1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && inet_port_requires_bind_service(net, snum) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if (sctp_get_port_local(sk, addr)) 418 return -EADDRINUSE; 419 420 /* Refresh ephemeral port. */ 421 if (!bp->port) 422 bp->port = inet_sk(sk)->inet_num; 423 424 /* Add the address to the bind address list. 425 * Use GFP_ATOMIC since BHs will be disabled. 426 */ 427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 428 SCTP_ADDR_SRC, GFP_ATOMIC); 429 430 if (ret) { 431 sctp_put_port(sk); 432 return ret; 433 } 434 /* Copy back into socket for getsockname() use. */ 435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 436 sp->pf->to_sk_saddr(addr, sk); 437 438 return ret; 439 } 440 441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 442 * 443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 444 * at any one time. If a sender, after sending an ASCONF chunk, decides 445 * it needs to transfer another ASCONF Chunk, it MUST wait until the 446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 447 * subsequent ASCONF. Note this restriction binds each side, so at any 448 * time two ASCONF may be in-transit on any given association (one sent 449 * from each endpoint). 450 */ 451 static int sctp_send_asconf(struct sctp_association *asoc, 452 struct sctp_chunk *chunk) 453 { 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct sctp_sock *sp; 543 struct sctp_endpoint *ep; 544 struct sctp_association *asoc; 545 struct sctp_bind_addr *bp; 546 struct sctp_chunk *chunk; 547 struct sctp_sockaddr_entry *laddr; 548 union sctp_addr *addr; 549 union sctp_addr saveaddr; 550 void *addr_buf; 551 struct sctp_af *af; 552 struct list_head *p; 553 int i; 554 int retval = 0; 555 556 sp = sctp_sk(sk); 557 ep = sp->ep; 558 559 if (!ep->asconf_enable) 560 return retval; 561 562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 563 __func__, sk, addrs, addrcnt); 564 565 list_for_each_entry(asoc, &ep->asocs, asocs) { 566 if (!asoc->peer.asconf_capable) 567 continue; 568 569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 570 continue; 571 572 if (!sctp_state(asoc, ESTABLISHED)) 573 continue; 574 575 /* Check if any address in the packed array of addresses is 576 * in the bind address list of the association. If so, 577 * do not send the asconf chunk to its peer, but continue with 578 * other associations. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 if (!af) { 585 retval = -EINVAL; 586 goto out; 587 } 588 589 if (sctp_assoc_lookup_laddr(asoc, addr)) 590 break; 591 592 addr_buf += af->sockaddr_len; 593 } 594 if (i < addrcnt) 595 continue; 596 597 /* Use the first valid address in bind addr list of 598 * association as Address Parameter of ASCONF CHUNK. 599 */ 600 bp = &asoc->base.bind_addr; 601 p = bp->address_list.next; 602 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 604 addrcnt, SCTP_PARAM_ADD_IP); 605 if (!chunk) { 606 retval = -ENOMEM; 607 goto out; 608 } 609 610 /* Add the new addresses to the bind address list with 611 * use_as_src set to 0. 612 */ 613 addr_buf = addrs; 614 for (i = 0; i < addrcnt; i++) { 615 addr = addr_buf; 616 af = sctp_get_af_specific(addr->v4.sin_family); 617 memcpy(&saveaddr, addr, af->sockaddr_len); 618 retval = sctp_add_bind_addr(bp, &saveaddr, 619 sizeof(saveaddr), 620 SCTP_ADDR_NEW, GFP_ATOMIC); 621 addr_buf += af->sockaddr_len; 622 } 623 if (asoc->src_out_of_asoc_ok) { 624 struct sctp_transport *trans; 625 626 list_for_each_entry(trans, 627 &asoc->peer.transport_addr_list, transports) { 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 /* Clear the source and route cache */ 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 sp = sctp_sk(sk); 760 ep = sp->ep; 761 762 if (!ep->asconf_enable) 763 return retval; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_route(transport, NULL, 879 sctp_sk(asoc->base.sk)); 880 } 881 882 if (stored) 883 /* We don't need to transmit ASCONF */ 884 continue; 885 retval = sctp_send_asconf(asoc, chunk); 886 } 887 out: 888 return retval; 889 } 890 891 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 893 { 894 struct sock *sk = sctp_opt2sk(sp); 895 union sctp_addr *addr; 896 struct sctp_af *af; 897 898 /* It is safe to write port space in caller. */ 899 addr = &addrw->a; 900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 901 af = sctp_get_af_specific(addr->sa.sa_family); 902 if (!af) 903 return -EINVAL; 904 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 905 return -EINVAL; 906 907 if (addrw->state == SCTP_ADDR_NEW) 908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 909 else 910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 911 } 912 913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 914 * 915 * API 8.1 916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 917 * int flags); 918 * 919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 921 * or IPv6 addresses. 922 * 923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 924 * Section 3.1.2 for this usage. 925 * 926 * addrs is a pointer to an array of one or more socket addresses. Each 927 * address is contained in its appropriate structure (i.e. struct 928 * sockaddr_in or struct sockaddr_in6) the family of the address type 929 * must be used to distinguish the address length (note that this 930 * representation is termed a "packed array" of addresses). The caller 931 * specifies the number of addresses in the array with addrcnt. 932 * 933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 934 * -1, and sets errno to the appropriate error code. 935 * 936 * For SCTP, the port given in each socket address must be the same, or 937 * sctp_bindx() will fail, setting errno to EINVAL. 938 * 939 * The flags parameter is formed from the bitwise OR of zero or more of 940 * the following currently defined flags: 941 * 942 * SCTP_BINDX_ADD_ADDR 943 * 944 * SCTP_BINDX_REM_ADDR 945 * 946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 948 * addresses from the association. The two flags are mutually exclusive; 949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 950 * not remove all addresses from an association; sctp_bindx() will 951 * reject such an attempt with EINVAL. 952 * 953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 954 * additional addresses with an endpoint after calling bind(). Or use 955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 956 * socket is associated with so that no new association accepted will be 957 * associated with those addresses. If the endpoint supports dynamic 958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 959 * endpoint to send the appropriate message to the peer to change the 960 * peers address lists. 961 * 962 * Adding and removing addresses from a connected association is 963 * optional functionality. Implementations that do not support this 964 * functionality should return EOPNOTSUPP. 965 * 966 * Basically do nothing but copying the addresses from user to kernel 967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 969 * from userspace. 970 * 971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 972 * it. 973 * 974 * sk The sk of the socket 975 * addrs The pointer to the addresses 976 * addrssize Size of the addrs buffer 977 * op Operation to perform (add or remove, see the flags of 978 * sctp_bindx) 979 * 980 * Returns 0 if ok, <0 errno code on error. 981 */ 982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 983 int addrs_size, int op) 984 { 985 int err; 986 int addrcnt = 0; 987 int walk_size = 0; 988 struct sockaddr *sa_addr; 989 void *addr_buf = addrs; 990 struct sctp_af *af; 991 992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 993 __func__, sk, addr_buf, addrs_size, op); 994 995 if (unlikely(addrs_size <= 0)) 996 return -EINVAL; 997 998 /* Walk through the addrs buffer and count the number of addresses. */ 999 while (walk_size < addrs_size) { 1000 if (walk_size + sizeof(sa_family_t) > addrs_size) 1001 return -EINVAL; 1002 1003 sa_addr = addr_buf; 1004 af = sctp_get_af_specific(sa_addr->sa_family); 1005 1006 /* If the address family is not supported or if this address 1007 * causes the address buffer to overflow return EINVAL. 1008 */ 1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1010 return -EINVAL; 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 /* Allow security module to validate bindx addresses. */ 1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1021 addrs, addrs_size); 1022 if (err) 1023 return err; 1024 err = sctp_bindx_add(sk, addrs, addrcnt); 1025 if (err) 1026 return err; 1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1028 case SCTP_BINDX_REM_ADDR: 1029 err = sctp_bindx_rem(sk, addrs, addrcnt); 1030 if (err) 1031 return err; 1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1033 1034 default: 1035 return -EINVAL; 1036 } 1037 } 1038 1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1040 int addrlen) 1041 { 1042 int err; 1043 1044 lock_sock(sk); 1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1046 release_sock(sk); 1047 return err; 1048 } 1049 1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1051 const union sctp_addr *daddr, 1052 const struct sctp_initmsg *init, 1053 struct sctp_transport **tp) 1054 { 1055 struct sctp_association *asoc; 1056 struct sock *sk = ep->base.sk; 1057 struct net *net = sock_net(sk); 1058 enum sctp_scope scope; 1059 int err; 1060 1061 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1062 return -EADDRNOTAVAIL; 1063 1064 if (!ep->base.bind_addr.port) { 1065 if (sctp_autobind(sk)) 1066 return -EAGAIN; 1067 } else { 1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1070 return -EACCES; 1071 } 1072 1073 scope = sctp_scope(daddr); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) 1076 return -ENOMEM; 1077 1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1079 if (err < 0) 1080 goto free; 1081 1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1083 if (!*tp) { 1084 err = -ENOMEM; 1085 goto free; 1086 } 1087 1088 if (!init) 1089 return 0; 1090 1091 if (init->sinit_num_ostreams) { 1092 __u16 outcnt = init->sinit_num_ostreams; 1093 1094 asoc->c.sinit_num_ostreams = outcnt; 1095 /* outcnt has been changed, need to re-init stream */ 1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1097 if (err) 1098 goto free; 1099 } 1100 1101 if (init->sinit_max_instreams) 1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1103 1104 if (init->sinit_max_attempts) 1105 asoc->max_init_attempts = init->sinit_max_attempts; 1106 1107 if (init->sinit_max_init_timeo) 1108 asoc->max_init_timeo = 1109 msecs_to_jiffies(init->sinit_max_init_timeo); 1110 1111 return 0; 1112 free: 1113 sctp_association_free(asoc); 1114 return err; 1115 } 1116 1117 static int sctp_connect_add_peer(struct sctp_association *asoc, 1118 union sctp_addr *daddr, int addr_len) 1119 { 1120 struct sctp_endpoint *ep = asoc->ep; 1121 struct sctp_association *old; 1122 struct sctp_transport *t; 1123 int err; 1124 1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1126 if (err) 1127 return err; 1128 1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1130 if (old && old != asoc) 1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1132 : -EALREADY; 1133 1134 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1135 return -EADDRNOTAVAIL; 1136 1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1138 if (!t) 1139 return -ENOMEM; 1140 1141 return 0; 1142 } 1143 1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1145 * 1146 * Common routine for handling connect() and sctp_connectx(). 1147 * Connect will come in with just a single address. 1148 */ 1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1150 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1151 { 1152 struct sctp_sock *sp = sctp_sk(sk); 1153 struct sctp_endpoint *ep = sp->ep; 1154 struct sctp_transport *transport; 1155 struct sctp_association *asoc; 1156 void *addr_buf = kaddrs; 1157 union sctp_addr *daddr; 1158 struct sctp_af *af; 1159 int walk_size, err; 1160 long timeo; 1161 1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1164 return -EISCONN; 1165 1166 daddr = addr_buf; 1167 af = sctp_get_af_specific(daddr->sa.sa_family); 1168 if (!af || af->sockaddr_len > addrs_size) 1169 return -EINVAL; 1170 1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1172 if (err) 1173 return err; 1174 1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1176 if (asoc) 1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1178 : -EALREADY; 1179 1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1181 if (err) 1182 return err; 1183 asoc = transport->asoc; 1184 1185 addr_buf += af->sockaddr_len; 1186 walk_size = af->sockaddr_len; 1187 while (walk_size < addrs_size) { 1188 err = -EINVAL; 1189 if (walk_size + sizeof(sa_family_t) > addrs_size) 1190 goto out_free; 1191 1192 daddr = addr_buf; 1193 af = sctp_get_af_specific(daddr->sa.sa_family); 1194 if (!af || af->sockaddr_len + walk_size > addrs_size) 1195 goto out_free; 1196 1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1198 goto out_free; 1199 1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1201 if (err) 1202 goto out_free; 1203 1204 addr_buf += af->sockaddr_len; 1205 walk_size += af->sockaddr_len; 1206 } 1207 1208 /* In case the user of sctp_connectx() wants an association 1209 * id back, assign one now. 1210 */ 1211 if (assoc_id) { 1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1213 if (err < 0) 1214 goto out_free; 1215 } 1216 1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1218 if (err < 0) 1219 goto out_free; 1220 1221 /* Initialize sk's dport and daddr for getpeername() */ 1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1223 sp->pf->to_sk_daddr(daddr, sk); 1224 sk->sk_err = 0; 1225 1226 if (assoc_id) 1227 *assoc_id = asoc->assoc_id; 1228 1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1230 return sctp_wait_for_connect(asoc, &timeo); 1231 1232 out_free: 1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1234 __func__, asoc, kaddrs, err); 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1286 * it. 1287 * 1288 * sk The sk of the socket 1289 * addrs The pointer to the addresses 1290 * addrssize Size of the addrs buffer 1291 * 1292 * Returns >=0 if ok, <0 errno code on error. 1293 */ 1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1295 int addrs_size, sctp_assoc_t *assoc_id) 1296 { 1297 int err = 0, flags = 0; 1298 1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1300 __func__, sk, kaddrs, addrs_size); 1301 1302 /* make sure the 1st addr's sa_family is accessible later */ 1303 if (unlikely(addrs_size < sizeof(sa_family_t))) 1304 return -EINVAL; 1305 1306 /* Allow security module to validate connectx addresses. */ 1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1308 (struct sockaddr *)kaddrs, 1309 addrs_size); 1310 if (err) 1311 return err; 1312 1313 /* in-kernel sockets don't generally have a file allocated to them 1314 * if all they do is call sock_create_kern(). 1315 */ 1316 if (sk->sk_socket->file) 1317 flags = sk->sk_socket->file->f_flags; 1318 1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1320 } 1321 1322 /* 1323 * This is an older interface. It's kept for backward compatibility 1324 * to the option that doesn't provide association id. 1325 */ 1326 static int sctp_setsockopt_connectx_old(struct sock *sk, 1327 struct sockaddr *kaddrs, 1328 int addrs_size) 1329 { 1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1331 } 1332 1333 /* 1334 * New interface for the API. The since the API is done with a socket 1335 * option, to make it simple we feed back the association id is as a return 1336 * indication to the call. Error is always negative and association id is 1337 * always positive. 1338 */ 1339 static int sctp_setsockopt_connectx(struct sock *sk, 1340 struct sockaddr *kaddrs, 1341 int addrs_size) 1342 { 1343 sctp_assoc_t assoc_id = 0; 1344 int err = 0; 1345 1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1347 1348 if (err) 1349 return err; 1350 else 1351 return assoc_id; 1352 } 1353 1354 /* 1355 * New (hopefully final) interface for the API. 1356 * We use the sctp_getaddrs_old structure so that use-space library 1357 * can avoid any unnecessary allocations. The only different part 1358 * is that we store the actual length of the address buffer into the 1359 * addrs_num structure member. That way we can re-use the existing 1360 * code. 1361 */ 1362 #ifdef CONFIG_COMPAT 1363 struct compat_sctp_getaddrs_old { 1364 sctp_assoc_t assoc_id; 1365 s32 addr_num; 1366 compat_uptr_t addrs; /* struct sockaddr * */ 1367 }; 1368 #endif 1369 1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1371 char __user *optval, 1372 int __user *optlen) 1373 { 1374 struct sctp_getaddrs_old param; 1375 sctp_assoc_t assoc_id = 0; 1376 struct sockaddr *kaddrs; 1377 int err = 0; 1378 1379 #ifdef CONFIG_COMPAT 1380 if (in_compat_syscall()) { 1381 struct compat_sctp_getaddrs_old param32; 1382 1383 if (len < sizeof(param32)) 1384 return -EINVAL; 1385 if (copy_from_user(¶m32, optval, sizeof(param32))) 1386 return -EFAULT; 1387 1388 param.assoc_id = param32.assoc_id; 1389 param.addr_num = param32.addr_num; 1390 param.addrs = compat_ptr(param32.addrs); 1391 } else 1392 #endif 1393 { 1394 if (len < sizeof(param)) 1395 return -EINVAL; 1396 if (copy_from_user(¶m, optval, sizeof(param))) 1397 return -EFAULT; 1398 } 1399 1400 kaddrs = memdup_user(param.addrs, param.addr_num); 1401 if (IS_ERR(kaddrs)) 1402 return PTR_ERR(kaddrs); 1403 1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1405 kfree(kaddrs); 1406 if (err == 0 || err == -EINPROGRESS) { 1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1408 return -EFAULT; 1409 if (put_user(sizeof(assoc_id), optlen)) 1410 return -EFAULT; 1411 } 1412 1413 return err; 1414 } 1415 1416 /* API 3.1.4 close() - UDP Style Syntax 1417 * Applications use close() to perform graceful shutdown (as described in 1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1419 * by a UDP-style socket. 1420 * 1421 * The syntax is 1422 * 1423 * ret = close(int sd); 1424 * 1425 * sd - the socket descriptor of the associations to be closed. 1426 * 1427 * To gracefully shutdown a specific association represented by the 1428 * UDP-style socket, an application should use the sendmsg() call, 1429 * passing no user data, but including the appropriate flag in the 1430 * ancillary data (see Section xxxx). 1431 * 1432 * If sd in the close() call is a branched-off socket representing only 1433 * one association, the shutdown is performed on that association only. 1434 * 1435 * 4.1.6 close() - TCP Style Syntax 1436 * 1437 * Applications use close() to gracefully close down an association. 1438 * 1439 * The syntax is: 1440 * 1441 * int close(int sd); 1442 * 1443 * sd - the socket descriptor of the association to be closed. 1444 * 1445 * After an application calls close() on a socket descriptor, no further 1446 * socket operations will succeed on that descriptor. 1447 * 1448 * API 7.1.4 SO_LINGER 1449 * 1450 * An application using the TCP-style socket can use this option to 1451 * perform the SCTP ABORT primitive. The linger option structure is: 1452 * 1453 * struct linger { 1454 * int l_onoff; // option on/off 1455 * int l_linger; // linger time 1456 * }; 1457 * 1458 * To enable the option, set l_onoff to 1. If the l_linger value is set 1459 * to 0, calling close() is the same as the ABORT primitive. If the 1460 * value is set to a negative value, the setsockopt() call will return 1461 * an error. If the value is set to a positive value linger_time, the 1462 * close() can be blocked for at most linger_time ms. If the graceful 1463 * shutdown phase does not finish during this period, close() will 1464 * return but the graceful shutdown phase continues in the system. 1465 */ 1466 static void sctp_close(struct sock *sk, long timeout) 1467 { 1468 struct net *net = sock_net(sk); 1469 struct sctp_endpoint *ep; 1470 struct sctp_association *asoc; 1471 struct list_head *pos, *temp; 1472 unsigned int data_was_unread; 1473 1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1475 1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1477 sk->sk_shutdown = SHUTDOWN_MASK; 1478 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1479 1480 ep = sctp_sk(sk)->ep; 1481 1482 /* Clean up any skbs sitting on the receive queue. */ 1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1485 1486 /* Walk all associations on an endpoint. */ 1487 list_for_each_safe(pos, temp, &ep->asocs) { 1488 asoc = list_entry(pos, struct sctp_association, asocs); 1489 1490 if (sctp_style(sk, TCP)) { 1491 /* A closed association can still be in the list if 1492 * it belongs to a TCP-style listening socket that is 1493 * not yet accepted. If so, free it. If not, send an 1494 * ABORT or SHUTDOWN based on the linger options. 1495 */ 1496 if (sctp_state(asoc, CLOSED)) { 1497 sctp_association_free(asoc); 1498 continue; 1499 } 1500 } 1501 1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1503 !skb_queue_empty(&asoc->ulpq.reasm) || 1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1506 struct sctp_chunk *chunk; 1507 1508 chunk = sctp_make_abort_user(asoc, NULL, 0); 1509 sctp_primitive_ABORT(net, asoc, chunk); 1510 } else 1511 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1512 } 1513 1514 /* On a TCP-style socket, block for at most linger_time if set. */ 1515 if (sctp_style(sk, TCP) && timeout) 1516 sctp_wait_for_close(sk, timeout); 1517 1518 /* This will run the backlog queue. */ 1519 release_sock(sk); 1520 1521 /* Supposedly, no process has access to the socket, but 1522 * the net layers still may. 1523 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1524 * held and that should be grabbed before socket lock. 1525 */ 1526 spin_lock_bh(&net->sctp.addr_wq_lock); 1527 bh_lock_sock_nested(sk); 1528 1529 /* Hold the sock, since sk_common_release() will put sock_put() 1530 * and we have just a little more cleanup. 1531 */ 1532 sock_hold(sk); 1533 sk_common_release(sk); 1534 1535 bh_unlock_sock(sk); 1536 spin_unlock_bh(&net->sctp.addr_wq_lock); 1537 1538 sock_put(sk); 1539 1540 SCTP_DBG_OBJCNT_DEC(sock); 1541 } 1542 1543 /* Handle EPIPE error. */ 1544 static int sctp_error(struct sock *sk, int flags, int err) 1545 { 1546 if (err == -EPIPE) 1547 err = sock_error(sk) ? : -EPIPE; 1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1549 send_sig(SIGPIPE, current, 0); 1550 return err; 1551 } 1552 1553 /* API 3.1.3 sendmsg() - UDP Style Syntax 1554 * 1555 * An application uses sendmsg() and recvmsg() calls to transmit data to 1556 * and receive data from its peer. 1557 * 1558 * ssize_t sendmsg(int socket, const struct msghdr *message, 1559 * int flags); 1560 * 1561 * socket - the socket descriptor of the endpoint. 1562 * message - pointer to the msghdr structure which contains a single 1563 * user message and possibly some ancillary data. 1564 * 1565 * See Section 5 for complete description of the data 1566 * structures. 1567 * 1568 * flags - flags sent or received with the user message, see Section 1569 * 5 for complete description of the flags. 1570 * 1571 * Note: This function could use a rewrite especially when explicit 1572 * connect support comes in. 1573 */ 1574 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1575 1576 static int sctp_msghdr_parse(const struct msghdr *msg, 1577 struct sctp_cmsgs *cmsgs); 1578 1579 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1580 struct sctp_sndrcvinfo *srinfo, 1581 const struct msghdr *msg, size_t msg_len) 1582 { 1583 __u16 sflags; 1584 int err; 1585 1586 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1587 return -EPIPE; 1588 1589 if (msg_len > sk->sk_sndbuf) 1590 return -EMSGSIZE; 1591 1592 memset(cmsgs, 0, sizeof(*cmsgs)); 1593 err = sctp_msghdr_parse(msg, cmsgs); 1594 if (err) { 1595 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1596 return err; 1597 } 1598 1599 memset(srinfo, 0, sizeof(*srinfo)); 1600 if (cmsgs->srinfo) { 1601 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1602 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1603 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1604 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1605 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1606 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1607 } 1608 1609 if (cmsgs->sinfo) { 1610 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1611 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1612 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1613 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1614 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1615 } 1616 1617 if (cmsgs->prinfo) { 1618 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1619 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1620 cmsgs->prinfo->pr_policy); 1621 } 1622 1623 sflags = srinfo->sinfo_flags; 1624 if (!sflags && msg_len) 1625 return 0; 1626 1627 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1628 return -EINVAL; 1629 1630 if (((sflags & SCTP_EOF) && msg_len > 0) || 1631 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1632 return -EINVAL; 1633 1634 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1635 return -EINVAL; 1636 1637 return 0; 1638 } 1639 1640 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1641 struct sctp_cmsgs *cmsgs, 1642 union sctp_addr *daddr, 1643 struct sctp_transport **tp) 1644 { 1645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1646 struct sctp_association *asoc; 1647 struct cmsghdr *cmsg; 1648 __be32 flowinfo = 0; 1649 struct sctp_af *af; 1650 int err; 1651 1652 *tp = NULL; 1653 1654 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1655 return -EINVAL; 1656 1657 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1658 sctp_sstate(sk, CLOSING))) 1659 return -EADDRNOTAVAIL; 1660 1661 /* Label connection socket for first association 1-to-many 1662 * style for client sequence socket()->sendmsg(). This 1663 * needs to be done before sctp_assoc_add_peer() as that will 1664 * set up the initial packet that needs to account for any 1665 * security ip options (CIPSO/CALIPSO) added to the packet. 1666 */ 1667 af = sctp_get_af_specific(daddr->sa.sa_family); 1668 if (!af) 1669 return -EINVAL; 1670 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1671 (struct sockaddr *)daddr, 1672 af->sockaddr_len); 1673 if (err < 0) 1674 return err; 1675 1676 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1677 if (err) 1678 return err; 1679 asoc = (*tp)->asoc; 1680 1681 if (!cmsgs->addrs_msg) 1682 return 0; 1683 1684 if (daddr->sa.sa_family == AF_INET6) 1685 flowinfo = daddr->v6.sin6_flowinfo; 1686 1687 /* sendv addr list parse */ 1688 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1689 union sctp_addr _daddr; 1690 int dlen; 1691 1692 if (cmsg->cmsg_level != IPPROTO_SCTP || 1693 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1694 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1695 continue; 1696 1697 daddr = &_daddr; 1698 memset(daddr, 0, sizeof(*daddr)); 1699 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1700 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1701 if (dlen < sizeof(struct in_addr)) { 1702 err = -EINVAL; 1703 goto free; 1704 } 1705 1706 dlen = sizeof(struct in_addr); 1707 daddr->v4.sin_family = AF_INET; 1708 daddr->v4.sin_port = htons(asoc->peer.port); 1709 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1710 } else { 1711 if (dlen < sizeof(struct in6_addr)) { 1712 err = -EINVAL; 1713 goto free; 1714 } 1715 1716 dlen = sizeof(struct in6_addr); 1717 daddr->v6.sin6_flowinfo = flowinfo; 1718 daddr->v6.sin6_family = AF_INET6; 1719 daddr->v6.sin6_port = htons(asoc->peer.port); 1720 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1721 } 1722 1723 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1724 if (err) 1725 goto free; 1726 } 1727 1728 return 0; 1729 1730 free: 1731 sctp_association_free(asoc); 1732 return err; 1733 } 1734 1735 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1736 __u16 sflags, struct msghdr *msg, 1737 size_t msg_len) 1738 { 1739 struct sock *sk = asoc->base.sk; 1740 struct net *net = sock_net(sk); 1741 1742 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1743 return -EPIPE; 1744 1745 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1746 !sctp_state(asoc, ESTABLISHED)) 1747 return 0; 1748 1749 if (sflags & SCTP_EOF) { 1750 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1751 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1752 1753 return 0; 1754 } 1755 1756 if (sflags & SCTP_ABORT) { 1757 struct sctp_chunk *chunk; 1758 1759 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1760 if (!chunk) 1761 return -ENOMEM; 1762 1763 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1764 sctp_primitive_ABORT(net, asoc, chunk); 1765 iov_iter_revert(&msg->msg_iter, msg_len); 1766 1767 return 0; 1768 } 1769 1770 return 1; 1771 } 1772 1773 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1774 struct msghdr *msg, size_t msg_len, 1775 struct sctp_transport *transport, 1776 struct sctp_sndrcvinfo *sinfo) 1777 { 1778 struct sock *sk = asoc->base.sk; 1779 struct sctp_sock *sp = sctp_sk(sk); 1780 struct net *net = sock_net(sk); 1781 struct sctp_datamsg *datamsg; 1782 bool wait_connect = false; 1783 struct sctp_chunk *chunk; 1784 long timeo; 1785 int err; 1786 1787 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1788 err = -EINVAL; 1789 goto err; 1790 } 1791 1792 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1793 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1794 if (err) 1795 goto err; 1796 } 1797 1798 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1799 err = -EMSGSIZE; 1800 goto err; 1801 } 1802 1803 if (asoc->pmtu_pending) { 1804 if (sp->param_flags & SPP_PMTUD_ENABLE) 1805 sctp_assoc_sync_pmtu(asoc); 1806 asoc->pmtu_pending = 0; 1807 } 1808 1809 if (sctp_wspace(asoc) < (int)msg_len) 1810 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1811 1812 if (sk_under_memory_pressure(sk)) 1813 sk_mem_reclaim(sk); 1814 1815 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1816 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1817 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1818 if (err) 1819 goto err; 1820 } 1821 1822 if (sctp_state(asoc, CLOSED)) { 1823 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1824 if (err) 1825 goto err; 1826 1827 if (asoc->ep->intl_enable) { 1828 timeo = sock_sndtimeo(sk, 0); 1829 err = sctp_wait_for_connect(asoc, &timeo); 1830 if (err) { 1831 err = -ESRCH; 1832 goto err; 1833 } 1834 } else { 1835 wait_connect = true; 1836 } 1837 1838 pr_debug("%s: we associated primitively\n", __func__); 1839 } 1840 1841 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1842 if (IS_ERR(datamsg)) { 1843 err = PTR_ERR(datamsg); 1844 goto err; 1845 } 1846 1847 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1848 1849 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1850 sctp_chunk_hold(chunk); 1851 sctp_set_owner_w(chunk); 1852 chunk->transport = transport; 1853 } 1854 1855 err = sctp_primitive_SEND(net, asoc, datamsg); 1856 if (err) { 1857 sctp_datamsg_free(datamsg); 1858 goto err; 1859 } 1860 1861 pr_debug("%s: we sent primitively\n", __func__); 1862 1863 sctp_datamsg_put(datamsg); 1864 1865 if (unlikely(wait_connect)) { 1866 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1867 sctp_wait_for_connect(asoc, &timeo); 1868 } 1869 1870 err = msg_len; 1871 1872 err: 1873 return err; 1874 } 1875 1876 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1877 const struct msghdr *msg, 1878 struct sctp_cmsgs *cmsgs) 1879 { 1880 union sctp_addr *daddr = NULL; 1881 int err; 1882 1883 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1884 int len = msg->msg_namelen; 1885 1886 if (len > sizeof(*daddr)) 1887 len = sizeof(*daddr); 1888 1889 daddr = (union sctp_addr *)msg->msg_name; 1890 1891 err = sctp_verify_addr(sk, daddr, len); 1892 if (err) 1893 return ERR_PTR(err); 1894 } 1895 1896 return daddr; 1897 } 1898 1899 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1900 struct sctp_sndrcvinfo *sinfo, 1901 struct sctp_cmsgs *cmsgs) 1902 { 1903 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1904 sinfo->sinfo_stream = asoc->default_stream; 1905 sinfo->sinfo_ppid = asoc->default_ppid; 1906 sinfo->sinfo_context = asoc->default_context; 1907 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1908 1909 if (!cmsgs->prinfo) 1910 sinfo->sinfo_flags = asoc->default_flags; 1911 } 1912 1913 if (!cmsgs->srinfo && !cmsgs->prinfo) 1914 sinfo->sinfo_timetolive = asoc->default_timetolive; 1915 1916 if (cmsgs->authinfo) { 1917 /* Reuse sinfo_tsn to indicate that authinfo was set and 1918 * sinfo_ssn to save the keyid on tx path. 1919 */ 1920 sinfo->sinfo_tsn = 1; 1921 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1922 } 1923 } 1924 1925 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1926 { 1927 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1928 struct sctp_transport *transport = NULL; 1929 struct sctp_sndrcvinfo _sinfo, *sinfo; 1930 struct sctp_association *asoc, *tmp; 1931 struct sctp_cmsgs cmsgs; 1932 union sctp_addr *daddr; 1933 bool new = false; 1934 __u16 sflags; 1935 int err; 1936 1937 /* Parse and get snd_info */ 1938 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1939 if (err) 1940 goto out; 1941 1942 sinfo = &_sinfo; 1943 sflags = sinfo->sinfo_flags; 1944 1945 /* Get daddr from msg */ 1946 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1947 if (IS_ERR(daddr)) { 1948 err = PTR_ERR(daddr); 1949 goto out; 1950 } 1951 1952 lock_sock(sk); 1953 1954 /* SCTP_SENDALL process */ 1955 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1956 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1957 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1958 msg_len); 1959 if (err == 0) 1960 continue; 1961 if (err < 0) 1962 goto out_unlock; 1963 1964 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1965 1966 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1967 NULL, sinfo); 1968 if (err < 0) 1969 goto out_unlock; 1970 1971 iov_iter_revert(&msg->msg_iter, err); 1972 } 1973 1974 goto out_unlock; 1975 } 1976 1977 /* Get and check or create asoc */ 1978 if (daddr) { 1979 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1980 if (asoc) { 1981 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1982 msg_len); 1983 if (err <= 0) 1984 goto out_unlock; 1985 } else { 1986 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1987 &transport); 1988 if (err) 1989 goto out_unlock; 1990 1991 asoc = transport->asoc; 1992 new = true; 1993 } 1994 1995 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 1996 transport = NULL; 1997 } else { 1998 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 1999 if (!asoc) { 2000 err = -EPIPE; 2001 goto out_unlock; 2002 } 2003 2004 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2005 if (err <= 0) 2006 goto out_unlock; 2007 } 2008 2009 /* Update snd_info with the asoc */ 2010 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2011 2012 /* Send msg to the asoc */ 2013 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2014 if (err < 0 && err != -ESRCH && new) 2015 sctp_association_free(asoc); 2016 2017 out_unlock: 2018 release_sock(sk); 2019 out: 2020 return sctp_error(sk, msg->msg_flags, err); 2021 } 2022 2023 /* This is an extended version of skb_pull() that removes the data from the 2024 * start of a skb even when data is spread across the list of skb's in the 2025 * frag_list. len specifies the total amount of data that needs to be removed. 2026 * when 'len' bytes could be removed from the skb, it returns 0. 2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2028 * could not be removed. 2029 */ 2030 static int sctp_skb_pull(struct sk_buff *skb, int len) 2031 { 2032 struct sk_buff *list; 2033 int skb_len = skb_headlen(skb); 2034 int rlen; 2035 2036 if (len <= skb_len) { 2037 __skb_pull(skb, len); 2038 return 0; 2039 } 2040 len -= skb_len; 2041 __skb_pull(skb, skb_len); 2042 2043 skb_walk_frags(skb, list) { 2044 rlen = sctp_skb_pull(list, len); 2045 skb->len -= (len-rlen); 2046 skb->data_len -= (len-rlen); 2047 2048 if (!rlen) 2049 return 0; 2050 2051 len = rlen; 2052 } 2053 2054 return len; 2055 } 2056 2057 /* API 3.1.3 recvmsg() - UDP Style Syntax 2058 * 2059 * ssize_t recvmsg(int socket, struct msghdr *message, 2060 * int flags); 2061 * 2062 * socket - the socket descriptor of the endpoint. 2063 * message - pointer to the msghdr structure which contains a single 2064 * user message and possibly some ancillary data. 2065 * 2066 * See Section 5 for complete description of the data 2067 * structures. 2068 * 2069 * flags - flags sent or received with the user message, see Section 2070 * 5 for complete description of the flags. 2071 */ 2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2073 int noblock, int flags, int *addr_len) 2074 { 2075 struct sctp_ulpevent *event = NULL; 2076 struct sctp_sock *sp = sctp_sk(sk); 2077 struct sk_buff *skb, *head_skb; 2078 int copied; 2079 int err = 0; 2080 int skb_len; 2081 2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2084 addr_len); 2085 2086 lock_sock(sk); 2087 2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2090 err = -ENOTCONN; 2091 goto out; 2092 } 2093 2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2095 if (!skb) 2096 goto out; 2097 2098 /* Get the total length of the skb including any skb's in the 2099 * frag_list. 2100 */ 2101 skb_len = skb->len; 2102 2103 copied = skb_len; 2104 if (copied > len) 2105 copied = len; 2106 2107 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2108 2109 event = sctp_skb2event(skb); 2110 2111 if (err) 2112 goto out_free; 2113 2114 if (event->chunk && event->chunk->head_skb) 2115 head_skb = event->chunk->head_skb; 2116 else 2117 head_skb = skb; 2118 sock_recv_ts_and_drops(msg, sk, head_skb); 2119 if (sctp_ulpevent_is_notification(event)) { 2120 msg->msg_flags |= MSG_NOTIFICATION; 2121 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2122 } else { 2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2124 } 2125 2126 /* Check if we allow SCTP_NXTINFO. */ 2127 if (sp->recvnxtinfo) 2128 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2129 /* Check if we allow SCTP_RCVINFO. */ 2130 if (sp->recvrcvinfo) 2131 sctp_ulpevent_read_rcvinfo(event, msg); 2132 /* Check if we allow SCTP_SNDRCVINFO. */ 2133 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2134 sctp_ulpevent_read_sndrcvinfo(event, msg); 2135 2136 err = copied; 2137 2138 /* If skb's length exceeds the user's buffer, update the skb and 2139 * push it back to the receive_queue so that the next call to 2140 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2141 */ 2142 if (skb_len > copied) { 2143 msg->msg_flags &= ~MSG_EOR; 2144 if (flags & MSG_PEEK) 2145 goto out_free; 2146 sctp_skb_pull(skb, copied); 2147 skb_queue_head(&sk->sk_receive_queue, skb); 2148 2149 /* When only partial message is copied to the user, increase 2150 * rwnd by that amount. If all the data in the skb is read, 2151 * rwnd is updated when the event is freed. 2152 */ 2153 if (!sctp_ulpevent_is_notification(event)) 2154 sctp_assoc_rwnd_increase(event->asoc, copied); 2155 goto out; 2156 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2157 (event->msg_flags & MSG_EOR)) 2158 msg->msg_flags |= MSG_EOR; 2159 else 2160 msg->msg_flags &= ~MSG_EOR; 2161 2162 out_free: 2163 if (flags & MSG_PEEK) { 2164 /* Release the skb reference acquired after peeking the skb in 2165 * sctp_skb_recv_datagram(). 2166 */ 2167 kfree_skb(skb); 2168 } else { 2169 /* Free the event which includes releasing the reference to 2170 * the owner of the skb, freeing the skb and updating the 2171 * rwnd. 2172 */ 2173 sctp_ulpevent_free(event); 2174 } 2175 out: 2176 release_sock(sk); 2177 return err; 2178 } 2179 2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2181 * 2182 * This option is a on/off flag. If enabled no SCTP message 2183 * fragmentation will be performed. Instead if a message being sent 2184 * exceeds the current PMTU size, the message will NOT be sent and 2185 * instead a error will be indicated to the user. 2186 */ 2187 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2188 unsigned int optlen) 2189 { 2190 if (optlen < sizeof(int)) 2191 return -EINVAL; 2192 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2193 return 0; 2194 } 2195 2196 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2197 unsigned int optlen) 2198 { 2199 struct sctp_sock *sp = sctp_sk(sk); 2200 struct sctp_association *asoc; 2201 int i; 2202 2203 if (optlen > sizeof(struct sctp_event_subscribe)) 2204 return -EINVAL; 2205 2206 for (i = 0; i < optlen; i++) 2207 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2208 sn_type[i]); 2209 2210 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2211 asoc->subscribe = sctp_sk(sk)->subscribe; 2212 2213 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2214 * if there is no data to be sent or retransmit, the stack will 2215 * immediately send up this notification. 2216 */ 2217 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2218 struct sctp_ulpevent *event; 2219 2220 asoc = sctp_id2assoc(sk, 0); 2221 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2222 event = sctp_ulpevent_make_sender_dry_event(asoc, 2223 GFP_USER | __GFP_NOWARN); 2224 if (!event) 2225 return -ENOMEM; 2226 2227 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2228 } 2229 } 2230 2231 return 0; 2232 } 2233 2234 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2235 * 2236 * This socket option is applicable to the UDP-style socket only. When 2237 * set it will cause associations that are idle for more than the 2238 * specified number of seconds to automatically close. An association 2239 * being idle is defined an association that has NOT sent or received 2240 * user data. The special value of '0' indicates that no automatic 2241 * close of any associations should be performed. The option expects an 2242 * integer defining the number of seconds of idle time before an 2243 * association is closed. 2244 */ 2245 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2246 unsigned int optlen) 2247 { 2248 struct sctp_sock *sp = sctp_sk(sk); 2249 struct net *net = sock_net(sk); 2250 2251 /* Applicable to UDP-style socket only */ 2252 if (sctp_style(sk, TCP)) 2253 return -EOPNOTSUPP; 2254 if (optlen != sizeof(int)) 2255 return -EINVAL; 2256 2257 sp->autoclose = *optval; 2258 if (sp->autoclose > net->sctp.max_autoclose) 2259 sp->autoclose = net->sctp.max_autoclose; 2260 2261 return 0; 2262 } 2263 2264 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2265 * 2266 * Applications can enable or disable heartbeats for any peer address of 2267 * an association, modify an address's heartbeat interval, force a 2268 * heartbeat to be sent immediately, and adjust the address's maximum 2269 * number of retransmissions sent before an address is considered 2270 * unreachable. The following structure is used to access and modify an 2271 * address's parameters: 2272 * 2273 * struct sctp_paddrparams { 2274 * sctp_assoc_t spp_assoc_id; 2275 * struct sockaddr_storage spp_address; 2276 * uint32_t spp_hbinterval; 2277 * uint16_t spp_pathmaxrxt; 2278 * uint32_t spp_pathmtu; 2279 * uint32_t spp_sackdelay; 2280 * uint32_t spp_flags; 2281 * uint32_t spp_ipv6_flowlabel; 2282 * uint8_t spp_dscp; 2283 * }; 2284 * 2285 * spp_assoc_id - (one-to-many style socket) This is filled in the 2286 * application, and identifies the association for 2287 * this query. 2288 * spp_address - This specifies which address is of interest. 2289 * spp_hbinterval - This contains the value of the heartbeat interval, 2290 * in milliseconds. If a value of zero 2291 * is present in this field then no changes are to 2292 * be made to this parameter. 2293 * spp_pathmaxrxt - This contains the maximum number of 2294 * retransmissions before this address shall be 2295 * considered unreachable. If a value of zero 2296 * is present in this field then no changes are to 2297 * be made to this parameter. 2298 * spp_pathmtu - When Path MTU discovery is disabled the value 2299 * specified here will be the "fixed" path mtu. 2300 * Note that if the spp_address field is empty 2301 * then all associations on this address will 2302 * have this fixed path mtu set upon them. 2303 * 2304 * spp_sackdelay - When delayed sack is enabled, this value specifies 2305 * the number of milliseconds that sacks will be delayed 2306 * for. This value will apply to all addresses of an 2307 * association if the spp_address field is empty. Note 2308 * also, that if delayed sack is enabled and this 2309 * value is set to 0, no change is made to the last 2310 * recorded delayed sack timer value. 2311 * 2312 * spp_flags - These flags are used to control various features 2313 * on an association. The flag field may contain 2314 * zero or more of the following options. 2315 * 2316 * SPP_HB_ENABLE - Enable heartbeats on the 2317 * specified address. Note that if the address 2318 * field is empty all addresses for the association 2319 * have heartbeats enabled upon them. 2320 * 2321 * SPP_HB_DISABLE - Disable heartbeats on the 2322 * speicifed address. Note that if the address 2323 * field is empty all addresses for the association 2324 * will have their heartbeats disabled. Note also 2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2326 * mutually exclusive, only one of these two should 2327 * be specified. Enabling both fields will have 2328 * undetermined results. 2329 * 2330 * SPP_HB_DEMAND - Request a user initiated heartbeat 2331 * to be made immediately. 2332 * 2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2334 * heartbeat delayis to be set to the value of 0 2335 * milliseconds. 2336 * 2337 * SPP_PMTUD_ENABLE - This field will enable PMTU 2338 * discovery upon the specified address. Note that 2339 * if the address feild is empty then all addresses 2340 * on the association are effected. 2341 * 2342 * SPP_PMTUD_DISABLE - This field will disable PMTU 2343 * discovery upon the specified address. Note that 2344 * if the address feild is empty then all addresses 2345 * on the association are effected. Not also that 2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2347 * exclusive. Enabling both will have undetermined 2348 * results. 2349 * 2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2351 * on delayed sack. The time specified in spp_sackdelay 2352 * is used to specify the sack delay for this address. Note 2353 * that if spp_address is empty then all addresses will 2354 * enable delayed sack and take on the sack delay 2355 * value specified in spp_sackdelay. 2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2357 * off delayed sack. If the spp_address field is blank then 2358 * delayed sack is disabled for the entire association. Note 2359 * also that this field is mutually exclusive to 2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2361 * results. 2362 * 2363 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2364 * setting of the IPV6 flow label value. The value is 2365 * contained in the spp_ipv6_flowlabel field. 2366 * Upon retrieval, this flag will be set to indicate that 2367 * the spp_ipv6_flowlabel field has a valid value returned. 2368 * If a specific destination address is set (in the 2369 * spp_address field), then the value returned is that of 2370 * the address. If just an association is specified (and 2371 * no address), then the association's default flow label 2372 * is returned. If neither an association nor a destination 2373 * is specified, then the socket's default flow label is 2374 * returned. For non-IPv6 sockets, this flag will be left 2375 * cleared. 2376 * 2377 * SPP_DSCP: Setting this flag enables the setting of the 2378 * Differentiated Services Code Point (DSCP) value 2379 * associated with either the association or a specific 2380 * address. The value is obtained in the spp_dscp field. 2381 * Upon retrieval, this flag will be set to indicate that 2382 * the spp_dscp field has a valid value returned. If a 2383 * specific destination address is set when called (in the 2384 * spp_address field), then that specific destination 2385 * address's DSCP value is returned. If just an association 2386 * is specified, then the association's default DSCP is 2387 * returned. If neither an association nor a destination is 2388 * specified, then the socket's default DSCP is returned. 2389 * 2390 * spp_ipv6_flowlabel 2391 * - This field is used in conjunction with the 2392 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2393 * The 20 least significant bits are used for the flow 2394 * label. This setting has precedence over any IPv6-layer 2395 * setting. 2396 * 2397 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2398 * and contains the DSCP. The 6 most significant bits are 2399 * used for the DSCP. This setting has precedence over any 2400 * IPv4- or IPv6- layer setting. 2401 */ 2402 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2403 struct sctp_transport *trans, 2404 struct sctp_association *asoc, 2405 struct sctp_sock *sp, 2406 int hb_change, 2407 int pmtud_change, 2408 int sackdelay_change) 2409 { 2410 int error; 2411 2412 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2413 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2414 trans->asoc, trans); 2415 if (error) 2416 return error; 2417 } 2418 2419 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2420 * this field is ignored. Note also that a value of zero indicates 2421 * the current setting should be left unchanged. 2422 */ 2423 if (params->spp_flags & SPP_HB_ENABLE) { 2424 2425 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2426 * set. This lets us use 0 value when this flag 2427 * is set. 2428 */ 2429 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2430 params->spp_hbinterval = 0; 2431 2432 if (params->spp_hbinterval || 2433 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2434 if (trans) { 2435 trans->hbinterval = 2436 msecs_to_jiffies(params->spp_hbinterval); 2437 } else if (asoc) { 2438 asoc->hbinterval = 2439 msecs_to_jiffies(params->spp_hbinterval); 2440 } else { 2441 sp->hbinterval = params->spp_hbinterval; 2442 } 2443 } 2444 } 2445 2446 if (hb_change) { 2447 if (trans) { 2448 trans->param_flags = 2449 (trans->param_flags & ~SPP_HB) | hb_change; 2450 } else if (asoc) { 2451 asoc->param_flags = 2452 (asoc->param_flags & ~SPP_HB) | hb_change; 2453 } else { 2454 sp->param_flags = 2455 (sp->param_flags & ~SPP_HB) | hb_change; 2456 } 2457 } 2458 2459 /* When Path MTU discovery is disabled the value specified here will 2460 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2461 * include the flag SPP_PMTUD_DISABLE for this field to have any 2462 * effect). 2463 */ 2464 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2465 if (trans) { 2466 trans->pathmtu = params->spp_pathmtu; 2467 sctp_assoc_sync_pmtu(asoc); 2468 } else if (asoc) { 2469 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2470 } else { 2471 sp->pathmtu = params->spp_pathmtu; 2472 } 2473 } 2474 2475 if (pmtud_change) { 2476 if (trans) { 2477 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2478 (params->spp_flags & SPP_PMTUD_ENABLE); 2479 trans->param_flags = 2480 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2481 if (update) { 2482 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2483 sctp_assoc_sync_pmtu(asoc); 2484 } 2485 } else if (asoc) { 2486 asoc->param_flags = 2487 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2488 } else { 2489 sp->param_flags = 2490 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2491 } 2492 } 2493 2494 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2495 * value of this field is ignored. Note also that a value of zero 2496 * indicates the current setting should be left unchanged. 2497 */ 2498 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2499 if (trans) { 2500 trans->sackdelay = 2501 msecs_to_jiffies(params->spp_sackdelay); 2502 } else if (asoc) { 2503 asoc->sackdelay = 2504 msecs_to_jiffies(params->spp_sackdelay); 2505 } else { 2506 sp->sackdelay = params->spp_sackdelay; 2507 } 2508 } 2509 2510 if (sackdelay_change) { 2511 if (trans) { 2512 trans->param_flags = 2513 (trans->param_flags & ~SPP_SACKDELAY) | 2514 sackdelay_change; 2515 } else if (asoc) { 2516 asoc->param_flags = 2517 (asoc->param_flags & ~SPP_SACKDELAY) | 2518 sackdelay_change; 2519 } else { 2520 sp->param_flags = 2521 (sp->param_flags & ~SPP_SACKDELAY) | 2522 sackdelay_change; 2523 } 2524 } 2525 2526 /* Note that a value of zero indicates the current setting should be 2527 left unchanged. 2528 */ 2529 if (params->spp_pathmaxrxt) { 2530 if (trans) { 2531 trans->pathmaxrxt = params->spp_pathmaxrxt; 2532 } else if (asoc) { 2533 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2534 } else { 2535 sp->pathmaxrxt = params->spp_pathmaxrxt; 2536 } 2537 } 2538 2539 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2540 if (trans) { 2541 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2542 trans->flowlabel = params->spp_ipv6_flowlabel & 2543 SCTP_FLOWLABEL_VAL_MASK; 2544 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2545 } 2546 } else if (asoc) { 2547 struct sctp_transport *t; 2548 2549 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2550 transports) { 2551 if (t->ipaddr.sa.sa_family != AF_INET6) 2552 continue; 2553 t->flowlabel = params->spp_ipv6_flowlabel & 2554 SCTP_FLOWLABEL_VAL_MASK; 2555 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2556 } 2557 asoc->flowlabel = params->spp_ipv6_flowlabel & 2558 SCTP_FLOWLABEL_VAL_MASK; 2559 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2560 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2561 sp->flowlabel = params->spp_ipv6_flowlabel & 2562 SCTP_FLOWLABEL_VAL_MASK; 2563 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2564 } 2565 } 2566 2567 if (params->spp_flags & SPP_DSCP) { 2568 if (trans) { 2569 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2570 trans->dscp |= SCTP_DSCP_SET_MASK; 2571 } else if (asoc) { 2572 struct sctp_transport *t; 2573 2574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2575 transports) { 2576 t->dscp = params->spp_dscp & 2577 SCTP_DSCP_VAL_MASK; 2578 t->dscp |= SCTP_DSCP_SET_MASK; 2579 } 2580 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2581 asoc->dscp |= SCTP_DSCP_SET_MASK; 2582 } else { 2583 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2584 sp->dscp |= SCTP_DSCP_SET_MASK; 2585 } 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2592 struct sctp_paddrparams *params, 2593 unsigned int optlen) 2594 { 2595 struct sctp_transport *trans = NULL; 2596 struct sctp_association *asoc = NULL; 2597 struct sctp_sock *sp = sctp_sk(sk); 2598 int error; 2599 int hb_change, pmtud_change, sackdelay_change; 2600 2601 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2602 spp_ipv6_flowlabel), 4)) { 2603 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2604 return -EINVAL; 2605 } else if (optlen != sizeof(*params)) { 2606 return -EINVAL; 2607 } 2608 2609 /* Validate flags and value parameters. */ 2610 hb_change = params->spp_flags & SPP_HB; 2611 pmtud_change = params->spp_flags & SPP_PMTUD; 2612 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2613 2614 if (hb_change == SPP_HB || 2615 pmtud_change == SPP_PMTUD || 2616 sackdelay_change == SPP_SACKDELAY || 2617 params->spp_sackdelay > 500 || 2618 (params->spp_pathmtu && 2619 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2620 return -EINVAL; 2621 2622 /* If an address other than INADDR_ANY is specified, and 2623 * no transport is found, then the request is invalid. 2624 */ 2625 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2626 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2627 params->spp_assoc_id); 2628 if (!trans) 2629 return -EINVAL; 2630 } 2631 2632 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2633 * socket is a one to many style socket, and an association 2634 * was not found, then the id was invalid. 2635 */ 2636 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2637 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2638 sctp_style(sk, UDP)) 2639 return -EINVAL; 2640 2641 /* Heartbeat demand can only be sent on a transport or 2642 * association, but not a socket. 2643 */ 2644 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2645 return -EINVAL; 2646 2647 /* Process parameters. */ 2648 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2649 hb_change, pmtud_change, 2650 sackdelay_change); 2651 2652 if (error) 2653 return error; 2654 2655 /* If changes are for association, also apply parameters to each 2656 * transport. 2657 */ 2658 if (!trans && asoc) { 2659 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2660 transports) { 2661 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2662 hb_change, pmtud_change, 2663 sackdelay_change); 2664 } 2665 } 2666 2667 return 0; 2668 } 2669 2670 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2671 { 2672 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2673 } 2674 2675 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2676 { 2677 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2678 } 2679 2680 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2681 struct sctp_association *asoc) 2682 { 2683 struct sctp_transport *trans; 2684 2685 if (params->sack_delay) { 2686 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2687 asoc->param_flags = 2688 sctp_spp_sackdelay_enable(asoc->param_flags); 2689 } 2690 if (params->sack_freq == 1) { 2691 asoc->param_flags = 2692 sctp_spp_sackdelay_disable(asoc->param_flags); 2693 } else if (params->sack_freq > 1) { 2694 asoc->sackfreq = params->sack_freq; 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_enable(asoc->param_flags); 2697 } 2698 2699 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2700 transports) { 2701 if (params->sack_delay) { 2702 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2703 trans->param_flags = 2704 sctp_spp_sackdelay_enable(trans->param_flags); 2705 } 2706 if (params->sack_freq == 1) { 2707 trans->param_flags = 2708 sctp_spp_sackdelay_disable(trans->param_flags); 2709 } else if (params->sack_freq > 1) { 2710 trans->sackfreq = params->sack_freq; 2711 trans->param_flags = 2712 sctp_spp_sackdelay_enable(trans->param_flags); 2713 } 2714 } 2715 } 2716 2717 /* 2718 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2719 * 2720 * This option will effect the way delayed acks are performed. This 2721 * option allows you to get or set the delayed ack time, in 2722 * milliseconds. It also allows changing the delayed ack frequency. 2723 * Changing the frequency to 1 disables the delayed sack algorithm. If 2724 * the assoc_id is 0, then this sets or gets the endpoints default 2725 * values. If the assoc_id field is non-zero, then the set or get 2726 * effects the specified association for the one to many model (the 2727 * assoc_id field is ignored by the one to one model). Note that if 2728 * sack_delay or sack_freq are 0 when setting this option, then the 2729 * current values will remain unchanged. 2730 * 2731 * struct sctp_sack_info { 2732 * sctp_assoc_t sack_assoc_id; 2733 * uint32_t sack_delay; 2734 * uint32_t sack_freq; 2735 * }; 2736 * 2737 * sack_assoc_id - This parameter, indicates which association the user 2738 * is performing an action upon. Note that if this field's value is 2739 * zero then the endpoints default value is changed (effecting future 2740 * associations only). 2741 * 2742 * sack_delay - This parameter contains the number of milliseconds that 2743 * the user is requesting the delayed ACK timer be set to. Note that 2744 * this value is defined in the standard to be between 200 and 500 2745 * milliseconds. 2746 * 2747 * sack_freq - This parameter contains the number of packets that must 2748 * be received before a sack is sent without waiting for the delay 2749 * timer to expire. The default value for this is 2, setting this 2750 * value to 1 will disable the delayed sack algorithm. 2751 */ 2752 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2753 struct sctp_sack_info *params) 2754 { 2755 struct sctp_sock *sp = sctp_sk(sk); 2756 struct sctp_association *asoc; 2757 2758 /* Validate value parameter. */ 2759 if (params->sack_delay > 500) 2760 return -EINVAL; 2761 2762 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2763 * socket is a one to many style socket, and an association 2764 * was not found, then the id was invalid. 2765 */ 2766 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2767 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2768 sctp_style(sk, UDP)) 2769 return -EINVAL; 2770 2771 if (asoc) { 2772 sctp_apply_asoc_delayed_ack(params, asoc); 2773 2774 return 0; 2775 } 2776 2777 if (sctp_style(sk, TCP)) 2778 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2779 2780 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2781 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2782 if (params->sack_delay) { 2783 sp->sackdelay = params->sack_delay; 2784 sp->param_flags = 2785 sctp_spp_sackdelay_enable(sp->param_flags); 2786 } 2787 if (params->sack_freq == 1) { 2788 sp->param_flags = 2789 sctp_spp_sackdelay_disable(sp->param_flags); 2790 } else if (params->sack_freq > 1) { 2791 sp->sackfreq = params->sack_freq; 2792 sp->param_flags = 2793 sctp_spp_sackdelay_enable(sp->param_flags); 2794 } 2795 } 2796 2797 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2798 params->sack_assoc_id == SCTP_ALL_ASSOC) 2799 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2800 sctp_apply_asoc_delayed_ack(params, asoc); 2801 2802 return 0; 2803 } 2804 2805 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2806 struct sctp_sack_info *params, 2807 unsigned int optlen) 2808 { 2809 if (optlen == sizeof(struct sctp_assoc_value)) { 2810 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2811 struct sctp_sack_info p; 2812 2813 pr_warn_ratelimited(DEPRECATED 2814 "%s (pid %d) " 2815 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2816 "Use struct sctp_sack_info instead\n", 2817 current->comm, task_pid_nr(current)); 2818 2819 p.sack_assoc_id = v->assoc_id; 2820 p.sack_delay = v->assoc_value; 2821 p.sack_freq = v->assoc_value ? 0 : 1; 2822 return __sctp_setsockopt_delayed_ack(sk, &p); 2823 } 2824 2825 if (optlen != sizeof(struct sctp_sack_info)) 2826 return -EINVAL; 2827 if (params->sack_delay == 0 && params->sack_freq == 0) 2828 return 0; 2829 return __sctp_setsockopt_delayed_ack(sk, params); 2830 } 2831 2832 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2833 * 2834 * Applications can specify protocol parameters for the default association 2835 * initialization. The option name argument to setsockopt() and getsockopt() 2836 * is SCTP_INITMSG. 2837 * 2838 * Setting initialization parameters is effective only on an unconnected 2839 * socket (for UDP-style sockets only future associations are effected 2840 * by the change). With TCP-style sockets, this option is inherited by 2841 * sockets derived from a listener socket. 2842 */ 2843 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2844 unsigned int optlen) 2845 { 2846 struct sctp_sock *sp = sctp_sk(sk); 2847 2848 if (optlen != sizeof(struct sctp_initmsg)) 2849 return -EINVAL; 2850 2851 if (sinit->sinit_num_ostreams) 2852 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2853 if (sinit->sinit_max_instreams) 2854 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2855 if (sinit->sinit_max_attempts) 2856 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2857 if (sinit->sinit_max_init_timeo) 2858 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2865 * 2866 * Applications that wish to use the sendto() system call may wish to 2867 * specify a default set of parameters that would normally be supplied 2868 * through the inclusion of ancillary data. This socket option allows 2869 * such an application to set the default sctp_sndrcvinfo structure. 2870 * The application that wishes to use this socket option simply passes 2871 * in to this call the sctp_sndrcvinfo structure defined in Section 2872 * 5.2.2) The input parameters accepted by this call include 2873 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2874 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2875 * to this call if the caller is using the UDP model. 2876 */ 2877 static int sctp_setsockopt_default_send_param(struct sock *sk, 2878 struct sctp_sndrcvinfo *info, 2879 unsigned int optlen) 2880 { 2881 struct sctp_sock *sp = sctp_sk(sk); 2882 struct sctp_association *asoc; 2883 2884 if (optlen != sizeof(*info)) 2885 return -EINVAL; 2886 if (info->sinfo_flags & 2887 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2888 SCTP_ABORT | SCTP_EOF)) 2889 return -EINVAL; 2890 2891 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2892 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2893 sctp_style(sk, UDP)) 2894 return -EINVAL; 2895 2896 if (asoc) { 2897 asoc->default_stream = info->sinfo_stream; 2898 asoc->default_flags = info->sinfo_flags; 2899 asoc->default_ppid = info->sinfo_ppid; 2900 asoc->default_context = info->sinfo_context; 2901 asoc->default_timetolive = info->sinfo_timetolive; 2902 2903 return 0; 2904 } 2905 2906 if (sctp_style(sk, TCP)) 2907 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2908 2909 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2910 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2911 sp->default_stream = info->sinfo_stream; 2912 sp->default_flags = info->sinfo_flags; 2913 sp->default_ppid = info->sinfo_ppid; 2914 sp->default_context = info->sinfo_context; 2915 sp->default_timetolive = info->sinfo_timetolive; 2916 } 2917 2918 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2919 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2920 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2921 asoc->default_stream = info->sinfo_stream; 2922 asoc->default_flags = info->sinfo_flags; 2923 asoc->default_ppid = info->sinfo_ppid; 2924 asoc->default_context = info->sinfo_context; 2925 asoc->default_timetolive = info->sinfo_timetolive; 2926 } 2927 } 2928 2929 return 0; 2930 } 2931 2932 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2933 * (SCTP_DEFAULT_SNDINFO) 2934 */ 2935 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2936 struct sctp_sndinfo *info, 2937 unsigned int optlen) 2938 { 2939 struct sctp_sock *sp = sctp_sk(sk); 2940 struct sctp_association *asoc; 2941 2942 if (optlen != sizeof(*info)) 2943 return -EINVAL; 2944 if (info->snd_flags & 2945 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2946 SCTP_ABORT | SCTP_EOF)) 2947 return -EINVAL; 2948 2949 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2950 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2951 sctp_style(sk, UDP)) 2952 return -EINVAL; 2953 2954 if (asoc) { 2955 asoc->default_stream = info->snd_sid; 2956 asoc->default_flags = info->snd_flags; 2957 asoc->default_ppid = info->snd_ppid; 2958 asoc->default_context = info->snd_context; 2959 2960 return 0; 2961 } 2962 2963 if (sctp_style(sk, TCP)) 2964 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2965 2966 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2967 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2968 sp->default_stream = info->snd_sid; 2969 sp->default_flags = info->snd_flags; 2970 sp->default_ppid = info->snd_ppid; 2971 sp->default_context = info->snd_context; 2972 } 2973 2974 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2975 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2976 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2977 asoc->default_stream = info->snd_sid; 2978 asoc->default_flags = info->snd_flags; 2979 asoc->default_ppid = info->snd_ppid; 2980 asoc->default_context = info->snd_context; 2981 } 2982 } 2983 2984 return 0; 2985 } 2986 2987 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2988 * 2989 * Requests that the local SCTP stack use the enclosed peer address as 2990 * the association primary. The enclosed address must be one of the 2991 * association peer's addresses. 2992 */ 2993 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 2994 unsigned int optlen) 2995 { 2996 struct sctp_transport *trans; 2997 struct sctp_af *af; 2998 int err; 2999 3000 if (optlen != sizeof(struct sctp_prim)) 3001 return -EINVAL; 3002 3003 /* Allow security module to validate address but need address len. */ 3004 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3005 if (!af) 3006 return -EINVAL; 3007 3008 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3009 (struct sockaddr *)&prim->ssp_addr, 3010 af->sockaddr_len); 3011 if (err) 3012 return err; 3013 3014 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3015 if (!trans) 3016 return -EINVAL; 3017 3018 sctp_assoc_set_primary(trans->asoc, trans); 3019 3020 return 0; 3021 } 3022 3023 /* 3024 * 7.1.5 SCTP_NODELAY 3025 * 3026 * Turn on/off any Nagle-like algorithm. This means that packets are 3027 * generally sent as soon as possible and no unnecessary delays are 3028 * introduced, at the cost of more packets in the network. Expects an 3029 * integer boolean flag. 3030 */ 3031 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3032 unsigned int optlen) 3033 { 3034 if (optlen < sizeof(int)) 3035 return -EINVAL; 3036 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3037 return 0; 3038 } 3039 3040 /* 3041 * 3042 * 7.1.1 SCTP_RTOINFO 3043 * 3044 * The protocol parameters used to initialize and bound retransmission 3045 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3046 * and modify these parameters. 3047 * All parameters are time values, in milliseconds. A value of 0, when 3048 * modifying the parameters, indicates that the current value should not 3049 * be changed. 3050 * 3051 */ 3052 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3053 struct sctp_rtoinfo *rtoinfo, 3054 unsigned int optlen) 3055 { 3056 struct sctp_association *asoc; 3057 unsigned long rto_min, rto_max; 3058 struct sctp_sock *sp = sctp_sk(sk); 3059 3060 if (optlen != sizeof (struct sctp_rtoinfo)) 3061 return -EINVAL; 3062 3063 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3064 3065 /* Set the values to the specific association */ 3066 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3067 sctp_style(sk, UDP)) 3068 return -EINVAL; 3069 3070 rto_max = rtoinfo->srto_max; 3071 rto_min = rtoinfo->srto_min; 3072 3073 if (rto_max) 3074 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3075 else 3076 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3077 3078 if (rto_min) 3079 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3080 else 3081 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3082 3083 if (rto_min > rto_max) 3084 return -EINVAL; 3085 3086 if (asoc) { 3087 if (rtoinfo->srto_initial != 0) 3088 asoc->rto_initial = 3089 msecs_to_jiffies(rtoinfo->srto_initial); 3090 asoc->rto_max = rto_max; 3091 asoc->rto_min = rto_min; 3092 } else { 3093 /* If there is no association or the association-id = 0 3094 * set the values to the endpoint. 3095 */ 3096 if (rtoinfo->srto_initial != 0) 3097 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3098 sp->rtoinfo.srto_max = rto_max; 3099 sp->rtoinfo.srto_min = rto_min; 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* 3106 * 3107 * 7.1.2 SCTP_ASSOCINFO 3108 * 3109 * This option is used to tune the maximum retransmission attempts 3110 * of the association. 3111 * Returns an error if the new association retransmission value is 3112 * greater than the sum of the retransmission value of the peer. 3113 * See [SCTP] for more information. 3114 * 3115 */ 3116 static int sctp_setsockopt_associnfo(struct sock *sk, 3117 struct sctp_assocparams *assocparams, 3118 unsigned int optlen) 3119 { 3120 3121 struct sctp_association *asoc; 3122 3123 if (optlen != sizeof(struct sctp_assocparams)) 3124 return -EINVAL; 3125 3126 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3127 3128 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3129 sctp_style(sk, UDP)) 3130 return -EINVAL; 3131 3132 /* Set the values to the specific association */ 3133 if (asoc) { 3134 if (assocparams->sasoc_asocmaxrxt != 0) { 3135 __u32 path_sum = 0; 3136 int paths = 0; 3137 struct sctp_transport *peer_addr; 3138 3139 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3140 transports) { 3141 path_sum += peer_addr->pathmaxrxt; 3142 paths++; 3143 } 3144 3145 /* Only validate asocmaxrxt if we have more than 3146 * one path/transport. We do this because path 3147 * retransmissions are only counted when we have more 3148 * then one path. 3149 */ 3150 if (paths > 1 && 3151 assocparams->sasoc_asocmaxrxt > path_sum) 3152 return -EINVAL; 3153 3154 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3155 } 3156 3157 if (assocparams->sasoc_cookie_life != 0) 3158 asoc->cookie_life = 3159 ms_to_ktime(assocparams->sasoc_cookie_life); 3160 } else { 3161 /* Set the values to the endpoint */ 3162 struct sctp_sock *sp = sctp_sk(sk); 3163 3164 if (assocparams->sasoc_asocmaxrxt != 0) 3165 sp->assocparams.sasoc_asocmaxrxt = 3166 assocparams->sasoc_asocmaxrxt; 3167 if (assocparams->sasoc_cookie_life != 0) 3168 sp->assocparams.sasoc_cookie_life = 3169 assocparams->sasoc_cookie_life; 3170 } 3171 return 0; 3172 } 3173 3174 /* 3175 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3176 * 3177 * This socket option is a boolean flag which turns on or off mapped V4 3178 * addresses. If this option is turned on and the socket is type 3179 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3180 * If this option is turned off, then no mapping will be done of V4 3181 * addresses and a user will receive both PF_INET6 and PF_INET type 3182 * addresses on the socket. 3183 */ 3184 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3185 unsigned int optlen) 3186 { 3187 struct sctp_sock *sp = sctp_sk(sk); 3188 3189 if (optlen < sizeof(int)) 3190 return -EINVAL; 3191 if (*val) 3192 sp->v4mapped = 1; 3193 else 3194 sp->v4mapped = 0; 3195 3196 return 0; 3197 } 3198 3199 /* 3200 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3201 * This option will get or set the maximum size to put in any outgoing 3202 * SCTP DATA chunk. If a message is larger than this size it will be 3203 * fragmented by SCTP into the specified size. Note that the underlying 3204 * SCTP implementation may fragment into smaller sized chunks when the 3205 * PMTU of the underlying association is smaller than the value set by 3206 * the user. The default value for this option is '0' which indicates 3207 * the user is NOT limiting fragmentation and only the PMTU will effect 3208 * SCTP's choice of DATA chunk size. Note also that values set larger 3209 * than the maximum size of an IP datagram will effectively let SCTP 3210 * control fragmentation (i.e. the same as setting this option to 0). 3211 * 3212 * The following structure is used to access and modify this parameter: 3213 * 3214 * struct sctp_assoc_value { 3215 * sctp_assoc_t assoc_id; 3216 * uint32_t assoc_value; 3217 * }; 3218 * 3219 * assoc_id: This parameter is ignored for one-to-one style sockets. 3220 * For one-to-many style sockets this parameter indicates which 3221 * association the user is performing an action upon. Note that if 3222 * this field's value is zero then the endpoints default value is 3223 * changed (effecting future associations only). 3224 * assoc_value: This parameter specifies the maximum size in bytes. 3225 */ 3226 static int sctp_setsockopt_maxseg(struct sock *sk, 3227 struct sctp_assoc_value *params, 3228 unsigned int optlen) 3229 { 3230 struct sctp_sock *sp = sctp_sk(sk); 3231 struct sctp_association *asoc; 3232 sctp_assoc_t assoc_id; 3233 int val; 3234 3235 if (optlen == sizeof(int)) { 3236 pr_warn_ratelimited(DEPRECATED 3237 "%s (pid %d) " 3238 "Use of int in maxseg socket option.\n" 3239 "Use struct sctp_assoc_value instead\n", 3240 current->comm, task_pid_nr(current)); 3241 assoc_id = SCTP_FUTURE_ASSOC; 3242 val = *(int *)params; 3243 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3244 assoc_id = params->assoc_id; 3245 val = params->assoc_value; 3246 } else { 3247 return -EINVAL; 3248 } 3249 3250 asoc = sctp_id2assoc(sk, assoc_id); 3251 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3252 sctp_style(sk, UDP)) 3253 return -EINVAL; 3254 3255 if (val) { 3256 int min_len, max_len; 3257 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3258 sizeof(struct sctp_data_chunk); 3259 3260 min_len = sctp_min_frag_point(sp, datasize); 3261 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3262 3263 if (val < min_len || val > max_len) 3264 return -EINVAL; 3265 } 3266 3267 if (asoc) { 3268 asoc->user_frag = val; 3269 sctp_assoc_update_frag_point(asoc); 3270 } else { 3271 sp->user_frag = val; 3272 } 3273 3274 return 0; 3275 } 3276 3277 3278 /* 3279 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3280 * 3281 * Requests that the peer mark the enclosed address as the association 3282 * primary. The enclosed address must be one of the association's 3283 * locally bound addresses. The following structure is used to make a 3284 * set primary request: 3285 */ 3286 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3287 struct sctp_setpeerprim *prim, 3288 unsigned int optlen) 3289 { 3290 struct sctp_sock *sp; 3291 struct sctp_association *asoc = NULL; 3292 struct sctp_chunk *chunk; 3293 struct sctp_af *af; 3294 int err; 3295 3296 sp = sctp_sk(sk); 3297 3298 if (!sp->ep->asconf_enable) 3299 return -EPERM; 3300 3301 if (optlen != sizeof(struct sctp_setpeerprim)) 3302 return -EINVAL; 3303 3304 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3305 if (!asoc) 3306 return -EINVAL; 3307 3308 if (!asoc->peer.asconf_capable) 3309 return -EPERM; 3310 3311 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3312 return -EPERM; 3313 3314 if (!sctp_state(asoc, ESTABLISHED)) 3315 return -ENOTCONN; 3316 3317 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3318 if (!af) 3319 return -EINVAL; 3320 3321 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3322 return -EADDRNOTAVAIL; 3323 3324 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3325 return -EADDRNOTAVAIL; 3326 3327 /* Allow security module to validate address. */ 3328 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3329 (struct sockaddr *)&prim->sspp_addr, 3330 af->sockaddr_len); 3331 if (err) 3332 return err; 3333 3334 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3335 chunk = sctp_make_asconf_set_prim(asoc, 3336 (union sctp_addr *)&prim->sspp_addr); 3337 if (!chunk) 3338 return -ENOMEM; 3339 3340 err = sctp_send_asconf(asoc, chunk); 3341 3342 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3343 3344 return err; 3345 } 3346 3347 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3348 struct sctp_setadaptation *adapt, 3349 unsigned int optlen) 3350 { 3351 if (optlen != sizeof(struct sctp_setadaptation)) 3352 return -EINVAL; 3353 3354 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3355 3356 return 0; 3357 } 3358 3359 /* 3360 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3361 * 3362 * The context field in the sctp_sndrcvinfo structure is normally only 3363 * used when a failed message is retrieved holding the value that was 3364 * sent down on the actual send call. This option allows the setting of 3365 * a default context on an association basis that will be received on 3366 * reading messages from the peer. This is especially helpful in the 3367 * one-2-many model for an application to keep some reference to an 3368 * internal state machine that is processing messages on the 3369 * association. Note that the setting of this value only effects 3370 * received messages from the peer and does not effect the value that is 3371 * saved with outbound messages. 3372 */ 3373 static int sctp_setsockopt_context(struct sock *sk, 3374 struct sctp_assoc_value *params, 3375 unsigned int optlen) 3376 { 3377 struct sctp_sock *sp = sctp_sk(sk); 3378 struct sctp_association *asoc; 3379 3380 if (optlen != sizeof(struct sctp_assoc_value)) 3381 return -EINVAL; 3382 3383 asoc = sctp_id2assoc(sk, params->assoc_id); 3384 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3385 sctp_style(sk, UDP)) 3386 return -EINVAL; 3387 3388 if (asoc) { 3389 asoc->default_rcv_context = params->assoc_value; 3390 3391 return 0; 3392 } 3393 3394 if (sctp_style(sk, TCP)) 3395 params->assoc_id = SCTP_FUTURE_ASSOC; 3396 3397 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3398 params->assoc_id == SCTP_ALL_ASSOC) 3399 sp->default_rcv_context = params->assoc_value; 3400 3401 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3402 params->assoc_id == SCTP_ALL_ASSOC) 3403 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3404 asoc->default_rcv_context = params->assoc_value; 3405 3406 return 0; 3407 } 3408 3409 /* 3410 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3411 * 3412 * This options will at a minimum specify if the implementation is doing 3413 * fragmented interleave. Fragmented interleave, for a one to many 3414 * socket, is when subsequent calls to receive a message may return 3415 * parts of messages from different associations. Some implementations 3416 * may allow you to turn this value on or off. If so, when turned off, 3417 * no fragment interleave will occur (which will cause a head of line 3418 * blocking amongst multiple associations sharing the same one to many 3419 * socket). When this option is turned on, then each receive call may 3420 * come from a different association (thus the user must receive data 3421 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3422 * association each receive belongs to. 3423 * 3424 * This option takes a boolean value. A non-zero value indicates that 3425 * fragmented interleave is on. A value of zero indicates that 3426 * fragmented interleave is off. 3427 * 3428 * Note that it is important that an implementation that allows this 3429 * option to be turned on, have it off by default. Otherwise an unaware 3430 * application using the one to many model may become confused and act 3431 * incorrectly. 3432 */ 3433 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3434 unsigned int optlen) 3435 { 3436 if (optlen != sizeof(int)) 3437 return -EINVAL; 3438 3439 sctp_sk(sk)->frag_interleave = !!*val; 3440 3441 if (!sctp_sk(sk)->frag_interleave) 3442 sctp_sk(sk)->ep->intl_enable = 0; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3449 * (SCTP_PARTIAL_DELIVERY_POINT) 3450 * 3451 * This option will set or get the SCTP partial delivery point. This 3452 * point is the size of a message where the partial delivery API will be 3453 * invoked to help free up rwnd space for the peer. Setting this to a 3454 * lower value will cause partial deliveries to happen more often. The 3455 * calls argument is an integer that sets or gets the partial delivery 3456 * point. Note also that the call will fail if the user attempts to set 3457 * this value larger than the socket receive buffer size. 3458 * 3459 * Note that any single message having a length smaller than or equal to 3460 * the SCTP partial delivery point will be delivered in one single read 3461 * call as long as the user provided buffer is large enough to hold the 3462 * message. 3463 */ 3464 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3465 unsigned int optlen) 3466 { 3467 if (optlen != sizeof(u32)) 3468 return -EINVAL; 3469 3470 /* Note: We double the receive buffer from what the user sets 3471 * it to be, also initial rwnd is based on rcvbuf/2. 3472 */ 3473 if (*val > (sk->sk_rcvbuf >> 1)) 3474 return -EINVAL; 3475 3476 sctp_sk(sk)->pd_point = *val; 3477 3478 return 0; /* is this the right error code? */ 3479 } 3480 3481 /* 3482 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3483 * 3484 * This option will allow a user to change the maximum burst of packets 3485 * that can be emitted by this association. Note that the default value 3486 * is 4, and some implementations may restrict this setting so that it 3487 * can only be lowered. 3488 * 3489 * NOTE: This text doesn't seem right. Do this on a socket basis with 3490 * future associations inheriting the socket value. 3491 */ 3492 static int sctp_setsockopt_maxburst(struct sock *sk, 3493 struct sctp_assoc_value *params, 3494 unsigned int optlen) 3495 { 3496 struct sctp_sock *sp = sctp_sk(sk); 3497 struct sctp_association *asoc; 3498 sctp_assoc_t assoc_id; 3499 u32 assoc_value; 3500 3501 if (optlen == sizeof(int)) { 3502 pr_warn_ratelimited(DEPRECATED 3503 "%s (pid %d) " 3504 "Use of int in max_burst socket option deprecated.\n" 3505 "Use struct sctp_assoc_value instead\n", 3506 current->comm, task_pid_nr(current)); 3507 assoc_id = SCTP_FUTURE_ASSOC; 3508 assoc_value = *((int *)params); 3509 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3510 assoc_id = params->assoc_id; 3511 assoc_value = params->assoc_value; 3512 } else 3513 return -EINVAL; 3514 3515 asoc = sctp_id2assoc(sk, assoc_id); 3516 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3517 return -EINVAL; 3518 3519 if (asoc) { 3520 asoc->max_burst = assoc_value; 3521 3522 return 0; 3523 } 3524 3525 if (sctp_style(sk, TCP)) 3526 assoc_id = SCTP_FUTURE_ASSOC; 3527 3528 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3529 sp->max_burst = assoc_value; 3530 3531 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3532 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3533 asoc->max_burst = assoc_value; 3534 3535 return 0; 3536 } 3537 3538 /* 3539 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3540 * 3541 * This set option adds a chunk type that the user is requesting to be 3542 * received only in an authenticated way. Changes to the list of chunks 3543 * will only effect future associations on the socket. 3544 */ 3545 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3546 struct sctp_authchunk *val, 3547 unsigned int optlen) 3548 { 3549 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3550 3551 if (!ep->auth_enable) 3552 return -EACCES; 3553 3554 if (optlen != sizeof(struct sctp_authchunk)) 3555 return -EINVAL; 3556 3557 switch (val->sauth_chunk) { 3558 case SCTP_CID_INIT: 3559 case SCTP_CID_INIT_ACK: 3560 case SCTP_CID_SHUTDOWN_COMPLETE: 3561 case SCTP_CID_AUTH: 3562 return -EINVAL; 3563 } 3564 3565 /* add this chunk id to the endpoint */ 3566 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3567 } 3568 3569 /* 3570 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3571 * 3572 * This option gets or sets the list of HMAC algorithms that the local 3573 * endpoint requires the peer to use. 3574 */ 3575 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3576 struct sctp_hmacalgo *hmacs, 3577 unsigned int optlen) 3578 { 3579 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3580 u32 idents; 3581 3582 if (!ep->auth_enable) 3583 return -EACCES; 3584 3585 if (optlen < sizeof(struct sctp_hmacalgo)) 3586 return -EINVAL; 3587 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3588 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3589 3590 idents = hmacs->shmac_num_idents; 3591 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3592 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3593 return -EINVAL; 3594 3595 return sctp_auth_ep_set_hmacs(ep, hmacs); 3596 } 3597 3598 /* 3599 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3600 * 3601 * This option will set a shared secret key which is used to build an 3602 * association shared key. 3603 */ 3604 static int sctp_setsockopt_auth_key(struct sock *sk, 3605 struct sctp_authkey *authkey, 3606 unsigned int optlen) 3607 { 3608 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3609 struct sctp_association *asoc; 3610 int ret = -EINVAL; 3611 3612 if (optlen <= sizeof(struct sctp_authkey)) 3613 return -EINVAL; 3614 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3615 * this. 3616 */ 3617 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3618 3619 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3620 goto out; 3621 3622 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3623 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3624 sctp_style(sk, UDP)) 3625 goto out; 3626 3627 if (asoc) { 3628 ret = sctp_auth_set_key(ep, asoc, authkey); 3629 goto out; 3630 } 3631 3632 if (sctp_style(sk, TCP)) 3633 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3634 3635 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3636 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3637 ret = sctp_auth_set_key(ep, asoc, authkey); 3638 if (ret) 3639 goto out; 3640 } 3641 3642 ret = 0; 3643 3644 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3645 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3646 list_for_each_entry(asoc, &ep->asocs, asocs) { 3647 int res = sctp_auth_set_key(ep, asoc, authkey); 3648 3649 if (res && !ret) 3650 ret = res; 3651 } 3652 } 3653 3654 out: 3655 memzero_explicit(authkey, optlen); 3656 return ret; 3657 } 3658 3659 /* 3660 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3661 * 3662 * This option will get or set the active shared key to be used to build 3663 * the association shared key. 3664 */ 3665 static int sctp_setsockopt_active_key(struct sock *sk, 3666 struct sctp_authkeyid *val, 3667 unsigned int optlen) 3668 { 3669 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3670 struct sctp_association *asoc; 3671 int ret = 0; 3672 3673 if (optlen != sizeof(struct sctp_authkeyid)) 3674 return -EINVAL; 3675 3676 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3677 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3678 sctp_style(sk, UDP)) 3679 return -EINVAL; 3680 3681 if (asoc) 3682 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3683 3684 if (sctp_style(sk, TCP)) 3685 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3686 3687 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3688 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3689 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3690 if (ret) 3691 return ret; 3692 } 3693 3694 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3695 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3696 list_for_each_entry(asoc, &ep->asocs, asocs) { 3697 int res = sctp_auth_set_active_key(ep, asoc, 3698 val->scact_keynumber); 3699 3700 if (res && !ret) 3701 ret = res; 3702 } 3703 } 3704 3705 return ret; 3706 } 3707 3708 /* 3709 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3710 * 3711 * This set option will delete a shared secret key from use. 3712 */ 3713 static int sctp_setsockopt_del_key(struct sock *sk, 3714 struct sctp_authkeyid *val, 3715 unsigned int optlen) 3716 { 3717 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3718 struct sctp_association *asoc; 3719 int ret = 0; 3720 3721 if (optlen != sizeof(struct sctp_authkeyid)) 3722 return -EINVAL; 3723 3724 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3725 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3726 sctp_style(sk, UDP)) 3727 return -EINVAL; 3728 3729 if (asoc) 3730 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3731 3732 if (sctp_style(sk, TCP)) 3733 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3734 3735 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3736 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3737 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3738 if (ret) 3739 return ret; 3740 } 3741 3742 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3743 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3744 list_for_each_entry(asoc, &ep->asocs, asocs) { 3745 int res = sctp_auth_del_key_id(ep, asoc, 3746 val->scact_keynumber); 3747 3748 if (res && !ret) 3749 ret = res; 3750 } 3751 } 3752 3753 return ret; 3754 } 3755 3756 /* 3757 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3758 * 3759 * This set option will deactivate a shared secret key. 3760 */ 3761 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3762 struct sctp_authkeyid *val, 3763 unsigned int optlen) 3764 { 3765 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3766 struct sctp_association *asoc; 3767 int ret = 0; 3768 3769 if (optlen != sizeof(struct sctp_authkeyid)) 3770 return -EINVAL; 3771 3772 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3773 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3774 sctp_style(sk, UDP)) 3775 return -EINVAL; 3776 3777 if (asoc) 3778 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3779 3780 if (sctp_style(sk, TCP)) 3781 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3782 3783 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3784 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3785 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3786 if (ret) 3787 return ret; 3788 } 3789 3790 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3791 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3792 list_for_each_entry(asoc, &ep->asocs, asocs) { 3793 int res = sctp_auth_deact_key_id(ep, asoc, 3794 val->scact_keynumber); 3795 3796 if (res && !ret) 3797 ret = res; 3798 } 3799 } 3800 3801 return ret; 3802 } 3803 3804 /* 3805 * 8.1.23 SCTP_AUTO_ASCONF 3806 * 3807 * This option will enable or disable the use of the automatic generation of 3808 * ASCONF chunks to add and delete addresses to an existing association. Note 3809 * that this option has two caveats namely: a) it only affects sockets that 3810 * are bound to all addresses available to the SCTP stack, and b) the system 3811 * administrator may have an overriding control that turns the ASCONF feature 3812 * off no matter what setting the socket option may have. 3813 * This option expects an integer boolean flag, where a non-zero value turns on 3814 * the option, and a zero value turns off the option. 3815 * Note. In this implementation, socket operation overrides default parameter 3816 * being set by sysctl as well as FreeBSD implementation 3817 */ 3818 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3819 unsigned int optlen) 3820 { 3821 struct sctp_sock *sp = sctp_sk(sk); 3822 3823 if (optlen < sizeof(int)) 3824 return -EINVAL; 3825 if (!sctp_is_ep_boundall(sk) && *val) 3826 return -EINVAL; 3827 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3828 return 0; 3829 3830 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3831 if (*val == 0 && sp->do_auto_asconf) { 3832 list_del(&sp->auto_asconf_list); 3833 sp->do_auto_asconf = 0; 3834 } else if (*val && !sp->do_auto_asconf) { 3835 list_add_tail(&sp->auto_asconf_list, 3836 &sock_net(sk)->sctp.auto_asconf_splist); 3837 sp->do_auto_asconf = 1; 3838 } 3839 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3840 return 0; 3841 } 3842 3843 /* 3844 * SCTP_PEER_ADDR_THLDS 3845 * 3846 * This option allows us to alter the partially failed threshold for one or all 3847 * transports in an association. See Section 6.1 of: 3848 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3849 */ 3850 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3851 struct sctp_paddrthlds_v2 *val, 3852 unsigned int optlen, bool v2) 3853 { 3854 struct sctp_transport *trans; 3855 struct sctp_association *asoc; 3856 int len; 3857 3858 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3859 if (optlen < len) 3860 return -EINVAL; 3861 3862 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3863 return -EINVAL; 3864 3865 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3866 trans = sctp_addr_id2transport(sk, &val->spt_address, 3867 val->spt_assoc_id); 3868 if (!trans) 3869 return -ENOENT; 3870 3871 if (val->spt_pathmaxrxt) 3872 trans->pathmaxrxt = val->spt_pathmaxrxt; 3873 if (v2) 3874 trans->ps_retrans = val->spt_pathcpthld; 3875 trans->pf_retrans = val->spt_pathpfthld; 3876 3877 return 0; 3878 } 3879 3880 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3881 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3882 sctp_style(sk, UDP)) 3883 return -EINVAL; 3884 3885 if (asoc) { 3886 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3887 transports) { 3888 if (val->spt_pathmaxrxt) 3889 trans->pathmaxrxt = val->spt_pathmaxrxt; 3890 if (v2) 3891 trans->ps_retrans = val->spt_pathcpthld; 3892 trans->pf_retrans = val->spt_pathpfthld; 3893 } 3894 3895 if (val->spt_pathmaxrxt) 3896 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3897 if (v2) 3898 asoc->ps_retrans = val->spt_pathcpthld; 3899 asoc->pf_retrans = val->spt_pathpfthld; 3900 } else { 3901 struct sctp_sock *sp = sctp_sk(sk); 3902 3903 if (val->spt_pathmaxrxt) 3904 sp->pathmaxrxt = val->spt_pathmaxrxt; 3905 if (v2) 3906 sp->ps_retrans = val->spt_pathcpthld; 3907 sp->pf_retrans = val->spt_pathpfthld; 3908 } 3909 3910 return 0; 3911 } 3912 3913 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3914 unsigned int optlen) 3915 { 3916 if (optlen < sizeof(int)) 3917 return -EINVAL; 3918 3919 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3920 3921 return 0; 3922 } 3923 3924 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3925 unsigned int optlen) 3926 { 3927 if (optlen < sizeof(int)) 3928 return -EINVAL; 3929 3930 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3931 3932 return 0; 3933 } 3934 3935 static int sctp_setsockopt_pr_supported(struct sock *sk, 3936 struct sctp_assoc_value *params, 3937 unsigned int optlen) 3938 { 3939 struct sctp_association *asoc; 3940 3941 if (optlen != sizeof(*params)) 3942 return -EINVAL; 3943 3944 asoc = sctp_id2assoc(sk, params->assoc_id); 3945 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3946 sctp_style(sk, UDP)) 3947 return -EINVAL; 3948 3949 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3950 3951 return 0; 3952 } 3953 3954 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3955 struct sctp_default_prinfo *info, 3956 unsigned int optlen) 3957 { 3958 struct sctp_sock *sp = sctp_sk(sk); 3959 struct sctp_association *asoc; 3960 int retval = -EINVAL; 3961 3962 if (optlen != sizeof(*info)) 3963 goto out; 3964 3965 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3966 goto out; 3967 3968 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3969 info->pr_value = 0; 3970 3971 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3972 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3973 sctp_style(sk, UDP)) 3974 goto out; 3975 3976 retval = 0; 3977 3978 if (asoc) { 3979 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3980 asoc->default_timetolive = info->pr_value; 3981 goto out; 3982 } 3983 3984 if (sctp_style(sk, TCP)) 3985 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 3986 3987 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 3988 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3989 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 3990 sp->default_timetolive = info->pr_value; 3991 } 3992 3993 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 3994 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3995 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3996 SCTP_PR_SET_POLICY(asoc->default_flags, 3997 info->pr_policy); 3998 asoc->default_timetolive = info->pr_value; 3999 } 4000 } 4001 4002 out: 4003 return retval; 4004 } 4005 4006 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4007 struct sctp_assoc_value *params, 4008 unsigned int optlen) 4009 { 4010 struct sctp_association *asoc; 4011 int retval = -EINVAL; 4012 4013 if (optlen != sizeof(*params)) 4014 goto out; 4015 4016 asoc = sctp_id2assoc(sk, params->assoc_id); 4017 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4018 sctp_style(sk, UDP)) 4019 goto out; 4020 4021 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4022 4023 retval = 0; 4024 4025 out: 4026 return retval; 4027 } 4028 4029 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4030 struct sctp_assoc_value *params, 4031 unsigned int optlen) 4032 { 4033 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4034 struct sctp_association *asoc; 4035 int retval = -EINVAL; 4036 4037 if (optlen != sizeof(*params)) 4038 goto out; 4039 4040 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4041 goto out; 4042 4043 asoc = sctp_id2assoc(sk, params->assoc_id); 4044 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4045 sctp_style(sk, UDP)) 4046 goto out; 4047 4048 retval = 0; 4049 4050 if (asoc) { 4051 asoc->strreset_enable = params->assoc_value; 4052 goto out; 4053 } 4054 4055 if (sctp_style(sk, TCP)) 4056 params->assoc_id = SCTP_FUTURE_ASSOC; 4057 4058 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4059 params->assoc_id == SCTP_ALL_ASSOC) 4060 ep->strreset_enable = params->assoc_value; 4061 4062 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4063 params->assoc_id == SCTP_ALL_ASSOC) 4064 list_for_each_entry(asoc, &ep->asocs, asocs) 4065 asoc->strreset_enable = params->assoc_value; 4066 4067 out: 4068 return retval; 4069 } 4070 4071 static int sctp_setsockopt_reset_streams(struct sock *sk, 4072 struct sctp_reset_streams *params, 4073 unsigned int optlen) 4074 { 4075 struct sctp_association *asoc; 4076 4077 if (optlen < sizeof(*params)) 4078 return -EINVAL; 4079 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4080 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4081 sizeof(__u16) * sizeof(*params)); 4082 4083 if (params->srs_number_streams * sizeof(__u16) > 4084 optlen - sizeof(*params)) 4085 return -EINVAL; 4086 4087 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4088 if (!asoc) 4089 return -EINVAL; 4090 4091 return sctp_send_reset_streams(asoc, params); 4092 } 4093 4094 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4095 unsigned int optlen) 4096 { 4097 struct sctp_association *asoc; 4098 4099 if (optlen != sizeof(*associd)) 4100 return -EINVAL; 4101 4102 asoc = sctp_id2assoc(sk, *associd); 4103 if (!asoc) 4104 return -EINVAL; 4105 4106 return sctp_send_reset_assoc(asoc); 4107 } 4108 4109 static int sctp_setsockopt_add_streams(struct sock *sk, 4110 struct sctp_add_streams *params, 4111 unsigned int optlen) 4112 { 4113 struct sctp_association *asoc; 4114 4115 if (optlen != sizeof(*params)) 4116 return -EINVAL; 4117 4118 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4119 if (!asoc) 4120 return -EINVAL; 4121 4122 return sctp_send_add_streams(asoc, params); 4123 } 4124 4125 static int sctp_setsockopt_scheduler(struct sock *sk, 4126 struct sctp_assoc_value *params, 4127 unsigned int optlen) 4128 { 4129 struct sctp_sock *sp = sctp_sk(sk); 4130 struct sctp_association *asoc; 4131 int retval = 0; 4132 4133 if (optlen < sizeof(*params)) 4134 return -EINVAL; 4135 4136 if (params->assoc_value > SCTP_SS_MAX) 4137 return -EINVAL; 4138 4139 asoc = sctp_id2assoc(sk, params->assoc_id); 4140 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4141 sctp_style(sk, UDP)) 4142 return -EINVAL; 4143 4144 if (asoc) 4145 return sctp_sched_set_sched(asoc, params->assoc_value); 4146 4147 if (sctp_style(sk, TCP)) 4148 params->assoc_id = SCTP_FUTURE_ASSOC; 4149 4150 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4151 params->assoc_id == SCTP_ALL_ASSOC) 4152 sp->default_ss = params->assoc_value; 4153 4154 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4155 params->assoc_id == SCTP_ALL_ASSOC) { 4156 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4157 int ret = sctp_sched_set_sched(asoc, 4158 params->assoc_value); 4159 4160 if (ret && !retval) 4161 retval = ret; 4162 } 4163 } 4164 4165 return retval; 4166 } 4167 4168 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4169 struct sctp_stream_value *params, 4170 unsigned int optlen) 4171 { 4172 struct sctp_association *asoc; 4173 int retval = -EINVAL; 4174 4175 if (optlen < sizeof(*params)) 4176 goto out; 4177 4178 asoc = sctp_id2assoc(sk, params->assoc_id); 4179 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4180 sctp_style(sk, UDP)) 4181 goto out; 4182 4183 if (asoc) { 4184 retval = sctp_sched_set_value(asoc, params->stream_id, 4185 params->stream_value, GFP_KERNEL); 4186 goto out; 4187 } 4188 4189 retval = 0; 4190 4191 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4192 int ret = sctp_sched_set_value(asoc, params->stream_id, 4193 params->stream_value, 4194 GFP_KERNEL); 4195 if (ret && !retval) /* try to return the 1st error. */ 4196 retval = ret; 4197 } 4198 4199 out: 4200 return retval; 4201 } 4202 4203 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4204 struct sctp_assoc_value *p, 4205 unsigned int optlen) 4206 { 4207 struct sctp_sock *sp = sctp_sk(sk); 4208 struct sctp_association *asoc; 4209 4210 if (optlen < sizeof(*p)) 4211 return -EINVAL; 4212 4213 asoc = sctp_id2assoc(sk, p->assoc_id); 4214 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4215 return -EINVAL; 4216 4217 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4218 return -EPERM; 4219 } 4220 4221 sp->ep->intl_enable = !!p->assoc_value; 4222 return 0; 4223 } 4224 4225 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4226 unsigned int optlen) 4227 { 4228 if (!sctp_style(sk, TCP)) 4229 return -EOPNOTSUPP; 4230 4231 if (sctp_sk(sk)->ep->base.bind_addr.port) 4232 return -EFAULT; 4233 4234 if (optlen < sizeof(int)) 4235 return -EINVAL; 4236 4237 sctp_sk(sk)->reuse = !!*val; 4238 4239 return 0; 4240 } 4241 4242 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4243 struct sctp_association *asoc) 4244 { 4245 struct sctp_ulpevent *event; 4246 4247 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4248 4249 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4250 if (sctp_outq_is_empty(&asoc->outqueue)) { 4251 event = sctp_ulpevent_make_sender_dry_event(asoc, 4252 GFP_USER | __GFP_NOWARN); 4253 if (!event) 4254 return -ENOMEM; 4255 4256 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4257 } 4258 } 4259 4260 return 0; 4261 } 4262 4263 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4264 unsigned int optlen) 4265 { 4266 struct sctp_sock *sp = sctp_sk(sk); 4267 struct sctp_association *asoc; 4268 int retval = 0; 4269 4270 if (optlen < sizeof(*param)) 4271 return -EINVAL; 4272 4273 if (param->se_type < SCTP_SN_TYPE_BASE || 4274 param->se_type > SCTP_SN_TYPE_MAX) 4275 return -EINVAL; 4276 4277 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4278 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4279 sctp_style(sk, UDP)) 4280 return -EINVAL; 4281 4282 if (asoc) 4283 return sctp_assoc_ulpevent_type_set(param, asoc); 4284 4285 if (sctp_style(sk, TCP)) 4286 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4287 4288 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4289 param->se_assoc_id == SCTP_ALL_ASSOC) 4290 sctp_ulpevent_type_set(&sp->subscribe, 4291 param->se_type, param->se_on); 4292 4293 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4294 param->se_assoc_id == SCTP_ALL_ASSOC) { 4295 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4296 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4297 4298 if (ret && !retval) 4299 retval = ret; 4300 } 4301 } 4302 4303 return retval; 4304 } 4305 4306 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4307 struct sctp_assoc_value *params, 4308 unsigned int optlen) 4309 { 4310 struct sctp_association *asoc; 4311 struct sctp_endpoint *ep; 4312 int retval = -EINVAL; 4313 4314 if (optlen != sizeof(*params)) 4315 goto out; 4316 4317 asoc = sctp_id2assoc(sk, params->assoc_id); 4318 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4319 sctp_style(sk, UDP)) 4320 goto out; 4321 4322 ep = sctp_sk(sk)->ep; 4323 ep->asconf_enable = !!params->assoc_value; 4324 4325 if (ep->asconf_enable && ep->auth_enable) { 4326 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4327 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4328 } 4329 4330 retval = 0; 4331 4332 out: 4333 return retval; 4334 } 4335 4336 static int sctp_setsockopt_auth_supported(struct sock *sk, 4337 struct sctp_assoc_value *params, 4338 unsigned int optlen) 4339 { 4340 struct sctp_association *asoc; 4341 struct sctp_endpoint *ep; 4342 int retval = -EINVAL; 4343 4344 if (optlen != sizeof(*params)) 4345 goto out; 4346 4347 asoc = sctp_id2assoc(sk, params->assoc_id); 4348 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4349 sctp_style(sk, UDP)) 4350 goto out; 4351 4352 ep = sctp_sk(sk)->ep; 4353 if (params->assoc_value) { 4354 retval = sctp_auth_init(ep, GFP_KERNEL); 4355 if (retval) 4356 goto out; 4357 if (ep->asconf_enable) { 4358 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4359 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4360 } 4361 } 4362 4363 ep->auth_enable = !!params->assoc_value; 4364 retval = 0; 4365 4366 out: 4367 return retval; 4368 } 4369 4370 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4371 struct sctp_assoc_value *params, 4372 unsigned int optlen) 4373 { 4374 struct sctp_association *asoc; 4375 int retval = -EINVAL; 4376 4377 if (optlen != sizeof(*params)) 4378 goto out; 4379 4380 asoc = sctp_id2assoc(sk, params->assoc_id); 4381 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4382 sctp_style(sk, UDP)) 4383 goto out; 4384 4385 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4386 retval = 0; 4387 4388 out: 4389 return retval; 4390 } 4391 4392 static int sctp_setsockopt_pf_expose(struct sock *sk, 4393 struct sctp_assoc_value *params, 4394 unsigned int optlen) 4395 { 4396 struct sctp_association *asoc; 4397 int retval = -EINVAL; 4398 4399 if (optlen != sizeof(*params)) 4400 goto out; 4401 4402 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4403 goto out; 4404 4405 asoc = sctp_id2assoc(sk, params->assoc_id); 4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4407 sctp_style(sk, UDP)) 4408 goto out; 4409 4410 if (asoc) 4411 asoc->pf_expose = params->assoc_value; 4412 else 4413 sctp_sk(sk)->pf_expose = params->assoc_value; 4414 retval = 0; 4415 4416 out: 4417 return retval; 4418 } 4419 4420 static int sctp_setsockopt_encap_port(struct sock *sk, 4421 struct sctp_udpencaps *encap, 4422 unsigned int optlen) 4423 { 4424 struct sctp_association *asoc; 4425 struct sctp_transport *t; 4426 __be16 encap_port; 4427 4428 if (optlen != sizeof(*encap)) 4429 return -EINVAL; 4430 4431 /* If an address other than INADDR_ANY is specified, and 4432 * no transport is found, then the request is invalid. 4433 */ 4434 encap_port = (__force __be16)encap->sue_port; 4435 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4436 t = sctp_addr_id2transport(sk, &encap->sue_address, 4437 encap->sue_assoc_id); 4438 if (!t) 4439 return -EINVAL; 4440 4441 t->encap_port = encap_port; 4442 return 0; 4443 } 4444 4445 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4446 * socket is a one to many style socket, and an association 4447 * was not found, then the id was invalid. 4448 */ 4449 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4450 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4451 sctp_style(sk, UDP)) 4452 return -EINVAL; 4453 4454 /* If changes are for association, also apply encap_port to 4455 * each transport. 4456 */ 4457 if (asoc) { 4458 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4459 transports) 4460 t->encap_port = encap_port; 4461 4462 return 0; 4463 } 4464 4465 sctp_sk(sk)->encap_port = encap_port; 4466 return 0; 4467 } 4468 4469 /* API 6.2 setsockopt(), getsockopt() 4470 * 4471 * Applications use setsockopt() and getsockopt() to set or retrieve 4472 * socket options. Socket options are used to change the default 4473 * behavior of sockets calls. They are described in Section 7. 4474 * 4475 * The syntax is: 4476 * 4477 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4478 * int __user *optlen); 4479 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4480 * int optlen); 4481 * 4482 * sd - the socket descript. 4483 * level - set to IPPROTO_SCTP for all SCTP options. 4484 * optname - the option name. 4485 * optval - the buffer to store the value of the option. 4486 * optlen - the size of the buffer. 4487 */ 4488 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4489 sockptr_t optval, unsigned int optlen) 4490 { 4491 void *kopt = NULL; 4492 int retval = 0; 4493 4494 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4495 4496 /* I can hardly begin to describe how wrong this is. This is 4497 * so broken as to be worse than useless. The API draft 4498 * REALLY is NOT helpful here... I am not convinced that the 4499 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4500 * are at all well-founded. 4501 */ 4502 if (level != SOL_SCTP) { 4503 struct sctp_af *af = sctp_sk(sk)->pf->af; 4504 4505 return af->setsockopt(sk, level, optname, optval, optlen); 4506 } 4507 4508 if (optlen > 0) { 4509 kopt = memdup_sockptr(optval, optlen); 4510 if (IS_ERR(kopt)) 4511 return PTR_ERR(kopt); 4512 } 4513 4514 lock_sock(sk); 4515 4516 switch (optname) { 4517 case SCTP_SOCKOPT_BINDX_ADD: 4518 /* 'optlen' is the size of the addresses buffer. */ 4519 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4520 SCTP_BINDX_ADD_ADDR); 4521 break; 4522 4523 case SCTP_SOCKOPT_BINDX_REM: 4524 /* 'optlen' is the size of the addresses buffer. */ 4525 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4526 SCTP_BINDX_REM_ADDR); 4527 break; 4528 4529 case SCTP_SOCKOPT_CONNECTX_OLD: 4530 /* 'optlen' is the size of the addresses buffer. */ 4531 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4532 break; 4533 4534 case SCTP_SOCKOPT_CONNECTX: 4535 /* 'optlen' is the size of the addresses buffer. */ 4536 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4537 break; 4538 4539 case SCTP_DISABLE_FRAGMENTS: 4540 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4541 break; 4542 4543 case SCTP_EVENTS: 4544 retval = sctp_setsockopt_events(sk, kopt, optlen); 4545 break; 4546 4547 case SCTP_AUTOCLOSE: 4548 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4549 break; 4550 4551 case SCTP_PEER_ADDR_PARAMS: 4552 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4553 break; 4554 4555 case SCTP_DELAYED_SACK: 4556 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4557 break; 4558 case SCTP_PARTIAL_DELIVERY_POINT: 4559 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4560 break; 4561 4562 case SCTP_INITMSG: 4563 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4564 break; 4565 case SCTP_DEFAULT_SEND_PARAM: 4566 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4567 break; 4568 case SCTP_DEFAULT_SNDINFO: 4569 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4570 break; 4571 case SCTP_PRIMARY_ADDR: 4572 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4573 break; 4574 case SCTP_SET_PEER_PRIMARY_ADDR: 4575 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4576 break; 4577 case SCTP_NODELAY: 4578 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4579 break; 4580 case SCTP_RTOINFO: 4581 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4582 break; 4583 case SCTP_ASSOCINFO: 4584 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4585 break; 4586 case SCTP_I_WANT_MAPPED_V4_ADDR: 4587 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4588 break; 4589 case SCTP_MAXSEG: 4590 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4591 break; 4592 case SCTP_ADAPTATION_LAYER: 4593 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4594 break; 4595 case SCTP_CONTEXT: 4596 retval = sctp_setsockopt_context(sk, kopt, optlen); 4597 break; 4598 case SCTP_FRAGMENT_INTERLEAVE: 4599 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4600 break; 4601 case SCTP_MAX_BURST: 4602 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4603 break; 4604 case SCTP_AUTH_CHUNK: 4605 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4606 break; 4607 case SCTP_HMAC_IDENT: 4608 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4609 break; 4610 case SCTP_AUTH_KEY: 4611 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4612 break; 4613 case SCTP_AUTH_ACTIVE_KEY: 4614 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4615 break; 4616 case SCTP_AUTH_DELETE_KEY: 4617 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4618 break; 4619 case SCTP_AUTH_DEACTIVATE_KEY: 4620 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4621 break; 4622 case SCTP_AUTO_ASCONF: 4623 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4624 break; 4625 case SCTP_PEER_ADDR_THLDS: 4626 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4627 false); 4628 break; 4629 case SCTP_PEER_ADDR_THLDS_V2: 4630 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4631 true); 4632 break; 4633 case SCTP_RECVRCVINFO: 4634 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4635 break; 4636 case SCTP_RECVNXTINFO: 4637 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4638 break; 4639 case SCTP_PR_SUPPORTED: 4640 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4641 break; 4642 case SCTP_DEFAULT_PRINFO: 4643 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4644 break; 4645 case SCTP_RECONFIG_SUPPORTED: 4646 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4647 break; 4648 case SCTP_ENABLE_STREAM_RESET: 4649 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4650 break; 4651 case SCTP_RESET_STREAMS: 4652 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4653 break; 4654 case SCTP_RESET_ASSOC: 4655 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4656 break; 4657 case SCTP_ADD_STREAMS: 4658 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4659 break; 4660 case SCTP_STREAM_SCHEDULER: 4661 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4662 break; 4663 case SCTP_STREAM_SCHEDULER_VALUE: 4664 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4665 break; 4666 case SCTP_INTERLEAVING_SUPPORTED: 4667 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4668 optlen); 4669 break; 4670 case SCTP_REUSE_PORT: 4671 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4672 break; 4673 case SCTP_EVENT: 4674 retval = sctp_setsockopt_event(sk, kopt, optlen); 4675 break; 4676 case SCTP_ASCONF_SUPPORTED: 4677 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4678 break; 4679 case SCTP_AUTH_SUPPORTED: 4680 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4681 break; 4682 case SCTP_ECN_SUPPORTED: 4683 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4684 break; 4685 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4686 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4687 break; 4688 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4689 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4690 break; 4691 default: 4692 retval = -ENOPROTOOPT; 4693 break; 4694 } 4695 4696 release_sock(sk); 4697 kfree(kopt); 4698 return retval; 4699 } 4700 4701 /* API 3.1.6 connect() - UDP Style Syntax 4702 * 4703 * An application may use the connect() call in the UDP model to initiate an 4704 * association without sending data. 4705 * 4706 * The syntax is: 4707 * 4708 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4709 * 4710 * sd: the socket descriptor to have a new association added to. 4711 * 4712 * nam: the address structure (either struct sockaddr_in or struct 4713 * sockaddr_in6 defined in RFC2553 [7]). 4714 * 4715 * len: the size of the address. 4716 */ 4717 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4718 int addr_len, int flags) 4719 { 4720 struct sctp_af *af; 4721 int err = -EINVAL; 4722 4723 lock_sock(sk); 4724 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4725 addr, addr_len); 4726 4727 /* Validate addr_len before calling common connect/connectx routine. */ 4728 af = sctp_get_af_specific(addr->sa_family); 4729 if (af && addr_len >= af->sockaddr_len) 4730 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4731 4732 release_sock(sk); 4733 return err; 4734 } 4735 4736 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4737 int addr_len, int flags) 4738 { 4739 if (addr_len < sizeof(uaddr->sa_family)) 4740 return -EINVAL; 4741 4742 if (uaddr->sa_family == AF_UNSPEC) 4743 return -EOPNOTSUPP; 4744 4745 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4746 } 4747 4748 /* FIXME: Write comments. */ 4749 static int sctp_disconnect(struct sock *sk, int flags) 4750 { 4751 return -EOPNOTSUPP; /* STUB */ 4752 } 4753 4754 /* 4.1.4 accept() - TCP Style Syntax 4755 * 4756 * Applications use accept() call to remove an established SCTP 4757 * association from the accept queue of the endpoint. A new socket 4758 * descriptor will be returned from accept() to represent the newly 4759 * formed association. 4760 */ 4761 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4762 { 4763 struct sctp_sock *sp; 4764 struct sctp_endpoint *ep; 4765 struct sock *newsk = NULL; 4766 struct sctp_association *asoc; 4767 long timeo; 4768 int error = 0; 4769 4770 lock_sock(sk); 4771 4772 sp = sctp_sk(sk); 4773 ep = sp->ep; 4774 4775 if (!sctp_style(sk, TCP)) { 4776 error = -EOPNOTSUPP; 4777 goto out; 4778 } 4779 4780 if (!sctp_sstate(sk, LISTENING)) { 4781 error = -EINVAL; 4782 goto out; 4783 } 4784 4785 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4786 4787 error = sctp_wait_for_accept(sk, timeo); 4788 if (error) 4789 goto out; 4790 4791 /* We treat the list of associations on the endpoint as the accept 4792 * queue and pick the first association on the list. 4793 */ 4794 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4795 4796 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4797 if (!newsk) { 4798 error = -ENOMEM; 4799 goto out; 4800 } 4801 4802 /* Populate the fields of the newsk from the oldsk and migrate the 4803 * asoc to the newsk. 4804 */ 4805 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4806 if (error) { 4807 sk_common_release(newsk); 4808 newsk = NULL; 4809 } 4810 4811 out: 4812 release_sock(sk); 4813 *err = error; 4814 return newsk; 4815 } 4816 4817 /* The SCTP ioctl handler. */ 4818 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4819 { 4820 int rc = -ENOTCONN; 4821 4822 lock_sock(sk); 4823 4824 /* 4825 * SEQPACKET-style sockets in LISTENING state are valid, for 4826 * SCTP, so only discard TCP-style sockets in LISTENING state. 4827 */ 4828 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4829 goto out; 4830 4831 switch (cmd) { 4832 case SIOCINQ: { 4833 struct sk_buff *skb; 4834 unsigned int amount = 0; 4835 4836 skb = skb_peek(&sk->sk_receive_queue); 4837 if (skb != NULL) { 4838 /* 4839 * We will only return the amount of this packet since 4840 * that is all that will be read. 4841 */ 4842 amount = skb->len; 4843 } 4844 rc = put_user(amount, (int __user *)arg); 4845 break; 4846 } 4847 default: 4848 rc = -ENOIOCTLCMD; 4849 break; 4850 } 4851 out: 4852 release_sock(sk); 4853 return rc; 4854 } 4855 4856 /* This is the function which gets called during socket creation to 4857 * initialized the SCTP-specific portion of the sock. 4858 * The sock structure should already be zero-filled memory. 4859 */ 4860 static int sctp_init_sock(struct sock *sk) 4861 { 4862 struct net *net = sock_net(sk); 4863 struct sctp_sock *sp; 4864 4865 pr_debug("%s: sk:%p\n", __func__, sk); 4866 4867 sp = sctp_sk(sk); 4868 4869 /* Initialize the SCTP per socket area. */ 4870 switch (sk->sk_type) { 4871 case SOCK_SEQPACKET: 4872 sp->type = SCTP_SOCKET_UDP; 4873 break; 4874 case SOCK_STREAM: 4875 sp->type = SCTP_SOCKET_TCP; 4876 break; 4877 default: 4878 return -ESOCKTNOSUPPORT; 4879 } 4880 4881 sk->sk_gso_type = SKB_GSO_SCTP; 4882 4883 /* Initialize default send parameters. These parameters can be 4884 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4885 */ 4886 sp->default_stream = 0; 4887 sp->default_ppid = 0; 4888 sp->default_flags = 0; 4889 sp->default_context = 0; 4890 sp->default_timetolive = 0; 4891 4892 sp->default_rcv_context = 0; 4893 sp->max_burst = net->sctp.max_burst; 4894 4895 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4896 4897 /* Initialize default setup parameters. These parameters 4898 * can be modified with the SCTP_INITMSG socket option or 4899 * overridden by the SCTP_INIT CMSG. 4900 */ 4901 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4902 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4903 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4904 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4905 4906 /* Initialize default RTO related parameters. These parameters can 4907 * be modified for with the SCTP_RTOINFO socket option. 4908 */ 4909 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4910 sp->rtoinfo.srto_max = net->sctp.rto_max; 4911 sp->rtoinfo.srto_min = net->sctp.rto_min; 4912 4913 /* Initialize default association related parameters. These parameters 4914 * can be modified with the SCTP_ASSOCINFO socket option. 4915 */ 4916 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4917 sp->assocparams.sasoc_number_peer_destinations = 0; 4918 sp->assocparams.sasoc_peer_rwnd = 0; 4919 sp->assocparams.sasoc_local_rwnd = 0; 4920 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4921 4922 /* Initialize default event subscriptions. By default, all the 4923 * options are off. 4924 */ 4925 sp->subscribe = 0; 4926 4927 /* Default Peer Address Parameters. These defaults can 4928 * be modified via SCTP_PEER_ADDR_PARAMS 4929 */ 4930 sp->hbinterval = net->sctp.hb_interval; 4931 sp->udp_port = htons(net->sctp.udp_port); 4932 sp->encap_port = htons(net->sctp.encap_port); 4933 sp->pathmaxrxt = net->sctp.max_retrans_path; 4934 sp->pf_retrans = net->sctp.pf_retrans; 4935 sp->ps_retrans = net->sctp.ps_retrans; 4936 sp->pf_expose = net->sctp.pf_expose; 4937 sp->pathmtu = 0; /* allow default discovery */ 4938 sp->sackdelay = net->sctp.sack_timeout; 4939 sp->sackfreq = 2; 4940 sp->param_flags = SPP_HB_ENABLE | 4941 SPP_PMTUD_ENABLE | 4942 SPP_SACKDELAY_ENABLE; 4943 sp->default_ss = SCTP_SS_DEFAULT; 4944 4945 /* If enabled no SCTP message fragmentation will be performed. 4946 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4947 */ 4948 sp->disable_fragments = 0; 4949 4950 /* Enable Nagle algorithm by default. */ 4951 sp->nodelay = 0; 4952 4953 sp->recvrcvinfo = 0; 4954 sp->recvnxtinfo = 0; 4955 4956 /* Enable by default. */ 4957 sp->v4mapped = 1; 4958 4959 /* Auto-close idle associations after the configured 4960 * number of seconds. A value of 0 disables this 4961 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4962 * for UDP-style sockets only. 4963 */ 4964 sp->autoclose = 0; 4965 4966 /* User specified fragmentation limit. */ 4967 sp->user_frag = 0; 4968 4969 sp->adaptation_ind = 0; 4970 4971 sp->pf = sctp_get_pf_specific(sk->sk_family); 4972 4973 /* Control variables for partial data delivery. */ 4974 atomic_set(&sp->pd_mode, 0); 4975 skb_queue_head_init(&sp->pd_lobby); 4976 sp->frag_interleave = 0; 4977 4978 /* Create a per socket endpoint structure. Even if we 4979 * change the data structure relationships, this may still 4980 * be useful for storing pre-connect address information. 4981 */ 4982 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4983 if (!sp->ep) 4984 return -ENOMEM; 4985 4986 sp->hmac = NULL; 4987 4988 sk->sk_destruct = sctp_destruct_sock; 4989 4990 SCTP_DBG_OBJCNT_INC(sock); 4991 4992 local_bh_disable(); 4993 sk_sockets_allocated_inc(sk); 4994 sock_prot_inuse_add(net, sk->sk_prot, 1); 4995 4996 /* Nothing can fail after this block, otherwise 4997 * sctp_destroy_sock() will be called without addr_wq_lock held 4998 */ 4999 if (net->sctp.default_auto_asconf) { 5000 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5001 list_add_tail(&sp->auto_asconf_list, 5002 &net->sctp.auto_asconf_splist); 5003 sp->do_auto_asconf = 1; 5004 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5005 } else { 5006 sp->do_auto_asconf = 0; 5007 } 5008 5009 local_bh_enable(); 5010 5011 return 0; 5012 } 5013 5014 /* Cleanup any SCTP per socket resources. Must be called with 5015 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5016 */ 5017 static void sctp_destroy_sock(struct sock *sk) 5018 { 5019 struct sctp_sock *sp; 5020 5021 pr_debug("%s: sk:%p\n", __func__, sk); 5022 5023 /* Release our hold on the endpoint. */ 5024 sp = sctp_sk(sk); 5025 /* This could happen during socket init, thus we bail out 5026 * early, since the rest of the below is not setup either. 5027 */ 5028 if (sp->ep == NULL) 5029 return; 5030 5031 if (sp->do_auto_asconf) { 5032 sp->do_auto_asconf = 0; 5033 list_del(&sp->auto_asconf_list); 5034 } 5035 sctp_endpoint_free(sp->ep); 5036 local_bh_disable(); 5037 sk_sockets_allocated_dec(sk); 5038 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5039 local_bh_enable(); 5040 } 5041 5042 /* Triggered when there are no references on the socket anymore */ 5043 static void sctp_destruct_sock(struct sock *sk) 5044 { 5045 struct sctp_sock *sp = sctp_sk(sk); 5046 5047 /* Free up the HMAC transform. */ 5048 crypto_free_shash(sp->hmac); 5049 5050 inet_sock_destruct(sk); 5051 } 5052 5053 /* API 4.1.7 shutdown() - TCP Style Syntax 5054 * int shutdown(int socket, int how); 5055 * 5056 * sd - the socket descriptor of the association to be closed. 5057 * how - Specifies the type of shutdown. The values are 5058 * as follows: 5059 * SHUT_RD 5060 * Disables further receive operations. No SCTP 5061 * protocol action is taken. 5062 * SHUT_WR 5063 * Disables further send operations, and initiates 5064 * the SCTP shutdown sequence. 5065 * SHUT_RDWR 5066 * Disables further send and receive operations 5067 * and initiates the SCTP shutdown sequence. 5068 */ 5069 static void sctp_shutdown(struct sock *sk, int how) 5070 { 5071 struct net *net = sock_net(sk); 5072 struct sctp_endpoint *ep; 5073 5074 if (!sctp_style(sk, TCP)) 5075 return; 5076 5077 ep = sctp_sk(sk)->ep; 5078 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5079 struct sctp_association *asoc; 5080 5081 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5082 asoc = list_entry(ep->asocs.next, 5083 struct sctp_association, asocs); 5084 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5085 } 5086 } 5087 5088 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5089 struct sctp_info *info) 5090 { 5091 struct sctp_transport *prim; 5092 struct list_head *pos; 5093 int mask; 5094 5095 memset(info, 0, sizeof(*info)); 5096 if (!asoc) { 5097 struct sctp_sock *sp = sctp_sk(sk); 5098 5099 info->sctpi_s_autoclose = sp->autoclose; 5100 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5101 info->sctpi_s_pd_point = sp->pd_point; 5102 info->sctpi_s_nodelay = sp->nodelay; 5103 info->sctpi_s_disable_fragments = sp->disable_fragments; 5104 info->sctpi_s_v4mapped = sp->v4mapped; 5105 info->sctpi_s_frag_interleave = sp->frag_interleave; 5106 info->sctpi_s_type = sp->type; 5107 5108 return 0; 5109 } 5110 5111 info->sctpi_tag = asoc->c.my_vtag; 5112 info->sctpi_state = asoc->state; 5113 info->sctpi_rwnd = asoc->a_rwnd; 5114 info->sctpi_unackdata = asoc->unack_data; 5115 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5116 info->sctpi_instrms = asoc->stream.incnt; 5117 info->sctpi_outstrms = asoc->stream.outcnt; 5118 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5119 info->sctpi_inqueue++; 5120 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5121 info->sctpi_outqueue++; 5122 info->sctpi_overall_error = asoc->overall_error_count; 5123 info->sctpi_max_burst = asoc->max_burst; 5124 info->sctpi_maxseg = asoc->frag_point; 5125 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5126 info->sctpi_peer_tag = asoc->c.peer_vtag; 5127 5128 mask = asoc->peer.ecn_capable << 1; 5129 mask = (mask | asoc->peer.ipv4_address) << 1; 5130 mask = (mask | asoc->peer.ipv6_address) << 1; 5131 mask = (mask | asoc->peer.hostname_address) << 1; 5132 mask = (mask | asoc->peer.asconf_capable) << 1; 5133 mask = (mask | asoc->peer.prsctp_capable) << 1; 5134 mask = (mask | asoc->peer.auth_capable); 5135 info->sctpi_peer_capable = mask; 5136 mask = asoc->peer.sack_needed << 1; 5137 mask = (mask | asoc->peer.sack_generation) << 1; 5138 mask = (mask | asoc->peer.zero_window_announced); 5139 info->sctpi_peer_sack = mask; 5140 5141 info->sctpi_isacks = asoc->stats.isacks; 5142 info->sctpi_osacks = asoc->stats.osacks; 5143 info->sctpi_opackets = asoc->stats.opackets; 5144 info->sctpi_ipackets = asoc->stats.ipackets; 5145 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5146 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5147 info->sctpi_idupchunks = asoc->stats.idupchunks; 5148 info->sctpi_gapcnt = asoc->stats.gapcnt; 5149 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5150 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5151 info->sctpi_oodchunks = asoc->stats.oodchunks; 5152 info->sctpi_iodchunks = asoc->stats.iodchunks; 5153 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5154 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5155 5156 prim = asoc->peer.primary_path; 5157 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5158 info->sctpi_p_state = prim->state; 5159 info->sctpi_p_cwnd = prim->cwnd; 5160 info->sctpi_p_srtt = prim->srtt; 5161 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5162 info->sctpi_p_hbinterval = prim->hbinterval; 5163 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5164 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5165 info->sctpi_p_ssthresh = prim->ssthresh; 5166 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5167 info->sctpi_p_flight_size = prim->flight_size; 5168 info->sctpi_p_error = prim->error_count; 5169 5170 return 0; 5171 } 5172 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5173 5174 /* use callback to avoid exporting the core structure */ 5175 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5176 { 5177 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5178 5179 rhashtable_walk_start(iter); 5180 } 5181 5182 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5183 { 5184 rhashtable_walk_stop(iter); 5185 rhashtable_walk_exit(iter); 5186 } 5187 5188 struct sctp_transport *sctp_transport_get_next(struct net *net, 5189 struct rhashtable_iter *iter) 5190 { 5191 struct sctp_transport *t; 5192 5193 t = rhashtable_walk_next(iter); 5194 for (; t; t = rhashtable_walk_next(iter)) { 5195 if (IS_ERR(t)) { 5196 if (PTR_ERR(t) == -EAGAIN) 5197 continue; 5198 break; 5199 } 5200 5201 if (!sctp_transport_hold(t)) 5202 continue; 5203 5204 if (net_eq(t->asoc->base.net, net) && 5205 t->asoc->peer.primary_path == t) 5206 break; 5207 5208 sctp_transport_put(t); 5209 } 5210 5211 return t; 5212 } 5213 5214 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5215 struct rhashtable_iter *iter, 5216 int pos) 5217 { 5218 struct sctp_transport *t; 5219 5220 if (!pos) 5221 return SEQ_START_TOKEN; 5222 5223 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5224 if (!--pos) 5225 break; 5226 sctp_transport_put(t); 5227 } 5228 5229 return t; 5230 } 5231 5232 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5233 void *p) { 5234 int err = 0; 5235 int hash = 0; 5236 struct sctp_ep_common *epb; 5237 struct sctp_hashbucket *head; 5238 5239 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5240 hash++, head++) { 5241 read_lock_bh(&head->lock); 5242 sctp_for_each_hentry(epb, &head->chain) { 5243 err = cb(sctp_ep(epb), p); 5244 if (err) 5245 break; 5246 } 5247 read_unlock_bh(&head->lock); 5248 } 5249 5250 return err; 5251 } 5252 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5253 5254 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5255 struct net *net, 5256 const union sctp_addr *laddr, 5257 const union sctp_addr *paddr, void *p) 5258 { 5259 struct sctp_transport *transport; 5260 int err; 5261 5262 rcu_read_lock(); 5263 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5264 rcu_read_unlock(); 5265 if (!transport) 5266 return -ENOENT; 5267 5268 err = cb(transport, p); 5269 sctp_transport_put(transport); 5270 5271 return err; 5272 } 5273 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5274 5275 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5276 int (*cb_done)(struct sctp_transport *, void *), 5277 struct net *net, int *pos, void *p) { 5278 struct rhashtable_iter hti; 5279 struct sctp_transport *tsp; 5280 int ret; 5281 5282 again: 5283 ret = 0; 5284 sctp_transport_walk_start(&hti); 5285 5286 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5287 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5288 ret = cb(tsp, p); 5289 if (ret) 5290 break; 5291 (*pos)++; 5292 sctp_transport_put(tsp); 5293 } 5294 sctp_transport_walk_stop(&hti); 5295 5296 if (ret) { 5297 if (cb_done && !cb_done(tsp, p)) { 5298 (*pos)++; 5299 sctp_transport_put(tsp); 5300 goto again; 5301 } 5302 sctp_transport_put(tsp); 5303 } 5304 5305 return ret; 5306 } 5307 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5308 5309 /* 7.2.1 Association Status (SCTP_STATUS) 5310 5311 * Applications can retrieve current status information about an 5312 * association, including association state, peer receiver window size, 5313 * number of unacked data chunks, and number of data chunks pending 5314 * receipt. This information is read-only. 5315 */ 5316 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5317 char __user *optval, 5318 int __user *optlen) 5319 { 5320 struct sctp_status status; 5321 struct sctp_association *asoc = NULL; 5322 struct sctp_transport *transport; 5323 sctp_assoc_t associd; 5324 int retval = 0; 5325 5326 if (len < sizeof(status)) { 5327 retval = -EINVAL; 5328 goto out; 5329 } 5330 5331 len = sizeof(status); 5332 if (copy_from_user(&status, optval, len)) { 5333 retval = -EFAULT; 5334 goto out; 5335 } 5336 5337 associd = status.sstat_assoc_id; 5338 asoc = sctp_id2assoc(sk, associd); 5339 if (!asoc) { 5340 retval = -EINVAL; 5341 goto out; 5342 } 5343 5344 transport = asoc->peer.primary_path; 5345 5346 status.sstat_assoc_id = sctp_assoc2id(asoc); 5347 status.sstat_state = sctp_assoc_to_state(asoc); 5348 status.sstat_rwnd = asoc->peer.rwnd; 5349 status.sstat_unackdata = asoc->unack_data; 5350 5351 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5352 status.sstat_instrms = asoc->stream.incnt; 5353 status.sstat_outstrms = asoc->stream.outcnt; 5354 status.sstat_fragmentation_point = asoc->frag_point; 5355 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5356 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5357 transport->af_specific->sockaddr_len); 5358 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5359 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5360 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5361 status.sstat_primary.spinfo_state = transport->state; 5362 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5363 status.sstat_primary.spinfo_srtt = transport->srtt; 5364 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5365 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5366 5367 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5368 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5369 5370 if (put_user(len, optlen)) { 5371 retval = -EFAULT; 5372 goto out; 5373 } 5374 5375 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5376 __func__, len, status.sstat_state, status.sstat_rwnd, 5377 status.sstat_assoc_id); 5378 5379 if (copy_to_user(optval, &status, len)) { 5380 retval = -EFAULT; 5381 goto out; 5382 } 5383 5384 out: 5385 return retval; 5386 } 5387 5388 5389 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5390 * 5391 * Applications can retrieve information about a specific peer address 5392 * of an association, including its reachability state, congestion 5393 * window, and retransmission timer values. This information is 5394 * read-only. 5395 */ 5396 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5397 char __user *optval, 5398 int __user *optlen) 5399 { 5400 struct sctp_paddrinfo pinfo; 5401 struct sctp_transport *transport; 5402 int retval = 0; 5403 5404 if (len < sizeof(pinfo)) { 5405 retval = -EINVAL; 5406 goto out; 5407 } 5408 5409 len = sizeof(pinfo); 5410 if (copy_from_user(&pinfo, optval, len)) { 5411 retval = -EFAULT; 5412 goto out; 5413 } 5414 5415 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5416 pinfo.spinfo_assoc_id); 5417 if (!transport) { 5418 retval = -EINVAL; 5419 goto out; 5420 } 5421 5422 if (transport->state == SCTP_PF && 5423 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5424 retval = -EACCES; 5425 goto out; 5426 } 5427 5428 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5429 pinfo.spinfo_state = transport->state; 5430 pinfo.spinfo_cwnd = transport->cwnd; 5431 pinfo.spinfo_srtt = transport->srtt; 5432 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5433 pinfo.spinfo_mtu = transport->pathmtu; 5434 5435 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5436 pinfo.spinfo_state = SCTP_ACTIVE; 5437 5438 if (put_user(len, optlen)) { 5439 retval = -EFAULT; 5440 goto out; 5441 } 5442 5443 if (copy_to_user(optval, &pinfo, len)) { 5444 retval = -EFAULT; 5445 goto out; 5446 } 5447 5448 out: 5449 return retval; 5450 } 5451 5452 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5453 * 5454 * This option is a on/off flag. If enabled no SCTP message 5455 * fragmentation will be performed. Instead if a message being sent 5456 * exceeds the current PMTU size, the message will NOT be sent and 5457 * instead a error will be indicated to the user. 5458 */ 5459 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5460 char __user *optval, int __user *optlen) 5461 { 5462 int val; 5463 5464 if (len < sizeof(int)) 5465 return -EINVAL; 5466 5467 len = sizeof(int); 5468 val = (sctp_sk(sk)->disable_fragments == 1); 5469 if (put_user(len, optlen)) 5470 return -EFAULT; 5471 if (copy_to_user(optval, &val, len)) 5472 return -EFAULT; 5473 return 0; 5474 } 5475 5476 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5477 * 5478 * This socket option is used to specify various notifications and 5479 * ancillary data the user wishes to receive. 5480 */ 5481 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5482 int __user *optlen) 5483 { 5484 struct sctp_event_subscribe subscribe; 5485 __u8 *sn_type = (__u8 *)&subscribe; 5486 int i; 5487 5488 if (len == 0) 5489 return -EINVAL; 5490 if (len > sizeof(struct sctp_event_subscribe)) 5491 len = sizeof(struct sctp_event_subscribe); 5492 if (put_user(len, optlen)) 5493 return -EFAULT; 5494 5495 for (i = 0; i < len; i++) 5496 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5497 SCTP_SN_TYPE_BASE + i); 5498 5499 if (copy_to_user(optval, &subscribe, len)) 5500 return -EFAULT; 5501 5502 return 0; 5503 } 5504 5505 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5506 * 5507 * This socket option is applicable to the UDP-style socket only. When 5508 * set it will cause associations that are idle for more than the 5509 * specified number of seconds to automatically close. An association 5510 * being idle is defined an association that has NOT sent or received 5511 * user data. The special value of '0' indicates that no automatic 5512 * close of any associations should be performed. The option expects an 5513 * integer defining the number of seconds of idle time before an 5514 * association is closed. 5515 */ 5516 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5517 { 5518 /* Applicable to UDP-style socket only */ 5519 if (sctp_style(sk, TCP)) 5520 return -EOPNOTSUPP; 5521 if (len < sizeof(int)) 5522 return -EINVAL; 5523 len = sizeof(int); 5524 if (put_user(len, optlen)) 5525 return -EFAULT; 5526 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5527 return -EFAULT; 5528 return 0; 5529 } 5530 5531 /* Helper routine to branch off an association to a new socket. */ 5532 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5533 { 5534 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5535 struct sctp_sock *sp = sctp_sk(sk); 5536 struct socket *sock; 5537 int err = 0; 5538 5539 /* Do not peel off from one netns to another one. */ 5540 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5541 return -EINVAL; 5542 5543 if (!asoc) 5544 return -EINVAL; 5545 5546 /* An association cannot be branched off from an already peeled-off 5547 * socket, nor is this supported for tcp style sockets. 5548 */ 5549 if (!sctp_style(sk, UDP)) 5550 return -EINVAL; 5551 5552 /* Create a new socket. */ 5553 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5554 if (err < 0) 5555 return err; 5556 5557 sctp_copy_sock(sock->sk, sk, asoc); 5558 5559 /* Make peeled-off sockets more like 1-1 accepted sockets. 5560 * Set the daddr and initialize id to something more random and also 5561 * copy over any ip options. 5562 */ 5563 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5564 sp->pf->copy_ip_options(sk, sock->sk); 5565 5566 /* Populate the fields of the newsk from the oldsk and migrate the 5567 * asoc to the newsk. 5568 */ 5569 err = sctp_sock_migrate(sk, sock->sk, asoc, 5570 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5571 if (err) { 5572 sock_release(sock); 5573 sock = NULL; 5574 } 5575 5576 *sockp = sock; 5577 5578 return err; 5579 } 5580 EXPORT_SYMBOL(sctp_do_peeloff); 5581 5582 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5583 struct file **newfile, unsigned flags) 5584 { 5585 struct socket *newsock; 5586 int retval; 5587 5588 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5589 if (retval < 0) 5590 goto out; 5591 5592 /* Map the socket to an unused fd that can be returned to the user. */ 5593 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5594 if (retval < 0) { 5595 sock_release(newsock); 5596 goto out; 5597 } 5598 5599 *newfile = sock_alloc_file(newsock, 0, NULL); 5600 if (IS_ERR(*newfile)) { 5601 put_unused_fd(retval); 5602 retval = PTR_ERR(*newfile); 5603 *newfile = NULL; 5604 return retval; 5605 } 5606 5607 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5608 retval); 5609 5610 peeloff->sd = retval; 5611 5612 if (flags & SOCK_NONBLOCK) 5613 (*newfile)->f_flags |= O_NONBLOCK; 5614 out: 5615 return retval; 5616 } 5617 5618 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5619 { 5620 sctp_peeloff_arg_t peeloff; 5621 struct file *newfile = NULL; 5622 int retval = 0; 5623 5624 if (len < sizeof(sctp_peeloff_arg_t)) 5625 return -EINVAL; 5626 len = sizeof(sctp_peeloff_arg_t); 5627 if (copy_from_user(&peeloff, optval, len)) 5628 return -EFAULT; 5629 5630 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5631 if (retval < 0) 5632 goto out; 5633 5634 /* Return the fd mapped to the new socket. */ 5635 if (put_user(len, optlen)) { 5636 fput(newfile); 5637 put_unused_fd(retval); 5638 return -EFAULT; 5639 } 5640 5641 if (copy_to_user(optval, &peeloff, len)) { 5642 fput(newfile); 5643 put_unused_fd(retval); 5644 return -EFAULT; 5645 } 5646 fd_install(retval, newfile); 5647 out: 5648 return retval; 5649 } 5650 5651 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5652 char __user *optval, int __user *optlen) 5653 { 5654 sctp_peeloff_flags_arg_t peeloff; 5655 struct file *newfile = NULL; 5656 int retval = 0; 5657 5658 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5659 return -EINVAL; 5660 len = sizeof(sctp_peeloff_flags_arg_t); 5661 if (copy_from_user(&peeloff, optval, len)) 5662 return -EFAULT; 5663 5664 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5665 &newfile, peeloff.flags); 5666 if (retval < 0) 5667 goto out; 5668 5669 /* Return the fd mapped to the new socket. */ 5670 if (put_user(len, optlen)) { 5671 fput(newfile); 5672 put_unused_fd(retval); 5673 return -EFAULT; 5674 } 5675 5676 if (copy_to_user(optval, &peeloff, len)) { 5677 fput(newfile); 5678 put_unused_fd(retval); 5679 return -EFAULT; 5680 } 5681 fd_install(retval, newfile); 5682 out: 5683 return retval; 5684 } 5685 5686 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5687 * 5688 * Applications can enable or disable heartbeats for any peer address of 5689 * an association, modify an address's heartbeat interval, force a 5690 * heartbeat to be sent immediately, and adjust the address's maximum 5691 * number of retransmissions sent before an address is considered 5692 * unreachable. The following structure is used to access and modify an 5693 * address's parameters: 5694 * 5695 * struct sctp_paddrparams { 5696 * sctp_assoc_t spp_assoc_id; 5697 * struct sockaddr_storage spp_address; 5698 * uint32_t spp_hbinterval; 5699 * uint16_t spp_pathmaxrxt; 5700 * uint32_t spp_pathmtu; 5701 * uint32_t spp_sackdelay; 5702 * uint32_t spp_flags; 5703 * }; 5704 * 5705 * spp_assoc_id - (one-to-many style socket) This is filled in the 5706 * application, and identifies the association for 5707 * this query. 5708 * spp_address - This specifies which address is of interest. 5709 * spp_hbinterval - This contains the value of the heartbeat interval, 5710 * in milliseconds. If a value of zero 5711 * is present in this field then no changes are to 5712 * be made to this parameter. 5713 * spp_pathmaxrxt - This contains the maximum number of 5714 * retransmissions before this address shall be 5715 * considered unreachable. If a value of zero 5716 * is present in this field then no changes are to 5717 * be made to this parameter. 5718 * spp_pathmtu - When Path MTU discovery is disabled the value 5719 * specified here will be the "fixed" path mtu. 5720 * Note that if the spp_address field is empty 5721 * then all associations on this address will 5722 * have this fixed path mtu set upon them. 5723 * 5724 * spp_sackdelay - When delayed sack is enabled, this value specifies 5725 * the number of milliseconds that sacks will be delayed 5726 * for. This value will apply to all addresses of an 5727 * association if the spp_address field is empty. Note 5728 * also, that if delayed sack is enabled and this 5729 * value is set to 0, no change is made to the last 5730 * recorded delayed sack timer value. 5731 * 5732 * spp_flags - These flags are used to control various features 5733 * on an association. The flag field may contain 5734 * zero or more of the following options. 5735 * 5736 * SPP_HB_ENABLE - Enable heartbeats on the 5737 * specified address. Note that if the address 5738 * field is empty all addresses for the association 5739 * have heartbeats enabled upon them. 5740 * 5741 * SPP_HB_DISABLE - Disable heartbeats on the 5742 * speicifed address. Note that if the address 5743 * field is empty all addresses for the association 5744 * will have their heartbeats disabled. Note also 5745 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5746 * mutually exclusive, only one of these two should 5747 * be specified. Enabling both fields will have 5748 * undetermined results. 5749 * 5750 * SPP_HB_DEMAND - Request a user initiated heartbeat 5751 * to be made immediately. 5752 * 5753 * SPP_PMTUD_ENABLE - This field will enable PMTU 5754 * discovery upon the specified address. Note that 5755 * if the address feild is empty then all addresses 5756 * on the association are effected. 5757 * 5758 * SPP_PMTUD_DISABLE - This field will disable PMTU 5759 * discovery upon the specified address. Note that 5760 * if the address feild is empty then all addresses 5761 * on the association are effected. Not also that 5762 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5763 * exclusive. Enabling both will have undetermined 5764 * results. 5765 * 5766 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5767 * on delayed sack. The time specified in spp_sackdelay 5768 * is used to specify the sack delay for this address. Note 5769 * that if spp_address is empty then all addresses will 5770 * enable delayed sack and take on the sack delay 5771 * value specified in spp_sackdelay. 5772 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5773 * off delayed sack. If the spp_address field is blank then 5774 * delayed sack is disabled for the entire association. Note 5775 * also that this field is mutually exclusive to 5776 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5777 * results. 5778 * 5779 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5780 * setting of the IPV6 flow label value. The value is 5781 * contained in the spp_ipv6_flowlabel field. 5782 * Upon retrieval, this flag will be set to indicate that 5783 * the spp_ipv6_flowlabel field has a valid value returned. 5784 * If a specific destination address is set (in the 5785 * spp_address field), then the value returned is that of 5786 * the address. If just an association is specified (and 5787 * no address), then the association's default flow label 5788 * is returned. If neither an association nor a destination 5789 * is specified, then the socket's default flow label is 5790 * returned. For non-IPv6 sockets, this flag will be left 5791 * cleared. 5792 * 5793 * SPP_DSCP: Setting this flag enables the setting of the 5794 * Differentiated Services Code Point (DSCP) value 5795 * associated with either the association or a specific 5796 * address. The value is obtained in the spp_dscp field. 5797 * Upon retrieval, this flag will be set to indicate that 5798 * the spp_dscp field has a valid value returned. If a 5799 * specific destination address is set when called (in the 5800 * spp_address field), then that specific destination 5801 * address's DSCP value is returned. If just an association 5802 * is specified, then the association's default DSCP is 5803 * returned. If neither an association nor a destination is 5804 * specified, then the socket's default DSCP is returned. 5805 * 5806 * spp_ipv6_flowlabel 5807 * - This field is used in conjunction with the 5808 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5809 * The 20 least significant bits are used for the flow 5810 * label. This setting has precedence over any IPv6-layer 5811 * setting. 5812 * 5813 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5814 * and contains the DSCP. The 6 most significant bits are 5815 * used for the DSCP. This setting has precedence over any 5816 * IPv4- or IPv6- layer setting. 5817 */ 5818 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5819 char __user *optval, int __user *optlen) 5820 { 5821 struct sctp_paddrparams params; 5822 struct sctp_transport *trans = NULL; 5823 struct sctp_association *asoc = NULL; 5824 struct sctp_sock *sp = sctp_sk(sk); 5825 5826 if (len >= sizeof(params)) 5827 len = sizeof(params); 5828 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5829 spp_ipv6_flowlabel), 4)) 5830 len = ALIGN(offsetof(struct sctp_paddrparams, 5831 spp_ipv6_flowlabel), 4); 5832 else 5833 return -EINVAL; 5834 5835 if (copy_from_user(¶ms, optval, len)) 5836 return -EFAULT; 5837 5838 /* If an address other than INADDR_ANY is specified, and 5839 * no transport is found, then the request is invalid. 5840 */ 5841 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5842 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5843 params.spp_assoc_id); 5844 if (!trans) { 5845 pr_debug("%s: failed no transport\n", __func__); 5846 return -EINVAL; 5847 } 5848 } 5849 5850 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5851 * socket is a one to many style socket, and an association 5852 * was not found, then the id was invalid. 5853 */ 5854 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5855 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5856 sctp_style(sk, UDP)) { 5857 pr_debug("%s: failed no association\n", __func__); 5858 return -EINVAL; 5859 } 5860 5861 if (trans) { 5862 /* Fetch transport values. */ 5863 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5864 params.spp_pathmtu = trans->pathmtu; 5865 params.spp_pathmaxrxt = trans->pathmaxrxt; 5866 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5867 5868 /*draft-11 doesn't say what to return in spp_flags*/ 5869 params.spp_flags = trans->param_flags; 5870 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5871 params.spp_ipv6_flowlabel = trans->flowlabel & 5872 SCTP_FLOWLABEL_VAL_MASK; 5873 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5874 } 5875 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5876 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5877 params.spp_flags |= SPP_DSCP; 5878 } 5879 } else if (asoc) { 5880 /* Fetch association values. */ 5881 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5882 params.spp_pathmtu = asoc->pathmtu; 5883 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5884 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5885 5886 /*draft-11 doesn't say what to return in spp_flags*/ 5887 params.spp_flags = asoc->param_flags; 5888 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5889 params.spp_ipv6_flowlabel = asoc->flowlabel & 5890 SCTP_FLOWLABEL_VAL_MASK; 5891 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5892 } 5893 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5894 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5895 params.spp_flags |= SPP_DSCP; 5896 } 5897 } else { 5898 /* Fetch socket values. */ 5899 params.spp_hbinterval = sp->hbinterval; 5900 params.spp_pathmtu = sp->pathmtu; 5901 params.spp_sackdelay = sp->sackdelay; 5902 params.spp_pathmaxrxt = sp->pathmaxrxt; 5903 5904 /*draft-11 doesn't say what to return in spp_flags*/ 5905 params.spp_flags = sp->param_flags; 5906 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5907 params.spp_ipv6_flowlabel = sp->flowlabel & 5908 SCTP_FLOWLABEL_VAL_MASK; 5909 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5910 } 5911 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5912 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5913 params.spp_flags |= SPP_DSCP; 5914 } 5915 } 5916 5917 if (copy_to_user(optval, ¶ms, len)) 5918 return -EFAULT; 5919 5920 if (put_user(len, optlen)) 5921 return -EFAULT; 5922 5923 return 0; 5924 } 5925 5926 /* 5927 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5928 * 5929 * This option will effect the way delayed acks are performed. This 5930 * option allows you to get or set the delayed ack time, in 5931 * milliseconds. It also allows changing the delayed ack frequency. 5932 * Changing the frequency to 1 disables the delayed sack algorithm. If 5933 * the assoc_id is 0, then this sets or gets the endpoints default 5934 * values. If the assoc_id field is non-zero, then the set or get 5935 * effects the specified association for the one to many model (the 5936 * assoc_id field is ignored by the one to one model). Note that if 5937 * sack_delay or sack_freq are 0 when setting this option, then the 5938 * current values will remain unchanged. 5939 * 5940 * struct sctp_sack_info { 5941 * sctp_assoc_t sack_assoc_id; 5942 * uint32_t sack_delay; 5943 * uint32_t sack_freq; 5944 * }; 5945 * 5946 * sack_assoc_id - This parameter, indicates which association the user 5947 * is performing an action upon. Note that if this field's value is 5948 * zero then the endpoints default value is changed (effecting future 5949 * associations only). 5950 * 5951 * sack_delay - This parameter contains the number of milliseconds that 5952 * the user is requesting the delayed ACK timer be set to. Note that 5953 * this value is defined in the standard to be between 200 and 500 5954 * milliseconds. 5955 * 5956 * sack_freq - This parameter contains the number of packets that must 5957 * be received before a sack is sent without waiting for the delay 5958 * timer to expire. The default value for this is 2, setting this 5959 * value to 1 will disable the delayed sack algorithm. 5960 */ 5961 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5962 char __user *optval, 5963 int __user *optlen) 5964 { 5965 struct sctp_sack_info params; 5966 struct sctp_association *asoc = NULL; 5967 struct sctp_sock *sp = sctp_sk(sk); 5968 5969 if (len >= sizeof(struct sctp_sack_info)) { 5970 len = sizeof(struct sctp_sack_info); 5971 5972 if (copy_from_user(¶ms, optval, len)) 5973 return -EFAULT; 5974 } else if (len == sizeof(struct sctp_assoc_value)) { 5975 pr_warn_ratelimited(DEPRECATED 5976 "%s (pid %d) " 5977 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5978 "Use struct sctp_sack_info instead\n", 5979 current->comm, task_pid_nr(current)); 5980 if (copy_from_user(¶ms, optval, len)) 5981 return -EFAULT; 5982 } else 5983 return -EINVAL; 5984 5985 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 5986 * socket is a one to many style socket, and an association 5987 * was not found, then the id was invalid. 5988 */ 5989 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5990 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 5991 sctp_style(sk, UDP)) 5992 return -EINVAL; 5993 5994 if (asoc) { 5995 /* Fetch association values. */ 5996 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5997 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 5998 params.sack_freq = asoc->sackfreq; 5999 6000 } else { 6001 params.sack_delay = 0; 6002 params.sack_freq = 1; 6003 } 6004 } else { 6005 /* Fetch socket values. */ 6006 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6007 params.sack_delay = sp->sackdelay; 6008 params.sack_freq = sp->sackfreq; 6009 } else { 6010 params.sack_delay = 0; 6011 params.sack_freq = 1; 6012 } 6013 } 6014 6015 if (copy_to_user(optval, ¶ms, len)) 6016 return -EFAULT; 6017 6018 if (put_user(len, optlen)) 6019 return -EFAULT; 6020 6021 return 0; 6022 } 6023 6024 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6025 * 6026 * Applications can specify protocol parameters for the default association 6027 * initialization. The option name argument to setsockopt() and getsockopt() 6028 * is SCTP_INITMSG. 6029 * 6030 * Setting initialization parameters is effective only on an unconnected 6031 * socket (for UDP-style sockets only future associations are effected 6032 * by the change). With TCP-style sockets, this option is inherited by 6033 * sockets derived from a listener socket. 6034 */ 6035 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6036 { 6037 if (len < sizeof(struct sctp_initmsg)) 6038 return -EINVAL; 6039 len = sizeof(struct sctp_initmsg); 6040 if (put_user(len, optlen)) 6041 return -EFAULT; 6042 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6043 return -EFAULT; 6044 return 0; 6045 } 6046 6047 6048 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6049 char __user *optval, int __user *optlen) 6050 { 6051 struct sctp_association *asoc; 6052 int cnt = 0; 6053 struct sctp_getaddrs getaddrs; 6054 struct sctp_transport *from; 6055 void __user *to; 6056 union sctp_addr temp; 6057 struct sctp_sock *sp = sctp_sk(sk); 6058 int addrlen; 6059 size_t space_left; 6060 int bytes_copied; 6061 6062 if (len < sizeof(struct sctp_getaddrs)) 6063 return -EINVAL; 6064 6065 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6066 return -EFAULT; 6067 6068 /* For UDP-style sockets, id specifies the association to query. */ 6069 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6070 if (!asoc) 6071 return -EINVAL; 6072 6073 to = optval + offsetof(struct sctp_getaddrs, addrs); 6074 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6075 6076 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6077 transports) { 6078 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6079 addrlen = sctp_get_pf_specific(sk->sk_family) 6080 ->addr_to_user(sp, &temp); 6081 if (space_left < addrlen) 6082 return -ENOMEM; 6083 if (copy_to_user(to, &temp, addrlen)) 6084 return -EFAULT; 6085 to += addrlen; 6086 cnt++; 6087 space_left -= addrlen; 6088 } 6089 6090 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6091 return -EFAULT; 6092 bytes_copied = ((char __user *)to) - optval; 6093 if (put_user(bytes_copied, optlen)) 6094 return -EFAULT; 6095 6096 return 0; 6097 } 6098 6099 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6100 size_t space_left, int *bytes_copied) 6101 { 6102 struct sctp_sockaddr_entry *addr; 6103 union sctp_addr temp; 6104 int cnt = 0; 6105 int addrlen; 6106 struct net *net = sock_net(sk); 6107 6108 rcu_read_lock(); 6109 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6110 if (!addr->valid) 6111 continue; 6112 6113 if ((PF_INET == sk->sk_family) && 6114 (AF_INET6 == addr->a.sa.sa_family)) 6115 continue; 6116 if ((PF_INET6 == sk->sk_family) && 6117 inet_v6_ipv6only(sk) && 6118 (AF_INET == addr->a.sa.sa_family)) 6119 continue; 6120 memcpy(&temp, &addr->a, sizeof(temp)); 6121 if (!temp.v4.sin_port) 6122 temp.v4.sin_port = htons(port); 6123 6124 addrlen = sctp_get_pf_specific(sk->sk_family) 6125 ->addr_to_user(sctp_sk(sk), &temp); 6126 6127 if (space_left < addrlen) { 6128 cnt = -ENOMEM; 6129 break; 6130 } 6131 memcpy(to, &temp, addrlen); 6132 6133 to += addrlen; 6134 cnt++; 6135 space_left -= addrlen; 6136 *bytes_copied += addrlen; 6137 } 6138 rcu_read_unlock(); 6139 6140 return cnt; 6141 } 6142 6143 6144 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6145 char __user *optval, int __user *optlen) 6146 { 6147 struct sctp_bind_addr *bp; 6148 struct sctp_association *asoc; 6149 int cnt = 0; 6150 struct sctp_getaddrs getaddrs; 6151 struct sctp_sockaddr_entry *addr; 6152 void __user *to; 6153 union sctp_addr temp; 6154 struct sctp_sock *sp = sctp_sk(sk); 6155 int addrlen; 6156 int err = 0; 6157 size_t space_left; 6158 int bytes_copied = 0; 6159 void *addrs; 6160 void *buf; 6161 6162 if (len < sizeof(struct sctp_getaddrs)) 6163 return -EINVAL; 6164 6165 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6166 return -EFAULT; 6167 6168 /* 6169 * For UDP-style sockets, id specifies the association to query. 6170 * If the id field is set to the value '0' then the locally bound 6171 * addresses are returned without regard to any particular 6172 * association. 6173 */ 6174 if (0 == getaddrs.assoc_id) { 6175 bp = &sctp_sk(sk)->ep->base.bind_addr; 6176 } else { 6177 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6178 if (!asoc) 6179 return -EINVAL; 6180 bp = &asoc->base.bind_addr; 6181 } 6182 6183 to = optval + offsetof(struct sctp_getaddrs, addrs); 6184 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6185 6186 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6187 if (!addrs) 6188 return -ENOMEM; 6189 6190 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6191 * addresses from the global local address list. 6192 */ 6193 if (sctp_list_single_entry(&bp->address_list)) { 6194 addr = list_entry(bp->address_list.next, 6195 struct sctp_sockaddr_entry, list); 6196 if (sctp_is_any(sk, &addr->a)) { 6197 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6198 space_left, &bytes_copied); 6199 if (cnt < 0) { 6200 err = cnt; 6201 goto out; 6202 } 6203 goto copy_getaddrs; 6204 } 6205 } 6206 6207 buf = addrs; 6208 /* Protection on the bound address list is not needed since 6209 * in the socket option context we hold a socket lock and 6210 * thus the bound address list can't change. 6211 */ 6212 list_for_each_entry(addr, &bp->address_list, list) { 6213 memcpy(&temp, &addr->a, sizeof(temp)); 6214 addrlen = sctp_get_pf_specific(sk->sk_family) 6215 ->addr_to_user(sp, &temp); 6216 if (space_left < addrlen) { 6217 err = -ENOMEM; /*fixme: right error?*/ 6218 goto out; 6219 } 6220 memcpy(buf, &temp, addrlen); 6221 buf += addrlen; 6222 bytes_copied += addrlen; 6223 cnt++; 6224 space_left -= addrlen; 6225 } 6226 6227 copy_getaddrs: 6228 if (copy_to_user(to, addrs, bytes_copied)) { 6229 err = -EFAULT; 6230 goto out; 6231 } 6232 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6233 err = -EFAULT; 6234 goto out; 6235 } 6236 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6237 * but we can't change it anymore. 6238 */ 6239 if (put_user(bytes_copied, optlen)) 6240 err = -EFAULT; 6241 out: 6242 kfree(addrs); 6243 return err; 6244 } 6245 6246 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6247 * 6248 * Requests that the local SCTP stack use the enclosed peer address as 6249 * the association primary. The enclosed address must be one of the 6250 * association peer's addresses. 6251 */ 6252 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6253 char __user *optval, int __user *optlen) 6254 { 6255 struct sctp_prim prim; 6256 struct sctp_association *asoc; 6257 struct sctp_sock *sp = sctp_sk(sk); 6258 6259 if (len < sizeof(struct sctp_prim)) 6260 return -EINVAL; 6261 6262 len = sizeof(struct sctp_prim); 6263 6264 if (copy_from_user(&prim, optval, len)) 6265 return -EFAULT; 6266 6267 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6268 if (!asoc) 6269 return -EINVAL; 6270 6271 if (!asoc->peer.primary_path) 6272 return -ENOTCONN; 6273 6274 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6275 asoc->peer.primary_path->af_specific->sockaddr_len); 6276 6277 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6278 (union sctp_addr *)&prim.ssp_addr); 6279 6280 if (put_user(len, optlen)) 6281 return -EFAULT; 6282 if (copy_to_user(optval, &prim, len)) 6283 return -EFAULT; 6284 6285 return 0; 6286 } 6287 6288 /* 6289 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6290 * 6291 * Requests that the local endpoint set the specified Adaptation Layer 6292 * Indication parameter for all future INIT and INIT-ACK exchanges. 6293 */ 6294 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6295 char __user *optval, int __user *optlen) 6296 { 6297 struct sctp_setadaptation adaptation; 6298 6299 if (len < sizeof(struct sctp_setadaptation)) 6300 return -EINVAL; 6301 6302 len = sizeof(struct sctp_setadaptation); 6303 6304 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6305 6306 if (put_user(len, optlen)) 6307 return -EFAULT; 6308 if (copy_to_user(optval, &adaptation, len)) 6309 return -EFAULT; 6310 6311 return 0; 6312 } 6313 6314 /* 6315 * 6316 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6317 * 6318 * Applications that wish to use the sendto() system call may wish to 6319 * specify a default set of parameters that would normally be supplied 6320 * through the inclusion of ancillary data. This socket option allows 6321 * such an application to set the default sctp_sndrcvinfo structure. 6322 6323 6324 * The application that wishes to use this socket option simply passes 6325 * in to this call the sctp_sndrcvinfo structure defined in Section 6326 * 5.2.2) The input parameters accepted by this call include 6327 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6328 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6329 * to this call if the caller is using the UDP model. 6330 * 6331 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6332 */ 6333 static int sctp_getsockopt_default_send_param(struct sock *sk, 6334 int len, char __user *optval, 6335 int __user *optlen) 6336 { 6337 struct sctp_sock *sp = sctp_sk(sk); 6338 struct sctp_association *asoc; 6339 struct sctp_sndrcvinfo info; 6340 6341 if (len < sizeof(info)) 6342 return -EINVAL; 6343 6344 len = sizeof(info); 6345 6346 if (copy_from_user(&info, optval, len)) 6347 return -EFAULT; 6348 6349 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6350 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6351 sctp_style(sk, UDP)) 6352 return -EINVAL; 6353 6354 if (asoc) { 6355 info.sinfo_stream = asoc->default_stream; 6356 info.sinfo_flags = asoc->default_flags; 6357 info.sinfo_ppid = asoc->default_ppid; 6358 info.sinfo_context = asoc->default_context; 6359 info.sinfo_timetolive = asoc->default_timetolive; 6360 } else { 6361 info.sinfo_stream = sp->default_stream; 6362 info.sinfo_flags = sp->default_flags; 6363 info.sinfo_ppid = sp->default_ppid; 6364 info.sinfo_context = sp->default_context; 6365 info.sinfo_timetolive = sp->default_timetolive; 6366 } 6367 6368 if (put_user(len, optlen)) 6369 return -EFAULT; 6370 if (copy_to_user(optval, &info, len)) 6371 return -EFAULT; 6372 6373 return 0; 6374 } 6375 6376 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6377 * (SCTP_DEFAULT_SNDINFO) 6378 */ 6379 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6380 char __user *optval, 6381 int __user *optlen) 6382 { 6383 struct sctp_sock *sp = sctp_sk(sk); 6384 struct sctp_association *asoc; 6385 struct sctp_sndinfo info; 6386 6387 if (len < sizeof(info)) 6388 return -EINVAL; 6389 6390 len = sizeof(info); 6391 6392 if (copy_from_user(&info, optval, len)) 6393 return -EFAULT; 6394 6395 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6396 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6397 sctp_style(sk, UDP)) 6398 return -EINVAL; 6399 6400 if (asoc) { 6401 info.snd_sid = asoc->default_stream; 6402 info.snd_flags = asoc->default_flags; 6403 info.snd_ppid = asoc->default_ppid; 6404 info.snd_context = asoc->default_context; 6405 } else { 6406 info.snd_sid = sp->default_stream; 6407 info.snd_flags = sp->default_flags; 6408 info.snd_ppid = sp->default_ppid; 6409 info.snd_context = sp->default_context; 6410 } 6411 6412 if (put_user(len, optlen)) 6413 return -EFAULT; 6414 if (copy_to_user(optval, &info, len)) 6415 return -EFAULT; 6416 6417 return 0; 6418 } 6419 6420 /* 6421 * 6422 * 7.1.5 SCTP_NODELAY 6423 * 6424 * Turn on/off any Nagle-like algorithm. This means that packets are 6425 * generally sent as soon as possible and no unnecessary delays are 6426 * introduced, at the cost of more packets in the network. Expects an 6427 * integer boolean flag. 6428 */ 6429 6430 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6431 char __user *optval, int __user *optlen) 6432 { 6433 int val; 6434 6435 if (len < sizeof(int)) 6436 return -EINVAL; 6437 6438 len = sizeof(int); 6439 val = (sctp_sk(sk)->nodelay == 1); 6440 if (put_user(len, optlen)) 6441 return -EFAULT; 6442 if (copy_to_user(optval, &val, len)) 6443 return -EFAULT; 6444 return 0; 6445 } 6446 6447 /* 6448 * 6449 * 7.1.1 SCTP_RTOINFO 6450 * 6451 * The protocol parameters used to initialize and bound retransmission 6452 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6453 * and modify these parameters. 6454 * All parameters are time values, in milliseconds. A value of 0, when 6455 * modifying the parameters, indicates that the current value should not 6456 * be changed. 6457 * 6458 */ 6459 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6460 char __user *optval, 6461 int __user *optlen) { 6462 struct sctp_rtoinfo rtoinfo; 6463 struct sctp_association *asoc; 6464 6465 if (len < sizeof (struct sctp_rtoinfo)) 6466 return -EINVAL; 6467 6468 len = sizeof(struct sctp_rtoinfo); 6469 6470 if (copy_from_user(&rtoinfo, optval, len)) 6471 return -EFAULT; 6472 6473 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6474 6475 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6476 sctp_style(sk, UDP)) 6477 return -EINVAL; 6478 6479 /* Values corresponding to the specific association. */ 6480 if (asoc) { 6481 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6482 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6483 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6484 } else { 6485 /* Values corresponding to the endpoint. */ 6486 struct sctp_sock *sp = sctp_sk(sk); 6487 6488 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6489 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6490 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6491 } 6492 6493 if (put_user(len, optlen)) 6494 return -EFAULT; 6495 6496 if (copy_to_user(optval, &rtoinfo, len)) 6497 return -EFAULT; 6498 6499 return 0; 6500 } 6501 6502 /* 6503 * 6504 * 7.1.2 SCTP_ASSOCINFO 6505 * 6506 * This option is used to tune the maximum retransmission attempts 6507 * of the association. 6508 * Returns an error if the new association retransmission value is 6509 * greater than the sum of the retransmission value of the peer. 6510 * See [SCTP] for more information. 6511 * 6512 */ 6513 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6514 char __user *optval, 6515 int __user *optlen) 6516 { 6517 6518 struct sctp_assocparams assocparams; 6519 struct sctp_association *asoc; 6520 struct list_head *pos; 6521 int cnt = 0; 6522 6523 if (len < sizeof (struct sctp_assocparams)) 6524 return -EINVAL; 6525 6526 len = sizeof(struct sctp_assocparams); 6527 6528 if (copy_from_user(&assocparams, optval, len)) 6529 return -EFAULT; 6530 6531 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6532 6533 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6534 sctp_style(sk, UDP)) 6535 return -EINVAL; 6536 6537 /* Values correspoinding to the specific association */ 6538 if (asoc) { 6539 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6540 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6541 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6542 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6543 6544 list_for_each(pos, &asoc->peer.transport_addr_list) { 6545 cnt++; 6546 } 6547 6548 assocparams.sasoc_number_peer_destinations = cnt; 6549 } else { 6550 /* Values corresponding to the endpoint */ 6551 struct sctp_sock *sp = sctp_sk(sk); 6552 6553 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6554 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6555 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6556 assocparams.sasoc_cookie_life = 6557 sp->assocparams.sasoc_cookie_life; 6558 assocparams.sasoc_number_peer_destinations = 6559 sp->assocparams. 6560 sasoc_number_peer_destinations; 6561 } 6562 6563 if (put_user(len, optlen)) 6564 return -EFAULT; 6565 6566 if (copy_to_user(optval, &assocparams, len)) 6567 return -EFAULT; 6568 6569 return 0; 6570 } 6571 6572 /* 6573 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6574 * 6575 * This socket option is a boolean flag which turns on or off mapped V4 6576 * addresses. If this option is turned on and the socket is type 6577 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6578 * If this option is turned off, then no mapping will be done of V4 6579 * addresses and a user will receive both PF_INET6 and PF_INET type 6580 * addresses on the socket. 6581 */ 6582 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6583 char __user *optval, int __user *optlen) 6584 { 6585 int val; 6586 struct sctp_sock *sp = sctp_sk(sk); 6587 6588 if (len < sizeof(int)) 6589 return -EINVAL; 6590 6591 len = sizeof(int); 6592 val = sp->v4mapped; 6593 if (put_user(len, optlen)) 6594 return -EFAULT; 6595 if (copy_to_user(optval, &val, len)) 6596 return -EFAULT; 6597 6598 return 0; 6599 } 6600 6601 /* 6602 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6603 * (chapter and verse is quoted at sctp_setsockopt_context()) 6604 */ 6605 static int sctp_getsockopt_context(struct sock *sk, int len, 6606 char __user *optval, int __user *optlen) 6607 { 6608 struct sctp_assoc_value params; 6609 struct sctp_association *asoc; 6610 6611 if (len < sizeof(struct sctp_assoc_value)) 6612 return -EINVAL; 6613 6614 len = sizeof(struct sctp_assoc_value); 6615 6616 if (copy_from_user(¶ms, optval, len)) 6617 return -EFAULT; 6618 6619 asoc = sctp_id2assoc(sk, params.assoc_id); 6620 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6621 sctp_style(sk, UDP)) 6622 return -EINVAL; 6623 6624 params.assoc_value = asoc ? asoc->default_rcv_context 6625 : sctp_sk(sk)->default_rcv_context; 6626 6627 if (put_user(len, optlen)) 6628 return -EFAULT; 6629 if (copy_to_user(optval, ¶ms, len)) 6630 return -EFAULT; 6631 6632 return 0; 6633 } 6634 6635 /* 6636 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6637 * This option will get or set the maximum size to put in any outgoing 6638 * SCTP DATA chunk. If a message is larger than this size it will be 6639 * fragmented by SCTP into the specified size. Note that the underlying 6640 * SCTP implementation may fragment into smaller sized chunks when the 6641 * PMTU of the underlying association is smaller than the value set by 6642 * the user. The default value for this option is '0' which indicates 6643 * the user is NOT limiting fragmentation and only the PMTU will effect 6644 * SCTP's choice of DATA chunk size. Note also that values set larger 6645 * than the maximum size of an IP datagram will effectively let SCTP 6646 * control fragmentation (i.e. the same as setting this option to 0). 6647 * 6648 * The following structure is used to access and modify this parameter: 6649 * 6650 * struct sctp_assoc_value { 6651 * sctp_assoc_t assoc_id; 6652 * uint32_t assoc_value; 6653 * }; 6654 * 6655 * assoc_id: This parameter is ignored for one-to-one style sockets. 6656 * For one-to-many style sockets this parameter indicates which 6657 * association the user is performing an action upon. Note that if 6658 * this field's value is zero then the endpoints default value is 6659 * changed (effecting future associations only). 6660 * assoc_value: This parameter specifies the maximum size in bytes. 6661 */ 6662 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6663 char __user *optval, int __user *optlen) 6664 { 6665 struct sctp_assoc_value params; 6666 struct sctp_association *asoc; 6667 6668 if (len == sizeof(int)) { 6669 pr_warn_ratelimited(DEPRECATED 6670 "%s (pid %d) " 6671 "Use of int in maxseg socket option.\n" 6672 "Use struct sctp_assoc_value instead\n", 6673 current->comm, task_pid_nr(current)); 6674 params.assoc_id = SCTP_FUTURE_ASSOC; 6675 } else if (len >= sizeof(struct sctp_assoc_value)) { 6676 len = sizeof(struct sctp_assoc_value); 6677 if (copy_from_user(¶ms, optval, len)) 6678 return -EFAULT; 6679 } else 6680 return -EINVAL; 6681 6682 asoc = sctp_id2assoc(sk, params.assoc_id); 6683 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6684 sctp_style(sk, UDP)) 6685 return -EINVAL; 6686 6687 if (asoc) 6688 params.assoc_value = asoc->frag_point; 6689 else 6690 params.assoc_value = sctp_sk(sk)->user_frag; 6691 6692 if (put_user(len, optlen)) 6693 return -EFAULT; 6694 if (len == sizeof(int)) { 6695 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6696 return -EFAULT; 6697 } else { 6698 if (copy_to_user(optval, ¶ms, len)) 6699 return -EFAULT; 6700 } 6701 6702 return 0; 6703 } 6704 6705 /* 6706 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6707 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6708 */ 6709 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6710 char __user *optval, int __user *optlen) 6711 { 6712 int val; 6713 6714 if (len < sizeof(int)) 6715 return -EINVAL; 6716 6717 len = sizeof(int); 6718 6719 val = sctp_sk(sk)->frag_interleave; 6720 if (put_user(len, optlen)) 6721 return -EFAULT; 6722 if (copy_to_user(optval, &val, len)) 6723 return -EFAULT; 6724 6725 return 0; 6726 } 6727 6728 /* 6729 * 7.1.25. Set or Get the sctp partial delivery point 6730 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6731 */ 6732 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6733 char __user *optval, 6734 int __user *optlen) 6735 { 6736 u32 val; 6737 6738 if (len < sizeof(u32)) 6739 return -EINVAL; 6740 6741 len = sizeof(u32); 6742 6743 val = sctp_sk(sk)->pd_point; 6744 if (put_user(len, optlen)) 6745 return -EFAULT; 6746 if (copy_to_user(optval, &val, len)) 6747 return -EFAULT; 6748 6749 return 0; 6750 } 6751 6752 /* 6753 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6754 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6755 */ 6756 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6757 char __user *optval, 6758 int __user *optlen) 6759 { 6760 struct sctp_assoc_value params; 6761 struct sctp_association *asoc; 6762 6763 if (len == sizeof(int)) { 6764 pr_warn_ratelimited(DEPRECATED 6765 "%s (pid %d) " 6766 "Use of int in max_burst socket option.\n" 6767 "Use struct sctp_assoc_value instead\n", 6768 current->comm, task_pid_nr(current)); 6769 params.assoc_id = SCTP_FUTURE_ASSOC; 6770 } else if (len >= sizeof(struct sctp_assoc_value)) { 6771 len = sizeof(struct sctp_assoc_value); 6772 if (copy_from_user(¶ms, optval, len)) 6773 return -EFAULT; 6774 } else 6775 return -EINVAL; 6776 6777 asoc = sctp_id2assoc(sk, params.assoc_id); 6778 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6779 sctp_style(sk, UDP)) 6780 return -EINVAL; 6781 6782 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6783 6784 if (len == sizeof(int)) { 6785 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6786 return -EFAULT; 6787 } else { 6788 if (copy_to_user(optval, ¶ms, len)) 6789 return -EFAULT; 6790 } 6791 6792 return 0; 6793 6794 } 6795 6796 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6797 char __user *optval, int __user *optlen) 6798 { 6799 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6800 struct sctp_hmacalgo __user *p = (void __user *)optval; 6801 struct sctp_hmac_algo_param *hmacs; 6802 __u16 data_len = 0; 6803 u32 num_idents; 6804 int i; 6805 6806 if (!ep->auth_enable) 6807 return -EACCES; 6808 6809 hmacs = ep->auth_hmacs_list; 6810 data_len = ntohs(hmacs->param_hdr.length) - 6811 sizeof(struct sctp_paramhdr); 6812 6813 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6814 return -EINVAL; 6815 6816 len = sizeof(struct sctp_hmacalgo) + data_len; 6817 num_idents = data_len / sizeof(u16); 6818 6819 if (put_user(len, optlen)) 6820 return -EFAULT; 6821 if (put_user(num_idents, &p->shmac_num_idents)) 6822 return -EFAULT; 6823 for (i = 0; i < num_idents; i++) { 6824 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6825 6826 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6827 return -EFAULT; 6828 } 6829 return 0; 6830 } 6831 6832 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6833 char __user *optval, int __user *optlen) 6834 { 6835 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6836 struct sctp_authkeyid val; 6837 struct sctp_association *asoc; 6838 6839 if (len < sizeof(struct sctp_authkeyid)) 6840 return -EINVAL; 6841 6842 len = sizeof(struct sctp_authkeyid); 6843 if (copy_from_user(&val, optval, len)) 6844 return -EFAULT; 6845 6846 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6847 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6848 return -EINVAL; 6849 6850 if (asoc) { 6851 if (!asoc->peer.auth_capable) 6852 return -EACCES; 6853 val.scact_keynumber = asoc->active_key_id; 6854 } else { 6855 if (!ep->auth_enable) 6856 return -EACCES; 6857 val.scact_keynumber = ep->active_key_id; 6858 } 6859 6860 if (put_user(len, optlen)) 6861 return -EFAULT; 6862 if (copy_to_user(optval, &val, len)) 6863 return -EFAULT; 6864 6865 return 0; 6866 } 6867 6868 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6869 char __user *optval, int __user *optlen) 6870 { 6871 struct sctp_authchunks __user *p = (void __user *)optval; 6872 struct sctp_authchunks val; 6873 struct sctp_association *asoc; 6874 struct sctp_chunks_param *ch; 6875 u32 num_chunks = 0; 6876 char __user *to; 6877 6878 if (len < sizeof(struct sctp_authchunks)) 6879 return -EINVAL; 6880 6881 if (copy_from_user(&val, optval, sizeof(val))) 6882 return -EFAULT; 6883 6884 to = p->gauth_chunks; 6885 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6886 if (!asoc) 6887 return -EINVAL; 6888 6889 if (!asoc->peer.auth_capable) 6890 return -EACCES; 6891 6892 ch = asoc->peer.peer_chunks; 6893 if (!ch) 6894 goto num; 6895 6896 /* See if the user provided enough room for all the data */ 6897 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6898 if (len < num_chunks) 6899 return -EINVAL; 6900 6901 if (copy_to_user(to, ch->chunks, num_chunks)) 6902 return -EFAULT; 6903 num: 6904 len = sizeof(struct sctp_authchunks) + num_chunks; 6905 if (put_user(len, optlen)) 6906 return -EFAULT; 6907 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6908 return -EFAULT; 6909 return 0; 6910 } 6911 6912 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6913 char __user *optval, int __user *optlen) 6914 { 6915 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6916 struct sctp_authchunks __user *p = (void __user *)optval; 6917 struct sctp_authchunks val; 6918 struct sctp_association *asoc; 6919 struct sctp_chunks_param *ch; 6920 u32 num_chunks = 0; 6921 char __user *to; 6922 6923 if (len < sizeof(struct sctp_authchunks)) 6924 return -EINVAL; 6925 6926 if (copy_from_user(&val, optval, sizeof(val))) 6927 return -EFAULT; 6928 6929 to = p->gauth_chunks; 6930 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6931 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6932 sctp_style(sk, UDP)) 6933 return -EINVAL; 6934 6935 if (asoc) { 6936 if (!asoc->peer.auth_capable) 6937 return -EACCES; 6938 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6939 } else { 6940 if (!ep->auth_enable) 6941 return -EACCES; 6942 ch = ep->auth_chunk_list; 6943 } 6944 if (!ch) 6945 goto num; 6946 6947 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6948 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6949 return -EINVAL; 6950 6951 if (copy_to_user(to, ch->chunks, num_chunks)) 6952 return -EFAULT; 6953 num: 6954 len = sizeof(struct sctp_authchunks) + num_chunks; 6955 if (put_user(len, optlen)) 6956 return -EFAULT; 6957 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6958 return -EFAULT; 6959 6960 return 0; 6961 } 6962 6963 /* 6964 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6965 * This option gets the current number of associations that are attached 6966 * to a one-to-many style socket. The option value is an uint32_t. 6967 */ 6968 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6969 char __user *optval, int __user *optlen) 6970 { 6971 struct sctp_sock *sp = sctp_sk(sk); 6972 struct sctp_association *asoc; 6973 u32 val = 0; 6974 6975 if (sctp_style(sk, TCP)) 6976 return -EOPNOTSUPP; 6977 6978 if (len < sizeof(u32)) 6979 return -EINVAL; 6980 6981 len = sizeof(u32); 6982 6983 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6984 val++; 6985 } 6986 6987 if (put_user(len, optlen)) 6988 return -EFAULT; 6989 if (copy_to_user(optval, &val, len)) 6990 return -EFAULT; 6991 6992 return 0; 6993 } 6994 6995 /* 6996 * 8.1.23 SCTP_AUTO_ASCONF 6997 * See the corresponding setsockopt entry as description 6998 */ 6999 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7000 char __user *optval, int __user *optlen) 7001 { 7002 int val = 0; 7003 7004 if (len < sizeof(int)) 7005 return -EINVAL; 7006 7007 len = sizeof(int); 7008 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7009 val = 1; 7010 if (put_user(len, optlen)) 7011 return -EFAULT; 7012 if (copy_to_user(optval, &val, len)) 7013 return -EFAULT; 7014 return 0; 7015 } 7016 7017 /* 7018 * 8.2.6. Get the Current Identifiers of Associations 7019 * (SCTP_GET_ASSOC_ID_LIST) 7020 * 7021 * This option gets the current list of SCTP association identifiers of 7022 * the SCTP associations handled by a one-to-many style socket. 7023 */ 7024 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7025 char __user *optval, int __user *optlen) 7026 { 7027 struct sctp_sock *sp = sctp_sk(sk); 7028 struct sctp_association *asoc; 7029 struct sctp_assoc_ids *ids; 7030 u32 num = 0; 7031 7032 if (sctp_style(sk, TCP)) 7033 return -EOPNOTSUPP; 7034 7035 if (len < sizeof(struct sctp_assoc_ids)) 7036 return -EINVAL; 7037 7038 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7039 num++; 7040 } 7041 7042 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7043 return -EINVAL; 7044 7045 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7046 7047 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7048 if (unlikely(!ids)) 7049 return -ENOMEM; 7050 7051 ids->gaids_number_of_ids = num; 7052 num = 0; 7053 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7054 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7055 } 7056 7057 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7058 kfree(ids); 7059 return -EFAULT; 7060 } 7061 7062 kfree(ids); 7063 return 0; 7064 } 7065 7066 /* 7067 * SCTP_PEER_ADDR_THLDS 7068 * 7069 * This option allows us to fetch the partially failed threshold for one or all 7070 * transports in an association. See Section 6.1 of: 7071 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7072 */ 7073 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7074 char __user *optval, int len, 7075 int __user *optlen, bool v2) 7076 { 7077 struct sctp_paddrthlds_v2 val; 7078 struct sctp_transport *trans; 7079 struct sctp_association *asoc; 7080 int min; 7081 7082 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7083 if (len < min) 7084 return -EINVAL; 7085 len = min; 7086 if (copy_from_user(&val, optval, len)) 7087 return -EFAULT; 7088 7089 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7090 trans = sctp_addr_id2transport(sk, &val.spt_address, 7091 val.spt_assoc_id); 7092 if (!trans) 7093 return -ENOENT; 7094 7095 val.spt_pathmaxrxt = trans->pathmaxrxt; 7096 val.spt_pathpfthld = trans->pf_retrans; 7097 val.spt_pathcpthld = trans->ps_retrans; 7098 7099 goto out; 7100 } 7101 7102 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7103 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7104 sctp_style(sk, UDP)) 7105 return -EINVAL; 7106 7107 if (asoc) { 7108 val.spt_pathpfthld = asoc->pf_retrans; 7109 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7110 val.spt_pathcpthld = asoc->ps_retrans; 7111 } else { 7112 struct sctp_sock *sp = sctp_sk(sk); 7113 7114 val.spt_pathpfthld = sp->pf_retrans; 7115 val.spt_pathmaxrxt = sp->pathmaxrxt; 7116 val.spt_pathcpthld = sp->ps_retrans; 7117 } 7118 7119 out: 7120 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7121 return -EFAULT; 7122 7123 return 0; 7124 } 7125 7126 /* 7127 * SCTP_GET_ASSOC_STATS 7128 * 7129 * This option retrieves local per endpoint statistics. It is modeled 7130 * after OpenSolaris' implementation 7131 */ 7132 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7133 char __user *optval, 7134 int __user *optlen) 7135 { 7136 struct sctp_assoc_stats sas; 7137 struct sctp_association *asoc = NULL; 7138 7139 /* User must provide at least the assoc id */ 7140 if (len < sizeof(sctp_assoc_t)) 7141 return -EINVAL; 7142 7143 /* Allow the struct to grow and fill in as much as possible */ 7144 len = min_t(size_t, len, sizeof(sas)); 7145 7146 if (copy_from_user(&sas, optval, len)) 7147 return -EFAULT; 7148 7149 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7150 if (!asoc) 7151 return -EINVAL; 7152 7153 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7154 sas.sas_gapcnt = asoc->stats.gapcnt; 7155 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7156 sas.sas_osacks = asoc->stats.osacks; 7157 sas.sas_isacks = asoc->stats.isacks; 7158 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7159 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7160 sas.sas_oodchunks = asoc->stats.oodchunks; 7161 sas.sas_iodchunks = asoc->stats.iodchunks; 7162 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7163 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7164 sas.sas_idupchunks = asoc->stats.idupchunks; 7165 sas.sas_opackets = asoc->stats.opackets; 7166 sas.sas_ipackets = asoc->stats.ipackets; 7167 7168 /* New high max rto observed, will return 0 if not a single 7169 * RTO update took place. obs_rto_ipaddr will be bogus 7170 * in such a case 7171 */ 7172 sas.sas_maxrto = asoc->stats.max_obs_rto; 7173 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7174 sizeof(struct sockaddr_storage)); 7175 7176 /* Mark beginning of a new observation period */ 7177 asoc->stats.max_obs_rto = asoc->rto_min; 7178 7179 if (put_user(len, optlen)) 7180 return -EFAULT; 7181 7182 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7183 7184 if (copy_to_user(optval, &sas, len)) 7185 return -EFAULT; 7186 7187 return 0; 7188 } 7189 7190 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7191 char __user *optval, 7192 int __user *optlen) 7193 { 7194 int val = 0; 7195 7196 if (len < sizeof(int)) 7197 return -EINVAL; 7198 7199 len = sizeof(int); 7200 if (sctp_sk(sk)->recvrcvinfo) 7201 val = 1; 7202 if (put_user(len, optlen)) 7203 return -EFAULT; 7204 if (copy_to_user(optval, &val, len)) 7205 return -EFAULT; 7206 7207 return 0; 7208 } 7209 7210 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7211 char __user *optval, 7212 int __user *optlen) 7213 { 7214 int val = 0; 7215 7216 if (len < sizeof(int)) 7217 return -EINVAL; 7218 7219 len = sizeof(int); 7220 if (sctp_sk(sk)->recvnxtinfo) 7221 val = 1; 7222 if (put_user(len, optlen)) 7223 return -EFAULT; 7224 if (copy_to_user(optval, &val, len)) 7225 return -EFAULT; 7226 7227 return 0; 7228 } 7229 7230 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7231 char __user *optval, 7232 int __user *optlen) 7233 { 7234 struct sctp_assoc_value params; 7235 struct sctp_association *asoc; 7236 int retval = -EFAULT; 7237 7238 if (len < sizeof(params)) { 7239 retval = -EINVAL; 7240 goto out; 7241 } 7242 7243 len = sizeof(params); 7244 if (copy_from_user(¶ms, optval, len)) 7245 goto out; 7246 7247 asoc = sctp_id2assoc(sk, params.assoc_id); 7248 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7249 sctp_style(sk, UDP)) { 7250 retval = -EINVAL; 7251 goto out; 7252 } 7253 7254 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7255 : sctp_sk(sk)->ep->prsctp_enable; 7256 7257 if (put_user(len, optlen)) 7258 goto out; 7259 7260 if (copy_to_user(optval, ¶ms, len)) 7261 goto out; 7262 7263 retval = 0; 7264 7265 out: 7266 return retval; 7267 } 7268 7269 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7270 char __user *optval, 7271 int __user *optlen) 7272 { 7273 struct sctp_default_prinfo info; 7274 struct sctp_association *asoc; 7275 int retval = -EFAULT; 7276 7277 if (len < sizeof(info)) { 7278 retval = -EINVAL; 7279 goto out; 7280 } 7281 7282 len = sizeof(info); 7283 if (copy_from_user(&info, optval, len)) 7284 goto out; 7285 7286 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7287 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7288 sctp_style(sk, UDP)) { 7289 retval = -EINVAL; 7290 goto out; 7291 } 7292 7293 if (asoc) { 7294 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7295 info.pr_value = asoc->default_timetolive; 7296 } else { 7297 struct sctp_sock *sp = sctp_sk(sk); 7298 7299 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7300 info.pr_value = sp->default_timetolive; 7301 } 7302 7303 if (put_user(len, optlen)) 7304 goto out; 7305 7306 if (copy_to_user(optval, &info, len)) 7307 goto out; 7308 7309 retval = 0; 7310 7311 out: 7312 return retval; 7313 } 7314 7315 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7316 char __user *optval, 7317 int __user *optlen) 7318 { 7319 struct sctp_prstatus params; 7320 struct sctp_association *asoc; 7321 int policy; 7322 int retval = -EINVAL; 7323 7324 if (len < sizeof(params)) 7325 goto out; 7326 7327 len = sizeof(params); 7328 if (copy_from_user(¶ms, optval, len)) { 7329 retval = -EFAULT; 7330 goto out; 7331 } 7332 7333 policy = params.sprstat_policy; 7334 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7335 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7336 goto out; 7337 7338 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7339 if (!asoc) 7340 goto out; 7341 7342 if (policy == SCTP_PR_SCTP_ALL) { 7343 params.sprstat_abandoned_unsent = 0; 7344 params.sprstat_abandoned_sent = 0; 7345 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7346 params.sprstat_abandoned_unsent += 7347 asoc->abandoned_unsent[policy]; 7348 params.sprstat_abandoned_sent += 7349 asoc->abandoned_sent[policy]; 7350 } 7351 } else { 7352 params.sprstat_abandoned_unsent = 7353 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7354 params.sprstat_abandoned_sent = 7355 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7356 } 7357 7358 if (put_user(len, optlen)) { 7359 retval = -EFAULT; 7360 goto out; 7361 } 7362 7363 if (copy_to_user(optval, ¶ms, len)) { 7364 retval = -EFAULT; 7365 goto out; 7366 } 7367 7368 retval = 0; 7369 7370 out: 7371 return retval; 7372 } 7373 7374 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7375 char __user *optval, 7376 int __user *optlen) 7377 { 7378 struct sctp_stream_out_ext *streamoute; 7379 struct sctp_association *asoc; 7380 struct sctp_prstatus params; 7381 int retval = -EINVAL; 7382 int policy; 7383 7384 if (len < sizeof(params)) 7385 goto out; 7386 7387 len = sizeof(params); 7388 if (copy_from_user(¶ms, optval, len)) { 7389 retval = -EFAULT; 7390 goto out; 7391 } 7392 7393 policy = params.sprstat_policy; 7394 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7395 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7396 goto out; 7397 7398 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7399 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7400 goto out; 7401 7402 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7403 if (!streamoute) { 7404 /* Not allocated yet, means all stats are 0 */ 7405 params.sprstat_abandoned_unsent = 0; 7406 params.sprstat_abandoned_sent = 0; 7407 retval = 0; 7408 goto out; 7409 } 7410 7411 if (policy == SCTP_PR_SCTP_ALL) { 7412 params.sprstat_abandoned_unsent = 0; 7413 params.sprstat_abandoned_sent = 0; 7414 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7415 params.sprstat_abandoned_unsent += 7416 streamoute->abandoned_unsent[policy]; 7417 params.sprstat_abandoned_sent += 7418 streamoute->abandoned_sent[policy]; 7419 } 7420 } else { 7421 params.sprstat_abandoned_unsent = 7422 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7423 params.sprstat_abandoned_sent = 7424 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7425 } 7426 7427 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7428 retval = -EFAULT; 7429 goto out; 7430 } 7431 7432 retval = 0; 7433 7434 out: 7435 return retval; 7436 } 7437 7438 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7439 char __user *optval, 7440 int __user *optlen) 7441 { 7442 struct sctp_assoc_value params; 7443 struct sctp_association *asoc; 7444 int retval = -EFAULT; 7445 7446 if (len < sizeof(params)) { 7447 retval = -EINVAL; 7448 goto out; 7449 } 7450 7451 len = sizeof(params); 7452 if (copy_from_user(¶ms, optval, len)) 7453 goto out; 7454 7455 asoc = sctp_id2assoc(sk, params.assoc_id); 7456 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7457 sctp_style(sk, UDP)) { 7458 retval = -EINVAL; 7459 goto out; 7460 } 7461 7462 params.assoc_value = asoc ? asoc->peer.reconf_capable 7463 : sctp_sk(sk)->ep->reconf_enable; 7464 7465 if (put_user(len, optlen)) 7466 goto out; 7467 7468 if (copy_to_user(optval, ¶ms, len)) 7469 goto out; 7470 7471 retval = 0; 7472 7473 out: 7474 return retval; 7475 } 7476 7477 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7478 char __user *optval, 7479 int __user *optlen) 7480 { 7481 struct sctp_assoc_value params; 7482 struct sctp_association *asoc; 7483 int retval = -EFAULT; 7484 7485 if (len < sizeof(params)) { 7486 retval = -EINVAL; 7487 goto out; 7488 } 7489 7490 len = sizeof(params); 7491 if (copy_from_user(¶ms, optval, len)) 7492 goto out; 7493 7494 asoc = sctp_id2assoc(sk, params.assoc_id); 7495 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7496 sctp_style(sk, UDP)) { 7497 retval = -EINVAL; 7498 goto out; 7499 } 7500 7501 params.assoc_value = asoc ? asoc->strreset_enable 7502 : sctp_sk(sk)->ep->strreset_enable; 7503 7504 if (put_user(len, optlen)) 7505 goto out; 7506 7507 if (copy_to_user(optval, ¶ms, len)) 7508 goto out; 7509 7510 retval = 0; 7511 7512 out: 7513 return retval; 7514 } 7515 7516 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7517 char __user *optval, 7518 int __user *optlen) 7519 { 7520 struct sctp_assoc_value params; 7521 struct sctp_association *asoc; 7522 int retval = -EFAULT; 7523 7524 if (len < sizeof(params)) { 7525 retval = -EINVAL; 7526 goto out; 7527 } 7528 7529 len = sizeof(params); 7530 if (copy_from_user(¶ms, optval, len)) 7531 goto out; 7532 7533 asoc = sctp_id2assoc(sk, params.assoc_id); 7534 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7535 sctp_style(sk, UDP)) { 7536 retval = -EINVAL; 7537 goto out; 7538 } 7539 7540 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7541 : sctp_sk(sk)->default_ss; 7542 7543 if (put_user(len, optlen)) 7544 goto out; 7545 7546 if (copy_to_user(optval, ¶ms, len)) 7547 goto out; 7548 7549 retval = 0; 7550 7551 out: 7552 return retval; 7553 } 7554 7555 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7556 char __user *optval, 7557 int __user *optlen) 7558 { 7559 struct sctp_stream_value params; 7560 struct sctp_association *asoc; 7561 int retval = -EFAULT; 7562 7563 if (len < sizeof(params)) { 7564 retval = -EINVAL; 7565 goto out; 7566 } 7567 7568 len = sizeof(params); 7569 if (copy_from_user(¶ms, optval, len)) 7570 goto out; 7571 7572 asoc = sctp_id2assoc(sk, params.assoc_id); 7573 if (!asoc) { 7574 retval = -EINVAL; 7575 goto out; 7576 } 7577 7578 retval = sctp_sched_get_value(asoc, params.stream_id, 7579 ¶ms.stream_value); 7580 if (retval) 7581 goto out; 7582 7583 if (put_user(len, optlen)) { 7584 retval = -EFAULT; 7585 goto out; 7586 } 7587 7588 if (copy_to_user(optval, ¶ms, len)) { 7589 retval = -EFAULT; 7590 goto out; 7591 } 7592 7593 out: 7594 return retval; 7595 } 7596 7597 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7598 char __user *optval, 7599 int __user *optlen) 7600 { 7601 struct sctp_assoc_value params; 7602 struct sctp_association *asoc; 7603 int retval = -EFAULT; 7604 7605 if (len < sizeof(params)) { 7606 retval = -EINVAL; 7607 goto out; 7608 } 7609 7610 len = sizeof(params); 7611 if (copy_from_user(¶ms, optval, len)) 7612 goto out; 7613 7614 asoc = sctp_id2assoc(sk, params.assoc_id); 7615 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7616 sctp_style(sk, UDP)) { 7617 retval = -EINVAL; 7618 goto out; 7619 } 7620 7621 params.assoc_value = asoc ? asoc->peer.intl_capable 7622 : sctp_sk(sk)->ep->intl_enable; 7623 7624 if (put_user(len, optlen)) 7625 goto out; 7626 7627 if (copy_to_user(optval, ¶ms, len)) 7628 goto out; 7629 7630 retval = 0; 7631 7632 out: 7633 return retval; 7634 } 7635 7636 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7637 char __user *optval, 7638 int __user *optlen) 7639 { 7640 int val; 7641 7642 if (len < sizeof(int)) 7643 return -EINVAL; 7644 7645 len = sizeof(int); 7646 val = sctp_sk(sk)->reuse; 7647 if (put_user(len, optlen)) 7648 return -EFAULT; 7649 7650 if (copy_to_user(optval, &val, len)) 7651 return -EFAULT; 7652 7653 return 0; 7654 } 7655 7656 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7657 int __user *optlen) 7658 { 7659 struct sctp_association *asoc; 7660 struct sctp_event param; 7661 __u16 subscribe; 7662 7663 if (len < sizeof(param)) 7664 return -EINVAL; 7665 7666 len = sizeof(param); 7667 if (copy_from_user(¶m, optval, len)) 7668 return -EFAULT; 7669 7670 if (param.se_type < SCTP_SN_TYPE_BASE || 7671 param.se_type > SCTP_SN_TYPE_MAX) 7672 return -EINVAL; 7673 7674 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7675 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7676 sctp_style(sk, UDP)) 7677 return -EINVAL; 7678 7679 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7680 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7681 7682 if (put_user(len, optlen)) 7683 return -EFAULT; 7684 7685 if (copy_to_user(optval, ¶m, len)) 7686 return -EFAULT; 7687 7688 return 0; 7689 } 7690 7691 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7692 char __user *optval, 7693 int __user *optlen) 7694 { 7695 struct sctp_assoc_value params; 7696 struct sctp_association *asoc; 7697 int retval = -EFAULT; 7698 7699 if (len < sizeof(params)) { 7700 retval = -EINVAL; 7701 goto out; 7702 } 7703 7704 len = sizeof(params); 7705 if (copy_from_user(¶ms, optval, len)) 7706 goto out; 7707 7708 asoc = sctp_id2assoc(sk, params.assoc_id); 7709 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7710 sctp_style(sk, UDP)) { 7711 retval = -EINVAL; 7712 goto out; 7713 } 7714 7715 params.assoc_value = asoc ? asoc->peer.asconf_capable 7716 : sctp_sk(sk)->ep->asconf_enable; 7717 7718 if (put_user(len, optlen)) 7719 goto out; 7720 7721 if (copy_to_user(optval, ¶ms, len)) 7722 goto out; 7723 7724 retval = 0; 7725 7726 out: 7727 return retval; 7728 } 7729 7730 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7731 char __user *optval, 7732 int __user *optlen) 7733 { 7734 struct sctp_assoc_value params; 7735 struct sctp_association *asoc; 7736 int retval = -EFAULT; 7737 7738 if (len < sizeof(params)) { 7739 retval = -EINVAL; 7740 goto out; 7741 } 7742 7743 len = sizeof(params); 7744 if (copy_from_user(¶ms, optval, len)) 7745 goto out; 7746 7747 asoc = sctp_id2assoc(sk, params.assoc_id); 7748 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7749 sctp_style(sk, UDP)) { 7750 retval = -EINVAL; 7751 goto out; 7752 } 7753 7754 params.assoc_value = asoc ? asoc->peer.auth_capable 7755 : sctp_sk(sk)->ep->auth_enable; 7756 7757 if (put_user(len, optlen)) 7758 goto out; 7759 7760 if (copy_to_user(optval, ¶ms, len)) 7761 goto out; 7762 7763 retval = 0; 7764 7765 out: 7766 return retval; 7767 } 7768 7769 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7770 char __user *optval, 7771 int __user *optlen) 7772 { 7773 struct sctp_assoc_value params; 7774 struct sctp_association *asoc; 7775 int retval = -EFAULT; 7776 7777 if (len < sizeof(params)) { 7778 retval = -EINVAL; 7779 goto out; 7780 } 7781 7782 len = sizeof(params); 7783 if (copy_from_user(¶ms, optval, len)) 7784 goto out; 7785 7786 asoc = sctp_id2assoc(sk, params.assoc_id); 7787 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7788 sctp_style(sk, UDP)) { 7789 retval = -EINVAL; 7790 goto out; 7791 } 7792 7793 params.assoc_value = asoc ? asoc->peer.ecn_capable 7794 : sctp_sk(sk)->ep->ecn_enable; 7795 7796 if (put_user(len, optlen)) 7797 goto out; 7798 7799 if (copy_to_user(optval, ¶ms, len)) 7800 goto out; 7801 7802 retval = 0; 7803 7804 out: 7805 return retval; 7806 } 7807 7808 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7809 char __user *optval, 7810 int __user *optlen) 7811 { 7812 struct sctp_assoc_value params; 7813 struct sctp_association *asoc; 7814 int retval = -EFAULT; 7815 7816 if (len < sizeof(params)) { 7817 retval = -EINVAL; 7818 goto out; 7819 } 7820 7821 len = sizeof(params); 7822 if (copy_from_user(¶ms, optval, len)) 7823 goto out; 7824 7825 asoc = sctp_id2assoc(sk, params.assoc_id); 7826 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7827 sctp_style(sk, UDP)) { 7828 retval = -EINVAL; 7829 goto out; 7830 } 7831 7832 params.assoc_value = asoc ? asoc->pf_expose 7833 : sctp_sk(sk)->pf_expose; 7834 7835 if (put_user(len, optlen)) 7836 goto out; 7837 7838 if (copy_to_user(optval, ¶ms, len)) 7839 goto out; 7840 7841 retval = 0; 7842 7843 out: 7844 return retval; 7845 } 7846 7847 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7848 char __user *optval, int __user *optlen) 7849 { 7850 struct sctp_association *asoc; 7851 struct sctp_udpencaps encap; 7852 struct sctp_transport *t; 7853 __be16 encap_port; 7854 7855 if (len < sizeof(encap)) 7856 return -EINVAL; 7857 7858 len = sizeof(encap); 7859 if (copy_from_user(&encap, optval, len)) 7860 return -EFAULT; 7861 7862 /* If an address other than INADDR_ANY is specified, and 7863 * no transport is found, then the request is invalid. 7864 */ 7865 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7866 t = sctp_addr_id2transport(sk, &encap.sue_address, 7867 encap.sue_assoc_id); 7868 if (!t) { 7869 pr_debug("%s: failed no transport\n", __func__); 7870 return -EINVAL; 7871 } 7872 7873 encap_port = t->encap_port; 7874 goto out; 7875 } 7876 7877 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7878 * socket is a one to many style socket, and an association 7879 * was not found, then the id was invalid. 7880 */ 7881 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7882 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7883 sctp_style(sk, UDP)) { 7884 pr_debug("%s: failed no association\n", __func__); 7885 return -EINVAL; 7886 } 7887 7888 if (asoc) { 7889 encap_port = asoc->encap_port; 7890 goto out; 7891 } 7892 7893 encap_port = sctp_sk(sk)->encap_port; 7894 7895 out: 7896 encap.sue_port = (__force uint16_t)encap_port; 7897 if (copy_to_user(optval, &encap, len)) 7898 return -EFAULT; 7899 7900 if (put_user(len, optlen)) 7901 return -EFAULT; 7902 7903 return 0; 7904 } 7905 7906 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7907 char __user *optval, int __user *optlen) 7908 { 7909 int retval = 0; 7910 int len; 7911 7912 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7913 7914 /* I can hardly begin to describe how wrong this is. This is 7915 * so broken as to be worse than useless. The API draft 7916 * REALLY is NOT helpful here... I am not convinced that the 7917 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7918 * are at all well-founded. 7919 */ 7920 if (level != SOL_SCTP) { 7921 struct sctp_af *af = sctp_sk(sk)->pf->af; 7922 7923 retval = af->getsockopt(sk, level, optname, optval, optlen); 7924 return retval; 7925 } 7926 7927 if (get_user(len, optlen)) 7928 return -EFAULT; 7929 7930 if (len < 0) 7931 return -EINVAL; 7932 7933 lock_sock(sk); 7934 7935 switch (optname) { 7936 case SCTP_STATUS: 7937 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7938 break; 7939 case SCTP_DISABLE_FRAGMENTS: 7940 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7941 optlen); 7942 break; 7943 case SCTP_EVENTS: 7944 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7945 break; 7946 case SCTP_AUTOCLOSE: 7947 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7948 break; 7949 case SCTP_SOCKOPT_PEELOFF: 7950 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7951 break; 7952 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7953 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7954 break; 7955 case SCTP_PEER_ADDR_PARAMS: 7956 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7957 optlen); 7958 break; 7959 case SCTP_DELAYED_SACK: 7960 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7961 optlen); 7962 break; 7963 case SCTP_INITMSG: 7964 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7965 break; 7966 case SCTP_GET_PEER_ADDRS: 7967 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7968 optlen); 7969 break; 7970 case SCTP_GET_LOCAL_ADDRS: 7971 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7972 optlen); 7973 break; 7974 case SCTP_SOCKOPT_CONNECTX3: 7975 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7976 break; 7977 case SCTP_DEFAULT_SEND_PARAM: 7978 retval = sctp_getsockopt_default_send_param(sk, len, 7979 optval, optlen); 7980 break; 7981 case SCTP_DEFAULT_SNDINFO: 7982 retval = sctp_getsockopt_default_sndinfo(sk, len, 7983 optval, optlen); 7984 break; 7985 case SCTP_PRIMARY_ADDR: 7986 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7987 break; 7988 case SCTP_NODELAY: 7989 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7990 break; 7991 case SCTP_RTOINFO: 7992 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7993 break; 7994 case SCTP_ASSOCINFO: 7995 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7996 break; 7997 case SCTP_I_WANT_MAPPED_V4_ADDR: 7998 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7999 break; 8000 case SCTP_MAXSEG: 8001 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8002 break; 8003 case SCTP_GET_PEER_ADDR_INFO: 8004 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8005 optlen); 8006 break; 8007 case SCTP_ADAPTATION_LAYER: 8008 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8009 optlen); 8010 break; 8011 case SCTP_CONTEXT: 8012 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8013 break; 8014 case SCTP_FRAGMENT_INTERLEAVE: 8015 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8016 optlen); 8017 break; 8018 case SCTP_PARTIAL_DELIVERY_POINT: 8019 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8020 optlen); 8021 break; 8022 case SCTP_MAX_BURST: 8023 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8024 break; 8025 case SCTP_AUTH_KEY: 8026 case SCTP_AUTH_CHUNK: 8027 case SCTP_AUTH_DELETE_KEY: 8028 case SCTP_AUTH_DEACTIVATE_KEY: 8029 retval = -EOPNOTSUPP; 8030 break; 8031 case SCTP_HMAC_IDENT: 8032 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8033 break; 8034 case SCTP_AUTH_ACTIVE_KEY: 8035 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8036 break; 8037 case SCTP_PEER_AUTH_CHUNKS: 8038 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8039 optlen); 8040 break; 8041 case SCTP_LOCAL_AUTH_CHUNKS: 8042 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8043 optlen); 8044 break; 8045 case SCTP_GET_ASSOC_NUMBER: 8046 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8047 break; 8048 case SCTP_GET_ASSOC_ID_LIST: 8049 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8050 break; 8051 case SCTP_AUTO_ASCONF: 8052 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8053 break; 8054 case SCTP_PEER_ADDR_THLDS: 8055 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8056 optlen, false); 8057 break; 8058 case SCTP_PEER_ADDR_THLDS_V2: 8059 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8060 optlen, true); 8061 break; 8062 case SCTP_GET_ASSOC_STATS: 8063 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8064 break; 8065 case SCTP_RECVRCVINFO: 8066 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8067 break; 8068 case SCTP_RECVNXTINFO: 8069 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8070 break; 8071 case SCTP_PR_SUPPORTED: 8072 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8073 break; 8074 case SCTP_DEFAULT_PRINFO: 8075 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8076 optlen); 8077 break; 8078 case SCTP_PR_ASSOC_STATUS: 8079 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8080 optlen); 8081 break; 8082 case SCTP_PR_STREAM_STATUS: 8083 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8084 optlen); 8085 break; 8086 case SCTP_RECONFIG_SUPPORTED: 8087 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8088 optlen); 8089 break; 8090 case SCTP_ENABLE_STREAM_RESET: 8091 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8092 optlen); 8093 break; 8094 case SCTP_STREAM_SCHEDULER: 8095 retval = sctp_getsockopt_scheduler(sk, len, optval, 8096 optlen); 8097 break; 8098 case SCTP_STREAM_SCHEDULER_VALUE: 8099 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8100 optlen); 8101 break; 8102 case SCTP_INTERLEAVING_SUPPORTED: 8103 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8104 optlen); 8105 break; 8106 case SCTP_REUSE_PORT: 8107 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8108 break; 8109 case SCTP_EVENT: 8110 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8111 break; 8112 case SCTP_ASCONF_SUPPORTED: 8113 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8114 optlen); 8115 break; 8116 case SCTP_AUTH_SUPPORTED: 8117 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8118 optlen); 8119 break; 8120 case SCTP_ECN_SUPPORTED: 8121 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8122 break; 8123 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8124 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8125 break; 8126 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8127 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8128 break; 8129 default: 8130 retval = -ENOPROTOOPT; 8131 break; 8132 } 8133 8134 release_sock(sk); 8135 return retval; 8136 } 8137 8138 static int sctp_hash(struct sock *sk) 8139 { 8140 /* STUB */ 8141 return 0; 8142 } 8143 8144 static void sctp_unhash(struct sock *sk) 8145 { 8146 /* STUB */ 8147 } 8148 8149 /* Check if port is acceptable. Possibly find first available port. 8150 * 8151 * The port hash table (contained in the 'global' SCTP protocol storage 8152 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8153 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8154 * list (the list number is the port number hashed out, so as you 8155 * would expect from a hash function, all the ports in a given list have 8156 * such a number that hashes out to the same list number; you were 8157 * expecting that, right?); so each list has a set of ports, with a 8158 * link to the socket (struct sock) that uses it, the port number and 8159 * a fastreuse flag (FIXME: NPI ipg). 8160 */ 8161 static struct sctp_bind_bucket *sctp_bucket_create( 8162 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8163 8164 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8165 { 8166 struct sctp_sock *sp = sctp_sk(sk); 8167 bool reuse = (sk->sk_reuse || sp->reuse); 8168 struct sctp_bind_hashbucket *head; /* hash list */ 8169 struct net *net = sock_net(sk); 8170 kuid_t uid = sock_i_uid(sk); 8171 struct sctp_bind_bucket *pp; 8172 unsigned short snum; 8173 int ret; 8174 8175 snum = ntohs(addr->v4.sin_port); 8176 8177 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8178 8179 if (snum == 0) { 8180 /* Search for an available port. */ 8181 int low, high, remaining, index; 8182 unsigned int rover; 8183 8184 inet_get_local_port_range(net, &low, &high); 8185 remaining = (high - low) + 1; 8186 rover = prandom_u32() % remaining + low; 8187 8188 do { 8189 rover++; 8190 if ((rover < low) || (rover > high)) 8191 rover = low; 8192 if (inet_is_local_reserved_port(net, rover)) 8193 continue; 8194 index = sctp_phashfn(net, rover); 8195 head = &sctp_port_hashtable[index]; 8196 spin_lock_bh(&head->lock); 8197 sctp_for_each_hentry(pp, &head->chain) 8198 if ((pp->port == rover) && 8199 net_eq(net, pp->net)) 8200 goto next; 8201 break; 8202 next: 8203 spin_unlock_bh(&head->lock); 8204 cond_resched(); 8205 } while (--remaining > 0); 8206 8207 /* Exhausted local port range during search? */ 8208 ret = 1; 8209 if (remaining <= 0) 8210 return ret; 8211 8212 /* OK, here is the one we will use. HEAD (the port 8213 * hash table list entry) is non-NULL and we hold it's 8214 * mutex. 8215 */ 8216 snum = rover; 8217 } else { 8218 /* We are given an specific port number; we verify 8219 * that it is not being used. If it is used, we will 8220 * exahust the search in the hash list corresponding 8221 * to the port number (snum) - we detect that with the 8222 * port iterator, pp being NULL. 8223 */ 8224 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8225 spin_lock_bh(&head->lock); 8226 sctp_for_each_hentry(pp, &head->chain) { 8227 if ((pp->port == snum) && net_eq(pp->net, net)) 8228 goto pp_found; 8229 } 8230 } 8231 pp = NULL; 8232 goto pp_not_found; 8233 pp_found: 8234 if (!hlist_empty(&pp->owner)) { 8235 /* We had a port hash table hit - there is an 8236 * available port (pp != NULL) and it is being 8237 * used by other socket (pp->owner not empty); that other 8238 * socket is going to be sk2. 8239 */ 8240 struct sock *sk2; 8241 8242 pr_debug("%s: found a possible match\n", __func__); 8243 8244 if ((pp->fastreuse && reuse && 8245 sk->sk_state != SCTP_SS_LISTENING) || 8246 (pp->fastreuseport && sk->sk_reuseport && 8247 uid_eq(pp->fastuid, uid))) 8248 goto success; 8249 8250 /* Run through the list of sockets bound to the port 8251 * (pp->port) [via the pointers bind_next and 8252 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8253 * we get the endpoint they describe and run through 8254 * the endpoint's list of IP (v4 or v6) addresses, 8255 * comparing each of the addresses with the address of 8256 * the socket sk. If we find a match, then that means 8257 * that this port/socket (sk) combination are already 8258 * in an endpoint. 8259 */ 8260 sk_for_each_bound(sk2, &pp->owner) { 8261 struct sctp_sock *sp2 = sctp_sk(sk2); 8262 struct sctp_endpoint *ep2 = sp2->ep; 8263 8264 if (sk == sk2 || 8265 (reuse && (sk2->sk_reuse || sp2->reuse) && 8266 sk2->sk_state != SCTP_SS_LISTENING) || 8267 (sk->sk_reuseport && sk2->sk_reuseport && 8268 uid_eq(uid, sock_i_uid(sk2)))) 8269 continue; 8270 8271 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8272 addr, sp2, sp)) { 8273 ret = 1; 8274 goto fail_unlock; 8275 } 8276 } 8277 8278 pr_debug("%s: found a match\n", __func__); 8279 } 8280 pp_not_found: 8281 /* If there was a hash table miss, create a new port. */ 8282 ret = 1; 8283 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8284 goto fail_unlock; 8285 8286 /* In either case (hit or miss), make sure fastreuse is 1 only 8287 * if sk->sk_reuse is too (that is, if the caller requested 8288 * SO_REUSEADDR on this socket -sk-). 8289 */ 8290 if (hlist_empty(&pp->owner)) { 8291 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8292 pp->fastreuse = 1; 8293 else 8294 pp->fastreuse = 0; 8295 8296 if (sk->sk_reuseport) { 8297 pp->fastreuseport = 1; 8298 pp->fastuid = uid; 8299 } else { 8300 pp->fastreuseport = 0; 8301 } 8302 } else { 8303 if (pp->fastreuse && 8304 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8305 pp->fastreuse = 0; 8306 8307 if (pp->fastreuseport && 8308 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8309 pp->fastreuseport = 0; 8310 } 8311 8312 /* We are set, so fill up all the data in the hash table 8313 * entry, tie the socket list information with the rest of the 8314 * sockets FIXME: Blurry, NPI (ipg). 8315 */ 8316 success: 8317 if (!sp->bind_hash) { 8318 inet_sk(sk)->inet_num = snum; 8319 sk_add_bind_node(sk, &pp->owner); 8320 sp->bind_hash = pp; 8321 } 8322 ret = 0; 8323 8324 fail_unlock: 8325 spin_unlock_bh(&head->lock); 8326 return ret; 8327 } 8328 8329 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8330 * port is requested. 8331 */ 8332 static int sctp_get_port(struct sock *sk, unsigned short snum) 8333 { 8334 union sctp_addr addr; 8335 struct sctp_af *af = sctp_sk(sk)->pf->af; 8336 8337 /* Set up a dummy address struct from the sk. */ 8338 af->from_sk(&addr, sk); 8339 addr.v4.sin_port = htons(snum); 8340 8341 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8342 return sctp_get_port_local(sk, &addr); 8343 } 8344 8345 /* 8346 * Move a socket to LISTENING state. 8347 */ 8348 static int sctp_listen_start(struct sock *sk, int backlog) 8349 { 8350 struct sctp_sock *sp = sctp_sk(sk); 8351 struct sctp_endpoint *ep = sp->ep; 8352 struct crypto_shash *tfm = NULL; 8353 char alg[32]; 8354 8355 /* Allocate HMAC for generating cookie. */ 8356 if (!sp->hmac && sp->sctp_hmac_alg) { 8357 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8358 tfm = crypto_alloc_shash(alg, 0, 0); 8359 if (IS_ERR(tfm)) { 8360 net_info_ratelimited("failed to load transform for %s: %ld\n", 8361 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8362 return -ENOSYS; 8363 } 8364 sctp_sk(sk)->hmac = tfm; 8365 } 8366 8367 /* 8368 * If a bind() or sctp_bindx() is not called prior to a listen() 8369 * call that allows new associations to be accepted, the system 8370 * picks an ephemeral port and will choose an address set equivalent 8371 * to binding with a wildcard address. 8372 * 8373 * This is not currently spelled out in the SCTP sockets 8374 * extensions draft, but follows the practice as seen in TCP 8375 * sockets. 8376 * 8377 */ 8378 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8379 if (!ep->base.bind_addr.port) { 8380 if (sctp_autobind(sk)) 8381 return -EAGAIN; 8382 } else { 8383 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8384 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8385 return -EADDRINUSE; 8386 } 8387 } 8388 8389 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8390 return sctp_hash_endpoint(ep); 8391 } 8392 8393 /* 8394 * 4.1.3 / 5.1.3 listen() 8395 * 8396 * By default, new associations are not accepted for UDP style sockets. 8397 * An application uses listen() to mark a socket as being able to 8398 * accept new associations. 8399 * 8400 * On TCP style sockets, applications use listen() to ready the SCTP 8401 * endpoint for accepting inbound associations. 8402 * 8403 * On both types of endpoints a backlog of '0' disables listening. 8404 * 8405 * Move a socket to LISTENING state. 8406 */ 8407 int sctp_inet_listen(struct socket *sock, int backlog) 8408 { 8409 struct sock *sk = sock->sk; 8410 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8411 int err = -EINVAL; 8412 8413 if (unlikely(backlog < 0)) 8414 return err; 8415 8416 lock_sock(sk); 8417 8418 /* Peeled-off sockets are not allowed to listen(). */ 8419 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8420 goto out; 8421 8422 if (sock->state != SS_UNCONNECTED) 8423 goto out; 8424 8425 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8426 goto out; 8427 8428 /* If backlog is zero, disable listening. */ 8429 if (!backlog) { 8430 if (sctp_sstate(sk, CLOSED)) 8431 goto out; 8432 8433 err = 0; 8434 sctp_unhash_endpoint(ep); 8435 sk->sk_state = SCTP_SS_CLOSED; 8436 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8437 sctp_sk(sk)->bind_hash->fastreuse = 1; 8438 goto out; 8439 } 8440 8441 /* If we are already listening, just update the backlog */ 8442 if (sctp_sstate(sk, LISTENING)) 8443 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8444 else { 8445 err = sctp_listen_start(sk, backlog); 8446 if (err) 8447 goto out; 8448 } 8449 8450 err = 0; 8451 out: 8452 release_sock(sk); 8453 return err; 8454 } 8455 8456 /* 8457 * This function is done by modeling the current datagram_poll() and the 8458 * tcp_poll(). Note that, based on these implementations, we don't 8459 * lock the socket in this function, even though it seems that, 8460 * ideally, locking or some other mechanisms can be used to ensure 8461 * the integrity of the counters (sndbuf and wmem_alloc) used 8462 * in this place. We assume that we don't need locks either until proven 8463 * otherwise. 8464 * 8465 * Another thing to note is that we include the Async I/O support 8466 * here, again, by modeling the current TCP/UDP code. We don't have 8467 * a good way to test with it yet. 8468 */ 8469 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8470 { 8471 struct sock *sk = sock->sk; 8472 struct sctp_sock *sp = sctp_sk(sk); 8473 __poll_t mask; 8474 8475 poll_wait(file, sk_sleep(sk), wait); 8476 8477 sock_rps_record_flow(sk); 8478 8479 /* A TCP-style listening socket becomes readable when the accept queue 8480 * is not empty. 8481 */ 8482 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8483 return (!list_empty(&sp->ep->asocs)) ? 8484 (EPOLLIN | EPOLLRDNORM) : 0; 8485 8486 mask = 0; 8487 8488 /* Is there any exceptional events? */ 8489 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8490 mask |= EPOLLERR | 8491 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8492 if (sk->sk_shutdown & RCV_SHUTDOWN) 8493 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8494 if (sk->sk_shutdown == SHUTDOWN_MASK) 8495 mask |= EPOLLHUP; 8496 8497 /* Is it readable? Reconsider this code with TCP-style support. */ 8498 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8499 mask |= EPOLLIN | EPOLLRDNORM; 8500 8501 /* The association is either gone or not ready. */ 8502 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8503 return mask; 8504 8505 /* Is it writable? */ 8506 if (sctp_writeable(sk)) { 8507 mask |= EPOLLOUT | EPOLLWRNORM; 8508 } else { 8509 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8510 /* 8511 * Since the socket is not locked, the buffer 8512 * might be made available after the writeable check and 8513 * before the bit is set. This could cause a lost I/O 8514 * signal. tcp_poll() has a race breaker for this race 8515 * condition. Based on their implementation, we put 8516 * in the following code to cover it as well. 8517 */ 8518 if (sctp_writeable(sk)) 8519 mask |= EPOLLOUT | EPOLLWRNORM; 8520 } 8521 return mask; 8522 } 8523 8524 /******************************************************************** 8525 * 2nd Level Abstractions 8526 ********************************************************************/ 8527 8528 static struct sctp_bind_bucket *sctp_bucket_create( 8529 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8530 { 8531 struct sctp_bind_bucket *pp; 8532 8533 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8534 if (pp) { 8535 SCTP_DBG_OBJCNT_INC(bind_bucket); 8536 pp->port = snum; 8537 pp->fastreuse = 0; 8538 INIT_HLIST_HEAD(&pp->owner); 8539 pp->net = net; 8540 hlist_add_head(&pp->node, &head->chain); 8541 } 8542 return pp; 8543 } 8544 8545 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8546 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8547 { 8548 if (pp && hlist_empty(&pp->owner)) { 8549 __hlist_del(&pp->node); 8550 kmem_cache_free(sctp_bucket_cachep, pp); 8551 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8552 } 8553 } 8554 8555 /* Release this socket's reference to a local port. */ 8556 static inline void __sctp_put_port(struct sock *sk) 8557 { 8558 struct sctp_bind_hashbucket *head = 8559 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8560 inet_sk(sk)->inet_num)]; 8561 struct sctp_bind_bucket *pp; 8562 8563 spin_lock(&head->lock); 8564 pp = sctp_sk(sk)->bind_hash; 8565 __sk_del_bind_node(sk); 8566 sctp_sk(sk)->bind_hash = NULL; 8567 inet_sk(sk)->inet_num = 0; 8568 sctp_bucket_destroy(pp); 8569 spin_unlock(&head->lock); 8570 } 8571 8572 void sctp_put_port(struct sock *sk) 8573 { 8574 local_bh_disable(); 8575 __sctp_put_port(sk); 8576 local_bh_enable(); 8577 } 8578 8579 /* 8580 * The system picks an ephemeral port and choose an address set equivalent 8581 * to binding with a wildcard address. 8582 * One of those addresses will be the primary address for the association. 8583 * This automatically enables the multihoming capability of SCTP. 8584 */ 8585 static int sctp_autobind(struct sock *sk) 8586 { 8587 union sctp_addr autoaddr; 8588 struct sctp_af *af; 8589 __be16 port; 8590 8591 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8592 af = sctp_sk(sk)->pf->af; 8593 8594 port = htons(inet_sk(sk)->inet_num); 8595 af->inaddr_any(&autoaddr, port); 8596 8597 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8598 } 8599 8600 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8601 * 8602 * From RFC 2292 8603 * 4.2 The cmsghdr Structure * 8604 * 8605 * When ancillary data is sent or received, any number of ancillary data 8606 * objects can be specified by the msg_control and msg_controllen members of 8607 * the msghdr structure, because each object is preceded by 8608 * a cmsghdr structure defining the object's length (the cmsg_len member). 8609 * Historically Berkeley-derived implementations have passed only one object 8610 * at a time, but this API allows multiple objects to be 8611 * passed in a single call to sendmsg() or recvmsg(). The following example 8612 * shows two ancillary data objects in a control buffer. 8613 * 8614 * |<--------------------------- msg_controllen -------------------------->| 8615 * | | 8616 * 8617 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8618 * 8619 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8620 * | | | 8621 * 8622 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8623 * 8624 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8625 * | | | | | 8626 * 8627 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8628 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8629 * 8630 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8631 * 8632 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8633 * ^ 8634 * | 8635 * 8636 * msg_control 8637 * points here 8638 */ 8639 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8640 { 8641 struct msghdr *my_msg = (struct msghdr *)msg; 8642 struct cmsghdr *cmsg; 8643 8644 for_each_cmsghdr(cmsg, my_msg) { 8645 if (!CMSG_OK(my_msg, cmsg)) 8646 return -EINVAL; 8647 8648 /* Should we parse this header or ignore? */ 8649 if (cmsg->cmsg_level != IPPROTO_SCTP) 8650 continue; 8651 8652 /* Strictly check lengths following example in SCM code. */ 8653 switch (cmsg->cmsg_type) { 8654 case SCTP_INIT: 8655 /* SCTP Socket API Extension 8656 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8657 * 8658 * This cmsghdr structure provides information for 8659 * initializing new SCTP associations with sendmsg(). 8660 * The SCTP_INITMSG socket option uses this same data 8661 * structure. This structure is not used for 8662 * recvmsg(). 8663 * 8664 * cmsg_level cmsg_type cmsg_data[] 8665 * ------------ ------------ ---------------------- 8666 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8667 */ 8668 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8669 return -EINVAL; 8670 8671 cmsgs->init = CMSG_DATA(cmsg); 8672 break; 8673 8674 case SCTP_SNDRCV: 8675 /* SCTP Socket API Extension 8676 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8677 * 8678 * This cmsghdr structure specifies SCTP options for 8679 * sendmsg() and describes SCTP header information 8680 * about a received message through recvmsg(). 8681 * 8682 * cmsg_level cmsg_type cmsg_data[] 8683 * ------------ ------------ ---------------------- 8684 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8685 */ 8686 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8687 return -EINVAL; 8688 8689 cmsgs->srinfo = CMSG_DATA(cmsg); 8690 8691 if (cmsgs->srinfo->sinfo_flags & 8692 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8693 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8694 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8695 return -EINVAL; 8696 break; 8697 8698 case SCTP_SNDINFO: 8699 /* SCTP Socket API Extension 8700 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8701 * 8702 * This cmsghdr structure specifies SCTP options for 8703 * sendmsg(). This structure and SCTP_RCVINFO replaces 8704 * SCTP_SNDRCV which has been deprecated. 8705 * 8706 * cmsg_level cmsg_type cmsg_data[] 8707 * ------------ ------------ --------------------- 8708 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8709 */ 8710 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8711 return -EINVAL; 8712 8713 cmsgs->sinfo = CMSG_DATA(cmsg); 8714 8715 if (cmsgs->sinfo->snd_flags & 8716 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8717 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8718 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8719 return -EINVAL; 8720 break; 8721 case SCTP_PRINFO: 8722 /* SCTP Socket API Extension 8723 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8724 * 8725 * This cmsghdr structure specifies SCTP options for sendmsg(). 8726 * 8727 * cmsg_level cmsg_type cmsg_data[] 8728 * ------------ ------------ --------------------- 8729 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8730 */ 8731 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8732 return -EINVAL; 8733 8734 cmsgs->prinfo = CMSG_DATA(cmsg); 8735 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8736 return -EINVAL; 8737 8738 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8739 cmsgs->prinfo->pr_value = 0; 8740 break; 8741 case SCTP_AUTHINFO: 8742 /* SCTP Socket API Extension 8743 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8744 * 8745 * This cmsghdr structure specifies SCTP options for sendmsg(). 8746 * 8747 * cmsg_level cmsg_type cmsg_data[] 8748 * ------------ ------------ --------------------- 8749 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8750 */ 8751 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8752 return -EINVAL; 8753 8754 cmsgs->authinfo = CMSG_DATA(cmsg); 8755 break; 8756 case SCTP_DSTADDRV4: 8757 case SCTP_DSTADDRV6: 8758 /* SCTP Socket API Extension 8759 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8760 * 8761 * This cmsghdr structure specifies SCTP options for sendmsg(). 8762 * 8763 * cmsg_level cmsg_type cmsg_data[] 8764 * ------------ ------------ --------------------- 8765 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8766 * ------------ ------------ --------------------- 8767 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8768 */ 8769 cmsgs->addrs_msg = my_msg; 8770 break; 8771 default: 8772 return -EINVAL; 8773 } 8774 } 8775 8776 return 0; 8777 } 8778 8779 /* 8780 * Wait for a packet.. 8781 * Note: This function is the same function as in core/datagram.c 8782 * with a few modifications to make lksctp work. 8783 */ 8784 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8785 { 8786 int error; 8787 DEFINE_WAIT(wait); 8788 8789 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8790 8791 /* Socket errors? */ 8792 error = sock_error(sk); 8793 if (error) 8794 goto out; 8795 8796 if (!skb_queue_empty(&sk->sk_receive_queue)) 8797 goto ready; 8798 8799 /* Socket shut down? */ 8800 if (sk->sk_shutdown & RCV_SHUTDOWN) 8801 goto out; 8802 8803 /* Sequenced packets can come disconnected. If so we report the 8804 * problem. 8805 */ 8806 error = -ENOTCONN; 8807 8808 /* Is there a good reason to think that we may receive some data? */ 8809 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8810 goto out; 8811 8812 /* Handle signals. */ 8813 if (signal_pending(current)) 8814 goto interrupted; 8815 8816 /* Let another process have a go. Since we are going to sleep 8817 * anyway. Note: This may cause odd behaviors if the message 8818 * does not fit in the user's buffer, but this seems to be the 8819 * only way to honor MSG_DONTWAIT realistically. 8820 */ 8821 release_sock(sk); 8822 *timeo_p = schedule_timeout(*timeo_p); 8823 lock_sock(sk); 8824 8825 ready: 8826 finish_wait(sk_sleep(sk), &wait); 8827 return 0; 8828 8829 interrupted: 8830 error = sock_intr_errno(*timeo_p); 8831 8832 out: 8833 finish_wait(sk_sleep(sk), &wait); 8834 *err = error; 8835 return error; 8836 } 8837 8838 /* Receive a datagram. 8839 * Note: This is pretty much the same routine as in core/datagram.c 8840 * with a few changes to make lksctp work. 8841 */ 8842 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8843 int noblock, int *err) 8844 { 8845 int error; 8846 struct sk_buff *skb; 8847 long timeo; 8848 8849 timeo = sock_rcvtimeo(sk, noblock); 8850 8851 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8852 MAX_SCHEDULE_TIMEOUT); 8853 8854 do { 8855 /* Again only user level code calls this function, 8856 * so nothing interrupt level 8857 * will suddenly eat the receive_queue. 8858 * 8859 * Look at current nfs client by the way... 8860 * However, this function was correct in any case. 8) 8861 */ 8862 if (flags & MSG_PEEK) { 8863 skb = skb_peek(&sk->sk_receive_queue); 8864 if (skb) 8865 refcount_inc(&skb->users); 8866 } else { 8867 skb = __skb_dequeue(&sk->sk_receive_queue); 8868 } 8869 8870 if (skb) 8871 return skb; 8872 8873 /* Caller is allowed not to check sk->sk_err before calling. */ 8874 error = sock_error(sk); 8875 if (error) 8876 goto no_packet; 8877 8878 if (sk->sk_shutdown & RCV_SHUTDOWN) 8879 break; 8880 8881 if (sk_can_busy_loop(sk)) { 8882 sk_busy_loop(sk, noblock); 8883 8884 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8885 continue; 8886 } 8887 8888 /* User doesn't want to wait. */ 8889 error = -EAGAIN; 8890 if (!timeo) 8891 goto no_packet; 8892 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8893 8894 return NULL; 8895 8896 no_packet: 8897 *err = error; 8898 return NULL; 8899 } 8900 8901 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8902 static void __sctp_write_space(struct sctp_association *asoc) 8903 { 8904 struct sock *sk = asoc->base.sk; 8905 8906 if (sctp_wspace(asoc) <= 0) 8907 return; 8908 8909 if (waitqueue_active(&asoc->wait)) 8910 wake_up_interruptible(&asoc->wait); 8911 8912 if (sctp_writeable(sk)) { 8913 struct socket_wq *wq; 8914 8915 rcu_read_lock(); 8916 wq = rcu_dereference(sk->sk_wq); 8917 if (wq) { 8918 if (waitqueue_active(&wq->wait)) 8919 wake_up_interruptible(&wq->wait); 8920 8921 /* Note that we try to include the Async I/O support 8922 * here by modeling from the current TCP/UDP code. 8923 * We have not tested with it yet. 8924 */ 8925 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8926 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8927 } 8928 rcu_read_unlock(); 8929 } 8930 } 8931 8932 static void sctp_wake_up_waiters(struct sock *sk, 8933 struct sctp_association *asoc) 8934 { 8935 struct sctp_association *tmp = asoc; 8936 8937 /* We do accounting for the sndbuf space per association, 8938 * so we only need to wake our own association. 8939 */ 8940 if (asoc->ep->sndbuf_policy) 8941 return __sctp_write_space(asoc); 8942 8943 /* If association goes down and is just flushing its 8944 * outq, then just normally notify others. 8945 */ 8946 if (asoc->base.dead) 8947 return sctp_write_space(sk); 8948 8949 /* Accounting for the sndbuf space is per socket, so we 8950 * need to wake up others, try to be fair and in case of 8951 * other associations, let them have a go first instead 8952 * of just doing a sctp_write_space() call. 8953 * 8954 * Note that we reach sctp_wake_up_waiters() only when 8955 * associations free up queued chunks, thus we are under 8956 * lock and the list of associations on a socket is 8957 * guaranteed not to change. 8958 */ 8959 for (tmp = list_next_entry(tmp, asocs); 1; 8960 tmp = list_next_entry(tmp, asocs)) { 8961 /* Manually skip the head element. */ 8962 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8963 continue; 8964 /* Wake up association. */ 8965 __sctp_write_space(tmp); 8966 /* We've reached the end. */ 8967 if (tmp == asoc) 8968 break; 8969 } 8970 } 8971 8972 /* Do accounting for the sndbuf space. 8973 * Decrement the used sndbuf space of the corresponding association by the 8974 * data size which was just transmitted(freed). 8975 */ 8976 static void sctp_wfree(struct sk_buff *skb) 8977 { 8978 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8979 struct sctp_association *asoc = chunk->asoc; 8980 struct sock *sk = asoc->base.sk; 8981 8982 sk_mem_uncharge(sk, skb->truesize); 8983 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8984 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8985 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8986 &sk->sk_wmem_alloc)); 8987 8988 if (chunk->shkey) { 8989 struct sctp_shared_key *shkey = chunk->shkey; 8990 8991 /* refcnt == 2 and !list_empty mean after this release, it's 8992 * not being used anywhere, and it's time to notify userland 8993 * that this shkey can be freed if it's been deactivated. 8994 */ 8995 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8996 refcount_read(&shkey->refcnt) == 2) { 8997 struct sctp_ulpevent *ev; 8998 8999 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9000 SCTP_AUTH_FREE_KEY, 9001 GFP_KERNEL); 9002 if (ev) 9003 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9004 } 9005 sctp_auth_shkey_release(chunk->shkey); 9006 } 9007 9008 sock_wfree(skb); 9009 sctp_wake_up_waiters(sk, asoc); 9010 9011 sctp_association_put(asoc); 9012 } 9013 9014 /* Do accounting for the receive space on the socket. 9015 * Accounting for the association is done in ulpevent.c 9016 * We set this as a destructor for the cloned data skbs so that 9017 * accounting is done at the correct time. 9018 */ 9019 void sctp_sock_rfree(struct sk_buff *skb) 9020 { 9021 struct sock *sk = skb->sk; 9022 struct sctp_ulpevent *event = sctp_skb2event(skb); 9023 9024 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9025 9026 /* 9027 * Mimic the behavior of sock_rfree 9028 */ 9029 sk_mem_uncharge(sk, event->rmem_len); 9030 } 9031 9032 9033 /* Helper function to wait for space in the sndbuf. */ 9034 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9035 size_t msg_len) 9036 { 9037 struct sock *sk = asoc->base.sk; 9038 long current_timeo = *timeo_p; 9039 DEFINE_WAIT(wait); 9040 int err = 0; 9041 9042 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9043 *timeo_p, msg_len); 9044 9045 /* Increment the association's refcnt. */ 9046 sctp_association_hold(asoc); 9047 9048 /* Wait on the association specific sndbuf space. */ 9049 for (;;) { 9050 prepare_to_wait_exclusive(&asoc->wait, &wait, 9051 TASK_INTERRUPTIBLE); 9052 if (asoc->base.dead) 9053 goto do_dead; 9054 if (!*timeo_p) 9055 goto do_nonblock; 9056 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9057 goto do_error; 9058 if (signal_pending(current)) 9059 goto do_interrupted; 9060 if (sk_under_memory_pressure(sk)) 9061 sk_mem_reclaim(sk); 9062 if ((int)msg_len <= sctp_wspace(asoc) && 9063 sk_wmem_schedule(sk, msg_len)) 9064 break; 9065 9066 /* Let another process have a go. Since we are going 9067 * to sleep anyway. 9068 */ 9069 release_sock(sk); 9070 current_timeo = schedule_timeout(current_timeo); 9071 lock_sock(sk); 9072 if (sk != asoc->base.sk) 9073 goto do_error; 9074 9075 *timeo_p = current_timeo; 9076 } 9077 9078 out: 9079 finish_wait(&asoc->wait, &wait); 9080 9081 /* Release the association's refcnt. */ 9082 sctp_association_put(asoc); 9083 9084 return err; 9085 9086 do_dead: 9087 err = -ESRCH; 9088 goto out; 9089 9090 do_error: 9091 err = -EPIPE; 9092 goto out; 9093 9094 do_interrupted: 9095 err = sock_intr_errno(*timeo_p); 9096 goto out; 9097 9098 do_nonblock: 9099 err = -EAGAIN; 9100 goto out; 9101 } 9102 9103 void sctp_data_ready(struct sock *sk) 9104 { 9105 struct socket_wq *wq; 9106 9107 rcu_read_lock(); 9108 wq = rcu_dereference(sk->sk_wq); 9109 if (skwq_has_sleeper(wq)) 9110 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9111 EPOLLRDNORM | EPOLLRDBAND); 9112 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9113 rcu_read_unlock(); 9114 } 9115 9116 /* If socket sndbuf has changed, wake up all per association waiters. */ 9117 void sctp_write_space(struct sock *sk) 9118 { 9119 struct sctp_association *asoc; 9120 9121 /* Wake up the tasks in each wait queue. */ 9122 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9123 __sctp_write_space(asoc); 9124 } 9125 } 9126 9127 /* Is there any sndbuf space available on the socket? 9128 * 9129 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9130 * associations on the same socket. For a UDP-style socket with 9131 * multiple associations, it is possible for it to be "unwriteable" 9132 * prematurely. I assume that this is acceptable because 9133 * a premature "unwriteable" is better than an accidental "writeable" which 9134 * would cause an unwanted block under certain circumstances. For the 1-1 9135 * UDP-style sockets or TCP-style sockets, this code should work. 9136 * - Daisy 9137 */ 9138 static bool sctp_writeable(struct sock *sk) 9139 { 9140 return sk->sk_sndbuf > sk->sk_wmem_queued; 9141 } 9142 9143 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9144 * returns immediately with EINPROGRESS. 9145 */ 9146 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9147 { 9148 struct sock *sk = asoc->base.sk; 9149 int err = 0; 9150 long current_timeo = *timeo_p; 9151 DEFINE_WAIT(wait); 9152 9153 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9154 9155 /* Increment the association's refcnt. */ 9156 sctp_association_hold(asoc); 9157 9158 for (;;) { 9159 prepare_to_wait_exclusive(&asoc->wait, &wait, 9160 TASK_INTERRUPTIBLE); 9161 if (!*timeo_p) 9162 goto do_nonblock; 9163 if (sk->sk_shutdown & RCV_SHUTDOWN) 9164 break; 9165 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9166 asoc->base.dead) 9167 goto do_error; 9168 if (signal_pending(current)) 9169 goto do_interrupted; 9170 9171 if (sctp_state(asoc, ESTABLISHED)) 9172 break; 9173 9174 /* Let another process have a go. Since we are going 9175 * to sleep anyway. 9176 */ 9177 release_sock(sk); 9178 current_timeo = schedule_timeout(current_timeo); 9179 lock_sock(sk); 9180 9181 *timeo_p = current_timeo; 9182 } 9183 9184 out: 9185 finish_wait(&asoc->wait, &wait); 9186 9187 /* Release the association's refcnt. */ 9188 sctp_association_put(asoc); 9189 9190 return err; 9191 9192 do_error: 9193 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9194 err = -ETIMEDOUT; 9195 else 9196 err = -ECONNREFUSED; 9197 goto out; 9198 9199 do_interrupted: 9200 err = sock_intr_errno(*timeo_p); 9201 goto out; 9202 9203 do_nonblock: 9204 err = -EINPROGRESS; 9205 goto out; 9206 } 9207 9208 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9209 { 9210 struct sctp_endpoint *ep; 9211 int err = 0; 9212 DEFINE_WAIT(wait); 9213 9214 ep = sctp_sk(sk)->ep; 9215 9216 9217 for (;;) { 9218 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9219 TASK_INTERRUPTIBLE); 9220 9221 if (list_empty(&ep->asocs)) { 9222 release_sock(sk); 9223 timeo = schedule_timeout(timeo); 9224 lock_sock(sk); 9225 } 9226 9227 err = -EINVAL; 9228 if (!sctp_sstate(sk, LISTENING)) 9229 break; 9230 9231 err = 0; 9232 if (!list_empty(&ep->asocs)) 9233 break; 9234 9235 err = sock_intr_errno(timeo); 9236 if (signal_pending(current)) 9237 break; 9238 9239 err = -EAGAIN; 9240 if (!timeo) 9241 break; 9242 } 9243 9244 finish_wait(sk_sleep(sk), &wait); 9245 9246 return err; 9247 } 9248 9249 static void sctp_wait_for_close(struct sock *sk, long timeout) 9250 { 9251 DEFINE_WAIT(wait); 9252 9253 do { 9254 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9255 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9256 break; 9257 release_sock(sk); 9258 timeout = schedule_timeout(timeout); 9259 lock_sock(sk); 9260 } while (!signal_pending(current) && timeout); 9261 9262 finish_wait(sk_sleep(sk), &wait); 9263 } 9264 9265 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9266 { 9267 struct sk_buff *frag; 9268 9269 if (!skb->data_len) 9270 goto done; 9271 9272 /* Don't forget the fragments. */ 9273 skb_walk_frags(skb, frag) 9274 sctp_skb_set_owner_r_frag(frag, sk); 9275 9276 done: 9277 sctp_skb_set_owner_r(skb, sk); 9278 } 9279 9280 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9281 struct sctp_association *asoc) 9282 { 9283 struct inet_sock *inet = inet_sk(sk); 9284 struct inet_sock *newinet; 9285 struct sctp_sock *sp = sctp_sk(sk); 9286 struct sctp_endpoint *ep = sp->ep; 9287 9288 newsk->sk_type = sk->sk_type; 9289 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9290 newsk->sk_flags = sk->sk_flags; 9291 newsk->sk_tsflags = sk->sk_tsflags; 9292 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9293 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9294 newsk->sk_reuse = sk->sk_reuse; 9295 sctp_sk(newsk)->reuse = sp->reuse; 9296 9297 newsk->sk_shutdown = sk->sk_shutdown; 9298 newsk->sk_destruct = sctp_destruct_sock; 9299 newsk->sk_family = sk->sk_family; 9300 newsk->sk_protocol = IPPROTO_SCTP; 9301 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9302 newsk->sk_sndbuf = sk->sk_sndbuf; 9303 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9304 newsk->sk_lingertime = sk->sk_lingertime; 9305 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9306 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9307 newsk->sk_rxhash = sk->sk_rxhash; 9308 9309 newinet = inet_sk(newsk); 9310 9311 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9312 * getsockname() and getpeername() 9313 */ 9314 newinet->inet_sport = inet->inet_sport; 9315 newinet->inet_saddr = inet->inet_saddr; 9316 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9317 newinet->inet_dport = htons(asoc->peer.port); 9318 newinet->pmtudisc = inet->pmtudisc; 9319 newinet->inet_id = prandom_u32(); 9320 9321 newinet->uc_ttl = inet->uc_ttl; 9322 newinet->mc_loop = 1; 9323 newinet->mc_ttl = 1; 9324 newinet->mc_index = 0; 9325 newinet->mc_list = NULL; 9326 9327 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9328 net_enable_timestamp(); 9329 9330 /* Set newsk security attributes from orginal sk and connection 9331 * security attribute from ep. 9332 */ 9333 security_sctp_sk_clone(ep, sk, newsk); 9334 } 9335 9336 static inline void sctp_copy_descendant(struct sock *sk_to, 9337 const struct sock *sk_from) 9338 { 9339 size_t ancestor_size = sizeof(struct inet_sock); 9340 9341 ancestor_size += sk_from->sk_prot->obj_size; 9342 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9343 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9344 } 9345 9346 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9347 * and its messages to the newsk. 9348 */ 9349 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9350 struct sctp_association *assoc, 9351 enum sctp_socket_type type) 9352 { 9353 struct sctp_sock *oldsp = sctp_sk(oldsk); 9354 struct sctp_sock *newsp = sctp_sk(newsk); 9355 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9356 struct sctp_endpoint *newep = newsp->ep; 9357 struct sk_buff *skb, *tmp; 9358 struct sctp_ulpevent *event; 9359 struct sctp_bind_hashbucket *head; 9360 int err; 9361 9362 /* Migrate socket buffer sizes and all the socket level options to the 9363 * new socket. 9364 */ 9365 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9366 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9367 /* Brute force copy old sctp opt. */ 9368 sctp_copy_descendant(newsk, oldsk); 9369 9370 /* Restore the ep value that was overwritten with the above structure 9371 * copy. 9372 */ 9373 newsp->ep = newep; 9374 newsp->hmac = NULL; 9375 9376 /* Hook this new socket in to the bind_hash list. */ 9377 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9378 inet_sk(oldsk)->inet_num)]; 9379 spin_lock_bh(&head->lock); 9380 pp = sctp_sk(oldsk)->bind_hash; 9381 sk_add_bind_node(newsk, &pp->owner); 9382 sctp_sk(newsk)->bind_hash = pp; 9383 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9384 spin_unlock_bh(&head->lock); 9385 9386 /* Copy the bind_addr list from the original endpoint to the new 9387 * endpoint so that we can handle restarts properly 9388 */ 9389 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9390 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9391 if (err) 9392 return err; 9393 9394 /* New ep's auth_hmacs should be set if old ep's is set, in case 9395 * that net->sctp.auth_enable has been changed to 0 by users and 9396 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9397 */ 9398 if (oldsp->ep->auth_hmacs) { 9399 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9400 if (err) 9401 return err; 9402 } 9403 9404 /* Move any messages in the old socket's receive queue that are for the 9405 * peeled off association to the new socket's receive queue. 9406 */ 9407 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9408 event = sctp_skb2event(skb); 9409 if (event->asoc == assoc) { 9410 __skb_unlink(skb, &oldsk->sk_receive_queue); 9411 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9412 sctp_skb_set_owner_r_frag(skb, newsk); 9413 } 9414 } 9415 9416 /* Clean up any messages pending delivery due to partial 9417 * delivery. Three cases: 9418 * 1) No partial deliver; no work. 9419 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9420 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9421 */ 9422 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9423 9424 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9425 struct sk_buff_head *queue; 9426 9427 /* Decide which queue to move pd_lobby skbs to. */ 9428 if (assoc->ulpq.pd_mode) { 9429 queue = &newsp->pd_lobby; 9430 } else 9431 queue = &newsk->sk_receive_queue; 9432 9433 /* Walk through the pd_lobby, looking for skbs that 9434 * need moved to the new socket. 9435 */ 9436 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9437 event = sctp_skb2event(skb); 9438 if (event->asoc == assoc) { 9439 __skb_unlink(skb, &oldsp->pd_lobby); 9440 __skb_queue_tail(queue, skb); 9441 sctp_skb_set_owner_r_frag(skb, newsk); 9442 } 9443 } 9444 9445 /* Clear up any skbs waiting for the partial 9446 * delivery to finish. 9447 */ 9448 if (assoc->ulpq.pd_mode) 9449 sctp_clear_pd(oldsk, NULL); 9450 9451 } 9452 9453 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9454 9455 /* Set the type of socket to indicate that it is peeled off from the 9456 * original UDP-style socket or created with the accept() call on a 9457 * TCP-style socket.. 9458 */ 9459 newsp->type = type; 9460 9461 /* Mark the new socket "in-use" by the user so that any packets 9462 * that may arrive on the association after we've moved it are 9463 * queued to the backlog. This prevents a potential race between 9464 * backlog processing on the old socket and new-packet processing 9465 * on the new socket. 9466 * 9467 * The caller has just allocated newsk so we can guarantee that other 9468 * paths won't try to lock it and then oldsk. 9469 */ 9470 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9471 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9472 sctp_assoc_migrate(assoc, newsk); 9473 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9474 9475 /* If the association on the newsk is already closed before accept() 9476 * is called, set RCV_SHUTDOWN flag. 9477 */ 9478 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9479 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9480 newsk->sk_shutdown |= RCV_SHUTDOWN; 9481 } else { 9482 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9483 } 9484 9485 release_sock(newsk); 9486 9487 return 0; 9488 } 9489 9490 9491 /* This proto struct describes the ULP interface for SCTP. */ 9492 struct proto sctp_prot = { 9493 .name = "SCTP", 9494 .owner = THIS_MODULE, 9495 .close = sctp_close, 9496 .disconnect = sctp_disconnect, 9497 .accept = sctp_accept, 9498 .ioctl = sctp_ioctl, 9499 .init = sctp_init_sock, 9500 .destroy = sctp_destroy_sock, 9501 .shutdown = sctp_shutdown, 9502 .setsockopt = sctp_setsockopt, 9503 .getsockopt = sctp_getsockopt, 9504 .sendmsg = sctp_sendmsg, 9505 .recvmsg = sctp_recvmsg, 9506 .bind = sctp_bind, 9507 .bind_add = sctp_bind_add, 9508 .backlog_rcv = sctp_backlog_rcv, 9509 .hash = sctp_hash, 9510 .unhash = sctp_unhash, 9511 .no_autobind = true, 9512 .obj_size = sizeof(struct sctp_sock), 9513 .useroffset = offsetof(struct sctp_sock, subscribe), 9514 .usersize = offsetof(struct sctp_sock, initmsg) - 9515 offsetof(struct sctp_sock, subscribe) + 9516 sizeof_field(struct sctp_sock, initmsg), 9517 .sysctl_mem = sysctl_sctp_mem, 9518 .sysctl_rmem = sysctl_sctp_rmem, 9519 .sysctl_wmem = sysctl_sctp_wmem, 9520 .memory_pressure = &sctp_memory_pressure, 9521 .enter_memory_pressure = sctp_enter_memory_pressure, 9522 .memory_allocated = &sctp_memory_allocated, 9523 .sockets_allocated = &sctp_sockets_allocated, 9524 }; 9525 9526 #if IS_ENABLED(CONFIG_IPV6) 9527 9528 #include <net/transp_v6.h> 9529 static void sctp_v6_destroy_sock(struct sock *sk) 9530 { 9531 sctp_destroy_sock(sk); 9532 inet6_destroy_sock(sk); 9533 } 9534 9535 struct proto sctpv6_prot = { 9536 .name = "SCTPv6", 9537 .owner = THIS_MODULE, 9538 .close = sctp_close, 9539 .disconnect = sctp_disconnect, 9540 .accept = sctp_accept, 9541 .ioctl = sctp_ioctl, 9542 .init = sctp_init_sock, 9543 .destroy = sctp_v6_destroy_sock, 9544 .shutdown = sctp_shutdown, 9545 .setsockopt = sctp_setsockopt, 9546 .getsockopt = sctp_getsockopt, 9547 .sendmsg = sctp_sendmsg, 9548 .recvmsg = sctp_recvmsg, 9549 .bind = sctp_bind, 9550 .bind_add = sctp_bind_add, 9551 .backlog_rcv = sctp_backlog_rcv, 9552 .hash = sctp_hash, 9553 .unhash = sctp_unhash, 9554 .no_autobind = true, 9555 .obj_size = sizeof(struct sctp6_sock), 9556 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9557 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9558 offsetof(struct sctp6_sock, sctp.subscribe) + 9559 sizeof_field(struct sctp6_sock, sctp.initmsg), 9560 .sysctl_mem = sysctl_sctp_mem, 9561 .sysctl_rmem = sysctl_sctp_rmem, 9562 .sysctl_wmem = sysctl_sctp_wmem, 9563 .memory_pressure = &sctp_memory_pressure, 9564 .enter_memory_pressure = sctp_enter_memory_pressure, 9565 .memory_allocated = &sctp_memory_allocated, 9566 .sockets_allocated = &sctp_sockets_allocated, 9567 }; 9568 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9569