xref: /linux/net/sctp/socket.c (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <linux-sctp@vger.kernel.org>
38  *
39  * Written or modified by:
40  *    La Monte H.P. Yarroll <piggy@acm.org>
41  *    Narasimha Budihal     <narsi@refcode.org>
42  *    Karl Knutson          <karl@athena.chicago.il.us>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *    Xingang Guo           <xingang.guo@intel.com>
45  *    Daisy Chang           <daisyc@us.ibm.com>
46  *    Sridhar Samudrala     <samudrala@us.ibm.com>
47  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
48  *    Ardelle Fan	    <ardelle.fan@intel.com>
49  *    Ryan Layer	    <rmlayer@us.ibm.com>
50  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
51  *    Kevin Gao             <kevin.gao@intel.com>
52  */
53 
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/crypto.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 
75 #include <linux/socket.h> /* for sa_family_t */
76 #include <linux/export.h>
77 #include <net/sock.h>
78 #include <net/sctp/sctp.h>
79 #include <net/sctp/sm.h>
80 
81 /* Forward declarations for internal helper functions. */
82 static int sctp_writeable(struct sock *sk);
83 static void sctp_wfree(struct sk_buff *skb);
84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
85 				size_t msg_len);
86 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
88 static int sctp_wait_for_accept(struct sock *sk, long timeo);
89 static void sctp_wait_for_close(struct sock *sk, long timeo);
90 static void sctp_destruct_sock(struct sock *sk);
91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
92 					union sctp_addr *addr, int len);
93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf(struct sctp_association *asoc,
98 			    struct sctp_chunk *chunk);
99 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
100 static int sctp_autobind(struct sock *sk);
101 static void sctp_sock_migrate(struct sock *, struct sock *,
102 			      struct sctp_association *, sctp_socket_type_t);
103 
104 extern struct kmem_cache *sctp_bucket_cachep;
105 extern long sysctl_sctp_mem[3];
106 extern int sysctl_sctp_rmem[3];
107 extern int sysctl_sctp_wmem[3];
108 
109 static int sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	int amt;
123 
124 	if (asoc->ep->sndbuf_policy)
125 		amt = asoc->sndbuf_used;
126 	else
127 		amt = sk_wmem_alloc_get(asoc->base.sk);
128 
129 	if (amt >= asoc->base.sk->sk_sndbuf) {
130 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
131 			amt = 0;
132 		else {
133 			amt = sk_stream_wspace(asoc->base.sk);
134 			if (amt < 0)
135 				amt = 0;
136 		}
137 	} else {
138 		amt = asoc->base.sk->sk_sndbuf - amt;
139 	}
140 	return amt;
141 }
142 
143 /* Increment the used sndbuf space count of the corresponding association by
144  * the size of the outgoing data chunk.
145  * Also, set the skb destructor for sndbuf accounting later.
146  *
147  * Since it is always 1-1 between chunk and skb, and also a new skb is always
148  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
149  * destructor in the data chunk skb for the purpose of the sndbuf space
150  * tracking.
151  */
152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
153 {
154 	struct sctp_association *asoc = chunk->asoc;
155 	struct sock *sk = asoc->base.sk;
156 
157 	/* The sndbuf space is tracked per association.  */
158 	sctp_association_hold(asoc);
159 
160 	skb_set_owner_w(chunk->skb, sk);
161 
162 	chunk->skb->destructor = sctp_wfree;
163 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
164 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
165 
166 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
167 				sizeof(struct sk_buff) +
168 				sizeof(struct sctp_chunk);
169 
170 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
171 	sk->sk_wmem_queued += chunk->skb->truesize;
172 	sk_mem_charge(sk, chunk->skb->truesize);
173 }
174 
175 /* Verify that this is a valid address. */
176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
177 				   int len)
178 {
179 	struct sctp_af *af;
180 
181 	/* Verify basic sockaddr. */
182 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
183 	if (!af)
184 		return -EINVAL;
185 
186 	/* Is this a valid SCTP address?  */
187 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
188 		return -EINVAL;
189 
190 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /* Look up the association by its id.  If this is not a UDP-style
197  * socket, the ID field is always ignored.
198  */
199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
200 {
201 	struct sctp_association *asoc = NULL;
202 
203 	/* If this is not a UDP-style socket, assoc id should be ignored. */
204 	if (!sctp_style(sk, UDP)) {
205 		/* Return NULL if the socket state is not ESTABLISHED. It
206 		 * could be a TCP-style listening socket or a socket which
207 		 * hasn't yet called connect() to establish an association.
208 		 */
209 		if (!sctp_sstate(sk, ESTABLISHED))
210 			return NULL;
211 
212 		/* Get the first and the only association from the list. */
213 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
214 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
215 					  struct sctp_association, asocs);
216 		return asoc;
217 	}
218 
219 	/* Otherwise this is a UDP-style socket. */
220 	if (!id || (id == (sctp_assoc_t)-1))
221 		return NULL;
222 
223 	spin_lock_bh(&sctp_assocs_id_lock);
224 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
225 	spin_unlock_bh(&sctp_assocs_id_lock);
226 
227 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
228 		return NULL;
229 
230 	return asoc;
231 }
232 
233 /* Look up the transport from an address and an assoc id. If both address and
234  * id are specified, the associations matching the address and the id should be
235  * the same.
236  */
237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
238 					      struct sockaddr_storage *addr,
239 					      sctp_assoc_t id)
240 {
241 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
242 	struct sctp_transport *transport;
243 	union sctp_addr *laddr = (union sctp_addr *)addr;
244 
245 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 					       laddr,
247 					       &transport);
248 
249 	if (!addr_asoc)
250 		return NULL;
251 
252 	id_asoc = sctp_id2assoc(sk, id);
253 	if (id_asoc && (id_asoc != addr_asoc))
254 		return NULL;
255 
256 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
257 						(union sctp_addr *)addr);
258 
259 	return transport;
260 }
261 
262 /* API 3.1.2 bind() - UDP Style Syntax
263  * The syntax of bind() is,
264  *
265  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
266  *
267  *   sd      - the socket descriptor returned by socket().
268  *   addr    - the address structure (struct sockaddr_in or struct
269  *             sockaddr_in6 [RFC 2553]),
270  *   addr_len - the size of the address structure.
271  */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 	int retval = 0;
275 
276 	sctp_lock_sock(sk);
277 
278 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 		 addr, addr_len);
280 
281 	/* Disallow binding twice. */
282 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 				      addr_len);
285 	else
286 		retval = -EINVAL;
287 
288 	sctp_release_sock(sk);
289 
290 	return retval;
291 }
292 
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294 
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 					union sctp_addr *addr, int len)
298 {
299 	struct sctp_af *af;
300 
301 	/* Check minimum size.  */
302 	if (len < sizeof (struct sockaddr))
303 		return NULL;
304 
305 	/* V4 mapped address are really of AF_INET family */
306 	if (addr->sa.sa_family == AF_INET6 &&
307 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 		if (!opt->pf->af_supported(AF_INET, opt))
309 			return NULL;
310 	} else {
311 		/* Does this PF support this AF? */
312 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 			return NULL;
314 	}
315 
316 	/* If we get this far, af is valid. */
317 	af = sctp_get_af_specific(addr->sa.sa_family);
318 
319 	if (len < af->sockaddr_len)
320 		return NULL;
321 
322 	return af;
323 }
324 
325 /* Bind a local address either to an endpoint or to an association.  */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 	struct net *net = sock_net(sk);
329 	struct sctp_sock *sp = sctp_sk(sk);
330 	struct sctp_endpoint *ep = sp->ep;
331 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 	struct sctp_af *af;
333 	unsigned short snum;
334 	int ret = 0;
335 
336 	/* Common sockaddr verification. */
337 	af = sctp_sockaddr_af(sp, addr, len);
338 	if (!af) {
339 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 			 __func__, sk, addr, len);
341 		return -EINVAL;
342 	}
343 
344 	snum = ntohs(addr->v4.sin_port);
345 
346 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 		 __func__, sk, &addr->sa, bp->port, snum, len);
348 
349 	/* PF specific bind() address verification. */
350 	if (!sp->pf->bind_verify(sp, addr))
351 		return -EADDRNOTAVAIL;
352 
353 	/* We must either be unbound, or bind to the same port.
354 	 * It's OK to allow 0 ports if we are already bound.
355 	 * We'll just inhert an already bound port in this case
356 	 */
357 	if (bp->port) {
358 		if (!snum)
359 			snum = bp->port;
360 		else if (snum != bp->port) {
361 			pr_debug("%s: new port %d doesn't match existing port "
362 				 "%d\n", __func__, snum, bp->port);
363 			return -EINVAL;
364 		}
365 	}
366 
367 	if (snum && snum < PROT_SOCK &&
368 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 		return -EACCES;
370 
371 	/* See if the address matches any of the addresses we may have
372 	 * already bound before checking against other endpoints.
373 	 */
374 	if (sctp_bind_addr_match(bp, addr, sp))
375 		return -EINVAL;
376 
377 	/* Make sure we are allowed to bind here.
378 	 * The function sctp_get_port_local() does duplicate address
379 	 * detection.
380 	 */
381 	addr->v4.sin_port = htons(snum);
382 	if ((ret = sctp_get_port_local(sk, addr))) {
383 		return -EADDRINUSE;
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->inet_num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
394 
395 	/* Copy back into socket for getsockname() use. */
396 	if (!ret) {
397 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
398 		af->to_sk_saddr(addr, sk);
399 	}
400 
401 	return ret;
402 }
403 
404  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405  *
406  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407  * at any one time.  If a sender, after sending an ASCONF chunk, decides
408  * it needs to transfer another ASCONF Chunk, it MUST wait until the
409  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410  * subsequent ASCONF. Note this restriction binds each side, so at any
411  * time two ASCONF may be in-transit on any given association (one sent
412  * from each endpoint).
413  */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 			    struct sctp_chunk *chunk)
416 {
417 	struct net 	*net = sock_net(asoc->base.sk);
418 	int		retval = 0;
419 
420 	/* If there is an outstanding ASCONF chunk, queue it for later
421 	 * transmission.
422 	 */
423 	if (asoc->addip_last_asconf) {
424 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 		goto out;
426 	}
427 
428 	/* Hold the chunk until an ASCONF_ACK is received. */
429 	sctp_chunk_hold(chunk);
430 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
431 	if (retval)
432 		sctp_chunk_free(chunk);
433 	else
434 		asoc->addip_last_asconf = chunk;
435 
436 out:
437 	return retval;
438 }
439 
440 /* Add a list of addresses as bind addresses to local endpoint or
441  * association.
442  *
443  * Basically run through each address specified in the addrs/addrcnt
444  * array/length pair, determine if it is IPv6 or IPv4 and call
445  * sctp_do_bind() on it.
446  *
447  * If any of them fails, then the operation will be reversed and the
448  * ones that were added will be removed.
449  *
450  * Only sctp_setsockopt_bindx() is supposed to call this function.
451  */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 	int cnt;
455 	int retval = 0;
456 	void *addr_buf;
457 	struct sockaddr *sa_addr;
458 	struct sctp_af *af;
459 
460 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
461 		 addrs, addrcnt);
462 
463 	addr_buf = addrs;
464 	for (cnt = 0; cnt < addrcnt; cnt++) {
465 		/* The list may contain either IPv4 or IPv6 address;
466 		 * determine the address length for walking thru the list.
467 		 */
468 		sa_addr = addr_buf;
469 		af = sctp_get_af_specific(sa_addr->sa_family);
470 		if (!af) {
471 			retval = -EINVAL;
472 			goto err_bindx_add;
473 		}
474 
475 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 				      af->sockaddr_len);
477 
478 		addr_buf += af->sockaddr_len;
479 
480 err_bindx_add:
481 		if (retval < 0) {
482 			/* Failed. Cleanup the ones that have been added */
483 			if (cnt > 0)
484 				sctp_bindx_rem(sk, addrs, cnt);
485 			return retval;
486 		}
487 	}
488 
489 	return retval;
490 }
491 
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493  * associations that are part of the endpoint indicating that a list of local
494  * addresses are added to the endpoint.
495  *
496  * If any of the addresses is already in the bind address list of the
497  * association, we do not send the chunk for that association.  But it will not
498  * affect other associations.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_send_asconf_add_ip(struct sock		*sk,
503 				   struct sockaddr	*addrs,
504 				   int 			addrcnt)
505 {
506 	struct net *net = sock_net(sk);
507 	struct sctp_sock		*sp;
508 	struct sctp_endpoint		*ep;
509 	struct sctp_association		*asoc;
510 	struct sctp_bind_addr		*bp;
511 	struct sctp_chunk		*chunk;
512 	struct sctp_sockaddr_entry	*laddr;
513 	union sctp_addr			*addr;
514 	union sctp_addr			saveaddr;
515 	void				*addr_buf;
516 	struct sctp_af			*af;
517 	struct list_head		*p;
518 	int 				i;
519 	int 				retval = 0;
520 
521 	if (!net->sctp.addip_enable)
522 		return retval;
523 
524 	sp = sctp_sk(sk);
525 	ep = sp->ep;
526 
527 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
528 		 __func__, sk, addrs, addrcnt);
529 
530 	list_for_each_entry(asoc, &ep->asocs, asocs) {
531 		if (!asoc->peer.asconf_capable)
532 			continue;
533 
534 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 			continue;
536 
537 		if (!sctp_state(asoc, ESTABLISHED))
538 			continue;
539 
540 		/* Check if any address in the packed array of addresses is
541 		 * in the bind address list of the association. If so,
542 		 * do not send the asconf chunk to its peer, but continue with
543 		 * other associations.
544 		 */
545 		addr_buf = addrs;
546 		for (i = 0; i < addrcnt; i++) {
547 			addr = addr_buf;
548 			af = sctp_get_af_specific(addr->v4.sin_family);
549 			if (!af) {
550 				retval = -EINVAL;
551 				goto out;
552 			}
553 
554 			if (sctp_assoc_lookup_laddr(asoc, addr))
555 				break;
556 
557 			addr_buf += af->sockaddr_len;
558 		}
559 		if (i < addrcnt)
560 			continue;
561 
562 		/* Use the first valid address in bind addr list of
563 		 * association as Address Parameter of ASCONF CHUNK.
564 		 */
565 		bp = &asoc->base.bind_addr;
566 		p = bp->address_list.next;
567 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 						   addrcnt, SCTP_PARAM_ADD_IP);
570 		if (!chunk) {
571 			retval = -ENOMEM;
572 			goto out;
573 		}
574 
575 		/* Add the new addresses to the bind address list with
576 		 * use_as_src set to 0.
577 		 */
578 		addr_buf = addrs;
579 		for (i = 0; i < addrcnt; i++) {
580 			addr = addr_buf;
581 			af = sctp_get_af_specific(addr->v4.sin_family);
582 			memcpy(&saveaddr, addr, af->sockaddr_len);
583 			retval = sctp_add_bind_addr(bp, &saveaddr,
584 						    SCTP_ADDR_NEW, GFP_ATOMIC);
585 			addr_buf += af->sockaddr_len;
586 		}
587 		if (asoc->src_out_of_asoc_ok) {
588 			struct sctp_transport *trans;
589 
590 			list_for_each_entry(trans,
591 			    &asoc->peer.transport_addr_list, transports) {
592 				/* Clear the source and route cache */
593 				dst_release(trans->dst);
594 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
595 				    2*asoc->pathmtu, 4380));
596 				trans->ssthresh = asoc->peer.i.a_rwnd;
597 				trans->rto = asoc->rto_initial;
598 				sctp_max_rto(asoc, trans);
599 				trans->rtt = trans->srtt = trans->rttvar = 0;
600 				sctp_transport_route(trans, NULL,
601 				    sctp_sk(asoc->base.sk));
602 			}
603 		}
604 		retval = sctp_send_asconf(asoc, chunk);
605 	}
606 
607 out:
608 	return retval;
609 }
610 
611 /* Remove a list of addresses from bind addresses list.  Do not remove the
612  * last address.
613  *
614  * Basically run through each address specified in the addrs/addrcnt
615  * array/length pair, determine if it is IPv6 or IPv4 and call
616  * sctp_del_bind() on it.
617  *
618  * If any of them fails, then the operation will be reversed and the
619  * ones that were removed will be added back.
620  *
621  * At least one address has to be left; if only one address is
622  * available, the operation will return -EBUSY.
623  *
624  * Only sctp_setsockopt_bindx() is supposed to call this function.
625  */
626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
627 {
628 	struct sctp_sock *sp = sctp_sk(sk);
629 	struct sctp_endpoint *ep = sp->ep;
630 	int cnt;
631 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
632 	int retval = 0;
633 	void *addr_buf;
634 	union sctp_addr *sa_addr;
635 	struct sctp_af *af;
636 
637 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
638 		 __func__, sk, addrs, addrcnt);
639 
640 	addr_buf = addrs;
641 	for (cnt = 0; cnt < addrcnt; cnt++) {
642 		/* If the bind address list is empty or if there is only one
643 		 * bind address, there is nothing more to be removed (we need
644 		 * at least one address here).
645 		 */
646 		if (list_empty(&bp->address_list) ||
647 		    (sctp_list_single_entry(&bp->address_list))) {
648 			retval = -EBUSY;
649 			goto err_bindx_rem;
650 		}
651 
652 		sa_addr = addr_buf;
653 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
654 		if (!af) {
655 			retval = -EINVAL;
656 			goto err_bindx_rem;
657 		}
658 
659 		if (!af->addr_valid(sa_addr, sp, NULL)) {
660 			retval = -EADDRNOTAVAIL;
661 			goto err_bindx_rem;
662 		}
663 
664 		if (sa_addr->v4.sin_port &&
665 		    sa_addr->v4.sin_port != htons(bp->port)) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!sa_addr->v4.sin_port)
671 			sa_addr->v4.sin_port = htons(bp->port);
672 
673 		/* FIXME - There is probably a need to check if sk->sk_saddr and
674 		 * sk->sk_rcv_addr are currently set to one of the addresses to
675 		 * be removed. This is something which needs to be looked into
676 		 * when we are fixing the outstanding issues with multi-homing
677 		 * socket routing and failover schemes. Refer to comments in
678 		 * sctp_do_bind(). -daisy
679 		 */
680 		retval = sctp_del_bind_addr(bp, sa_addr);
681 
682 		addr_buf += af->sockaddr_len;
683 err_bindx_rem:
684 		if (retval < 0) {
685 			/* Failed. Add the ones that has been removed back */
686 			if (cnt > 0)
687 				sctp_bindx_add(sk, addrs, cnt);
688 			return retval;
689 		}
690 	}
691 
692 	return retval;
693 }
694 
695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
696  * the associations that are part of the endpoint indicating that a list of
697  * local addresses are removed from the endpoint.
698  *
699  * If any of the addresses is already in the bind address list of the
700  * association, we do not send the chunk for that association.  But it will not
701  * affect other associations.
702  *
703  * Only sctp_setsockopt_bindx() is supposed to call this function.
704  */
705 static int sctp_send_asconf_del_ip(struct sock		*sk,
706 				   struct sockaddr	*addrs,
707 				   int			addrcnt)
708 {
709 	struct net *net = sock_net(sk);
710 	struct sctp_sock	*sp;
711 	struct sctp_endpoint	*ep;
712 	struct sctp_association	*asoc;
713 	struct sctp_transport	*transport;
714 	struct sctp_bind_addr	*bp;
715 	struct sctp_chunk	*chunk;
716 	union sctp_addr		*laddr;
717 	void			*addr_buf;
718 	struct sctp_af		*af;
719 	struct sctp_sockaddr_entry *saddr;
720 	int 			i;
721 	int 			retval = 0;
722 	int			stored = 0;
723 
724 	chunk = NULL;
725 	if (!net->sctp.addip_enable)
726 		return retval;
727 
728 	sp = sctp_sk(sk);
729 	ep = sp->ep;
730 
731 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
732 		 __func__, sk, addrs, addrcnt);
733 
734 	list_for_each_entry(asoc, &ep->asocs, asocs) {
735 
736 		if (!asoc->peer.asconf_capable)
737 			continue;
738 
739 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
740 			continue;
741 
742 		if (!sctp_state(asoc, ESTABLISHED))
743 			continue;
744 
745 		/* Check if any address in the packed array of addresses is
746 		 * not present in the bind address list of the association.
747 		 * If so, do not send the asconf chunk to its peer, but
748 		 * continue with other associations.
749 		 */
750 		addr_buf = addrs;
751 		for (i = 0; i < addrcnt; i++) {
752 			laddr = addr_buf;
753 			af = sctp_get_af_specific(laddr->v4.sin_family);
754 			if (!af) {
755 				retval = -EINVAL;
756 				goto out;
757 			}
758 
759 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
760 				break;
761 
762 			addr_buf += af->sockaddr_len;
763 		}
764 		if (i < addrcnt)
765 			continue;
766 
767 		/* Find one address in the association's bind address list
768 		 * that is not in the packed array of addresses. This is to
769 		 * make sure that we do not delete all the addresses in the
770 		 * association.
771 		 */
772 		bp = &asoc->base.bind_addr;
773 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
774 					       addrcnt, sp);
775 		if ((laddr == NULL) && (addrcnt == 1)) {
776 			if (asoc->asconf_addr_del_pending)
777 				continue;
778 			asoc->asconf_addr_del_pending =
779 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
780 			if (asoc->asconf_addr_del_pending == NULL) {
781 				retval = -ENOMEM;
782 				goto out;
783 			}
784 			asoc->asconf_addr_del_pending->sa.sa_family =
785 				    addrs->sa_family;
786 			asoc->asconf_addr_del_pending->v4.sin_port =
787 				    htons(bp->port);
788 			if (addrs->sa_family == AF_INET) {
789 				struct sockaddr_in *sin;
790 
791 				sin = (struct sockaddr_in *)addrs;
792 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
793 			} else if (addrs->sa_family == AF_INET6) {
794 				struct sockaddr_in6 *sin6;
795 
796 				sin6 = (struct sockaddr_in6 *)addrs;
797 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
798 			}
799 
800 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
801 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
802 				 asoc->asconf_addr_del_pending);
803 
804 			asoc->src_out_of_asoc_ok = 1;
805 			stored = 1;
806 			goto skip_mkasconf;
807 		}
808 
809 		/* We do not need RCU protection throughout this loop
810 		 * because this is done under a socket lock from the
811 		 * setsockopt call.
812 		 */
813 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
814 						   SCTP_PARAM_DEL_IP);
815 		if (!chunk) {
816 			retval = -ENOMEM;
817 			goto out;
818 		}
819 
820 skip_mkasconf:
821 		/* Reset use_as_src flag for the addresses in the bind address
822 		 * list that are to be deleted.
823 		 */
824 		addr_buf = addrs;
825 		for (i = 0; i < addrcnt; i++) {
826 			laddr = addr_buf;
827 			af = sctp_get_af_specific(laddr->v4.sin_family);
828 			list_for_each_entry(saddr, &bp->address_list, list) {
829 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
830 					saddr->state = SCTP_ADDR_DEL;
831 			}
832 			addr_buf += af->sockaddr_len;
833 		}
834 
835 		/* Update the route and saddr entries for all the transports
836 		 * as some of the addresses in the bind address list are
837 		 * about to be deleted and cannot be used as source addresses.
838 		 */
839 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
840 					transports) {
841 			dst_release(transport->dst);
842 			sctp_transport_route(transport, NULL,
843 					     sctp_sk(asoc->base.sk));
844 		}
845 
846 		if (stored)
847 			/* We don't need to transmit ASCONF */
848 			continue;
849 		retval = sctp_send_asconf(asoc, chunk);
850 	}
851 out:
852 	return retval;
853 }
854 
855 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
856 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
857 {
858 	struct sock *sk = sctp_opt2sk(sp);
859 	union sctp_addr *addr;
860 	struct sctp_af *af;
861 
862 	/* It is safe to write port space in caller. */
863 	addr = &addrw->a;
864 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
865 	af = sctp_get_af_specific(addr->sa.sa_family);
866 	if (!af)
867 		return -EINVAL;
868 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
869 		return -EINVAL;
870 
871 	if (addrw->state == SCTP_ADDR_NEW)
872 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
873 	else
874 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
875 }
876 
877 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
878  *
879  * API 8.1
880  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
881  *                int flags);
882  *
883  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
884  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
885  * or IPv6 addresses.
886  *
887  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
888  * Section 3.1.2 for this usage.
889  *
890  * addrs is a pointer to an array of one or more socket addresses. Each
891  * address is contained in its appropriate structure (i.e. struct
892  * sockaddr_in or struct sockaddr_in6) the family of the address type
893  * must be used to distinguish the address length (note that this
894  * representation is termed a "packed array" of addresses). The caller
895  * specifies the number of addresses in the array with addrcnt.
896  *
897  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
898  * -1, and sets errno to the appropriate error code.
899  *
900  * For SCTP, the port given in each socket address must be the same, or
901  * sctp_bindx() will fail, setting errno to EINVAL.
902  *
903  * The flags parameter is formed from the bitwise OR of zero or more of
904  * the following currently defined flags:
905  *
906  * SCTP_BINDX_ADD_ADDR
907  *
908  * SCTP_BINDX_REM_ADDR
909  *
910  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
911  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
912  * addresses from the association. The two flags are mutually exclusive;
913  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
914  * not remove all addresses from an association; sctp_bindx() will
915  * reject such an attempt with EINVAL.
916  *
917  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
918  * additional addresses with an endpoint after calling bind().  Or use
919  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
920  * socket is associated with so that no new association accepted will be
921  * associated with those addresses. If the endpoint supports dynamic
922  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
923  * endpoint to send the appropriate message to the peer to change the
924  * peers address lists.
925  *
926  * Adding and removing addresses from a connected association is
927  * optional functionality. Implementations that do not support this
928  * functionality should return EOPNOTSUPP.
929  *
930  * Basically do nothing but copying the addresses from user to kernel
931  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
932  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
933  * from userspace.
934  *
935  * We don't use copy_from_user() for optimization: we first do the
936  * sanity checks (buffer size -fast- and access check-healthy
937  * pointer); if all of those succeed, then we can alloc the memory
938  * (expensive operation) needed to copy the data to kernel. Then we do
939  * the copying without checking the user space area
940  * (__copy_from_user()).
941  *
942  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
943  * it.
944  *
945  * sk        The sk of the socket
946  * addrs     The pointer to the addresses in user land
947  * addrssize Size of the addrs buffer
948  * op        Operation to perform (add or remove, see the flags of
949  *           sctp_bindx)
950  *
951  * Returns 0 if ok, <0 errno code on error.
952  */
953 static int sctp_setsockopt_bindx(struct sock* sk,
954 				 struct sockaddr __user *addrs,
955 				 int addrs_size, int op)
956 {
957 	struct sockaddr *kaddrs;
958 	int err;
959 	int addrcnt = 0;
960 	int walk_size = 0;
961 	struct sockaddr *sa_addr;
962 	void *addr_buf;
963 	struct sctp_af *af;
964 
965 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
966 		 __func__, sk, addrs, addrs_size, op);
967 
968 	if (unlikely(addrs_size <= 0))
969 		return -EINVAL;
970 
971 	/* Check the user passed a healthy pointer.  */
972 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
973 		return -EFAULT;
974 
975 	/* Alloc space for the address array in kernel memory.  */
976 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
977 	if (unlikely(!kaddrs))
978 		return -ENOMEM;
979 
980 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
981 		kfree(kaddrs);
982 		return -EFAULT;
983 	}
984 
985 	/* Walk through the addrs buffer and count the number of addresses. */
986 	addr_buf = kaddrs;
987 	while (walk_size < addrs_size) {
988 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
989 			kfree(kaddrs);
990 			return -EINVAL;
991 		}
992 
993 		sa_addr = addr_buf;
994 		af = sctp_get_af_specific(sa_addr->sa_family);
995 
996 		/* If the address family is not supported or if this address
997 		 * causes the address buffer to overflow return EINVAL.
998 		 */
999 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1000 			kfree(kaddrs);
1001 			return -EINVAL;
1002 		}
1003 		addrcnt++;
1004 		addr_buf += af->sockaddr_len;
1005 		walk_size += af->sockaddr_len;
1006 	}
1007 
1008 	/* Do the work. */
1009 	switch (op) {
1010 	case SCTP_BINDX_ADD_ADDR:
1011 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1012 		if (err)
1013 			goto out;
1014 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1015 		break;
1016 
1017 	case SCTP_BINDX_REM_ADDR:
1018 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1019 		if (err)
1020 			goto out;
1021 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1022 		break;
1023 
1024 	default:
1025 		err = -EINVAL;
1026 		break;
1027 	}
1028 
1029 out:
1030 	kfree(kaddrs);
1031 
1032 	return err;
1033 }
1034 
1035 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1036  *
1037  * Common routine for handling connect() and sctp_connectx().
1038  * Connect will come in with just a single address.
1039  */
1040 static int __sctp_connect(struct sock* sk,
1041 			  struct sockaddr *kaddrs,
1042 			  int addrs_size,
1043 			  sctp_assoc_t *assoc_id)
1044 {
1045 	struct net *net = sock_net(sk);
1046 	struct sctp_sock *sp;
1047 	struct sctp_endpoint *ep;
1048 	struct sctp_association *asoc = NULL;
1049 	struct sctp_association *asoc2;
1050 	struct sctp_transport *transport;
1051 	union sctp_addr to;
1052 	struct sctp_af *af;
1053 	sctp_scope_t scope;
1054 	long timeo;
1055 	int err = 0;
1056 	int addrcnt = 0;
1057 	int walk_size = 0;
1058 	union sctp_addr *sa_addr = NULL;
1059 	void *addr_buf;
1060 	unsigned short port;
1061 	unsigned int f_flags = 0;
1062 
1063 	sp = sctp_sk(sk);
1064 	ep = sp->ep;
1065 
1066 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1067 	 * state - UDP-style peeled off socket or a TCP-style socket that
1068 	 * is already connected.
1069 	 * It cannot be done even on a TCP-style listening socket.
1070 	 */
1071 	if (sctp_sstate(sk, ESTABLISHED) ||
1072 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 		err = -EISCONN;
1074 		goto out_free;
1075 	}
1076 
1077 	/* Walk through the addrs buffer and count the number of addresses. */
1078 	addr_buf = kaddrs;
1079 	while (walk_size < addrs_size) {
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1205 	af->to_sk_daddr(sa_addr, sk);
1206 	sk->sk_err = 0;
1207 
1208 	/* in-kernel sockets don't generally have a file allocated to them
1209 	 * if all they do is call sock_create_kern().
1210 	 */
1211 	if (sk->sk_socket->file)
1212 		f_flags = sk->sk_socket->file->f_flags;
1213 
1214 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1215 
1216 	err = sctp_wait_for_connect(asoc, &timeo);
1217 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1218 		*assoc_id = asoc->assoc_id;
1219 
1220 	/* Don't free association on exit. */
1221 	asoc = NULL;
1222 
1223 out_free:
1224 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1225 		 __func__, asoc, kaddrs, err);
1226 
1227 	if (asoc) {
1228 		/* sctp_primitive_ASSOCIATE may have added this association
1229 		 * To the hash table, try to unhash it, just in case, its a noop
1230 		 * if it wasn't hashed so we're safe
1231 		 */
1232 		sctp_unhash_established(asoc);
1233 		sctp_association_free(asoc);
1234 	}
1235 	return err;
1236 }
1237 
1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239  *
1240  * API 8.9
1241  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242  * 			sctp_assoc_t *asoc);
1243  *
1244  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246  * or IPv6 addresses.
1247  *
1248  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249  * Section 3.1.2 for this usage.
1250  *
1251  * addrs is a pointer to an array of one or more socket addresses. Each
1252  * address is contained in its appropriate structure (i.e. struct
1253  * sockaddr_in or struct sockaddr_in6) the family of the address type
1254  * must be used to distengish the address length (note that this
1255  * representation is termed a "packed array" of addresses). The caller
1256  * specifies the number of addresses in the array with addrcnt.
1257  *
1258  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259  * the association id of the new association.  On failure, sctp_connectx()
1260  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1261  * is not touched by the kernel.
1262  *
1263  * For SCTP, the port given in each socket address must be the same, or
1264  * sctp_connectx() will fail, setting errno to EINVAL.
1265  *
1266  * An application can use sctp_connectx to initiate an association with
1267  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1268  * allows a caller to specify multiple addresses at which a peer can be
1269  * reached.  The way the SCTP stack uses the list of addresses to set up
1270  * the association is implementation dependent.  This function only
1271  * specifies that the stack will try to make use of all the addresses in
1272  * the list when needed.
1273  *
1274  * Note that the list of addresses passed in is only used for setting up
1275  * the association.  It does not necessarily equal the set of addresses
1276  * the peer uses for the resulting association.  If the caller wants to
1277  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278  * retrieve them after the association has been set up.
1279  *
1280  * Basically do nothing but copying the addresses from user to kernel
1281  * land and invoking either sctp_connectx(). This is used for tunneling
1282  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283  *
1284  * We don't use copy_from_user() for optimization: we first do the
1285  * sanity checks (buffer size -fast- and access check-healthy
1286  * pointer); if all of those succeed, then we can alloc the memory
1287  * (expensive operation) needed to copy the data to kernel. Then we do
1288  * the copying without checking the user space area
1289  * (__copy_from_user()).
1290  *
1291  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292  * it.
1293  *
1294  * sk        The sk of the socket
1295  * addrs     The pointer to the addresses in user land
1296  * addrssize Size of the addrs buffer
1297  *
1298  * Returns >=0 if ok, <0 errno code on error.
1299  */
1300 static int __sctp_setsockopt_connectx(struct sock* sk,
1301 				      struct sockaddr __user *addrs,
1302 				      int addrs_size,
1303 				      sctp_assoc_t *assoc_id)
1304 {
1305 	int err = 0;
1306 	struct sockaddr *kaddrs;
1307 
1308 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1309 		 __func__, sk, addrs, addrs_size);
1310 
1311 	if (unlikely(addrs_size <= 0))
1312 		return -EINVAL;
1313 
1314 	/* Check the user passed a healthy pointer.  */
1315 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1316 		return -EFAULT;
1317 
1318 	/* Alloc space for the address array in kernel memory.  */
1319 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1320 	if (unlikely(!kaddrs))
1321 		return -ENOMEM;
1322 
1323 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1324 		err = -EFAULT;
1325 	} else {
1326 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1327 	}
1328 
1329 	kfree(kaddrs);
1330 
1331 	return err;
1332 }
1333 
1334 /*
1335  * This is an older interface.  It's kept for backward compatibility
1336  * to the option that doesn't provide association id.
1337  */
1338 static int sctp_setsockopt_connectx_old(struct sock* sk,
1339 					struct sockaddr __user *addrs,
1340 					int addrs_size)
1341 {
1342 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1343 }
1344 
1345 /*
1346  * New interface for the API.  The since the API is done with a socket
1347  * option, to make it simple we feed back the association id is as a return
1348  * indication to the call.  Error is always negative and association id is
1349  * always positive.
1350  */
1351 static int sctp_setsockopt_connectx(struct sock* sk,
1352 				    struct sockaddr __user *addrs,
1353 				    int addrs_size)
1354 {
1355 	sctp_assoc_t assoc_id = 0;
1356 	int err = 0;
1357 
1358 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1359 
1360 	if (err)
1361 		return err;
1362 	else
1363 		return assoc_id;
1364 }
1365 
1366 /*
1367  * New (hopefully final) interface for the API.
1368  * We use the sctp_getaddrs_old structure so that use-space library
1369  * can avoid any unnecessary allocations.   The only defferent part
1370  * is that we store the actual length of the address buffer into the
1371  * addrs_num structure member.  That way we can re-use the existing
1372  * code.
1373  */
1374 static int sctp_getsockopt_connectx3(struct sock* sk, int len,
1375 				     char __user *optval,
1376 				     int __user *optlen)
1377 {
1378 	struct sctp_getaddrs_old param;
1379 	sctp_assoc_t assoc_id = 0;
1380 	int err = 0;
1381 
1382 	if (len < sizeof(param))
1383 		return -EINVAL;
1384 
1385 	if (copy_from_user(&param, optval, sizeof(param)))
1386 		return -EFAULT;
1387 
1388 	err = __sctp_setsockopt_connectx(sk,
1389 			(struct sockaddr __user *)param.addrs,
1390 			param.addr_num, &assoc_id);
1391 
1392 	if (err == 0 || err == -EINPROGRESS) {
1393 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1394 			return -EFAULT;
1395 		if (put_user(sizeof(assoc_id), optlen))
1396 			return -EFAULT;
1397 	}
1398 
1399 	return err;
1400 }
1401 
1402 /* API 3.1.4 close() - UDP Style Syntax
1403  * Applications use close() to perform graceful shutdown (as described in
1404  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1405  * by a UDP-style socket.
1406  *
1407  * The syntax is
1408  *
1409  *   ret = close(int sd);
1410  *
1411  *   sd      - the socket descriptor of the associations to be closed.
1412  *
1413  * To gracefully shutdown a specific association represented by the
1414  * UDP-style socket, an application should use the sendmsg() call,
1415  * passing no user data, but including the appropriate flag in the
1416  * ancillary data (see Section xxxx).
1417  *
1418  * If sd in the close() call is a branched-off socket representing only
1419  * one association, the shutdown is performed on that association only.
1420  *
1421  * 4.1.6 close() - TCP Style Syntax
1422  *
1423  * Applications use close() to gracefully close down an association.
1424  *
1425  * The syntax is:
1426  *
1427  *    int close(int sd);
1428  *
1429  *      sd      - the socket descriptor of the association to be closed.
1430  *
1431  * After an application calls close() on a socket descriptor, no further
1432  * socket operations will succeed on that descriptor.
1433  *
1434  * API 7.1.4 SO_LINGER
1435  *
1436  * An application using the TCP-style socket can use this option to
1437  * perform the SCTP ABORT primitive.  The linger option structure is:
1438  *
1439  *  struct  linger {
1440  *     int     l_onoff;                // option on/off
1441  *     int     l_linger;               // linger time
1442  * };
1443  *
1444  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1445  * to 0, calling close() is the same as the ABORT primitive.  If the
1446  * value is set to a negative value, the setsockopt() call will return
1447  * an error.  If the value is set to a positive value linger_time, the
1448  * close() can be blocked for at most linger_time ms.  If the graceful
1449  * shutdown phase does not finish during this period, close() will
1450  * return but the graceful shutdown phase continues in the system.
1451  */
1452 static void sctp_close(struct sock *sk, long timeout)
1453 {
1454 	struct net *net = sock_net(sk);
1455 	struct sctp_endpoint *ep;
1456 	struct sctp_association *asoc;
1457 	struct list_head *pos, *temp;
1458 	unsigned int data_was_unread;
1459 
1460 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1461 
1462 	sctp_lock_sock(sk);
1463 	sk->sk_shutdown = SHUTDOWN_MASK;
1464 	sk->sk_state = SCTP_SS_CLOSING;
1465 
1466 	ep = sctp_sk(sk)->ep;
1467 
1468 	/* Clean up any skbs sitting on the receive queue.  */
1469 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1470 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1471 
1472 	/* Walk all associations on an endpoint.  */
1473 	list_for_each_safe(pos, temp, &ep->asocs) {
1474 		asoc = list_entry(pos, struct sctp_association, asocs);
1475 
1476 		if (sctp_style(sk, TCP)) {
1477 			/* A closed association can still be in the list if
1478 			 * it belongs to a TCP-style listening socket that is
1479 			 * not yet accepted. If so, free it. If not, send an
1480 			 * ABORT or SHUTDOWN based on the linger options.
1481 			 */
1482 			if (sctp_state(asoc, CLOSED)) {
1483 				sctp_unhash_established(asoc);
1484 				sctp_association_free(asoc);
1485 				continue;
1486 			}
1487 		}
1488 
1489 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1490 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1491 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1492 			struct sctp_chunk *chunk;
1493 
1494 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1495 			if (chunk)
1496 				sctp_primitive_ABORT(net, asoc, chunk);
1497 		} else
1498 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1499 	}
1500 
1501 	/* On a TCP-style socket, block for at most linger_time if set. */
1502 	if (sctp_style(sk, TCP) && timeout)
1503 		sctp_wait_for_close(sk, timeout);
1504 
1505 	/* This will run the backlog queue.  */
1506 	sctp_release_sock(sk);
1507 
1508 	/* Supposedly, no process has access to the socket, but
1509 	 * the net layers still may.
1510 	 */
1511 	sctp_local_bh_disable();
1512 	sctp_bh_lock_sock(sk);
1513 
1514 	/* Hold the sock, since sk_common_release() will put sock_put()
1515 	 * and we have just a little more cleanup.
1516 	 */
1517 	sock_hold(sk);
1518 	sk_common_release(sk);
1519 
1520 	sctp_bh_unlock_sock(sk);
1521 	sctp_local_bh_enable();
1522 
1523 	sock_put(sk);
1524 
1525 	SCTP_DBG_OBJCNT_DEC(sock);
1526 }
1527 
1528 /* Handle EPIPE error. */
1529 static int sctp_error(struct sock *sk, int flags, int err)
1530 {
1531 	if (err == -EPIPE)
1532 		err = sock_error(sk) ? : -EPIPE;
1533 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1534 		send_sig(SIGPIPE, current, 0);
1535 	return err;
1536 }
1537 
1538 /* API 3.1.3 sendmsg() - UDP Style Syntax
1539  *
1540  * An application uses sendmsg() and recvmsg() calls to transmit data to
1541  * and receive data from its peer.
1542  *
1543  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1544  *                  int flags);
1545  *
1546  *  socket  - the socket descriptor of the endpoint.
1547  *  message - pointer to the msghdr structure which contains a single
1548  *            user message and possibly some ancillary data.
1549  *
1550  *            See Section 5 for complete description of the data
1551  *            structures.
1552  *
1553  *  flags   - flags sent or received with the user message, see Section
1554  *            5 for complete description of the flags.
1555  *
1556  * Note:  This function could use a rewrite especially when explicit
1557  * connect support comes in.
1558  */
1559 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1560 
1561 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1562 
1563 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1564 			struct msghdr *msg, size_t msg_len)
1565 {
1566 	struct net *net = sock_net(sk);
1567 	struct sctp_sock *sp;
1568 	struct sctp_endpoint *ep;
1569 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1570 	struct sctp_transport *transport, *chunk_tp;
1571 	struct sctp_chunk *chunk;
1572 	union sctp_addr to;
1573 	struct sockaddr *msg_name = NULL;
1574 	struct sctp_sndrcvinfo default_sinfo;
1575 	struct sctp_sndrcvinfo *sinfo;
1576 	struct sctp_initmsg *sinit;
1577 	sctp_assoc_t associd = 0;
1578 	sctp_cmsgs_t cmsgs = { NULL };
1579 	int err;
1580 	sctp_scope_t scope;
1581 	long timeo;
1582 	__u16 sinfo_flags = 0;
1583 	struct sctp_datamsg *datamsg;
1584 	int msg_flags = msg->msg_flags;
1585 
1586 	err = 0;
1587 	sp = sctp_sk(sk);
1588 	ep = sp->ep;
1589 
1590 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1591 		 msg, msg_len, ep);
1592 
1593 	/* We cannot send a message over a TCP-style listening socket. */
1594 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1595 		err = -EPIPE;
1596 		goto out_nounlock;
1597 	}
1598 
1599 	/* Parse out the SCTP CMSGs.  */
1600 	err = sctp_msghdr_parse(msg, &cmsgs);
1601 	if (err) {
1602 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1603 		goto out_nounlock;
1604 	}
1605 
1606 	/* Fetch the destination address for this packet.  This
1607 	 * address only selects the association--it is not necessarily
1608 	 * the address we will send to.
1609 	 * For a peeled-off socket, msg_name is ignored.
1610 	 */
1611 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1612 		int msg_namelen = msg->msg_namelen;
1613 
1614 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1615 				       msg_namelen);
1616 		if (err)
1617 			return err;
1618 
1619 		if (msg_namelen > sizeof(to))
1620 			msg_namelen = sizeof(to);
1621 		memcpy(&to, msg->msg_name, msg_namelen);
1622 		msg_name = msg->msg_name;
1623 	}
1624 
1625 	sinfo = cmsgs.info;
1626 	sinit = cmsgs.init;
1627 
1628 	/* Did the user specify SNDRCVINFO?  */
1629 	if (sinfo) {
1630 		sinfo_flags = sinfo->sinfo_flags;
1631 		associd = sinfo->sinfo_assoc_id;
1632 	}
1633 
1634 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1635 		 msg_len, sinfo_flags);
1636 
1637 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1638 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1639 		err = -EINVAL;
1640 		goto out_nounlock;
1641 	}
1642 
1643 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1644 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1645 	 * If SCTP_ABORT is set, the message length could be non zero with
1646 	 * the msg_iov set to the user abort reason.
1647 	 */
1648 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1649 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1650 		err = -EINVAL;
1651 		goto out_nounlock;
1652 	}
1653 
1654 	/* If SCTP_ADDR_OVER is set, there must be an address
1655 	 * specified in msg_name.
1656 	 */
1657 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1658 		err = -EINVAL;
1659 		goto out_nounlock;
1660 	}
1661 
1662 	transport = NULL;
1663 
1664 	pr_debug("%s: about to look up association\n", __func__);
1665 
1666 	sctp_lock_sock(sk);
1667 
1668 	/* If a msg_name has been specified, assume this is to be used.  */
1669 	if (msg_name) {
1670 		/* Look for a matching association on the endpoint. */
1671 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1672 		if (!asoc) {
1673 			/* If we could not find a matching association on the
1674 			 * endpoint, make sure that it is not a TCP-style
1675 			 * socket that already has an association or there is
1676 			 * no peeled-off association on another socket.
1677 			 */
1678 			if ((sctp_style(sk, TCP) &&
1679 			     sctp_sstate(sk, ESTABLISHED)) ||
1680 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1681 				err = -EADDRNOTAVAIL;
1682 				goto out_unlock;
1683 			}
1684 		}
1685 	} else {
1686 		asoc = sctp_id2assoc(sk, associd);
1687 		if (!asoc) {
1688 			err = -EPIPE;
1689 			goto out_unlock;
1690 		}
1691 	}
1692 
1693 	if (asoc) {
1694 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1695 
1696 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1697 		 * socket that has an association in CLOSED state. This can
1698 		 * happen when an accepted socket has an association that is
1699 		 * already CLOSED.
1700 		 */
1701 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1702 			err = -EPIPE;
1703 			goto out_unlock;
1704 		}
1705 
1706 		if (sinfo_flags & SCTP_EOF) {
1707 			pr_debug("%s: shutting down association:%p\n",
1708 				 __func__, asoc);
1709 
1710 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1711 			err = 0;
1712 			goto out_unlock;
1713 		}
1714 		if (sinfo_flags & SCTP_ABORT) {
1715 
1716 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1717 			if (!chunk) {
1718 				err = -ENOMEM;
1719 				goto out_unlock;
1720 			}
1721 
1722 			pr_debug("%s: aborting association:%p\n",
1723 				 __func__, asoc);
1724 
1725 			sctp_primitive_ABORT(net, asoc, chunk);
1726 			err = 0;
1727 			goto out_unlock;
1728 		}
1729 	}
1730 
1731 	/* Do we need to create the association?  */
1732 	if (!asoc) {
1733 		pr_debug("%s: there is no association yet\n", __func__);
1734 
1735 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1736 			err = -EINVAL;
1737 			goto out_unlock;
1738 		}
1739 
1740 		/* Check for invalid stream against the stream counts,
1741 		 * either the default or the user specified stream counts.
1742 		 */
1743 		if (sinfo) {
1744 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1745 				/* Check against the defaults. */
1746 				if (sinfo->sinfo_stream >=
1747 				    sp->initmsg.sinit_num_ostreams) {
1748 					err = -EINVAL;
1749 					goto out_unlock;
1750 				}
1751 			} else {
1752 				/* Check against the requested.  */
1753 				if (sinfo->sinfo_stream >=
1754 				    sinit->sinit_num_ostreams) {
1755 					err = -EINVAL;
1756 					goto out_unlock;
1757 				}
1758 			}
1759 		}
1760 
1761 		/*
1762 		 * API 3.1.2 bind() - UDP Style Syntax
1763 		 * If a bind() or sctp_bindx() is not called prior to a
1764 		 * sendmsg() call that initiates a new association, the
1765 		 * system picks an ephemeral port and will choose an address
1766 		 * set equivalent to binding with a wildcard address.
1767 		 */
1768 		if (!ep->base.bind_addr.port) {
1769 			if (sctp_autobind(sk)) {
1770 				err = -EAGAIN;
1771 				goto out_unlock;
1772 			}
1773 		} else {
1774 			/*
1775 			 * If an unprivileged user inherits a one-to-many
1776 			 * style socket with open associations on a privileged
1777 			 * port, it MAY be permitted to accept new associations,
1778 			 * but it SHOULD NOT be permitted to open new
1779 			 * associations.
1780 			 */
1781 			if (ep->base.bind_addr.port < PROT_SOCK &&
1782 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1783 				err = -EACCES;
1784 				goto out_unlock;
1785 			}
1786 		}
1787 
1788 		scope = sctp_scope(&to);
1789 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1790 		if (!new_asoc) {
1791 			err = -ENOMEM;
1792 			goto out_unlock;
1793 		}
1794 		asoc = new_asoc;
1795 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1796 		if (err < 0) {
1797 			err = -ENOMEM;
1798 			goto out_free;
1799 		}
1800 
1801 		/* If the SCTP_INIT ancillary data is specified, set all
1802 		 * the association init values accordingly.
1803 		 */
1804 		if (sinit) {
1805 			if (sinit->sinit_num_ostreams) {
1806 				asoc->c.sinit_num_ostreams =
1807 					sinit->sinit_num_ostreams;
1808 			}
1809 			if (sinit->sinit_max_instreams) {
1810 				asoc->c.sinit_max_instreams =
1811 					sinit->sinit_max_instreams;
1812 			}
1813 			if (sinit->sinit_max_attempts) {
1814 				asoc->max_init_attempts
1815 					= sinit->sinit_max_attempts;
1816 			}
1817 			if (sinit->sinit_max_init_timeo) {
1818 				asoc->max_init_timeo =
1819 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1820 			}
1821 		}
1822 
1823 		/* Prime the peer's transport structures.  */
1824 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1825 		if (!transport) {
1826 			err = -ENOMEM;
1827 			goto out_free;
1828 		}
1829 	}
1830 
1831 	/* ASSERT: we have a valid association at this point.  */
1832 	pr_debug("%s: we have a valid association\n", __func__);
1833 
1834 	if (!sinfo) {
1835 		/* If the user didn't specify SNDRCVINFO, make up one with
1836 		 * some defaults.
1837 		 */
1838 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1839 		default_sinfo.sinfo_stream = asoc->default_stream;
1840 		default_sinfo.sinfo_flags = asoc->default_flags;
1841 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1842 		default_sinfo.sinfo_context = asoc->default_context;
1843 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1844 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1845 		sinfo = &default_sinfo;
1846 	}
1847 
1848 	/* API 7.1.7, the sndbuf size per association bounds the
1849 	 * maximum size of data that can be sent in a single send call.
1850 	 */
1851 	if (msg_len > sk->sk_sndbuf) {
1852 		err = -EMSGSIZE;
1853 		goto out_free;
1854 	}
1855 
1856 	if (asoc->pmtu_pending)
1857 		sctp_assoc_pending_pmtu(sk, asoc);
1858 
1859 	/* If fragmentation is disabled and the message length exceeds the
1860 	 * association fragmentation point, return EMSGSIZE.  The I-D
1861 	 * does not specify what this error is, but this looks like
1862 	 * a great fit.
1863 	 */
1864 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1865 		err = -EMSGSIZE;
1866 		goto out_free;
1867 	}
1868 
1869 	/* Check for invalid stream. */
1870 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1871 		err = -EINVAL;
1872 		goto out_free;
1873 	}
1874 
1875 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1876 	if (!sctp_wspace(asoc)) {
1877 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1878 		if (err)
1879 			goto out_free;
1880 	}
1881 
1882 	/* If an address is passed with the sendto/sendmsg call, it is used
1883 	 * to override the primary destination address in the TCP model, or
1884 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1885 	 */
1886 	if ((sctp_style(sk, TCP) && msg_name) ||
1887 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1888 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1889 		if (!chunk_tp) {
1890 			err = -EINVAL;
1891 			goto out_free;
1892 		}
1893 	} else
1894 		chunk_tp = NULL;
1895 
1896 	/* Auto-connect, if we aren't connected already. */
1897 	if (sctp_state(asoc, CLOSED)) {
1898 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1899 		if (err < 0)
1900 			goto out_free;
1901 
1902 		pr_debug("%s: we associated primitively\n", __func__);
1903 	}
1904 
1905 	/* Break the message into multiple chunks of maximum size. */
1906 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1907 	if (IS_ERR(datamsg)) {
1908 		err = PTR_ERR(datamsg);
1909 		goto out_free;
1910 	}
1911 
1912 	/* Now send the (possibly) fragmented message. */
1913 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1914 		sctp_chunk_hold(chunk);
1915 
1916 		/* Do accounting for the write space.  */
1917 		sctp_set_owner_w(chunk);
1918 
1919 		chunk->transport = chunk_tp;
1920 	}
1921 
1922 	/* Send it to the lower layers.  Note:  all chunks
1923 	 * must either fail or succeed.   The lower layer
1924 	 * works that way today.  Keep it that way or this
1925 	 * breaks.
1926 	 */
1927 	err = sctp_primitive_SEND(net, asoc, datamsg);
1928 	/* Did the lower layer accept the chunk? */
1929 	if (err) {
1930 		sctp_datamsg_free(datamsg);
1931 		goto out_free;
1932 	}
1933 
1934 	pr_debug("%s: we sent primitively\n", __func__);
1935 
1936 	sctp_datamsg_put(datamsg);
1937 	err = msg_len;
1938 
1939 	/* If we are already past ASSOCIATE, the lower
1940 	 * layers are responsible for association cleanup.
1941 	 */
1942 	goto out_unlock;
1943 
1944 out_free:
1945 	if (new_asoc) {
1946 		sctp_unhash_established(asoc);
1947 		sctp_association_free(asoc);
1948 	}
1949 out_unlock:
1950 	sctp_release_sock(sk);
1951 
1952 out_nounlock:
1953 	return sctp_error(sk, msg_flags, err);
1954 
1955 #if 0
1956 do_sock_err:
1957 	if (msg_len)
1958 		err = msg_len;
1959 	else
1960 		err = sock_error(sk);
1961 	goto out;
1962 
1963 do_interrupted:
1964 	if (msg_len)
1965 		err = msg_len;
1966 	goto out;
1967 #endif /* 0 */
1968 }
1969 
1970 /* This is an extended version of skb_pull() that removes the data from the
1971  * start of a skb even when data is spread across the list of skb's in the
1972  * frag_list. len specifies the total amount of data that needs to be removed.
1973  * when 'len' bytes could be removed from the skb, it returns 0.
1974  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1975  * could not be removed.
1976  */
1977 static int sctp_skb_pull(struct sk_buff *skb, int len)
1978 {
1979 	struct sk_buff *list;
1980 	int skb_len = skb_headlen(skb);
1981 	int rlen;
1982 
1983 	if (len <= skb_len) {
1984 		__skb_pull(skb, len);
1985 		return 0;
1986 	}
1987 	len -= skb_len;
1988 	__skb_pull(skb, skb_len);
1989 
1990 	skb_walk_frags(skb, list) {
1991 		rlen = sctp_skb_pull(list, len);
1992 		skb->len -= (len-rlen);
1993 		skb->data_len -= (len-rlen);
1994 
1995 		if (!rlen)
1996 			return 0;
1997 
1998 		len = rlen;
1999 	}
2000 
2001 	return len;
2002 }
2003 
2004 /* API 3.1.3  recvmsg() - UDP Style Syntax
2005  *
2006  *  ssize_t recvmsg(int socket, struct msghdr *message,
2007  *                    int flags);
2008  *
2009  *  socket  - the socket descriptor of the endpoint.
2010  *  message - pointer to the msghdr structure which contains a single
2011  *            user message and possibly some ancillary data.
2012  *
2013  *            See Section 5 for complete description of the data
2014  *            structures.
2015  *
2016  *  flags   - flags sent or received with the user message, see Section
2017  *            5 for complete description of the flags.
2018  */
2019 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2020 
2021 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2022 			struct msghdr *msg, size_t len, int noblock,
2023 			int flags, int *addr_len)
2024 {
2025 	struct sctp_ulpevent *event = NULL;
2026 	struct sctp_sock *sp = sctp_sk(sk);
2027 	struct sk_buff *skb;
2028 	int copied;
2029 	int err = 0;
2030 	int skb_len;
2031 
2032 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2033 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2034 		 addr_len);
2035 
2036 	sctp_lock_sock(sk);
2037 
2038 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2039 		err = -ENOTCONN;
2040 		goto out;
2041 	}
2042 
2043 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2044 	if (!skb)
2045 		goto out;
2046 
2047 	/* Get the total length of the skb including any skb's in the
2048 	 * frag_list.
2049 	 */
2050 	skb_len = skb->len;
2051 
2052 	copied = skb_len;
2053 	if (copied > len)
2054 		copied = len;
2055 
2056 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2057 
2058 	event = sctp_skb2event(skb);
2059 
2060 	if (err)
2061 		goto out_free;
2062 
2063 	sock_recv_ts_and_drops(msg, sk, skb);
2064 	if (sctp_ulpevent_is_notification(event)) {
2065 		msg->msg_flags |= MSG_NOTIFICATION;
2066 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2067 	} else {
2068 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2069 	}
2070 
2071 	/* Check if we allow SCTP_SNDRCVINFO. */
2072 	if (sp->subscribe.sctp_data_io_event)
2073 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2074 #if 0
2075 	/* FIXME: we should be calling IP/IPv6 layers.  */
2076 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2077 		ip_cmsg_recv(msg, skb);
2078 #endif
2079 
2080 	err = copied;
2081 
2082 	/* If skb's length exceeds the user's buffer, update the skb and
2083 	 * push it back to the receive_queue so that the next call to
2084 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2085 	 */
2086 	if (skb_len > copied) {
2087 		msg->msg_flags &= ~MSG_EOR;
2088 		if (flags & MSG_PEEK)
2089 			goto out_free;
2090 		sctp_skb_pull(skb, copied);
2091 		skb_queue_head(&sk->sk_receive_queue, skb);
2092 
2093 		/* When only partial message is copied to the user, increase
2094 		 * rwnd by that amount. If all the data in the skb is read,
2095 		 * rwnd is updated when the event is freed.
2096 		 */
2097 		if (!sctp_ulpevent_is_notification(event))
2098 			sctp_assoc_rwnd_increase(event->asoc, copied);
2099 		goto out;
2100 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2101 		   (event->msg_flags & MSG_EOR))
2102 		msg->msg_flags |= MSG_EOR;
2103 	else
2104 		msg->msg_flags &= ~MSG_EOR;
2105 
2106 out_free:
2107 	if (flags & MSG_PEEK) {
2108 		/* Release the skb reference acquired after peeking the skb in
2109 		 * sctp_skb_recv_datagram().
2110 		 */
2111 		kfree_skb(skb);
2112 	} else {
2113 		/* Free the event which includes releasing the reference to
2114 		 * the owner of the skb, freeing the skb and updating the
2115 		 * rwnd.
2116 		 */
2117 		sctp_ulpevent_free(event);
2118 	}
2119 out:
2120 	sctp_release_sock(sk);
2121 	return err;
2122 }
2123 
2124 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2125  *
2126  * This option is a on/off flag.  If enabled no SCTP message
2127  * fragmentation will be performed.  Instead if a message being sent
2128  * exceeds the current PMTU size, the message will NOT be sent and
2129  * instead a error will be indicated to the user.
2130  */
2131 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2132 					     char __user *optval,
2133 					     unsigned int optlen)
2134 {
2135 	int val;
2136 
2137 	if (optlen < sizeof(int))
2138 		return -EINVAL;
2139 
2140 	if (get_user(val, (int __user *)optval))
2141 		return -EFAULT;
2142 
2143 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2144 
2145 	return 0;
2146 }
2147 
2148 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2149 				  unsigned int optlen)
2150 {
2151 	struct sctp_association *asoc;
2152 	struct sctp_ulpevent *event;
2153 
2154 	if (optlen > sizeof(struct sctp_event_subscribe))
2155 		return -EINVAL;
2156 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2157 		return -EFAULT;
2158 
2159 	/*
2160 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2161 	 * if there is no data to be sent or retransmit, the stack will
2162 	 * immediately send up this notification.
2163 	 */
2164 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2165 				       &sctp_sk(sk)->subscribe)) {
2166 		asoc = sctp_id2assoc(sk, 0);
2167 
2168 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2169 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2170 					GFP_ATOMIC);
2171 			if (!event)
2172 				return -ENOMEM;
2173 
2174 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2175 		}
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2182  *
2183  * This socket option is applicable to the UDP-style socket only.  When
2184  * set it will cause associations that are idle for more than the
2185  * specified number of seconds to automatically close.  An association
2186  * being idle is defined an association that has NOT sent or received
2187  * user data.  The special value of '0' indicates that no automatic
2188  * close of any associations should be performed.  The option expects an
2189  * integer defining the number of seconds of idle time before an
2190  * association is closed.
2191  */
2192 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2193 				     unsigned int optlen)
2194 {
2195 	struct sctp_sock *sp = sctp_sk(sk);
2196 
2197 	/* Applicable to UDP-style socket only */
2198 	if (sctp_style(sk, TCP))
2199 		return -EOPNOTSUPP;
2200 	if (optlen != sizeof(int))
2201 		return -EINVAL;
2202 	if (copy_from_user(&sp->autoclose, optval, optlen))
2203 		return -EFAULT;
2204 
2205 	return 0;
2206 }
2207 
2208 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2209  *
2210  * Applications can enable or disable heartbeats for any peer address of
2211  * an association, modify an address's heartbeat interval, force a
2212  * heartbeat to be sent immediately, and adjust the address's maximum
2213  * number of retransmissions sent before an address is considered
2214  * unreachable.  The following structure is used to access and modify an
2215  * address's parameters:
2216  *
2217  *  struct sctp_paddrparams {
2218  *     sctp_assoc_t            spp_assoc_id;
2219  *     struct sockaddr_storage spp_address;
2220  *     uint32_t                spp_hbinterval;
2221  *     uint16_t                spp_pathmaxrxt;
2222  *     uint32_t                spp_pathmtu;
2223  *     uint32_t                spp_sackdelay;
2224  *     uint32_t                spp_flags;
2225  * };
2226  *
2227  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2228  *                     application, and identifies the association for
2229  *                     this query.
2230  *   spp_address     - This specifies which address is of interest.
2231  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2232  *                     in milliseconds.  If a  value of zero
2233  *                     is present in this field then no changes are to
2234  *                     be made to this parameter.
2235  *   spp_pathmaxrxt  - This contains the maximum number of
2236  *                     retransmissions before this address shall be
2237  *                     considered unreachable. If a  value of zero
2238  *                     is present in this field then no changes are to
2239  *                     be made to this parameter.
2240  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2241  *                     specified here will be the "fixed" path mtu.
2242  *                     Note that if the spp_address field is empty
2243  *                     then all associations on this address will
2244  *                     have this fixed path mtu set upon them.
2245  *
2246  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2247  *                     the number of milliseconds that sacks will be delayed
2248  *                     for. This value will apply to all addresses of an
2249  *                     association if the spp_address field is empty. Note
2250  *                     also, that if delayed sack is enabled and this
2251  *                     value is set to 0, no change is made to the last
2252  *                     recorded delayed sack timer value.
2253  *
2254  *   spp_flags       - These flags are used to control various features
2255  *                     on an association. The flag field may contain
2256  *                     zero or more of the following options.
2257  *
2258  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2259  *                     specified address. Note that if the address
2260  *                     field is empty all addresses for the association
2261  *                     have heartbeats enabled upon them.
2262  *
2263  *                     SPP_HB_DISABLE - Disable heartbeats on the
2264  *                     speicifed address. Note that if the address
2265  *                     field is empty all addresses for the association
2266  *                     will have their heartbeats disabled. Note also
2267  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2268  *                     mutually exclusive, only one of these two should
2269  *                     be specified. Enabling both fields will have
2270  *                     undetermined results.
2271  *
2272  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2273  *                     to be made immediately.
2274  *
2275  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2276  *                     heartbeat delayis to be set to the value of 0
2277  *                     milliseconds.
2278  *
2279  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2280  *                     discovery upon the specified address. Note that
2281  *                     if the address feild is empty then all addresses
2282  *                     on the association are effected.
2283  *
2284  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2285  *                     discovery upon the specified address. Note that
2286  *                     if the address feild is empty then all addresses
2287  *                     on the association are effected. Not also that
2288  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2289  *                     exclusive. Enabling both will have undetermined
2290  *                     results.
2291  *
2292  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2293  *                     on delayed sack. The time specified in spp_sackdelay
2294  *                     is used to specify the sack delay for this address. Note
2295  *                     that if spp_address is empty then all addresses will
2296  *                     enable delayed sack and take on the sack delay
2297  *                     value specified in spp_sackdelay.
2298  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2299  *                     off delayed sack. If the spp_address field is blank then
2300  *                     delayed sack is disabled for the entire association. Note
2301  *                     also that this field is mutually exclusive to
2302  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2303  *                     results.
2304  */
2305 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2306 				       struct sctp_transport   *trans,
2307 				       struct sctp_association *asoc,
2308 				       struct sctp_sock        *sp,
2309 				       int                      hb_change,
2310 				       int                      pmtud_change,
2311 				       int                      sackdelay_change)
2312 {
2313 	int error;
2314 
2315 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2316 		struct net *net = sock_net(trans->asoc->base.sk);
2317 
2318 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2319 		if (error)
2320 			return error;
2321 	}
2322 
2323 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2324 	 * this field is ignored.  Note also that a value of zero indicates
2325 	 * the current setting should be left unchanged.
2326 	 */
2327 	if (params->spp_flags & SPP_HB_ENABLE) {
2328 
2329 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2330 		 * set.  This lets us use 0 value when this flag
2331 		 * is set.
2332 		 */
2333 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2334 			params->spp_hbinterval = 0;
2335 
2336 		if (params->spp_hbinterval ||
2337 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2338 			if (trans) {
2339 				trans->hbinterval =
2340 				    msecs_to_jiffies(params->spp_hbinterval);
2341 			} else if (asoc) {
2342 				asoc->hbinterval =
2343 				    msecs_to_jiffies(params->spp_hbinterval);
2344 			} else {
2345 				sp->hbinterval = params->spp_hbinterval;
2346 			}
2347 		}
2348 	}
2349 
2350 	if (hb_change) {
2351 		if (trans) {
2352 			trans->param_flags =
2353 				(trans->param_flags & ~SPP_HB) | hb_change;
2354 		} else if (asoc) {
2355 			asoc->param_flags =
2356 				(asoc->param_flags & ~SPP_HB) | hb_change;
2357 		} else {
2358 			sp->param_flags =
2359 				(sp->param_flags & ~SPP_HB) | hb_change;
2360 		}
2361 	}
2362 
2363 	/* When Path MTU discovery is disabled the value specified here will
2364 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2365 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2366 	 * effect).
2367 	 */
2368 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2369 		if (trans) {
2370 			trans->pathmtu = params->spp_pathmtu;
2371 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2372 		} else if (asoc) {
2373 			asoc->pathmtu = params->spp_pathmtu;
2374 			sctp_frag_point(asoc, params->spp_pathmtu);
2375 		} else {
2376 			sp->pathmtu = params->spp_pathmtu;
2377 		}
2378 	}
2379 
2380 	if (pmtud_change) {
2381 		if (trans) {
2382 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2383 				(params->spp_flags & SPP_PMTUD_ENABLE);
2384 			trans->param_flags =
2385 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2386 			if (update) {
2387 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2388 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2389 			}
2390 		} else if (asoc) {
2391 			asoc->param_flags =
2392 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2393 		} else {
2394 			sp->param_flags =
2395 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2396 		}
2397 	}
2398 
2399 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2400 	 * value of this field is ignored.  Note also that a value of zero
2401 	 * indicates the current setting should be left unchanged.
2402 	 */
2403 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2404 		if (trans) {
2405 			trans->sackdelay =
2406 				msecs_to_jiffies(params->spp_sackdelay);
2407 		} else if (asoc) {
2408 			asoc->sackdelay =
2409 				msecs_to_jiffies(params->spp_sackdelay);
2410 		} else {
2411 			sp->sackdelay = params->spp_sackdelay;
2412 		}
2413 	}
2414 
2415 	if (sackdelay_change) {
2416 		if (trans) {
2417 			trans->param_flags =
2418 				(trans->param_flags & ~SPP_SACKDELAY) |
2419 				sackdelay_change;
2420 		} else if (asoc) {
2421 			asoc->param_flags =
2422 				(asoc->param_flags & ~SPP_SACKDELAY) |
2423 				sackdelay_change;
2424 		} else {
2425 			sp->param_flags =
2426 				(sp->param_flags & ~SPP_SACKDELAY) |
2427 				sackdelay_change;
2428 		}
2429 	}
2430 
2431 	/* Note that a value of zero indicates the current setting should be
2432 	   left unchanged.
2433 	 */
2434 	if (params->spp_pathmaxrxt) {
2435 		if (trans) {
2436 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2437 		} else if (asoc) {
2438 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2439 		} else {
2440 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2441 		}
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2448 					    char __user *optval,
2449 					    unsigned int optlen)
2450 {
2451 	struct sctp_paddrparams  params;
2452 	struct sctp_transport   *trans = NULL;
2453 	struct sctp_association *asoc = NULL;
2454 	struct sctp_sock        *sp = sctp_sk(sk);
2455 	int error;
2456 	int hb_change, pmtud_change, sackdelay_change;
2457 
2458 	if (optlen != sizeof(struct sctp_paddrparams))
2459 		return - EINVAL;
2460 
2461 	if (copy_from_user(&params, optval, optlen))
2462 		return -EFAULT;
2463 
2464 	/* Validate flags and value parameters. */
2465 	hb_change        = params.spp_flags & SPP_HB;
2466 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2467 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2468 
2469 	if (hb_change        == SPP_HB ||
2470 	    pmtud_change     == SPP_PMTUD ||
2471 	    sackdelay_change == SPP_SACKDELAY ||
2472 	    params.spp_sackdelay > 500 ||
2473 	    (params.spp_pathmtu &&
2474 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2475 		return -EINVAL;
2476 
2477 	/* If an address other than INADDR_ANY is specified, and
2478 	 * no transport is found, then the request is invalid.
2479 	 */
2480 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2481 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2482 					       params.spp_assoc_id);
2483 		if (!trans)
2484 			return -EINVAL;
2485 	}
2486 
2487 	/* Get association, if assoc_id != 0 and the socket is a one
2488 	 * to many style socket, and an association was not found, then
2489 	 * the id was invalid.
2490 	 */
2491 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2492 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2493 		return -EINVAL;
2494 
2495 	/* Heartbeat demand can only be sent on a transport or
2496 	 * association, but not a socket.
2497 	 */
2498 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2499 		return -EINVAL;
2500 
2501 	/* Process parameters. */
2502 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2503 					    hb_change, pmtud_change,
2504 					    sackdelay_change);
2505 
2506 	if (error)
2507 		return error;
2508 
2509 	/* If changes are for association, also apply parameters to each
2510 	 * transport.
2511 	 */
2512 	if (!trans && asoc) {
2513 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2514 				transports) {
2515 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2516 						    hb_change, pmtud_change,
2517 						    sackdelay_change);
2518 		}
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 /*
2525  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2526  *
2527  * This option will effect the way delayed acks are performed.  This
2528  * option allows you to get or set the delayed ack time, in
2529  * milliseconds.  It also allows changing the delayed ack frequency.
2530  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2531  * the assoc_id is 0, then this sets or gets the endpoints default
2532  * values.  If the assoc_id field is non-zero, then the set or get
2533  * effects the specified association for the one to many model (the
2534  * assoc_id field is ignored by the one to one model).  Note that if
2535  * sack_delay or sack_freq are 0 when setting this option, then the
2536  * current values will remain unchanged.
2537  *
2538  * struct sctp_sack_info {
2539  *     sctp_assoc_t            sack_assoc_id;
2540  *     uint32_t                sack_delay;
2541  *     uint32_t                sack_freq;
2542  * };
2543  *
2544  * sack_assoc_id -  This parameter, indicates which association the user
2545  *    is performing an action upon.  Note that if this field's value is
2546  *    zero then the endpoints default value is changed (effecting future
2547  *    associations only).
2548  *
2549  * sack_delay -  This parameter contains the number of milliseconds that
2550  *    the user is requesting the delayed ACK timer be set to.  Note that
2551  *    this value is defined in the standard to be between 200 and 500
2552  *    milliseconds.
2553  *
2554  * sack_freq -  This parameter contains the number of packets that must
2555  *    be received before a sack is sent without waiting for the delay
2556  *    timer to expire.  The default value for this is 2, setting this
2557  *    value to 1 will disable the delayed sack algorithm.
2558  */
2559 
2560 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2561 				       char __user *optval, unsigned int optlen)
2562 {
2563 	struct sctp_sack_info    params;
2564 	struct sctp_transport   *trans = NULL;
2565 	struct sctp_association *asoc = NULL;
2566 	struct sctp_sock        *sp = sctp_sk(sk);
2567 
2568 	if (optlen == sizeof(struct sctp_sack_info)) {
2569 		if (copy_from_user(&params, optval, optlen))
2570 			return -EFAULT;
2571 
2572 		if (params.sack_delay == 0 && params.sack_freq == 0)
2573 			return 0;
2574 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2575 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2576 		pr_warn("Use struct sctp_sack_info instead\n");
2577 		if (copy_from_user(&params, optval, optlen))
2578 			return -EFAULT;
2579 
2580 		if (params.sack_delay == 0)
2581 			params.sack_freq = 1;
2582 		else
2583 			params.sack_freq = 0;
2584 	} else
2585 		return - EINVAL;
2586 
2587 	/* Validate value parameter. */
2588 	if (params.sack_delay > 500)
2589 		return -EINVAL;
2590 
2591 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2592 	 * to many style socket, and an association was not found, then
2593 	 * the id was invalid.
2594 	 */
2595 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2596 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2597 		return -EINVAL;
2598 
2599 	if (params.sack_delay) {
2600 		if (asoc) {
2601 			asoc->sackdelay =
2602 				msecs_to_jiffies(params.sack_delay);
2603 			asoc->param_flags =
2604 				(asoc->param_flags & ~SPP_SACKDELAY) |
2605 				SPP_SACKDELAY_ENABLE;
2606 		} else {
2607 			sp->sackdelay = params.sack_delay;
2608 			sp->param_flags =
2609 				(sp->param_flags & ~SPP_SACKDELAY) |
2610 				SPP_SACKDELAY_ENABLE;
2611 		}
2612 	}
2613 
2614 	if (params.sack_freq == 1) {
2615 		if (asoc) {
2616 			asoc->param_flags =
2617 				(asoc->param_flags & ~SPP_SACKDELAY) |
2618 				SPP_SACKDELAY_DISABLE;
2619 		} else {
2620 			sp->param_flags =
2621 				(sp->param_flags & ~SPP_SACKDELAY) |
2622 				SPP_SACKDELAY_DISABLE;
2623 		}
2624 	} else if (params.sack_freq > 1) {
2625 		if (asoc) {
2626 			asoc->sackfreq = params.sack_freq;
2627 			asoc->param_flags =
2628 				(asoc->param_flags & ~SPP_SACKDELAY) |
2629 				SPP_SACKDELAY_ENABLE;
2630 		} else {
2631 			sp->sackfreq = params.sack_freq;
2632 			sp->param_flags =
2633 				(sp->param_flags & ~SPP_SACKDELAY) |
2634 				SPP_SACKDELAY_ENABLE;
2635 		}
2636 	}
2637 
2638 	/* If change is for association, also apply to each transport. */
2639 	if (asoc) {
2640 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2641 				transports) {
2642 			if (params.sack_delay) {
2643 				trans->sackdelay =
2644 					msecs_to_jiffies(params.sack_delay);
2645 				trans->param_flags =
2646 					(trans->param_flags & ~SPP_SACKDELAY) |
2647 					SPP_SACKDELAY_ENABLE;
2648 			}
2649 			if (params.sack_freq == 1) {
2650 				trans->param_flags =
2651 					(trans->param_flags & ~SPP_SACKDELAY) |
2652 					SPP_SACKDELAY_DISABLE;
2653 			} else if (params.sack_freq > 1) {
2654 				trans->sackfreq = params.sack_freq;
2655 				trans->param_flags =
2656 					(trans->param_flags & ~SPP_SACKDELAY) |
2657 					SPP_SACKDELAY_ENABLE;
2658 			}
2659 		}
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2666  *
2667  * Applications can specify protocol parameters for the default association
2668  * initialization.  The option name argument to setsockopt() and getsockopt()
2669  * is SCTP_INITMSG.
2670  *
2671  * Setting initialization parameters is effective only on an unconnected
2672  * socket (for UDP-style sockets only future associations are effected
2673  * by the change).  With TCP-style sockets, this option is inherited by
2674  * sockets derived from a listener socket.
2675  */
2676 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2677 {
2678 	struct sctp_initmsg sinit;
2679 	struct sctp_sock *sp = sctp_sk(sk);
2680 
2681 	if (optlen != sizeof(struct sctp_initmsg))
2682 		return -EINVAL;
2683 	if (copy_from_user(&sinit, optval, optlen))
2684 		return -EFAULT;
2685 
2686 	if (sinit.sinit_num_ostreams)
2687 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2688 	if (sinit.sinit_max_instreams)
2689 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2690 	if (sinit.sinit_max_attempts)
2691 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2692 	if (sinit.sinit_max_init_timeo)
2693 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2694 
2695 	return 0;
2696 }
2697 
2698 /*
2699  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2700  *
2701  *   Applications that wish to use the sendto() system call may wish to
2702  *   specify a default set of parameters that would normally be supplied
2703  *   through the inclusion of ancillary data.  This socket option allows
2704  *   such an application to set the default sctp_sndrcvinfo structure.
2705  *   The application that wishes to use this socket option simply passes
2706  *   in to this call the sctp_sndrcvinfo structure defined in Section
2707  *   5.2.2) The input parameters accepted by this call include
2708  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2709  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2710  *   to this call if the caller is using the UDP model.
2711  */
2712 static int sctp_setsockopt_default_send_param(struct sock *sk,
2713 					      char __user *optval,
2714 					      unsigned int optlen)
2715 {
2716 	struct sctp_sndrcvinfo info;
2717 	struct sctp_association *asoc;
2718 	struct sctp_sock *sp = sctp_sk(sk);
2719 
2720 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2721 		return -EINVAL;
2722 	if (copy_from_user(&info, optval, optlen))
2723 		return -EFAULT;
2724 
2725 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2726 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2727 		return -EINVAL;
2728 
2729 	if (asoc) {
2730 		asoc->default_stream = info.sinfo_stream;
2731 		asoc->default_flags = info.sinfo_flags;
2732 		asoc->default_ppid = info.sinfo_ppid;
2733 		asoc->default_context = info.sinfo_context;
2734 		asoc->default_timetolive = info.sinfo_timetolive;
2735 	} else {
2736 		sp->default_stream = info.sinfo_stream;
2737 		sp->default_flags = info.sinfo_flags;
2738 		sp->default_ppid = info.sinfo_ppid;
2739 		sp->default_context = info.sinfo_context;
2740 		sp->default_timetolive = info.sinfo_timetolive;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2747  *
2748  * Requests that the local SCTP stack use the enclosed peer address as
2749  * the association primary.  The enclosed address must be one of the
2750  * association peer's addresses.
2751  */
2752 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2753 					unsigned int optlen)
2754 {
2755 	struct sctp_prim prim;
2756 	struct sctp_transport *trans;
2757 
2758 	if (optlen != sizeof(struct sctp_prim))
2759 		return -EINVAL;
2760 
2761 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2762 		return -EFAULT;
2763 
2764 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2765 	if (!trans)
2766 		return -EINVAL;
2767 
2768 	sctp_assoc_set_primary(trans->asoc, trans);
2769 
2770 	return 0;
2771 }
2772 
2773 /*
2774  * 7.1.5 SCTP_NODELAY
2775  *
2776  * Turn on/off any Nagle-like algorithm.  This means that packets are
2777  * generally sent as soon as possible and no unnecessary delays are
2778  * introduced, at the cost of more packets in the network.  Expects an
2779  *  integer boolean flag.
2780  */
2781 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2782 				   unsigned int optlen)
2783 {
2784 	int val;
2785 
2786 	if (optlen < sizeof(int))
2787 		return -EINVAL;
2788 	if (get_user(val, (int __user *)optval))
2789 		return -EFAULT;
2790 
2791 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2792 	return 0;
2793 }
2794 
2795 /*
2796  *
2797  * 7.1.1 SCTP_RTOINFO
2798  *
2799  * The protocol parameters used to initialize and bound retransmission
2800  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2801  * and modify these parameters.
2802  * All parameters are time values, in milliseconds.  A value of 0, when
2803  * modifying the parameters, indicates that the current value should not
2804  * be changed.
2805  *
2806  */
2807 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2808 {
2809 	struct sctp_rtoinfo rtoinfo;
2810 	struct sctp_association *asoc;
2811 
2812 	if (optlen != sizeof (struct sctp_rtoinfo))
2813 		return -EINVAL;
2814 
2815 	if (copy_from_user(&rtoinfo, optval, optlen))
2816 		return -EFAULT;
2817 
2818 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2819 
2820 	/* Set the values to the specific association */
2821 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2822 		return -EINVAL;
2823 
2824 	if (asoc) {
2825 		if (rtoinfo.srto_initial != 0)
2826 			asoc->rto_initial =
2827 				msecs_to_jiffies(rtoinfo.srto_initial);
2828 		if (rtoinfo.srto_max != 0)
2829 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2830 		if (rtoinfo.srto_min != 0)
2831 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2832 	} else {
2833 		/* If there is no association or the association-id = 0
2834 		 * set the values to the endpoint.
2835 		 */
2836 		struct sctp_sock *sp = sctp_sk(sk);
2837 
2838 		if (rtoinfo.srto_initial != 0)
2839 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2840 		if (rtoinfo.srto_max != 0)
2841 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2842 		if (rtoinfo.srto_min != 0)
2843 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 /*
2850  *
2851  * 7.1.2 SCTP_ASSOCINFO
2852  *
2853  * This option is used to tune the maximum retransmission attempts
2854  * of the association.
2855  * Returns an error if the new association retransmission value is
2856  * greater than the sum of the retransmission value  of the peer.
2857  * See [SCTP] for more information.
2858  *
2859  */
2860 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2861 {
2862 
2863 	struct sctp_assocparams assocparams;
2864 	struct sctp_association *asoc;
2865 
2866 	if (optlen != sizeof(struct sctp_assocparams))
2867 		return -EINVAL;
2868 	if (copy_from_user(&assocparams, optval, optlen))
2869 		return -EFAULT;
2870 
2871 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2872 
2873 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2874 		return -EINVAL;
2875 
2876 	/* Set the values to the specific association */
2877 	if (asoc) {
2878 		if (assocparams.sasoc_asocmaxrxt != 0) {
2879 			__u32 path_sum = 0;
2880 			int   paths = 0;
2881 			struct sctp_transport *peer_addr;
2882 
2883 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2884 					transports) {
2885 				path_sum += peer_addr->pathmaxrxt;
2886 				paths++;
2887 			}
2888 
2889 			/* Only validate asocmaxrxt if we have more than
2890 			 * one path/transport.  We do this because path
2891 			 * retransmissions are only counted when we have more
2892 			 * then one path.
2893 			 */
2894 			if (paths > 1 &&
2895 			    assocparams.sasoc_asocmaxrxt > path_sum)
2896 				return -EINVAL;
2897 
2898 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2899 		}
2900 
2901 		if (assocparams.sasoc_cookie_life != 0)
2902 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2903 	} else {
2904 		/* Set the values to the endpoint */
2905 		struct sctp_sock *sp = sctp_sk(sk);
2906 
2907 		if (assocparams.sasoc_asocmaxrxt != 0)
2908 			sp->assocparams.sasoc_asocmaxrxt =
2909 						assocparams.sasoc_asocmaxrxt;
2910 		if (assocparams.sasoc_cookie_life != 0)
2911 			sp->assocparams.sasoc_cookie_life =
2912 						assocparams.sasoc_cookie_life;
2913 	}
2914 	return 0;
2915 }
2916 
2917 /*
2918  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2919  *
2920  * This socket option is a boolean flag which turns on or off mapped V4
2921  * addresses.  If this option is turned on and the socket is type
2922  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2923  * If this option is turned off, then no mapping will be done of V4
2924  * addresses and a user will receive both PF_INET6 and PF_INET type
2925  * addresses on the socket.
2926  */
2927 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2928 {
2929 	int val;
2930 	struct sctp_sock *sp = sctp_sk(sk);
2931 
2932 	if (optlen < sizeof(int))
2933 		return -EINVAL;
2934 	if (get_user(val, (int __user *)optval))
2935 		return -EFAULT;
2936 	if (val)
2937 		sp->v4mapped = 1;
2938 	else
2939 		sp->v4mapped = 0;
2940 
2941 	return 0;
2942 }
2943 
2944 /*
2945  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2946  * This option will get or set the maximum size to put in any outgoing
2947  * SCTP DATA chunk.  If a message is larger than this size it will be
2948  * fragmented by SCTP into the specified size.  Note that the underlying
2949  * SCTP implementation may fragment into smaller sized chunks when the
2950  * PMTU of the underlying association is smaller than the value set by
2951  * the user.  The default value for this option is '0' which indicates
2952  * the user is NOT limiting fragmentation and only the PMTU will effect
2953  * SCTP's choice of DATA chunk size.  Note also that values set larger
2954  * than the maximum size of an IP datagram will effectively let SCTP
2955  * control fragmentation (i.e. the same as setting this option to 0).
2956  *
2957  * The following structure is used to access and modify this parameter:
2958  *
2959  * struct sctp_assoc_value {
2960  *   sctp_assoc_t assoc_id;
2961  *   uint32_t assoc_value;
2962  * };
2963  *
2964  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2965  *    For one-to-many style sockets this parameter indicates which
2966  *    association the user is performing an action upon.  Note that if
2967  *    this field's value is zero then the endpoints default value is
2968  *    changed (effecting future associations only).
2969  * assoc_value:  This parameter specifies the maximum size in bytes.
2970  */
2971 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2972 {
2973 	struct sctp_assoc_value params;
2974 	struct sctp_association *asoc;
2975 	struct sctp_sock *sp = sctp_sk(sk);
2976 	int val;
2977 
2978 	if (optlen == sizeof(int)) {
2979 		pr_warn("Use of int in maxseg socket option deprecated\n");
2980 		pr_warn("Use struct sctp_assoc_value instead\n");
2981 		if (copy_from_user(&val, optval, optlen))
2982 			return -EFAULT;
2983 		params.assoc_id = 0;
2984 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2985 		if (copy_from_user(&params, optval, optlen))
2986 			return -EFAULT;
2987 		val = params.assoc_value;
2988 	} else
2989 		return -EINVAL;
2990 
2991 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2992 		return -EINVAL;
2993 
2994 	asoc = sctp_id2assoc(sk, params.assoc_id);
2995 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2996 		return -EINVAL;
2997 
2998 	if (asoc) {
2999 		if (val == 0) {
3000 			val = asoc->pathmtu;
3001 			val -= sp->pf->af->net_header_len;
3002 			val -= sizeof(struct sctphdr) +
3003 					sizeof(struct sctp_data_chunk);
3004 		}
3005 		asoc->user_frag = val;
3006 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3007 	} else {
3008 		sp->user_frag = val;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 
3015 /*
3016  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3017  *
3018  *   Requests that the peer mark the enclosed address as the association
3019  *   primary. The enclosed address must be one of the association's
3020  *   locally bound addresses. The following structure is used to make a
3021  *   set primary request:
3022  */
3023 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3024 					     unsigned int optlen)
3025 {
3026 	struct net *net = sock_net(sk);
3027 	struct sctp_sock	*sp;
3028 	struct sctp_association	*asoc = NULL;
3029 	struct sctp_setpeerprim	prim;
3030 	struct sctp_chunk	*chunk;
3031 	struct sctp_af		*af;
3032 	int 			err;
3033 
3034 	sp = sctp_sk(sk);
3035 
3036 	if (!net->sctp.addip_enable)
3037 		return -EPERM;
3038 
3039 	if (optlen != sizeof(struct sctp_setpeerprim))
3040 		return -EINVAL;
3041 
3042 	if (copy_from_user(&prim, optval, optlen))
3043 		return -EFAULT;
3044 
3045 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3046 	if (!asoc)
3047 		return -EINVAL;
3048 
3049 	if (!asoc->peer.asconf_capable)
3050 		return -EPERM;
3051 
3052 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3053 		return -EPERM;
3054 
3055 	if (!sctp_state(asoc, ESTABLISHED))
3056 		return -ENOTCONN;
3057 
3058 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3059 	if (!af)
3060 		return -EINVAL;
3061 
3062 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3063 		return -EADDRNOTAVAIL;
3064 
3065 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3066 		return -EADDRNOTAVAIL;
3067 
3068 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3069 	chunk = sctp_make_asconf_set_prim(asoc,
3070 					  (union sctp_addr *)&prim.sspp_addr);
3071 	if (!chunk)
3072 		return -ENOMEM;
3073 
3074 	err = sctp_send_asconf(asoc, chunk);
3075 
3076 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3077 
3078 	return err;
3079 }
3080 
3081 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3082 					    unsigned int optlen)
3083 {
3084 	struct sctp_setadaptation adaptation;
3085 
3086 	if (optlen != sizeof(struct sctp_setadaptation))
3087 		return -EINVAL;
3088 	if (copy_from_user(&adaptation, optval, optlen))
3089 		return -EFAULT;
3090 
3091 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3092 
3093 	return 0;
3094 }
3095 
3096 /*
3097  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3098  *
3099  * The context field in the sctp_sndrcvinfo structure is normally only
3100  * used when a failed message is retrieved holding the value that was
3101  * sent down on the actual send call.  This option allows the setting of
3102  * a default context on an association basis that will be received on
3103  * reading messages from the peer.  This is especially helpful in the
3104  * one-2-many model for an application to keep some reference to an
3105  * internal state machine that is processing messages on the
3106  * association.  Note that the setting of this value only effects
3107  * received messages from the peer and does not effect the value that is
3108  * saved with outbound messages.
3109  */
3110 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3111 				   unsigned int optlen)
3112 {
3113 	struct sctp_assoc_value params;
3114 	struct sctp_sock *sp;
3115 	struct sctp_association *asoc;
3116 
3117 	if (optlen != sizeof(struct sctp_assoc_value))
3118 		return -EINVAL;
3119 	if (copy_from_user(&params, optval, optlen))
3120 		return -EFAULT;
3121 
3122 	sp = sctp_sk(sk);
3123 
3124 	if (params.assoc_id != 0) {
3125 		asoc = sctp_id2assoc(sk, params.assoc_id);
3126 		if (!asoc)
3127 			return -EINVAL;
3128 		asoc->default_rcv_context = params.assoc_value;
3129 	} else {
3130 		sp->default_rcv_context = params.assoc_value;
3131 	}
3132 
3133 	return 0;
3134 }
3135 
3136 /*
3137  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3138  *
3139  * This options will at a minimum specify if the implementation is doing
3140  * fragmented interleave.  Fragmented interleave, for a one to many
3141  * socket, is when subsequent calls to receive a message may return
3142  * parts of messages from different associations.  Some implementations
3143  * may allow you to turn this value on or off.  If so, when turned off,
3144  * no fragment interleave will occur (which will cause a head of line
3145  * blocking amongst multiple associations sharing the same one to many
3146  * socket).  When this option is turned on, then each receive call may
3147  * come from a different association (thus the user must receive data
3148  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3149  * association each receive belongs to.
3150  *
3151  * This option takes a boolean value.  A non-zero value indicates that
3152  * fragmented interleave is on.  A value of zero indicates that
3153  * fragmented interleave is off.
3154  *
3155  * Note that it is important that an implementation that allows this
3156  * option to be turned on, have it off by default.  Otherwise an unaware
3157  * application using the one to many model may become confused and act
3158  * incorrectly.
3159  */
3160 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3161 					       char __user *optval,
3162 					       unsigned int optlen)
3163 {
3164 	int val;
3165 
3166 	if (optlen != sizeof(int))
3167 		return -EINVAL;
3168 	if (get_user(val, (int __user *)optval))
3169 		return -EFAULT;
3170 
3171 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3172 
3173 	return 0;
3174 }
3175 
3176 /*
3177  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3178  *       (SCTP_PARTIAL_DELIVERY_POINT)
3179  *
3180  * This option will set or get the SCTP partial delivery point.  This
3181  * point is the size of a message where the partial delivery API will be
3182  * invoked to help free up rwnd space for the peer.  Setting this to a
3183  * lower value will cause partial deliveries to happen more often.  The
3184  * calls argument is an integer that sets or gets the partial delivery
3185  * point.  Note also that the call will fail if the user attempts to set
3186  * this value larger than the socket receive buffer size.
3187  *
3188  * Note that any single message having a length smaller than or equal to
3189  * the SCTP partial delivery point will be delivered in one single read
3190  * call as long as the user provided buffer is large enough to hold the
3191  * message.
3192  */
3193 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3194 						  char __user *optval,
3195 						  unsigned int optlen)
3196 {
3197 	u32 val;
3198 
3199 	if (optlen != sizeof(u32))
3200 		return -EINVAL;
3201 	if (get_user(val, (int __user *)optval))
3202 		return -EFAULT;
3203 
3204 	/* Note: We double the receive buffer from what the user sets
3205 	 * it to be, also initial rwnd is based on rcvbuf/2.
3206 	 */
3207 	if (val > (sk->sk_rcvbuf >> 1))
3208 		return -EINVAL;
3209 
3210 	sctp_sk(sk)->pd_point = val;
3211 
3212 	return 0; /* is this the right error code? */
3213 }
3214 
3215 /*
3216  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3217  *
3218  * This option will allow a user to change the maximum burst of packets
3219  * that can be emitted by this association.  Note that the default value
3220  * is 4, and some implementations may restrict this setting so that it
3221  * can only be lowered.
3222  *
3223  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3224  * future associations inheriting the socket value.
3225  */
3226 static int sctp_setsockopt_maxburst(struct sock *sk,
3227 				    char __user *optval,
3228 				    unsigned int optlen)
3229 {
3230 	struct sctp_assoc_value params;
3231 	struct sctp_sock *sp;
3232 	struct sctp_association *asoc;
3233 	int val;
3234 	int assoc_id = 0;
3235 
3236 	if (optlen == sizeof(int)) {
3237 		pr_warn("Use of int in max_burst socket option deprecated\n");
3238 		pr_warn("Use struct sctp_assoc_value instead\n");
3239 		if (copy_from_user(&val, optval, optlen))
3240 			return -EFAULT;
3241 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3242 		if (copy_from_user(&params, optval, optlen))
3243 			return -EFAULT;
3244 		val = params.assoc_value;
3245 		assoc_id = params.assoc_id;
3246 	} else
3247 		return -EINVAL;
3248 
3249 	sp = sctp_sk(sk);
3250 
3251 	if (assoc_id != 0) {
3252 		asoc = sctp_id2assoc(sk, assoc_id);
3253 		if (!asoc)
3254 			return -EINVAL;
3255 		asoc->max_burst = val;
3256 	} else
3257 		sp->max_burst = val;
3258 
3259 	return 0;
3260 }
3261 
3262 /*
3263  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3264  *
3265  * This set option adds a chunk type that the user is requesting to be
3266  * received only in an authenticated way.  Changes to the list of chunks
3267  * will only effect future associations on the socket.
3268  */
3269 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3270 				      char __user *optval,
3271 				      unsigned int optlen)
3272 {
3273 	struct net *net = sock_net(sk);
3274 	struct sctp_authchunk val;
3275 
3276 	if (!net->sctp.auth_enable)
3277 		return -EACCES;
3278 
3279 	if (optlen != sizeof(struct sctp_authchunk))
3280 		return -EINVAL;
3281 	if (copy_from_user(&val, optval, optlen))
3282 		return -EFAULT;
3283 
3284 	switch (val.sauth_chunk) {
3285 	case SCTP_CID_INIT:
3286 	case SCTP_CID_INIT_ACK:
3287 	case SCTP_CID_SHUTDOWN_COMPLETE:
3288 	case SCTP_CID_AUTH:
3289 		return -EINVAL;
3290 	}
3291 
3292 	/* add this chunk id to the endpoint */
3293 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3294 }
3295 
3296 /*
3297  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3298  *
3299  * This option gets or sets the list of HMAC algorithms that the local
3300  * endpoint requires the peer to use.
3301  */
3302 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3303 				      char __user *optval,
3304 				      unsigned int optlen)
3305 {
3306 	struct net *net = sock_net(sk);
3307 	struct sctp_hmacalgo *hmacs;
3308 	u32 idents;
3309 	int err;
3310 
3311 	if (!net->sctp.auth_enable)
3312 		return -EACCES;
3313 
3314 	if (optlen < sizeof(struct sctp_hmacalgo))
3315 		return -EINVAL;
3316 
3317 	hmacs= memdup_user(optval, optlen);
3318 	if (IS_ERR(hmacs))
3319 		return PTR_ERR(hmacs);
3320 
3321 	idents = hmacs->shmac_num_idents;
3322 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3323 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3324 		err = -EINVAL;
3325 		goto out;
3326 	}
3327 
3328 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3329 out:
3330 	kfree(hmacs);
3331 	return err;
3332 }
3333 
3334 /*
3335  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3336  *
3337  * This option will set a shared secret key which is used to build an
3338  * association shared key.
3339  */
3340 static int sctp_setsockopt_auth_key(struct sock *sk,
3341 				    char __user *optval,
3342 				    unsigned int optlen)
3343 {
3344 	struct net *net = sock_net(sk);
3345 	struct sctp_authkey *authkey;
3346 	struct sctp_association *asoc;
3347 	int ret;
3348 
3349 	if (!net->sctp.auth_enable)
3350 		return -EACCES;
3351 
3352 	if (optlen <= sizeof(struct sctp_authkey))
3353 		return -EINVAL;
3354 
3355 	authkey= memdup_user(optval, optlen);
3356 	if (IS_ERR(authkey))
3357 		return PTR_ERR(authkey);
3358 
3359 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3360 		ret = -EINVAL;
3361 		goto out;
3362 	}
3363 
3364 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3365 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3371 out:
3372 	kzfree(authkey);
3373 	return ret;
3374 }
3375 
3376 /*
3377  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3378  *
3379  * This option will get or set the active shared key to be used to build
3380  * the association shared key.
3381  */
3382 static int sctp_setsockopt_active_key(struct sock *sk,
3383 				      char __user *optval,
3384 				      unsigned int optlen)
3385 {
3386 	struct net *net = sock_net(sk);
3387 	struct sctp_authkeyid val;
3388 	struct sctp_association *asoc;
3389 
3390 	if (!net->sctp.auth_enable)
3391 		return -EACCES;
3392 
3393 	if (optlen != sizeof(struct sctp_authkeyid))
3394 		return -EINVAL;
3395 	if (copy_from_user(&val, optval, optlen))
3396 		return -EFAULT;
3397 
3398 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3399 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3400 		return -EINVAL;
3401 
3402 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3403 					val.scact_keynumber);
3404 }
3405 
3406 /*
3407  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3408  *
3409  * This set option will delete a shared secret key from use.
3410  */
3411 static int sctp_setsockopt_del_key(struct sock *sk,
3412 				   char __user *optval,
3413 				   unsigned int optlen)
3414 {
3415 	struct net *net = sock_net(sk);
3416 	struct sctp_authkeyid val;
3417 	struct sctp_association *asoc;
3418 
3419 	if (!net->sctp.auth_enable)
3420 		return -EACCES;
3421 
3422 	if (optlen != sizeof(struct sctp_authkeyid))
3423 		return -EINVAL;
3424 	if (copy_from_user(&val, optval, optlen))
3425 		return -EFAULT;
3426 
3427 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3428 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3429 		return -EINVAL;
3430 
3431 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3432 				    val.scact_keynumber);
3433 
3434 }
3435 
3436 /*
3437  * 8.1.23 SCTP_AUTO_ASCONF
3438  *
3439  * This option will enable or disable the use of the automatic generation of
3440  * ASCONF chunks to add and delete addresses to an existing association.  Note
3441  * that this option has two caveats namely: a) it only affects sockets that
3442  * are bound to all addresses available to the SCTP stack, and b) the system
3443  * administrator may have an overriding control that turns the ASCONF feature
3444  * off no matter what setting the socket option may have.
3445  * This option expects an integer boolean flag, where a non-zero value turns on
3446  * the option, and a zero value turns off the option.
3447  * Note. In this implementation, socket operation overrides default parameter
3448  * being set by sysctl as well as FreeBSD implementation
3449  */
3450 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3451 					unsigned int optlen)
3452 {
3453 	int val;
3454 	struct sctp_sock *sp = sctp_sk(sk);
3455 
3456 	if (optlen < sizeof(int))
3457 		return -EINVAL;
3458 	if (get_user(val, (int __user *)optval))
3459 		return -EFAULT;
3460 	if (!sctp_is_ep_boundall(sk) && val)
3461 		return -EINVAL;
3462 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3463 		return 0;
3464 
3465 	if (val == 0 && sp->do_auto_asconf) {
3466 		list_del(&sp->auto_asconf_list);
3467 		sp->do_auto_asconf = 0;
3468 	} else if (val && !sp->do_auto_asconf) {
3469 		list_add_tail(&sp->auto_asconf_list,
3470 		    &sock_net(sk)->sctp.auto_asconf_splist);
3471 		sp->do_auto_asconf = 1;
3472 	}
3473 	return 0;
3474 }
3475 
3476 
3477 /*
3478  * SCTP_PEER_ADDR_THLDS
3479  *
3480  * This option allows us to alter the partially failed threshold for one or all
3481  * transports in an association.  See Section 6.1 of:
3482  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3483  */
3484 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3485 					    char __user *optval,
3486 					    unsigned int optlen)
3487 {
3488 	struct sctp_paddrthlds val;
3489 	struct sctp_transport *trans;
3490 	struct sctp_association *asoc;
3491 
3492 	if (optlen < sizeof(struct sctp_paddrthlds))
3493 		return -EINVAL;
3494 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3495 			   sizeof(struct sctp_paddrthlds)))
3496 		return -EFAULT;
3497 
3498 
3499 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3500 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3501 		if (!asoc)
3502 			return -ENOENT;
3503 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3504 				    transports) {
3505 			if (val.spt_pathmaxrxt)
3506 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3507 			trans->pf_retrans = val.spt_pathpfthld;
3508 		}
3509 
3510 		if (val.spt_pathmaxrxt)
3511 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3512 		asoc->pf_retrans = val.spt_pathpfthld;
3513 	} else {
3514 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3515 					       val.spt_assoc_id);
3516 		if (!trans)
3517 			return -ENOENT;
3518 
3519 		if (val.spt_pathmaxrxt)
3520 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3521 		trans->pf_retrans = val.spt_pathpfthld;
3522 	}
3523 
3524 	return 0;
3525 }
3526 
3527 /* API 6.2 setsockopt(), getsockopt()
3528  *
3529  * Applications use setsockopt() and getsockopt() to set or retrieve
3530  * socket options.  Socket options are used to change the default
3531  * behavior of sockets calls.  They are described in Section 7.
3532  *
3533  * The syntax is:
3534  *
3535  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3536  *                    int __user *optlen);
3537  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3538  *                    int optlen);
3539  *
3540  *   sd      - the socket descript.
3541  *   level   - set to IPPROTO_SCTP for all SCTP options.
3542  *   optname - the option name.
3543  *   optval  - the buffer to store the value of the option.
3544  *   optlen  - the size of the buffer.
3545  */
3546 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3547 			   char __user *optval, unsigned int optlen)
3548 {
3549 	int retval = 0;
3550 
3551 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3552 
3553 	/* I can hardly begin to describe how wrong this is.  This is
3554 	 * so broken as to be worse than useless.  The API draft
3555 	 * REALLY is NOT helpful here...  I am not convinced that the
3556 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3557 	 * are at all well-founded.
3558 	 */
3559 	if (level != SOL_SCTP) {
3560 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3561 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3562 		goto out_nounlock;
3563 	}
3564 
3565 	sctp_lock_sock(sk);
3566 
3567 	switch (optname) {
3568 	case SCTP_SOCKOPT_BINDX_ADD:
3569 		/* 'optlen' is the size of the addresses buffer. */
3570 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3571 					       optlen, SCTP_BINDX_ADD_ADDR);
3572 		break;
3573 
3574 	case SCTP_SOCKOPT_BINDX_REM:
3575 		/* 'optlen' is the size of the addresses buffer. */
3576 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3577 					       optlen, SCTP_BINDX_REM_ADDR);
3578 		break;
3579 
3580 	case SCTP_SOCKOPT_CONNECTX_OLD:
3581 		/* 'optlen' is the size of the addresses buffer. */
3582 		retval = sctp_setsockopt_connectx_old(sk,
3583 					    (struct sockaddr __user *)optval,
3584 					    optlen);
3585 		break;
3586 
3587 	case SCTP_SOCKOPT_CONNECTX:
3588 		/* 'optlen' is the size of the addresses buffer. */
3589 		retval = sctp_setsockopt_connectx(sk,
3590 					    (struct sockaddr __user *)optval,
3591 					    optlen);
3592 		break;
3593 
3594 	case SCTP_DISABLE_FRAGMENTS:
3595 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3596 		break;
3597 
3598 	case SCTP_EVENTS:
3599 		retval = sctp_setsockopt_events(sk, optval, optlen);
3600 		break;
3601 
3602 	case SCTP_AUTOCLOSE:
3603 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3604 		break;
3605 
3606 	case SCTP_PEER_ADDR_PARAMS:
3607 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3608 		break;
3609 
3610 	case SCTP_DELAYED_SACK:
3611 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3612 		break;
3613 	case SCTP_PARTIAL_DELIVERY_POINT:
3614 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3615 		break;
3616 
3617 	case SCTP_INITMSG:
3618 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3619 		break;
3620 	case SCTP_DEFAULT_SEND_PARAM:
3621 		retval = sctp_setsockopt_default_send_param(sk, optval,
3622 							    optlen);
3623 		break;
3624 	case SCTP_PRIMARY_ADDR:
3625 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3626 		break;
3627 	case SCTP_SET_PEER_PRIMARY_ADDR:
3628 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3629 		break;
3630 	case SCTP_NODELAY:
3631 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3632 		break;
3633 	case SCTP_RTOINFO:
3634 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3635 		break;
3636 	case SCTP_ASSOCINFO:
3637 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3638 		break;
3639 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3640 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3641 		break;
3642 	case SCTP_MAXSEG:
3643 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3644 		break;
3645 	case SCTP_ADAPTATION_LAYER:
3646 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3647 		break;
3648 	case SCTP_CONTEXT:
3649 		retval = sctp_setsockopt_context(sk, optval, optlen);
3650 		break;
3651 	case SCTP_FRAGMENT_INTERLEAVE:
3652 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3653 		break;
3654 	case SCTP_MAX_BURST:
3655 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3656 		break;
3657 	case SCTP_AUTH_CHUNK:
3658 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3659 		break;
3660 	case SCTP_HMAC_IDENT:
3661 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3662 		break;
3663 	case SCTP_AUTH_KEY:
3664 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3665 		break;
3666 	case SCTP_AUTH_ACTIVE_KEY:
3667 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3668 		break;
3669 	case SCTP_AUTH_DELETE_KEY:
3670 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3671 		break;
3672 	case SCTP_AUTO_ASCONF:
3673 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3674 		break;
3675 	case SCTP_PEER_ADDR_THLDS:
3676 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3677 		break;
3678 	default:
3679 		retval = -ENOPROTOOPT;
3680 		break;
3681 	}
3682 
3683 	sctp_release_sock(sk);
3684 
3685 out_nounlock:
3686 	return retval;
3687 }
3688 
3689 /* API 3.1.6 connect() - UDP Style Syntax
3690  *
3691  * An application may use the connect() call in the UDP model to initiate an
3692  * association without sending data.
3693  *
3694  * The syntax is:
3695  *
3696  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3697  *
3698  * sd: the socket descriptor to have a new association added to.
3699  *
3700  * nam: the address structure (either struct sockaddr_in or struct
3701  *    sockaddr_in6 defined in RFC2553 [7]).
3702  *
3703  * len: the size of the address.
3704  */
3705 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3706 			int addr_len)
3707 {
3708 	int err = 0;
3709 	struct sctp_af *af;
3710 
3711 	sctp_lock_sock(sk);
3712 
3713 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3714 		 addr, addr_len);
3715 
3716 	/* Validate addr_len before calling common connect/connectx routine. */
3717 	af = sctp_get_af_specific(addr->sa_family);
3718 	if (!af || addr_len < af->sockaddr_len) {
3719 		err = -EINVAL;
3720 	} else {
3721 		/* Pass correct addr len to common routine (so it knows there
3722 		 * is only one address being passed.
3723 		 */
3724 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3725 	}
3726 
3727 	sctp_release_sock(sk);
3728 	return err;
3729 }
3730 
3731 /* FIXME: Write comments. */
3732 static int sctp_disconnect(struct sock *sk, int flags)
3733 {
3734 	return -EOPNOTSUPP; /* STUB */
3735 }
3736 
3737 /* 4.1.4 accept() - TCP Style Syntax
3738  *
3739  * Applications use accept() call to remove an established SCTP
3740  * association from the accept queue of the endpoint.  A new socket
3741  * descriptor will be returned from accept() to represent the newly
3742  * formed association.
3743  */
3744 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3745 {
3746 	struct sctp_sock *sp;
3747 	struct sctp_endpoint *ep;
3748 	struct sock *newsk = NULL;
3749 	struct sctp_association *asoc;
3750 	long timeo;
3751 	int error = 0;
3752 
3753 	sctp_lock_sock(sk);
3754 
3755 	sp = sctp_sk(sk);
3756 	ep = sp->ep;
3757 
3758 	if (!sctp_style(sk, TCP)) {
3759 		error = -EOPNOTSUPP;
3760 		goto out;
3761 	}
3762 
3763 	if (!sctp_sstate(sk, LISTENING)) {
3764 		error = -EINVAL;
3765 		goto out;
3766 	}
3767 
3768 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3769 
3770 	error = sctp_wait_for_accept(sk, timeo);
3771 	if (error)
3772 		goto out;
3773 
3774 	/* We treat the list of associations on the endpoint as the accept
3775 	 * queue and pick the first association on the list.
3776 	 */
3777 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3778 
3779 	newsk = sp->pf->create_accept_sk(sk, asoc);
3780 	if (!newsk) {
3781 		error = -ENOMEM;
3782 		goto out;
3783 	}
3784 
3785 	/* Populate the fields of the newsk from the oldsk and migrate the
3786 	 * asoc to the newsk.
3787 	 */
3788 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3789 
3790 out:
3791 	sctp_release_sock(sk);
3792 	*err = error;
3793 	return newsk;
3794 }
3795 
3796 /* The SCTP ioctl handler. */
3797 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3798 {
3799 	int rc = -ENOTCONN;
3800 
3801 	sctp_lock_sock(sk);
3802 
3803 	/*
3804 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3805 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3806 	 */
3807 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3808 		goto out;
3809 
3810 	switch (cmd) {
3811 	case SIOCINQ: {
3812 		struct sk_buff *skb;
3813 		unsigned int amount = 0;
3814 
3815 		skb = skb_peek(&sk->sk_receive_queue);
3816 		if (skb != NULL) {
3817 			/*
3818 			 * We will only return the amount of this packet since
3819 			 * that is all that will be read.
3820 			 */
3821 			amount = skb->len;
3822 		}
3823 		rc = put_user(amount, (int __user *)arg);
3824 		break;
3825 	}
3826 	default:
3827 		rc = -ENOIOCTLCMD;
3828 		break;
3829 	}
3830 out:
3831 	sctp_release_sock(sk);
3832 	return rc;
3833 }
3834 
3835 /* This is the function which gets called during socket creation to
3836  * initialized the SCTP-specific portion of the sock.
3837  * The sock structure should already be zero-filled memory.
3838  */
3839 static int sctp_init_sock(struct sock *sk)
3840 {
3841 	struct net *net = sock_net(sk);
3842 	struct sctp_sock *sp;
3843 
3844 	pr_debug("%s: sk:%p\n", __func__, sk);
3845 
3846 	sp = sctp_sk(sk);
3847 
3848 	/* Initialize the SCTP per socket area.  */
3849 	switch (sk->sk_type) {
3850 	case SOCK_SEQPACKET:
3851 		sp->type = SCTP_SOCKET_UDP;
3852 		break;
3853 	case SOCK_STREAM:
3854 		sp->type = SCTP_SOCKET_TCP;
3855 		break;
3856 	default:
3857 		return -ESOCKTNOSUPPORT;
3858 	}
3859 
3860 	/* Initialize default send parameters. These parameters can be
3861 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3862 	 */
3863 	sp->default_stream = 0;
3864 	sp->default_ppid = 0;
3865 	sp->default_flags = 0;
3866 	sp->default_context = 0;
3867 	sp->default_timetolive = 0;
3868 
3869 	sp->default_rcv_context = 0;
3870 	sp->max_burst = net->sctp.max_burst;
3871 
3872 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3873 
3874 	/* Initialize default setup parameters. These parameters
3875 	 * can be modified with the SCTP_INITMSG socket option or
3876 	 * overridden by the SCTP_INIT CMSG.
3877 	 */
3878 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3879 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3880 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3881 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3882 
3883 	/* Initialize default RTO related parameters.  These parameters can
3884 	 * be modified for with the SCTP_RTOINFO socket option.
3885 	 */
3886 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3887 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3888 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3889 
3890 	/* Initialize default association related parameters. These parameters
3891 	 * can be modified with the SCTP_ASSOCINFO socket option.
3892 	 */
3893 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3894 	sp->assocparams.sasoc_number_peer_destinations = 0;
3895 	sp->assocparams.sasoc_peer_rwnd = 0;
3896 	sp->assocparams.sasoc_local_rwnd = 0;
3897 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3898 
3899 	/* Initialize default event subscriptions. By default, all the
3900 	 * options are off.
3901 	 */
3902 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3903 
3904 	/* Default Peer Address Parameters.  These defaults can
3905 	 * be modified via SCTP_PEER_ADDR_PARAMS
3906 	 */
3907 	sp->hbinterval  = net->sctp.hb_interval;
3908 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3909 	sp->pathmtu     = 0; // allow default discovery
3910 	sp->sackdelay   = net->sctp.sack_timeout;
3911 	sp->sackfreq	= 2;
3912 	sp->param_flags = SPP_HB_ENABLE |
3913 			  SPP_PMTUD_ENABLE |
3914 			  SPP_SACKDELAY_ENABLE;
3915 
3916 	/* If enabled no SCTP message fragmentation will be performed.
3917 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3918 	 */
3919 	sp->disable_fragments = 0;
3920 
3921 	/* Enable Nagle algorithm by default.  */
3922 	sp->nodelay           = 0;
3923 
3924 	/* Enable by default. */
3925 	sp->v4mapped          = 1;
3926 
3927 	/* Auto-close idle associations after the configured
3928 	 * number of seconds.  A value of 0 disables this
3929 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3930 	 * for UDP-style sockets only.
3931 	 */
3932 	sp->autoclose         = 0;
3933 
3934 	/* User specified fragmentation limit. */
3935 	sp->user_frag         = 0;
3936 
3937 	sp->adaptation_ind = 0;
3938 
3939 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3940 
3941 	/* Control variables for partial data delivery. */
3942 	atomic_set(&sp->pd_mode, 0);
3943 	skb_queue_head_init(&sp->pd_lobby);
3944 	sp->frag_interleave = 0;
3945 
3946 	/* Create a per socket endpoint structure.  Even if we
3947 	 * change the data structure relationships, this may still
3948 	 * be useful for storing pre-connect address information.
3949 	 */
3950 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3951 	if (!sp->ep)
3952 		return -ENOMEM;
3953 
3954 	sp->hmac = NULL;
3955 
3956 	sk->sk_destruct = sctp_destruct_sock;
3957 
3958 	SCTP_DBG_OBJCNT_INC(sock);
3959 
3960 	local_bh_disable();
3961 	percpu_counter_inc(&sctp_sockets_allocated);
3962 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3963 	if (net->sctp.default_auto_asconf) {
3964 		list_add_tail(&sp->auto_asconf_list,
3965 		    &net->sctp.auto_asconf_splist);
3966 		sp->do_auto_asconf = 1;
3967 	} else
3968 		sp->do_auto_asconf = 0;
3969 	local_bh_enable();
3970 
3971 	return 0;
3972 }
3973 
3974 /* Cleanup any SCTP per socket resources.  */
3975 static void sctp_destroy_sock(struct sock *sk)
3976 {
3977 	struct sctp_sock *sp;
3978 
3979 	pr_debug("%s: sk:%p\n", __func__, sk);
3980 
3981 	/* Release our hold on the endpoint. */
3982 	sp = sctp_sk(sk);
3983 	/* This could happen during socket init, thus we bail out
3984 	 * early, since the rest of the below is not setup either.
3985 	 */
3986 	if (sp->ep == NULL)
3987 		return;
3988 
3989 	if (sp->do_auto_asconf) {
3990 		sp->do_auto_asconf = 0;
3991 		list_del(&sp->auto_asconf_list);
3992 	}
3993 	sctp_endpoint_free(sp->ep);
3994 	local_bh_disable();
3995 	percpu_counter_dec(&sctp_sockets_allocated);
3996 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3997 	local_bh_enable();
3998 }
3999 
4000 /* Triggered when there are no references on the socket anymore */
4001 static void sctp_destruct_sock(struct sock *sk)
4002 {
4003 	struct sctp_sock *sp = sctp_sk(sk);
4004 
4005 	/* Free up the HMAC transform. */
4006 	crypto_free_hash(sp->hmac);
4007 
4008 	inet_sock_destruct(sk);
4009 }
4010 
4011 /* API 4.1.7 shutdown() - TCP Style Syntax
4012  *     int shutdown(int socket, int how);
4013  *
4014  *     sd      - the socket descriptor of the association to be closed.
4015  *     how     - Specifies the type of shutdown.  The  values  are
4016  *               as follows:
4017  *               SHUT_RD
4018  *                     Disables further receive operations. No SCTP
4019  *                     protocol action is taken.
4020  *               SHUT_WR
4021  *                     Disables further send operations, and initiates
4022  *                     the SCTP shutdown sequence.
4023  *               SHUT_RDWR
4024  *                     Disables further send  and  receive  operations
4025  *                     and initiates the SCTP shutdown sequence.
4026  */
4027 static void sctp_shutdown(struct sock *sk, int how)
4028 {
4029 	struct net *net = sock_net(sk);
4030 	struct sctp_endpoint *ep;
4031 	struct sctp_association *asoc;
4032 
4033 	if (!sctp_style(sk, TCP))
4034 		return;
4035 
4036 	if (how & SEND_SHUTDOWN) {
4037 		ep = sctp_sk(sk)->ep;
4038 		if (!list_empty(&ep->asocs)) {
4039 			asoc = list_entry(ep->asocs.next,
4040 					  struct sctp_association, asocs);
4041 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4042 		}
4043 	}
4044 }
4045 
4046 /* 7.2.1 Association Status (SCTP_STATUS)
4047 
4048  * Applications can retrieve current status information about an
4049  * association, including association state, peer receiver window size,
4050  * number of unacked data chunks, and number of data chunks pending
4051  * receipt.  This information is read-only.
4052  */
4053 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4054 				       char __user *optval,
4055 				       int __user *optlen)
4056 {
4057 	struct sctp_status status;
4058 	struct sctp_association *asoc = NULL;
4059 	struct sctp_transport *transport;
4060 	sctp_assoc_t associd;
4061 	int retval = 0;
4062 
4063 	if (len < sizeof(status)) {
4064 		retval = -EINVAL;
4065 		goto out;
4066 	}
4067 
4068 	len = sizeof(status);
4069 	if (copy_from_user(&status, optval, len)) {
4070 		retval = -EFAULT;
4071 		goto out;
4072 	}
4073 
4074 	associd = status.sstat_assoc_id;
4075 	asoc = sctp_id2assoc(sk, associd);
4076 	if (!asoc) {
4077 		retval = -EINVAL;
4078 		goto out;
4079 	}
4080 
4081 	transport = asoc->peer.primary_path;
4082 
4083 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4084 	status.sstat_state = asoc->state;
4085 	status.sstat_rwnd =  asoc->peer.rwnd;
4086 	status.sstat_unackdata = asoc->unack_data;
4087 
4088 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4089 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4090 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4091 	status.sstat_fragmentation_point = asoc->frag_point;
4092 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4093 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4094 			transport->af_specific->sockaddr_len);
4095 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4096 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4097 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4098 	status.sstat_primary.spinfo_state = transport->state;
4099 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4100 	status.sstat_primary.spinfo_srtt = transport->srtt;
4101 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4102 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4103 
4104 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4105 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4106 
4107 	if (put_user(len, optlen)) {
4108 		retval = -EFAULT;
4109 		goto out;
4110 	}
4111 
4112 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4113 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4114 		 status.sstat_assoc_id);
4115 
4116 	if (copy_to_user(optval, &status, len)) {
4117 		retval = -EFAULT;
4118 		goto out;
4119 	}
4120 
4121 out:
4122 	return retval;
4123 }
4124 
4125 
4126 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4127  *
4128  * Applications can retrieve information about a specific peer address
4129  * of an association, including its reachability state, congestion
4130  * window, and retransmission timer values.  This information is
4131  * read-only.
4132  */
4133 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4134 					  char __user *optval,
4135 					  int __user *optlen)
4136 {
4137 	struct sctp_paddrinfo pinfo;
4138 	struct sctp_transport *transport;
4139 	int retval = 0;
4140 
4141 	if (len < sizeof(pinfo)) {
4142 		retval = -EINVAL;
4143 		goto out;
4144 	}
4145 
4146 	len = sizeof(pinfo);
4147 	if (copy_from_user(&pinfo, optval, len)) {
4148 		retval = -EFAULT;
4149 		goto out;
4150 	}
4151 
4152 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4153 					   pinfo.spinfo_assoc_id);
4154 	if (!transport)
4155 		return -EINVAL;
4156 
4157 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4158 	pinfo.spinfo_state = transport->state;
4159 	pinfo.spinfo_cwnd = transport->cwnd;
4160 	pinfo.spinfo_srtt = transport->srtt;
4161 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4162 	pinfo.spinfo_mtu = transport->pathmtu;
4163 
4164 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4165 		pinfo.spinfo_state = SCTP_ACTIVE;
4166 
4167 	if (put_user(len, optlen)) {
4168 		retval = -EFAULT;
4169 		goto out;
4170 	}
4171 
4172 	if (copy_to_user(optval, &pinfo, len)) {
4173 		retval = -EFAULT;
4174 		goto out;
4175 	}
4176 
4177 out:
4178 	return retval;
4179 }
4180 
4181 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4182  *
4183  * This option is a on/off flag.  If enabled no SCTP message
4184  * fragmentation will be performed.  Instead if a message being sent
4185  * exceeds the current PMTU size, the message will NOT be sent and
4186  * instead a error will be indicated to the user.
4187  */
4188 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4189 					char __user *optval, int __user *optlen)
4190 {
4191 	int val;
4192 
4193 	if (len < sizeof(int))
4194 		return -EINVAL;
4195 
4196 	len = sizeof(int);
4197 	val = (sctp_sk(sk)->disable_fragments == 1);
4198 	if (put_user(len, optlen))
4199 		return -EFAULT;
4200 	if (copy_to_user(optval, &val, len))
4201 		return -EFAULT;
4202 	return 0;
4203 }
4204 
4205 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4206  *
4207  * This socket option is used to specify various notifications and
4208  * ancillary data the user wishes to receive.
4209  */
4210 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4211 				  int __user *optlen)
4212 {
4213 	if (len <= 0)
4214 		return -EINVAL;
4215 	if (len > sizeof(struct sctp_event_subscribe))
4216 		len = sizeof(struct sctp_event_subscribe);
4217 	if (put_user(len, optlen))
4218 		return -EFAULT;
4219 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4220 		return -EFAULT;
4221 	return 0;
4222 }
4223 
4224 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4225  *
4226  * This socket option is applicable to the UDP-style socket only.  When
4227  * set it will cause associations that are idle for more than the
4228  * specified number of seconds to automatically close.  An association
4229  * being idle is defined an association that has NOT sent or received
4230  * user data.  The special value of '0' indicates that no automatic
4231  * close of any associations should be performed.  The option expects an
4232  * integer defining the number of seconds of idle time before an
4233  * association is closed.
4234  */
4235 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4236 {
4237 	/* Applicable to UDP-style socket only */
4238 	if (sctp_style(sk, TCP))
4239 		return -EOPNOTSUPP;
4240 	if (len < sizeof(int))
4241 		return -EINVAL;
4242 	len = sizeof(int);
4243 	if (put_user(len, optlen))
4244 		return -EFAULT;
4245 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4246 		return -EFAULT;
4247 	return 0;
4248 }
4249 
4250 /* Helper routine to branch off an association to a new socket.  */
4251 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4252 {
4253 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4254 	struct socket *sock;
4255 	struct sctp_af *af;
4256 	int err = 0;
4257 
4258 	if (!asoc)
4259 		return -EINVAL;
4260 
4261 	/* An association cannot be branched off from an already peeled-off
4262 	 * socket, nor is this supported for tcp style sockets.
4263 	 */
4264 	if (!sctp_style(sk, UDP))
4265 		return -EINVAL;
4266 
4267 	/* Create a new socket.  */
4268 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4269 	if (err < 0)
4270 		return err;
4271 
4272 	sctp_copy_sock(sock->sk, sk, asoc);
4273 
4274 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4275 	 * Set the daddr and initialize id to something more random
4276 	 */
4277 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4278 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4279 
4280 	/* Populate the fields of the newsk from the oldsk and migrate the
4281 	 * asoc to the newsk.
4282 	 */
4283 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4284 
4285 	*sockp = sock;
4286 
4287 	return err;
4288 }
4289 EXPORT_SYMBOL(sctp_do_peeloff);
4290 
4291 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4292 {
4293 	sctp_peeloff_arg_t peeloff;
4294 	struct socket *newsock;
4295 	struct file *newfile;
4296 	int retval = 0;
4297 
4298 	if (len < sizeof(sctp_peeloff_arg_t))
4299 		return -EINVAL;
4300 	len = sizeof(sctp_peeloff_arg_t);
4301 	if (copy_from_user(&peeloff, optval, len))
4302 		return -EFAULT;
4303 
4304 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4305 	if (retval < 0)
4306 		goto out;
4307 
4308 	/* Map the socket to an unused fd that can be returned to the user.  */
4309 	retval = get_unused_fd_flags(0);
4310 	if (retval < 0) {
4311 		sock_release(newsock);
4312 		goto out;
4313 	}
4314 
4315 	newfile = sock_alloc_file(newsock, 0, NULL);
4316 	if (unlikely(IS_ERR(newfile))) {
4317 		put_unused_fd(retval);
4318 		sock_release(newsock);
4319 		return PTR_ERR(newfile);
4320 	}
4321 
4322 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4323 		 retval);
4324 
4325 	/* Return the fd mapped to the new socket.  */
4326 	if (put_user(len, optlen)) {
4327 		fput(newfile);
4328 		put_unused_fd(retval);
4329 		return -EFAULT;
4330 	}
4331 	peeloff.sd = retval;
4332 	if (copy_to_user(optval, &peeloff, len)) {
4333 		fput(newfile);
4334 		put_unused_fd(retval);
4335 		return -EFAULT;
4336 	}
4337 	fd_install(retval, newfile);
4338 out:
4339 	return retval;
4340 }
4341 
4342 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4343  *
4344  * Applications can enable or disable heartbeats for any peer address of
4345  * an association, modify an address's heartbeat interval, force a
4346  * heartbeat to be sent immediately, and adjust the address's maximum
4347  * number of retransmissions sent before an address is considered
4348  * unreachable.  The following structure is used to access and modify an
4349  * address's parameters:
4350  *
4351  *  struct sctp_paddrparams {
4352  *     sctp_assoc_t            spp_assoc_id;
4353  *     struct sockaddr_storage spp_address;
4354  *     uint32_t                spp_hbinterval;
4355  *     uint16_t                spp_pathmaxrxt;
4356  *     uint32_t                spp_pathmtu;
4357  *     uint32_t                spp_sackdelay;
4358  *     uint32_t                spp_flags;
4359  * };
4360  *
4361  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4362  *                     application, and identifies the association for
4363  *                     this query.
4364  *   spp_address     - This specifies which address is of interest.
4365  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4366  *                     in milliseconds.  If a  value of zero
4367  *                     is present in this field then no changes are to
4368  *                     be made to this parameter.
4369  *   spp_pathmaxrxt  - This contains the maximum number of
4370  *                     retransmissions before this address shall be
4371  *                     considered unreachable. If a  value of zero
4372  *                     is present in this field then no changes are to
4373  *                     be made to this parameter.
4374  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4375  *                     specified here will be the "fixed" path mtu.
4376  *                     Note that if the spp_address field is empty
4377  *                     then all associations on this address will
4378  *                     have this fixed path mtu set upon them.
4379  *
4380  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4381  *                     the number of milliseconds that sacks will be delayed
4382  *                     for. This value will apply to all addresses of an
4383  *                     association if the spp_address field is empty. Note
4384  *                     also, that if delayed sack is enabled and this
4385  *                     value is set to 0, no change is made to the last
4386  *                     recorded delayed sack timer value.
4387  *
4388  *   spp_flags       - These flags are used to control various features
4389  *                     on an association. The flag field may contain
4390  *                     zero or more of the following options.
4391  *
4392  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4393  *                     specified address. Note that if the address
4394  *                     field is empty all addresses for the association
4395  *                     have heartbeats enabled upon them.
4396  *
4397  *                     SPP_HB_DISABLE - Disable heartbeats on the
4398  *                     speicifed address. Note that if the address
4399  *                     field is empty all addresses for the association
4400  *                     will have their heartbeats disabled. Note also
4401  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4402  *                     mutually exclusive, only one of these two should
4403  *                     be specified. Enabling both fields will have
4404  *                     undetermined results.
4405  *
4406  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4407  *                     to be made immediately.
4408  *
4409  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4410  *                     discovery upon the specified address. Note that
4411  *                     if the address feild is empty then all addresses
4412  *                     on the association are effected.
4413  *
4414  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4415  *                     discovery upon the specified address. Note that
4416  *                     if the address feild is empty then all addresses
4417  *                     on the association are effected. Not also that
4418  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4419  *                     exclusive. Enabling both will have undetermined
4420  *                     results.
4421  *
4422  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4423  *                     on delayed sack. The time specified in spp_sackdelay
4424  *                     is used to specify the sack delay for this address. Note
4425  *                     that if spp_address is empty then all addresses will
4426  *                     enable delayed sack and take on the sack delay
4427  *                     value specified in spp_sackdelay.
4428  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4429  *                     off delayed sack. If the spp_address field is blank then
4430  *                     delayed sack is disabled for the entire association. Note
4431  *                     also that this field is mutually exclusive to
4432  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4433  *                     results.
4434  */
4435 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4436 					    char __user *optval, int __user *optlen)
4437 {
4438 	struct sctp_paddrparams  params;
4439 	struct sctp_transport   *trans = NULL;
4440 	struct sctp_association *asoc = NULL;
4441 	struct sctp_sock        *sp = sctp_sk(sk);
4442 
4443 	if (len < sizeof(struct sctp_paddrparams))
4444 		return -EINVAL;
4445 	len = sizeof(struct sctp_paddrparams);
4446 	if (copy_from_user(&params, optval, len))
4447 		return -EFAULT;
4448 
4449 	/* If an address other than INADDR_ANY is specified, and
4450 	 * no transport is found, then the request is invalid.
4451 	 */
4452 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4453 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4454 					       params.spp_assoc_id);
4455 		if (!trans) {
4456 			pr_debug("%s: failed no transport\n", __func__);
4457 			return -EINVAL;
4458 		}
4459 	}
4460 
4461 	/* Get association, if assoc_id != 0 and the socket is a one
4462 	 * to many style socket, and an association was not found, then
4463 	 * the id was invalid.
4464 	 */
4465 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4466 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4467 		pr_debug("%s: failed no association\n", __func__);
4468 		return -EINVAL;
4469 	}
4470 
4471 	if (trans) {
4472 		/* Fetch transport values. */
4473 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4474 		params.spp_pathmtu    = trans->pathmtu;
4475 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4476 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4477 
4478 		/*draft-11 doesn't say what to return in spp_flags*/
4479 		params.spp_flags      = trans->param_flags;
4480 	} else if (asoc) {
4481 		/* Fetch association values. */
4482 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4483 		params.spp_pathmtu    = asoc->pathmtu;
4484 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4485 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4486 
4487 		/*draft-11 doesn't say what to return in spp_flags*/
4488 		params.spp_flags      = asoc->param_flags;
4489 	} else {
4490 		/* Fetch socket values. */
4491 		params.spp_hbinterval = sp->hbinterval;
4492 		params.spp_pathmtu    = sp->pathmtu;
4493 		params.spp_sackdelay  = sp->sackdelay;
4494 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4495 
4496 		/*draft-11 doesn't say what to return in spp_flags*/
4497 		params.spp_flags      = sp->param_flags;
4498 	}
4499 
4500 	if (copy_to_user(optval, &params, len))
4501 		return -EFAULT;
4502 
4503 	if (put_user(len, optlen))
4504 		return -EFAULT;
4505 
4506 	return 0;
4507 }
4508 
4509 /*
4510  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4511  *
4512  * This option will effect the way delayed acks are performed.  This
4513  * option allows you to get or set the delayed ack time, in
4514  * milliseconds.  It also allows changing the delayed ack frequency.
4515  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4516  * the assoc_id is 0, then this sets or gets the endpoints default
4517  * values.  If the assoc_id field is non-zero, then the set or get
4518  * effects the specified association for the one to many model (the
4519  * assoc_id field is ignored by the one to one model).  Note that if
4520  * sack_delay or sack_freq are 0 when setting this option, then the
4521  * current values will remain unchanged.
4522  *
4523  * struct sctp_sack_info {
4524  *     sctp_assoc_t            sack_assoc_id;
4525  *     uint32_t                sack_delay;
4526  *     uint32_t                sack_freq;
4527  * };
4528  *
4529  * sack_assoc_id -  This parameter, indicates which association the user
4530  *    is performing an action upon.  Note that if this field's value is
4531  *    zero then the endpoints default value is changed (effecting future
4532  *    associations only).
4533  *
4534  * sack_delay -  This parameter contains the number of milliseconds that
4535  *    the user is requesting the delayed ACK timer be set to.  Note that
4536  *    this value is defined in the standard to be between 200 and 500
4537  *    milliseconds.
4538  *
4539  * sack_freq -  This parameter contains the number of packets that must
4540  *    be received before a sack is sent without waiting for the delay
4541  *    timer to expire.  The default value for this is 2, setting this
4542  *    value to 1 will disable the delayed sack algorithm.
4543  */
4544 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4545 					    char __user *optval,
4546 					    int __user *optlen)
4547 {
4548 	struct sctp_sack_info    params;
4549 	struct sctp_association *asoc = NULL;
4550 	struct sctp_sock        *sp = sctp_sk(sk);
4551 
4552 	if (len >= sizeof(struct sctp_sack_info)) {
4553 		len = sizeof(struct sctp_sack_info);
4554 
4555 		if (copy_from_user(&params, optval, len))
4556 			return -EFAULT;
4557 	} else if (len == sizeof(struct sctp_assoc_value)) {
4558 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4559 		pr_warn("Use struct sctp_sack_info instead\n");
4560 		if (copy_from_user(&params, optval, len))
4561 			return -EFAULT;
4562 	} else
4563 		return - EINVAL;
4564 
4565 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4566 	 * to many style socket, and an association was not found, then
4567 	 * the id was invalid.
4568 	 */
4569 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4570 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4571 		return -EINVAL;
4572 
4573 	if (asoc) {
4574 		/* Fetch association values. */
4575 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4576 			params.sack_delay = jiffies_to_msecs(
4577 				asoc->sackdelay);
4578 			params.sack_freq = asoc->sackfreq;
4579 
4580 		} else {
4581 			params.sack_delay = 0;
4582 			params.sack_freq = 1;
4583 		}
4584 	} else {
4585 		/* Fetch socket values. */
4586 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4587 			params.sack_delay  = sp->sackdelay;
4588 			params.sack_freq = sp->sackfreq;
4589 		} else {
4590 			params.sack_delay  = 0;
4591 			params.sack_freq = 1;
4592 		}
4593 	}
4594 
4595 	if (copy_to_user(optval, &params, len))
4596 		return -EFAULT;
4597 
4598 	if (put_user(len, optlen))
4599 		return -EFAULT;
4600 
4601 	return 0;
4602 }
4603 
4604 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4605  *
4606  * Applications can specify protocol parameters for the default association
4607  * initialization.  The option name argument to setsockopt() and getsockopt()
4608  * is SCTP_INITMSG.
4609  *
4610  * Setting initialization parameters is effective only on an unconnected
4611  * socket (for UDP-style sockets only future associations are effected
4612  * by the change).  With TCP-style sockets, this option is inherited by
4613  * sockets derived from a listener socket.
4614  */
4615 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4616 {
4617 	if (len < sizeof(struct sctp_initmsg))
4618 		return -EINVAL;
4619 	len = sizeof(struct sctp_initmsg);
4620 	if (put_user(len, optlen))
4621 		return -EFAULT;
4622 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4623 		return -EFAULT;
4624 	return 0;
4625 }
4626 
4627 
4628 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4629 				      char __user *optval, int __user *optlen)
4630 {
4631 	struct sctp_association *asoc;
4632 	int cnt = 0;
4633 	struct sctp_getaddrs getaddrs;
4634 	struct sctp_transport *from;
4635 	void __user *to;
4636 	union sctp_addr temp;
4637 	struct sctp_sock *sp = sctp_sk(sk);
4638 	int addrlen;
4639 	size_t space_left;
4640 	int bytes_copied;
4641 
4642 	if (len < sizeof(struct sctp_getaddrs))
4643 		return -EINVAL;
4644 
4645 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4646 		return -EFAULT;
4647 
4648 	/* For UDP-style sockets, id specifies the association to query.  */
4649 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4650 	if (!asoc)
4651 		return -EINVAL;
4652 
4653 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4654 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4655 
4656 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4657 				transports) {
4658 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4659 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4660 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4661 		if (space_left < addrlen)
4662 			return -ENOMEM;
4663 		if (copy_to_user(to, &temp, addrlen))
4664 			return -EFAULT;
4665 		to += addrlen;
4666 		cnt++;
4667 		space_left -= addrlen;
4668 	}
4669 
4670 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4671 		return -EFAULT;
4672 	bytes_copied = ((char __user *)to) - optval;
4673 	if (put_user(bytes_copied, optlen))
4674 		return -EFAULT;
4675 
4676 	return 0;
4677 }
4678 
4679 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4680 			    size_t space_left, int *bytes_copied)
4681 {
4682 	struct sctp_sockaddr_entry *addr;
4683 	union sctp_addr temp;
4684 	int cnt = 0;
4685 	int addrlen;
4686 	struct net *net = sock_net(sk);
4687 
4688 	rcu_read_lock();
4689 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4690 		if (!addr->valid)
4691 			continue;
4692 
4693 		if ((PF_INET == sk->sk_family) &&
4694 		    (AF_INET6 == addr->a.sa.sa_family))
4695 			continue;
4696 		if ((PF_INET6 == sk->sk_family) &&
4697 		    inet_v6_ipv6only(sk) &&
4698 		    (AF_INET == addr->a.sa.sa_family))
4699 			continue;
4700 		memcpy(&temp, &addr->a, sizeof(temp));
4701 		if (!temp.v4.sin_port)
4702 			temp.v4.sin_port = htons(port);
4703 
4704 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4705 								&temp);
4706 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4707 		if (space_left < addrlen) {
4708 			cnt =  -ENOMEM;
4709 			break;
4710 		}
4711 		memcpy(to, &temp, addrlen);
4712 
4713 		to += addrlen;
4714 		cnt ++;
4715 		space_left -= addrlen;
4716 		*bytes_copied += addrlen;
4717 	}
4718 	rcu_read_unlock();
4719 
4720 	return cnt;
4721 }
4722 
4723 
4724 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4725 				       char __user *optval, int __user *optlen)
4726 {
4727 	struct sctp_bind_addr *bp;
4728 	struct sctp_association *asoc;
4729 	int cnt = 0;
4730 	struct sctp_getaddrs getaddrs;
4731 	struct sctp_sockaddr_entry *addr;
4732 	void __user *to;
4733 	union sctp_addr temp;
4734 	struct sctp_sock *sp = sctp_sk(sk);
4735 	int addrlen;
4736 	int err = 0;
4737 	size_t space_left;
4738 	int bytes_copied = 0;
4739 	void *addrs;
4740 	void *buf;
4741 
4742 	if (len < sizeof(struct sctp_getaddrs))
4743 		return -EINVAL;
4744 
4745 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4746 		return -EFAULT;
4747 
4748 	/*
4749 	 *  For UDP-style sockets, id specifies the association to query.
4750 	 *  If the id field is set to the value '0' then the locally bound
4751 	 *  addresses are returned without regard to any particular
4752 	 *  association.
4753 	 */
4754 	if (0 == getaddrs.assoc_id) {
4755 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4756 	} else {
4757 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4758 		if (!asoc)
4759 			return -EINVAL;
4760 		bp = &asoc->base.bind_addr;
4761 	}
4762 
4763 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4764 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4765 
4766 	addrs = kmalloc(space_left, GFP_KERNEL);
4767 	if (!addrs)
4768 		return -ENOMEM;
4769 
4770 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4771 	 * addresses from the global local address list.
4772 	 */
4773 	if (sctp_list_single_entry(&bp->address_list)) {
4774 		addr = list_entry(bp->address_list.next,
4775 				  struct sctp_sockaddr_entry, list);
4776 		if (sctp_is_any(sk, &addr->a)) {
4777 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4778 						space_left, &bytes_copied);
4779 			if (cnt < 0) {
4780 				err = cnt;
4781 				goto out;
4782 			}
4783 			goto copy_getaddrs;
4784 		}
4785 	}
4786 
4787 	buf = addrs;
4788 	/* Protection on the bound address list is not needed since
4789 	 * in the socket option context we hold a socket lock and
4790 	 * thus the bound address list can't change.
4791 	 */
4792 	list_for_each_entry(addr, &bp->address_list, list) {
4793 		memcpy(&temp, &addr->a, sizeof(temp));
4794 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4795 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4796 		if (space_left < addrlen) {
4797 			err =  -ENOMEM; /*fixme: right error?*/
4798 			goto out;
4799 		}
4800 		memcpy(buf, &temp, addrlen);
4801 		buf += addrlen;
4802 		bytes_copied += addrlen;
4803 		cnt ++;
4804 		space_left -= addrlen;
4805 	}
4806 
4807 copy_getaddrs:
4808 	if (copy_to_user(to, addrs, bytes_copied)) {
4809 		err = -EFAULT;
4810 		goto out;
4811 	}
4812 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4813 		err = -EFAULT;
4814 		goto out;
4815 	}
4816 	if (put_user(bytes_copied, optlen))
4817 		err = -EFAULT;
4818 out:
4819 	kfree(addrs);
4820 	return err;
4821 }
4822 
4823 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4824  *
4825  * Requests that the local SCTP stack use the enclosed peer address as
4826  * the association primary.  The enclosed address must be one of the
4827  * association peer's addresses.
4828  */
4829 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4830 					char __user *optval, int __user *optlen)
4831 {
4832 	struct sctp_prim prim;
4833 	struct sctp_association *asoc;
4834 	struct sctp_sock *sp = sctp_sk(sk);
4835 
4836 	if (len < sizeof(struct sctp_prim))
4837 		return -EINVAL;
4838 
4839 	len = sizeof(struct sctp_prim);
4840 
4841 	if (copy_from_user(&prim, optval, len))
4842 		return -EFAULT;
4843 
4844 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4845 	if (!asoc)
4846 		return -EINVAL;
4847 
4848 	if (!asoc->peer.primary_path)
4849 		return -ENOTCONN;
4850 
4851 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4852 		asoc->peer.primary_path->af_specific->sockaddr_len);
4853 
4854 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4855 			(union sctp_addr *)&prim.ssp_addr);
4856 
4857 	if (put_user(len, optlen))
4858 		return -EFAULT;
4859 	if (copy_to_user(optval, &prim, len))
4860 		return -EFAULT;
4861 
4862 	return 0;
4863 }
4864 
4865 /*
4866  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4867  *
4868  * Requests that the local endpoint set the specified Adaptation Layer
4869  * Indication parameter for all future INIT and INIT-ACK exchanges.
4870  */
4871 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4872 				  char __user *optval, int __user *optlen)
4873 {
4874 	struct sctp_setadaptation adaptation;
4875 
4876 	if (len < sizeof(struct sctp_setadaptation))
4877 		return -EINVAL;
4878 
4879 	len = sizeof(struct sctp_setadaptation);
4880 
4881 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4882 
4883 	if (put_user(len, optlen))
4884 		return -EFAULT;
4885 	if (copy_to_user(optval, &adaptation, len))
4886 		return -EFAULT;
4887 
4888 	return 0;
4889 }
4890 
4891 /*
4892  *
4893  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4894  *
4895  *   Applications that wish to use the sendto() system call may wish to
4896  *   specify a default set of parameters that would normally be supplied
4897  *   through the inclusion of ancillary data.  This socket option allows
4898  *   such an application to set the default sctp_sndrcvinfo structure.
4899 
4900 
4901  *   The application that wishes to use this socket option simply passes
4902  *   in to this call the sctp_sndrcvinfo structure defined in Section
4903  *   5.2.2) The input parameters accepted by this call include
4904  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4905  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4906  *   to this call if the caller is using the UDP model.
4907  *
4908  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4909  */
4910 static int sctp_getsockopt_default_send_param(struct sock *sk,
4911 					int len, char __user *optval,
4912 					int __user *optlen)
4913 {
4914 	struct sctp_sndrcvinfo info;
4915 	struct sctp_association *asoc;
4916 	struct sctp_sock *sp = sctp_sk(sk);
4917 
4918 	if (len < sizeof(struct sctp_sndrcvinfo))
4919 		return -EINVAL;
4920 
4921 	len = sizeof(struct sctp_sndrcvinfo);
4922 
4923 	if (copy_from_user(&info, optval, len))
4924 		return -EFAULT;
4925 
4926 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4927 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4928 		return -EINVAL;
4929 
4930 	if (asoc) {
4931 		info.sinfo_stream = asoc->default_stream;
4932 		info.sinfo_flags = asoc->default_flags;
4933 		info.sinfo_ppid = asoc->default_ppid;
4934 		info.sinfo_context = asoc->default_context;
4935 		info.sinfo_timetolive = asoc->default_timetolive;
4936 	} else {
4937 		info.sinfo_stream = sp->default_stream;
4938 		info.sinfo_flags = sp->default_flags;
4939 		info.sinfo_ppid = sp->default_ppid;
4940 		info.sinfo_context = sp->default_context;
4941 		info.sinfo_timetolive = sp->default_timetolive;
4942 	}
4943 
4944 	if (put_user(len, optlen))
4945 		return -EFAULT;
4946 	if (copy_to_user(optval, &info, len))
4947 		return -EFAULT;
4948 
4949 	return 0;
4950 }
4951 
4952 /*
4953  *
4954  * 7.1.5 SCTP_NODELAY
4955  *
4956  * Turn on/off any Nagle-like algorithm.  This means that packets are
4957  * generally sent as soon as possible and no unnecessary delays are
4958  * introduced, at the cost of more packets in the network.  Expects an
4959  * integer boolean flag.
4960  */
4961 
4962 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4963 				   char __user *optval, int __user *optlen)
4964 {
4965 	int val;
4966 
4967 	if (len < sizeof(int))
4968 		return -EINVAL;
4969 
4970 	len = sizeof(int);
4971 	val = (sctp_sk(sk)->nodelay == 1);
4972 	if (put_user(len, optlen))
4973 		return -EFAULT;
4974 	if (copy_to_user(optval, &val, len))
4975 		return -EFAULT;
4976 	return 0;
4977 }
4978 
4979 /*
4980  *
4981  * 7.1.1 SCTP_RTOINFO
4982  *
4983  * The protocol parameters used to initialize and bound retransmission
4984  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4985  * and modify these parameters.
4986  * All parameters are time values, in milliseconds.  A value of 0, when
4987  * modifying the parameters, indicates that the current value should not
4988  * be changed.
4989  *
4990  */
4991 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4992 				char __user *optval,
4993 				int __user *optlen) {
4994 	struct sctp_rtoinfo rtoinfo;
4995 	struct sctp_association *asoc;
4996 
4997 	if (len < sizeof (struct sctp_rtoinfo))
4998 		return -EINVAL;
4999 
5000 	len = sizeof(struct sctp_rtoinfo);
5001 
5002 	if (copy_from_user(&rtoinfo, optval, len))
5003 		return -EFAULT;
5004 
5005 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5006 
5007 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5008 		return -EINVAL;
5009 
5010 	/* Values corresponding to the specific association. */
5011 	if (asoc) {
5012 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5013 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5014 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5015 	} else {
5016 		/* Values corresponding to the endpoint. */
5017 		struct sctp_sock *sp = sctp_sk(sk);
5018 
5019 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5020 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5021 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5022 	}
5023 
5024 	if (put_user(len, optlen))
5025 		return -EFAULT;
5026 
5027 	if (copy_to_user(optval, &rtoinfo, len))
5028 		return -EFAULT;
5029 
5030 	return 0;
5031 }
5032 
5033 /*
5034  *
5035  * 7.1.2 SCTP_ASSOCINFO
5036  *
5037  * This option is used to tune the maximum retransmission attempts
5038  * of the association.
5039  * Returns an error if the new association retransmission value is
5040  * greater than the sum of the retransmission value  of the peer.
5041  * See [SCTP] for more information.
5042  *
5043  */
5044 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5045 				     char __user *optval,
5046 				     int __user *optlen)
5047 {
5048 
5049 	struct sctp_assocparams assocparams;
5050 	struct sctp_association *asoc;
5051 	struct list_head *pos;
5052 	int cnt = 0;
5053 
5054 	if (len < sizeof (struct sctp_assocparams))
5055 		return -EINVAL;
5056 
5057 	len = sizeof(struct sctp_assocparams);
5058 
5059 	if (copy_from_user(&assocparams, optval, len))
5060 		return -EFAULT;
5061 
5062 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5063 
5064 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5065 		return -EINVAL;
5066 
5067 	/* Values correspoinding to the specific association */
5068 	if (asoc) {
5069 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5070 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5071 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5072 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5073 
5074 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5075 			cnt ++;
5076 		}
5077 
5078 		assocparams.sasoc_number_peer_destinations = cnt;
5079 	} else {
5080 		/* Values corresponding to the endpoint */
5081 		struct sctp_sock *sp = sctp_sk(sk);
5082 
5083 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5084 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5085 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5086 		assocparams.sasoc_cookie_life =
5087 					sp->assocparams.sasoc_cookie_life;
5088 		assocparams.sasoc_number_peer_destinations =
5089 					sp->assocparams.
5090 					sasoc_number_peer_destinations;
5091 	}
5092 
5093 	if (put_user(len, optlen))
5094 		return -EFAULT;
5095 
5096 	if (copy_to_user(optval, &assocparams, len))
5097 		return -EFAULT;
5098 
5099 	return 0;
5100 }
5101 
5102 /*
5103  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5104  *
5105  * This socket option is a boolean flag which turns on or off mapped V4
5106  * addresses.  If this option is turned on and the socket is type
5107  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5108  * If this option is turned off, then no mapping will be done of V4
5109  * addresses and a user will receive both PF_INET6 and PF_INET type
5110  * addresses on the socket.
5111  */
5112 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5113 				    char __user *optval, int __user *optlen)
5114 {
5115 	int val;
5116 	struct sctp_sock *sp = sctp_sk(sk);
5117 
5118 	if (len < sizeof(int))
5119 		return -EINVAL;
5120 
5121 	len = sizeof(int);
5122 	val = sp->v4mapped;
5123 	if (put_user(len, optlen))
5124 		return -EFAULT;
5125 	if (copy_to_user(optval, &val, len))
5126 		return -EFAULT;
5127 
5128 	return 0;
5129 }
5130 
5131 /*
5132  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5133  * (chapter and verse is quoted at sctp_setsockopt_context())
5134  */
5135 static int sctp_getsockopt_context(struct sock *sk, int len,
5136 				   char __user *optval, int __user *optlen)
5137 {
5138 	struct sctp_assoc_value params;
5139 	struct sctp_sock *sp;
5140 	struct sctp_association *asoc;
5141 
5142 	if (len < sizeof(struct sctp_assoc_value))
5143 		return -EINVAL;
5144 
5145 	len = sizeof(struct sctp_assoc_value);
5146 
5147 	if (copy_from_user(&params, optval, len))
5148 		return -EFAULT;
5149 
5150 	sp = sctp_sk(sk);
5151 
5152 	if (params.assoc_id != 0) {
5153 		asoc = sctp_id2assoc(sk, params.assoc_id);
5154 		if (!asoc)
5155 			return -EINVAL;
5156 		params.assoc_value = asoc->default_rcv_context;
5157 	} else {
5158 		params.assoc_value = sp->default_rcv_context;
5159 	}
5160 
5161 	if (put_user(len, optlen))
5162 		return -EFAULT;
5163 	if (copy_to_user(optval, &params, len))
5164 		return -EFAULT;
5165 
5166 	return 0;
5167 }
5168 
5169 /*
5170  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5171  * This option will get or set the maximum size to put in any outgoing
5172  * SCTP DATA chunk.  If a message is larger than this size it will be
5173  * fragmented by SCTP into the specified size.  Note that the underlying
5174  * SCTP implementation may fragment into smaller sized chunks when the
5175  * PMTU of the underlying association is smaller than the value set by
5176  * the user.  The default value for this option is '0' which indicates
5177  * the user is NOT limiting fragmentation and only the PMTU will effect
5178  * SCTP's choice of DATA chunk size.  Note also that values set larger
5179  * than the maximum size of an IP datagram will effectively let SCTP
5180  * control fragmentation (i.e. the same as setting this option to 0).
5181  *
5182  * The following structure is used to access and modify this parameter:
5183  *
5184  * struct sctp_assoc_value {
5185  *   sctp_assoc_t assoc_id;
5186  *   uint32_t assoc_value;
5187  * };
5188  *
5189  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5190  *    For one-to-many style sockets this parameter indicates which
5191  *    association the user is performing an action upon.  Note that if
5192  *    this field's value is zero then the endpoints default value is
5193  *    changed (effecting future associations only).
5194  * assoc_value:  This parameter specifies the maximum size in bytes.
5195  */
5196 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5197 				  char __user *optval, int __user *optlen)
5198 {
5199 	struct sctp_assoc_value params;
5200 	struct sctp_association *asoc;
5201 
5202 	if (len == sizeof(int)) {
5203 		pr_warn("Use of int in maxseg socket option deprecated\n");
5204 		pr_warn("Use struct sctp_assoc_value instead\n");
5205 		params.assoc_id = 0;
5206 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5207 		len = sizeof(struct sctp_assoc_value);
5208 		if (copy_from_user(&params, optval, sizeof(params)))
5209 			return -EFAULT;
5210 	} else
5211 		return -EINVAL;
5212 
5213 	asoc = sctp_id2assoc(sk, params.assoc_id);
5214 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5215 		return -EINVAL;
5216 
5217 	if (asoc)
5218 		params.assoc_value = asoc->frag_point;
5219 	else
5220 		params.assoc_value = sctp_sk(sk)->user_frag;
5221 
5222 	if (put_user(len, optlen))
5223 		return -EFAULT;
5224 	if (len == sizeof(int)) {
5225 		if (copy_to_user(optval, &params.assoc_value, len))
5226 			return -EFAULT;
5227 	} else {
5228 		if (copy_to_user(optval, &params, len))
5229 			return -EFAULT;
5230 	}
5231 
5232 	return 0;
5233 }
5234 
5235 /*
5236  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5237  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5238  */
5239 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5240 					       char __user *optval, int __user *optlen)
5241 {
5242 	int val;
5243 
5244 	if (len < sizeof(int))
5245 		return -EINVAL;
5246 
5247 	len = sizeof(int);
5248 
5249 	val = sctp_sk(sk)->frag_interleave;
5250 	if (put_user(len, optlen))
5251 		return -EFAULT;
5252 	if (copy_to_user(optval, &val, len))
5253 		return -EFAULT;
5254 
5255 	return 0;
5256 }
5257 
5258 /*
5259  * 7.1.25.  Set or Get the sctp partial delivery point
5260  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5261  */
5262 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5263 						  char __user *optval,
5264 						  int __user *optlen)
5265 {
5266 	u32 val;
5267 
5268 	if (len < sizeof(u32))
5269 		return -EINVAL;
5270 
5271 	len = sizeof(u32);
5272 
5273 	val = sctp_sk(sk)->pd_point;
5274 	if (put_user(len, optlen))
5275 		return -EFAULT;
5276 	if (copy_to_user(optval, &val, len))
5277 		return -EFAULT;
5278 
5279 	return 0;
5280 }
5281 
5282 /*
5283  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5284  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5285  */
5286 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5287 				    char __user *optval,
5288 				    int __user *optlen)
5289 {
5290 	struct sctp_assoc_value params;
5291 	struct sctp_sock *sp;
5292 	struct sctp_association *asoc;
5293 
5294 	if (len == sizeof(int)) {
5295 		pr_warn("Use of int in max_burst socket option deprecated\n");
5296 		pr_warn("Use struct sctp_assoc_value instead\n");
5297 		params.assoc_id = 0;
5298 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5299 		len = sizeof(struct sctp_assoc_value);
5300 		if (copy_from_user(&params, optval, len))
5301 			return -EFAULT;
5302 	} else
5303 		return -EINVAL;
5304 
5305 	sp = sctp_sk(sk);
5306 
5307 	if (params.assoc_id != 0) {
5308 		asoc = sctp_id2assoc(sk, params.assoc_id);
5309 		if (!asoc)
5310 			return -EINVAL;
5311 		params.assoc_value = asoc->max_burst;
5312 	} else
5313 		params.assoc_value = sp->max_burst;
5314 
5315 	if (len == sizeof(int)) {
5316 		if (copy_to_user(optval, &params.assoc_value, len))
5317 			return -EFAULT;
5318 	} else {
5319 		if (copy_to_user(optval, &params, len))
5320 			return -EFAULT;
5321 	}
5322 
5323 	return 0;
5324 
5325 }
5326 
5327 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5328 				    char __user *optval, int __user *optlen)
5329 {
5330 	struct net *net = sock_net(sk);
5331 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5332 	struct sctp_hmac_algo_param *hmacs;
5333 	__u16 data_len = 0;
5334 	u32 num_idents;
5335 
5336 	if (!net->sctp.auth_enable)
5337 		return -EACCES;
5338 
5339 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5340 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5341 
5342 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5343 		return -EINVAL;
5344 
5345 	len = sizeof(struct sctp_hmacalgo) + data_len;
5346 	num_idents = data_len / sizeof(u16);
5347 
5348 	if (put_user(len, optlen))
5349 		return -EFAULT;
5350 	if (put_user(num_idents, &p->shmac_num_idents))
5351 		return -EFAULT;
5352 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5353 		return -EFAULT;
5354 	return 0;
5355 }
5356 
5357 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5358 				    char __user *optval, int __user *optlen)
5359 {
5360 	struct net *net = sock_net(sk);
5361 	struct sctp_authkeyid val;
5362 	struct sctp_association *asoc;
5363 
5364 	if (!net->sctp.auth_enable)
5365 		return -EACCES;
5366 
5367 	if (len < sizeof(struct sctp_authkeyid))
5368 		return -EINVAL;
5369 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5370 		return -EFAULT;
5371 
5372 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5373 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5374 		return -EINVAL;
5375 
5376 	if (asoc)
5377 		val.scact_keynumber = asoc->active_key_id;
5378 	else
5379 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5380 
5381 	len = sizeof(struct sctp_authkeyid);
5382 	if (put_user(len, optlen))
5383 		return -EFAULT;
5384 	if (copy_to_user(optval, &val, len))
5385 		return -EFAULT;
5386 
5387 	return 0;
5388 }
5389 
5390 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5391 				    char __user *optval, int __user *optlen)
5392 {
5393 	struct net *net = sock_net(sk);
5394 	struct sctp_authchunks __user *p = (void __user *)optval;
5395 	struct sctp_authchunks val;
5396 	struct sctp_association *asoc;
5397 	struct sctp_chunks_param *ch;
5398 	u32    num_chunks = 0;
5399 	char __user *to;
5400 
5401 	if (!net->sctp.auth_enable)
5402 		return -EACCES;
5403 
5404 	if (len < sizeof(struct sctp_authchunks))
5405 		return -EINVAL;
5406 
5407 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5408 		return -EFAULT;
5409 
5410 	to = p->gauth_chunks;
5411 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5412 	if (!asoc)
5413 		return -EINVAL;
5414 
5415 	ch = asoc->peer.peer_chunks;
5416 	if (!ch)
5417 		goto num;
5418 
5419 	/* See if the user provided enough room for all the data */
5420 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5421 	if (len < num_chunks)
5422 		return -EINVAL;
5423 
5424 	if (copy_to_user(to, ch->chunks, num_chunks))
5425 		return -EFAULT;
5426 num:
5427 	len = sizeof(struct sctp_authchunks) + num_chunks;
5428 	if (put_user(len, optlen)) return -EFAULT;
5429 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5430 		return -EFAULT;
5431 	return 0;
5432 }
5433 
5434 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5435 				    char __user *optval, int __user *optlen)
5436 {
5437 	struct net *net = sock_net(sk);
5438 	struct sctp_authchunks __user *p = (void __user *)optval;
5439 	struct sctp_authchunks val;
5440 	struct sctp_association *asoc;
5441 	struct sctp_chunks_param *ch;
5442 	u32    num_chunks = 0;
5443 	char __user *to;
5444 
5445 	if (!net->sctp.auth_enable)
5446 		return -EACCES;
5447 
5448 	if (len < sizeof(struct sctp_authchunks))
5449 		return -EINVAL;
5450 
5451 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5452 		return -EFAULT;
5453 
5454 	to = p->gauth_chunks;
5455 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5456 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5457 		return -EINVAL;
5458 
5459 	if (asoc)
5460 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5461 	else
5462 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5463 
5464 	if (!ch)
5465 		goto num;
5466 
5467 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5468 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5469 		return -EINVAL;
5470 
5471 	if (copy_to_user(to, ch->chunks, num_chunks))
5472 		return -EFAULT;
5473 num:
5474 	len = sizeof(struct sctp_authchunks) + num_chunks;
5475 	if (put_user(len, optlen))
5476 		return -EFAULT;
5477 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5478 		return -EFAULT;
5479 
5480 	return 0;
5481 }
5482 
5483 /*
5484  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5485  * This option gets the current number of associations that are attached
5486  * to a one-to-many style socket.  The option value is an uint32_t.
5487  */
5488 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5489 				    char __user *optval, int __user *optlen)
5490 {
5491 	struct sctp_sock *sp = sctp_sk(sk);
5492 	struct sctp_association *asoc;
5493 	u32 val = 0;
5494 
5495 	if (sctp_style(sk, TCP))
5496 		return -EOPNOTSUPP;
5497 
5498 	if (len < sizeof(u32))
5499 		return -EINVAL;
5500 
5501 	len = sizeof(u32);
5502 
5503 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5504 		val++;
5505 	}
5506 
5507 	if (put_user(len, optlen))
5508 		return -EFAULT;
5509 	if (copy_to_user(optval, &val, len))
5510 		return -EFAULT;
5511 
5512 	return 0;
5513 }
5514 
5515 /*
5516  * 8.1.23 SCTP_AUTO_ASCONF
5517  * See the corresponding setsockopt entry as description
5518  */
5519 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5520 				   char __user *optval, int __user *optlen)
5521 {
5522 	int val = 0;
5523 
5524 	if (len < sizeof(int))
5525 		return -EINVAL;
5526 
5527 	len = sizeof(int);
5528 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5529 		val = 1;
5530 	if (put_user(len, optlen))
5531 		return -EFAULT;
5532 	if (copy_to_user(optval, &val, len))
5533 		return -EFAULT;
5534 	return 0;
5535 }
5536 
5537 /*
5538  * 8.2.6. Get the Current Identifiers of Associations
5539  *        (SCTP_GET_ASSOC_ID_LIST)
5540  *
5541  * This option gets the current list of SCTP association identifiers of
5542  * the SCTP associations handled by a one-to-many style socket.
5543  */
5544 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5545 				    char __user *optval, int __user *optlen)
5546 {
5547 	struct sctp_sock *sp = sctp_sk(sk);
5548 	struct sctp_association *asoc;
5549 	struct sctp_assoc_ids *ids;
5550 	u32 num = 0;
5551 
5552 	if (sctp_style(sk, TCP))
5553 		return -EOPNOTSUPP;
5554 
5555 	if (len < sizeof(struct sctp_assoc_ids))
5556 		return -EINVAL;
5557 
5558 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5559 		num++;
5560 	}
5561 
5562 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5563 		return -EINVAL;
5564 
5565 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5566 
5567 	ids = kmalloc(len, GFP_KERNEL);
5568 	if (unlikely(!ids))
5569 		return -ENOMEM;
5570 
5571 	ids->gaids_number_of_ids = num;
5572 	num = 0;
5573 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5574 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5575 	}
5576 
5577 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5578 		kfree(ids);
5579 		return -EFAULT;
5580 	}
5581 
5582 	kfree(ids);
5583 	return 0;
5584 }
5585 
5586 /*
5587  * SCTP_PEER_ADDR_THLDS
5588  *
5589  * This option allows us to fetch the partially failed threshold for one or all
5590  * transports in an association.  See Section 6.1 of:
5591  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5592  */
5593 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5594 					    char __user *optval,
5595 					    int len,
5596 					    int __user *optlen)
5597 {
5598 	struct sctp_paddrthlds val;
5599 	struct sctp_transport *trans;
5600 	struct sctp_association *asoc;
5601 
5602 	if (len < sizeof(struct sctp_paddrthlds))
5603 		return -EINVAL;
5604 	len = sizeof(struct sctp_paddrthlds);
5605 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5606 		return -EFAULT;
5607 
5608 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5609 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5610 		if (!asoc)
5611 			return -ENOENT;
5612 
5613 		val.spt_pathpfthld = asoc->pf_retrans;
5614 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5615 	} else {
5616 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5617 					       val.spt_assoc_id);
5618 		if (!trans)
5619 			return -ENOENT;
5620 
5621 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5622 		val.spt_pathpfthld = trans->pf_retrans;
5623 	}
5624 
5625 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5626 		return -EFAULT;
5627 
5628 	return 0;
5629 }
5630 
5631 /*
5632  * SCTP_GET_ASSOC_STATS
5633  *
5634  * This option retrieves local per endpoint statistics. It is modeled
5635  * after OpenSolaris' implementation
5636  */
5637 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5638 				       char __user *optval,
5639 				       int __user *optlen)
5640 {
5641 	struct sctp_assoc_stats sas;
5642 	struct sctp_association *asoc = NULL;
5643 
5644 	/* User must provide at least the assoc id */
5645 	if (len < sizeof(sctp_assoc_t))
5646 		return -EINVAL;
5647 
5648 	/* Allow the struct to grow and fill in as much as possible */
5649 	len = min_t(size_t, len, sizeof(sas));
5650 
5651 	if (copy_from_user(&sas, optval, len))
5652 		return -EFAULT;
5653 
5654 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5655 	if (!asoc)
5656 		return -EINVAL;
5657 
5658 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5659 	sas.sas_gapcnt = asoc->stats.gapcnt;
5660 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5661 	sas.sas_osacks = asoc->stats.osacks;
5662 	sas.sas_isacks = asoc->stats.isacks;
5663 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5664 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5665 	sas.sas_oodchunks = asoc->stats.oodchunks;
5666 	sas.sas_iodchunks = asoc->stats.iodchunks;
5667 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5668 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5669 	sas.sas_idupchunks = asoc->stats.idupchunks;
5670 	sas.sas_opackets = asoc->stats.opackets;
5671 	sas.sas_ipackets = asoc->stats.ipackets;
5672 
5673 	/* New high max rto observed, will return 0 if not a single
5674 	 * RTO update took place. obs_rto_ipaddr will be bogus
5675 	 * in such a case
5676 	 */
5677 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5678 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5679 		sizeof(struct sockaddr_storage));
5680 
5681 	/* Mark beginning of a new observation period */
5682 	asoc->stats.max_obs_rto = asoc->rto_min;
5683 
5684 	if (put_user(len, optlen))
5685 		return -EFAULT;
5686 
5687 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5688 
5689 	if (copy_to_user(optval, &sas, len))
5690 		return -EFAULT;
5691 
5692 	return 0;
5693 }
5694 
5695 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5696 			   char __user *optval, int __user *optlen)
5697 {
5698 	int retval = 0;
5699 	int len;
5700 
5701 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5702 
5703 	/* I can hardly begin to describe how wrong this is.  This is
5704 	 * so broken as to be worse than useless.  The API draft
5705 	 * REALLY is NOT helpful here...  I am not convinced that the
5706 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5707 	 * are at all well-founded.
5708 	 */
5709 	if (level != SOL_SCTP) {
5710 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5711 
5712 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5713 		return retval;
5714 	}
5715 
5716 	if (get_user(len, optlen))
5717 		return -EFAULT;
5718 
5719 	sctp_lock_sock(sk);
5720 
5721 	switch (optname) {
5722 	case SCTP_STATUS:
5723 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5724 		break;
5725 	case SCTP_DISABLE_FRAGMENTS:
5726 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5727 							   optlen);
5728 		break;
5729 	case SCTP_EVENTS:
5730 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5731 		break;
5732 	case SCTP_AUTOCLOSE:
5733 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5734 		break;
5735 	case SCTP_SOCKOPT_PEELOFF:
5736 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5737 		break;
5738 	case SCTP_PEER_ADDR_PARAMS:
5739 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5740 							  optlen);
5741 		break;
5742 	case SCTP_DELAYED_SACK:
5743 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5744 							  optlen);
5745 		break;
5746 	case SCTP_INITMSG:
5747 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5748 		break;
5749 	case SCTP_GET_PEER_ADDRS:
5750 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5751 						    optlen);
5752 		break;
5753 	case SCTP_GET_LOCAL_ADDRS:
5754 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5755 						     optlen);
5756 		break;
5757 	case SCTP_SOCKOPT_CONNECTX3:
5758 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5759 		break;
5760 	case SCTP_DEFAULT_SEND_PARAM:
5761 		retval = sctp_getsockopt_default_send_param(sk, len,
5762 							    optval, optlen);
5763 		break;
5764 	case SCTP_PRIMARY_ADDR:
5765 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5766 		break;
5767 	case SCTP_NODELAY:
5768 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5769 		break;
5770 	case SCTP_RTOINFO:
5771 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5772 		break;
5773 	case SCTP_ASSOCINFO:
5774 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5775 		break;
5776 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5777 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5778 		break;
5779 	case SCTP_MAXSEG:
5780 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5781 		break;
5782 	case SCTP_GET_PEER_ADDR_INFO:
5783 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5784 							optlen);
5785 		break;
5786 	case SCTP_ADAPTATION_LAYER:
5787 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5788 							optlen);
5789 		break;
5790 	case SCTP_CONTEXT:
5791 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5792 		break;
5793 	case SCTP_FRAGMENT_INTERLEAVE:
5794 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5795 							     optlen);
5796 		break;
5797 	case SCTP_PARTIAL_DELIVERY_POINT:
5798 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5799 								optlen);
5800 		break;
5801 	case SCTP_MAX_BURST:
5802 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5803 		break;
5804 	case SCTP_AUTH_KEY:
5805 	case SCTP_AUTH_CHUNK:
5806 	case SCTP_AUTH_DELETE_KEY:
5807 		retval = -EOPNOTSUPP;
5808 		break;
5809 	case SCTP_HMAC_IDENT:
5810 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5811 		break;
5812 	case SCTP_AUTH_ACTIVE_KEY:
5813 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5814 		break;
5815 	case SCTP_PEER_AUTH_CHUNKS:
5816 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5817 							optlen);
5818 		break;
5819 	case SCTP_LOCAL_AUTH_CHUNKS:
5820 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5821 							optlen);
5822 		break;
5823 	case SCTP_GET_ASSOC_NUMBER:
5824 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5825 		break;
5826 	case SCTP_GET_ASSOC_ID_LIST:
5827 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5828 		break;
5829 	case SCTP_AUTO_ASCONF:
5830 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5831 		break;
5832 	case SCTP_PEER_ADDR_THLDS:
5833 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5834 		break;
5835 	case SCTP_GET_ASSOC_STATS:
5836 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5837 		break;
5838 	default:
5839 		retval = -ENOPROTOOPT;
5840 		break;
5841 	}
5842 
5843 	sctp_release_sock(sk);
5844 	return retval;
5845 }
5846 
5847 static void sctp_hash(struct sock *sk)
5848 {
5849 	/* STUB */
5850 }
5851 
5852 static void sctp_unhash(struct sock *sk)
5853 {
5854 	/* STUB */
5855 }
5856 
5857 /* Check if port is acceptable.  Possibly find first available port.
5858  *
5859  * The port hash table (contained in the 'global' SCTP protocol storage
5860  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5861  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5862  * list (the list number is the port number hashed out, so as you
5863  * would expect from a hash function, all the ports in a given list have
5864  * such a number that hashes out to the same list number; you were
5865  * expecting that, right?); so each list has a set of ports, with a
5866  * link to the socket (struct sock) that uses it, the port number and
5867  * a fastreuse flag (FIXME: NPI ipg).
5868  */
5869 static struct sctp_bind_bucket *sctp_bucket_create(
5870 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5871 
5872 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5873 {
5874 	struct sctp_bind_hashbucket *head; /* hash list */
5875 	struct sctp_bind_bucket *pp;
5876 	unsigned short snum;
5877 	int ret;
5878 
5879 	snum = ntohs(addr->v4.sin_port);
5880 
5881 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5882 
5883 	sctp_local_bh_disable();
5884 
5885 	if (snum == 0) {
5886 		/* Search for an available port. */
5887 		int low, high, remaining, index;
5888 		unsigned int rover;
5889 
5890 		inet_get_local_port_range(&low, &high);
5891 		remaining = (high - low) + 1;
5892 		rover = net_random() % remaining + low;
5893 
5894 		do {
5895 			rover++;
5896 			if ((rover < low) || (rover > high))
5897 				rover = low;
5898 			if (inet_is_reserved_local_port(rover))
5899 				continue;
5900 			index = sctp_phashfn(sock_net(sk), rover);
5901 			head = &sctp_port_hashtable[index];
5902 			sctp_spin_lock(&head->lock);
5903 			sctp_for_each_hentry(pp, &head->chain)
5904 				if ((pp->port == rover) &&
5905 				    net_eq(sock_net(sk), pp->net))
5906 					goto next;
5907 			break;
5908 		next:
5909 			sctp_spin_unlock(&head->lock);
5910 		} while (--remaining > 0);
5911 
5912 		/* Exhausted local port range during search? */
5913 		ret = 1;
5914 		if (remaining <= 0)
5915 			goto fail;
5916 
5917 		/* OK, here is the one we will use.  HEAD (the port
5918 		 * hash table list entry) is non-NULL and we hold it's
5919 		 * mutex.
5920 		 */
5921 		snum = rover;
5922 	} else {
5923 		/* We are given an specific port number; we verify
5924 		 * that it is not being used. If it is used, we will
5925 		 * exahust the search in the hash list corresponding
5926 		 * to the port number (snum) - we detect that with the
5927 		 * port iterator, pp being NULL.
5928 		 */
5929 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5930 		sctp_spin_lock(&head->lock);
5931 		sctp_for_each_hentry(pp, &head->chain) {
5932 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5933 				goto pp_found;
5934 		}
5935 	}
5936 	pp = NULL;
5937 	goto pp_not_found;
5938 pp_found:
5939 	if (!hlist_empty(&pp->owner)) {
5940 		/* We had a port hash table hit - there is an
5941 		 * available port (pp != NULL) and it is being
5942 		 * used by other socket (pp->owner not empty); that other
5943 		 * socket is going to be sk2.
5944 		 */
5945 		int reuse = sk->sk_reuse;
5946 		struct sock *sk2;
5947 
5948 		pr_debug("%s: found a possible match\n", __func__);
5949 
5950 		if (pp->fastreuse && sk->sk_reuse &&
5951 			sk->sk_state != SCTP_SS_LISTENING)
5952 			goto success;
5953 
5954 		/* Run through the list of sockets bound to the port
5955 		 * (pp->port) [via the pointers bind_next and
5956 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5957 		 * we get the endpoint they describe and run through
5958 		 * the endpoint's list of IP (v4 or v6) addresses,
5959 		 * comparing each of the addresses with the address of
5960 		 * the socket sk. If we find a match, then that means
5961 		 * that this port/socket (sk) combination are already
5962 		 * in an endpoint.
5963 		 */
5964 		sk_for_each_bound(sk2, &pp->owner) {
5965 			struct sctp_endpoint *ep2;
5966 			ep2 = sctp_sk(sk2)->ep;
5967 
5968 			if (sk == sk2 ||
5969 			    (reuse && sk2->sk_reuse &&
5970 			     sk2->sk_state != SCTP_SS_LISTENING))
5971 				continue;
5972 
5973 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5974 						 sctp_sk(sk2), sctp_sk(sk))) {
5975 				ret = (long)sk2;
5976 				goto fail_unlock;
5977 			}
5978 		}
5979 
5980 		pr_debug("%s: found a match\n", __func__);
5981 	}
5982 pp_not_found:
5983 	/* If there was a hash table miss, create a new port.  */
5984 	ret = 1;
5985 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5986 		goto fail_unlock;
5987 
5988 	/* In either case (hit or miss), make sure fastreuse is 1 only
5989 	 * if sk->sk_reuse is too (that is, if the caller requested
5990 	 * SO_REUSEADDR on this socket -sk-).
5991 	 */
5992 	if (hlist_empty(&pp->owner)) {
5993 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5994 			pp->fastreuse = 1;
5995 		else
5996 			pp->fastreuse = 0;
5997 	} else if (pp->fastreuse &&
5998 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5999 		pp->fastreuse = 0;
6000 
6001 	/* We are set, so fill up all the data in the hash table
6002 	 * entry, tie the socket list information with the rest of the
6003 	 * sockets FIXME: Blurry, NPI (ipg).
6004 	 */
6005 success:
6006 	if (!sctp_sk(sk)->bind_hash) {
6007 		inet_sk(sk)->inet_num = snum;
6008 		sk_add_bind_node(sk, &pp->owner);
6009 		sctp_sk(sk)->bind_hash = pp;
6010 	}
6011 	ret = 0;
6012 
6013 fail_unlock:
6014 	sctp_spin_unlock(&head->lock);
6015 
6016 fail:
6017 	sctp_local_bh_enable();
6018 	return ret;
6019 }
6020 
6021 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6022  * port is requested.
6023  */
6024 static int sctp_get_port(struct sock *sk, unsigned short snum)
6025 {
6026 	union sctp_addr addr;
6027 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6028 
6029 	/* Set up a dummy address struct from the sk. */
6030 	af->from_sk(&addr, sk);
6031 	addr.v4.sin_port = htons(snum);
6032 
6033 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6034 	return !!sctp_get_port_local(sk, &addr);
6035 }
6036 
6037 /*
6038  *  Move a socket to LISTENING state.
6039  */
6040 static int sctp_listen_start(struct sock *sk, int backlog)
6041 {
6042 	struct sctp_sock *sp = sctp_sk(sk);
6043 	struct sctp_endpoint *ep = sp->ep;
6044 	struct crypto_hash *tfm = NULL;
6045 	char alg[32];
6046 
6047 	/* Allocate HMAC for generating cookie. */
6048 	if (!sp->hmac && sp->sctp_hmac_alg) {
6049 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6050 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6051 		if (IS_ERR(tfm)) {
6052 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6053 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6054 			return -ENOSYS;
6055 		}
6056 		sctp_sk(sk)->hmac = tfm;
6057 	}
6058 
6059 	/*
6060 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6061 	 * call that allows new associations to be accepted, the system
6062 	 * picks an ephemeral port and will choose an address set equivalent
6063 	 * to binding with a wildcard address.
6064 	 *
6065 	 * This is not currently spelled out in the SCTP sockets
6066 	 * extensions draft, but follows the practice as seen in TCP
6067 	 * sockets.
6068 	 *
6069 	 */
6070 	sk->sk_state = SCTP_SS_LISTENING;
6071 	if (!ep->base.bind_addr.port) {
6072 		if (sctp_autobind(sk))
6073 			return -EAGAIN;
6074 	} else {
6075 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6076 			sk->sk_state = SCTP_SS_CLOSED;
6077 			return -EADDRINUSE;
6078 		}
6079 	}
6080 
6081 	sk->sk_max_ack_backlog = backlog;
6082 	sctp_hash_endpoint(ep);
6083 	return 0;
6084 }
6085 
6086 /*
6087  * 4.1.3 / 5.1.3 listen()
6088  *
6089  *   By default, new associations are not accepted for UDP style sockets.
6090  *   An application uses listen() to mark a socket as being able to
6091  *   accept new associations.
6092  *
6093  *   On TCP style sockets, applications use listen() to ready the SCTP
6094  *   endpoint for accepting inbound associations.
6095  *
6096  *   On both types of endpoints a backlog of '0' disables listening.
6097  *
6098  *  Move a socket to LISTENING state.
6099  */
6100 int sctp_inet_listen(struct socket *sock, int backlog)
6101 {
6102 	struct sock *sk = sock->sk;
6103 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6104 	int err = -EINVAL;
6105 
6106 	if (unlikely(backlog < 0))
6107 		return err;
6108 
6109 	sctp_lock_sock(sk);
6110 
6111 	/* Peeled-off sockets are not allowed to listen().  */
6112 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6113 		goto out;
6114 
6115 	if (sock->state != SS_UNCONNECTED)
6116 		goto out;
6117 
6118 	/* If backlog is zero, disable listening. */
6119 	if (!backlog) {
6120 		if (sctp_sstate(sk, CLOSED))
6121 			goto out;
6122 
6123 		err = 0;
6124 		sctp_unhash_endpoint(ep);
6125 		sk->sk_state = SCTP_SS_CLOSED;
6126 		if (sk->sk_reuse)
6127 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6128 		goto out;
6129 	}
6130 
6131 	/* If we are already listening, just update the backlog */
6132 	if (sctp_sstate(sk, LISTENING))
6133 		sk->sk_max_ack_backlog = backlog;
6134 	else {
6135 		err = sctp_listen_start(sk, backlog);
6136 		if (err)
6137 			goto out;
6138 	}
6139 
6140 	err = 0;
6141 out:
6142 	sctp_release_sock(sk);
6143 	return err;
6144 }
6145 
6146 /*
6147  * This function is done by modeling the current datagram_poll() and the
6148  * tcp_poll().  Note that, based on these implementations, we don't
6149  * lock the socket in this function, even though it seems that,
6150  * ideally, locking or some other mechanisms can be used to ensure
6151  * the integrity of the counters (sndbuf and wmem_alloc) used
6152  * in this place.  We assume that we don't need locks either until proven
6153  * otherwise.
6154  *
6155  * Another thing to note is that we include the Async I/O support
6156  * here, again, by modeling the current TCP/UDP code.  We don't have
6157  * a good way to test with it yet.
6158  */
6159 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6160 {
6161 	struct sock *sk = sock->sk;
6162 	struct sctp_sock *sp = sctp_sk(sk);
6163 	unsigned int mask;
6164 
6165 	poll_wait(file, sk_sleep(sk), wait);
6166 
6167 	/* A TCP-style listening socket becomes readable when the accept queue
6168 	 * is not empty.
6169 	 */
6170 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6171 		return (!list_empty(&sp->ep->asocs)) ?
6172 			(POLLIN | POLLRDNORM) : 0;
6173 
6174 	mask = 0;
6175 
6176 	/* Is there any exceptional events?  */
6177 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6178 		mask |= POLLERR |
6179 			sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0;
6180 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6181 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6182 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6183 		mask |= POLLHUP;
6184 
6185 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6186 	if (!skb_queue_empty(&sk->sk_receive_queue))
6187 		mask |= POLLIN | POLLRDNORM;
6188 
6189 	/* The association is either gone or not ready.  */
6190 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6191 		return mask;
6192 
6193 	/* Is it writable?  */
6194 	if (sctp_writeable(sk)) {
6195 		mask |= POLLOUT | POLLWRNORM;
6196 	} else {
6197 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6198 		/*
6199 		 * Since the socket is not locked, the buffer
6200 		 * might be made available after the writeable check and
6201 		 * before the bit is set.  This could cause a lost I/O
6202 		 * signal.  tcp_poll() has a race breaker for this race
6203 		 * condition.  Based on their implementation, we put
6204 		 * in the following code to cover it as well.
6205 		 */
6206 		if (sctp_writeable(sk))
6207 			mask |= POLLOUT | POLLWRNORM;
6208 	}
6209 	return mask;
6210 }
6211 
6212 /********************************************************************
6213  * 2nd Level Abstractions
6214  ********************************************************************/
6215 
6216 static struct sctp_bind_bucket *sctp_bucket_create(
6217 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6218 {
6219 	struct sctp_bind_bucket *pp;
6220 
6221 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6222 	if (pp) {
6223 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6224 		pp->port = snum;
6225 		pp->fastreuse = 0;
6226 		INIT_HLIST_HEAD(&pp->owner);
6227 		pp->net = net;
6228 		hlist_add_head(&pp->node, &head->chain);
6229 	}
6230 	return pp;
6231 }
6232 
6233 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6234 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6235 {
6236 	if (pp && hlist_empty(&pp->owner)) {
6237 		__hlist_del(&pp->node);
6238 		kmem_cache_free(sctp_bucket_cachep, pp);
6239 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6240 	}
6241 }
6242 
6243 /* Release this socket's reference to a local port.  */
6244 static inline void __sctp_put_port(struct sock *sk)
6245 {
6246 	struct sctp_bind_hashbucket *head =
6247 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6248 						  inet_sk(sk)->inet_num)];
6249 	struct sctp_bind_bucket *pp;
6250 
6251 	sctp_spin_lock(&head->lock);
6252 	pp = sctp_sk(sk)->bind_hash;
6253 	__sk_del_bind_node(sk);
6254 	sctp_sk(sk)->bind_hash = NULL;
6255 	inet_sk(sk)->inet_num = 0;
6256 	sctp_bucket_destroy(pp);
6257 	sctp_spin_unlock(&head->lock);
6258 }
6259 
6260 void sctp_put_port(struct sock *sk)
6261 {
6262 	sctp_local_bh_disable();
6263 	__sctp_put_port(sk);
6264 	sctp_local_bh_enable();
6265 }
6266 
6267 /*
6268  * The system picks an ephemeral port and choose an address set equivalent
6269  * to binding with a wildcard address.
6270  * One of those addresses will be the primary address for the association.
6271  * This automatically enables the multihoming capability of SCTP.
6272  */
6273 static int sctp_autobind(struct sock *sk)
6274 {
6275 	union sctp_addr autoaddr;
6276 	struct sctp_af *af;
6277 	__be16 port;
6278 
6279 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6280 	af = sctp_sk(sk)->pf->af;
6281 
6282 	port = htons(inet_sk(sk)->inet_num);
6283 	af->inaddr_any(&autoaddr, port);
6284 
6285 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6286 }
6287 
6288 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6289  *
6290  * From RFC 2292
6291  * 4.2 The cmsghdr Structure *
6292  *
6293  * When ancillary data is sent or received, any number of ancillary data
6294  * objects can be specified by the msg_control and msg_controllen members of
6295  * the msghdr structure, because each object is preceded by
6296  * a cmsghdr structure defining the object's length (the cmsg_len member).
6297  * Historically Berkeley-derived implementations have passed only one object
6298  * at a time, but this API allows multiple objects to be
6299  * passed in a single call to sendmsg() or recvmsg(). The following example
6300  * shows two ancillary data objects in a control buffer.
6301  *
6302  *   |<--------------------------- msg_controllen -------------------------->|
6303  *   |                                                                       |
6304  *
6305  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6306  *
6307  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6308  *   |                                   |                                   |
6309  *
6310  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6311  *
6312  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6313  *   |                                |  |                                |  |
6314  *
6315  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6316  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6317  *
6318  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6319  *
6320  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6321  *    ^
6322  *    |
6323  *
6324  * msg_control
6325  * points here
6326  */
6327 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6328 {
6329 	struct cmsghdr *cmsg;
6330 	struct msghdr *my_msg = (struct msghdr *)msg;
6331 
6332 	for (cmsg = CMSG_FIRSTHDR(msg);
6333 	     cmsg != NULL;
6334 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6335 		if (!CMSG_OK(my_msg, cmsg))
6336 			return -EINVAL;
6337 
6338 		/* Should we parse this header or ignore?  */
6339 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6340 			continue;
6341 
6342 		/* Strictly check lengths following example in SCM code.  */
6343 		switch (cmsg->cmsg_type) {
6344 		case SCTP_INIT:
6345 			/* SCTP Socket API Extension
6346 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6347 			 *
6348 			 * This cmsghdr structure provides information for
6349 			 * initializing new SCTP associations with sendmsg().
6350 			 * The SCTP_INITMSG socket option uses this same data
6351 			 * structure.  This structure is not used for
6352 			 * recvmsg().
6353 			 *
6354 			 * cmsg_level    cmsg_type      cmsg_data[]
6355 			 * ------------  ------------   ----------------------
6356 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6357 			 */
6358 			if (cmsg->cmsg_len !=
6359 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6360 				return -EINVAL;
6361 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6362 			break;
6363 
6364 		case SCTP_SNDRCV:
6365 			/* SCTP Socket API Extension
6366 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6367 			 *
6368 			 * This cmsghdr structure specifies SCTP options for
6369 			 * sendmsg() and describes SCTP header information
6370 			 * about a received message through recvmsg().
6371 			 *
6372 			 * cmsg_level    cmsg_type      cmsg_data[]
6373 			 * ------------  ------------   ----------------------
6374 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6375 			 */
6376 			if (cmsg->cmsg_len !=
6377 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6378 				return -EINVAL;
6379 
6380 			cmsgs->info =
6381 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6382 
6383 			/* Minimally, validate the sinfo_flags. */
6384 			if (cmsgs->info->sinfo_flags &
6385 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6386 			      SCTP_ABORT | SCTP_EOF))
6387 				return -EINVAL;
6388 			break;
6389 
6390 		default:
6391 			return -EINVAL;
6392 		}
6393 	}
6394 	return 0;
6395 }
6396 
6397 /*
6398  * Wait for a packet..
6399  * Note: This function is the same function as in core/datagram.c
6400  * with a few modifications to make lksctp work.
6401  */
6402 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6403 {
6404 	int error;
6405 	DEFINE_WAIT(wait);
6406 
6407 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6408 
6409 	/* Socket errors? */
6410 	error = sock_error(sk);
6411 	if (error)
6412 		goto out;
6413 
6414 	if (!skb_queue_empty(&sk->sk_receive_queue))
6415 		goto ready;
6416 
6417 	/* Socket shut down?  */
6418 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6419 		goto out;
6420 
6421 	/* Sequenced packets can come disconnected.  If so we report the
6422 	 * problem.
6423 	 */
6424 	error = -ENOTCONN;
6425 
6426 	/* Is there a good reason to think that we may receive some data?  */
6427 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6428 		goto out;
6429 
6430 	/* Handle signals.  */
6431 	if (signal_pending(current))
6432 		goto interrupted;
6433 
6434 	/* Let another process have a go.  Since we are going to sleep
6435 	 * anyway.  Note: This may cause odd behaviors if the message
6436 	 * does not fit in the user's buffer, but this seems to be the
6437 	 * only way to honor MSG_DONTWAIT realistically.
6438 	 */
6439 	sctp_release_sock(sk);
6440 	*timeo_p = schedule_timeout(*timeo_p);
6441 	sctp_lock_sock(sk);
6442 
6443 ready:
6444 	finish_wait(sk_sleep(sk), &wait);
6445 	return 0;
6446 
6447 interrupted:
6448 	error = sock_intr_errno(*timeo_p);
6449 
6450 out:
6451 	finish_wait(sk_sleep(sk), &wait);
6452 	*err = error;
6453 	return error;
6454 }
6455 
6456 /* Receive a datagram.
6457  * Note: This is pretty much the same routine as in core/datagram.c
6458  * with a few changes to make lksctp work.
6459  */
6460 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6461 					      int noblock, int *err)
6462 {
6463 	int error;
6464 	struct sk_buff *skb;
6465 	long timeo;
6466 
6467 	timeo = sock_rcvtimeo(sk, noblock);
6468 
6469 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6470 		 MAX_SCHEDULE_TIMEOUT);
6471 
6472 	do {
6473 		/* Again only user level code calls this function,
6474 		 * so nothing interrupt level
6475 		 * will suddenly eat the receive_queue.
6476 		 *
6477 		 *  Look at current nfs client by the way...
6478 		 *  However, this function was correct in any case. 8)
6479 		 */
6480 		if (flags & MSG_PEEK) {
6481 			spin_lock_bh(&sk->sk_receive_queue.lock);
6482 			skb = skb_peek(&sk->sk_receive_queue);
6483 			if (skb)
6484 				atomic_inc(&skb->users);
6485 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6486 		} else {
6487 			skb = skb_dequeue(&sk->sk_receive_queue);
6488 		}
6489 
6490 		if (skb)
6491 			return skb;
6492 
6493 		/* Caller is allowed not to check sk->sk_err before calling. */
6494 		error = sock_error(sk);
6495 		if (error)
6496 			goto no_packet;
6497 
6498 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6499 			break;
6500 
6501 		/* User doesn't want to wait.  */
6502 		error = -EAGAIN;
6503 		if (!timeo)
6504 			goto no_packet;
6505 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6506 
6507 	return NULL;
6508 
6509 no_packet:
6510 	*err = error;
6511 	return NULL;
6512 }
6513 
6514 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6515 static void __sctp_write_space(struct sctp_association *asoc)
6516 {
6517 	struct sock *sk = asoc->base.sk;
6518 	struct socket *sock = sk->sk_socket;
6519 
6520 	if ((sctp_wspace(asoc) > 0) && sock) {
6521 		if (waitqueue_active(&asoc->wait))
6522 			wake_up_interruptible(&asoc->wait);
6523 
6524 		if (sctp_writeable(sk)) {
6525 			wait_queue_head_t *wq = sk_sleep(sk);
6526 
6527 			if (wq && waitqueue_active(wq))
6528 				wake_up_interruptible(wq);
6529 
6530 			/* Note that we try to include the Async I/O support
6531 			 * here by modeling from the current TCP/UDP code.
6532 			 * We have not tested with it yet.
6533 			 */
6534 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6535 				sock_wake_async(sock,
6536 						SOCK_WAKE_SPACE, POLL_OUT);
6537 		}
6538 	}
6539 }
6540 
6541 /* Do accounting for the sndbuf space.
6542  * Decrement the used sndbuf space of the corresponding association by the
6543  * data size which was just transmitted(freed).
6544  */
6545 static void sctp_wfree(struct sk_buff *skb)
6546 {
6547 	struct sctp_association *asoc;
6548 	struct sctp_chunk *chunk;
6549 	struct sock *sk;
6550 
6551 	/* Get the saved chunk pointer.  */
6552 	chunk = *((struct sctp_chunk **)(skb->cb));
6553 	asoc = chunk->asoc;
6554 	sk = asoc->base.sk;
6555 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6556 				sizeof(struct sk_buff) +
6557 				sizeof(struct sctp_chunk);
6558 
6559 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6560 
6561 	/*
6562 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6563 	 */
6564 	sk->sk_wmem_queued   -= skb->truesize;
6565 	sk_mem_uncharge(sk, skb->truesize);
6566 
6567 	sock_wfree(skb);
6568 	__sctp_write_space(asoc);
6569 
6570 	sctp_association_put(asoc);
6571 }
6572 
6573 /* Do accounting for the receive space on the socket.
6574  * Accounting for the association is done in ulpevent.c
6575  * We set this as a destructor for the cloned data skbs so that
6576  * accounting is done at the correct time.
6577  */
6578 void sctp_sock_rfree(struct sk_buff *skb)
6579 {
6580 	struct sock *sk = skb->sk;
6581 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6582 
6583 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6584 
6585 	/*
6586 	 * Mimic the behavior of sock_rfree
6587 	 */
6588 	sk_mem_uncharge(sk, event->rmem_len);
6589 }
6590 
6591 
6592 /* Helper function to wait for space in the sndbuf.  */
6593 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6594 				size_t msg_len)
6595 {
6596 	struct sock *sk = asoc->base.sk;
6597 	int err = 0;
6598 	long current_timeo = *timeo_p;
6599 	DEFINE_WAIT(wait);
6600 
6601 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6602 		 *timeo_p, msg_len);
6603 
6604 	/* Increment the association's refcnt.  */
6605 	sctp_association_hold(asoc);
6606 
6607 	/* Wait on the association specific sndbuf space. */
6608 	for (;;) {
6609 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6610 					  TASK_INTERRUPTIBLE);
6611 		if (!*timeo_p)
6612 			goto do_nonblock;
6613 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6614 		    asoc->base.dead)
6615 			goto do_error;
6616 		if (signal_pending(current))
6617 			goto do_interrupted;
6618 		if (msg_len <= sctp_wspace(asoc))
6619 			break;
6620 
6621 		/* Let another process have a go.  Since we are going
6622 		 * to sleep anyway.
6623 		 */
6624 		sctp_release_sock(sk);
6625 		current_timeo = schedule_timeout(current_timeo);
6626 		BUG_ON(sk != asoc->base.sk);
6627 		sctp_lock_sock(sk);
6628 
6629 		*timeo_p = current_timeo;
6630 	}
6631 
6632 out:
6633 	finish_wait(&asoc->wait, &wait);
6634 
6635 	/* Release the association's refcnt.  */
6636 	sctp_association_put(asoc);
6637 
6638 	return err;
6639 
6640 do_error:
6641 	err = -EPIPE;
6642 	goto out;
6643 
6644 do_interrupted:
6645 	err = sock_intr_errno(*timeo_p);
6646 	goto out;
6647 
6648 do_nonblock:
6649 	err = -EAGAIN;
6650 	goto out;
6651 }
6652 
6653 void sctp_data_ready(struct sock *sk, int len)
6654 {
6655 	struct socket_wq *wq;
6656 
6657 	rcu_read_lock();
6658 	wq = rcu_dereference(sk->sk_wq);
6659 	if (wq_has_sleeper(wq))
6660 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6661 						POLLRDNORM | POLLRDBAND);
6662 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6663 	rcu_read_unlock();
6664 }
6665 
6666 /* If socket sndbuf has changed, wake up all per association waiters.  */
6667 void sctp_write_space(struct sock *sk)
6668 {
6669 	struct sctp_association *asoc;
6670 
6671 	/* Wake up the tasks in each wait queue.  */
6672 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6673 		__sctp_write_space(asoc);
6674 	}
6675 }
6676 
6677 /* Is there any sndbuf space available on the socket?
6678  *
6679  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6680  * associations on the same socket.  For a UDP-style socket with
6681  * multiple associations, it is possible for it to be "unwriteable"
6682  * prematurely.  I assume that this is acceptable because
6683  * a premature "unwriteable" is better than an accidental "writeable" which
6684  * would cause an unwanted block under certain circumstances.  For the 1-1
6685  * UDP-style sockets or TCP-style sockets, this code should work.
6686  *  - Daisy
6687  */
6688 static int sctp_writeable(struct sock *sk)
6689 {
6690 	int amt = 0;
6691 
6692 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6693 	if (amt < 0)
6694 		amt = 0;
6695 	return amt;
6696 }
6697 
6698 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6699  * returns immediately with EINPROGRESS.
6700  */
6701 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6702 {
6703 	struct sock *sk = asoc->base.sk;
6704 	int err = 0;
6705 	long current_timeo = *timeo_p;
6706 	DEFINE_WAIT(wait);
6707 
6708 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6709 
6710 	/* Increment the association's refcnt.  */
6711 	sctp_association_hold(asoc);
6712 
6713 	for (;;) {
6714 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6715 					  TASK_INTERRUPTIBLE);
6716 		if (!*timeo_p)
6717 			goto do_nonblock;
6718 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6719 			break;
6720 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6721 		    asoc->base.dead)
6722 			goto do_error;
6723 		if (signal_pending(current))
6724 			goto do_interrupted;
6725 
6726 		if (sctp_state(asoc, ESTABLISHED))
6727 			break;
6728 
6729 		/* Let another process have a go.  Since we are going
6730 		 * to sleep anyway.
6731 		 */
6732 		sctp_release_sock(sk);
6733 		current_timeo = schedule_timeout(current_timeo);
6734 		sctp_lock_sock(sk);
6735 
6736 		*timeo_p = current_timeo;
6737 	}
6738 
6739 out:
6740 	finish_wait(&asoc->wait, &wait);
6741 
6742 	/* Release the association's refcnt.  */
6743 	sctp_association_put(asoc);
6744 
6745 	return err;
6746 
6747 do_error:
6748 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6749 		err = -ETIMEDOUT;
6750 	else
6751 		err = -ECONNREFUSED;
6752 	goto out;
6753 
6754 do_interrupted:
6755 	err = sock_intr_errno(*timeo_p);
6756 	goto out;
6757 
6758 do_nonblock:
6759 	err = -EINPROGRESS;
6760 	goto out;
6761 }
6762 
6763 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6764 {
6765 	struct sctp_endpoint *ep;
6766 	int err = 0;
6767 	DEFINE_WAIT(wait);
6768 
6769 	ep = sctp_sk(sk)->ep;
6770 
6771 
6772 	for (;;) {
6773 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6774 					  TASK_INTERRUPTIBLE);
6775 
6776 		if (list_empty(&ep->asocs)) {
6777 			sctp_release_sock(sk);
6778 			timeo = schedule_timeout(timeo);
6779 			sctp_lock_sock(sk);
6780 		}
6781 
6782 		err = -EINVAL;
6783 		if (!sctp_sstate(sk, LISTENING))
6784 			break;
6785 
6786 		err = 0;
6787 		if (!list_empty(&ep->asocs))
6788 			break;
6789 
6790 		err = sock_intr_errno(timeo);
6791 		if (signal_pending(current))
6792 			break;
6793 
6794 		err = -EAGAIN;
6795 		if (!timeo)
6796 			break;
6797 	}
6798 
6799 	finish_wait(sk_sleep(sk), &wait);
6800 
6801 	return err;
6802 }
6803 
6804 static void sctp_wait_for_close(struct sock *sk, long timeout)
6805 {
6806 	DEFINE_WAIT(wait);
6807 
6808 	do {
6809 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6810 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6811 			break;
6812 		sctp_release_sock(sk);
6813 		timeout = schedule_timeout(timeout);
6814 		sctp_lock_sock(sk);
6815 	} while (!signal_pending(current) && timeout);
6816 
6817 	finish_wait(sk_sleep(sk), &wait);
6818 }
6819 
6820 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6821 {
6822 	struct sk_buff *frag;
6823 
6824 	if (!skb->data_len)
6825 		goto done;
6826 
6827 	/* Don't forget the fragments. */
6828 	skb_walk_frags(skb, frag)
6829 		sctp_skb_set_owner_r_frag(frag, sk);
6830 
6831 done:
6832 	sctp_skb_set_owner_r(skb, sk);
6833 }
6834 
6835 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6836 		    struct sctp_association *asoc)
6837 {
6838 	struct inet_sock *inet = inet_sk(sk);
6839 	struct inet_sock *newinet;
6840 
6841 	newsk->sk_type = sk->sk_type;
6842 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6843 	newsk->sk_flags = sk->sk_flags;
6844 	newsk->sk_no_check = sk->sk_no_check;
6845 	newsk->sk_reuse = sk->sk_reuse;
6846 
6847 	newsk->sk_shutdown = sk->sk_shutdown;
6848 	newsk->sk_destruct = sctp_destruct_sock;
6849 	newsk->sk_family = sk->sk_family;
6850 	newsk->sk_protocol = IPPROTO_SCTP;
6851 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6852 	newsk->sk_sndbuf = sk->sk_sndbuf;
6853 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6854 	newsk->sk_lingertime = sk->sk_lingertime;
6855 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6856 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6857 
6858 	newinet = inet_sk(newsk);
6859 
6860 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6861 	 * getsockname() and getpeername()
6862 	 */
6863 	newinet->inet_sport = inet->inet_sport;
6864 	newinet->inet_saddr = inet->inet_saddr;
6865 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6866 	newinet->inet_dport = htons(asoc->peer.port);
6867 	newinet->pmtudisc = inet->pmtudisc;
6868 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6869 
6870 	newinet->uc_ttl = inet->uc_ttl;
6871 	newinet->mc_loop = 1;
6872 	newinet->mc_ttl = 1;
6873 	newinet->mc_index = 0;
6874 	newinet->mc_list = NULL;
6875 }
6876 
6877 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6878  * and its messages to the newsk.
6879  */
6880 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6881 			      struct sctp_association *assoc,
6882 			      sctp_socket_type_t type)
6883 {
6884 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6885 	struct sctp_sock *newsp = sctp_sk(newsk);
6886 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6887 	struct sctp_endpoint *newep = newsp->ep;
6888 	struct sk_buff *skb, *tmp;
6889 	struct sctp_ulpevent *event;
6890 	struct sctp_bind_hashbucket *head;
6891 	struct list_head tmplist;
6892 
6893 	/* Migrate socket buffer sizes and all the socket level options to the
6894 	 * new socket.
6895 	 */
6896 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6897 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6898 	/* Brute force copy old sctp opt. */
6899 	if (oldsp->do_auto_asconf) {
6900 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6901 		inet_sk_copy_descendant(newsk, oldsk);
6902 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6903 	} else
6904 		inet_sk_copy_descendant(newsk, oldsk);
6905 
6906 	/* Restore the ep value that was overwritten with the above structure
6907 	 * copy.
6908 	 */
6909 	newsp->ep = newep;
6910 	newsp->hmac = NULL;
6911 
6912 	/* Hook this new socket in to the bind_hash list. */
6913 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6914 						 inet_sk(oldsk)->inet_num)];
6915 	sctp_local_bh_disable();
6916 	sctp_spin_lock(&head->lock);
6917 	pp = sctp_sk(oldsk)->bind_hash;
6918 	sk_add_bind_node(newsk, &pp->owner);
6919 	sctp_sk(newsk)->bind_hash = pp;
6920 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6921 	sctp_spin_unlock(&head->lock);
6922 	sctp_local_bh_enable();
6923 
6924 	/* Copy the bind_addr list from the original endpoint to the new
6925 	 * endpoint so that we can handle restarts properly
6926 	 */
6927 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6928 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6929 
6930 	/* Move any messages in the old socket's receive queue that are for the
6931 	 * peeled off association to the new socket's receive queue.
6932 	 */
6933 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6934 		event = sctp_skb2event(skb);
6935 		if (event->asoc == assoc) {
6936 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6937 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6938 			sctp_skb_set_owner_r_frag(skb, newsk);
6939 		}
6940 	}
6941 
6942 	/* Clean up any messages pending delivery due to partial
6943 	 * delivery.   Three cases:
6944 	 * 1) No partial deliver;  no work.
6945 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6946 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6947 	 */
6948 	skb_queue_head_init(&newsp->pd_lobby);
6949 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6950 
6951 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6952 		struct sk_buff_head *queue;
6953 
6954 		/* Decide which queue to move pd_lobby skbs to. */
6955 		if (assoc->ulpq.pd_mode) {
6956 			queue = &newsp->pd_lobby;
6957 		} else
6958 			queue = &newsk->sk_receive_queue;
6959 
6960 		/* Walk through the pd_lobby, looking for skbs that
6961 		 * need moved to the new socket.
6962 		 */
6963 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6964 			event = sctp_skb2event(skb);
6965 			if (event->asoc == assoc) {
6966 				__skb_unlink(skb, &oldsp->pd_lobby);
6967 				__skb_queue_tail(queue, skb);
6968 				sctp_skb_set_owner_r_frag(skb, newsk);
6969 			}
6970 		}
6971 
6972 		/* Clear up any skbs waiting for the partial
6973 		 * delivery to finish.
6974 		 */
6975 		if (assoc->ulpq.pd_mode)
6976 			sctp_clear_pd(oldsk, NULL);
6977 
6978 	}
6979 
6980 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6981 		sctp_skb_set_owner_r_frag(skb, newsk);
6982 
6983 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6984 		sctp_skb_set_owner_r_frag(skb, newsk);
6985 
6986 	/* Set the type of socket to indicate that it is peeled off from the
6987 	 * original UDP-style socket or created with the accept() call on a
6988 	 * TCP-style socket..
6989 	 */
6990 	newsp->type = type;
6991 
6992 	/* Mark the new socket "in-use" by the user so that any packets
6993 	 * that may arrive on the association after we've moved it are
6994 	 * queued to the backlog.  This prevents a potential race between
6995 	 * backlog processing on the old socket and new-packet processing
6996 	 * on the new socket.
6997 	 *
6998 	 * The caller has just allocated newsk so we can guarantee that other
6999 	 * paths won't try to lock it and then oldsk.
7000 	 */
7001 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7002 	sctp_assoc_migrate(assoc, newsk);
7003 
7004 	/* If the association on the newsk is already closed before accept()
7005 	 * is called, set RCV_SHUTDOWN flag.
7006 	 */
7007 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7008 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7009 
7010 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7011 	sctp_release_sock(newsk);
7012 }
7013 
7014 
7015 /* This proto struct describes the ULP interface for SCTP.  */
7016 struct proto sctp_prot = {
7017 	.name        =	"SCTP",
7018 	.owner       =	THIS_MODULE,
7019 	.close       =	sctp_close,
7020 	.connect     =	sctp_connect,
7021 	.disconnect  =	sctp_disconnect,
7022 	.accept      =	sctp_accept,
7023 	.ioctl       =	sctp_ioctl,
7024 	.init        =	sctp_init_sock,
7025 	.destroy     =	sctp_destroy_sock,
7026 	.shutdown    =	sctp_shutdown,
7027 	.setsockopt  =	sctp_setsockopt,
7028 	.getsockopt  =	sctp_getsockopt,
7029 	.sendmsg     =	sctp_sendmsg,
7030 	.recvmsg     =	sctp_recvmsg,
7031 	.bind        =	sctp_bind,
7032 	.backlog_rcv =	sctp_backlog_rcv,
7033 	.hash        =	sctp_hash,
7034 	.unhash      =	sctp_unhash,
7035 	.get_port    =	sctp_get_port,
7036 	.obj_size    =  sizeof(struct sctp_sock),
7037 	.sysctl_mem  =  sysctl_sctp_mem,
7038 	.sysctl_rmem =  sysctl_sctp_rmem,
7039 	.sysctl_wmem =  sysctl_sctp_wmem,
7040 	.memory_pressure = &sctp_memory_pressure,
7041 	.enter_memory_pressure = sctp_enter_memory_pressure,
7042 	.memory_allocated = &sctp_memory_allocated,
7043 	.sockets_allocated = &sctp_sockets_allocated,
7044 };
7045 
7046 #if IS_ENABLED(CONFIG_IPV6)
7047 
7048 struct proto sctpv6_prot = {
7049 	.name		= "SCTPv6",
7050 	.owner		= THIS_MODULE,
7051 	.close		= sctp_close,
7052 	.connect	= sctp_connect,
7053 	.disconnect	= sctp_disconnect,
7054 	.accept		= sctp_accept,
7055 	.ioctl		= sctp_ioctl,
7056 	.init		= sctp_init_sock,
7057 	.destroy	= sctp_destroy_sock,
7058 	.shutdown	= sctp_shutdown,
7059 	.setsockopt	= sctp_setsockopt,
7060 	.getsockopt	= sctp_getsockopt,
7061 	.sendmsg	= sctp_sendmsg,
7062 	.recvmsg	= sctp_recvmsg,
7063 	.bind		= sctp_bind,
7064 	.backlog_rcv	= sctp_backlog_rcv,
7065 	.hash		= sctp_hash,
7066 	.unhash		= sctp_unhash,
7067 	.get_port	= sctp_get_port,
7068 	.obj_size	= sizeof(struct sctp6_sock),
7069 	.sysctl_mem	= sysctl_sctp_mem,
7070 	.sysctl_rmem	= sysctl_sctp_rmem,
7071 	.sysctl_wmem	= sysctl_sctp_wmem,
7072 	.memory_pressure = &sctp_memory_pressure,
7073 	.enter_memory_pressure = sctp_enter_memory_pressure,
7074 	.memory_allocated = &sctp_memory_allocated,
7075 	.sockets_allocated = &sctp_sockets_allocated,
7076 };
7077 #endif /* IS_ENABLED(CONFIG_IPV6) */
7078