159 	if (err)
2160 		goto out_free;
2161 
2162 	if (event->chunk && event->chunk->head_skb)
2163 		head_skb = event->chunk->head_skb;
2164 	else
2165 		head_skb = skb;
2166 	sock_recv_ts_and_drops(msg, sk, head_skb);
2167 	if (sctp_ulpevent_is_notification(event)) {
2168 		msg->msg_flags |= MSG_NOTIFICATION;
2169 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2170 	} else {
2171 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2172 	}
2173 
2174 	/* Check if we allow SCTP_NXTINFO. */
2175 	if (sp->recvnxtinfo)
2176 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2177 	/* Check if we allow SCTP_RCVINFO. */
2178 	if (sp->recvrcvinfo)
2179 		sctp_ulpevent_read_rcvinfo(event, msg);
2180 	/* Check if we allow SCTP_SNDRCVINFO. */
2181 	if (sp->subscribe.sctp_data_io_event)
2182 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2183 
2184 	err = copied;
2185 
2186 	/* If skb's length exceeds the user's buffer, update the skb and
2187 	 * push it back to the receive_queue so that the next call to
2188 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2189 	 */
2190 	if (skb_len > copied) {
2191 		msg->msg_flags &= ~MSG_EOR;
2192 		if (flags & MSG_PEEK)
2193 			goto out_free;
2194 		sctp_skb_pull(skb, copied);
2195 		skb_queue_head(&sk->sk_receive_queue, skb);
2196 
2197 		/* When only partial message is copied to the user, increase
2198 		 * rwnd by that amount. If all the data in the skb is read,
2199 		 * rwnd is updated when the event is freed.
2200 		 */
2201 		if (!sctp_ulpevent_is_notification(event))
2202 			sctp_assoc_rwnd_increase(event->asoc, copied);
2203 		goto out;
2204 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2205 		   (event->msg_flags & MSG_EOR))
2206 		msg->msg_flags |= MSG_EOR;
2207 	else
2208 		msg->msg_flags &= ~MSG_EOR;
2209 
2210 out_free:
2211 	if (flags & MSG_PEEK) {
2212 		/* Release the skb reference acquired after peeking the skb in
2213 		 * sctp_skb_recv_datagram().
2214 		 */
2215 		kfree_skb(skb);
2216 	} else {
2217 		/* Free the event which includes releasing the reference to
2218 		 * the owner of the skb, freeing the skb and updating the
2219 		 * rwnd.
2220 		 */
2221 		sctp_ulpevent_free(event);
2222 	}
2223 out:
2224 	release_sock(sk);
2225 	return err;
2226 }
2227 
2228 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2229  *
2230  * This option is a on/off flag.  If enabled no SCTP message
2231  * fragmentation will be performed.  Instead if a message being sent
2232  * exceeds the current PMTU size, the message will NOT be sent and
2233  * instead a error will be indicated to the user.
2234  */
2235 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2236 					     char __user *optval,
2237 					     unsigned int optlen)
2238 {
2239 	int val;
2240 
2241 	if (optlen < sizeof(int))
2242 		return -EINVAL;
2243 
2244 	if (get_user(val, (int __user *)optval))
2245 		return -EFAULT;
2246 
2247 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2248 
2249 	return 0;
2250 }
2251 
2252 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2253 				  unsigned int optlen)
2254 {
2255 	struct sctp_association *asoc;
2256 	struct sctp_ulpevent *event;
2257 
2258 	if (optlen > sizeof(struct sctp_event_subscribe))
2259 		return -EINVAL;
2260 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2261 		return -EFAULT;
2262 
2263 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2264 	 * if there is no data to be sent or retransmit, the stack will
2265 	 * immediately send up this notification.
2266 	 */
2267 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2268 				       &sctp_sk(sk)->subscribe)) {
2269 		asoc = sctp_id2assoc(sk, 0);
2270 
2271 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2272 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2273 					GFP_ATOMIC);
2274 			if (!event)
2275 				return -ENOMEM;
2276 
2277 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2278 		}
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2285  *
2286  * This socket option is applicable to the UDP-style socket only.  When
2287  * set it will cause associations that are idle for more than the
2288  * specified number of seconds to automatically close.  An association
2289  * being idle is defined an association that has NOT sent or received
2290  * user data.  The special value of '0' indicates that no automatic
2291  * close of any associations should be performed.  The option expects an
2292  * integer defining the number of seconds of idle time before an
2293  * association is closed.
2294  */
2295 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2296 				     unsigned int optlen)
2297 {
2298 	struct sctp_sock *sp = sctp_sk(sk);
2299 	struct net *net = sock_net(sk);
2300 
2301 	/* Applicable to UDP-style socket only */
2302 	if (sctp_style(sk, TCP))
2303 		return -EOPNOTSUPP;
2304 	if (optlen != sizeof(int))
2305 		return -EINVAL;
2306 	if (copy_from_user(&sp->autoclose, optval, optlen))
2307 		return -EFAULT;
2308 
2309 	if (sp->autoclose > net->sctp.max_autoclose)
2310 		sp->autoclose = net->sctp.max_autoclose;
2311 
2312 	return 0;
2313 }
2314 
2315 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2316  *
2317  * Applications can enable or disable heartbeats for any peer address of
2318  * an association, modify an address's heartbeat interval, force a
2319  * heartbeat to be sent immediately, and adjust the address's maximum
2320  * number of retransmissions sent before an address is considered
2321  * unreachable.  The following structure is used to access and modify an
2322  * address's parameters:
2323  *
2324  *  struct sctp_paddrparams {
2325  *     sctp_assoc_t            spp_assoc_id;
2326  *     struct sockaddr_storage spp_address;
2327  *     uint32_t                spp_hbinterval;
2328  *     uint16_t                spp_pathmaxrxt;
2329  *     uint32_t                spp_pathmtu;
2330  *     uint32_t                spp_sackdelay;
2331  *     uint32_t                spp_flags;
2332  * };
2333  *
2334  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2335  *                     application, and identifies the association for
2336  *                     this query.
2337  *   spp_address     - This specifies which address is of interest.
2338  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2339  *                     in milliseconds.  If a  value of zero
2340  *                     is present in this field then no changes are to
2341  *                     be made to this parameter.
2342  *   spp_pathmaxrxt  - This contains the maximum number of
2343  *                     retransmissions before this address shall be
2344  *                     considered unreachable. If a  value of zero
2345  *                     is present in this field then no changes are to
2346  *                     be made to this parameter.
2347  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2348  *                     specified here will be the "fixed" path mtu.
2349  *                     Note that if the spp_address field is empty
2350  *                     then all associations on this address will
2351  *                     have this fixed path mtu set upon them.
2352  *
2353  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2354  *                     the number of milliseconds that sacks will be delayed
2355  *                     for. This value will apply to all addresses of an
2356  *                     association if the spp_address field is empty. Note
2357  *                     also, that if delayed sack is enabled and this
2358  *                     value is set to 0, no change is made to the last
2359  *                     recorded delayed sack timer value.
2360  *
2361  *   spp_flags       - These flags are used to control various features
2362  *                     on an association. The flag field may contain
2363  *                     zero or more of the following options.
2364  *
2365  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2366  *                     specified address. Note that if the address
2367  *                     field is empty all addresses for the association
2368  *                     have heartbeats enabled upon them.
2369  *
2370  *                     SPP_HB_DISABLE - Disable heartbeats on the
2371  *                     speicifed address. Note that if the address
2372  *                     field is empty all addresses for the association
2373  *                     will have their heartbeats disabled. Note also
2374  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2375  *                     mutually exclusive, only one of these two should
2376  *                     be specified. Enabling both fields will have
2377  *                     undetermined results.
2378  *
2379  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2380  *                     to be made immediately.
2381  *
2382  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2383  *                     heartbeat delayis to be set to the value of 0
2384  *                     milliseconds.
2385  *
2386  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2387  *                     discovery upon the specified address. Note that
2388  *                     if the address feild is empty then all addresses
2389  *                     on the association are effected.
2390  *
2391  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2392  *                     discovery upon the specified address. Note that
2393  *                     if the address feild is empty then all addresses
2394  *                     on the association are effected. Not also that
2395  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2396  *                     exclusive. Enabling both will have undetermined
2397  *                     results.
2398  *
2399  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2400  *                     on delayed sack. The time specified in spp_sackdelay
2401  *                     is used to specify the sack delay for this address. Note
2402  *                     that if spp_address is empty then all addresses will
2403  *                     enable delayed sack and take on the sack delay
2404  *                     value specified in spp_sackdelay.
2405  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2406  *                     off delayed sack. If the spp_address field is blank then
2407  *                     delayed sack is disabled for the entire association. Note
2408  *                     also that this field is mutually exclusive to
2409  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2410  *                     results.
2411  */
2412 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2413 				       struct sctp_transport   *trans,
2414 				       struct sctp_association *asoc,
2415 				       struct sctp_sock        *sp,
2416 				       int                      hb_change,
2417 				       int                      pmtud_change,
2418 				       int                      sackdelay_change)
2419 {
2420 	int error;
2421 
2422 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2423 		struct net *net = sock_net(trans->asoc->base.sk);
2424 
2425 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2426 		if (error)
2427 			return error;
2428 	}
2429 
2430 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2431 	 * this field is ignored.  Note also that a value of zero indicates
2432 	 * the current setting should be left unchanged.
2433 	 */
2434 	if (params->spp_flags & SPP_HB_ENABLE) {
2435 
2436 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2437 		 * set.  This lets us use 0 value when this flag
2438 		 * is set.
2439 		 */
2440 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2441 			params->spp_hbinterval = 0;
2442 
2443 		if (params->spp_hbinterval ||
2444 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2445 			if (trans) {
2446 				trans->hbinterval =
2447 				    msecs_to_jiffies(params->spp_hbinterval);
2448 			} else if (asoc) {
2449 				asoc->hbinterval =
2450 				    msecs_to_jiffies(params->spp_hbinterval);
2451 			} else {
2452 				sp->hbinterval = params->spp_hbinterval;
2453 			}
2454 		}
2455 	}
2456 
2457 	if (hb_change) {
2458 		if (trans) {
2459 			trans->param_flags =
2460 				(trans->param_flags & ~SPP_HB) | hb_change;
2461 		} else if (asoc) {
2462 			asoc->param_flags =
2463 				(asoc->param_flags & ~SPP_HB) | hb_change;
2464 		} else {
2465 			sp->param_flags =
2466 				(sp->param_flags & ~SPP_HB) | hb_change;
2467 		}
2468 	}
2469 
2470 	/* When Path MTU discovery is disabled the value specified here will
2471 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2472 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2473 	 * effect).
2474 	 */
2475 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2476 		if (trans) {
2477 			trans->pathmtu = params->spp_pathmtu;
2478 			sctp_assoc_sync_pmtu(asoc);
2479 		} else if (asoc) {
2480 			asoc->pathmtu = params->spp_pathmtu;
2481 		} else {
2482 			sp->pathmtu = params->spp_pathmtu;
2483 		}
2484 	}
2485 
2486 	if (pmtud_change) {
2487 		if (trans) {
2488 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2489 				(params->spp_flags & SPP_PMTUD_ENABLE);
2490 			trans->param_flags =
2491 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2492 			if (update) {
2493 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2494 				sctp_assoc_sync_pmtu(asoc);
2495 			}
2496 		} else if (asoc) {
2497 			asoc->param_flags =
2498 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2499 		} else {
2500 			sp->param_flags =
2501 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2502 		}
2503 	}
2504 
2505 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2506 	 * value of this field is ignored.  Note also that a value of zero
2507 	 * indicates the current setting should be left unchanged.
2508 	 */
2509 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2510 		if (trans) {
2511 			trans->sackdelay =
2512 				msecs_to_jiffies(params->spp_sackdelay);
2513 		} else if (asoc) {
2514 			asoc->sackdelay =
2515 				msecs_to_jiffies(params->spp_sackdelay);
2516 		} else {
2517 			sp->sackdelay = params->spp_sackdelay;
2518 		}
2519 	}
2520 
2521 	if (sackdelay_change) {
2522 		if (trans) {
2523 			trans->param_flags =
2524 				(trans->param_flags & ~SPP_SACKDELAY) |
2525 				sackdelay_change;
2526 		} else if (asoc) {
2527 			asoc->param_flags =
2528 				(asoc->param_flags & ~SPP_SACKDELAY) |
2529 				sackdelay_change;
2530 		} else {
2531 			sp->param_flags =
2532 				(sp->param_flags & ~SPP_SACKDELAY) |
2533 				sackdelay_change;
2534 		}
2535 	}
2536 
2537 	/* Note that a value of zero indicates the current setting should be
2538 	   left unchanged.
2539 	 */
2540 	if (params->spp_pathmaxrxt) {
2541 		if (trans) {
2542 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2543 		} else if (asoc) {
2544 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2545 		} else {
2546 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2547 		}
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2554 					    char __user *optval,
2555 					    unsigned int optlen)
2556 {
2557 	struct sctp_paddrparams  params;
2558 	struct sctp_transport   *trans = NULL;
2559 	struct sctp_association *asoc = NULL;
2560 	struct sctp_sock        *sp = sctp_sk(sk);
2561 	int error;
2562 	int hb_change, pmtud_change, sackdelay_change;
2563 
2564 	if (optlen != sizeof(struct sctp_paddrparams))
2565 		return -EINVAL;
2566 
2567 	if (copy_from_user(&params, optval, optlen))
2568 		return -EFAULT;
2569 
2570 	/* Validate flags and value parameters. */
2571 	hb_change        = params.spp_flags & SPP_HB;
2572 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2573 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2574 
2575 	if (hb_change        == SPP_HB ||
2576 	    pmtud_change     == SPP_PMTUD ||
2577 	    sackdelay_change == SPP_SACKDELAY ||
2578 	    params.spp_sackdelay > 500 ||
2579 	    (params.spp_pathmtu &&
2580 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2581 		return -EINVAL;
2582 
2583 	/* If an address other than INADDR_ANY is specified, and
2584 	 * no transport is found, then the request is invalid.
2585 	 */
2586 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2587 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2588 					       params.spp_assoc_id);
2589 		if (!trans)
2590 			return -EINVAL;
2591 	}
2592 
2593 	/* Get association, if assoc_id != 0 and the socket is a one
2594 	 * to many style socket, and an association was not found, then
2595 	 * the id was invalid.
2596 	 */
2597 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2598 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2599 		return -EINVAL;
2600 
2601 	/* Heartbeat demand can only be sent on a transport or
2602 	 * association, but not a socket.
2603 	 */
2604 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2605 		return -EINVAL;
2606 
2607 	/* Process parameters. */
2608 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2609 					    hb_change, pmtud_change,
2610 					    sackdelay_change);
2611 
2612 	if (error)
2613 		return error;
2614 
2615 	/* If changes are for association, also apply parameters to each
2616 	 * transport.
2617 	 */
2618 	if (!trans && asoc) {
2619 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2620 				transports) {
2621 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2622 						    hb_change, pmtud_change,
2623 						    sackdelay_change);
2624 		}
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2631 {
2632 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2633 }
2634 
2635 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2636 {
2637 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2638 }
2639 
2640 /*
2641  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2642  *
2643  * This option will effect the way delayed acks are performed.  This
2644  * option allows you to get or set the delayed ack time, in
2645  * milliseconds.  It also allows changing the delayed ack frequency.
2646  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2647  * the assoc_id is 0, then this sets or gets the endpoints default
2648  * values.  If the assoc_id field is non-zero, then the set or get
2649  * effects the specified association for the one to many model (the
2650  * assoc_id field is ignored by the one to one model).  Note that if
2651  * sack_delay or sack_freq are 0 when setting this option, then the
2652  * current values will remain unchanged.
2653  *
2654  * struct sctp_sack_info {
2655  *     sctp_assoc_t            sack_assoc_id;
2656  *     uint32_t                sack_delay;
2657  *     uint32_t                sack_freq;
2658  * };
2659  *
2660  * sack_assoc_id -  This parameter, indicates which association the user
2661  *    is performing an action upon.  Note that if this field's value is
2662  *    zero then the endpoints default value is changed (effecting future
2663  *    associations only).
2664  *
2665  * sack_delay -  This parameter contains the number of milliseconds that
2666  *    the user is requesting the delayed ACK timer be set to.  Note that
2667  *    this value is defined in the standard to be between 200 and 500
2668  *    milliseconds.
2669  *
2670  * sack_freq -  This parameter contains the number of packets that must
2671  *    be received before a sack is sent without waiting for the delay
2672  *    timer to expire.  The default value for this is 2, setting this
2673  *    value to 1 will disable the delayed sack algorithm.
2674  */
2675 
2676 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2677 				       char __user *optval, unsigned int optlen)
2678 {
2679 	struct sctp_sack_info    params;
2680 	struct sctp_transport   *trans = NULL;
2681 	struct sctp_association *asoc = NULL;
2682 	struct sctp_sock        *sp = sctp_sk(sk);
2683 
2684 	if (optlen == sizeof(struct sctp_sack_info)) {
2685 		if (copy_from_user(&params, optval, optlen))
2686 			return -EFAULT;
2687 
2688 		if (params.sack_delay == 0 && params.sack_freq == 0)
2689 			return 0;
2690 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2691 		pr_warn_ratelimited(DEPRECATED
2692 				    "%s (pid %d) "
2693 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2694 				    "Use struct sctp_sack_info instead\n",
2695 				    current->comm, task_pid_nr(current));
2696 		if (copy_from_user(&params, optval, optlen))
2697 			return -EFAULT;
2698 
2699 		if (params.sack_delay == 0)
2700 			params.sack_freq = 1;
2701 		else
2702 			params.sack_freq = 0;
2703 	} else
2704 		return -EINVAL;
2705 
2706 	/* Validate value parameter. */
2707 	if (params.sack_delay > 500)
2708 		return -EINVAL;
2709 
2710 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2711 	 * to many style socket, and an association was not found, then
2712 	 * the id was invalid.
2713 	 */
2714 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2715 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2716 		return -EINVAL;
2717 
2718 	if (params.sack_delay) {
2719 		if (asoc) {
2720 			asoc->sackdelay =
2721 				msecs_to_jiffies(params.sack_delay);
2722 			asoc->param_flags =
2723 				sctp_spp_sackdelay_enable(asoc->param_flags);
2724 		} else {
2725 			sp->sackdelay = params.sack_delay;
2726 			sp->param_flags =
2727 				sctp_spp_sackdelay_enable(sp->param_flags);
2728 		}
2729 	}
2730 
2731 	if (params.sack_freq == 1) {
2732 		if (asoc) {
2733 			asoc->param_flags =
2734 				sctp_spp_sackdelay_disable(asoc->param_flags);
2735 		} else {
2736 			sp->param_flags =
2737 				sctp_spp_sackdelay_disable(sp->param_flags);
2738 		}
2739 	} else if (params.sack_freq > 1) {
2740 		if (asoc) {
2741 			asoc->sackfreq = params.sack_freq;
2742 			asoc->param_flags =
2743 				sctp_spp_sackdelay_enable(asoc->param_flags);
2744 		} else {
2745 			sp->sackfreq = params.sack_freq;
2746 			sp->param_flags =
2747 				sctp_spp_sackdelay_enable(sp->param_flags);
2748 		}
2749 	}
2750 
2751 	/* If change is for association, also apply to each transport. */
2752 	if (asoc) {
2753 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2754 				transports) {
2755 			if (params.sack_delay) {
2756 				trans->sackdelay =
2757 					msecs_to_jiffies(params.sack_delay);
2758 				trans->param_flags =
2759 					sctp_spp_sackdelay_enable(trans->param_flags);
2760 			}
2761 			if (params.sack_freq == 1) {
2762 				trans->param_flags =
2763 					sctp_spp_sackdelay_disable(trans->param_flags);
2764 			} else if (params.sack_freq > 1) {
2765 				trans->sackfreq = params.sack_freq;
2766 				trans->param_flags =
2767 					sctp_spp_sackdelay_enable(trans->param_flags);
2768 			}
2769 		}
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2776  *
2777  * Applications can specify protocol parameters for the default association
2778  * initialization.  The option name argument to setsockopt() and getsockopt()
2779  * is SCTP_INITMSG.
2780  *
2781  * Setting initialization parameters is effective only on an unconnected
2782  * socket (for UDP-style sockets only future associations are effected
2783  * by the change).  With TCP-style sockets, this option is inherited by
2784  * sockets derived from a listener socket.
2785  */
2786 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2787 {
2788 	struct sctp_initmsg sinit;
2789 	struct sctp_sock *sp = sctp_sk(sk);
2790 
2791 	if (optlen != sizeof(struct sctp_initmsg))
2792 		return -EINVAL;
2793 	if (copy_from_user(&sinit, optval, optlen))
2794 		return -EFAULT;
2795 
2796 	if (sinit.sinit_num_ostreams)
2797 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2798 	if (sinit.sinit_max_instreams)
2799 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2800 	if (sinit.sinit_max_attempts)
2801 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2802 	if (sinit.sinit_max_init_timeo)
2803 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2804 
2805 	return 0;
2806 }
2807 
2808 /*
2809  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2810  *
2811  *   Applications that wish to use the sendto() system call may wish to
2812  *   specify a default set of parameters that would normally be supplied
2813  *   through the inclusion of ancillary data.  This socket option allows
2814  *   such an application to set the default sctp_sndrcvinfo structure.
2815  *   The application that wishes to use this socket option simply passes
2816  *   in to this call the sctp_sndrcvinfo structure defined in Section
2817  *   5.2.2) The input parameters accepted by this call include
2818  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2819  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2820  *   to this call if the caller is using the UDP model.
2821  */
2822 static int sctp_setsockopt_default_send_param(struct sock *sk,
2823 					      char __user *optval,
2824 					      unsigned int optlen)
2825 {
2826 	struct sctp_sock *sp = sctp_sk(sk);
2827 	struct sctp_association *asoc;
2828 	struct sctp_sndrcvinfo info;
2829 
2830 	if (optlen != sizeof(info))
2831 		return -EINVAL;
2832 	if (copy_from_user(&info, optval, optlen))
2833 		return -EFAULT;
2834 	if (info.sinfo_flags &
2835 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2836 	      SCTP_ABORT | SCTP_EOF))
2837 		return -EINVAL;
2838 
2839 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2840 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2841 		return -EINVAL;
2842 	if (asoc) {
2843 		asoc->default_stream = info.sinfo_stream;
2844 		asoc->default_flags = info.sinfo_flags;
2845 		asoc->default_ppid = info.sinfo_ppid;
2846 		asoc->default_context = info.sinfo_context;
2847 		asoc->default_timetolive = info.sinfo_timetolive;
2848 	} else {
2849 		sp->default_stream = info.sinfo_stream;
2850 		sp->default_flags = info.sinfo_flags;
2851 		sp->default_ppid = info.sinfo_ppid;
2852 		sp->default_context = info.sinfo_context;
2853 		sp->default_timetolive = info.sinfo_timetolive;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2860  * (SCTP_DEFAULT_SNDINFO)
2861  */
2862 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2863 					   char __user *optval,
2864 					   unsigned int optlen)
2865 {
2866 	struct sctp_sock *sp = sctp_sk(sk);
2867 	struct sctp_association *asoc;
2868 	struct sctp_sndinfo info;
2869 
2870 	if (optlen != sizeof(info))
2871 		return -EINVAL;
2872 	if (copy_from_user(&info, optval, optlen))
2873 		return -EFAULT;
2874 	if (info.snd_flags &
2875 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2876 	      SCTP_ABORT | SCTP_EOF))
2877 		return -EINVAL;
2878 
2879 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2880 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2881 		return -EINVAL;
2882 	if (asoc) {
2883 		asoc->default_stream = info.snd_sid;
2884 		asoc->default_flags = info.snd_flags;
2885 		asoc->default_ppid = info.snd_ppid;
2886 		asoc->default_context = info.snd_context;
2887 	} else {
2888 		sp->default_stream = info.snd_sid;
2889 		sp->default_flags = info.snd_flags;
2890 		sp->default_ppid = info.snd_ppid;
2891 		sp->default_context = info.snd_context;
2892 	}
2893 
2894 	return 0;
2895 }
2896 
2897 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2898  *
2899  * Requests that the local SCTP stack use the enclosed peer address as
2900  * the association primary.  The enclosed address must be one of the
2901  * association peer's addresses.
2902  */
2903 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2904 					unsigned int optlen)
2905 {
2906 	struct sctp_prim prim;
2907 	struct sctp_transport *trans;
2908 
2909 	if (optlen != sizeof(struct sctp_prim))
2910 		return -EINVAL;
2911 
2912 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2913 		return -EFAULT;
2914 
2915 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2916 	if (!trans)
2917 		return -EINVAL;
2918 
2919 	sctp_assoc_set_primary(trans->asoc, trans);
2920 
2921 	return 0;
2922 }
2923 
2924 /*
2925  * 7.1.5 SCTP_NODELAY
2926  *
2927  * Turn on/off any Nagle-like algorithm.  This means that packets are
2928  * generally sent as soon as possible and no unnecessary delays are
2929  * introduced, at the cost of more packets in the network.  Expects an
2930  *  integer boolean flag.
2931  */
2932 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2933 				   unsigned int optlen)
2934 {
2935 	int val;
2936 
2937 	if (optlen < sizeof(int))
2938 		return -EINVAL;
2939 	if (get_user(val, (int __user *)optval))
2940 		return -EFAULT;
2941 
2942 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2943 	return 0;
2944 }
2945 
2946 /*
2947  *
2948  * 7.1.1 SCTP_RTOINFO
2949  *
2950  * The protocol parameters used to initialize and bound retransmission
2951  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2952  * and modify these parameters.
2953  * All parameters are time values, in milliseconds.  A value of 0, when
2954  * modifying the parameters, indicates that the current value should not
2955  * be changed.
2956  *
2957  */
2958 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2959 {
2960 	struct sctp_rtoinfo rtoinfo;
2961 	struct sctp_association *asoc;
2962 	unsigned long rto_min, rto_max;
2963 	struct sctp_sock *sp = sctp_sk(sk);
2964 
2965 	if (optlen != sizeof (struct sctp_rtoinfo))
2966 		return -EINVAL;
2967 
2968 	if (copy_from_user(&rtoinfo, optval, optlen))
2969 		return -EFAULT;
2970 
2971 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2972 
2973 	/* Set the values to the specific association */
2974 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2975 		return -EINVAL;
2976 
2977 	rto_max = rtoinfo.srto_max;
2978 	rto_min = rtoinfo.srto_min;
2979 
2980 	if (rto_max)
2981 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2982 	else
2983 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2984 
2985 	if (rto_min)
2986 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2987 	else
2988 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2989 
2990 	if (rto_min > rto_max)
2991 		return -EINVAL;
2992 
2993 	if (asoc) {
2994 		if (rtoinfo.srto_initial != 0)
2995 			asoc->rto_initial =
2996 				msecs_to_jiffies(rtoinfo.srto_initial);
2997 		asoc->rto_max = rto_max;
2998 		asoc->rto_min = rto_min;
2999 	} else {
3000 		/* If there is no association or the association-id = 0
3001 		 * set the values to the endpoint.
3002 		 */
3003 		if (rtoinfo.srto_initial != 0)
3004 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3005 		sp->rtoinfo.srto_max = rto_max;
3006 		sp->rtoinfo.srto_min = rto_min;
3007 	}
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  *
3014  * 7.1.2 SCTP_ASSOCINFO
3015  *
3016  * This option is used to tune the maximum retransmission attempts
3017  * of the association.
3018  * Returns an error if the new association retransmission value is
3019  * greater than the sum of the retransmission value  of the peer.
3020  * See [SCTP] for more information.
3021  *
3022  */
3023 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3024 {
3025 
3026 	struct sctp_assocparams assocparams;
3027 	struct sctp_association *asoc;
3028 
3029 	if (optlen != sizeof(struct sctp_assocparams))
3030 		return -EINVAL;
3031 	if (copy_from_user(&assocparams, optval, optlen))
3032 		return -EFAULT;
3033 
3034 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3035 
3036 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3037 		return -EINVAL;
3038 
3039 	/* Set the values to the specific association */
3040 	if (asoc) {
3041 		if (assocparams.sasoc_asocmaxrxt != 0) {
3042 			__u32 path_sum = 0;
3043 			int   paths = 0;
3044 			struct sctp_transport *peer_addr;
3045 
3046 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3047 					transports) {
3048 				path_sum += peer_addr->pathmaxrxt;
3049 				paths++;
3050 			}
3051 
3052 			/* Only validate asocmaxrxt if we have more than
3053 			 * one path/transport.  We do this because path
3054 			 * retransmissions are only counted when we have more
3055 			 * then one path.
3056 			 */
3057 			if (paths > 1 &&
3058 			    assocparams.sasoc_asocmaxrxt > path_sum)
3059 				return -EINVAL;
3060 
3061 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3062 		}
3063 
3064 		if (assocparams.sasoc_cookie_life != 0)
3065 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3066 	} else {
3067 		/* Set the values to the endpoint */
3068 		struct sctp_sock *sp = sctp_sk(sk);
3069 
3070 		if (assocparams.sasoc_asocmaxrxt != 0)
3071 			sp->assocparams.sasoc_asocmaxrxt =
3072 						assocparams.sasoc_asocmaxrxt;
3073 		if (assocparams.sasoc_cookie_life != 0)
3074 			sp->assocparams.sasoc_cookie_life =
3075 						assocparams.sasoc_cookie_life;
3076 	}
3077 	return 0;
3078 }
3079 
3080 /*
3081  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3082  *
3083  * This socket option is a boolean flag which turns on or off mapped V4
3084  * addresses.  If this option is turned on and the socket is type
3085  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3086  * If this option is turned off, then no mapping will be done of V4
3087  * addresses and a user will receive both PF_INET6 and PF_INET type
3088  * addresses on the socket.
3089  */
3090 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3091 {
3092 	int val;
3093 	struct sctp_sock *sp = sctp_sk(sk);
3094 
3095 	if (optlen < sizeof(int))
3096 		return -EINVAL;
3097 	if (get_user(val, (int __user *)optval))
3098 		return -EFAULT;
3099 	if (val)
3100 		sp->v4mapped = 1;
3101 	else
3102 		sp->v4mapped = 0;
3103 
3104 	return 0;
3105 }
3106 
3107 /*
3108  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3109  * This option will get or set the maximum size to put in any outgoing
3110  * SCTP DATA chunk.  If a message is larger than this size it will be
3111  * fragmented by SCTP into the specified size.  Note that the underlying
3112  * SCTP implementation may fragment into smaller sized chunks when the
3113  * PMTU of the underlying association is smaller than the value set by
3114  * the user.  The default value for this option is '0' which indicates
3115  * the user is NOT limiting fragmentation and only the PMTU will effect
3116  * SCTP's choice of DATA chunk size.  Note also that values set larger
3117  * than the maximum size of an IP datagram will effectively let SCTP
3118  * control fragmentation (i.e. the same as setting this option to 0).
3119  *
3120  * The following structure is used to access and modify this parameter:
3121  *
3122  * struct sctp_assoc_value {
3123  *   sctp_assoc_t assoc_id;
3124  *   uint32_t assoc_value;
3125  * };
3126  *
3127  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3128  *    For one-to-many style sockets this parameter indicates which
3129  *    association the user is performing an action upon.  Note that if
3130  *    this field's value is zero then the endpoints default value is
3131  *    changed (effecting future associations only).
3132  * assoc_value:  This parameter specifies the maximum size in bytes.
3133  */
3134 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3135 {
3136 	struct sctp_assoc_value params;
3137 	struct sctp_association *asoc;
3138 	struct sctp_sock *sp = sctp_sk(sk);
3139 	int val;
3140 
3141 	if (optlen == sizeof(int)) {
3142 		pr_warn_ratelimited(DEPRECATED
3143 				    "%s (pid %d) "
3144 				    "Use of int in maxseg socket option.\n"
3145 				    "Use struct sctp_assoc_value instead\n",
3146 				    current->comm, task_pid_nr(current));
3147 		if (copy_from_user(&val, optval, optlen))
3148 			return -EFAULT;
3149 		params.assoc_id = 0;
3150 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3151 		if (copy_from_user(&params, optval, optlen))
3152 			return -EFAULT;
3153 		val = params.assoc_value;
3154 	} else
3155 		return -EINVAL;
3156 
3157 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3158 		return -EINVAL;
3159 
3160 	asoc = sctp_id2assoc(sk, params.assoc_id);
3161 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3162 		return -EINVAL;
3163 
3164 	if (asoc) {
3165 		if (val == 0) {
3166 			val = asoc->pathmtu;
3167 			val -= sp->pf->af->net_header_len;
3168 			val -= sizeof(struct sctphdr) +
3169 					sizeof(struct sctp_data_chunk);
3170 		}
3171 		asoc->user_frag = val;
3172 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3173 	} else {
3174 		sp->user_frag = val;
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 
3181 /*
3182  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3183  *
3184  *   Requests that the peer mark the enclosed address as the association
3185  *   primary. The enclosed address must be one of the association's
3186  *   locally bound addresses. The following structure is used to make a
3187  *   set primary request:
3188  */
3189 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3190 					     unsigned int optlen)
3191 {
3192 	struct net *net = sock_net(sk);
3193 	struct sctp_sock	*sp;
3194 	struct sctp_association	*asoc = NULL;
3195 	struct sctp_setpeerprim	prim;
3196 	struct sctp_chunk	*chunk;
3197 	struct sctp_af		*af;
3198 	int 			err;
3199 
3200 	sp = sctp_sk(sk);
3201 
3202 	if (!net->sctp.addip_enable)
3203 		return -EPERM;
3204 
3205 	if (optlen != sizeof(struct sctp_setpeerprim))
3206 		return -EINVAL;
3207 
3208 	if (copy_from_user(&prim, optval, optlen))
3209 		return -EFAULT;
3210 
3211 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3212 	if (!asoc)
3213 		return -EINVAL;
3214 
3215 	if (!asoc->peer.asconf_capable)
3216 		return -EPERM;
3217 
3218 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3219 		return -EPERM;
3220 
3221 	if (!sctp_state(asoc, ESTABLISHED))
3222 		return -ENOTCONN;
3223 
3224 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3225 	if (!af)
3226 		return -EINVAL;
3227 
3228 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3229 		return -EADDRNOTAVAIL;
3230 
3231 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3232 		return -EADDRNOTAVAIL;
3233 
3234 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3235 	chunk = sctp_make_asconf_set_prim(asoc,
3236 					  (union sctp_addr *)&prim.sspp_addr);
3237 	if (!chunk)
3238 		return -ENOMEM;
3239 
3240 	err = sctp_send_asconf(asoc, chunk);
3241 
3242 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3243 
3244 	return err;
3245 }
3246 
3247 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3248 					    unsigned int optlen)
3249 {
3250 	struct sctp_setadaptation adaptation;
3251 
3252 	if (optlen != sizeof(struct sctp_setadaptation))
3253 		return -EINVAL;
3254 	if (copy_from_user(&adaptation, optval, optlen))
3255 		return -EFAULT;
3256 
3257 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3258 
3259 	return 0;
3260 }
3261 
3262 /*
3263  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3264  *
3265  * The context field in the sctp_sndrcvinfo structure is normally only
3266  * used when a failed message is retrieved holding the value that was
3267  * sent down on the actual send call.  This option allows the setting of
3268  * a default context on an association basis that will be received on
3269  * reading messages from the peer.  This is especially helpful in the
3270  * one-2-many model for an application to keep some reference to an
3271  * internal state machine that is processing messages on the
3272  * association.  Note that the setting of this value only effects
3273  * received messages from the peer and does not effect the value that is
3274  * saved with outbound messages.
3275  */
3276 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3277 				   unsigned int optlen)
3278 {
3279 	struct sctp_assoc_value params;
3280 	struct sctp_sock *sp;
3281 	struct sctp_association *asoc;
3282 
3283 	if (optlen != sizeof(struct sctp_assoc_value))
3284 		return -EINVAL;
3285 	if (copy_from_user(&params, optval, optlen))
3286 		return -EFAULT;
3287 
3288 	sp = sctp_sk(sk);
3289 
3290 	if (params.assoc_id != 0) {
3291 		asoc = sctp_id2assoc(sk, params.assoc_id);
3292 		if (!asoc)
3293 			return -EINVAL;
3294 		asoc->default_rcv_context = params.assoc_value;
3295 	} else {
3296 		sp->default_rcv_context = params.assoc_value;
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 /*
3303  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3304  *
3305  * This options will at a minimum specify if the implementation is doing
3306  * fragmented interleave.  Fragmented interleave, for a one to many
3307  * socket, is when subsequent calls to receive a message may return
3308  * parts of messages from different associations.  Some implementations
3309  * may allow you to turn this value on or off.  If so, when turned off,
3310  * no fragment interleave will occur (which will cause a head of line
3311  * blocking amongst multiple associations sharing the same one to many
3312  * socket).  When this option is turned on, then each receive call may
3313  * come from a different association (thus the user must receive data
3314  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3315  * association each receive belongs to.
3316  *
3317  * This option takes a boolean value.  A non-zero value indicates that
3318  * fragmented interleave is on.  A value of zero indicates that
3319  * fragmented interleave is off.
3320  *
3321  * Note that it is important that an implementation that allows this
3322  * option to be turned on, have it off by default.  Otherwise an unaware
3323  * application using the one to many model may become confused and act
3324  * incorrectly.
3325  */
3326 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3327 					       char __user *optval,
3328 					       unsigned int optlen)
3329 {
3330 	int val;
3331 
3332 	if (optlen != sizeof(int))
3333 		return -EINVAL;
3334 	if (get_user(val, (int __user *)optval))
3335 		return -EFAULT;
3336 
3337 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3338 
3339 	return 0;
3340 }
3341 
3342 /*
3343  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3344  *       (SCTP_PARTIAL_DELIVERY_POINT)
3345  *
3346  * This option will set or get the SCTP partial delivery point.  This
3347  * point is the size of a message where the partial delivery API will be
3348  * invoked to help free up rwnd space for the peer.  Setting this to a
3349  * lower value will cause partial deliveries to happen more often.  The
3350  * calls argument is an integer that sets or gets the partial delivery
3351  * point.  Note also that the call will fail if the user attempts to set
3352  * this value larger than the socket receive buffer size.
3353  *
3354  * Note that any single message having a length smaller than or equal to
3355  * the SCTP partial delivery point will be delivered in one single read
3356  * call as long as the user provided buffer is large enough to hold the
3357  * message.
3358  */
3359 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3360 						  char __user *optval,
3361 						  unsigned int optlen)
3362 {
3363 	u32 val;
3364 
3365 	if (optlen != sizeof(u32))
3366 		return -EINVAL;
3367 	if (get_user(val, (int __user *)optval))
3368 		return -EFAULT;
3369 
3370 	/* Note: We double the receive buffer from what the user sets
3371 	 * it to be, also initial rwnd is based on rcvbuf/2.
3372 	 */
3373 	if (val > (sk->sk_rcvbuf >> 1))
3374 		return -EINVAL;
3375 
3376 	sctp_sk(sk)->pd_point = val;
3377 
3378 	return 0; /* is this the right error code? */
3379 }
3380 
3381 /*
3382  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3383  *
3384  * This option will allow a user to change the maximum burst of packets
3385  * that can be emitted by this association.  Note that the default value
3386  * is 4, and some implementations may restrict this setting so that it
3387  * can only be lowered.
3388  *
3389  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3390  * future associations inheriting the socket value.
3391  */
3392 static int sctp_setsockopt_maxburst(struct sock *sk,
3393 				    char __user *optval,
3394 				    unsigned int optlen)
3395 {
3396 	struct sctp_assoc_value params;
3397 	struct sctp_sock *sp;
3398 	struct sctp_association *asoc;
3399 	int val;
3400 	int assoc_id = 0;
3401 
3402 	if (optlen == sizeof(int)) {
3403 		pr_warn_ratelimited(DEPRECATED
3404 				    "%s (pid %d) "
3405 				    "Use of int in max_burst socket option deprecated.\n"
3406 				    "Use struct sctp_assoc_value instead\n",
3407 				    current->comm, task_pid_nr(current));
3408 		if (copy_from_user(&val, optval, optlen))
3409 			return -EFAULT;
3410 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3411 		if (copy_from_user(&params, optval, optlen))
3412 			return -EFAULT;
3413 		val = params.assoc_value;
3414 		assoc_id = params.assoc_id;
3415 	} else
3416 		return -EINVAL;
3417 
3418 	sp = sctp_sk(sk);
3419 
3420 	if (assoc_id != 0) {
3421 		asoc = sctp_id2assoc(sk, assoc_id);
3422 		if (!asoc)
3423 			return -EINVAL;
3424 		asoc->max_burst = val;
3425 	} else
3426 		sp->max_burst = val;
3427 
3428 	return 0;
3429 }
3430 
3431 /*
3432  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3433  *
3434  * This set option adds a chunk type that the user is requesting to be
3435  * received only in an authenticated way.  Changes to the list of chunks
3436  * will only effect future associations on the socket.
3437  */
3438 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3439 				      char __user *optval,
3440 				      unsigned int optlen)
3441 {
3442 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3443 	struct sctp_authchunk val;
3444 
3445 	if (!ep->auth_enable)
3446 		return -EACCES;
3447 
3448 	if (optlen != sizeof(struct sctp_authchunk))
3449 		return -EINVAL;
3450 	if (copy_from_user(&val, optval, optlen))
3451 		return -EFAULT;
3452 
3453 	switch (val.sauth_chunk) {
3454 	case SCTP_CID_INIT:
3455 	case SCTP_CID_INIT_ACK:
3456 	case SCTP_CID_SHUTDOWN_COMPLETE:
3457 	case SCTP_CID_AUTH:
3458 		return -EINVAL;
3459 	}
3460 
3461 	/* add this chunk id to the endpoint */
3462 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3463 }
3464 
3465 /*
3466  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3467  *
3468  * This option gets or sets the list of HMAC algorithms that the local
3469  * endpoint requires the peer to use.
3470  */
3471 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3472 				      char __user *optval,
3473 				      unsigned int optlen)
3474 {
3475 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3476 	struct sctp_hmacalgo *hmacs;
3477 	u32 idents;
3478 	int err;
3479 
3480 	if (!ep->auth_enable)
3481 		return -EACCES;
3482 
3483 	if (optlen < sizeof(struct sctp_hmacalgo))
3484 		return -EINVAL;
3485 
3486 	hmacs = memdup_user(optval, optlen);
3487 	if (IS_ERR(hmacs))
3488 		return PTR_ERR(hmacs);
3489 
3490 	idents = hmacs->shmac_num_idents;
3491 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3492 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3493 		err = -EINVAL;
3494 		goto out;
3495 	}
3496 
3497 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3498 out:
3499 	kfree(hmacs);
3500 	return err;
3501 }
3502 
3503 /*
3504  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3505  *
3506  * This option will set a shared secret key which is used to build an
3507  * association shared key.
3508  */
3509 static int sctp_setsockopt_auth_key(struct sock *sk,
3510 				    char __user *optval,
3511 				    unsigned int optlen)
3512 {
3513 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3514 	struct sctp_authkey *authkey;
3515 	struct sctp_association *asoc;
3516 	int ret;
3517 
3518 	if (!ep->auth_enable)
3519 		return -EACCES;
3520 
3521 	if (optlen <= sizeof(struct sctp_authkey))
3522 		return -EINVAL;
3523 
3524 	authkey = memdup_user(optval, optlen);
3525 	if (IS_ERR(authkey))
3526 		return PTR_ERR(authkey);
3527 
3528 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3529 		ret = -EINVAL;
3530 		goto out;
3531 	}
3532 
3533 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3534 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3535 		ret = -EINVAL;
3536 		goto out;
3537 	}
3538 
3539 	ret = sctp_auth_set_key(ep, asoc, authkey);
3540 out:
3541 	kzfree(authkey);
3542 	return ret;
3543 }
3544 
3545 /*
3546  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3547  *
3548  * This option will get or set the active shared key to be used to build
3549  * the association shared key.
3550  */
3551 static int sctp_setsockopt_active_key(struct sock *sk,
3552 				      char __user *optval,
3553 				      unsigned int optlen)
3554 {
3555 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3556 	struct sctp_authkeyid val;
3557 	struct sctp_association *asoc;
3558 
3559 	if (!ep->auth_enable)
3560 		return -EACCES;
3561 
3562 	if (optlen != sizeof(struct sctp_authkeyid))
3563 		return -EINVAL;
3564 	if (copy_from_user(&val, optval, optlen))
3565 		return -EFAULT;
3566 
3567 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3568 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3569 		return -EINVAL;
3570 
3571 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3572 }
3573 
3574 /*
3575  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3576  *
3577  * This set option will delete a shared secret key from use.
3578  */
3579 static int sctp_setsockopt_del_key(struct sock *sk,
3580 				   char __user *optval,
3581 				   unsigned int optlen)
3582 {
3583 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3584 	struct sctp_authkeyid val;
3585 	struct sctp_association *asoc;
3586 
3587 	if (!ep->auth_enable)
3588 		return -EACCES;
3589 
3590 	if (optlen != sizeof(struct sctp_authkeyid))
3591 		return -EINVAL;
3592 	if (copy_from_user(&val, optval, optlen))
3593 		return -EFAULT;
3594 
3595 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3596 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3597 		return -EINVAL;
3598 
3599 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3600 
3601 }
3602 
3603 /*
3604  * 8.1.23 SCTP_AUTO_ASCONF
3605  *
3606  * This option will enable or disable the use of the automatic generation of
3607  * ASCONF chunks to add and delete addresses to an existing association.  Note
3608  * that this option has two caveats namely: a) it only affects sockets that
3609  * are bound to all addresses available to the SCTP stack, and b) the system
3610  * administrator may have an overriding control that turns the ASCONF feature
3611  * off no matter what setting the socket option may have.
3612  * This option expects an integer boolean flag, where a non-zero value turns on
3613  * the option, and a zero value turns off the option.
3614  * Note. In this implementation, socket operation overrides default parameter
3615  * being set by sysctl as well as FreeBSD implementation
3616  */
3617 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3618 					unsigned int optlen)
3619 {
3620 	int val;
3621 	struct sctp_sock *sp = sctp_sk(sk);
3622 
3623 	if (optlen < sizeof(int))
3624 		return -EINVAL;
3625 	if (get_user(val, (int __user *)optval))
3626 		return -EFAULT;
3627 	if (!sctp_is_ep_boundall(sk) && val)
3628 		return -EINVAL;
3629 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3630 		return 0;
3631 
3632 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3633 	if (val == 0 && sp->do_auto_asconf) {
3634 		list_del(&sp->auto_asconf_list);
3635 		sp->do_auto_asconf = 0;
3636 	} else if (val && !sp->do_auto_asconf) {
3637 		list_add_tail(&sp->auto_asconf_list,
3638 		    &sock_net(sk)->sctp.auto_asconf_splist);
3639 		sp->do_auto_asconf = 1;
3640 	}
3641 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3642 	return 0;
3643 }
3644 
3645 /*
3646  * SCTP_PEER_ADDR_THLDS
3647  *
3648  * This option allows us to alter the partially failed threshold for one or all
3649  * transports in an association.  See Section 6.1 of:
3650  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3651  */
3652 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3653 					    char __user *optval,
3654 					    unsigned int optlen)
3655 {
3656 	struct sctp_paddrthlds val;
3657 	struct sctp_transport *trans;
3658 	struct sctp_association *asoc;
3659 
3660 	if (optlen < sizeof(struct sctp_paddrthlds))
3661 		return -EINVAL;
3662 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3663 			   sizeof(struct sctp_paddrthlds)))
3664 		return -EFAULT;
3665 
3666 
3667 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3668 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3669 		if (!asoc)
3670 			return -ENOENT;
3671 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3672 				    transports) {
3673 			if (val.spt_pathmaxrxt)
3674 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3675 			trans->pf_retrans = val.spt_pathpfthld;
3676 		}
3677 
3678 		if (val.spt_pathmaxrxt)
3679 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3680 		asoc->pf_retrans = val.spt_pathpfthld;
3681 	} else {
3682 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3683 					       val.spt_assoc_id);
3684 		if (!trans)
3685 			return -ENOENT;
3686 
3687 		if (val.spt_pathmaxrxt)
3688 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3689 		trans->pf_retrans = val.spt_pathpfthld;
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3696 				       char __user *optval,
3697 				       unsigned int optlen)
3698 {
3699 	int val;
3700 
3701 	if (optlen < sizeof(int))
3702 		return -EINVAL;
3703 	if (get_user(val, (int __user *) optval))
3704 		return -EFAULT;
3705 
3706 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3707 
3708 	return 0;
3709 }
3710 
3711 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3712 				       char __user *optval,
3713 				       unsigned int optlen)
3714 {
3715 	int val;
3716 
3717 	if (optlen < sizeof(int))
3718 		return -EINVAL;
3719 	if (get_user(val, (int __user *) optval))
3720 		return -EFAULT;
3721 
3722 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3723 
3724 	return 0;
3725 }
3726 
3727 static int sctp_setsockopt_pr_supported(struct sock *sk,
3728 					char __user *optval,
3729 					unsigned int optlen)
3730 {
3731 	struct sctp_assoc_value params;
3732 	struct sctp_association *asoc;
3733 	int retval = -EINVAL;
3734 
3735 	if (optlen != sizeof(params))
3736 		goto out;
3737 
3738 	if (copy_from_user(&params, optval, optlen)) {
3739 		retval = -EFAULT;
3740 		goto out;
3741 	}
3742 
3743 	asoc = sctp_id2assoc(sk, params.assoc_id);
3744 	if (asoc) {
3745 		asoc->prsctp_enable = !!params.assoc_value;
3746 	} else if (!params.assoc_id) {
3747 		struct sctp_sock *sp = sctp_sk(sk);
3748 
3749 		sp->ep->prsctp_enable = !!params.assoc_value;
3750 	} else {
3751 		goto out;
3752 	}
3753 
3754 	retval = 0;
3755 
3756 out:
3757 	return retval;
3758 }
3759 
3760 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3761 					  char __user *optval,
3762 					  unsigned int optlen)
3763 {
3764 	struct sctp_default_prinfo info;
3765 	struct sctp_association *asoc;
3766 	int retval = -EINVAL;
3767 
3768 	if (optlen != sizeof(info))
3769 		goto out;
3770 
3771 	if (copy_from_user(&info, optval, sizeof(info))) {
3772 		retval = -EFAULT;
3773 		goto out;
3774 	}
3775 
3776 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3777 		goto out;
3778 
3779 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3780 		info.pr_value = 0;
3781 
3782 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3783 	if (asoc) {
3784 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3785 		asoc->default_timetolive = info.pr_value;
3786 	} else if (!info.pr_assoc_id) {
3787 		struct sctp_sock *sp = sctp_sk(sk);
3788 
3789 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3790 		sp->default_timetolive = info.pr_value;
3791 	} else {
3792 		goto out;
3793 	}
3794 
3795 	retval = 0;
3796 
3797 out:
3798 	return retval;
3799 }
3800 
3801 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3802 					      char __user *optval,
3803 					      unsigned int optlen)
3804 {
3805 	struct sctp_assoc_value params;
3806 	struct sctp_association *asoc;
3807 	int retval = -EINVAL;
3808 
3809 	if (optlen != sizeof(params))
3810 		goto out;
3811 
3812 	if (copy_from_user(&params, optval, optlen)) {
3813 		retval = -EFAULT;
3814 		goto out;
3815 	}
3816 
3817 	asoc = sctp_id2assoc(sk, params.assoc_id);
3818 	if (asoc) {
3819 		asoc->reconf_enable = !!params.assoc_value;
3820 	} else if (!params.assoc_id) {
3821 		struct sctp_sock *sp = sctp_sk(sk);
3822 
3823 		sp->ep->reconf_enable = !!params.assoc_value;
3824 	} else {
3825 		goto out;
3826 	}
3827 
3828 	retval = 0;
3829 
3830 out:
3831 	return retval;
3832 }
3833 
3834 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3835 					   char __user *optval,
3836 					   unsigned int optlen)
3837 {
3838 	struct sctp_assoc_value params;
3839 	struct sctp_association *asoc;
3840 	int retval = -EINVAL;
3841 
3842 	if (optlen != sizeof(params))
3843 		goto out;
3844 
3845 	if (copy_from_user(&params, optval, optlen)) {
3846 		retval = -EFAULT;
3847 		goto out;
3848 	}
3849 
3850 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3851 		goto out;
3852 
3853 	asoc = sctp_id2assoc(sk, params.assoc_id);
3854 	if (asoc) {
3855 		asoc->strreset_enable = params.assoc_value;
3856 	} else if (!params.assoc_id) {
3857 		struct sctp_sock *sp = sctp_sk(sk);
3858 
3859 		sp->ep->strreset_enable = params.assoc_value;
3860 	} else {
3861 		goto out;
3862 	}
3863 
3864 	retval = 0;
3865 
3866 out:
3867 	return retval;
3868 }
3869 
3870 static int sctp_setsockopt_reset_streams(struct sock *sk,
3871 					 char __user *optval,
3872 					 unsigned int optlen)
3873 {
3874 	struct sctp_reset_streams *params;
3875 	struct sctp_association *asoc;
3876 	int retval = -EINVAL;
3877 
3878 	if (optlen < sizeof(struct sctp_reset_streams))
3879 		return -EINVAL;
3880 
3881 	params = memdup_user(optval, optlen);
3882 	if (IS_ERR(params))
3883 		return PTR_ERR(params);
3884 
3885 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3886 	if (!asoc)
3887 		goto out;
3888 
3889 	retval = sctp_send_reset_streams(asoc, params);
3890 
3891 out:
3892 	kfree(params);
3893 	return retval;
3894 }
3895 
3896 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3897 				       char __user *optval,
3898 				       unsigned int optlen)
3899 {
3900 	struct sctp_association *asoc;
3901 	sctp_assoc_t associd;
3902 	int retval = -EINVAL;
3903 
3904 	if (optlen != sizeof(associd))
3905 		goto out;
3906 
3907 	if (copy_from_user(&associd, optval, optlen)) {
3908 		retval = -EFAULT;
3909 		goto out;
3910 	}
3911 
3912 	asoc = sctp_id2assoc(sk, associd);
3913 	if (!asoc)
3914 		goto out;
3915 
3916 	retval = sctp_send_reset_assoc(asoc);
3917 
3918 out:
3919 	return retval;
3920 }
3921 
3922 static int sctp_setsockopt_add_streams(struct sock *sk,
3923 				       char __user *optval,
3924 				       unsigned int optlen)
3925 {
3926 	struct sctp_association *asoc;
3927 	struct sctp_add_streams params;
3928 	int retval = -EINVAL;
3929 
3930 	if (optlen != sizeof(params))
3931 		goto out;
3932 
3933 	if (copy_from_user(&params, optval, optlen)) {
3934 		retval = -EFAULT;
3935 		goto out;
3936 	}
3937 
3938 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3939 	if (!asoc)
3940 		goto out;
3941 
3942 	retval = sctp_send_add_streams(asoc, &params);
3943 
3944 out:
3945 	return retval;
3946 }
3947 
3948 static int sctp_setsockopt_scheduler(struct sock *sk,
3949 				     char __user *optval,
3950 				     unsigned int optlen)
3951 {
3952 	struct sctp_association *asoc;
3953 	struct sctp_assoc_value params;
3954 	int retval = -EINVAL;
3955 
3956 	if (optlen < sizeof(params))
3957 		goto out;
3958 
3959 	optlen = sizeof(params);
3960 	if (copy_from_user(&params, optval, optlen)) {
3961 		retval = -EFAULT;
3962 		goto out;
3963 	}
3964 
3965 	if (params.assoc_value > SCTP_SS_MAX)
3966 		goto out;
3967 
3968 	asoc = sctp_id2assoc(sk, params.assoc_id);
3969 	if (!asoc)
3970 		goto out;
3971 
3972 	retval = sctp_sched_set_sched(asoc, params.assoc_value);
3973 
3974 out:
3975 	return retval;
3976 }
3977 
3978 static int sctp_setsockopt_scheduler_value(struct sock *sk,
3979 					   char __user *optval,
3980 					   unsigned int optlen)
3981 {
3982 	struct sctp_association *asoc;
3983 	struct sctp_stream_value params;
3984 	int retval = -EINVAL;
3985 
3986 	if (optlen < sizeof(params))
3987 		goto out;
3988 
3989 	optlen = sizeof(params);
3990 	if (copy_from_user(&params, optval, optlen)) {
3991 		retval = -EFAULT;
3992 		goto out;
3993 	}
3994 
3995 	asoc = sctp_id2assoc(sk, params.assoc_id);
3996 	if (!asoc)
3997 		goto out;
3998 
3999 	retval = sctp_sched_set_value(asoc, params.stream_id,
4000 				      params.stream_value, GFP_KERNEL);
4001 
4002 out:
4003 	return retval;
4004 }
4005 
4006 /* API 6.2 setsockopt(), getsockopt()
4007  *
4008  * Applications use setsockopt() and getsockopt() to set or retrieve
4009  * socket options.  Socket options are used to change the default
4010  * behavior of sockets calls.  They are described in Section 7.
4011  *
4012  * The syntax is:
4013  *
4014  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4015  *                    int __user *optlen);
4016  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4017  *                    int optlen);
4018  *
4019  *   sd      - the socket descript.
4020  *   level   - set to IPPROTO_SCTP for all SCTP options.
4021  *   optname - the option name.
4022  *   optval  - the buffer to store the value of the option.
4023  *   optlen  - the size of the buffer.
4024  */
4025 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4026 			   char __user *optval, unsigned int optlen)
4027 {
4028 	int retval = 0;
4029 
4030 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4031 
4032 	/* I can hardly begin to describe how wrong this is.  This is
4033 	 * so broken as to be worse than useless.  The API draft
4034 	 * REALLY is NOT helpful here...  I am not convinced that the
4035 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4036 	 * are at all well-founded.
4037 	 */
4038 	if (level != SOL_SCTP) {
4039 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4040 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4041 		goto out_nounlock;
4042 	}
4043 
4044 	lock_sock(sk);
4045 
4046 	switch (optname) {
4047 	case SCTP_SOCKOPT_BINDX_ADD:
4048 		/* 'optlen' is the size of the addresses buffer. */
4049 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4050 					       optlen, SCTP_BINDX_ADD_ADDR);
4051 		break;
4052 
4053 	case SCTP_SOCKOPT_BINDX_REM:
4054 		/* 'optlen' is the size of the addresses buffer. */
4055 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4056 					       optlen, SCTP_BINDX_REM_ADDR);
4057 		break;
4058 
4059 	case SCTP_SOCKOPT_CONNECTX_OLD:
4060 		/* 'optlen' is the size of the addresses buffer. */
4061 		retval = sctp_setsockopt_connectx_old(sk,
4062 					    (struct sockaddr __user *)optval,
4063 					    optlen);
4064 		break;
4065 
4066 	case SCTP_SOCKOPT_CONNECTX:
4067 		/* 'optlen' is the size of the addresses buffer. */
4068 		retval = sctp_setsockopt_connectx(sk,
4069 					    (struct sockaddr __user *)optval,
4070 					    optlen);
4071 		break;
4072 
4073 	case SCTP_DISABLE_FRAGMENTS:
4074 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4075 		break;
4076 
4077 	case SCTP_EVENTS:
4078 		retval = sctp_setsockopt_events(sk, optval, optlen);
4079 		break;
4080 
4081 	case SCTP_AUTOCLOSE:
4082 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4083 		break;
4084 
4085 	case SCTP_PEER_ADDR_PARAMS:
4086 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4087 		break;
4088 
4089 	case SCTP_DELAYED_SACK:
4090 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4091 		break;
4092 	case SCTP_PARTIAL_DELIVERY_POINT:
4093 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4094 		break;
4095 
4096 	case SCTP_INITMSG:
4097 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4098 		break;
4099 	case SCTP_DEFAULT_SEND_PARAM:
4100 		retval = sctp_setsockopt_default_send_param(sk, optval,
4101 							    optlen);
4102 		break;
4103 	case SCTP_DEFAULT_SNDINFO:
4104 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4105 		break;
4106 	case SCTP_PRIMARY_ADDR:
4107 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4108 		break;
4109 	case SCTP_SET_PEER_PRIMARY_ADDR:
4110 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4111 		break;
4112 	case SCTP_NODELAY:
4113 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4114 		break;
4115 	case SCTP_RTOINFO:
4116 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4117 		break;
4118 	case SCTP_ASSOCINFO:
4119 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4120 		break;
4121 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4122 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4123 		break;
4124 	case SCTP_MAXSEG:
4125 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4126 		break;
4127 	case SCTP_ADAPTATION_LAYER:
4128 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4129 		break;
4130 	case SCTP_CONTEXT:
4131 		retval = sctp_setsockopt_context(sk, optval, optlen);
4132 		break;
4133 	case SCTP_FRAGMENT_INTERLEAVE:
4134 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4135 		break;
4136 	case SCTP_MAX_BURST:
4137 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4138 		break;
4139 	case SCTP_AUTH_CHUNK:
4140 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4141 		break;
4142 	case SCTP_HMAC_IDENT:
4143 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4144 		break;
4145 	case SCTP_AUTH_KEY:
4146 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4147 		break;
4148 	case SCTP_AUTH_ACTIVE_KEY:
4149 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4150 		break;
4151 	case SCTP_AUTH_DELETE_KEY:
4152 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4153 		break;
4154 	case SCTP_AUTO_ASCONF:
4155 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4156 		break;
4157 	case SCTP_PEER_ADDR_THLDS:
4158 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4159 		break;
4160 	case SCTP_RECVRCVINFO:
4161 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4162 		break;
4163 	case SCTP_RECVNXTINFO:
4164 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4165 		break;
4166 	case SCTP_PR_SUPPORTED:
4167 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4168 		break;
4169 	case SCTP_DEFAULT_PRINFO:
4170 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4171 		break;
4172 	case SCTP_RECONFIG_SUPPORTED:
4173 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4174 		break;
4175 	case SCTP_ENABLE_STREAM_RESET:
4176 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4177 		break;
4178 	case SCTP_RESET_STREAMS:
4179 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4180 		break;
4181 	case SCTP_RESET_ASSOC:
4182 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4183 		break;
4184 	case SCTP_ADD_STREAMS:
4185 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4186 		break;
4187 	case SCTP_STREAM_SCHEDULER:
4188 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4189 		break;
4190 	case SCTP_STREAM_SCHEDULER_VALUE:
4191 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4192 		break;
4193 	default:
4194 		retval = -ENOPROTOOPT;
4195 		break;
4196 	}
4197 
4198 	release_sock(sk);
4199 
4200 out_nounlock:
4201 	return retval;
4202 }
4203 
4204 /* API 3.1.6 connect() - UDP Style Syntax
4205  *
4206  * An application may use the connect() call in the UDP model to initiate an
4207  * association without sending data.
4208  *
4209  * The syntax is:
4210  *
4211  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4212  *
4213  * sd: the socket descriptor to have a new association added to.
4214  *
4215  * nam: the address structure (either struct sockaddr_in or struct
4216  *    sockaddr_in6 defined in RFC2553 [7]).
4217  *
4218  * len: the size of the address.
4219  */
4220 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4221 			int addr_len)
4222 {
4223 	int err = 0;
4224 	struct sctp_af *af;
4225 
4226 	lock_sock(sk);
4227 
4228 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4229 		 addr, addr_len);
4230 
4231 	/* Validate addr_len before calling common connect/connectx routine. */
4232 	af = sctp_get_af_specific(addr->sa_family);
4233 	if (!af || addr_len < af->sockaddr_len) {
4234 		err = -EINVAL;
4235 	} else {
4236 		/* Pass correct addr len to common routine (so it knows there
4237 		 * is only one address being passed.
4238 		 */
4239 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4240 	}
4241 
4242 	release_sock(sk);
4243 	return err;
4244 }
4245 
4246 /* FIXME: Write comments. */
4247 static int sctp_disconnect(struct sock *sk, int flags)
4248 {
4249 	return -EOPNOTSUPP; /* STUB */
4250 }
4251 
4252 /* 4.1.4 accept() - TCP Style Syntax
4253  *
4254  * Applications use accept() call to remove an established SCTP
4255  * association from the accept queue of the endpoint.  A new socket
4256  * descriptor will be returned from accept() to represent the newly
4257  * formed association.
4258  */
4259 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4260 {
4261 	struct sctp_sock *sp;
4262 	struct sctp_endpoint *ep;
4263 	struct sock *newsk = NULL;
4264 	struct sctp_association *asoc;
4265 	long timeo;
4266 	int error = 0;
4267 
4268 	lock_sock(sk);
4269 
4270 	sp = sctp_sk(sk);
4271 	ep = sp->ep;
4272 
4273 	if (!sctp_style(sk, TCP)) {
4274 		error = -EOPNOTSUPP;
4275 		goto out;
4276 	}
4277 
4278 	if (!sctp_sstate(sk, LISTENING)) {
4279 		error = -EINVAL;
4280 		goto out;
4281 	}
4282 
4283 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4284 
4285 	error = sctp_wait_for_accept(sk, timeo);
4286 	if (error)
4287 		goto out;
4288 
4289 	/* We treat the list of associations on the endpoint as the accept
4290 	 * queue and pick the first association on the list.
4291 	 */
4292 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4293 
4294 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4295 	if (!newsk) {
4296 		error = -ENOMEM;
4297 		goto out;
4298 	}
4299 
4300 	/* Populate the fields of the newsk from the oldsk and migrate the
4301 	 * asoc to the newsk.
4302 	 */
4303 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4304 
4305 out:
4306 	release_sock(sk);
4307 	*err = error;
4308 	return newsk;
4309 }
4310 
4311 /* The SCTP ioctl handler. */
4312 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4313 {
4314 	int rc = -ENOTCONN;
4315 
4316 	lock_sock(sk);
4317 
4318 	/*
4319 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4320 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4321 	 */
4322 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4323 		goto out;
4324 
4325 	switch (cmd) {
4326 	case SIOCINQ: {
4327 		struct sk_buff *skb;
4328 		unsigned int amount = 0;
4329 
4330 		skb = skb_peek(&sk->sk_receive_queue);
4331 		if (skb != NULL) {
4332 			/*
4333 			 * We will only return the amount of this packet since
4334 			 * that is all that will be read.
4335 			 */
4336 			amount = skb->len;
4337 		}
4338 		rc = put_user(amount, (int __user *)arg);
4339 		break;
4340 	}
4341 	default:
4342 		rc = -ENOIOCTLCMD;
4343 		break;
4344 	}
4345 out:
4346 	release_sock(sk);
4347 	return rc;
4348 }
4349 
4350 /* This is the function which gets called during socket creation to
4351  * initialized the SCTP-specific portion of the sock.
4352  * The sock structure should already be zero-filled memory.
4353  */
4354 static int sctp_init_sock(struct sock *sk)
4355 {
4356 	struct net *net = sock_net(sk);
4357 	struct sctp_sock *sp;
4358 
4359 	pr_debug("%s: sk:%p\n", __func__, sk);
4360 
4361 	sp = sctp_sk(sk);
4362 
4363 	/* Initialize the SCTP per socket area.  */
4364 	switch (sk->sk_type) {
4365 	case SOCK_SEQPACKET:
4366 		sp->type = SCTP_SOCKET_UDP;
4367 		break;
4368 	case SOCK_STREAM:
4369 		sp->type = SCTP_SOCKET_TCP;
4370 		break;
4371 	default:
4372 		return -ESOCKTNOSUPPORT;
4373 	}
4374 
4375 	sk->sk_gso_type = SKB_GSO_SCTP;
4376 
4377 	/* Initialize default send parameters. These parameters can be
4378 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4379 	 */
4380 	sp->default_stream = 0;
4381 	sp->default_ppid = 0;
4382 	sp->default_flags = 0;
4383 	sp->default_context = 0;
4384 	sp->default_timetolive = 0;
4385 
4386 	sp->default_rcv_context = 0;
4387 	sp->max_burst = net->sctp.max_burst;
4388 
4389 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4390 
4391 	/* Initialize default setup parameters. These parameters
4392 	 * can be modified with the SCTP_INITMSG socket option or
4393 	 * overridden by the SCTP_INIT CMSG.
4394 	 */
4395 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4396 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4397 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4398 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4399 
4400 	/* Initialize default RTO related parameters.  These parameters can
4401 	 * be modified for with the SCTP_RTOINFO socket option.
4402 	 */
4403 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4404 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4405 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4406 
4407 	/* Initialize default association related parameters. These parameters
4408 	 * can be modified with the SCTP_ASSOCINFO socket option.
4409 	 */
4410 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4411 	sp->assocparams.sasoc_number_peer_destinations = 0;
4412 	sp->assocparams.sasoc_peer_rwnd = 0;
4413 	sp->assocparams.sasoc_local_rwnd = 0;
4414 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4415 
4416 	/* Initialize default event subscriptions. By default, all the
4417 	 * options are off.
4418 	 */
4419 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4420 
4421 	/* Default Peer Address Parameters.  These defaults can
4422 	 * be modified via SCTP_PEER_ADDR_PARAMS
4423 	 */
4424 	sp->hbinterval  = net->sctp.hb_interval;
4425 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4426 	sp->pathmtu     = 0; /* allow default discovery */
4427 	sp->sackdelay   = net->sctp.sack_timeout;
4428 	sp->sackfreq	= 2;
4429 	sp->param_flags = SPP_HB_ENABLE |
4430 			  SPP_PMTUD_ENABLE |
4431 			  SPP_SACKDELAY_ENABLE;
4432 
4433 	/* If enabled no SCTP message fragmentation will be performed.
4434 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4435 	 */
4436 	sp->disable_fragments = 0;
4437 
4438 	/* Enable Nagle algorithm by default.  */
4439 	sp->nodelay           = 0;
4440 
4441 	sp->recvrcvinfo = 0;
4442 	sp->recvnxtinfo = 0;
4443 
4444 	/* Enable by default. */
4445 	sp->v4mapped          = 1;
4446 
4447 	/* Auto-close idle associations after the configured
4448 	 * number of seconds.  A value of 0 disables this
4449 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4450 	 * for UDP-style sockets only.
4451 	 */
4452 	sp->autoclose         = 0;
4453 
4454 	/* User specified fragmentation limit. */
4455 	sp->user_frag         = 0;
4456 
4457 	sp->adaptation_ind = 0;
4458 
4459 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4460 
4461 	/* Control variables for partial data delivery. */
4462 	atomic_set(&sp->pd_mode, 0);
4463 	skb_queue_head_init(&sp->pd_lobby);
4464 	sp->frag_interleave = 0;
4465 
4466 	/* Create a per socket endpoint structure.  Even if we
4467 	 * change the data structure relationships, this may still
4468 	 * be useful for storing pre-connect address information.
4469 	 */
4470 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4471 	if (!sp->ep)
4472 		return -ENOMEM;
4473 
4474 	sp->hmac = NULL;
4475 
4476 	sk->sk_destruct = sctp_destruct_sock;
4477 
4478 	SCTP_DBG_OBJCNT_INC(sock);
4479 
4480 	local_bh_disable();
4481 	percpu_counter_inc(&sctp_sockets_allocated);
4482 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4483 
4484 	/* Nothing can fail after this block, otherwise
4485 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4486 	 */
4487 	if (net->sctp.default_auto_asconf) {
4488 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4489 		list_add_tail(&sp->auto_asconf_list,
4490 		    &net->sctp.auto_asconf_splist);
4491 		sp->do_auto_asconf = 1;
4492 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4493 	} else {
4494 		sp->do_auto_asconf = 0;
4495 	}
4496 
4497 	local_bh_enable();
4498 
4499 	return 0;
4500 }
4501 
4502 /* Cleanup any SCTP per socket resources. Must be called with
4503  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4504  */
4505 static void sctp_destroy_sock(struct sock *sk)
4506 {
4507 	struct sctp_sock *sp;
4508 
4509 	pr_debug("%s: sk:%p\n", __func__, sk);
4510 
4511 	/* Release our hold on the endpoint. */
4512 	sp = sctp_sk(sk);
4513 	/* This could happen during socket init, thus we bail out
4514 	 * early, since the rest of the below is not setup either.
4515 	 */
4516 	if (sp->ep == NULL)
4517 		return;
4518 
4519 	if (sp->do_auto_asconf) {
4520 		sp->do_auto_asconf = 0;
4521 		list_del(&sp->auto_asconf_list);
4522 	}
4523 	sctp_endpoint_free(sp->ep);
4524 	local_bh_disable();
4525 	percpu_counter_dec(&sctp_sockets_allocated);
4526 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4527 	local_bh_enable();
4528 }
4529 
4530 /* Triggered when there are no references on the socket anymore */
4531 static void sctp_destruct_sock(struct sock *sk)
4532 {
4533 	struct sctp_sock *sp = sctp_sk(sk);
4534 
4535 	/* Free up the HMAC transform. */
4536 	crypto_free_shash(sp->hmac);
4537 
4538 	inet_sock_destruct(sk);
4539 }
4540 
4541 /* API 4.1.7 shutdown() - TCP Style Syntax
4542  *     int shutdown(int socket, int how);
4543  *
4544  *     sd      - the socket descriptor of the association to be closed.
4545  *     how     - Specifies the type of shutdown.  The  values  are
4546  *               as follows:
4547  *               SHUT_RD
4548  *                     Disables further receive operations. No SCTP
4549  *                     protocol action is taken.
4550  *               SHUT_WR
4551  *                     Disables further send operations, and initiates
4552  *                     the SCTP shutdown sequence.
4553  *               SHUT_RDWR
4554  *                     Disables further send  and  receive  operations
4555  *                     and initiates the SCTP shutdown sequence.
4556  */
4557 static void sctp_shutdown(struct sock *sk, int how)
4558 {
4559 	struct net *net = sock_net(sk);
4560 	struct sctp_endpoint *ep;
4561 
4562 	if (!sctp_style(sk, TCP))
4563 		return;
4564 
4565 	ep = sctp_sk(sk)->ep;
4566 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4567 		struct sctp_association *asoc;
4568 
4569 		sk->sk_state = SCTP_SS_CLOSING;
4570 		asoc = list_entry(ep->asocs.next,
4571 				  struct sctp_association, asocs);
4572 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4573 	}
4574 }
4575 
4576 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4577 		       struct sctp_info *info)
4578 {
4579 	struct sctp_transport *prim;
4580 	struct list_head *pos;
4581 	int mask;
4582 
4583 	memset(info, 0, sizeof(*info));
4584 	if (!asoc) {
4585 		struct sctp_sock *sp = sctp_sk(sk);
4586 
4587 		info->sctpi_s_autoclose = sp->autoclose;
4588 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4589 		info->sctpi_s_pd_point = sp->pd_point;
4590 		info->sctpi_s_nodelay = sp->nodelay;
4591 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4592 		info->sctpi_s_v4mapped = sp->v4mapped;
4593 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4594 		info->sctpi_s_type = sp->type;
4595 
4596 		return 0;
4597 	}
4598 
4599 	info->sctpi_tag = asoc->c.my_vtag;
4600 	info->sctpi_state = asoc->state;
4601 	info->sctpi_rwnd = asoc->a_rwnd;
4602 	info->sctpi_unackdata = asoc->unack_data;
4603 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4604 	info->sctpi_instrms = asoc->stream.incnt;
4605 	info->sctpi_outstrms = asoc->stream.outcnt;
4606 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4607 		info->sctpi_inqueue++;
4608 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4609 		info->sctpi_outqueue++;
4610 	info->sctpi_overall_error = asoc->overall_error_count;
4611 	info->sctpi_max_burst = asoc->max_burst;
4612 	info->sctpi_maxseg = asoc->frag_point;
4613 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4614 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4615 
4616 	mask = asoc->peer.ecn_capable << 1;
4617 	mask = (mask | asoc->peer.ipv4_address) << 1;
4618 	mask = (mask | asoc->peer.ipv6_address) << 1;
4619 	mask = (mask | asoc->peer.hostname_address) << 1;
4620 	mask = (mask | asoc->peer.asconf_capable) << 1;
4621 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4622 	mask = (mask | asoc->peer.auth_capable);
4623 	info->sctpi_peer_capable = mask;
4624 	mask = asoc->peer.sack_needed << 1;
4625 	mask = (mask | asoc->peer.sack_generation) << 1;
4626 	mask = (mask | asoc->peer.zero_window_announced);
4627 	info->sctpi_peer_sack = mask;
4628 
4629 	info->sctpi_isacks = asoc->stats.isacks;
4630 	info->sctpi_osacks = asoc->stats.osacks;
4631 	info->sctpi_opackets = asoc->stats.opackets;
4632 	info->sctpi_ipackets = asoc->stats.ipackets;
4633 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4634 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4635 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4636 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4637 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4638 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4639 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4640 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4641 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4642 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4643 
4644 	prim = asoc->peer.primary_path;
4645 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4646 	info->sctpi_p_state = prim->state;
4647 	info->sctpi_p_cwnd = prim->cwnd;
4648 	info->sctpi_p_srtt = prim->srtt;
4649 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4650 	info->sctpi_p_hbinterval = prim->hbinterval;
4651 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4652 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4653 	info->sctpi_p_ssthresh = prim->ssthresh;
4654 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4655 	info->sctpi_p_flight_size = prim->flight_size;
4656 	info->sctpi_p_error = prim->error_count;
4657 
4658 	return 0;
4659 }
4660 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4661 
4662 /* use callback to avoid exporting the core structure */
4663 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4664 {
4665 	int err;
4666 
4667 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4668 
4669 	err = rhashtable_walk_start(iter);
4670 	if (err && err != -EAGAIN) {
4671 		rhashtable_walk_stop(iter);
4672 		rhashtable_walk_exit(iter);
4673 		return err;
4674 	}
4675 
4676 	return 0;
4677 }
4678 
4679 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4680 {
4681 	rhashtable_walk_stop(iter);
4682 	rhashtable_walk_exit(iter);
4683 }
4684 
4685 struct sctp_transport *sctp_transport_get_next(struct net *net,
4686 					       struct rhashtable_iter *iter)
4687 {
4688 	struct sctp_transport *t;
4689 
4690 	t = rhashtable_walk_next(iter);
4691 	for (; t; t = rhashtable_walk_next(iter)) {
4692 		if (IS_ERR(t)) {
4693 			if (PTR_ERR(t) == -EAGAIN)
4694 				continue;
4695 			break;
4696 		}
4697 
4698 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4699 		    t->asoc->peer.primary_path == t)
4700 			break;
4701 	}
4702 
4703 	return t;
4704 }
4705 
4706 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4707 					      struct rhashtable_iter *iter,
4708 					      int pos)
4709 {
4710 	void *obj = SEQ_START_TOKEN;
4711 
4712 	while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4713 	       !IS_ERR(obj))
4714 		pos--;
4715 
4716 	return obj;
4717 }
4718 
4719 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4720 			   void *p) {
4721 	int err = 0;
4722 	int hash = 0;
4723 	struct sctp_ep_common *epb;
4724 	struct sctp_hashbucket *head;
4725 
4726 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4727 	     hash++, head++) {
4728 		read_lock_bh(&head->lock);
4729 		sctp_for_each_hentry(epb, &head->chain) {
4730 			err = cb(sctp_ep(epb), p);
4731 			if (err)
4732 				break;
4733 		}
4734 		read_unlock_bh(&head->lock);
4735 	}
4736 
4737 	return err;
4738 }
4739 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4740 
4741 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4742 				  struct net *net,
4743 				  const union sctp_addr *laddr,
4744 				  const union sctp_addr *paddr, void *p)
4745 {
4746 	struct sctp_transport *transport;
4747 	int err;
4748 
4749 	rcu_read_lock();
4750 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4751 	rcu_read_unlock();
4752 	if (!transport)
4753 		return -ENOENT;
4754 
4755 	err = cb(transport, p);
4756 	sctp_transport_put(transport);
4757 
4758 	return err;
4759 }
4760 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4761 
4762 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4763 			    int (*cb_done)(struct sctp_transport *, void *),
4764 			    struct net *net, int *pos, void *p) {
4765 	struct rhashtable_iter hti;
4766 	struct sctp_transport *tsp;
4767 	int ret;
4768 
4769 again:
4770 	ret = sctp_transport_walk_start(&hti);
4771 	if (ret)
4772 		return ret;
4773 
4774 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
4775 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
4776 		if (!sctp_transport_hold(tsp))
4777 			continue;
4778 		ret = cb(tsp, p);
4779 		if (ret)
4780 			break;
4781 		(*pos)++;
4782 		sctp_transport_put(tsp);
4783 	}
4784 	sctp_transport_walk_stop(&hti);
4785 
4786 	if (ret) {
4787 		if (cb_done && !cb_done(tsp, p)) {
4788 			(*pos)++;
4789 			sctp_transport_put(tsp);
4790 			goto again;
4791 		}
4792 		sctp_transport_put(tsp);
4793 	}
4794 
4795 	return ret;
4796 }
4797 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4798 
4799 /* 7.2.1 Association Status (SCTP_STATUS)
4800 
4801  * Applications can retrieve current status information about an
4802  * association, including association state, peer receiver window size,
4803  * number of unacked data chunks, and number of data chunks pending
4804  * receipt.  This information is read-only.
4805  */
4806 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4807 				       char __user *optval,
4808 				       int __user *optlen)
4809 {
4810 	struct sctp_status status;
4811 	struct sctp_association *asoc = NULL;
4812 	struct sctp_transport *transport;
4813 	sctp_assoc_t associd;
4814 	int retval = 0;
4815 
4816 	if (len < sizeof(status)) {
4817 		retval = -EINVAL;
4818 		goto out;
4819 	}
4820 
4821 	len = sizeof(status);
4822 	if (copy_from_user(&status, optval, len)) {
4823 		retval = -EFAULT;
4824 		goto out;
4825 	}
4826 
4827 	associd = status.sstat_assoc_id;
4828 	asoc = sctp_id2assoc(sk, associd);
4829 	if (!asoc) {
4830 		retval = -EINVAL;
4831 		goto out;
4832 	}
4833 
4834 	transport = asoc->peer.primary_path;
4835 
4836 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4837 	status.sstat_state = sctp_assoc_to_state(asoc);
4838 	status.sstat_rwnd =  asoc->peer.rwnd;
4839 	status.sstat_unackdata = asoc->unack_data;
4840 
4841 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4842 	status.sstat_instrms = asoc->stream.incnt;
4843 	status.sstat_outstrms = asoc->stream.outcnt;
4844 	status.sstat_fragmentation_point = asoc->frag_point;
4845 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4846 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4847 			transport->af_specific->sockaddr_len);
4848 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4849 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4850 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4851 	status.sstat_primary.spinfo_state = transport->state;
4852 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4853 	status.sstat_primary.spinfo_srtt = transport->srtt;
4854 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4855 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4856 
4857 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4858 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4859 
4860 	if (put_user(len, optlen)) {
4861 		retval = -EFAULT;
4862 		goto out;
4863 	}
4864 
4865 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4866 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4867 		 status.sstat_assoc_id);
4868 
4869 	if (copy_to_user(optval, &status, len)) {
4870 		retval = -EFAULT;
4871 		goto out;
4872 	}
4873 
4874 out:
4875 	return retval;
4876 }
4877 
4878 
4879 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4880  *
4881  * Applications can retrieve information about a specific peer address
4882  * of an association, including its reachability state, congestion
4883  * window, and retransmission timer values.  This information is
4884  * read-only.
4885  */
4886 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4887 					  char __user *optval,
4888 					  int __user *optlen)
4889 {
4890 	struct sctp_paddrinfo pinfo;
4891 	struct sctp_transport *transport;
4892 	int retval = 0;
4893 
4894 	if (len < sizeof(pinfo)) {
4895 		retval = -EINVAL;
4896 		goto out;
4897 	}
4898 
4899 	len = sizeof(pinfo);
4900 	if (copy_from_user(&pinfo, optval, len)) {
4901 		retval = -EFAULT;
4902 		goto out;
4903 	}
4904 
4905 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4906 					   pinfo.spinfo_assoc_id);
4907 	if (!transport)
4908 		return -EINVAL;
4909 
4910 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4911 	pinfo.spinfo_state = transport->state;
4912 	pinfo.spinfo_cwnd = transport->cwnd;
4913 	pinfo.spinfo_srtt = transport->srtt;
4914 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4915 	pinfo.spinfo_mtu = transport->pathmtu;
4916 
4917 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4918 		pinfo.spinfo_state = SCTP_ACTIVE;
4919 
4920 	if (put_user(len, optlen)) {
4921 		retval = -EFAULT;
4922 		goto out;
4923 	}
4924 
4925 	if (copy_to_user(optval, &pinfo, len)) {
4926 		retval = -EFAULT;
4927 		goto out;
4928 	}
4929 
4930 out:
4931 	return retval;
4932 }
4933 
4934 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4935  *
4936  * This option is a on/off flag.  If enabled no SCTP message
4937  * fragmentation will be performed.  Instead if a message being sent
4938  * exceeds the current PMTU size, the message will NOT be sent and
4939  * instead a error will be indicated to the user.
4940  */
4941 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4942 					char __user *optval, int __user *optlen)
4943 {
4944 	int val;
4945 
4946 	if (len < sizeof(int))
4947 		return -EINVAL;
4948 
4949 	len = sizeof(int);
4950 	val = (sctp_sk(sk)->disable_fragments == 1);
4951 	if (put_user(len, optlen))
4952 		return -EFAULT;
4953 	if (copy_to_user(optval, &val, len))
4954 		return -EFAULT;
4955 	return 0;
4956 }
4957 
4958 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4959  *
4960  * This socket option is used to specify various notifications and
4961  * ancillary data the user wishes to receive.
4962  */
4963 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4964 				  int __user *optlen)
4965 {
4966 	if (len == 0)
4967 		return -EINVAL;
4968 	if (len > sizeof(struct sctp_event_subscribe))
4969 		len = sizeof(struct sctp_event_subscribe);
4970 	if (put_user(len, optlen))
4971 		return -EFAULT;
4972 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4973 		return -EFAULT;
4974 	return 0;
4975 }
4976 
4977 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4978  *
4979  * This socket option is applicable to the UDP-style socket only.  When
4980  * set it will cause associations that are idle for more than the
4981  * specified number of seconds to automatically close.  An association
4982  * being idle is defined an association that has NOT sent or received
4983  * user data.  The special value of '0' indicates that no automatic
4984  * close of any associations should be performed.  The option expects an
4985  * integer defining the number of seconds of idle time before an
4986  * association is closed.
4987  */
4988 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4989 {
4990 	/* Applicable to UDP-style socket only */
4991 	if (sctp_style(sk, TCP))
4992 		return -EOPNOTSUPP;
4993 	if (len < sizeof(int))
4994 		return -EINVAL;
4995 	len = sizeof(int);
4996 	if (put_user(len, optlen))
4997 		return -EFAULT;
4998 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4999 		return -EFAULT;
5000 	return 0;
5001 }
5002 
5003 /* Helper routine to branch off an association to a new socket.  */
5004 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5005 {
5006 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5007 	struct sctp_sock *sp = sctp_sk(sk);
5008 	struct socket *sock;
5009 	int err = 0;
5010 
5011 	/* Do not peel off from one netns to another one. */
5012 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5013 		return -EINVAL;
5014 
5015 	if (!asoc)
5016 		return -EINVAL;
5017 
5018 	/* If there is a thread waiting on more sndbuf space for
5019 	 * sending on this asoc, it cannot be peeled.
5020 	 */
5021 	if (waitqueue_active(&asoc->wait))
5022 		return -EBUSY;
5023 
5024 	/* An association cannot be branched off from an already peeled-off
5025 	 * socket, nor is this supported for tcp style sockets.
5026 	 */
5027 	if (!sctp_style(sk, UDP))
5028 		return -EINVAL;
5029 
5030 	/* Create a new socket.  */
5031 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5032 	if (err < 0)
5033 		return err;
5034 
5035 	sctp_copy_sock(sock->sk, sk, asoc);
5036 
5037 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5038 	 * Set the daddr and initialize id to something more random
5039 	 */
5040 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5041 
5042 	/* Populate the fields of the newsk from the oldsk and migrate the
5043 	 * asoc to the newsk.
5044 	 */
5045 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5046 
5047 	*sockp = sock;
5048 
5049 	return err;
5050 }
5051 EXPORT_SYMBOL(sctp_do_peeloff);
5052 
5053 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5054 					  struct file **newfile, unsigned flags)
5055 {
5056 	struct socket *newsock;
5057 	int retval;
5058 
5059 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5060 	if (retval < 0)
5061 		goto out;
5062 
5063 	/* Map the socket to an unused fd that can be returned to the user.  */
5064 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5065 	if (retval < 0) {
5066 		sock_release(newsock);
5067 		goto out;
5068 	}
5069 
5070 	*newfile = sock_alloc_file(newsock, 0, NULL);
5071 	if (IS_ERR(*newfile)) {
5072 		put_unused_fd(retval);
5073 		sock_release(newsock);
5074 		retval = PTR_ERR(*newfile);
5075 		*newfile = NULL;
5076 		return retval;
5077 	}
5078 
5079 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5080 		 retval);
5081 
5082 	peeloff->sd = retval;
5083 
5084 	if (flags & SOCK_NONBLOCK)
5085 		(*newfile)->f_flags |= O_NONBLOCK;
5086 out:
5087 	return retval;
5088 }
5089 
5090 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5091 {
5092 	sctp_peeloff_arg_t peeloff;
5093 	struct file *newfile = NULL;
5094 	int retval = 0;
5095 
5096 	if (len < sizeof(sctp_peeloff_arg_t))
5097 		return -EINVAL;
5098 	len = sizeof(sctp_peeloff_arg_t);
5099 	if (copy_from_user(&peeloff, optval, len))
5100 		return -EFAULT;
5101 
5102 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5103 	if (retval < 0)
5104 		goto out;
5105 
5106 	/* Return the fd mapped to the new socket.  */
5107 	if (put_user(len, optlen)) {
5108 		fput(newfile);
5109 		put_unused_fd(retval);
5110 		return -EFAULT;
5111 	}
5112 
5113 	if (copy_to_user(optval, &peeloff, len)) {
5114 		fput(newfile);
5115 		put_unused_fd(retval);
5116 		return -EFAULT;
5117 	}
5118 	fd_install(retval, newfile);
5119 out:
5120 	return retval;
5121 }
5122 
5123 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5124 					 char __user *optval, int __user *optlen)
5125 {
5126 	sctp_peeloff_flags_arg_t peeloff;
5127 	struct file *newfile = NULL;
5128 	int retval = 0;
5129 
5130 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5131 		return -EINVAL;
5132 	len = sizeof(sctp_peeloff_flags_arg_t);
5133 	if (copy_from_user(&peeloff, optval, len))
5134 		return -EFAULT;
5135 
5136 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5137 						&newfile, peeloff.flags);
5138 	if (retval < 0)
5139 		goto out;
5140 
5141 	/* Return the fd mapped to the new socket.  */
5142 	if (put_user(len, optlen)) {
5143 		fput(newfile);
5144 		put_unused_fd(retval);
5145 		return -EFAULT;
5146 	}
5147 
5148 	if (copy_to_user(optval, &peeloff, len)) {
5149 		fput(newfile);
5150 		put_unused_fd(retval);
5151 		return -EFAULT;
5152 	}
5153 	fd_install(retval, newfile);
5154 out:
5155 	return retval;
5156 }
5157 
5158 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5159  *
5160  * Applications can enable or disable heartbeats for any peer address of
5161  * an association, modify an address's heartbeat interval, force a
5162  * heartbeat to be sent immediately, and adjust the address's maximum
5163  * number of retransmissions sent before an address is considered
5164  * unreachable.  The following structure is used to access and modify an
5165  * address's parameters:
5166  *
5167  *  struct sctp_paddrparams {
5168  *     sctp_assoc_t            spp_assoc_id;
5169  *     struct sockaddr_storage spp_address;
5170  *     uint32_t                spp_hbinterval;
5171  *     uint16_t                spp_pathmaxrxt;
5172  *     uint32_t                spp_pathmtu;
5173  *     uint32_t                spp_sackdelay;
5174  *     uint32_t                spp_flags;
5175  * };
5176  *
5177  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5178  *                     application, and identifies the association for
5179  *                     this query.
5180  *   spp_address     - This specifies which address is of interest.
5181  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5182  *                     in milliseconds.  If a  value of zero
5183  *                     is present in this field then no changes are to
5184  *                     be made to this parameter.
5185  *   spp_pathmaxrxt  - This contains the maximum number of
5186  *                     retransmissions before this address shall be
5187  *                     considered unreachable. If a  value of zero
5188  *                     is present in this field then no changes are to
5189  *                     be made to this parameter.
5190  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5191  *                     specified here will be the "fixed" path mtu.
5192  *                     Note that if the spp_address field is empty
5193  *                     then all associations on this address will
5194  *                     have this fixed path mtu set upon them.
5195  *
5196  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5197  *                     the number of milliseconds that sacks will be delayed
5198  *                     for. This value will apply to all addresses of an
5199  *                     association if the spp_address field is empty. Note
5200  *                     also, that if delayed sack is enabled and this
5201  *                     value is set to 0, no change is made to the last
5202  *                     recorded delayed sack timer value.
5203  *
5204  *   spp_flags       - These flags are used to control various features
5205  *                     on an association. The flag field may contain
5206  *                     zero or more of the following options.
5207  *
5208  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5209  *                     specified address. Note that if the address
5210  *                     field is empty all addresses for the association
5211  *                     have heartbeats enabled upon them.
5212  *
5213  *                     SPP_HB_DISABLE - Disable heartbeats on the
5214  *                     speicifed address. Note that if the address
5215  *                     field is empty all addresses for the association
5216  *                     will have their heartbeats disabled. Note also
5217  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5218  *                     mutually exclusive, only one of these two should
5219  *                     be specified. Enabling both fields will have
5220  *                     undetermined results.
5221  *
5222  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5223  *                     to be made immediately.
5224  *
5225  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5226  *                     discovery upon the specified address. Note that
5227  *                     if the address feild is empty then all addresses
5228  *                     on the association are effected.
5229  *
5230  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5231  *                     discovery upon the specified address. Note that
5232  *                     if the address feild is empty then all addresses
5233  *                     on the association are effected. Not also that
5234  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5235  *                     exclusive. Enabling both will have undetermined
5236  *                     results.
5237  *
5238  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5239  *                     on delayed sack. The time specified in spp_sackdelay
5240  *                     is used to specify the sack delay for this address. Note
5241  *                     that if spp_address is empty then all addresses will
5242  *                     enable delayed sack and take on the sack delay
5243  *                     value specified in spp_sackdelay.
5244  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5245  *                     off delayed sack. If the spp_address field is blank then
5246  *                     delayed sack is disabled for the entire association. Note
5247  *                     also that this field is mutually exclusive to
5248  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5249  *                     results.
5250  */
5251 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5252 					    char __user *optval, int __user *optlen)
5253 {
5254 	struct sctp_paddrparams  params;
5255 	struct sctp_transport   *trans = NULL;
5256 	struct sctp_association *asoc = NULL;
5257 	struct sctp_sock        *sp = sctp_sk(sk);
5258 
5259 	if (len < sizeof(struct sctp_paddrparams))
5260 		return -EINVAL;
5261 	len = sizeof(struct sctp_paddrparams);
5262 	if (copy_from_user(&params, optval, len))
5263 		return -EFAULT;
5264 
5265 	/* If an address other than INADDR_ANY is specified, and
5266 	 * no transport is found, then the request is invalid.
5267 	 */
5268 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5269 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5270 					       params.spp_assoc_id);
5271 		if (!trans) {
5272 			pr_debug("%s: failed no transport\n", __func__);
5273 			return -EINVAL;
5274 		}
5275 	}
5276 
5277 	/* Get association, if assoc_id != 0 and the socket is a one
5278 	 * to many style socket, and an association was not found, then
5279 	 * the id was invalid.
5280 	 */
5281 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5282 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5283 		pr_debug("%s: failed no association\n", __func__);
5284 		return -EINVAL;
5285 	}
5286 
5287 	if (trans) {
5288 		/* Fetch transport values. */
5289 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5290 		params.spp_pathmtu    = trans->pathmtu;
5291 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5292 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5293 
5294 		/*draft-11 doesn't say what to return in spp_flags*/
5295 		params.spp_flags      = trans->param_flags;
5296 	} else if (asoc) {
5297 		/* Fetch association values. */
5298 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5299 		params.spp_pathmtu    = asoc->pathmtu;
5300 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5301 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5302 
5303 		/*draft-11 doesn't say what to return in spp_flags*/
5304 		params.spp_flags      = asoc->param_flags;
5305 	} else {
5306 		/* Fetch socket values. */
5307 		params.spp_hbinterval = sp->hbinterval;
5308 		params.spp_pathmtu    = sp->pathmtu;
5309 		params.spp_sackdelay  = sp->sackdelay;
5310 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5311 
5312 		/*draft-11 doesn't say what to return in spp_flags*/
5313 		params.spp_flags      = sp->param_flags;
5314 	}
5315 
5316 	if (copy_to_user(optval, &params, len))
5317 		return -EFAULT;
5318 
5319 	if (put_user(len, optlen))
5320 		return -EFAULT;
5321 
5322 	return 0;
5323 }
5324 
5325 /*
5326  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5327  *
5328  * This option will effect the way delayed acks are performed.  This
5329  * option allows you to get or set the delayed ack time, in
5330  * milliseconds.  It also allows changing the delayed ack frequency.
5331  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5332  * the assoc_id is 0, then this sets or gets the endpoints default
5333  * values.  If the assoc_id field is non-zero, then the set or get
5334  * effects the specified association for the one to many model (the
5335  * assoc_id field is ignored by the one to one model).  Note that if
5336  * sack_delay or sack_freq are 0 when setting this option, then the
5337  * current values will remain unchanged.
5338  *
5339  * struct sctp_sack_info {
5340  *     sctp_assoc_t            sack_assoc_id;
5341  *     uint32_t                sack_delay;
5342  *     uint32_t                sack_freq;
5343  * };
5344  *
5345  * sack_assoc_id -  This parameter, indicates which association the user
5346  *    is performing an action upon.  Note that if this field's value is
5347  *    zero then the endpoints default value is changed (effecting future
5348  *    associations only).
5349  *
5350  * sack_delay -  This parameter contains the number of milliseconds that
5351  *    the user is requesting the delayed ACK timer be set to.  Note that
5352  *    this value is defined in the standard to be between 200 and 500
5353  *    milliseconds.
5354  *
5355  * sack_freq -  This parameter contains the number of packets that must
5356  *    be received before a sack is sent without waiting for the delay
5357  *    timer to expire.  The default value for this is 2, setting this
5358  *    value to 1 will disable the delayed sack algorithm.
5359  */
5360 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5361 					    char __user *optval,
5362 					    int __user *optlen)
5363 {
5364 	struct sctp_sack_info    params;
5365 	struct sctp_association *asoc = NULL;
5366 	struct sctp_sock        *sp = sctp_sk(sk);
5367 
5368 	if (len >= sizeof(struct sctp_sack_info)) {
5369 		len = sizeof(struct sctp_sack_info);
5370 
5371 		if (copy_from_user(&params, optval, len))
5372 			return -EFAULT;
5373 	} else if (len == sizeof(struct sctp_assoc_value)) {
5374 		pr_warn_ratelimited(DEPRECATED
5375 				    "%s (pid %d) "
5376 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5377 				    "Use struct sctp_sack_info instead\n",
5378 				    current->comm, task_pid_nr(current));
5379 		if (copy_from_user(&params, optval, len))
5380 			return -EFAULT;
5381 	} else
5382 		return -EINVAL;
5383 
5384 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5385 	 * to many style socket, and an association was not found, then
5386 	 * the id was invalid.
5387 	 */
5388 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5389 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5390 		return -EINVAL;
5391 
5392 	if (asoc) {
5393 		/* Fetch association values. */
5394 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5395 			params.sack_delay = jiffies_to_msecs(
5396 				asoc->sackdelay);
5397 			params.sack_freq = asoc->sackfreq;
5398 
5399 		} else {
5400 			params.sack_delay = 0;
5401 			params.sack_freq = 1;
5402 		}
5403 	} else {
5404 		/* Fetch socket values. */
5405 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5406 			params.sack_delay  = sp->sackdelay;
5407 			params.sack_freq = sp->sackfreq;
5408 		} else {
5409 			params.sack_delay  = 0;
5410 			params.sack_freq = 1;
5411 		}
5412 	}
5413 
5414 	if (copy_to_user(optval, &params, len))
5415 		return -EFAULT;
5416 
5417 	if (put_user(len, optlen))
5418 		return -EFAULT;
5419 
5420 	return 0;
5421 }
5422 
5423 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5424  *
5425  * Applications can specify protocol parameters for the default association
5426  * initialization.  The option name argument to setsockopt() and getsockopt()
5427  * is SCTP_INITMSG.
5428  *
5429  * Setting initialization parameters is effective only on an unconnected
5430  * socket (for UDP-style sockets only future associations are effected
5431  * by the change).  With TCP-style sockets, this option is inherited by
5432  * sockets derived from a listener socket.
5433  */
5434 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5435 {
5436 	if (len < sizeof(struct sctp_initmsg))
5437 		return -EINVAL;
5438 	len = sizeof(struct sctp_initmsg);
5439 	if (put_user(len, optlen))
5440 		return -EFAULT;
5441 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5442 		return -EFAULT;
5443 	return 0;
5444 }
5445 
5446 
5447 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5448 				      char __user *optval, int __user *optlen)
5449 {
5450 	struct sctp_association *asoc;
5451 	int cnt = 0;
5452 	struct sctp_getaddrs getaddrs;
5453 	struct sctp_transport *from;
5454 	void __user *to;
5455 	union sctp_addr temp;
5456 	struct sctp_sock *sp = sctp_sk(sk);
5457 	int addrlen;
5458 	size_t space_left;
5459 	int bytes_copied;
5460 
5461 	if (len < sizeof(struct sctp_getaddrs))
5462 		return -EINVAL;
5463 
5464 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5465 		return -EFAULT;
5466 
5467 	/* For UDP-style sockets, id specifies the association to query.  */
5468 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5469 	if (!asoc)
5470 		return -EINVAL;
5471 
5472 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5473 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5474 
5475 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5476 				transports) {
5477 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5478 		addrlen = sctp_get_pf_specific(sk->sk_family)
5479 			      ->addr_to_user(sp, &temp);
5480 		if (space_left < addrlen)
5481 			return -ENOMEM;
5482 		if (copy_to_user(to, &temp, addrlen))
5483 			return -EFAULT;
5484 		to += addrlen;
5485 		cnt++;
5486 		space_left -= addrlen;
5487 	}
5488 
5489 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5490 		return -EFAULT;
5491 	bytes_copied = ((char __user *)to) - optval;
5492 	if (put_user(bytes_copied, optlen))
5493 		return -EFAULT;
5494 
5495 	return 0;
5496 }
5497 
5498 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5499 			    size_t space_left, int *bytes_copied)
5500 {
5501 	struct sctp_sockaddr_entry *addr;
5502 	union sctp_addr temp;
5503 	int cnt = 0;
5504 	int addrlen;
5505 	struct net *net = sock_net(sk);
5506 
5507 	rcu_read_lock();
5508 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5509 		if (!addr->valid)
5510 			continue;
5511 
5512 		if ((PF_INET == sk->sk_family) &&
5513 		    (AF_INET6 == addr->a.sa.sa_family))
5514 			continue;
5515 		if ((PF_INET6 == sk->sk_family) &&
5516 		    inet_v6_ipv6only(sk) &&
5517 		    (AF_INET == addr->a.sa.sa_family))
5518 			continue;
5519 		memcpy(&temp, &addr->a, sizeof(temp));
5520 		if (!temp.v4.sin_port)
5521 			temp.v4.sin_port = htons(port);
5522 
5523 		addrlen = sctp_get_pf_specific(sk->sk_family)
5524 			      ->addr_to_user(sctp_sk(sk), &temp);
5525 
5526 		if (space_left < addrlen) {
5527 			cnt =  -ENOMEM;
5528 			break;
5529 		}
5530 		memcpy(to, &temp, addrlen);
5531 
5532 		to += addrlen;
5533 		cnt++;
5534 		space_left -= addrlen;
5535 		*bytes_copied += addrlen;
5536 	}
5537 	rcu_read_unlock();
5538 
5539 	return cnt;
5540 }
5541 
5542 
5543 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5544 				       char __user *optval, int __user *optlen)
5545 {
5546 	struct sctp_bind_addr *bp;
5547 	struct sctp_association *asoc;
5548 	int cnt = 0;
5549 	struct sctp_getaddrs getaddrs;
5550 	struct sctp_sockaddr_entry *addr;
5551 	void __user *to;
5552 	union sctp_addr temp;
5553 	struct sctp_sock *sp = sctp_sk(sk);
5554 	int addrlen;
5555 	int err = 0;
5556 	size_t space_left;
5557 	int bytes_copied = 0;
5558 	void *addrs;
5559 	void *buf;
5560 
5561 	if (len < sizeof(struct sctp_getaddrs))
5562 		return -EINVAL;
5563 
5564 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5565 		return -EFAULT;
5566 
5567 	/*
5568 	 *  For UDP-style sockets, id specifies the association to query.
5569 	 *  If the id field is set to the value '0' then the locally bound
5570 	 *  addresses are returned without regard to any particular
5571 	 *  association.
5572 	 */
5573 	if (0 == getaddrs.assoc_id) {
5574 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5575 	} else {
5576 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5577 		if (!asoc)
5578 			return -EINVAL;
5579 		bp = &asoc->base.bind_addr;
5580 	}
5581 
5582 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5583 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5584 
5585 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5586 	if (!addrs)
5587 		return -ENOMEM;
5588 
5589 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5590 	 * addresses from the global local address list.
5591 	 */
5592 	if (sctp_list_single_entry(&bp->address_list)) {
5593 		addr = list_entry(bp->address_list.next,
5594 				  struct sctp_sockaddr_entry, list);
5595 		if (sctp_is_any(sk, &addr->a)) {
5596 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5597 						space_left, &bytes_copied);
5598 			if (cnt < 0) {
5599 				err = cnt;
5600 				goto out;
5601 			}
5602 			goto copy_getaddrs;
5603 		}
5604 	}
5605 
5606 	buf = addrs;
5607 	/* Protection on the bound address list is not needed since
5608 	 * in the socket option context we hold a socket lock and
5609 	 * thus the bound address list can't change.
5610 	 */
5611 	list_for_each_entry(addr, &bp->address_list, list) {
5612 		memcpy(&temp, &addr->a, sizeof(temp));
5613 		addrlen = sctp_get_pf_specific(sk->sk_family)
5614 			      ->addr_to_user(sp, &temp);
5615 		if (space_left < addrlen) {
5616 			err =  -ENOMEM; /*fixme: right error?*/
5617 			goto out;
5618 		}
5619 		memcpy(buf, &temp, addrlen);
5620 		buf += addrlen;
5621 		bytes_copied += addrlen;
5622 		cnt++;
5623 		space_left -= addrlen;
5624 	}
5625 
5626 copy_getaddrs:
5627 	if (copy_to_user(to, addrs, bytes_copied)) {
5628 		err = -EFAULT;
5629 		goto out;
5630 	}
5631 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5632 		err = -EFAULT;
5633 		goto out;
5634 	}
5635 	if (put_user(bytes_copied, optlen))
5636 		err = -EFAULT;
5637 out:
5638 	kfree(addrs);
5639 	return err;
5640 }
5641 
5642 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5643  *
5644  * Requests that the local SCTP stack use the enclosed peer address as
5645  * the association primary.  The enclosed address must be one of the
5646  * association peer's addresses.
5647  */
5648 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5649 					char __user *optval, int __user *optlen)
5650 {
5651 	struct sctp_prim prim;
5652 	struct sctp_association *asoc;
5653 	struct sctp_sock *sp = sctp_sk(sk);
5654 
5655 	if (len < sizeof(struct sctp_prim))
5656 		return -EINVAL;
5657 
5658 	len = sizeof(struct sctp_prim);
5659 
5660 	if (copy_from_user(&prim, optval, len))
5661 		return -EFAULT;
5662 
5663 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5664 	if (!asoc)
5665 		return -EINVAL;
5666 
5667 	if (!asoc->peer.primary_path)
5668 		return -ENOTCONN;
5669 
5670 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5671 		asoc->peer.primary_path->af_specific->sockaddr_len);
5672 
5673 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5674 			(union sctp_addr *)&prim.ssp_addr);
5675 
5676 	if (put_user(len, optlen))
5677 		return -EFAULT;
5678 	if (copy_to_user(optval, &prim, len))
5679 		return -EFAULT;
5680 
5681 	return 0;
5682 }
5683 
5684 /*
5685  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5686  *
5687  * Requests that the local endpoint set the specified Adaptation Layer
5688  * Indication parameter for all future INIT and INIT-ACK exchanges.
5689  */
5690 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5691 				  char __user *optval, int __user *optlen)
5692 {
5693 	struct sctp_setadaptation adaptation;
5694 
5695 	if (len < sizeof(struct sctp_setadaptation))
5696 		return -EINVAL;
5697 
5698 	len = sizeof(struct sctp_setadaptation);
5699 
5700 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5701 
5702 	if (put_user(len, optlen))
5703 		return -EFAULT;
5704 	if (copy_to_user(optval, &adaptation, len))
5705 		return -EFAULT;
5706 
5707 	return 0;
5708 }
5709 
5710 /*
5711  *
5712  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5713  *
5714  *   Applications that wish to use the sendto() system call may wish to
5715  *   specify a default set of parameters that would normally be supplied
5716  *   through the inclusion of ancillary data.  This socket option allows
5717  *   such an application to set the default sctp_sndrcvinfo structure.
5718 
5719 
5720  *   The application that wishes to use this socket option simply passes
5721  *   in to this call the sctp_sndrcvinfo structure defined in Section
5722  *   5.2.2) The input parameters accepted by this call include
5723  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5724  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5725  *   to this call if the caller is using the UDP model.
5726  *
5727  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5728  */
5729 static int sctp_getsockopt_default_send_param(struct sock *sk,
5730 					int len, char __user *optval,
5731 					int __user *optlen)
5732 {
5733 	struct sctp_sock *sp = sctp_sk(sk);
5734 	struct sctp_association *asoc;
5735 	struct sctp_sndrcvinfo info;
5736 
5737 	if (len < sizeof(info))
5738 		return -EINVAL;
5739 
5740 	len = sizeof(info);
5741 
5742 	if (copy_from_user(&info, optval, len))
5743 		return -EFAULT;
5744 
5745 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5746 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5747 		return -EINVAL;
5748 	if (asoc) {
5749 		info.sinfo_stream = asoc->default_stream;
5750 		info.sinfo_flags = asoc->default_flags;
5751 		info.sinfo_ppid = asoc->default_ppid;
5752 		info.sinfo_context = asoc->default_context;
5753 		info.sinfo_timetolive = asoc->default_timetolive;
5754 	} else {
5755 		info.sinfo_stream = sp->default_stream;
5756 		info.sinfo_flags = sp->default_flags;
5757 		info.sinfo_ppid = sp->default_ppid;
5758 		info.sinfo_context = sp->default_context;
5759 		info.sinfo_timetolive = sp->default_timetolive;
5760 	}
5761 
5762 	if (put_user(len, optlen))
5763 		return -EFAULT;
5764 	if (copy_to_user(optval, &info, len))
5765 		return -EFAULT;
5766 
5767 	return 0;
5768 }
5769 
5770 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5771  * (SCTP_DEFAULT_SNDINFO)
5772  */
5773 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5774 					   char __user *optval,
5775 					   int __user *optlen)
5776 {
5777 	struct sctp_sock *sp = sctp_sk(sk);
5778 	struct sctp_association *asoc;
5779 	struct sctp_sndinfo info;
5780 
5781 	if (len < sizeof(info))
5782 		return -EINVAL;
5783 
5784 	len = sizeof(info);
5785 
5786 	if (copy_from_user(&info, optval, len))
5787 		return -EFAULT;
5788 
5789 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5790 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5791 		return -EINVAL;
5792 	if (asoc) {
5793 		info.snd_sid = asoc->default_stream;
5794 		info.snd_flags = asoc->default_flags;
5795 		info.snd_ppid = asoc->default_ppid;
5796 		info.snd_context = asoc->default_context;
5797 	} else {
5798 		info.snd_sid = sp->default_stream;
5799 		info.snd_flags = sp->default_flags;
5800 		info.snd_ppid = sp->default_ppid;
5801 		info.snd_context = sp->default_context;
5802 	}
5803 
5804 	if (put_user(len, optlen))
5805 		return -EFAULT;
5806 	if (copy_to_user(optval, &info, len))
5807 		return -EFAULT;
5808 
5809 	return 0;
5810 }
5811 
5812 /*
5813  *
5814  * 7.1.5 SCTP_NODELAY
5815  *
5816  * Turn on/off any Nagle-like algorithm.  This means that packets are
5817  * generally sent as soon as possible and no unnecessary delays are
5818  * introduced, at the cost of more packets in the network.  Expects an
5819  * integer boolean flag.
5820  */
5821 
5822 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5823 				   char __user *optval, int __user *optlen)
5824 {
5825 	int val;
5826 
5827 	if (len < sizeof(int))
5828 		return -EINVAL;
5829 
5830 	len = sizeof(int);
5831 	val = (sctp_sk(sk)->nodelay == 1);
5832 	if (put_user(len, optlen))
5833 		return -EFAULT;
5834 	if (copy_to_user(optval, &val, len))
5835 		return -EFAULT;
5836 	return 0;
5837 }
5838 
5839 /*
5840  *
5841  * 7.1.1 SCTP_RTOINFO
5842  *
5843  * The protocol parameters used to initialize and bound retransmission
5844  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5845  * and modify these parameters.
5846  * All parameters are time values, in milliseconds.  A value of 0, when
5847  * modifying the parameters, indicates that the current value should not
5848  * be changed.
5849  *
5850  */
5851 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5852 				char __user *optval,
5853 				int __user *optlen) {
5854 	struct sctp_rtoinfo rtoinfo;
5855 	struct sctp_association *asoc;
5856 
5857 	if (len < sizeof (struct sctp_rtoinfo))
5858 		return -EINVAL;
5859 
5860 	len = sizeof(struct sctp_rtoinfo);
5861 
5862 	if (copy_from_user(&rtoinfo, optval, len))
5863 		return -EFAULT;
5864 
5865 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5866 
5867 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5868 		return -EINVAL;
5869 
5870 	/* Values corresponding to the specific association. */
5871 	if (asoc) {
5872 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5873 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5874 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5875 	} else {
5876 		/* Values corresponding to the endpoint. */
5877 		struct sctp_sock *sp = sctp_sk(sk);
5878 
5879 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5880 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5881 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5882 	}
5883 
5884 	if (put_user(len, optlen))
5885 		return -EFAULT;
5886 
5887 	if (copy_to_user(optval, &rtoinfo, len))
5888 		return -EFAULT;
5889 
5890 	return 0;
5891 }
5892 
5893 /*
5894  *
5895  * 7.1.2 SCTP_ASSOCINFO
5896  *
5897  * This option is used to tune the maximum retransmission attempts
5898  * of the association.
5899  * Returns an error if the new association retransmission value is
5900  * greater than the sum of the retransmission value  of the peer.
5901  * See [SCTP] for more information.
5902  *
5903  */
5904 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5905 				     char __user *optval,
5906 				     int __user *optlen)
5907 {
5908 
5909 	struct sctp_assocparams assocparams;
5910 	struct sctp_association *asoc;
5911 	struct list_head *pos;
5912 	int cnt = 0;
5913 
5914 	if (len < sizeof (struct sctp_assocparams))
5915 		return -EINVAL;
5916 
5917 	len = sizeof(struct sctp_assocparams);
5918 
5919 	if (copy_from_user(&assocparams, optval, len))
5920 		return -EFAULT;
5921 
5922 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5923 
5924 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5925 		return -EINVAL;
5926 
5927 	/* Values correspoinding to the specific association */
5928 	if (asoc) {
5929 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5930 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5931 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5932 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5933 
5934 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5935 			cnt++;
5936 		}
5937 
5938 		assocparams.sasoc_number_peer_destinations = cnt;
5939 	} else {
5940 		/* Values corresponding to the endpoint */
5941 		struct sctp_sock *sp = sctp_sk(sk);
5942 
5943 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5944 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5945 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5946 		assocparams.sasoc_cookie_life =
5947 					sp->assocparams.sasoc_cookie_life;
5948 		assocparams.sasoc_number_peer_destinations =
5949 					sp->assocparams.
5950 					sasoc_number_peer_destinations;
5951 	}
5952 
5953 	if (put_user(len, optlen))
5954 		return -EFAULT;
5955 
5956 	if (copy_to_user(optval, &assocparams, len))
5957 		return -EFAULT;
5958 
5959 	return 0;
5960 }
5961 
5962 /*
5963  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5964  *
5965  * This socket option is a boolean flag which turns on or off mapped V4
5966  * addresses.  If this option is turned on and the socket is type
5967  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5968  * If this option is turned off, then no mapping will be done of V4
5969  * addresses and a user will receive both PF_INET6 and PF_INET type
5970  * addresses on the socket.
5971  */
5972 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5973 				    char __user *optval, int __user *optlen)
5974 {
5975 	int val;
5976 	struct sctp_sock *sp = sctp_sk(sk);
5977 
5978 	if (len < sizeof(int))
5979 		return -EINVAL;
5980 
5981 	len = sizeof(int);
5982 	val = sp->v4mapped;
5983 	if (put_user(len, optlen))
5984 		return -EFAULT;
5985 	if (copy_to_user(optval, &val, len))
5986 		return -EFAULT;
5987 
5988 	return 0;
5989 }
5990 
5991 /*
5992  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5993  * (chapter and verse is quoted at sctp_setsockopt_context())
5994  */
5995 static int sctp_getsockopt_context(struct sock *sk, int len,
5996 				   char __user *optval, int __user *optlen)
5997 {
5998 	struct sctp_assoc_value params;
5999 	struct sctp_sock *sp;
6000 	struct sctp_association *asoc;
6001 
6002 	if (len < sizeof(struct sctp_assoc_value))
6003 		return -EINVAL;
6004 
6005 	len = sizeof(struct sctp_assoc_value);
6006 
6007 	if (copy_from_user(&params, optval, len))
6008 		return -EFAULT;
6009 
6010 	sp = sctp_sk(sk);
6011 
6012 	if (params.assoc_id != 0) {
6013 		asoc = sctp_id2assoc(sk, params.assoc_id);
6014 		if (!asoc)
6015 			return -EINVAL;
6016 		params.assoc_value = asoc->default_rcv_context;
6017 	} else {
6018 		params.assoc_value = sp->default_rcv_context;
6019 	}
6020 
6021 	if (put_user(len, optlen))
6022 		return -EFAULT;
6023 	if (copy_to_user(optval, &params, len))
6024 		return -EFAULT;
6025 
6026 	return 0;
6027 }
6028 
6029 /*
6030  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6031  * This option will get or set the maximum size to put in any outgoing
6032  * SCTP DATA chunk.  If a message is larger than this size it will be
6033  * fragmented by SCTP into the specified size.  Note that the underlying
6034  * SCTP implementation may fragment into smaller sized chunks when the
6035  * PMTU of the underlying association is smaller than the value set by
6036  * the user.  The default value for this option is '0' which indicates
6037  * the user is NOT limiting fragmentation and only the PMTU will effect
6038  * SCTP's choice of DATA chunk size.  Note also that values set larger
6039  * than the maximum size of an IP datagram will effectively let SCTP
6040  * control fragmentation (i.e. the same as setting this option to 0).
6041  *
6042  * The following structure is used to access and modify this parameter:
6043  *
6044  * struct sctp_assoc_value {
6045  *   sctp_assoc_t assoc_id;
6046  *   uint32_t assoc_value;
6047  * };
6048  *
6049  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6050  *    For one-to-many style sockets this parameter indicates which
6051  *    association the user is performing an action upon.  Note that if
6052  *    this field's value is zero then the endpoints default value is
6053  *    changed (effecting future associations only).
6054  * assoc_value:  This parameter specifies the maximum size in bytes.
6055  */
6056 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6057 				  char __user *optval, int __user *optlen)
6058 {
6059 	struct sctp_assoc_value params;
6060 	struct sctp_association *asoc;
6061 
6062 	if (len == sizeof(int)) {
6063 		pr_warn_ratelimited(DEPRECATED
6064 				    "%s (pid %d) "
6065 				    "Use of int in maxseg socket option.\n"
6066 				    "Use struct sctp_assoc_value instead\n",
6067 				    current->comm, task_pid_nr(current));
6068 		params.assoc_id = 0;
6069 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6070 		len = sizeof(struct sctp_assoc_value);
6071 		if (copy_from_user(&params, optval, sizeof(params)))
6072 			return -EFAULT;
6073 	} else
6074 		return -EINVAL;
6075 
6076 	asoc = sctp_id2assoc(sk, params.assoc_id);
6077 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6078 		return -EINVAL;
6079 
6080 	if (asoc)
6081 		params.assoc_value = asoc->frag_point;
6082 	else
6083 		params.assoc_value = sctp_sk(sk)->user_frag;
6084 
6085 	if (put_user(len, optlen))
6086 		return -EFAULT;
6087 	if (len == sizeof(int)) {
6088 		if (copy_to_user(optval, &params.assoc_value, len))
6089 			return -EFAULT;
6090 	} else {
6091 		if (copy_to_user(optval, &params, len))
6092 			return -EFAULT;
6093 	}
6094 
6095 	return 0;
6096 }
6097 
6098 /*
6099  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6100  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6101  */
6102 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6103 					       char __user *optval, int __user *optlen)
6104 {
6105 	int val;
6106 
6107 	if (len < sizeof(int))
6108 		return -EINVAL;
6109 
6110 	len = sizeof(int);
6111 
6112 	val = sctp_sk(sk)->frag_interleave;
6113 	if (put_user(len, optlen))
6114 		return -EFAULT;
6115 	if (copy_to_user(optval, &val, len))
6116 		return -EFAULT;
6117 
6118 	return 0;
6119 }
6120 
6121 /*
6122  * 7.1.25.  Set or Get the sctp partial delivery point
6123  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6124  */
6125 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6126 						  char __user *optval,
6127 						  int __user *optlen)
6128 {
6129 	u32 val;
6130 
6131 	if (len < sizeof(u32))
6132 		return -EINVAL;
6133 
6134 	len = sizeof(u32);
6135 
6136 	val = sctp_sk(sk)->pd_point;
6137 	if (put_user(len, optlen))
6138 		return -EFAULT;
6139 	if (copy_to_user(optval, &val, len))
6140 		return -EFAULT;
6141 
6142 	return 0;
6143 }
6144 
6145 /*
6146  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6147  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6148  */
6149 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6150 				    char __user *optval,
6151 				    int __user *optlen)
6152 {
6153 	struct sctp_assoc_value params;
6154 	struct sctp_sock *sp;
6155 	struct sctp_association *asoc;
6156 
6157 	if (len == sizeof(int)) {
6158 		pr_warn_ratelimited(DEPRECATED
6159 				    "%s (pid %d) "
6160 				    "Use of int in max_burst socket option.\n"
6161 				    "Use struct sctp_assoc_value instead\n",
6162 				    current->comm, task_pid_nr(current));
6163 		params.assoc_id = 0;
6164 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6165 		len = sizeof(struct sctp_assoc_value);
6166 		if (copy_from_user(&params, optval, len))
6167 			return -EFAULT;
6168 	} else
6169 		return -EINVAL;
6170 
6171 	sp = sctp_sk(sk);
6172 
6173 	if (params.assoc_id != 0) {
6174 		asoc = sctp_id2assoc(sk, params.assoc_id);
6175 		if (!asoc)
6176 			return -EINVAL;
6177 		params.assoc_value = asoc->max_burst;
6178 	} else
6179 		params.assoc_value = sp->max_burst;
6180 
6181 	if (len == sizeof(int)) {
6182 		if (copy_to_user(optval, &params.assoc_value, len))
6183 			return -EFAULT;
6184 	} else {
6185 		if (copy_to_user(optval, &params, len))
6186 			return -EFAULT;
6187 	}
6188 
6189 	return 0;
6190 
6191 }
6192 
6193 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6194 				    char __user *optval, int __user *optlen)
6195 {
6196 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6197 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6198 	struct sctp_hmac_algo_param *hmacs;
6199 	__u16 data_len = 0;
6200 	u32 num_idents;
6201 	int i;
6202 
6203 	if (!ep->auth_enable)
6204 		return -EACCES;
6205 
6206 	hmacs = ep->auth_hmacs_list;
6207 	data_len = ntohs(hmacs->param_hdr.length) -
6208 		   sizeof(struct sctp_paramhdr);
6209 
6210 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6211 		return -EINVAL;
6212 
6213 	len = sizeof(struct sctp_hmacalgo) + data_len;
6214 	num_idents = data_len / sizeof(u16);
6215 
6216 	if (put_user(len, optlen))
6217 		return -EFAULT;
6218 	if (put_user(num_idents, &p->shmac_num_idents))
6219 		return -EFAULT;
6220 	for (i = 0; i < num_idents; i++) {
6221 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6222 
6223 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6224 			return -EFAULT;
6225 	}
6226 	return 0;
6227 }
6228 
6229 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6230 				    char __user *optval, int __user *optlen)
6231 {
6232 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6233 	struct sctp_authkeyid val;
6234 	struct sctp_association *asoc;
6235 
6236 	if (!ep->auth_enable)
6237 		return -EACCES;
6238 
6239 	if (len < sizeof(struct sctp_authkeyid))
6240 		return -EINVAL;
6241 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
6242 		return -EFAULT;
6243 
6244 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6245 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6246 		return -EINVAL;
6247 
6248 	if (asoc)
6249 		val.scact_keynumber = asoc->active_key_id;
6250 	else
6251 		val.scact_keynumber = ep->active_key_id;
6252 
6253 	len = sizeof(struct sctp_authkeyid);
6254 	if (put_user(len, optlen))
6255 		return -EFAULT;
6256 	if (copy_to_user(optval, &val, len))
6257 		return -EFAULT;
6258 
6259 	return 0;
6260 }
6261 
6262 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6263 				    char __user *optval, int __user *optlen)
6264 {
6265 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6266 	struct sctp_authchunks __user *p = (void __user *)optval;
6267 	struct sctp_authchunks val;
6268 	struct sctp_association *asoc;
6269 	struct sctp_chunks_param *ch;
6270 	u32    num_chunks = 0;
6271 	char __user *to;
6272 
6273 	if (!ep->auth_enable)
6274 		return -EACCES;
6275 
6276 	if (len < sizeof(struct sctp_authchunks))
6277 		return -EINVAL;
6278 
6279 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6280 		return -EFAULT;
6281 
6282 	to = p->gauth_chunks;
6283 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6284 	if (!asoc)
6285 		return -EINVAL;
6286 
6287 	ch = asoc->peer.peer_chunks;
6288 	if (!ch)
6289 		goto num;
6290 
6291 	/* See if the user provided enough room for all the data */
6292 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6293 	if (len < num_chunks)
6294 		return -EINVAL;
6295 
6296 	if (copy_to_user(to, ch->chunks, num_chunks))
6297 		return -EFAULT;
6298 num:
6299 	len = sizeof(struct sctp_authchunks) + num_chunks;
6300 	if (put_user(len, optlen))
6301 		return -EFAULT;
6302 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6303 		return -EFAULT;
6304 	return 0;
6305 }
6306 
6307 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6308 				    char __user *optval, int __user *optlen)
6309 {
6310 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6311 	struct sctp_authchunks __user *p = (void __user *)optval;
6312 	struct sctp_authchunks val;
6313 	struct sctp_association *asoc;
6314 	struct sctp_chunks_param *ch;
6315 	u32    num_chunks = 0;
6316 	char __user *to;
6317 
6318 	if (!ep->auth_enable)
6319 		return -EACCES;
6320 
6321 	if (len < sizeof(struct sctp_authchunks))
6322 		return -EINVAL;
6323 
6324 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6325 		return -EFAULT;
6326 
6327 	to = p->gauth_chunks;
6328 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6329 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6330 		return -EINVAL;
6331 
6332 	if (asoc)
6333 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6334 	else
6335 		ch = ep->auth_chunk_list;
6336 
6337 	if (!ch)
6338 		goto num;
6339 
6340 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6341 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6342 		return -EINVAL;
6343 
6344 	if (copy_to_user(to, ch->chunks, num_chunks))
6345 		return -EFAULT;
6346 num:
6347 	len = sizeof(struct sctp_authchunks) + num_chunks;
6348 	if (put_user(len, optlen))
6349 		return -EFAULT;
6350 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6351 		return -EFAULT;
6352 
6353 	return 0;
6354 }
6355 
6356 /*
6357  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6358  * This option gets the current number of associations that are attached
6359  * to a one-to-many style socket.  The option value is an uint32_t.
6360  */
6361 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6362 				    char __user *optval, int __user *optlen)
6363 {
6364 	struct sctp_sock *sp = sctp_sk(sk);
6365 	struct sctp_association *asoc;
6366 	u32 val = 0;
6367 
6368 	if (sctp_style(sk, TCP))
6369 		return -EOPNOTSUPP;
6370 
6371 	if (len < sizeof(u32))
6372 		return -EINVAL;
6373 
6374 	len = sizeof(u32);
6375 
6376 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6377 		val++;
6378 	}
6379 
6380 	if (put_user(len, optlen))
6381 		return -EFAULT;
6382 	if (copy_to_user(optval, &val, len))
6383 		return -EFAULT;
6384 
6385 	return 0;
6386 }
6387 
6388 /*
6389  * 8.1.23 SCTP_AUTO_ASCONF
6390  * See the corresponding setsockopt entry as description
6391  */
6392 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6393 				   char __user *optval, int __user *optlen)
6394 {
6395 	int val = 0;
6396 
6397 	if (len < sizeof(int))
6398 		return -EINVAL;
6399 
6400 	len = sizeof(int);
6401 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6402 		val = 1;
6403 	if (put_user(len, optlen))
6404 		return -EFAULT;
6405 	if (copy_to_user(optval, &val, len))
6406 		return -EFAULT;
6407 	return 0;
6408 }
6409 
6410 /*
6411  * 8.2.6. Get the Current Identifiers of Associations
6412  *        (SCTP_GET_ASSOC_ID_LIST)
6413  *
6414  * This option gets the current list of SCTP association identifiers of
6415  * the SCTP associations handled by a one-to-many style socket.
6416  */
6417 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6418 				    char __user *optval, int __user *optlen)
6419 {
6420 	struct sctp_sock *sp = sctp_sk(sk);
6421 	struct sctp_association *asoc;
6422 	struct sctp_assoc_ids *ids;
6423 	u32 num = 0;
6424 
6425 	if (sctp_style(sk, TCP))
6426 		return -EOPNOTSUPP;
6427 
6428 	if (len < sizeof(struct sctp_assoc_ids))
6429 		return -EINVAL;
6430 
6431 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6432 		num++;
6433 	}
6434 
6435 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6436 		return -EINVAL;
6437 
6438 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6439 
6440 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6441 	if (unlikely(!ids))
6442 		return -ENOMEM;
6443 
6444 	ids->gaids_number_of_ids = num;
6445 	num = 0;
6446 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6447 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6448 	}
6449 
6450 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6451 		kfree(ids);
6452 		return -EFAULT;
6453 	}
6454 
6455 	kfree(ids);
6456 	return 0;
6457 }
6458 
6459 /*
6460  * SCTP_PEER_ADDR_THLDS
6461  *
6462  * This option allows us to fetch the partially failed threshold for one or all
6463  * transports in an association.  See Section 6.1 of:
6464  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6465  */
6466 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6467 					    char __user *optval,
6468 					    int len,
6469 					    int __user *optlen)
6470 {
6471 	struct sctp_paddrthlds val;
6472 	struct sctp_transport *trans;
6473 	struct sctp_association *asoc;
6474 
6475 	if (len < sizeof(struct sctp_paddrthlds))
6476 		return -EINVAL;
6477 	len = sizeof(struct sctp_paddrthlds);
6478 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6479 		return -EFAULT;
6480 
6481 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6482 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6483 		if (!asoc)
6484 			return -ENOENT;
6485 
6486 		val.spt_pathpfthld = asoc->pf_retrans;
6487 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6488 	} else {
6489 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6490 					       val.spt_assoc_id);
6491 		if (!trans)
6492 			return -ENOENT;
6493 
6494 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6495 		val.spt_pathpfthld = trans->pf_retrans;
6496 	}
6497 
6498 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6499 		return -EFAULT;
6500 
6501 	return 0;
6502 }
6503 
6504 /*
6505  * SCTP_GET_ASSOC_STATS
6506  *
6507  * This option retrieves local per endpoint statistics. It is modeled
6508  * after OpenSolaris' implementation
6509  */
6510 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6511 				       char __user *optval,
6512 				       int __user *optlen)
6513 {
6514 	struct sctp_assoc_stats sas;
6515 	struct sctp_association *asoc = NULL;
6516 
6517 	/* User must provide at least the assoc id */
6518 	if (len < sizeof(sctp_assoc_t))
6519 		return -EINVAL;
6520 
6521 	/* Allow the struct to grow and fill in as much as possible */
6522 	len = min_t(size_t, len, sizeof(sas));
6523 
6524 	if (copy_from_user(&sas, optval, len))
6525 		return -EFAULT;
6526 
6527 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6528 	if (!asoc)
6529 		return -EINVAL;
6530 
6531 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6532 	sas.sas_gapcnt = asoc->stats.gapcnt;
6533 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6534 	sas.sas_osacks = asoc->stats.osacks;
6535 	sas.sas_isacks = asoc->stats.isacks;
6536 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6537 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6538 	sas.sas_oodchunks = asoc->stats.oodchunks;
6539 	sas.sas_iodchunks = asoc->stats.iodchunks;
6540 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6541 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6542 	sas.sas_idupchunks = asoc->stats.idupchunks;
6543 	sas.sas_opackets = asoc->stats.opackets;
6544 	sas.sas_ipackets = asoc->stats.ipackets;
6545 
6546 	/* New high max rto observed, will return 0 if not a single
6547 	 * RTO update took place. obs_rto_ipaddr will be bogus
6548 	 * in such a case
6549 	 */
6550 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6551 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6552 		sizeof(struct sockaddr_storage));
6553 
6554 	/* Mark beginning of a new observation period */
6555 	asoc->stats.max_obs_rto = asoc->rto_min;
6556 
6557 	if (put_user(len, optlen))
6558 		return -EFAULT;
6559 
6560 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6561 
6562 	if (copy_to_user(optval, &sas, len))
6563 		return -EFAULT;
6564 
6565 	return 0;
6566 }
6567 
6568 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6569 				       char __user *optval,
6570 				       int __user *optlen)
6571 {
6572 	int val = 0;
6573 
6574 	if (len < sizeof(int))
6575 		return -EINVAL;
6576 
6577 	len = sizeof(int);
6578 	if (sctp_sk(sk)->recvrcvinfo)
6579 		val = 1;
6580 	if (put_user(len, optlen))
6581 		return -EFAULT;
6582 	if (copy_to_user(optval, &val, len))
6583 		return -EFAULT;
6584 
6585 	return 0;
6586 }
6587 
6588 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6589 				       char __user *optval,
6590 				       int __user *optlen)
6591 {
6592 	int val = 0;
6593 
6594 	if (len < sizeof(int))
6595 		return -EINVAL;
6596 
6597 	len = sizeof(int);
6598 	if (sctp_sk(sk)->recvnxtinfo)
6599 		val = 1;
6600 	if (put_user(len, optlen))
6601 		return -EFAULT;
6602 	if (copy_to_user(optval, &val, len))
6603 		return -EFAULT;
6604 
6605 	return 0;
6606 }
6607 
6608 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6609 					char __user *optval,
6610 					int __user *optlen)
6611 {
6612 	struct sctp_assoc_value params;
6613 	struct sctp_association *asoc;
6614 	int retval = -EFAULT;
6615 
6616 	if (len < sizeof(params)) {
6617 		retval = -EINVAL;
6618 		goto out;
6619 	}
6620 
6621 	len = sizeof(params);
6622 	if (copy_from_user(&params, optval, len))
6623 		goto out;
6624 
6625 	asoc = sctp_id2assoc(sk, params.assoc_id);
6626 	if (asoc) {
6627 		params.assoc_value = asoc->prsctp_enable;
6628 	} else if (!params.assoc_id) {
6629 		struct sctp_sock *sp = sctp_sk(sk);
6630 
6631 		params.assoc_value = sp->ep->prsctp_enable;
6632 	} else {
6633 		retval = -EINVAL;
6634 		goto out;
6635 	}
6636 
6637 	if (put_user(len, optlen))
6638 		goto out;
6639 
6640 	if (copy_to_user(optval, &params, len))
6641 		goto out;
6642 
6643 	retval = 0;
6644 
6645 out:
6646 	return retval;
6647 }
6648 
6649 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6650 					  char __user *optval,
6651 					  int __user *optlen)
6652 {
6653 	struct sctp_default_prinfo info;
6654 	struct sctp_association *asoc;
6655 	int retval = -EFAULT;
6656 
6657 	if (len < sizeof(info)) {
6658 		retval = -EINVAL;
6659 		goto out;
6660 	}
6661 
6662 	len = sizeof(info);
6663 	if (copy_from_user(&info, optval, len))
6664 		goto out;
6665 
6666 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6667 	if (asoc) {
6668 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6669 		info.pr_value = asoc->default_timetolive;
6670 	} else if (!info.pr_assoc_id) {
6671 		struct sctp_sock *sp = sctp_sk(sk);
6672 
6673 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6674 		info.pr_value = sp->default_timetolive;
6675 	} else {
6676 		retval = -EINVAL;
6677 		goto out;
6678 	}
6679 
6680 	if (put_user(len, optlen))
6681 		goto out;
6682 
6683 	if (copy_to_user(optval, &info, len))
6684 		goto out;
6685 
6686 	retval = 0;
6687 
6688 out:
6689 	return retval;
6690 }
6691 
6692 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6693 					  char __user *optval,
6694 					  int __user *optlen)
6695 {
6696 	struct sctp_prstatus params;
6697 	struct sctp_association *asoc;
6698 	int policy;
6699 	int retval = -EINVAL;
6700 
6701 	if (len < sizeof(params))
6702 		goto out;
6703 
6704 	len = sizeof(params);
6705 	if (copy_from_user(&params, optval, len)) {
6706 		retval = -EFAULT;
6707 		goto out;
6708 	}
6709 
6710 	policy = params.sprstat_policy;
6711 	if (policy & ~SCTP_PR_SCTP_MASK)
6712 		goto out;
6713 
6714 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6715 	if (!asoc)
6716 		goto out;
6717 
6718 	if (policy == SCTP_PR_SCTP_NONE) {
6719 		params.sprstat_abandoned_unsent = 0;
6720 		params.sprstat_abandoned_sent = 0;
6721 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6722 			params.sprstat_abandoned_unsent +=
6723 				asoc->abandoned_unsent[policy];
6724 			params.sprstat_abandoned_sent +=
6725 				asoc->abandoned_sent[policy];
6726 		}
6727 	} else {
6728 		params.sprstat_abandoned_unsent =
6729 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6730 		params.sprstat_abandoned_sent =
6731 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6732 	}
6733 
6734 	if (put_user(len, optlen)) {
6735 		retval = -EFAULT;
6736 		goto out;
6737 	}
6738 
6739 	if (copy_to_user(optval, &params, len)) {
6740 		retval = -EFAULT;
6741 		goto out;
6742 	}
6743 
6744 	retval = 0;
6745 
6746 out:
6747 	return retval;
6748 }
6749 
6750 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
6751 					   char __user *optval,
6752 					   int __user *optlen)
6753 {
6754 	struct sctp_stream_out_ext *streamoute;
6755 	struct sctp_association *asoc;
6756 	struct sctp_prstatus params;
6757 	int retval = -EINVAL;
6758 	int policy;
6759 
6760 	if (len < sizeof(params))
6761 		goto out;
6762 
6763 	len = sizeof(params);
6764 	if (copy_from_user(&params, optval, len)) {
6765 		retval = -EFAULT;
6766 		goto out;
6767 	}
6768 
6769 	policy = params.sprstat_policy;
6770 	if (policy & ~SCTP_PR_SCTP_MASK)
6771 		goto out;
6772 
6773 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6774 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
6775 		goto out;
6776 
6777 	streamoute = asoc->stream.out[params.sprstat_sid].ext;
6778 	if (!streamoute) {
6779 		/* Not allocated yet, means all stats are 0 */
6780 		params.sprstat_abandoned_unsent = 0;
6781 		params.sprstat_abandoned_sent = 0;
6782 		retval = 0;
6783 		goto out;
6784 	}
6785 
6786 	if (policy == SCTP_PR_SCTP_NONE) {
6787 		params.sprstat_abandoned_unsent = 0;
6788 		params.sprstat_abandoned_sent = 0;
6789 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6790 			params.sprstat_abandoned_unsent +=
6791 				streamoute->abandoned_unsent[policy];
6792 			params.sprstat_abandoned_sent +=
6793 				streamoute->abandoned_sent[policy];
6794 		}
6795 	} else {
6796 		params.sprstat_abandoned_unsent =
6797 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6798 		params.sprstat_abandoned_sent =
6799 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
6800 	}
6801 
6802 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
6803 		retval = -EFAULT;
6804 		goto out;
6805 	}
6806 
6807 	retval = 0;
6808 
6809 out:
6810 	return retval;
6811 }
6812 
6813 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
6814 					      char __user *optval,
6815 					      int __user *optlen)
6816 {
6817 	struct sctp_assoc_value params;
6818 	struct sctp_association *asoc;
6819 	int retval = -EFAULT;
6820 
6821 	if (len < sizeof(params)) {
6822 		retval = -EINVAL;
6823 		goto out;
6824 	}
6825 
6826 	len = sizeof(params);
6827 	if (copy_from_user(&params, optval, len))
6828 		goto out;
6829 
6830 	asoc = sctp_id2assoc(sk, params.assoc_id);
6831 	if (asoc) {
6832 		params.assoc_value = asoc->reconf_enable;
6833 	} else if (!params.assoc_id) {
6834 		struct sctp_sock *sp = sctp_sk(sk);
6835 
6836 		params.assoc_value = sp->ep->reconf_enable;
6837 	} else {
6838 		retval = -EINVAL;
6839 		goto out;
6840 	}
6841 
6842 	if (put_user(len, optlen))
6843 		goto out;
6844 
6845 	if (copy_to_user(optval, &params, len))
6846 		goto out;
6847 
6848 	retval = 0;
6849 
6850 out:
6851 	return retval;
6852 }
6853 
6854 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6855 					   char __user *optval,
6856 					   int __user *optlen)
6857 {
6858 	struct sctp_assoc_value params;
6859 	struct sctp_association *asoc;
6860 	int retval = -EFAULT;
6861 
6862 	if (len < sizeof(params)) {
6863 		retval = -EINVAL;
6864 		goto out;
6865 	}
6866 
6867 	len = sizeof(params);
6868 	if (copy_from_user(&params, optval, len))
6869 		goto out;
6870 
6871 	asoc = sctp_id2assoc(sk, params.assoc_id);
6872 	if (asoc) {
6873 		params.assoc_value = asoc->strreset_enable;
6874 	} else if (!params.assoc_id) {
6875 		struct sctp_sock *sp = sctp_sk(sk);
6876 
6877 		params.assoc_value = sp->ep->strreset_enable;
6878 	} else {
6879 		retval = -EINVAL;
6880 		goto out;
6881 	}
6882 
6883 	if (put_user(len, optlen))
6884 		goto out;
6885 
6886 	if (copy_to_user(optval, &params, len))
6887 		goto out;
6888 
6889 	retval = 0;
6890 
6891 out:
6892 	return retval;
6893 }
6894 
6895 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
6896 				     char __user *optval,
6897 				     int __user *optlen)
6898 {
6899 	struct sctp_assoc_value params;
6900 	struct sctp_association *asoc;
6901 	int retval = -EFAULT;
6902 
6903 	if (len < sizeof(params)) {
6904 		retval = -EINVAL;
6905 		goto out;
6906 	}
6907 
6908 	len = sizeof(params);
6909 	if (copy_from_user(&params, optval, len))
6910 		goto out;
6911 
6912 	asoc = sctp_id2assoc(sk, params.assoc_id);
6913 	if (!asoc) {
6914 		retval = -EINVAL;
6915 		goto out;
6916 	}
6917 
6918 	params.assoc_value = sctp_sched_get_sched(asoc);
6919 
6920 	if (put_user(len, optlen))
6921 		goto out;
6922 
6923 	if (copy_to_user(optval, &params, len))
6924 		goto out;
6925 
6926 	retval = 0;
6927 
6928 out:
6929 	return retval;
6930 }
6931 
6932 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
6933 					   char __user *optval,
6934 					   int __user *optlen)
6935 {
6936 	struct sctp_stream_value params;
6937 	struct sctp_association *asoc;
6938 	int retval = -EFAULT;
6939 
6940 	if (len < sizeof(params)) {
6941 		retval = -EINVAL;
6942 		goto out;
6943 	}
6944 
6945 	len = sizeof(params);
6946 	if (copy_from_user(&params, optval, len))
6947 		goto out;
6948 
6949 	asoc = sctp_id2assoc(sk, params.assoc_id);
6950 	if (!asoc) {
6951 		retval = -EINVAL;
6952 		goto out;
6953 	}
6954 
6955 	retval = sctp_sched_get_value(asoc, params.stream_id,
6956 				      &params.stream_value);
6957 	if (retval)
6958 		goto out;
6959 
6960 	if (put_user(len, optlen)) {
6961 		retval = -EFAULT;
6962 		goto out;
6963 	}
6964 
6965 	if (copy_to_user(optval, &params, len)) {
6966 		retval = -EFAULT;
6967 		goto out;
6968 	}
6969 
6970 out:
6971 	return retval;
6972 }
6973 
6974 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6975 			   char __user *optval, int __user *optlen)
6976 {
6977 	int retval = 0;
6978 	int len;
6979 
6980 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6981 
6982 	/* I can hardly begin to describe how wrong this is.  This is
6983 	 * so broken as to be worse than useless.  The API draft
6984 	 * REALLY is NOT helpful here...  I am not convinced that the
6985 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6986 	 * are at all well-founded.
6987 	 */
6988 	if (level != SOL_SCTP) {
6989 		struct sctp_af *af = sctp_sk(sk)->pf->af;
6990 
6991 		retval = af->getsockopt(sk, level, optname, optval, optlen);
6992 		return retval;
6993 	}
6994 
6995 	if (get_user(len, optlen))
6996 		return -EFAULT;
6997 
6998 	if (len < 0)
6999 		return -EINVAL;
7000 
7001 	lock_sock(sk);
7002 
7003 	switch (optname) {
7004 	case SCTP_STATUS:
7005 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7006 		break;
7007 	case SCTP_DISABLE_FRAGMENTS:
7008 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7009 							   optlen);
7010 		break;
7011 	case SCTP_EVENTS:
7012 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7013 		break;
7014 	case SCTP_AUTOCLOSE:
7015 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7016 		break;
7017 	case SCTP_SOCKOPT_PEELOFF:
7018 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7019 		break;
7020 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7021 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7022 		break;
7023 	case SCTP_PEER_ADDR_PARAMS:
7024 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7025 							  optlen);
7026 		break;
7027 	case SCTP_DELAYED_SACK:
7028 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7029 							  optlen);
7030 		break;
7031 	case SCTP_INITMSG:
7032 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7033 		break;
7034 	case SCTP_GET_PEER_ADDRS:
7035 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7036 						    optlen);
7037 		break;
7038 	case SCTP_GET_LOCAL_ADDRS:
7039 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7040 						     optlen);
7041 		break;
7042 	case SCTP_SOCKOPT_CONNECTX3:
7043 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7044 		break;
7045 	case SCTP_DEFAULT_SEND_PARAM:
7046 		retval = sctp_getsockopt_default_send_param(sk, len,
7047 							    optval, optlen);
7048 		break;
7049 	case SCTP_DEFAULT_SNDINFO:
7050 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7051 							 optval, optlen);
7052 		break;
7053 	case SCTP_PRIMARY_ADDR:
7054 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7055 		break;
7056 	case SCTP_NODELAY:
7057 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7058 		break;
7059 	case SCTP_RTOINFO:
7060 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7061 		break;
7062 	case SCTP_ASSOCINFO:
7063 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7064 		break;
7065 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7066 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7067 		break;
7068 	case SCTP_MAXSEG:
7069 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7070 		break;
7071 	case SCTP_GET_PEER_ADDR_INFO:
7072 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7073 							optlen);
7074 		break;
7075 	case SCTP_ADAPTATION_LAYER:
7076 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7077 							optlen);
7078 		break;
7079 	case SCTP_CONTEXT:
7080 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7081 		break;
7082 	case SCTP_FRAGMENT_INTERLEAVE:
7083 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7084 							     optlen);
7085 		break;
7086 	case SCTP_PARTIAL_DELIVERY_POINT:
7087 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7088 								optlen);
7089 		break;
7090 	case SCTP_MAX_BURST:
7091 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7092 		break;
7093 	case SCTP_AUTH_KEY:
7094 	case SCTP_AUTH_CHUNK:
7095 	case SCTP_AUTH_DELETE_KEY:
7096 		retval = -EOPNOTSUPP;
7097 		break;
7098 	case SCTP_HMAC_IDENT:
7099 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7100 		break;
7101 	case SCTP_AUTH_ACTIVE_KEY:
7102 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7103 		break;
7104 	case SCTP_PEER_AUTH_CHUNKS:
7105 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7106 							optlen);
7107 		break;
7108 	case SCTP_LOCAL_AUTH_CHUNKS:
7109 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7110 							optlen);
7111 		break;
7112 	case SCTP_GET_ASSOC_NUMBER:
7113 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7114 		break;
7115 	case SCTP_GET_ASSOC_ID_LIST:
7116 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7117 		break;
7118 	case SCTP_AUTO_ASCONF:
7119 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7120 		break;
7121 	case SCTP_PEER_ADDR_THLDS:
7122 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7123 		break;
7124 	case SCTP_GET_ASSOC_STATS:
7125 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7126 		break;
7127 	case SCTP_RECVRCVINFO:
7128 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7129 		break;
7130 	case SCTP_RECVNXTINFO:
7131 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7132 		break;
7133 	case SCTP_PR_SUPPORTED:
7134 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7135 		break;
7136 	case SCTP_DEFAULT_PRINFO:
7137 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7138 							optlen);
7139 		break;
7140 	case SCTP_PR_ASSOC_STATUS:
7141 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7142 							optlen);
7143 		break;
7144 	case SCTP_PR_STREAM_STATUS:
7145 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7146 							 optlen);
7147 		break;
7148 	case SCTP_RECONFIG_SUPPORTED:
7149 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7150 							    optlen);
7151 		break;
7152 	case SCTP_ENABLE_STREAM_RESET:
7153 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7154 							 optlen);
7155 		break;
7156 	case SCTP_STREAM_SCHEDULER:
7157 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7158 						   optlen);
7159 		break;
7160 	case SCTP_STREAM_SCHEDULER_VALUE:
7161 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7162 							 optlen);
7163 		break;
7164 	default:
7165 		retval = -ENOPROTOOPT;
7166 		break;
7167 	}
7168 
7169 	release_sock(sk);
7170 	return retval;
7171 }
7172 
7173 static int sctp_hash(struct sock *sk)
7174 {
7175 	/* STUB */
7176 	return 0;
7177 }
7178 
7179 static void sctp_unhash(struct sock *sk)
7180 {
7181 	/* STUB */
7182 }
7183 
7184 /* Check if port is acceptable.  Possibly find first available port.
7185  *
7186  * The port hash table (contained in the 'global' SCTP protocol storage
7187  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7188  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7189  * list (the list number is the port number hashed out, so as you
7190  * would expect from a hash function, all the ports in a given list have
7191  * such a number that hashes out to the same list number; you were
7192  * expecting that, right?); so each list has a set of ports, with a
7193  * link to the socket (struct sock) that uses it, the port number and
7194  * a fastreuse flag (FIXME: NPI ipg).
7195  */
7196 static struct sctp_bind_bucket *sctp_bucket_create(
7197 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7198 
7199 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7200 {
7201 	struct sctp_bind_hashbucket *head; /* hash list */
7202 	struct sctp_bind_bucket *pp;
7203 	unsigned short snum;
7204 	int ret;
7205 
7206 	snum = ntohs(addr->v4.sin_port);
7207 
7208 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7209 
7210 	local_bh_disable();
7211 
7212 	if (snum == 0) {
7213 		/* Search for an available port. */
7214 		int low, high, remaining, index;
7215 		unsigned int rover;
7216 		struct net *net = sock_net(sk);
7217 
7218 		inet_get_local_port_range(net, &low, &high);
7219 		remaining = (high - low) + 1;
7220 		rover = prandom_u32() % remaining + low;
7221 
7222 		do {
7223 			rover++;
7224 			if ((rover < low) || (rover > high))
7225 				rover = low;
7226 			if (inet_is_local_reserved_port(net, rover))
7227 				continue;
7228 			index = sctp_phashfn(sock_net(sk), rover);
7229 			head = &sctp_port_hashtable[index];
7230 			spin_lock(&head->lock);
7231 			sctp_for_each_hentry(pp, &head->chain)
7232 				if ((pp->port == rover) &&
7233 				    net_eq(sock_net(sk), pp->net))
7234 					goto next;
7235 			break;
7236 		next:
7237 			spin_unlock(&head->lock);
7238 		} while (--remaining > 0);
7239 
7240 		/* Exhausted local port range during search? */
7241 		ret = 1;
7242 		if (remaining <= 0)
7243 			goto fail;
7244 
7245 		/* OK, here is the one we will use.  HEAD (the port
7246 		 * hash table list entry) is non-NULL and we hold it's
7247 		 * mutex.
7248 		 */
7249 		snum = rover;
7250 	} else {
7251 		/* We are given an specific port number; we verify
7252 		 * that it is not being used. If it is used, we will
7253 		 * exahust the search in the hash list corresponding
7254 		 * to the port number (snum) - we detect that with the
7255 		 * port iterator, pp being NULL.
7256 		 */
7257 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7258 		spin_lock(&head->lock);
7259 		sctp_for_each_hentry(pp, &head->chain) {
7260 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7261 				goto pp_found;
7262 		}
7263 	}
7264 	pp = NULL;
7265 	goto pp_not_found;
7266 pp_found:
7267 	if (!hlist_empty(&pp->owner)) {
7268 		/* We had a port hash table hit - there is an
7269 		 * available port (pp != NULL) and it is being
7270 		 * used by other socket (pp->owner not empty); that other
7271 		 * socket is going to be sk2.
7272 		 */
7273 		int reuse = sk->sk_reuse;
7274 		struct sock *sk2;
7275 
7276 		pr_debug("%s: found a possible match\n", __func__);
7277 
7278 		if (pp->fastreuse && sk->sk_reuse &&
7279 			sk->sk_state != SCTP_SS_LISTENING)
7280 			goto success;
7281 
7282 		/* Run through the list of sockets bound to the port
7283 		 * (pp->port) [via the pointers bind_next and
7284 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7285 		 * we get the endpoint they describe and run through
7286 		 * the endpoint's list of IP (v4 or v6) addresses,
7287 		 * comparing each of the addresses with the address of
7288 		 * the socket sk. If we find a match, then that means
7289 		 * that this port/socket (sk) combination are already
7290 		 * in an endpoint.
7291 		 */
7292 		sk_for_each_bound(sk2, &pp->owner) {
7293 			struct sctp_endpoint *ep2;
7294 			ep2 = sctp_sk(sk2)->ep;
7295 
7296 			if (sk == sk2 ||
7297 			    (reuse && sk2->sk_reuse &&
7298 			     sk2->sk_state != SCTP_SS_LISTENING))
7299 				continue;
7300 
7301 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7302 						 sctp_sk(sk2), sctp_sk(sk))) {
7303 				ret = (long)sk2;
7304 				goto fail_unlock;
7305 			}
7306 		}
7307 
7308 		pr_debug("%s: found a match\n", __func__);
7309 	}
7310 pp_not_found:
7311 	/* If there was a hash table miss, create a new port.  */
7312 	ret = 1;
7313 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7314 		goto fail_unlock;
7315 
7316 	/* In either case (hit or miss), make sure fastreuse is 1 only
7317 	 * if sk->sk_reuse is too (that is, if the caller requested
7318 	 * SO_REUSEADDR on this socket -sk-).
7319 	 */
7320 	if (hlist_empty(&pp->owner)) {
7321 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
7322 			pp->fastreuse = 1;
7323 		else
7324 			pp->fastreuse = 0;
7325 	} else if (pp->fastreuse &&
7326 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
7327 		pp->fastreuse = 0;
7328 
7329 	/* We are set, so fill up all the data in the hash table
7330 	 * entry, tie the socket list information with the rest of the
7331 	 * sockets FIXME: Blurry, NPI (ipg).
7332 	 */
7333 success:
7334 	if (!sctp_sk(sk)->bind_hash) {
7335 		inet_sk(sk)->inet_num = snum;
7336 		sk_add_bind_node(sk, &pp->owner);
7337 		sctp_sk(sk)->bind_hash = pp;
7338 	}
7339 	ret = 0;
7340 
7341 fail_unlock:
7342 	spin_unlock(&head->lock);
7343 
7344 fail:
7345 	local_bh_enable();
7346 	return ret;
7347 }
7348 
7349 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7350  * port is requested.
7351  */
7352 static int sctp_get_port(struct sock *sk, unsigned short snum)
7353 {
7354 	union sctp_addr addr;
7355 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7356 
7357 	/* Set up a dummy address struct from the sk. */
7358 	af->from_sk(&addr, sk);
7359 	addr.v4.sin_port = htons(snum);
7360 
7361 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7362 	return !!sctp_get_port_local(sk, &addr);
7363 }
7364 
7365 /*
7366  *  Move a socket to LISTENING state.
7367  */
7368 static int sctp_listen_start(struct sock *sk, int backlog)
7369 {
7370 	struct sctp_sock *sp = sctp_sk(sk);
7371 	struct sctp_endpoint *ep = sp->ep;
7372 	struct crypto_shash *tfm = NULL;
7373 	char alg[32];
7374 
7375 	/* Allocate HMAC for generating cookie. */
7376 	if (!sp->hmac && sp->sctp_hmac_alg) {
7377 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7378 		tfm = crypto_alloc_shash(alg, 0, 0);
7379 		if (IS_ERR(tfm)) {
7380 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7381 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7382 			return -ENOSYS;
7383 		}
7384 		sctp_sk(sk)->hmac = tfm;
7385 	}
7386 
7387 	/*
7388 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7389 	 * call that allows new associations to be accepted, the system
7390 	 * picks an ephemeral port and will choose an address set equivalent
7391 	 * to binding with a wildcard address.
7392 	 *
7393 	 * This is not currently spelled out in the SCTP sockets
7394 	 * extensions draft, but follows the practice as seen in TCP
7395 	 * sockets.
7396 	 *
7397 	 */
7398 	sk->sk_state = SCTP_SS_LISTENING;
7399 	if (!ep->base.bind_addr.port) {
7400 		if (sctp_autobind(sk))
7401 			return -EAGAIN;
7402 	} else {
7403 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7404 			sk->sk_state = SCTP_SS_CLOSED;
7405 			return -EADDRINUSE;
7406 		}
7407 	}
7408 
7409 	sk->sk_max_ack_backlog = backlog;
7410 	sctp_hash_endpoint(ep);
7411 	return 0;
7412 }
7413 
7414 /*
7415  * 4.1.3 / 5.1.3 listen()
7416  *
7417  *   By default, new associations are not accepted for UDP style sockets.
7418  *   An application uses listen() to mark a socket as being able to
7419  *   accept new associations.
7420  *
7421  *   On TCP style sockets, applications use listen() to ready the SCTP
7422  *   endpoint for accepting inbound associations.
7423  *
7424  *   On both types of endpoints a backlog of '0' disables listening.
7425  *
7426  *  Move a socket to LISTENING state.
7427  */
7428 int sctp_inet_listen(struct socket *sock, int backlog)
7429 {
7430 	struct sock *sk = sock->sk;
7431 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7432 	int err = -EINVAL;
7433 
7434 	if (unlikely(backlog < 0))
7435 		return err;
7436 
7437 	lock_sock(sk);
7438 
7439 	/* Peeled-off sockets are not allowed to listen().  */
7440 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7441 		goto out;
7442 
7443 	if (sock->state != SS_UNCONNECTED)
7444 		goto out;
7445 
7446 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7447 		goto out;
7448 
7449 	/* If backlog is zero, disable listening. */
7450 	if (!backlog) {
7451 		if (sctp_sstate(sk, CLOSED))
7452 			goto out;
7453 
7454 		err = 0;
7455 		sctp_unhash_endpoint(ep);
7456 		sk->sk_state = SCTP_SS_CLOSED;
7457 		if (sk->sk_reuse)
7458 			sctp_sk(sk)->bind_hash->fastreuse = 1;
7459 		goto out;
7460 	}
7461 
7462 	/* If we are already listening, just update the backlog */
7463 	if (sctp_sstate(sk, LISTENING))
7464 		sk->sk_max_ack_backlog = backlog;
7465 	else {
7466 		err = sctp_listen_start(sk, backlog);
7467 		if (err)
7468 			goto out;
7469 	}
7470 
7471 	err = 0;
7472 out:
7473 	release_sock(sk);
7474 	return err;
7475 }
7476 
7477 /*
7478  * This function is done by modeling the current datagram_poll() and the
7479  * tcp_poll().  Note that, based on these implementations, we don't
7480  * lock the socket in this function, even though it seems that,
7481  * ideally, locking or some other mechanisms can be used to ensure
7482  * the integrity of the counters (sndbuf and wmem_alloc) used
7483  * in this place.  We assume that we don't need locks either until proven
7484  * otherwise.
7485  *
7486  * Another thing to note is that we include the Async I/O support
7487  * here, again, by modeling the current TCP/UDP code.  We don't have
7488  * a good way to test with it yet.
7489  */
7490 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7491 {
7492 	struct sock *sk = sock->sk;
7493 	struct sctp_sock *sp = sctp_sk(sk);
7494 	unsigned int mask;
7495 
7496 	poll_wait(file, sk_sleep(sk), wait);
7497 
7498 	sock_rps_record_flow(sk);
7499 
7500 	/* A TCP-style listening socket becomes readable when the accept queue
7501 	 * is not empty.
7502 	 */
7503 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7504 		return (!list_empty(&sp->ep->asocs)) ?
7505 			(POLLIN | POLLRDNORM) : 0;
7506 
7507 	mask = 0;
7508 
7509 	/* Is there any exceptional events?  */
7510 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7511 		mask |= POLLERR |
7512 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7513 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7514 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7515 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7516 		mask |= POLLHUP;
7517 
7518 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7519 	if (!skb_queue_empty(&sk->sk_receive_queue))
7520 		mask |= POLLIN | POLLRDNORM;
7521 
7522 	/* The association is either gone or not ready.  */
7523 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7524 		return mask;
7525 
7526 	/* Is it writable?  */
7527 	if (sctp_writeable(sk)) {
7528 		mask |= POLLOUT | POLLWRNORM;
7529 	} else {
7530 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7531 		/*
7532 		 * Since the socket is not locked, the buffer
7533 		 * might be made available after the writeable check and
7534 		 * before the bit is set.  This could cause a lost I/O
7535 		 * signal.  tcp_poll() has a race breaker for this race
7536 		 * condition.  Based on their implementation, we put
7537 		 * in the following code to cover it as well.
7538 		 */
7539 		if (sctp_writeable(sk))
7540 			mask |= POLLOUT | POLLWRNORM;
7541 	}
7542 	return mask;
7543 }
7544 
7545 /********************************************************************
7546  * 2nd Level Abstractions
7547  ********************************************************************/
7548 
7549 static struct sctp_bind_bucket *sctp_bucket_create(
7550 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7551 {
7552 	struct sctp_bind_bucket *pp;
7553 
7554 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7555 	if (pp) {
7556 		SCTP_DBG_OBJCNT_INC(bind_bucket);
7557 		pp->port = snum;
7558 		pp->fastreuse = 0;
7559 		INIT_HLIST_HEAD(&pp->owner);
7560 		pp->net = net;
7561 		hlist_add_head(&pp->node, &head->chain);
7562 	}
7563 	return pp;
7564 }
7565 
7566 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7567 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7568 {
7569 	if (pp && hlist_empty(&pp->owner)) {
7570 		__hlist_del(&pp->node);
7571 		kmem_cache_free(sctp_bucket_cachep, pp);
7572 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
7573 	}
7574 }
7575 
7576 /* Release this socket's reference to a local port.  */
7577 static inline void __sctp_put_port(struct sock *sk)
7578 {
7579 	struct sctp_bind_hashbucket *head =
7580 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7581 						  inet_sk(sk)->inet_num)];
7582 	struct sctp_bind_bucket *pp;
7583 
7584 	spin_lock(&head->lock);
7585 	pp = sctp_sk(sk)->bind_hash;
7586 	__sk_del_bind_node(sk);
7587 	sctp_sk(sk)->bind_hash = NULL;
7588 	inet_sk(sk)->inet_num = 0;
7589 	sctp_bucket_destroy(pp);
7590 	spin_unlock(&head->lock);
7591 }
7592 
7593 void sctp_put_port(struct sock *sk)
7594 {
7595 	local_bh_disable();
7596 	__sctp_put_port(sk);
7597 	local_bh_enable();
7598 }
7599 
7600 /*
7601  * The system picks an ephemeral port and choose an address set equivalent
7602  * to binding with a wildcard address.
7603  * One of those addresses will be the primary address for the association.
7604  * This automatically enables the multihoming capability of SCTP.
7605  */
7606 static int sctp_autobind(struct sock *sk)
7607 {
7608 	union sctp_addr autoaddr;
7609 	struct sctp_af *af;
7610 	__be16 port;
7611 
7612 	/* Initialize a local sockaddr structure to INADDR_ANY. */
7613 	af = sctp_sk(sk)->pf->af;
7614 
7615 	port = htons(inet_sk(sk)->inet_num);
7616 	af->inaddr_any(&autoaddr, port);
7617 
7618 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7619 }
7620 
7621 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
7622  *
7623  * From RFC 2292
7624  * 4.2 The cmsghdr Structure *
7625  *
7626  * When ancillary data is sent or received, any number of ancillary data
7627  * objects can be specified by the msg_control and msg_controllen members of
7628  * the msghdr structure, because each object is preceded by
7629  * a cmsghdr structure defining the object's length (the cmsg_len member).
7630  * Historically Berkeley-derived implementations have passed only one object
7631  * at a time, but this API allows multiple objects to be
7632  * passed in a single call to sendmsg() or recvmsg(). The following example
7633  * shows two ancillary data objects in a control buffer.
7634  *
7635  *   |<--------------------------- msg_controllen -------------------------->|
7636  *   |                                                                       |
7637  *
7638  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
7639  *
7640  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7641  *   |                                   |                                   |
7642  *
7643  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
7644  *
7645  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
7646  *   |                                |  |                                |  |
7647  *
7648  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7649  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
7650  *
7651  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
7652  *
7653  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7654  *    ^
7655  *    |
7656  *
7657  * msg_control
7658  * points here
7659  */
7660 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
7661 {
7662 	struct msghdr *my_msg = (struct msghdr *)msg;
7663 	struct cmsghdr *cmsg;
7664 
7665 	for_each_cmsghdr(cmsg, my_msg) {
7666 		if (!CMSG_OK(my_msg, cmsg))
7667 			return -EINVAL;
7668 
7669 		/* Should we parse this header or ignore?  */
7670 		if (cmsg->cmsg_level != IPPROTO_SCTP)
7671 			continue;
7672 
7673 		/* Strictly check lengths following example in SCM code.  */
7674 		switch (cmsg->cmsg_type) {
7675 		case SCTP_INIT:
7676 			/* SCTP Socket API Extension
7677 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7678 			 *
7679 			 * This cmsghdr structure provides information for
7680 			 * initializing new SCTP associations with sendmsg().
7681 			 * The SCTP_INITMSG socket option uses this same data
7682 			 * structure.  This structure is not used for
7683 			 * recvmsg().
7684 			 *
7685 			 * cmsg_level    cmsg_type      cmsg_data[]
7686 			 * ------------  ------------   ----------------------
7687 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
7688 			 */
7689 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7690 				return -EINVAL;
7691 
7692 			cmsgs->init = CMSG_DATA(cmsg);
7693 			break;
7694 
7695 		case SCTP_SNDRCV:
7696 			/* SCTP Socket API Extension
7697 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7698 			 *
7699 			 * This cmsghdr structure specifies SCTP options for
7700 			 * sendmsg() and describes SCTP header information
7701 			 * about a received message through recvmsg().
7702 			 *
7703 			 * cmsg_level    cmsg_type      cmsg_data[]
7704 			 * ------------  ------------   ----------------------
7705 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
7706 			 */
7707 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7708 				return -EINVAL;
7709 
7710 			cmsgs->srinfo = CMSG_DATA(cmsg);
7711 
7712 			if (cmsgs->srinfo->sinfo_flags &
7713 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7714 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7715 			      SCTP_ABORT | SCTP_EOF))
7716 				return -EINVAL;
7717 			break;
7718 
7719 		case SCTP_SNDINFO:
7720 			/* SCTP Socket API Extension
7721 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7722 			 *
7723 			 * This cmsghdr structure specifies SCTP options for
7724 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
7725 			 * SCTP_SNDRCV which has been deprecated.
7726 			 *
7727 			 * cmsg_level    cmsg_type      cmsg_data[]
7728 			 * ------------  ------------   ---------------------
7729 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
7730 			 */
7731 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7732 				return -EINVAL;
7733 
7734 			cmsgs->sinfo = CMSG_DATA(cmsg);
7735 
7736 			if (cmsgs->sinfo->snd_flags &
7737 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7738 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7739 			      SCTP_ABORT | SCTP_EOF))
7740 				return -EINVAL;
7741 			break;
7742 		default:
7743 			return -EINVAL;
7744 		}
7745 	}
7746 
7747 	return 0;
7748 }
7749 
7750 /*
7751  * Wait for a packet..
7752  * Note: This function is the same function as in core/datagram.c
7753  * with a few modifications to make lksctp work.
7754  */
7755 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7756 {
7757 	int error;
7758 	DEFINE_WAIT(wait);
7759 
7760 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7761 
7762 	/* Socket errors? */
7763 	error = sock_error(sk);
7764 	if (error)
7765 		goto out;
7766 
7767 	if (!skb_queue_empty(&sk->sk_receive_queue))
7768 		goto ready;
7769 
7770 	/* Socket shut down?  */
7771 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7772 		goto out;
7773 
7774 	/* Sequenced packets can come disconnected.  If so we report the
7775 	 * problem.
7776 	 */
7777 	error = -ENOTCONN;
7778 
7779 	/* Is there a good reason to think that we may receive some data?  */
7780 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7781 		goto out;
7782 
7783 	/* Handle signals.  */
7784 	if (signal_pending(current))
7785 		goto interrupted;
7786 
7787 	/* Let another process have a go.  Since we are going to sleep
7788 	 * anyway.  Note: This may cause odd behaviors if the message
7789 	 * does not fit in the user's buffer, but this seems to be the
7790 	 * only way to honor MSG_DONTWAIT realistically.
7791 	 */
7792 	release_sock(sk);
7793 	*timeo_p = schedule_timeout(*timeo_p);
7794 	lock_sock(sk);
7795 
7796 ready:
7797 	finish_wait(sk_sleep(sk), &wait);
7798 	return 0;
7799 
7800 interrupted:
7801 	error = sock_intr_errno(*timeo_p);
7802 
7803 out:
7804 	finish_wait(sk_sleep(sk), &wait);
7805 	*err = error;
7806 	return error;
7807 }
7808 
7809 /* Receive a datagram.
7810  * Note: This is pretty much the same routine as in core/datagram.c
7811  * with a few changes to make lksctp work.
7812  */
7813 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7814 				       int noblock, int *err)
7815 {
7816 	int error;
7817 	struct sk_buff *skb;
7818 	long timeo;
7819 
7820 	timeo = sock_rcvtimeo(sk, noblock);
7821 
7822 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7823 		 MAX_SCHEDULE_TIMEOUT);
7824 
7825 	do {
7826 		/* Again only user level code calls this function,
7827 		 * so nothing interrupt level
7828 		 * will suddenly eat the receive_queue.
7829 		 *
7830 		 *  Look at current nfs client by the way...
7831 		 *  However, this function was correct in any case. 8)
7832 		 */
7833 		if (flags & MSG_PEEK) {
7834 			skb = skb_peek(&sk->sk_receive_queue);
7835 			if (skb)
7836 				refcount_inc(&skb->users);
7837 		} else {
7838 			skb = __skb_dequeue(&sk->sk_receive_queue);
7839 		}
7840 
7841 		if (skb)
7842 			return skb;
7843 
7844 		/* Caller is allowed not to check sk->sk_err before calling. */
7845 		error = sock_error(sk);
7846 		if (error)
7847 			goto no_packet;
7848 
7849 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7850 			break;
7851 
7852 		if (sk_can_busy_loop(sk)) {
7853 			sk_busy_loop(sk, noblock);
7854 
7855 			if (!skb_queue_empty(&sk->sk_receive_queue))
7856 				continue;
7857 		}
7858 
7859 		/* User doesn't want to wait.  */
7860 		error = -EAGAIN;
7861 		if (!timeo)
7862 			goto no_packet;
7863 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7864 
7865 	return NULL;
7866 
7867 no_packet:
7868 	*err = error;
7869 	return NULL;
7870 }
7871 
7872 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
7873 static void __sctp_write_space(struct sctp_association *asoc)
7874 {
7875 	struct sock *sk = asoc->base.sk;
7876 
7877 	if (sctp_wspace(asoc) <= 0)
7878 		return;
7879 
7880 	if (waitqueue_active(&asoc->wait))
7881 		wake_up_interruptible(&asoc->wait);
7882 
7883 	if (sctp_writeable(sk)) {
7884 		struct socket_wq *wq;
7885 
7886 		rcu_read_lock();
7887 		wq = rcu_dereference(sk->sk_wq);
7888 		if (wq) {
7889 			if (waitqueue_active(&wq->wait))
7890 				wake_up_interruptible(&wq->wait);
7891 
7892 			/* Note that we try to include the Async I/O support
7893 			 * here by modeling from the current TCP/UDP code.
7894 			 * We have not tested with it yet.
7895 			 */
7896 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7897 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7898 		}
7899 		rcu_read_unlock();
7900 	}
7901 }
7902 
7903 static void sctp_wake_up_waiters(struct sock *sk,
7904 				 struct sctp_association *asoc)
7905 {
7906 	struct sctp_association *tmp = asoc;
7907 
7908 	/* We do accounting for the sndbuf space per association,
7909 	 * so we only need to wake our own association.
7910 	 */
7911 	if (asoc->ep->sndbuf_policy)
7912 		return __sctp_write_space(asoc);
7913 
7914 	/* If association goes down and is just flushing its
7915 	 * outq, then just normally notify others.
7916 	 */
7917 	if (asoc->base.dead)
7918 		return sctp_write_space(sk);
7919 
7920 	/* Accounting for the sndbuf space is per socket, so we
7921 	 * need to wake up others, try to be fair and in case of
7922 	 * other associations, let them have a go first instead
7923 	 * of just doing a sctp_write_space() call.
7924 	 *
7925 	 * Note that we reach sctp_wake_up_waiters() only when
7926 	 * associations free up queued chunks, thus we are under
7927 	 * lock and the list of associations on a socket is
7928 	 * guaranteed not to change.
7929 	 */
7930 	for (tmp = list_next_entry(tmp, asocs); 1;
7931 	     tmp = list_next_entry(tmp, asocs)) {
7932 		/* Manually skip the head element. */
7933 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7934 			continue;
7935 		/* Wake up association. */
7936 		__sctp_write_space(tmp);
7937 		/* We've reached the end. */
7938 		if (tmp == asoc)
7939 			break;
7940 	}
7941 }
7942 
7943 /* Do accounting for the sndbuf space.
7944  * Decrement the used sndbuf space of the corresponding association by the
7945  * data size which was just transmitted(freed).
7946  */
7947 static void sctp_wfree(struct sk_buff *skb)
7948 {
7949 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7950 	struct sctp_association *asoc = chunk->asoc;
7951 	struct sock *sk = asoc->base.sk;
7952 
7953 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7954 				sizeof(struct sk_buff) +
7955 				sizeof(struct sctp_chunk);
7956 
7957 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
7958 
7959 	/*
7960 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7961 	 */
7962 	sk->sk_wmem_queued   -= skb->truesize;
7963 	sk_mem_uncharge(sk, skb->truesize);
7964 
7965 	sock_wfree(skb);
7966 	sctp_wake_up_waiters(sk, asoc);
7967 
7968 	sctp_association_put(asoc);
7969 }
7970 
7971 /* Do accounting for the receive space on the socket.
7972  * Accounting for the association is done in ulpevent.c
7973  * We set this as a destructor for the cloned data skbs so that
7974  * accounting is done at the correct time.
7975  */
7976 void sctp_sock_rfree(struct sk_buff *skb)
7977 {
7978 	struct sock *sk = skb->sk;
7979 	struct sctp_ulpevent *event = sctp_skb2event(skb);
7980 
7981 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7982 
7983 	/*
7984 	 * Mimic the behavior of sock_rfree
7985 	 */
7986 	sk_mem_uncharge(sk, event->rmem_len);
7987 }
7988 
7989 
7990 /* Helper function to wait for space in the sndbuf.  */
7991 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7992 				size_t msg_len)
7993 {
7994 	struct sock *sk = asoc->base.sk;
7995 	int err = 0;
7996 	long current_timeo = *timeo_p;
7997 	DEFINE_WAIT(wait);
7998 
7999 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8000 		 *timeo_p, msg_len);
8001 
8002 	/* Increment the association's refcnt.  */
8003 	sctp_association_hold(asoc);
8004 
8005 	/* Wait on the association specific sndbuf space. */
8006 	for (;;) {
8007 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8008 					  TASK_INTERRUPTIBLE);
8009 		if (!*timeo_p)
8010 			goto do_nonblock;
8011 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8012 		    asoc->base.dead)
8013 			goto do_error;
8014 		if (signal_pending(current))
8015 			goto do_interrupted;
8016 		if (msg_len <= sctp_wspace(asoc))
8017 			break;
8018 
8019 		/* Let another process have a go.  Since we are going
8020 		 * to sleep anyway.
8021 		 */
8022 		release_sock(sk);
8023 		current_timeo = schedule_timeout(current_timeo);
8024 		lock_sock(sk);
8025 
8026 		*timeo_p = current_timeo;
8027 	}
8028 
8029 out:
8030 	finish_wait(&asoc->wait, &wait);
8031 
8032 	/* Release the association's refcnt.  */
8033 	sctp_association_put(asoc);
8034 
8035 	return err;
8036 
8037 do_error:
8038 	err = -EPIPE;
8039 	goto out;
8040 
8041 do_interrupted:
8042 	err = sock_intr_errno(*timeo_p);
8043 	goto out;
8044 
8045 do_nonblock:
8046 	err = -EAGAIN;
8047 	goto out;
8048 }
8049 
8050 void sctp_data_ready(struct sock *sk)
8051 {
8052 	struct socket_wq *wq;
8053 
8054 	rcu_read_lock();
8055 	wq = rcu_dereference(sk->sk_wq);
8056 	if (skwq_has_sleeper(wq))
8057 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
8058 						POLLRDNORM | POLLRDBAND);
8059 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8060 	rcu_read_unlock();
8061 }
8062 
8063 /* If socket sndbuf has changed, wake up all per association waiters.  */
8064 void sctp_write_space(struct sock *sk)
8065 {
8066 	struct sctp_association *asoc;
8067 
8068 	/* Wake up the tasks in each wait queue.  */
8069 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8070 		__sctp_write_space(asoc);
8071 	}
8072 }
8073 
8074 /* Is there any sndbuf space available on the socket?
8075  *
8076  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8077  * associations on the same socket.  For a UDP-style socket with
8078  * multiple associations, it is possible for it to be "unwriteable"
8079  * prematurely.  I assume that this is acceptable because
8080  * a premature "unwriteable" is better than an accidental "writeable" which
8081  * would cause an unwanted block under certain circumstances.  For the 1-1
8082  * UDP-style sockets or TCP-style sockets, this code should work.
8083  *  - Daisy
8084  */
8085 static int sctp_writeable(struct sock *sk)
8086 {
8087 	int amt = 0;
8088 
8089 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
8090 	if (amt < 0)
8091 		amt = 0;
8092 	return amt;
8093 }
8094 
8095 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8096  * returns immediately with EINPROGRESS.
8097  */
8098 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8099 {
8100 	struct sock *sk = asoc->base.sk;
8101 	int err = 0;
8102 	long current_timeo = *timeo_p;
8103 	DEFINE_WAIT(wait);
8104 
8105 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8106 
8107 	/* Increment the association's refcnt.  */
8108 	sctp_association_hold(asoc);
8109 
8110 	for (;;) {
8111 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8112 					  TASK_INTERRUPTIBLE);
8113 		if (!*timeo_p)
8114 			goto do_nonblock;
8115 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8116 			break;
8117 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8118 		    asoc->base.dead)
8119 			goto do_error;
8120 		if (signal_pending(current))
8121 			goto do_interrupted;
8122 
8123 		if (sctp_state(asoc, ESTABLISHED))
8124 			break;
8125 
8126 		/* Let another process have a go.  Since we are going
8127 		 * to sleep anyway.
8128 		 */
8129 		release_sock(sk);
8130 		current_timeo = schedule_timeout(current_timeo);
8131 		lock_sock(sk);
8132 
8133 		*timeo_p = current_timeo;
8134 	}
8135 
8136 out:
8137 	finish_wait(&asoc->wait, &wait);
8138 
8139 	/* Release the association's refcnt.  */
8140 	sctp_association_put(asoc);
8141 
8142 	return err;
8143 
8144 do_error:
8145 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8146 		err = -ETIMEDOUT;
8147 	else
8148 		err = -ECONNREFUSED;
8149 	goto out;
8150 
8151 do_interrupted:
8152 	err = sock_intr_errno(*timeo_p);
8153 	goto out;
8154 
8155 do_nonblock:
8156 	err = -EINPROGRESS;
8157 	goto out;
8158 }
8159 
8160 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8161 {
8162 	struct sctp_endpoint *ep;
8163 	int err = 0;
8164 	DEFINE_WAIT(wait);
8165 
8166 	ep = sctp_sk(sk)->ep;
8167 
8168 
8169 	for (;;) {
8170 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8171 					  TASK_INTERRUPTIBLE);
8172 
8173 		if (list_empty(&ep->asocs)) {
8174 			release_sock(sk);
8175 			timeo = schedule_timeout(timeo);
8176 			lock_sock(sk);
8177 		}
8178 
8179 		err = -EINVAL;
8180 		if (!sctp_sstate(sk, LISTENING))
8181 			break;
8182 
8183 		err = 0;
8184 		if (!list_empty(&ep->asocs))
8185 			break;
8186 
8187 		err = sock_intr_errno(timeo);
8188 		if (signal_pending(current))
8189 			break;
8190 
8191 		err = -EAGAIN;
8192 		if (!timeo)
8193 			break;
8194 	}
8195 
8196 	finish_wait(sk_sleep(sk), &wait);
8197 
8198 	return err;
8199 }
8200 
8201 static void sctp_wait_for_close(struct sock *sk, long timeout)
8202 {
8203 	DEFINE_WAIT(wait);
8204 
8205 	do {
8206 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8207 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8208 			break;
8209 		release_sock(sk);
8210 		timeout = schedule_timeout(timeout);
8211 		lock_sock(sk);
8212 	} while (!signal_pending(current) && timeout);
8213 
8214 	finish_wait(sk_sleep(sk), &wait);
8215 }
8216 
8217 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8218 {
8219 	struct sk_buff *frag;
8220 
8221 	if (!skb->data_len)
8222 		goto done;
8223 
8224 	/* Don't forget the fragments. */
8225 	skb_walk_frags(skb, frag)
8226 		sctp_skb_set_owner_r_frag(frag, sk);
8227 
8228 done:
8229 	sctp_skb_set_owner_r(skb, sk);
8230 }
8231 
8232 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8233 		    struct sctp_association *asoc)
8234 {
8235 	struct inet_sock *inet = inet_sk(sk);
8236 	struct inet_sock *newinet;
8237 
8238 	newsk->sk_type = sk->sk_type;
8239 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8240 	newsk->sk_flags = sk->sk_flags;
8241 	newsk->sk_tsflags = sk->sk_tsflags;
8242 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8243 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8244 	newsk->sk_reuse = sk->sk_reuse;
8245 
8246 	newsk->sk_shutdown = sk->sk_shutdown;
8247 	newsk->sk_destruct = sctp_destruct_sock;
8248 	newsk->sk_family = sk->sk_family;
8249 	newsk->sk_protocol = IPPROTO_SCTP;
8250 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8251 	newsk->sk_sndbuf = sk->sk_sndbuf;
8252 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8253 	newsk->sk_lingertime = sk->sk_lingertime;
8254 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8255 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8256 	newsk->sk_rxhash = sk->sk_rxhash;
8257 
8258 	newinet = inet_sk(newsk);
8259 
8260 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8261 	 * getsockname() and getpeername()
8262 	 */
8263 	newinet->inet_sport = inet->inet_sport;
8264 	newinet->inet_saddr = inet->inet_saddr;
8265 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8266 	newinet->inet_dport = htons(asoc->peer.port);
8267 	newinet->pmtudisc = inet->pmtudisc;
8268 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8269 
8270 	newinet->uc_ttl = inet->uc_ttl;
8271 	newinet->mc_loop = 1;
8272 	newinet->mc_ttl = 1;
8273 	newinet->mc_index = 0;
8274 	newinet->mc_list = NULL;
8275 
8276 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8277 		net_enable_timestamp();
8278 
8279 	security_sk_clone(sk, newsk);
8280 }
8281 
8282 static inline void sctp_copy_descendant(struct sock *sk_to,
8283 					const struct sock *sk_from)
8284 {
8285 	int ancestor_size = sizeof(struct inet_sock) +
8286 			    sizeof(struct sctp_sock) -
8287 			    offsetof(struct sctp_sock, auto_asconf_list);
8288 
8289 	if (sk_from->sk_family == PF_INET6)
8290 		ancestor_size += sizeof(struct ipv6_pinfo);
8291 
8292 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8293 }
8294 
8295 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8296  * and its messages to the newsk.
8297  */
8298 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8299 			      struct sctp_association *assoc,
8300 			      enum sctp_socket_type type)
8301 {
8302 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8303 	struct sctp_sock *newsp = sctp_sk(newsk);
8304 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8305 	struct sctp_endpoint *newep = newsp->ep;
8306 	struct sk_buff *skb, *tmp;
8307 	struct sctp_ulpevent *event;
8308 	struct sctp_bind_hashbucket *head;
8309 
8310 	/* Migrate socket buffer sizes and all the socket level options to the
8311 	 * new socket.
8312 	 */
8313 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8314 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8315 	/* Brute force copy old sctp opt. */
8316 	sctp_copy_descendant(newsk, oldsk);
8317 
8318 	/* Restore the ep value that was overwritten with the above structure
8319 	 * copy.
8320 	 */
8321 	newsp->ep = newep;
8322 	newsp->hmac = NULL;
8323 
8324 	/* Hook this new socket in to the bind_hash list. */
8325 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8326 						 inet_sk(oldsk)->inet_num)];
8327 	spin_lock_bh(&head->lock);
8328 	pp = sctp_sk(oldsk)->bind_hash;
8329 	sk_add_bind_node(newsk, &pp->owner);
8330 	sctp_sk(newsk)->bind_hash = pp;
8331 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8332 	spin_unlock_bh(&head->lock);
8333 
8334 	/* Copy the bind_addr list from the original endpoint to the new
8335 	 * endpoint so that we can handle restarts properly
8336 	 */
8337 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8338 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8339 
8340 	/* Move any messages in the old socket's receive queue that are for the
8341 	 * peeled off association to the new socket's receive queue.
8342 	 */
8343 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8344 		event = sctp_skb2event(skb);
8345 		if (event->asoc == assoc) {
8346 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8347 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8348 			sctp_skb_set_owner_r_frag(skb, newsk);
8349 		}
8350 	}
8351 
8352 	/* Clean up any messages pending delivery due to partial
8353 	 * delivery.   Three cases:
8354 	 * 1) No partial deliver;  no work.
8355 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8356 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8357 	 */
8358 	skb_queue_head_init(&newsp->pd_lobby);
8359 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8360 
8361 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8362 		struct sk_buff_head *queue;
8363 
8364 		/* Decide which queue to move pd_lobby skbs to. */
8365 		if (assoc->ulpq.pd_mode) {
8366 			queue = &newsp->pd_lobby;
8367 		} else
8368 			queue = &newsk->sk_receive_queue;
8369 
8370 		/* Walk through the pd_lobby, looking for skbs that
8371 		 * need moved to the new socket.
8372 		 */
8373 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8374 			event = sctp_skb2event(skb);
8375 			if (event->asoc == assoc) {
8376 				__skb_unlink(skb, &oldsp->pd_lobby);
8377 				__skb_queue_tail(queue, skb);
8378 				sctp_skb_set_owner_r_frag(skb, newsk);
8379 			}
8380 		}
8381 
8382 		/* Clear up any skbs waiting for the partial
8383 		 * delivery to finish.
8384 		 */
8385 		if (assoc->ulpq.pd_mode)
8386 			sctp_clear_pd(oldsk, NULL);
8387 
8388 	}
8389 
8390 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
8391 		sctp_skb_set_owner_r_frag(skb, newsk);
8392 
8393 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
8394 		sctp_skb_set_owner_r_frag(skb, newsk);
8395 
8396 	/* Set the type of socket to indicate that it is peeled off from the
8397 	 * original UDP-style socket or created with the accept() call on a
8398 	 * TCP-style socket..
8399 	 */
8400 	newsp->type = type;
8401 
8402 	/* Mark the new socket "in-use" by the user so that any packets
8403 	 * that may arrive on the association after we've moved it are
8404 	 * queued to the backlog.  This prevents a potential race between
8405 	 * backlog processing on the old socket and new-packet processing
8406 	 * on the new socket.
8407 	 *
8408 	 * The caller has just allocated newsk so we can guarantee that other
8409 	 * paths won't try to lock it and then oldsk.
8410 	 */
8411 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8412 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8413 	sctp_assoc_migrate(assoc, newsk);
8414 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8415 
8416 	/* If the association on the newsk is already closed before accept()
8417 	 * is called, set RCV_SHUTDOWN flag.
8418 	 */
8419 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8420 		newsk->sk_state = SCTP_SS_CLOSED;
8421 		newsk->sk_shutdown |= RCV_SHUTDOWN;
8422 	} else {
8423 		newsk->sk_state = SCTP_SS_ESTABLISHED;
8424 	}
8425 
8426 	release_sock(newsk);
8427 }
8428 
8429 
8430 /* This proto struct describes the ULP interface for SCTP.  */
8431 struct proto sctp_prot = {
8432 	.name        =	"SCTP",
8433 	.owner       =	THIS_MODULE,
8434 	.close       =	sctp_close,
8435 	.connect     =	sctp_connect,
8436 	.disconnect  =	sctp_disconnect,
8437 	.accept      =	sctp_accept,
8438 	.ioctl       =	sctp_ioctl,
8439 	.init        =	sctp_init_sock,
8440 	.destroy     =	sctp_destroy_sock,
8441 	.shutdown    =	sctp_shutdown,
8442 	.setsockopt  =	sctp_setsockopt,
8443 	.getsockopt  =	sctp_getsockopt,
8444 	.sendmsg     =	sctp_sendmsg,
8445 	.recvmsg     =	sctp_recvmsg,
8446 	.bind        =	sctp_bind,
8447 	.backlog_rcv =	sctp_backlog_rcv,
8448 	.hash        =	sctp_hash,
8449 	.unhash      =	sctp_unhash,
8450 	.get_port    =	sctp_get_port,
8451 	.obj_size    =  sizeof(struct sctp_sock),
8452 	.sysctl_mem  =  sysctl_sctp_mem,
8453 	.sysctl_rmem =  sysctl_sctp_rmem,
8454 	.sysctl_wmem =  sysctl_sctp_wmem,
8455 	.memory_pressure = &sctp_memory_pressure,
8456 	.enter_memory_pressure = sctp_enter_memory_pressure,
8457 	.memory_allocated = &sctp_memory_allocated,
8458 	.sockets_allocated = &sctp_sockets_allocated,
8459 };
8460 
8461 #if IS_ENABLED(CONFIG_IPV6)
8462 
8463 #include <net/transp_v6.h>
8464 static void sctp_v6_destroy_sock(struct sock *sk)
8465 {
8466 	sctp_destroy_sock(sk);
8467 	inet6_destroy_sock(sk);
8468 }
8469 
8470 struct proto sctpv6_prot = {
8471 	.name		= "SCTPv6",
8472 	.owner		= THIS_MODULE,
8473 	.close		= sctp_close,
8474 	.connect	= sctp_connect,
8475 	.disconnect	= sctp_disconnect,
8476 	.accept		= sctp_accept,
8477 	.ioctl		= sctp_ioctl,
8478 	.init		= sctp_init_sock,
8479 	.destroy	= sctp_v6_destroy_sock,
8480 	.shutdown	= sctp_shutdown,
8481 	.setsockopt	= sctp_setsockopt,
8482 	.getsockopt	= sctp_getsockopt,
8483 	.sendmsg	= sctp_sendmsg,
8484 	.recvmsg	= sctp_recvmsg,
8485 	.bind		= sctp_bind,
8486 	.backlog_rcv	= sctp_backlog_rcv,
8487 	.hash		= sctp_hash,
8488 	.unhash		= sctp_unhash,
8489 	.get_port	= sctp_get_port,
8490 	.obj_size	= sizeof(struct sctp6_sock),
8491 	.sysctl_mem	= sysctl_sctp_mem,
8492 	.sysctl_rmem	= sysctl_sctp_rmem,
8493 	.sysctl_wmem	= sysctl_sctp_wmem,
8494 	.memory_pressure = &sctp_memory_pressure,
8495 	.enter_memory_pressure = sctp_enter_memory_pressure,
8496 	.memory_allocated = &sctp_memory_allocated,
8497 	.sockets_allocated = &sctp_sockets_allocated,
8498 };
8499 #endif /* IS_ENABLED(CONFIG_IPV6) */
8500