1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && inet_port_requires_bind_service(net, snum) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if (sctp_get_port_local(sk, addr)) 418 return -EADDRINUSE; 419 420 /* Refresh ephemeral port. */ 421 if (!bp->port) 422 bp->port = inet_sk(sk)->inet_num; 423 424 /* Add the address to the bind address list. 425 * Use GFP_ATOMIC since BHs will be disabled. 426 */ 427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 428 SCTP_ADDR_SRC, GFP_ATOMIC); 429 430 if (ret) { 431 sctp_put_port(sk); 432 return ret; 433 } 434 /* Copy back into socket for getsockname() use. */ 435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 436 sp->pf->to_sk_saddr(addr, sk); 437 438 return ret; 439 } 440 441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 442 * 443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 444 * at any one time. If a sender, after sending an ASCONF chunk, decides 445 * it needs to transfer another ASCONF Chunk, it MUST wait until the 446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 447 * subsequent ASCONF. Note this restriction binds each side, so at any 448 * time two ASCONF may be in-transit on any given association (one sent 449 * from each endpoint). 450 */ 451 static int sctp_send_asconf(struct sctp_association *asoc, 452 struct sctp_chunk *chunk) 453 { 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct sctp_sock *sp; 543 struct sctp_endpoint *ep; 544 struct sctp_association *asoc; 545 struct sctp_bind_addr *bp; 546 struct sctp_chunk *chunk; 547 struct sctp_sockaddr_entry *laddr; 548 union sctp_addr *addr; 549 union sctp_addr saveaddr; 550 void *addr_buf; 551 struct sctp_af *af; 552 struct list_head *p; 553 int i; 554 int retval = 0; 555 556 sp = sctp_sk(sk); 557 ep = sp->ep; 558 559 if (!ep->asconf_enable) 560 return retval; 561 562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 563 __func__, sk, addrs, addrcnt); 564 565 list_for_each_entry(asoc, &ep->asocs, asocs) { 566 if (!asoc->peer.asconf_capable) 567 continue; 568 569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 570 continue; 571 572 if (!sctp_state(asoc, ESTABLISHED)) 573 continue; 574 575 /* Check if any address in the packed array of addresses is 576 * in the bind address list of the association. If so, 577 * do not send the asconf chunk to its peer, but continue with 578 * other associations. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 if (!af) { 585 retval = -EINVAL; 586 goto out; 587 } 588 589 if (sctp_assoc_lookup_laddr(asoc, addr)) 590 break; 591 592 addr_buf += af->sockaddr_len; 593 } 594 if (i < addrcnt) 595 continue; 596 597 /* Use the first valid address in bind addr list of 598 * association as Address Parameter of ASCONF CHUNK. 599 */ 600 bp = &asoc->base.bind_addr; 601 p = bp->address_list.next; 602 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 604 addrcnt, SCTP_PARAM_ADD_IP); 605 if (!chunk) { 606 retval = -ENOMEM; 607 goto out; 608 } 609 610 /* Add the new addresses to the bind address list with 611 * use_as_src set to 0. 612 */ 613 addr_buf = addrs; 614 for (i = 0; i < addrcnt; i++) { 615 addr = addr_buf; 616 af = sctp_get_af_specific(addr->v4.sin_family); 617 memcpy(&saveaddr, addr, af->sockaddr_len); 618 retval = sctp_add_bind_addr(bp, &saveaddr, 619 sizeof(saveaddr), 620 SCTP_ADDR_NEW, GFP_ATOMIC); 621 addr_buf += af->sockaddr_len; 622 } 623 if (asoc->src_out_of_asoc_ok) { 624 struct sctp_transport *trans; 625 626 list_for_each_entry(trans, 627 &asoc->peer.transport_addr_list, transports) { 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 /* Clear the source and route cache */ 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 sp = sctp_sk(sk); 760 ep = sp->ep; 761 762 if (!ep->asconf_enable) 763 return retval; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_route(transport, NULL, 879 sctp_sk(asoc->base.sk)); 880 } 881 882 if (stored) 883 /* We don't need to transmit ASCONF */ 884 continue; 885 retval = sctp_send_asconf(asoc, chunk); 886 } 887 out: 888 return retval; 889 } 890 891 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 893 { 894 struct sock *sk = sctp_opt2sk(sp); 895 union sctp_addr *addr; 896 struct sctp_af *af; 897 898 /* It is safe to write port space in caller. */ 899 addr = &addrw->a; 900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 901 af = sctp_get_af_specific(addr->sa.sa_family); 902 if (!af) 903 return -EINVAL; 904 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 905 return -EINVAL; 906 907 if (addrw->state == SCTP_ADDR_NEW) 908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 909 else 910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 911 } 912 913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 914 * 915 * API 8.1 916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 917 * int flags); 918 * 919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 921 * or IPv6 addresses. 922 * 923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 924 * Section 3.1.2 for this usage. 925 * 926 * addrs is a pointer to an array of one or more socket addresses. Each 927 * address is contained in its appropriate structure (i.e. struct 928 * sockaddr_in or struct sockaddr_in6) the family of the address type 929 * must be used to distinguish the address length (note that this 930 * representation is termed a "packed array" of addresses). The caller 931 * specifies the number of addresses in the array with addrcnt. 932 * 933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 934 * -1, and sets errno to the appropriate error code. 935 * 936 * For SCTP, the port given in each socket address must be the same, or 937 * sctp_bindx() will fail, setting errno to EINVAL. 938 * 939 * The flags parameter is formed from the bitwise OR of zero or more of 940 * the following currently defined flags: 941 * 942 * SCTP_BINDX_ADD_ADDR 943 * 944 * SCTP_BINDX_REM_ADDR 945 * 946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 948 * addresses from the association. The two flags are mutually exclusive; 949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 950 * not remove all addresses from an association; sctp_bindx() will 951 * reject such an attempt with EINVAL. 952 * 953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 954 * additional addresses with an endpoint after calling bind(). Or use 955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 956 * socket is associated with so that no new association accepted will be 957 * associated with those addresses. If the endpoint supports dynamic 958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 959 * endpoint to send the appropriate message to the peer to change the 960 * peers address lists. 961 * 962 * Adding and removing addresses from a connected association is 963 * optional functionality. Implementations that do not support this 964 * functionality should return EOPNOTSUPP. 965 * 966 * Basically do nothing but copying the addresses from user to kernel 967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 969 * from userspace. 970 * 971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 972 * it. 973 * 974 * sk The sk of the socket 975 * addrs The pointer to the addresses 976 * addrssize Size of the addrs buffer 977 * op Operation to perform (add or remove, see the flags of 978 * sctp_bindx) 979 * 980 * Returns 0 if ok, <0 errno code on error. 981 */ 982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 983 int addrs_size, int op) 984 { 985 int err; 986 int addrcnt = 0; 987 int walk_size = 0; 988 struct sockaddr *sa_addr; 989 void *addr_buf = addrs; 990 struct sctp_af *af; 991 992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 993 __func__, sk, addr_buf, addrs_size, op); 994 995 if (unlikely(addrs_size <= 0)) 996 return -EINVAL; 997 998 /* Walk through the addrs buffer and count the number of addresses. */ 999 while (walk_size < addrs_size) { 1000 if (walk_size + sizeof(sa_family_t) > addrs_size) 1001 return -EINVAL; 1002 1003 sa_addr = addr_buf; 1004 af = sctp_get_af_specific(sa_addr->sa_family); 1005 1006 /* If the address family is not supported or if this address 1007 * causes the address buffer to overflow return EINVAL. 1008 */ 1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1010 return -EINVAL; 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 /* Allow security module to validate bindx addresses. */ 1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1021 addrs, addrs_size); 1022 if (err) 1023 return err; 1024 err = sctp_bindx_add(sk, addrs, addrcnt); 1025 if (err) 1026 return err; 1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1028 case SCTP_BINDX_REM_ADDR: 1029 err = sctp_bindx_rem(sk, addrs, addrcnt); 1030 if (err) 1031 return err; 1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1033 1034 default: 1035 return -EINVAL; 1036 } 1037 } 1038 1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1040 int addrlen) 1041 { 1042 int err; 1043 1044 lock_sock(sk); 1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1046 release_sock(sk); 1047 return err; 1048 } 1049 1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1051 const union sctp_addr *daddr, 1052 const struct sctp_initmsg *init, 1053 struct sctp_transport **tp) 1054 { 1055 struct sctp_association *asoc; 1056 struct sock *sk = ep->base.sk; 1057 struct net *net = sock_net(sk); 1058 enum sctp_scope scope; 1059 int err; 1060 1061 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1062 return -EADDRNOTAVAIL; 1063 1064 if (!ep->base.bind_addr.port) { 1065 if (sctp_autobind(sk)) 1066 return -EAGAIN; 1067 } else { 1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1070 return -EACCES; 1071 } 1072 1073 scope = sctp_scope(daddr); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) 1076 return -ENOMEM; 1077 1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1079 if (err < 0) 1080 goto free; 1081 1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1083 if (!*tp) { 1084 err = -ENOMEM; 1085 goto free; 1086 } 1087 1088 if (!init) 1089 return 0; 1090 1091 if (init->sinit_num_ostreams) { 1092 __u16 outcnt = init->sinit_num_ostreams; 1093 1094 asoc->c.sinit_num_ostreams = outcnt; 1095 /* outcnt has been changed, need to re-init stream */ 1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1097 if (err) 1098 goto free; 1099 } 1100 1101 if (init->sinit_max_instreams) 1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1103 1104 if (init->sinit_max_attempts) 1105 asoc->max_init_attempts = init->sinit_max_attempts; 1106 1107 if (init->sinit_max_init_timeo) 1108 asoc->max_init_timeo = 1109 msecs_to_jiffies(init->sinit_max_init_timeo); 1110 1111 return 0; 1112 free: 1113 sctp_association_free(asoc); 1114 return err; 1115 } 1116 1117 static int sctp_connect_add_peer(struct sctp_association *asoc, 1118 union sctp_addr *daddr, int addr_len) 1119 { 1120 struct sctp_endpoint *ep = asoc->ep; 1121 struct sctp_association *old; 1122 struct sctp_transport *t; 1123 int err; 1124 1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1126 if (err) 1127 return err; 1128 1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1130 if (old && old != asoc) 1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1132 : -EALREADY; 1133 1134 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1135 return -EADDRNOTAVAIL; 1136 1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1138 if (!t) 1139 return -ENOMEM; 1140 1141 return 0; 1142 } 1143 1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1145 * 1146 * Common routine for handling connect() and sctp_connectx(). 1147 * Connect will come in with just a single address. 1148 */ 1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1150 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1151 { 1152 struct sctp_sock *sp = sctp_sk(sk); 1153 struct sctp_endpoint *ep = sp->ep; 1154 struct sctp_transport *transport; 1155 struct sctp_association *asoc; 1156 void *addr_buf = kaddrs; 1157 union sctp_addr *daddr; 1158 struct sctp_af *af; 1159 int walk_size, err; 1160 long timeo; 1161 1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1164 return -EISCONN; 1165 1166 daddr = addr_buf; 1167 af = sctp_get_af_specific(daddr->sa.sa_family); 1168 if (!af || af->sockaddr_len > addrs_size) 1169 return -EINVAL; 1170 1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1172 if (err) 1173 return err; 1174 1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1176 if (asoc) 1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1178 : -EALREADY; 1179 1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1181 if (err) 1182 return err; 1183 asoc = transport->asoc; 1184 1185 addr_buf += af->sockaddr_len; 1186 walk_size = af->sockaddr_len; 1187 while (walk_size < addrs_size) { 1188 err = -EINVAL; 1189 if (walk_size + sizeof(sa_family_t) > addrs_size) 1190 goto out_free; 1191 1192 daddr = addr_buf; 1193 af = sctp_get_af_specific(daddr->sa.sa_family); 1194 if (!af || af->sockaddr_len + walk_size > addrs_size) 1195 goto out_free; 1196 1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1198 goto out_free; 1199 1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1201 if (err) 1202 goto out_free; 1203 1204 addr_buf += af->sockaddr_len; 1205 walk_size += af->sockaddr_len; 1206 } 1207 1208 /* In case the user of sctp_connectx() wants an association 1209 * id back, assign one now. 1210 */ 1211 if (assoc_id) { 1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1213 if (err < 0) 1214 goto out_free; 1215 } 1216 1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1218 if (err < 0) 1219 goto out_free; 1220 1221 /* Initialize sk's dport and daddr for getpeername() */ 1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1223 sp->pf->to_sk_daddr(daddr, sk); 1224 sk->sk_err = 0; 1225 1226 if (assoc_id) 1227 *assoc_id = asoc->assoc_id; 1228 1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1230 return sctp_wait_for_connect(asoc, &timeo); 1231 1232 out_free: 1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1234 __func__, asoc, kaddrs, err); 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1286 * it. 1287 * 1288 * sk The sk of the socket 1289 * addrs The pointer to the addresses 1290 * addrssize Size of the addrs buffer 1291 * 1292 * Returns >=0 if ok, <0 errno code on error. 1293 */ 1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1295 int addrs_size, sctp_assoc_t *assoc_id) 1296 { 1297 int err = 0, flags = 0; 1298 1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1300 __func__, sk, kaddrs, addrs_size); 1301 1302 /* make sure the 1st addr's sa_family is accessible later */ 1303 if (unlikely(addrs_size < sizeof(sa_family_t))) 1304 return -EINVAL; 1305 1306 /* Allow security module to validate connectx addresses. */ 1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1308 (struct sockaddr *)kaddrs, 1309 addrs_size); 1310 if (err) 1311 return err; 1312 1313 /* in-kernel sockets don't generally have a file allocated to them 1314 * if all they do is call sock_create_kern(). 1315 */ 1316 if (sk->sk_socket->file) 1317 flags = sk->sk_socket->file->f_flags; 1318 1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1320 } 1321 1322 /* 1323 * This is an older interface. It's kept for backward compatibility 1324 * to the option that doesn't provide association id. 1325 */ 1326 static int sctp_setsockopt_connectx_old(struct sock *sk, 1327 struct sockaddr *kaddrs, 1328 int addrs_size) 1329 { 1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1331 } 1332 1333 /* 1334 * New interface for the API. The since the API is done with a socket 1335 * option, to make it simple we feed back the association id is as a return 1336 * indication to the call. Error is always negative and association id is 1337 * always positive. 1338 */ 1339 static int sctp_setsockopt_connectx(struct sock *sk, 1340 struct sockaddr *kaddrs, 1341 int addrs_size) 1342 { 1343 sctp_assoc_t assoc_id = 0; 1344 int err = 0; 1345 1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1347 1348 if (err) 1349 return err; 1350 else 1351 return assoc_id; 1352 } 1353 1354 /* 1355 * New (hopefully final) interface for the API. 1356 * We use the sctp_getaddrs_old structure so that use-space library 1357 * can avoid any unnecessary allocations. The only different part 1358 * is that we store the actual length of the address buffer into the 1359 * addrs_num structure member. That way we can re-use the existing 1360 * code. 1361 */ 1362 #ifdef CONFIG_COMPAT 1363 struct compat_sctp_getaddrs_old { 1364 sctp_assoc_t assoc_id; 1365 s32 addr_num; 1366 compat_uptr_t addrs; /* struct sockaddr * */ 1367 }; 1368 #endif 1369 1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1371 char __user *optval, 1372 int __user *optlen) 1373 { 1374 struct sctp_getaddrs_old param; 1375 sctp_assoc_t assoc_id = 0; 1376 struct sockaddr *kaddrs; 1377 int err = 0; 1378 1379 #ifdef CONFIG_COMPAT 1380 if (in_compat_syscall()) { 1381 struct compat_sctp_getaddrs_old param32; 1382 1383 if (len < sizeof(param32)) 1384 return -EINVAL; 1385 if (copy_from_user(¶m32, optval, sizeof(param32))) 1386 return -EFAULT; 1387 1388 param.assoc_id = param32.assoc_id; 1389 param.addr_num = param32.addr_num; 1390 param.addrs = compat_ptr(param32.addrs); 1391 } else 1392 #endif 1393 { 1394 if (len < sizeof(param)) 1395 return -EINVAL; 1396 if (copy_from_user(¶m, optval, sizeof(param))) 1397 return -EFAULT; 1398 } 1399 1400 kaddrs = memdup_user(param.addrs, param.addr_num); 1401 if (IS_ERR(kaddrs)) 1402 return PTR_ERR(kaddrs); 1403 1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1405 kfree(kaddrs); 1406 if (err == 0 || err == -EINPROGRESS) { 1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1408 return -EFAULT; 1409 if (put_user(sizeof(assoc_id), optlen)) 1410 return -EFAULT; 1411 } 1412 1413 return err; 1414 } 1415 1416 /* API 3.1.4 close() - UDP Style Syntax 1417 * Applications use close() to perform graceful shutdown (as described in 1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1419 * by a UDP-style socket. 1420 * 1421 * The syntax is 1422 * 1423 * ret = close(int sd); 1424 * 1425 * sd - the socket descriptor of the associations to be closed. 1426 * 1427 * To gracefully shutdown a specific association represented by the 1428 * UDP-style socket, an application should use the sendmsg() call, 1429 * passing no user data, but including the appropriate flag in the 1430 * ancillary data (see Section xxxx). 1431 * 1432 * If sd in the close() call is a branched-off socket representing only 1433 * one association, the shutdown is performed on that association only. 1434 * 1435 * 4.1.6 close() - TCP Style Syntax 1436 * 1437 * Applications use close() to gracefully close down an association. 1438 * 1439 * The syntax is: 1440 * 1441 * int close(int sd); 1442 * 1443 * sd - the socket descriptor of the association to be closed. 1444 * 1445 * After an application calls close() on a socket descriptor, no further 1446 * socket operations will succeed on that descriptor. 1447 * 1448 * API 7.1.4 SO_LINGER 1449 * 1450 * An application using the TCP-style socket can use this option to 1451 * perform the SCTP ABORT primitive. The linger option structure is: 1452 * 1453 * struct linger { 1454 * int l_onoff; // option on/off 1455 * int l_linger; // linger time 1456 * }; 1457 * 1458 * To enable the option, set l_onoff to 1. If the l_linger value is set 1459 * to 0, calling close() is the same as the ABORT primitive. If the 1460 * value is set to a negative value, the setsockopt() call will return 1461 * an error. If the value is set to a positive value linger_time, the 1462 * close() can be blocked for at most linger_time ms. If the graceful 1463 * shutdown phase does not finish during this period, close() will 1464 * return but the graceful shutdown phase continues in the system. 1465 */ 1466 static void sctp_close(struct sock *sk, long timeout) 1467 { 1468 struct net *net = sock_net(sk); 1469 struct sctp_endpoint *ep; 1470 struct sctp_association *asoc; 1471 struct list_head *pos, *temp; 1472 unsigned int data_was_unread; 1473 1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1475 1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1477 sk->sk_shutdown = SHUTDOWN_MASK; 1478 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1479 1480 ep = sctp_sk(sk)->ep; 1481 1482 /* Clean up any skbs sitting on the receive queue. */ 1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1485 1486 /* Walk all associations on an endpoint. */ 1487 list_for_each_safe(pos, temp, &ep->asocs) { 1488 asoc = list_entry(pos, struct sctp_association, asocs); 1489 1490 if (sctp_style(sk, TCP)) { 1491 /* A closed association can still be in the list if 1492 * it belongs to a TCP-style listening socket that is 1493 * not yet accepted. If so, free it. If not, send an 1494 * ABORT or SHUTDOWN based on the linger options. 1495 */ 1496 if (sctp_state(asoc, CLOSED)) { 1497 sctp_association_free(asoc); 1498 continue; 1499 } 1500 } 1501 1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1503 !skb_queue_empty(&asoc->ulpq.reasm) || 1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1506 struct sctp_chunk *chunk; 1507 1508 chunk = sctp_make_abort_user(asoc, NULL, 0); 1509 sctp_primitive_ABORT(net, asoc, chunk); 1510 } else 1511 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1512 } 1513 1514 /* On a TCP-style socket, block for at most linger_time if set. */ 1515 if (sctp_style(sk, TCP) && timeout) 1516 sctp_wait_for_close(sk, timeout); 1517 1518 /* This will run the backlog queue. */ 1519 release_sock(sk); 1520 1521 /* Supposedly, no process has access to the socket, but 1522 * the net layers still may. 1523 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1524 * held and that should be grabbed before socket lock. 1525 */ 1526 spin_lock_bh(&net->sctp.addr_wq_lock); 1527 bh_lock_sock_nested(sk); 1528 1529 /* Hold the sock, since sk_common_release() will put sock_put() 1530 * and we have just a little more cleanup. 1531 */ 1532 sock_hold(sk); 1533 sk_common_release(sk); 1534 1535 bh_unlock_sock(sk); 1536 spin_unlock_bh(&net->sctp.addr_wq_lock); 1537 1538 sock_put(sk); 1539 1540 SCTP_DBG_OBJCNT_DEC(sock); 1541 } 1542 1543 /* Handle EPIPE error. */ 1544 static int sctp_error(struct sock *sk, int flags, int err) 1545 { 1546 if (err == -EPIPE) 1547 err = sock_error(sk) ? : -EPIPE; 1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1549 send_sig(SIGPIPE, current, 0); 1550 return err; 1551 } 1552 1553 /* API 3.1.3 sendmsg() - UDP Style Syntax 1554 * 1555 * An application uses sendmsg() and recvmsg() calls to transmit data to 1556 * and receive data from its peer. 1557 * 1558 * ssize_t sendmsg(int socket, const struct msghdr *message, 1559 * int flags); 1560 * 1561 * socket - the socket descriptor of the endpoint. 1562 * message - pointer to the msghdr structure which contains a single 1563 * user message and possibly some ancillary data. 1564 * 1565 * See Section 5 for complete description of the data 1566 * structures. 1567 * 1568 * flags - flags sent or received with the user message, see Section 1569 * 5 for complete description of the flags. 1570 * 1571 * Note: This function could use a rewrite especially when explicit 1572 * connect support comes in. 1573 */ 1574 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1575 1576 static int sctp_msghdr_parse(const struct msghdr *msg, 1577 struct sctp_cmsgs *cmsgs); 1578 1579 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1580 struct sctp_sndrcvinfo *srinfo, 1581 const struct msghdr *msg, size_t msg_len) 1582 { 1583 __u16 sflags; 1584 int err; 1585 1586 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1587 return -EPIPE; 1588 1589 if (msg_len > sk->sk_sndbuf) 1590 return -EMSGSIZE; 1591 1592 memset(cmsgs, 0, sizeof(*cmsgs)); 1593 err = sctp_msghdr_parse(msg, cmsgs); 1594 if (err) { 1595 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1596 return err; 1597 } 1598 1599 memset(srinfo, 0, sizeof(*srinfo)); 1600 if (cmsgs->srinfo) { 1601 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1602 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1603 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1604 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1605 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1606 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1607 } 1608 1609 if (cmsgs->sinfo) { 1610 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1611 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1612 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1613 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1614 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1615 } 1616 1617 if (cmsgs->prinfo) { 1618 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1619 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1620 cmsgs->prinfo->pr_policy); 1621 } 1622 1623 sflags = srinfo->sinfo_flags; 1624 if (!sflags && msg_len) 1625 return 0; 1626 1627 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1628 return -EINVAL; 1629 1630 if (((sflags & SCTP_EOF) && msg_len > 0) || 1631 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1632 return -EINVAL; 1633 1634 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1635 return -EINVAL; 1636 1637 return 0; 1638 } 1639 1640 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1641 struct sctp_cmsgs *cmsgs, 1642 union sctp_addr *daddr, 1643 struct sctp_transport **tp) 1644 { 1645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1646 struct sctp_association *asoc; 1647 struct cmsghdr *cmsg; 1648 __be32 flowinfo = 0; 1649 struct sctp_af *af; 1650 int err; 1651 1652 *tp = NULL; 1653 1654 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1655 return -EINVAL; 1656 1657 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1658 sctp_sstate(sk, CLOSING))) 1659 return -EADDRNOTAVAIL; 1660 1661 /* Label connection socket for first association 1-to-many 1662 * style for client sequence socket()->sendmsg(). This 1663 * needs to be done before sctp_assoc_add_peer() as that will 1664 * set up the initial packet that needs to account for any 1665 * security ip options (CIPSO/CALIPSO) added to the packet. 1666 */ 1667 af = sctp_get_af_specific(daddr->sa.sa_family); 1668 if (!af) 1669 return -EINVAL; 1670 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1671 (struct sockaddr *)daddr, 1672 af->sockaddr_len); 1673 if (err < 0) 1674 return err; 1675 1676 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1677 if (err) 1678 return err; 1679 asoc = (*tp)->asoc; 1680 1681 if (!cmsgs->addrs_msg) 1682 return 0; 1683 1684 if (daddr->sa.sa_family == AF_INET6) 1685 flowinfo = daddr->v6.sin6_flowinfo; 1686 1687 /* sendv addr list parse */ 1688 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1689 union sctp_addr _daddr; 1690 int dlen; 1691 1692 if (cmsg->cmsg_level != IPPROTO_SCTP || 1693 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1694 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1695 continue; 1696 1697 daddr = &_daddr; 1698 memset(daddr, 0, sizeof(*daddr)); 1699 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1700 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1701 if (dlen < sizeof(struct in_addr)) { 1702 err = -EINVAL; 1703 goto free; 1704 } 1705 1706 dlen = sizeof(struct in_addr); 1707 daddr->v4.sin_family = AF_INET; 1708 daddr->v4.sin_port = htons(asoc->peer.port); 1709 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1710 } else { 1711 if (dlen < sizeof(struct in6_addr)) { 1712 err = -EINVAL; 1713 goto free; 1714 } 1715 1716 dlen = sizeof(struct in6_addr); 1717 daddr->v6.sin6_flowinfo = flowinfo; 1718 daddr->v6.sin6_family = AF_INET6; 1719 daddr->v6.sin6_port = htons(asoc->peer.port); 1720 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1721 } 1722 1723 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1724 if (err) 1725 goto free; 1726 } 1727 1728 return 0; 1729 1730 free: 1731 sctp_association_free(asoc); 1732 return err; 1733 } 1734 1735 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1736 __u16 sflags, struct msghdr *msg, 1737 size_t msg_len) 1738 { 1739 struct sock *sk = asoc->base.sk; 1740 struct net *net = sock_net(sk); 1741 1742 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1743 return -EPIPE; 1744 1745 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1746 !sctp_state(asoc, ESTABLISHED)) 1747 return 0; 1748 1749 if (sflags & SCTP_EOF) { 1750 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1751 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1752 1753 return 0; 1754 } 1755 1756 if (sflags & SCTP_ABORT) { 1757 struct sctp_chunk *chunk; 1758 1759 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1760 if (!chunk) 1761 return -ENOMEM; 1762 1763 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1764 sctp_primitive_ABORT(net, asoc, chunk); 1765 iov_iter_revert(&msg->msg_iter, msg_len); 1766 1767 return 0; 1768 } 1769 1770 return 1; 1771 } 1772 1773 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1774 struct msghdr *msg, size_t msg_len, 1775 struct sctp_transport *transport, 1776 struct sctp_sndrcvinfo *sinfo) 1777 { 1778 struct sock *sk = asoc->base.sk; 1779 struct sctp_sock *sp = sctp_sk(sk); 1780 struct net *net = sock_net(sk); 1781 struct sctp_datamsg *datamsg; 1782 bool wait_connect = false; 1783 struct sctp_chunk *chunk; 1784 long timeo; 1785 int err; 1786 1787 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1788 err = -EINVAL; 1789 goto err; 1790 } 1791 1792 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1793 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1794 if (err) 1795 goto err; 1796 } 1797 1798 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1799 err = -EMSGSIZE; 1800 goto err; 1801 } 1802 1803 if (asoc->pmtu_pending) { 1804 if (sp->param_flags & SPP_PMTUD_ENABLE) 1805 sctp_assoc_sync_pmtu(asoc); 1806 asoc->pmtu_pending = 0; 1807 } 1808 1809 if (sctp_wspace(asoc) < (int)msg_len) 1810 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1811 1812 if (sk_under_memory_pressure(sk)) 1813 sk_mem_reclaim(sk); 1814 1815 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1816 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1817 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1818 if (err) 1819 goto err; 1820 } 1821 1822 if (sctp_state(asoc, CLOSED)) { 1823 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1824 if (err) 1825 goto err; 1826 1827 if (asoc->ep->intl_enable) { 1828 timeo = sock_sndtimeo(sk, 0); 1829 err = sctp_wait_for_connect(asoc, &timeo); 1830 if (err) { 1831 err = -ESRCH; 1832 goto err; 1833 } 1834 } else { 1835 wait_connect = true; 1836 } 1837 1838 pr_debug("%s: we associated primitively\n", __func__); 1839 } 1840 1841 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1842 if (IS_ERR(datamsg)) { 1843 err = PTR_ERR(datamsg); 1844 goto err; 1845 } 1846 1847 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1848 1849 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1850 sctp_chunk_hold(chunk); 1851 sctp_set_owner_w(chunk); 1852 chunk->transport = transport; 1853 } 1854 1855 err = sctp_primitive_SEND(net, asoc, datamsg); 1856 if (err) { 1857 sctp_datamsg_free(datamsg); 1858 goto err; 1859 } 1860 1861 pr_debug("%s: we sent primitively\n", __func__); 1862 1863 sctp_datamsg_put(datamsg); 1864 1865 if (unlikely(wait_connect)) { 1866 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1867 sctp_wait_for_connect(asoc, &timeo); 1868 } 1869 1870 err = msg_len; 1871 1872 err: 1873 return err; 1874 } 1875 1876 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1877 const struct msghdr *msg, 1878 struct sctp_cmsgs *cmsgs) 1879 { 1880 union sctp_addr *daddr = NULL; 1881 int err; 1882 1883 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1884 int len = msg->msg_namelen; 1885 1886 if (len > sizeof(*daddr)) 1887 len = sizeof(*daddr); 1888 1889 daddr = (union sctp_addr *)msg->msg_name; 1890 1891 err = sctp_verify_addr(sk, daddr, len); 1892 if (err) 1893 return ERR_PTR(err); 1894 } 1895 1896 return daddr; 1897 } 1898 1899 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1900 struct sctp_sndrcvinfo *sinfo, 1901 struct sctp_cmsgs *cmsgs) 1902 { 1903 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1904 sinfo->sinfo_stream = asoc->default_stream; 1905 sinfo->sinfo_ppid = asoc->default_ppid; 1906 sinfo->sinfo_context = asoc->default_context; 1907 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1908 1909 if (!cmsgs->prinfo) 1910 sinfo->sinfo_flags = asoc->default_flags; 1911 } 1912 1913 if (!cmsgs->srinfo && !cmsgs->prinfo) 1914 sinfo->sinfo_timetolive = asoc->default_timetolive; 1915 1916 if (cmsgs->authinfo) { 1917 /* Reuse sinfo_tsn to indicate that authinfo was set and 1918 * sinfo_ssn to save the keyid on tx path. 1919 */ 1920 sinfo->sinfo_tsn = 1; 1921 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1922 } 1923 } 1924 1925 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1926 { 1927 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1928 struct sctp_transport *transport = NULL; 1929 struct sctp_sndrcvinfo _sinfo, *sinfo; 1930 struct sctp_association *asoc, *tmp; 1931 struct sctp_cmsgs cmsgs; 1932 union sctp_addr *daddr; 1933 bool new = false; 1934 __u16 sflags; 1935 int err; 1936 1937 /* Parse and get snd_info */ 1938 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1939 if (err) 1940 goto out; 1941 1942 sinfo = &_sinfo; 1943 sflags = sinfo->sinfo_flags; 1944 1945 /* Get daddr from msg */ 1946 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1947 if (IS_ERR(daddr)) { 1948 err = PTR_ERR(daddr); 1949 goto out; 1950 } 1951 1952 lock_sock(sk); 1953 1954 /* SCTP_SENDALL process */ 1955 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1956 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1957 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1958 msg_len); 1959 if (err == 0) 1960 continue; 1961 if (err < 0) 1962 goto out_unlock; 1963 1964 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1965 1966 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1967 NULL, sinfo); 1968 if (err < 0) 1969 goto out_unlock; 1970 1971 iov_iter_revert(&msg->msg_iter, err); 1972 } 1973 1974 goto out_unlock; 1975 } 1976 1977 /* Get and check or create asoc */ 1978 if (daddr) { 1979 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1980 if (asoc) { 1981 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1982 msg_len); 1983 if (err <= 0) 1984 goto out_unlock; 1985 } else { 1986 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1987 &transport); 1988 if (err) 1989 goto out_unlock; 1990 1991 asoc = transport->asoc; 1992 new = true; 1993 } 1994 1995 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 1996 transport = NULL; 1997 } else { 1998 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 1999 if (!asoc) { 2000 err = -EPIPE; 2001 goto out_unlock; 2002 } 2003 2004 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2005 if (err <= 0) 2006 goto out_unlock; 2007 } 2008 2009 /* Update snd_info with the asoc */ 2010 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2011 2012 /* Send msg to the asoc */ 2013 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2014 if (err < 0 && err != -ESRCH && new) 2015 sctp_association_free(asoc); 2016 2017 out_unlock: 2018 release_sock(sk); 2019 out: 2020 return sctp_error(sk, msg->msg_flags, err); 2021 } 2022 2023 /* This is an extended version of skb_pull() that removes the data from the 2024 * start of a skb even when data is spread across the list of skb's in the 2025 * frag_list. len specifies the total amount of data that needs to be removed. 2026 * when 'len' bytes could be removed from the skb, it returns 0. 2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2028 * could not be removed. 2029 */ 2030 static int sctp_skb_pull(struct sk_buff *skb, int len) 2031 { 2032 struct sk_buff *list; 2033 int skb_len = skb_headlen(skb); 2034 int rlen; 2035 2036 if (len <= skb_len) { 2037 __skb_pull(skb, len); 2038 return 0; 2039 } 2040 len -= skb_len; 2041 __skb_pull(skb, skb_len); 2042 2043 skb_walk_frags(skb, list) { 2044 rlen = sctp_skb_pull(list, len); 2045 skb->len -= (len-rlen); 2046 skb->data_len -= (len-rlen); 2047 2048 if (!rlen) 2049 return 0; 2050 2051 len = rlen; 2052 } 2053 2054 return len; 2055 } 2056 2057 /* API 3.1.3 recvmsg() - UDP Style Syntax 2058 * 2059 * ssize_t recvmsg(int socket, struct msghdr *message, 2060 * int flags); 2061 * 2062 * socket - the socket descriptor of the endpoint. 2063 * message - pointer to the msghdr structure which contains a single 2064 * user message and possibly some ancillary data. 2065 * 2066 * See Section 5 for complete description of the data 2067 * structures. 2068 * 2069 * flags - flags sent or received with the user message, see Section 2070 * 5 for complete description of the flags. 2071 */ 2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2073 int noblock, int flags, int *addr_len) 2074 { 2075 struct sctp_ulpevent *event = NULL; 2076 struct sctp_sock *sp = sctp_sk(sk); 2077 struct sk_buff *skb, *head_skb; 2078 int copied; 2079 int err = 0; 2080 int skb_len; 2081 2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2084 addr_len); 2085 2086 lock_sock(sk); 2087 2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2090 err = -ENOTCONN; 2091 goto out; 2092 } 2093 2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2095 if (!skb) 2096 goto out; 2097 2098 /* Get the total length of the skb including any skb's in the 2099 * frag_list. 2100 */ 2101 skb_len = skb->len; 2102 2103 copied = skb_len; 2104 if (copied > len) 2105 copied = len; 2106 2107 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2108 2109 event = sctp_skb2event(skb); 2110 2111 if (err) 2112 goto out_free; 2113 2114 if (event->chunk && event->chunk->head_skb) 2115 head_skb = event->chunk->head_skb; 2116 else 2117 head_skb = skb; 2118 sock_recv_ts_and_drops(msg, sk, head_skb); 2119 if (sctp_ulpevent_is_notification(event)) { 2120 msg->msg_flags |= MSG_NOTIFICATION; 2121 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2122 } else { 2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2124 } 2125 2126 /* Check if we allow SCTP_NXTINFO. */ 2127 if (sp->recvnxtinfo) 2128 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2129 /* Check if we allow SCTP_RCVINFO. */ 2130 if (sp->recvrcvinfo) 2131 sctp_ulpevent_read_rcvinfo(event, msg); 2132 /* Check if we allow SCTP_SNDRCVINFO. */ 2133 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2134 sctp_ulpevent_read_sndrcvinfo(event, msg); 2135 2136 err = copied; 2137 2138 /* If skb's length exceeds the user's buffer, update the skb and 2139 * push it back to the receive_queue so that the next call to 2140 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2141 */ 2142 if (skb_len > copied) { 2143 msg->msg_flags &= ~MSG_EOR; 2144 if (flags & MSG_PEEK) 2145 goto out_free; 2146 sctp_skb_pull(skb, copied); 2147 skb_queue_head(&sk->sk_receive_queue, skb); 2148 2149 /* When only partial message is copied to the user, increase 2150 * rwnd by that amount. If all the data in the skb is read, 2151 * rwnd is updated when the event is freed. 2152 */ 2153 if (!sctp_ulpevent_is_notification(event)) 2154 sctp_assoc_rwnd_increase(event->asoc, copied); 2155 goto out; 2156 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2157 (event->msg_flags & MSG_EOR)) 2158 msg->msg_flags |= MSG_EOR; 2159 else 2160 msg->msg_flags &= ~MSG_EOR; 2161 2162 out_free: 2163 if (flags & MSG_PEEK) { 2164 /* Release the skb reference acquired after peeking the skb in 2165 * sctp_skb_recv_datagram(). 2166 */ 2167 kfree_skb(skb); 2168 } else { 2169 /* Free the event which includes releasing the reference to 2170 * the owner of the skb, freeing the skb and updating the 2171 * rwnd. 2172 */ 2173 sctp_ulpevent_free(event); 2174 } 2175 out: 2176 release_sock(sk); 2177 return err; 2178 } 2179 2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2181 * 2182 * This option is a on/off flag. If enabled no SCTP message 2183 * fragmentation will be performed. Instead if a message being sent 2184 * exceeds the current PMTU size, the message will NOT be sent and 2185 * instead a error will be indicated to the user. 2186 */ 2187 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2188 unsigned int optlen) 2189 { 2190 if (optlen < sizeof(int)) 2191 return -EINVAL; 2192 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2193 return 0; 2194 } 2195 2196 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2197 unsigned int optlen) 2198 { 2199 struct sctp_sock *sp = sctp_sk(sk); 2200 struct sctp_association *asoc; 2201 int i; 2202 2203 if (optlen > sizeof(struct sctp_event_subscribe)) 2204 return -EINVAL; 2205 2206 for (i = 0; i < optlen; i++) 2207 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2208 sn_type[i]); 2209 2210 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2211 asoc->subscribe = sctp_sk(sk)->subscribe; 2212 2213 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2214 * if there is no data to be sent or retransmit, the stack will 2215 * immediately send up this notification. 2216 */ 2217 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2218 struct sctp_ulpevent *event; 2219 2220 asoc = sctp_id2assoc(sk, 0); 2221 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2222 event = sctp_ulpevent_make_sender_dry_event(asoc, 2223 GFP_USER | __GFP_NOWARN); 2224 if (!event) 2225 return -ENOMEM; 2226 2227 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2228 } 2229 } 2230 2231 return 0; 2232 } 2233 2234 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2235 * 2236 * This socket option is applicable to the UDP-style socket only. When 2237 * set it will cause associations that are idle for more than the 2238 * specified number of seconds to automatically close. An association 2239 * being idle is defined an association that has NOT sent or received 2240 * user data. The special value of '0' indicates that no automatic 2241 * close of any associations should be performed. The option expects an 2242 * integer defining the number of seconds of idle time before an 2243 * association is closed. 2244 */ 2245 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2246 unsigned int optlen) 2247 { 2248 struct sctp_sock *sp = sctp_sk(sk); 2249 struct net *net = sock_net(sk); 2250 2251 /* Applicable to UDP-style socket only */ 2252 if (sctp_style(sk, TCP)) 2253 return -EOPNOTSUPP; 2254 if (optlen != sizeof(int)) 2255 return -EINVAL; 2256 2257 sp->autoclose = *optval; 2258 if (sp->autoclose > net->sctp.max_autoclose) 2259 sp->autoclose = net->sctp.max_autoclose; 2260 2261 return 0; 2262 } 2263 2264 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2265 * 2266 * Applications can enable or disable heartbeats for any peer address of 2267 * an association, modify an address's heartbeat interval, force a 2268 * heartbeat to be sent immediately, and adjust the address's maximum 2269 * number of retransmissions sent before an address is considered 2270 * unreachable. The following structure is used to access and modify an 2271 * address's parameters: 2272 * 2273 * struct sctp_paddrparams { 2274 * sctp_assoc_t spp_assoc_id; 2275 * struct sockaddr_storage spp_address; 2276 * uint32_t spp_hbinterval; 2277 * uint16_t spp_pathmaxrxt; 2278 * uint32_t spp_pathmtu; 2279 * uint32_t spp_sackdelay; 2280 * uint32_t spp_flags; 2281 * uint32_t spp_ipv6_flowlabel; 2282 * uint8_t spp_dscp; 2283 * }; 2284 * 2285 * spp_assoc_id - (one-to-many style socket) This is filled in the 2286 * application, and identifies the association for 2287 * this query. 2288 * spp_address - This specifies which address is of interest. 2289 * spp_hbinterval - This contains the value of the heartbeat interval, 2290 * in milliseconds. If a value of zero 2291 * is present in this field then no changes are to 2292 * be made to this parameter. 2293 * spp_pathmaxrxt - This contains the maximum number of 2294 * retransmissions before this address shall be 2295 * considered unreachable. If a value of zero 2296 * is present in this field then no changes are to 2297 * be made to this parameter. 2298 * spp_pathmtu - When Path MTU discovery is disabled the value 2299 * specified here will be the "fixed" path mtu. 2300 * Note that if the spp_address field is empty 2301 * then all associations on this address will 2302 * have this fixed path mtu set upon them. 2303 * 2304 * spp_sackdelay - When delayed sack is enabled, this value specifies 2305 * the number of milliseconds that sacks will be delayed 2306 * for. This value will apply to all addresses of an 2307 * association if the spp_address field is empty. Note 2308 * also, that if delayed sack is enabled and this 2309 * value is set to 0, no change is made to the last 2310 * recorded delayed sack timer value. 2311 * 2312 * spp_flags - These flags are used to control various features 2313 * on an association. The flag field may contain 2314 * zero or more of the following options. 2315 * 2316 * SPP_HB_ENABLE - Enable heartbeats on the 2317 * specified address. Note that if the address 2318 * field is empty all addresses for the association 2319 * have heartbeats enabled upon them. 2320 * 2321 * SPP_HB_DISABLE - Disable heartbeats on the 2322 * speicifed address. Note that if the address 2323 * field is empty all addresses for the association 2324 * will have their heartbeats disabled. Note also 2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2326 * mutually exclusive, only one of these two should 2327 * be specified. Enabling both fields will have 2328 * undetermined results. 2329 * 2330 * SPP_HB_DEMAND - Request a user initiated heartbeat 2331 * to be made immediately. 2332 * 2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2334 * heartbeat delayis to be set to the value of 0 2335 * milliseconds. 2336 * 2337 * SPP_PMTUD_ENABLE - This field will enable PMTU 2338 * discovery upon the specified address. Note that 2339 * if the address feild is empty then all addresses 2340 * on the association are effected. 2341 * 2342 * SPP_PMTUD_DISABLE - This field will disable PMTU 2343 * discovery upon the specified address. Note that 2344 * if the address feild is empty then all addresses 2345 * on the association are effected. Not also that 2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2347 * exclusive. Enabling both will have undetermined 2348 * results. 2349 * 2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2351 * on delayed sack. The time specified in spp_sackdelay 2352 * is used to specify the sack delay for this address. Note 2353 * that if spp_address is empty then all addresses will 2354 * enable delayed sack and take on the sack delay 2355 * value specified in spp_sackdelay. 2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2357 * off delayed sack. If the spp_address field is blank then 2358 * delayed sack is disabled for the entire association. Note 2359 * also that this field is mutually exclusive to 2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2361 * results. 2362 * 2363 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2364 * setting of the IPV6 flow label value. The value is 2365 * contained in the spp_ipv6_flowlabel field. 2366 * Upon retrieval, this flag will be set to indicate that 2367 * the spp_ipv6_flowlabel field has a valid value returned. 2368 * If a specific destination address is set (in the 2369 * spp_address field), then the value returned is that of 2370 * the address. If just an association is specified (and 2371 * no address), then the association's default flow label 2372 * is returned. If neither an association nor a destination 2373 * is specified, then the socket's default flow label is 2374 * returned. For non-IPv6 sockets, this flag will be left 2375 * cleared. 2376 * 2377 * SPP_DSCP: Setting this flag enables the setting of the 2378 * Differentiated Services Code Point (DSCP) value 2379 * associated with either the association or a specific 2380 * address. The value is obtained in the spp_dscp field. 2381 * Upon retrieval, this flag will be set to indicate that 2382 * the spp_dscp field has a valid value returned. If a 2383 * specific destination address is set when called (in the 2384 * spp_address field), then that specific destination 2385 * address's DSCP value is returned. If just an association 2386 * is specified, then the association's default DSCP is 2387 * returned. If neither an association nor a destination is 2388 * specified, then the socket's default DSCP is returned. 2389 * 2390 * spp_ipv6_flowlabel 2391 * - This field is used in conjunction with the 2392 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2393 * The 20 least significant bits are used for the flow 2394 * label. This setting has precedence over any IPv6-layer 2395 * setting. 2396 * 2397 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2398 * and contains the DSCP. The 6 most significant bits are 2399 * used for the DSCP. This setting has precedence over any 2400 * IPv4- or IPv6- layer setting. 2401 */ 2402 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2403 struct sctp_transport *trans, 2404 struct sctp_association *asoc, 2405 struct sctp_sock *sp, 2406 int hb_change, 2407 int pmtud_change, 2408 int sackdelay_change) 2409 { 2410 int error; 2411 2412 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2413 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2414 trans->asoc, trans); 2415 if (error) 2416 return error; 2417 } 2418 2419 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2420 * this field is ignored. Note also that a value of zero indicates 2421 * the current setting should be left unchanged. 2422 */ 2423 if (params->spp_flags & SPP_HB_ENABLE) { 2424 2425 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2426 * set. This lets us use 0 value when this flag 2427 * is set. 2428 */ 2429 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2430 params->spp_hbinterval = 0; 2431 2432 if (params->spp_hbinterval || 2433 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2434 if (trans) { 2435 trans->hbinterval = 2436 msecs_to_jiffies(params->spp_hbinterval); 2437 } else if (asoc) { 2438 asoc->hbinterval = 2439 msecs_to_jiffies(params->spp_hbinterval); 2440 } else { 2441 sp->hbinterval = params->spp_hbinterval; 2442 } 2443 } 2444 } 2445 2446 if (hb_change) { 2447 if (trans) { 2448 trans->param_flags = 2449 (trans->param_flags & ~SPP_HB) | hb_change; 2450 } else if (asoc) { 2451 asoc->param_flags = 2452 (asoc->param_flags & ~SPP_HB) | hb_change; 2453 } else { 2454 sp->param_flags = 2455 (sp->param_flags & ~SPP_HB) | hb_change; 2456 } 2457 } 2458 2459 /* When Path MTU discovery is disabled the value specified here will 2460 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2461 * include the flag SPP_PMTUD_DISABLE for this field to have any 2462 * effect). 2463 */ 2464 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2465 if (trans) { 2466 trans->pathmtu = params->spp_pathmtu; 2467 sctp_assoc_sync_pmtu(asoc); 2468 } else if (asoc) { 2469 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2470 } else { 2471 sp->pathmtu = params->spp_pathmtu; 2472 } 2473 } 2474 2475 if (pmtud_change) { 2476 if (trans) { 2477 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2478 (params->spp_flags & SPP_PMTUD_ENABLE); 2479 trans->param_flags = 2480 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2481 if (update) { 2482 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2483 sctp_assoc_sync_pmtu(asoc); 2484 } 2485 } else if (asoc) { 2486 asoc->param_flags = 2487 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2488 } else { 2489 sp->param_flags = 2490 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2491 } 2492 } 2493 2494 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2495 * value of this field is ignored. Note also that a value of zero 2496 * indicates the current setting should be left unchanged. 2497 */ 2498 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2499 if (trans) { 2500 trans->sackdelay = 2501 msecs_to_jiffies(params->spp_sackdelay); 2502 } else if (asoc) { 2503 asoc->sackdelay = 2504 msecs_to_jiffies(params->spp_sackdelay); 2505 } else { 2506 sp->sackdelay = params->spp_sackdelay; 2507 } 2508 } 2509 2510 if (sackdelay_change) { 2511 if (trans) { 2512 trans->param_flags = 2513 (trans->param_flags & ~SPP_SACKDELAY) | 2514 sackdelay_change; 2515 } else if (asoc) { 2516 asoc->param_flags = 2517 (asoc->param_flags & ~SPP_SACKDELAY) | 2518 sackdelay_change; 2519 } else { 2520 sp->param_flags = 2521 (sp->param_flags & ~SPP_SACKDELAY) | 2522 sackdelay_change; 2523 } 2524 } 2525 2526 /* Note that a value of zero indicates the current setting should be 2527 left unchanged. 2528 */ 2529 if (params->spp_pathmaxrxt) { 2530 if (trans) { 2531 trans->pathmaxrxt = params->spp_pathmaxrxt; 2532 } else if (asoc) { 2533 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2534 } else { 2535 sp->pathmaxrxt = params->spp_pathmaxrxt; 2536 } 2537 } 2538 2539 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2540 if (trans) { 2541 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2542 trans->flowlabel = params->spp_ipv6_flowlabel & 2543 SCTP_FLOWLABEL_VAL_MASK; 2544 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2545 } 2546 } else if (asoc) { 2547 struct sctp_transport *t; 2548 2549 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2550 transports) { 2551 if (t->ipaddr.sa.sa_family != AF_INET6) 2552 continue; 2553 t->flowlabel = params->spp_ipv6_flowlabel & 2554 SCTP_FLOWLABEL_VAL_MASK; 2555 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2556 } 2557 asoc->flowlabel = params->spp_ipv6_flowlabel & 2558 SCTP_FLOWLABEL_VAL_MASK; 2559 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2560 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2561 sp->flowlabel = params->spp_ipv6_flowlabel & 2562 SCTP_FLOWLABEL_VAL_MASK; 2563 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2564 } 2565 } 2566 2567 if (params->spp_flags & SPP_DSCP) { 2568 if (trans) { 2569 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2570 trans->dscp |= SCTP_DSCP_SET_MASK; 2571 } else if (asoc) { 2572 struct sctp_transport *t; 2573 2574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2575 transports) { 2576 t->dscp = params->spp_dscp & 2577 SCTP_DSCP_VAL_MASK; 2578 t->dscp |= SCTP_DSCP_SET_MASK; 2579 } 2580 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2581 asoc->dscp |= SCTP_DSCP_SET_MASK; 2582 } else { 2583 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2584 sp->dscp |= SCTP_DSCP_SET_MASK; 2585 } 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2592 struct sctp_paddrparams *params, 2593 unsigned int optlen) 2594 { 2595 struct sctp_transport *trans = NULL; 2596 struct sctp_association *asoc = NULL; 2597 struct sctp_sock *sp = sctp_sk(sk); 2598 int error; 2599 int hb_change, pmtud_change, sackdelay_change; 2600 2601 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2602 spp_ipv6_flowlabel), 4)) { 2603 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2604 return -EINVAL; 2605 } else if (optlen != sizeof(*params)) { 2606 return -EINVAL; 2607 } 2608 2609 /* Validate flags and value parameters. */ 2610 hb_change = params->spp_flags & SPP_HB; 2611 pmtud_change = params->spp_flags & SPP_PMTUD; 2612 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2613 2614 if (hb_change == SPP_HB || 2615 pmtud_change == SPP_PMTUD || 2616 sackdelay_change == SPP_SACKDELAY || 2617 params->spp_sackdelay > 500 || 2618 (params->spp_pathmtu && 2619 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2620 return -EINVAL; 2621 2622 /* If an address other than INADDR_ANY is specified, and 2623 * no transport is found, then the request is invalid. 2624 */ 2625 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2626 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2627 params->spp_assoc_id); 2628 if (!trans) 2629 return -EINVAL; 2630 } 2631 2632 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2633 * socket is a one to many style socket, and an association 2634 * was not found, then the id was invalid. 2635 */ 2636 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2637 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2638 sctp_style(sk, UDP)) 2639 return -EINVAL; 2640 2641 /* Heartbeat demand can only be sent on a transport or 2642 * association, but not a socket. 2643 */ 2644 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2645 return -EINVAL; 2646 2647 /* Process parameters. */ 2648 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2649 hb_change, pmtud_change, 2650 sackdelay_change); 2651 2652 if (error) 2653 return error; 2654 2655 /* If changes are for association, also apply parameters to each 2656 * transport. 2657 */ 2658 if (!trans && asoc) { 2659 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2660 transports) { 2661 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2662 hb_change, pmtud_change, 2663 sackdelay_change); 2664 } 2665 } 2666 2667 return 0; 2668 } 2669 2670 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2671 { 2672 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2673 } 2674 2675 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2676 { 2677 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2678 } 2679 2680 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2681 struct sctp_association *asoc) 2682 { 2683 struct sctp_transport *trans; 2684 2685 if (params->sack_delay) { 2686 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2687 asoc->param_flags = 2688 sctp_spp_sackdelay_enable(asoc->param_flags); 2689 } 2690 if (params->sack_freq == 1) { 2691 asoc->param_flags = 2692 sctp_spp_sackdelay_disable(asoc->param_flags); 2693 } else if (params->sack_freq > 1) { 2694 asoc->sackfreq = params->sack_freq; 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_enable(asoc->param_flags); 2697 } 2698 2699 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2700 transports) { 2701 if (params->sack_delay) { 2702 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2703 trans->param_flags = 2704 sctp_spp_sackdelay_enable(trans->param_flags); 2705 } 2706 if (params->sack_freq == 1) { 2707 trans->param_flags = 2708 sctp_spp_sackdelay_disable(trans->param_flags); 2709 } else if (params->sack_freq > 1) { 2710 trans->sackfreq = params->sack_freq; 2711 trans->param_flags = 2712 sctp_spp_sackdelay_enable(trans->param_flags); 2713 } 2714 } 2715 } 2716 2717 /* 2718 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2719 * 2720 * This option will effect the way delayed acks are performed. This 2721 * option allows you to get or set the delayed ack time, in 2722 * milliseconds. It also allows changing the delayed ack frequency. 2723 * Changing the frequency to 1 disables the delayed sack algorithm. If 2724 * the assoc_id is 0, then this sets or gets the endpoints default 2725 * values. If the assoc_id field is non-zero, then the set or get 2726 * effects the specified association for the one to many model (the 2727 * assoc_id field is ignored by the one to one model). Note that if 2728 * sack_delay or sack_freq are 0 when setting this option, then the 2729 * current values will remain unchanged. 2730 * 2731 * struct sctp_sack_info { 2732 * sctp_assoc_t sack_assoc_id; 2733 * uint32_t sack_delay; 2734 * uint32_t sack_freq; 2735 * }; 2736 * 2737 * sack_assoc_id - This parameter, indicates which association the user 2738 * is performing an action upon. Note that if this field's value is 2739 * zero then the endpoints default value is changed (effecting future 2740 * associations only). 2741 * 2742 * sack_delay - This parameter contains the number of milliseconds that 2743 * the user is requesting the delayed ACK timer be set to. Note that 2744 * this value is defined in the standard to be between 200 and 500 2745 * milliseconds. 2746 * 2747 * sack_freq - This parameter contains the number of packets that must 2748 * be received before a sack is sent without waiting for the delay 2749 * timer to expire. The default value for this is 2, setting this 2750 * value to 1 will disable the delayed sack algorithm. 2751 */ 2752 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2753 struct sctp_sack_info *params) 2754 { 2755 struct sctp_sock *sp = sctp_sk(sk); 2756 struct sctp_association *asoc; 2757 2758 /* Validate value parameter. */ 2759 if (params->sack_delay > 500) 2760 return -EINVAL; 2761 2762 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2763 * socket is a one to many style socket, and an association 2764 * was not found, then the id was invalid. 2765 */ 2766 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2767 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2768 sctp_style(sk, UDP)) 2769 return -EINVAL; 2770 2771 if (asoc) { 2772 sctp_apply_asoc_delayed_ack(params, asoc); 2773 2774 return 0; 2775 } 2776 2777 if (sctp_style(sk, TCP)) 2778 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2779 2780 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2781 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2782 if (params->sack_delay) { 2783 sp->sackdelay = params->sack_delay; 2784 sp->param_flags = 2785 sctp_spp_sackdelay_enable(sp->param_flags); 2786 } 2787 if (params->sack_freq == 1) { 2788 sp->param_flags = 2789 sctp_spp_sackdelay_disable(sp->param_flags); 2790 } else if (params->sack_freq > 1) { 2791 sp->sackfreq = params->sack_freq; 2792 sp->param_flags = 2793 sctp_spp_sackdelay_enable(sp->param_flags); 2794 } 2795 } 2796 2797 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2798 params->sack_assoc_id == SCTP_ALL_ASSOC) 2799 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2800 sctp_apply_asoc_delayed_ack(params, asoc); 2801 2802 return 0; 2803 } 2804 2805 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2806 struct sctp_sack_info *params, 2807 unsigned int optlen) 2808 { 2809 if (optlen == sizeof(struct sctp_assoc_value)) { 2810 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2811 struct sctp_sack_info p; 2812 2813 pr_warn_ratelimited(DEPRECATED 2814 "%s (pid %d) " 2815 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2816 "Use struct sctp_sack_info instead\n", 2817 current->comm, task_pid_nr(current)); 2818 2819 p.sack_assoc_id = v->assoc_id; 2820 p.sack_delay = v->assoc_value; 2821 p.sack_freq = v->assoc_value ? 0 : 1; 2822 return __sctp_setsockopt_delayed_ack(sk, &p); 2823 } 2824 2825 if (optlen != sizeof(struct sctp_sack_info)) 2826 return -EINVAL; 2827 if (params->sack_delay == 0 && params->sack_freq == 0) 2828 return 0; 2829 return __sctp_setsockopt_delayed_ack(sk, params); 2830 } 2831 2832 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2833 * 2834 * Applications can specify protocol parameters for the default association 2835 * initialization. The option name argument to setsockopt() and getsockopt() 2836 * is SCTP_INITMSG. 2837 * 2838 * Setting initialization parameters is effective only on an unconnected 2839 * socket (for UDP-style sockets only future associations are effected 2840 * by the change). With TCP-style sockets, this option is inherited by 2841 * sockets derived from a listener socket. 2842 */ 2843 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2844 unsigned int optlen) 2845 { 2846 struct sctp_sock *sp = sctp_sk(sk); 2847 2848 if (optlen != sizeof(struct sctp_initmsg)) 2849 return -EINVAL; 2850 2851 if (sinit->sinit_num_ostreams) 2852 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2853 if (sinit->sinit_max_instreams) 2854 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2855 if (sinit->sinit_max_attempts) 2856 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2857 if (sinit->sinit_max_init_timeo) 2858 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2865 * 2866 * Applications that wish to use the sendto() system call may wish to 2867 * specify a default set of parameters that would normally be supplied 2868 * through the inclusion of ancillary data. This socket option allows 2869 * such an application to set the default sctp_sndrcvinfo structure. 2870 * The application that wishes to use this socket option simply passes 2871 * in to this call the sctp_sndrcvinfo structure defined in Section 2872 * 5.2.2) The input parameters accepted by this call include 2873 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2874 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2875 * to this call if the caller is using the UDP model. 2876 */ 2877 static int sctp_setsockopt_default_send_param(struct sock *sk, 2878 struct sctp_sndrcvinfo *info, 2879 unsigned int optlen) 2880 { 2881 struct sctp_sock *sp = sctp_sk(sk); 2882 struct sctp_association *asoc; 2883 2884 if (optlen != sizeof(*info)) 2885 return -EINVAL; 2886 if (info->sinfo_flags & 2887 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2888 SCTP_ABORT | SCTP_EOF)) 2889 return -EINVAL; 2890 2891 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2892 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2893 sctp_style(sk, UDP)) 2894 return -EINVAL; 2895 2896 if (asoc) { 2897 asoc->default_stream = info->sinfo_stream; 2898 asoc->default_flags = info->sinfo_flags; 2899 asoc->default_ppid = info->sinfo_ppid; 2900 asoc->default_context = info->sinfo_context; 2901 asoc->default_timetolive = info->sinfo_timetolive; 2902 2903 return 0; 2904 } 2905 2906 if (sctp_style(sk, TCP)) 2907 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2908 2909 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2910 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2911 sp->default_stream = info->sinfo_stream; 2912 sp->default_flags = info->sinfo_flags; 2913 sp->default_ppid = info->sinfo_ppid; 2914 sp->default_context = info->sinfo_context; 2915 sp->default_timetolive = info->sinfo_timetolive; 2916 } 2917 2918 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2919 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2920 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2921 asoc->default_stream = info->sinfo_stream; 2922 asoc->default_flags = info->sinfo_flags; 2923 asoc->default_ppid = info->sinfo_ppid; 2924 asoc->default_context = info->sinfo_context; 2925 asoc->default_timetolive = info->sinfo_timetolive; 2926 } 2927 } 2928 2929 return 0; 2930 } 2931 2932 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2933 * (SCTP_DEFAULT_SNDINFO) 2934 */ 2935 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2936 struct sctp_sndinfo *info, 2937 unsigned int optlen) 2938 { 2939 struct sctp_sock *sp = sctp_sk(sk); 2940 struct sctp_association *asoc; 2941 2942 if (optlen != sizeof(*info)) 2943 return -EINVAL; 2944 if (info->snd_flags & 2945 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2946 SCTP_ABORT | SCTP_EOF)) 2947 return -EINVAL; 2948 2949 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2950 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2951 sctp_style(sk, UDP)) 2952 return -EINVAL; 2953 2954 if (asoc) { 2955 asoc->default_stream = info->snd_sid; 2956 asoc->default_flags = info->snd_flags; 2957 asoc->default_ppid = info->snd_ppid; 2958 asoc->default_context = info->snd_context; 2959 2960 return 0; 2961 } 2962 2963 if (sctp_style(sk, TCP)) 2964 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2965 2966 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2967 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2968 sp->default_stream = info->snd_sid; 2969 sp->default_flags = info->snd_flags; 2970 sp->default_ppid = info->snd_ppid; 2971 sp->default_context = info->snd_context; 2972 } 2973 2974 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2975 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2976 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2977 asoc->default_stream = info->snd_sid; 2978 asoc->default_flags = info->snd_flags; 2979 asoc->default_ppid = info->snd_ppid; 2980 asoc->default_context = info->snd_context; 2981 } 2982 } 2983 2984 return 0; 2985 } 2986 2987 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2988 * 2989 * Requests that the local SCTP stack use the enclosed peer address as 2990 * the association primary. The enclosed address must be one of the 2991 * association peer's addresses. 2992 */ 2993 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 2994 unsigned int optlen) 2995 { 2996 struct sctp_transport *trans; 2997 struct sctp_af *af; 2998 int err; 2999 3000 if (optlen != sizeof(struct sctp_prim)) 3001 return -EINVAL; 3002 3003 /* Allow security module to validate address but need address len. */ 3004 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3005 if (!af) 3006 return -EINVAL; 3007 3008 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3009 (struct sockaddr *)&prim->ssp_addr, 3010 af->sockaddr_len); 3011 if (err) 3012 return err; 3013 3014 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3015 if (!trans) 3016 return -EINVAL; 3017 3018 sctp_assoc_set_primary(trans->asoc, trans); 3019 3020 return 0; 3021 } 3022 3023 /* 3024 * 7.1.5 SCTP_NODELAY 3025 * 3026 * Turn on/off any Nagle-like algorithm. This means that packets are 3027 * generally sent as soon as possible and no unnecessary delays are 3028 * introduced, at the cost of more packets in the network. Expects an 3029 * integer boolean flag. 3030 */ 3031 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3032 unsigned int optlen) 3033 { 3034 if (optlen < sizeof(int)) 3035 return -EINVAL; 3036 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3037 return 0; 3038 } 3039 3040 /* 3041 * 3042 * 7.1.1 SCTP_RTOINFO 3043 * 3044 * The protocol parameters used to initialize and bound retransmission 3045 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3046 * and modify these parameters. 3047 * All parameters are time values, in milliseconds. A value of 0, when 3048 * modifying the parameters, indicates that the current value should not 3049 * be changed. 3050 * 3051 */ 3052 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3053 struct sctp_rtoinfo *rtoinfo, 3054 unsigned int optlen) 3055 { 3056 struct sctp_association *asoc; 3057 unsigned long rto_min, rto_max; 3058 struct sctp_sock *sp = sctp_sk(sk); 3059 3060 if (optlen != sizeof (struct sctp_rtoinfo)) 3061 return -EINVAL; 3062 3063 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3064 3065 /* Set the values to the specific association */ 3066 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3067 sctp_style(sk, UDP)) 3068 return -EINVAL; 3069 3070 rto_max = rtoinfo->srto_max; 3071 rto_min = rtoinfo->srto_min; 3072 3073 if (rto_max) 3074 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3075 else 3076 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3077 3078 if (rto_min) 3079 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3080 else 3081 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3082 3083 if (rto_min > rto_max) 3084 return -EINVAL; 3085 3086 if (asoc) { 3087 if (rtoinfo->srto_initial != 0) 3088 asoc->rto_initial = 3089 msecs_to_jiffies(rtoinfo->srto_initial); 3090 asoc->rto_max = rto_max; 3091 asoc->rto_min = rto_min; 3092 } else { 3093 /* If there is no association or the association-id = 0 3094 * set the values to the endpoint. 3095 */ 3096 if (rtoinfo->srto_initial != 0) 3097 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3098 sp->rtoinfo.srto_max = rto_max; 3099 sp->rtoinfo.srto_min = rto_min; 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* 3106 * 3107 * 7.1.2 SCTP_ASSOCINFO 3108 * 3109 * This option is used to tune the maximum retransmission attempts 3110 * of the association. 3111 * Returns an error if the new association retransmission value is 3112 * greater than the sum of the retransmission value of the peer. 3113 * See [SCTP] for more information. 3114 * 3115 */ 3116 static int sctp_setsockopt_associnfo(struct sock *sk, 3117 struct sctp_assocparams *assocparams, 3118 unsigned int optlen) 3119 { 3120 3121 struct sctp_association *asoc; 3122 3123 if (optlen != sizeof(struct sctp_assocparams)) 3124 return -EINVAL; 3125 3126 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3127 3128 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3129 sctp_style(sk, UDP)) 3130 return -EINVAL; 3131 3132 /* Set the values to the specific association */ 3133 if (asoc) { 3134 if (assocparams->sasoc_asocmaxrxt != 0) { 3135 __u32 path_sum = 0; 3136 int paths = 0; 3137 struct sctp_transport *peer_addr; 3138 3139 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3140 transports) { 3141 path_sum += peer_addr->pathmaxrxt; 3142 paths++; 3143 } 3144 3145 /* Only validate asocmaxrxt if we have more than 3146 * one path/transport. We do this because path 3147 * retransmissions are only counted when we have more 3148 * then one path. 3149 */ 3150 if (paths > 1 && 3151 assocparams->sasoc_asocmaxrxt > path_sum) 3152 return -EINVAL; 3153 3154 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3155 } 3156 3157 if (assocparams->sasoc_cookie_life != 0) 3158 asoc->cookie_life = 3159 ms_to_ktime(assocparams->sasoc_cookie_life); 3160 } else { 3161 /* Set the values to the endpoint */ 3162 struct sctp_sock *sp = sctp_sk(sk); 3163 3164 if (assocparams->sasoc_asocmaxrxt != 0) 3165 sp->assocparams.sasoc_asocmaxrxt = 3166 assocparams->sasoc_asocmaxrxt; 3167 if (assocparams->sasoc_cookie_life != 0) 3168 sp->assocparams.sasoc_cookie_life = 3169 assocparams->sasoc_cookie_life; 3170 } 3171 return 0; 3172 } 3173 3174 /* 3175 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3176 * 3177 * This socket option is a boolean flag which turns on or off mapped V4 3178 * addresses. If this option is turned on and the socket is type 3179 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3180 * If this option is turned off, then no mapping will be done of V4 3181 * addresses and a user will receive both PF_INET6 and PF_INET type 3182 * addresses on the socket. 3183 */ 3184 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3185 unsigned int optlen) 3186 { 3187 struct sctp_sock *sp = sctp_sk(sk); 3188 3189 if (optlen < sizeof(int)) 3190 return -EINVAL; 3191 if (*val) 3192 sp->v4mapped = 1; 3193 else 3194 sp->v4mapped = 0; 3195 3196 return 0; 3197 } 3198 3199 /* 3200 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3201 * This option will get or set the maximum size to put in any outgoing 3202 * SCTP DATA chunk. If a message is larger than this size it will be 3203 * fragmented by SCTP into the specified size. Note that the underlying 3204 * SCTP implementation may fragment into smaller sized chunks when the 3205 * PMTU of the underlying association is smaller than the value set by 3206 * the user. The default value for this option is '0' which indicates 3207 * the user is NOT limiting fragmentation and only the PMTU will effect 3208 * SCTP's choice of DATA chunk size. Note also that values set larger 3209 * than the maximum size of an IP datagram will effectively let SCTP 3210 * control fragmentation (i.e. the same as setting this option to 0). 3211 * 3212 * The following structure is used to access and modify this parameter: 3213 * 3214 * struct sctp_assoc_value { 3215 * sctp_assoc_t assoc_id; 3216 * uint32_t assoc_value; 3217 * }; 3218 * 3219 * assoc_id: This parameter is ignored for one-to-one style sockets. 3220 * For one-to-many style sockets this parameter indicates which 3221 * association the user is performing an action upon. Note that if 3222 * this field's value is zero then the endpoints default value is 3223 * changed (effecting future associations only). 3224 * assoc_value: This parameter specifies the maximum size in bytes. 3225 */ 3226 static int sctp_setsockopt_maxseg(struct sock *sk, 3227 struct sctp_assoc_value *params, 3228 unsigned int optlen) 3229 { 3230 struct sctp_sock *sp = sctp_sk(sk); 3231 struct sctp_association *asoc; 3232 sctp_assoc_t assoc_id; 3233 int val; 3234 3235 if (optlen == sizeof(int)) { 3236 pr_warn_ratelimited(DEPRECATED 3237 "%s (pid %d) " 3238 "Use of int in maxseg socket option.\n" 3239 "Use struct sctp_assoc_value instead\n", 3240 current->comm, task_pid_nr(current)); 3241 assoc_id = SCTP_FUTURE_ASSOC; 3242 val = *(int *)params; 3243 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3244 assoc_id = params->assoc_id; 3245 val = params->assoc_value; 3246 } else { 3247 return -EINVAL; 3248 } 3249 3250 asoc = sctp_id2assoc(sk, assoc_id); 3251 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3252 sctp_style(sk, UDP)) 3253 return -EINVAL; 3254 3255 if (val) { 3256 int min_len, max_len; 3257 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3258 sizeof(struct sctp_data_chunk); 3259 3260 min_len = sctp_min_frag_point(sp, datasize); 3261 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3262 3263 if (val < min_len || val > max_len) 3264 return -EINVAL; 3265 } 3266 3267 if (asoc) { 3268 asoc->user_frag = val; 3269 sctp_assoc_update_frag_point(asoc); 3270 } else { 3271 sp->user_frag = val; 3272 } 3273 3274 return 0; 3275 } 3276 3277 3278 /* 3279 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3280 * 3281 * Requests that the peer mark the enclosed address as the association 3282 * primary. The enclosed address must be one of the association's 3283 * locally bound addresses. The following structure is used to make a 3284 * set primary request: 3285 */ 3286 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3287 struct sctp_setpeerprim *prim, 3288 unsigned int optlen) 3289 { 3290 struct sctp_sock *sp; 3291 struct sctp_association *asoc = NULL; 3292 struct sctp_chunk *chunk; 3293 struct sctp_af *af; 3294 int err; 3295 3296 sp = sctp_sk(sk); 3297 3298 if (!sp->ep->asconf_enable) 3299 return -EPERM; 3300 3301 if (optlen != sizeof(struct sctp_setpeerprim)) 3302 return -EINVAL; 3303 3304 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3305 if (!asoc) 3306 return -EINVAL; 3307 3308 if (!asoc->peer.asconf_capable) 3309 return -EPERM; 3310 3311 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3312 return -EPERM; 3313 3314 if (!sctp_state(asoc, ESTABLISHED)) 3315 return -ENOTCONN; 3316 3317 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3318 if (!af) 3319 return -EINVAL; 3320 3321 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3322 return -EADDRNOTAVAIL; 3323 3324 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3325 return -EADDRNOTAVAIL; 3326 3327 /* Allow security module to validate address. */ 3328 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3329 (struct sockaddr *)&prim->sspp_addr, 3330 af->sockaddr_len); 3331 if (err) 3332 return err; 3333 3334 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3335 chunk = sctp_make_asconf_set_prim(asoc, 3336 (union sctp_addr *)&prim->sspp_addr); 3337 if (!chunk) 3338 return -ENOMEM; 3339 3340 err = sctp_send_asconf(asoc, chunk); 3341 3342 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3343 3344 return err; 3345 } 3346 3347 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3348 struct sctp_setadaptation *adapt, 3349 unsigned int optlen) 3350 { 3351 if (optlen != sizeof(struct sctp_setadaptation)) 3352 return -EINVAL; 3353 3354 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3355 3356 return 0; 3357 } 3358 3359 /* 3360 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3361 * 3362 * The context field in the sctp_sndrcvinfo structure is normally only 3363 * used when a failed message is retrieved holding the value that was 3364 * sent down on the actual send call. This option allows the setting of 3365 * a default context on an association basis that will be received on 3366 * reading messages from the peer. This is especially helpful in the 3367 * one-2-many model for an application to keep some reference to an 3368 * internal state machine that is processing messages on the 3369 * association. Note that the setting of this value only effects 3370 * received messages from the peer and does not effect the value that is 3371 * saved with outbound messages. 3372 */ 3373 static int sctp_setsockopt_context(struct sock *sk, 3374 struct sctp_assoc_value *params, 3375 unsigned int optlen) 3376 { 3377 struct sctp_sock *sp = sctp_sk(sk); 3378 struct sctp_association *asoc; 3379 3380 if (optlen != sizeof(struct sctp_assoc_value)) 3381 return -EINVAL; 3382 3383 asoc = sctp_id2assoc(sk, params->assoc_id); 3384 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3385 sctp_style(sk, UDP)) 3386 return -EINVAL; 3387 3388 if (asoc) { 3389 asoc->default_rcv_context = params->assoc_value; 3390 3391 return 0; 3392 } 3393 3394 if (sctp_style(sk, TCP)) 3395 params->assoc_id = SCTP_FUTURE_ASSOC; 3396 3397 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3398 params->assoc_id == SCTP_ALL_ASSOC) 3399 sp->default_rcv_context = params->assoc_value; 3400 3401 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3402 params->assoc_id == SCTP_ALL_ASSOC) 3403 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3404 asoc->default_rcv_context = params->assoc_value; 3405 3406 return 0; 3407 } 3408 3409 /* 3410 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3411 * 3412 * This options will at a minimum specify if the implementation is doing 3413 * fragmented interleave. Fragmented interleave, for a one to many 3414 * socket, is when subsequent calls to receive a message may return 3415 * parts of messages from different associations. Some implementations 3416 * may allow you to turn this value on or off. If so, when turned off, 3417 * no fragment interleave will occur (which will cause a head of line 3418 * blocking amongst multiple associations sharing the same one to many 3419 * socket). When this option is turned on, then each receive call may 3420 * come from a different association (thus the user must receive data 3421 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3422 * association each receive belongs to. 3423 * 3424 * This option takes a boolean value. A non-zero value indicates that 3425 * fragmented interleave is on. A value of zero indicates that 3426 * fragmented interleave is off. 3427 * 3428 * Note that it is important that an implementation that allows this 3429 * option to be turned on, have it off by default. Otherwise an unaware 3430 * application using the one to many model may become confused and act 3431 * incorrectly. 3432 */ 3433 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3434 unsigned int optlen) 3435 { 3436 if (optlen != sizeof(int)) 3437 return -EINVAL; 3438 3439 sctp_sk(sk)->frag_interleave = !!*val; 3440 3441 if (!sctp_sk(sk)->frag_interleave) 3442 sctp_sk(sk)->ep->intl_enable = 0; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3449 * (SCTP_PARTIAL_DELIVERY_POINT) 3450 * 3451 * This option will set or get the SCTP partial delivery point. This 3452 * point is the size of a message where the partial delivery API will be 3453 * invoked to help free up rwnd space for the peer. Setting this to a 3454 * lower value will cause partial deliveries to happen more often. The 3455 * calls argument is an integer that sets or gets the partial delivery 3456 * point. Note also that the call will fail if the user attempts to set 3457 * this value larger than the socket receive buffer size. 3458 * 3459 * Note that any single message having a length smaller than or equal to 3460 * the SCTP partial delivery point will be delivered in one single read 3461 * call as long as the user provided buffer is large enough to hold the 3462 * message. 3463 */ 3464 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3465 unsigned int optlen) 3466 { 3467 if (optlen != sizeof(u32)) 3468 return -EINVAL; 3469 3470 /* Note: We double the receive buffer from what the user sets 3471 * it to be, also initial rwnd is based on rcvbuf/2. 3472 */ 3473 if (*val > (sk->sk_rcvbuf >> 1)) 3474 return -EINVAL; 3475 3476 sctp_sk(sk)->pd_point = *val; 3477 3478 return 0; /* is this the right error code? */ 3479 } 3480 3481 /* 3482 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3483 * 3484 * This option will allow a user to change the maximum burst of packets 3485 * that can be emitted by this association. Note that the default value 3486 * is 4, and some implementations may restrict this setting so that it 3487 * can only be lowered. 3488 * 3489 * NOTE: This text doesn't seem right. Do this on a socket basis with 3490 * future associations inheriting the socket value. 3491 */ 3492 static int sctp_setsockopt_maxburst(struct sock *sk, 3493 struct sctp_assoc_value *params, 3494 unsigned int optlen) 3495 { 3496 struct sctp_sock *sp = sctp_sk(sk); 3497 struct sctp_association *asoc; 3498 sctp_assoc_t assoc_id; 3499 u32 assoc_value; 3500 3501 if (optlen == sizeof(int)) { 3502 pr_warn_ratelimited(DEPRECATED 3503 "%s (pid %d) " 3504 "Use of int in max_burst socket option deprecated.\n" 3505 "Use struct sctp_assoc_value instead\n", 3506 current->comm, task_pid_nr(current)); 3507 assoc_id = SCTP_FUTURE_ASSOC; 3508 assoc_value = *((int *)params); 3509 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3510 assoc_id = params->assoc_id; 3511 assoc_value = params->assoc_value; 3512 } else 3513 return -EINVAL; 3514 3515 asoc = sctp_id2assoc(sk, assoc_id); 3516 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3517 return -EINVAL; 3518 3519 if (asoc) { 3520 asoc->max_burst = assoc_value; 3521 3522 return 0; 3523 } 3524 3525 if (sctp_style(sk, TCP)) 3526 assoc_id = SCTP_FUTURE_ASSOC; 3527 3528 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3529 sp->max_burst = assoc_value; 3530 3531 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3532 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3533 asoc->max_burst = assoc_value; 3534 3535 return 0; 3536 } 3537 3538 /* 3539 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3540 * 3541 * This set option adds a chunk type that the user is requesting to be 3542 * received only in an authenticated way. Changes to the list of chunks 3543 * will only effect future associations on the socket. 3544 */ 3545 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3546 struct sctp_authchunk *val, 3547 unsigned int optlen) 3548 { 3549 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3550 3551 if (!ep->auth_enable) 3552 return -EACCES; 3553 3554 if (optlen != sizeof(struct sctp_authchunk)) 3555 return -EINVAL; 3556 3557 switch (val->sauth_chunk) { 3558 case SCTP_CID_INIT: 3559 case SCTP_CID_INIT_ACK: 3560 case SCTP_CID_SHUTDOWN_COMPLETE: 3561 case SCTP_CID_AUTH: 3562 return -EINVAL; 3563 } 3564 3565 /* add this chunk id to the endpoint */ 3566 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3567 } 3568 3569 /* 3570 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3571 * 3572 * This option gets or sets the list of HMAC algorithms that the local 3573 * endpoint requires the peer to use. 3574 */ 3575 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3576 struct sctp_hmacalgo *hmacs, 3577 unsigned int optlen) 3578 { 3579 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3580 u32 idents; 3581 3582 if (!ep->auth_enable) 3583 return -EACCES; 3584 3585 if (optlen < sizeof(struct sctp_hmacalgo)) 3586 return -EINVAL; 3587 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3588 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3589 3590 idents = hmacs->shmac_num_idents; 3591 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3592 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3593 return -EINVAL; 3594 3595 return sctp_auth_ep_set_hmacs(ep, hmacs); 3596 } 3597 3598 /* 3599 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3600 * 3601 * This option will set a shared secret key which is used to build an 3602 * association shared key. 3603 */ 3604 static int sctp_setsockopt_auth_key(struct sock *sk, 3605 struct sctp_authkey *authkey, 3606 unsigned int optlen) 3607 { 3608 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3609 struct sctp_association *asoc; 3610 int ret = -EINVAL; 3611 3612 if (optlen <= sizeof(struct sctp_authkey)) 3613 return -EINVAL; 3614 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3615 * this. 3616 */ 3617 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3618 3619 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3620 goto out; 3621 3622 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3623 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3624 sctp_style(sk, UDP)) 3625 goto out; 3626 3627 if (asoc) { 3628 ret = sctp_auth_set_key(ep, asoc, authkey); 3629 goto out; 3630 } 3631 3632 if (sctp_style(sk, TCP)) 3633 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3634 3635 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3636 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3637 ret = sctp_auth_set_key(ep, asoc, authkey); 3638 if (ret) 3639 goto out; 3640 } 3641 3642 ret = 0; 3643 3644 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3645 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3646 list_for_each_entry(asoc, &ep->asocs, asocs) { 3647 int res = sctp_auth_set_key(ep, asoc, authkey); 3648 3649 if (res && !ret) 3650 ret = res; 3651 } 3652 } 3653 3654 out: 3655 memzero_explicit(authkey, optlen); 3656 return ret; 3657 } 3658 3659 /* 3660 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3661 * 3662 * This option will get or set the active shared key to be used to build 3663 * the association shared key. 3664 */ 3665 static int sctp_setsockopt_active_key(struct sock *sk, 3666 struct sctp_authkeyid *val, 3667 unsigned int optlen) 3668 { 3669 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3670 struct sctp_association *asoc; 3671 int ret = 0; 3672 3673 if (optlen != sizeof(struct sctp_authkeyid)) 3674 return -EINVAL; 3675 3676 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3677 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3678 sctp_style(sk, UDP)) 3679 return -EINVAL; 3680 3681 if (asoc) 3682 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3683 3684 if (sctp_style(sk, TCP)) 3685 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3686 3687 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3688 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3689 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3690 if (ret) 3691 return ret; 3692 } 3693 3694 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3695 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3696 list_for_each_entry(asoc, &ep->asocs, asocs) { 3697 int res = sctp_auth_set_active_key(ep, asoc, 3698 val->scact_keynumber); 3699 3700 if (res && !ret) 3701 ret = res; 3702 } 3703 } 3704 3705 return ret; 3706 } 3707 3708 /* 3709 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3710 * 3711 * This set option will delete a shared secret key from use. 3712 */ 3713 static int sctp_setsockopt_del_key(struct sock *sk, 3714 struct sctp_authkeyid *val, 3715 unsigned int optlen) 3716 { 3717 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3718 struct sctp_association *asoc; 3719 int ret = 0; 3720 3721 if (optlen != sizeof(struct sctp_authkeyid)) 3722 return -EINVAL; 3723 3724 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3725 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3726 sctp_style(sk, UDP)) 3727 return -EINVAL; 3728 3729 if (asoc) 3730 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3731 3732 if (sctp_style(sk, TCP)) 3733 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3734 3735 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3736 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3737 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3738 if (ret) 3739 return ret; 3740 } 3741 3742 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3743 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3744 list_for_each_entry(asoc, &ep->asocs, asocs) { 3745 int res = sctp_auth_del_key_id(ep, asoc, 3746 val->scact_keynumber); 3747 3748 if (res && !ret) 3749 ret = res; 3750 } 3751 } 3752 3753 return ret; 3754 } 3755 3756 /* 3757 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3758 * 3759 * This set option will deactivate a shared secret key. 3760 */ 3761 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3762 struct sctp_authkeyid *val, 3763 unsigned int optlen) 3764 { 3765 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3766 struct sctp_association *asoc; 3767 int ret = 0; 3768 3769 if (optlen != sizeof(struct sctp_authkeyid)) 3770 return -EINVAL; 3771 3772 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3773 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3774 sctp_style(sk, UDP)) 3775 return -EINVAL; 3776 3777 if (asoc) 3778 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3779 3780 if (sctp_style(sk, TCP)) 3781 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3782 3783 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3784 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3785 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3786 if (ret) 3787 return ret; 3788 } 3789 3790 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3791 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3792 list_for_each_entry(asoc, &ep->asocs, asocs) { 3793 int res = sctp_auth_deact_key_id(ep, asoc, 3794 val->scact_keynumber); 3795 3796 if (res && !ret) 3797 ret = res; 3798 } 3799 } 3800 3801 return ret; 3802 } 3803 3804 /* 3805 * 8.1.23 SCTP_AUTO_ASCONF 3806 * 3807 * This option will enable or disable the use of the automatic generation of 3808 * ASCONF chunks to add and delete addresses to an existing association. Note 3809 * that this option has two caveats namely: a) it only affects sockets that 3810 * are bound to all addresses available to the SCTP stack, and b) the system 3811 * administrator may have an overriding control that turns the ASCONF feature 3812 * off no matter what setting the socket option may have. 3813 * This option expects an integer boolean flag, where a non-zero value turns on 3814 * the option, and a zero value turns off the option. 3815 * Note. In this implementation, socket operation overrides default parameter 3816 * being set by sysctl as well as FreeBSD implementation 3817 */ 3818 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3819 unsigned int optlen) 3820 { 3821 struct sctp_sock *sp = sctp_sk(sk); 3822 3823 if (optlen < sizeof(int)) 3824 return -EINVAL; 3825 if (!sctp_is_ep_boundall(sk) && *val) 3826 return -EINVAL; 3827 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3828 return 0; 3829 3830 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3831 if (*val == 0 && sp->do_auto_asconf) { 3832 list_del(&sp->auto_asconf_list); 3833 sp->do_auto_asconf = 0; 3834 } else if (*val && !sp->do_auto_asconf) { 3835 list_add_tail(&sp->auto_asconf_list, 3836 &sock_net(sk)->sctp.auto_asconf_splist); 3837 sp->do_auto_asconf = 1; 3838 } 3839 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3840 return 0; 3841 } 3842 3843 /* 3844 * SCTP_PEER_ADDR_THLDS 3845 * 3846 * This option allows us to alter the partially failed threshold for one or all 3847 * transports in an association. See Section 6.1 of: 3848 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3849 */ 3850 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3851 struct sctp_paddrthlds_v2 *val, 3852 unsigned int optlen, bool v2) 3853 { 3854 struct sctp_transport *trans; 3855 struct sctp_association *asoc; 3856 int len; 3857 3858 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3859 if (optlen < len) 3860 return -EINVAL; 3861 3862 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3863 return -EINVAL; 3864 3865 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3866 trans = sctp_addr_id2transport(sk, &val->spt_address, 3867 val->spt_assoc_id); 3868 if (!trans) 3869 return -ENOENT; 3870 3871 if (val->spt_pathmaxrxt) 3872 trans->pathmaxrxt = val->spt_pathmaxrxt; 3873 if (v2) 3874 trans->ps_retrans = val->spt_pathcpthld; 3875 trans->pf_retrans = val->spt_pathpfthld; 3876 3877 return 0; 3878 } 3879 3880 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3881 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3882 sctp_style(sk, UDP)) 3883 return -EINVAL; 3884 3885 if (asoc) { 3886 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3887 transports) { 3888 if (val->spt_pathmaxrxt) 3889 trans->pathmaxrxt = val->spt_pathmaxrxt; 3890 if (v2) 3891 trans->ps_retrans = val->spt_pathcpthld; 3892 trans->pf_retrans = val->spt_pathpfthld; 3893 } 3894 3895 if (val->spt_pathmaxrxt) 3896 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3897 if (v2) 3898 asoc->ps_retrans = val->spt_pathcpthld; 3899 asoc->pf_retrans = val->spt_pathpfthld; 3900 } else { 3901 struct sctp_sock *sp = sctp_sk(sk); 3902 3903 if (val->spt_pathmaxrxt) 3904 sp->pathmaxrxt = val->spt_pathmaxrxt; 3905 if (v2) 3906 sp->ps_retrans = val->spt_pathcpthld; 3907 sp->pf_retrans = val->spt_pathpfthld; 3908 } 3909 3910 return 0; 3911 } 3912 3913 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3914 unsigned int optlen) 3915 { 3916 if (optlen < sizeof(int)) 3917 return -EINVAL; 3918 3919 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3920 3921 return 0; 3922 } 3923 3924 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3925 unsigned int optlen) 3926 { 3927 if (optlen < sizeof(int)) 3928 return -EINVAL; 3929 3930 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3931 3932 return 0; 3933 } 3934 3935 static int sctp_setsockopt_pr_supported(struct sock *sk, 3936 struct sctp_assoc_value *params, 3937 unsigned int optlen) 3938 { 3939 struct sctp_association *asoc; 3940 3941 if (optlen != sizeof(*params)) 3942 return -EINVAL; 3943 3944 asoc = sctp_id2assoc(sk, params->assoc_id); 3945 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3946 sctp_style(sk, UDP)) 3947 return -EINVAL; 3948 3949 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3950 3951 return 0; 3952 } 3953 3954 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3955 struct sctp_default_prinfo *info, 3956 unsigned int optlen) 3957 { 3958 struct sctp_sock *sp = sctp_sk(sk); 3959 struct sctp_association *asoc; 3960 int retval = -EINVAL; 3961 3962 if (optlen != sizeof(*info)) 3963 goto out; 3964 3965 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3966 goto out; 3967 3968 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3969 info->pr_value = 0; 3970 3971 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3972 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3973 sctp_style(sk, UDP)) 3974 goto out; 3975 3976 retval = 0; 3977 3978 if (asoc) { 3979 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3980 asoc->default_timetolive = info->pr_value; 3981 goto out; 3982 } 3983 3984 if (sctp_style(sk, TCP)) 3985 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 3986 3987 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 3988 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3989 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 3990 sp->default_timetolive = info->pr_value; 3991 } 3992 3993 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 3994 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3995 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3996 SCTP_PR_SET_POLICY(asoc->default_flags, 3997 info->pr_policy); 3998 asoc->default_timetolive = info->pr_value; 3999 } 4000 } 4001 4002 out: 4003 return retval; 4004 } 4005 4006 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4007 struct sctp_assoc_value *params, 4008 unsigned int optlen) 4009 { 4010 struct sctp_association *asoc; 4011 int retval = -EINVAL; 4012 4013 if (optlen != sizeof(*params)) 4014 goto out; 4015 4016 asoc = sctp_id2assoc(sk, params->assoc_id); 4017 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4018 sctp_style(sk, UDP)) 4019 goto out; 4020 4021 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4022 4023 retval = 0; 4024 4025 out: 4026 return retval; 4027 } 4028 4029 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4030 struct sctp_assoc_value *params, 4031 unsigned int optlen) 4032 { 4033 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4034 struct sctp_association *asoc; 4035 int retval = -EINVAL; 4036 4037 if (optlen != sizeof(*params)) 4038 goto out; 4039 4040 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4041 goto out; 4042 4043 asoc = sctp_id2assoc(sk, params->assoc_id); 4044 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4045 sctp_style(sk, UDP)) 4046 goto out; 4047 4048 retval = 0; 4049 4050 if (asoc) { 4051 asoc->strreset_enable = params->assoc_value; 4052 goto out; 4053 } 4054 4055 if (sctp_style(sk, TCP)) 4056 params->assoc_id = SCTP_FUTURE_ASSOC; 4057 4058 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4059 params->assoc_id == SCTP_ALL_ASSOC) 4060 ep->strreset_enable = params->assoc_value; 4061 4062 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4063 params->assoc_id == SCTP_ALL_ASSOC) 4064 list_for_each_entry(asoc, &ep->asocs, asocs) 4065 asoc->strreset_enable = params->assoc_value; 4066 4067 out: 4068 return retval; 4069 } 4070 4071 static int sctp_setsockopt_reset_streams(struct sock *sk, 4072 struct sctp_reset_streams *params, 4073 unsigned int optlen) 4074 { 4075 struct sctp_association *asoc; 4076 4077 if (optlen < sizeof(*params)) 4078 return -EINVAL; 4079 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4080 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4081 sizeof(__u16) * sizeof(*params)); 4082 4083 if (params->srs_number_streams * sizeof(__u16) > 4084 optlen - sizeof(*params)) 4085 return -EINVAL; 4086 4087 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4088 if (!asoc) 4089 return -EINVAL; 4090 4091 return sctp_send_reset_streams(asoc, params); 4092 } 4093 4094 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4095 unsigned int optlen) 4096 { 4097 struct sctp_association *asoc; 4098 4099 if (optlen != sizeof(*associd)) 4100 return -EINVAL; 4101 4102 asoc = sctp_id2assoc(sk, *associd); 4103 if (!asoc) 4104 return -EINVAL; 4105 4106 return sctp_send_reset_assoc(asoc); 4107 } 4108 4109 static int sctp_setsockopt_add_streams(struct sock *sk, 4110 struct sctp_add_streams *params, 4111 unsigned int optlen) 4112 { 4113 struct sctp_association *asoc; 4114 4115 if (optlen != sizeof(*params)) 4116 return -EINVAL; 4117 4118 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4119 if (!asoc) 4120 return -EINVAL; 4121 4122 return sctp_send_add_streams(asoc, params); 4123 } 4124 4125 static int sctp_setsockopt_scheduler(struct sock *sk, 4126 struct sctp_assoc_value *params, 4127 unsigned int optlen) 4128 { 4129 struct sctp_sock *sp = sctp_sk(sk); 4130 struct sctp_association *asoc; 4131 int retval = 0; 4132 4133 if (optlen < sizeof(*params)) 4134 return -EINVAL; 4135 4136 if (params->assoc_value > SCTP_SS_MAX) 4137 return -EINVAL; 4138 4139 asoc = sctp_id2assoc(sk, params->assoc_id); 4140 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4141 sctp_style(sk, UDP)) 4142 return -EINVAL; 4143 4144 if (asoc) 4145 return sctp_sched_set_sched(asoc, params->assoc_value); 4146 4147 if (sctp_style(sk, TCP)) 4148 params->assoc_id = SCTP_FUTURE_ASSOC; 4149 4150 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4151 params->assoc_id == SCTP_ALL_ASSOC) 4152 sp->default_ss = params->assoc_value; 4153 4154 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4155 params->assoc_id == SCTP_ALL_ASSOC) { 4156 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4157 int ret = sctp_sched_set_sched(asoc, 4158 params->assoc_value); 4159 4160 if (ret && !retval) 4161 retval = ret; 4162 } 4163 } 4164 4165 return retval; 4166 } 4167 4168 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4169 struct sctp_stream_value *params, 4170 unsigned int optlen) 4171 { 4172 struct sctp_association *asoc; 4173 int retval = -EINVAL; 4174 4175 if (optlen < sizeof(*params)) 4176 goto out; 4177 4178 asoc = sctp_id2assoc(sk, params->assoc_id); 4179 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4180 sctp_style(sk, UDP)) 4181 goto out; 4182 4183 if (asoc) { 4184 retval = sctp_sched_set_value(asoc, params->stream_id, 4185 params->stream_value, GFP_KERNEL); 4186 goto out; 4187 } 4188 4189 retval = 0; 4190 4191 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4192 int ret = sctp_sched_set_value(asoc, params->stream_id, 4193 params->stream_value, 4194 GFP_KERNEL); 4195 if (ret && !retval) /* try to return the 1st error. */ 4196 retval = ret; 4197 } 4198 4199 out: 4200 return retval; 4201 } 4202 4203 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4204 struct sctp_assoc_value *p, 4205 unsigned int optlen) 4206 { 4207 struct sctp_sock *sp = sctp_sk(sk); 4208 struct sctp_association *asoc; 4209 4210 if (optlen < sizeof(*p)) 4211 return -EINVAL; 4212 4213 asoc = sctp_id2assoc(sk, p->assoc_id); 4214 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4215 return -EINVAL; 4216 4217 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4218 return -EPERM; 4219 } 4220 4221 sp->ep->intl_enable = !!p->assoc_value; 4222 return 0; 4223 } 4224 4225 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4226 unsigned int optlen) 4227 { 4228 if (!sctp_style(sk, TCP)) 4229 return -EOPNOTSUPP; 4230 4231 if (sctp_sk(sk)->ep->base.bind_addr.port) 4232 return -EFAULT; 4233 4234 if (optlen < sizeof(int)) 4235 return -EINVAL; 4236 4237 sctp_sk(sk)->reuse = !!*val; 4238 4239 return 0; 4240 } 4241 4242 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4243 struct sctp_association *asoc) 4244 { 4245 struct sctp_ulpevent *event; 4246 4247 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4248 4249 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4250 if (sctp_outq_is_empty(&asoc->outqueue)) { 4251 event = sctp_ulpevent_make_sender_dry_event(asoc, 4252 GFP_USER | __GFP_NOWARN); 4253 if (!event) 4254 return -ENOMEM; 4255 4256 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4257 } 4258 } 4259 4260 return 0; 4261 } 4262 4263 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4264 unsigned int optlen) 4265 { 4266 struct sctp_sock *sp = sctp_sk(sk); 4267 struct sctp_association *asoc; 4268 int retval = 0; 4269 4270 if (optlen < sizeof(*param)) 4271 return -EINVAL; 4272 4273 if (param->se_type < SCTP_SN_TYPE_BASE || 4274 param->se_type > SCTP_SN_TYPE_MAX) 4275 return -EINVAL; 4276 4277 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4278 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4279 sctp_style(sk, UDP)) 4280 return -EINVAL; 4281 4282 if (asoc) 4283 return sctp_assoc_ulpevent_type_set(param, asoc); 4284 4285 if (sctp_style(sk, TCP)) 4286 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4287 4288 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4289 param->se_assoc_id == SCTP_ALL_ASSOC) 4290 sctp_ulpevent_type_set(&sp->subscribe, 4291 param->se_type, param->se_on); 4292 4293 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4294 param->se_assoc_id == SCTP_ALL_ASSOC) { 4295 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4296 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4297 4298 if (ret && !retval) 4299 retval = ret; 4300 } 4301 } 4302 4303 return retval; 4304 } 4305 4306 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4307 struct sctp_assoc_value *params, 4308 unsigned int optlen) 4309 { 4310 struct sctp_association *asoc; 4311 struct sctp_endpoint *ep; 4312 int retval = -EINVAL; 4313 4314 if (optlen != sizeof(*params)) 4315 goto out; 4316 4317 asoc = sctp_id2assoc(sk, params->assoc_id); 4318 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4319 sctp_style(sk, UDP)) 4320 goto out; 4321 4322 ep = sctp_sk(sk)->ep; 4323 ep->asconf_enable = !!params->assoc_value; 4324 4325 if (ep->asconf_enable && ep->auth_enable) { 4326 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4327 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4328 } 4329 4330 retval = 0; 4331 4332 out: 4333 return retval; 4334 } 4335 4336 static int sctp_setsockopt_auth_supported(struct sock *sk, 4337 struct sctp_assoc_value *params, 4338 unsigned int optlen) 4339 { 4340 struct sctp_association *asoc; 4341 struct sctp_endpoint *ep; 4342 int retval = -EINVAL; 4343 4344 if (optlen != sizeof(*params)) 4345 goto out; 4346 4347 asoc = sctp_id2assoc(sk, params->assoc_id); 4348 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4349 sctp_style(sk, UDP)) 4350 goto out; 4351 4352 ep = sctp_sk(sk)->ep; 4353 if (params->assoc_value) { 4354 retval = sctp_auth_init(ep, GFP_KERNEL); 4355 if (retval) 4356 goto out; 4357 if (ep->asconf_enable) { 4358 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4359 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4360 } 4361 } 4362 4363 ep->auth_enable = !!params->assoc_value; 4364 retval = 0; 4365 4366 out: 4367 return retval; 4368 } 4369 4370 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4371 struct sctp_assoc_value *params, 4372 unsigned int optlen) 4373 { 4374 struct sctp_association *asoc; 4375 int retval = -EINVAL; 4376 4377 if (optlen != sizeof(*params)) 4378 goto out; 4379 4380 asoc = sctp_id2assoc(sk, params->assoc_id); 4381 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4382 sctp_style(sk, UDP)) 4383 goto out; 4384 4385 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4386 retval = 0; 4387 4388 out: 4389 return retval; 4390 } 4391 4392 static int sctp_setsockopt_pf_expose(struct sock *sk, 4393 struct sctp_assoc_value *params, 4394 unsigned int optlen) 4395 { 4396 struct sctp_association *asoc; 4397 int retval = -EINVAL; 4398 4399 if (optlen != sizeof(*params)) 4400 goto out; 4401 4402 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4403 goto out; 4404 4405 asoc = sctp_id2assoc(sk, params->assoc_id); 4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4407 sctp_style(sk, UDP)) 4408 goto out; 4409 4410 if (asoc) 4411 asoc->pf_expose = params->assoc_value; 4412 else 4413 sctp_sk(sk)->pf_expose = params->assoc_value; 4414 retval = 0; 4415 4416 out: 4417 return retval; 4418 } 4419 4420 /* API 6.2 setsockopt(), getsockopt() 4421 * 4422 * Applications use setsockopt() and getsockopt() to set or retrieve 4423 * socket options. Socket options are used to change the default 4424 * behavior of sockets calls. They are described in Section 7. 4425 * 4426 * The syntax is: 4427 * 4428 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4429 * int __user *optlen); 4430 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4431 * int optlen); 4432 * 4433 * sd - the socket descript. 4434 * level - set to IPPROTO_SCTP for all SCTP options. 4435 * optname - the option name. 4436 * optval - the buffer to store the value of the option. 4437 * optlen - the size of the buffer. 4438 */ 4439 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4440 sockptr_t optval, unsigned int optlen) 4441 { 4442 void *kopt = NULL; 4443 int retval = 0; 4444 4445 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4446 4447 /* I can hardly begin to describe how wrong this is. This is 4448 * so broken as to be worse than useless. The API draft 4449 * REALLY is NOT helpful here... I am not convinced that the 4450 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4451 * are at all well-founded. 4452 */ 4453 if (level != SOL_SCTP) { 4454 struct sctp_af *af = sctp_sk(sk)->pf->af; 4455 4456 return af->setsockopt(sk, level, optname, optval, optlen); 4457 } 4458 4459 if (optlen > 0) { 4460 kopt = memdup_sockptr(optval, optlen); 4461 if (IS_ERR(kopt)) 4462 return PTR_ERR(kopt); 4463 } 4464 4465 lock_sock(sk); 4466 4467 switch (optname) { 4468 case SCTP_SOCKOPT_BINDX_ADD: 4469 /* 'optlen' is the size of the addresses buffer. */ 4470 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4471 SCTP_BINDX_ADD_ADDR); 4472 break; 4473 4474 case SCTP_SOCKOPT_BINDX_REM: 4475 /* 'optlen' is the size of the addresses buffer. */ 4476 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4477 SCTP_BINDX_REM_ADDR); 4478 break; 4479 4480 case SCTP_SOCKOPT_CONNECTX_OLD: 4481 /* 'optlen' is the size of the addresses buffer. */ 4482 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4483 break; 4484 4485 case SCTP_SOCKOPT_CONNECTX: 4486 /* 'optlen' is the size of the addresses buffer. */ 4487 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4488 break; 4489 4490 case SCTP_DISABLE_FRAGMENTS: 4491 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4492 break; 4493 4494 case SCTP_EVENTS: 4495 retval = sctp_setsockopt_events(sk, kopt, optlen); 4496 break; 4497 4498 case SCTP_AUTOCLOSE: 4499 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4500 break; 4501 4502 case SCTP_PEER_ADDR_PARAMS: 4503 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4504 break; 4505 4506 case SCTP_DELAYED_SACK: 4507 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4508 break; 4509 case SCTP_PARTIAL_DELIVERY_POINT: 4510 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4511 break; 4512 4513 case SCTP_INITMSG: 4514 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4515 break; 4516 case SCTP_DEFAULT_SEND_PARAM: 4517 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4518 break; 4519 case SCTP_DEFAULT_SNDINFO: 4520 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4521 break; 4522 case SCTP_PRIMARY_ADDR: 4523 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4524 break; 4525 case SCTP_SET_PEER_PRIMARY_ADDR: 4526 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4527 break; 4528 case SCTP_NODELAY: 4529 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4530 break; 4531 case SCTP_RTOINFO: 4532 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4533 break; 4534 case SCTP_ASSOCINFO: 4535 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4536 break; 4537 case SCTP_I_WANT_MAPPED_V4_ADDR: 4538 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4539 break; 4540 case SCTP_MAXSEG: 4541 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4542 break; 4543 case SCTP_ADAPTATION_LAYER: 4544 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4545 break; 4546 case SCTP_CONTEXT: 4547 retval = sctp_setsockopt_context(sk, kopt, optlen); 4548 break; 4549 case SCTP_FRAGMENT_INTERLEAVE: 4550 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4551 break; 4552 case SCTP_MAX_BURST: 4553 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4554 break; 4555 case SCTP_AUTH_CHUNK: 4556 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4557 break; 4558 case SCTP_HMAC_IDENT: 4559 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4560 break; 4561 case SCTP_AUTH_KEY: 4562 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4563 break; 4564 case SCTP_AUTH_ACTIVE_KEY: 4565 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4566 break; 4567 case SCTP_AUTH_DELETE_KEY: 4568 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4569 break; 4570 case SCTP_AUTH_DEACTIVATE_KEY: 4571 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4572 break; 4573 case SCTP_AUTO_ASCONF: 4574 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4575 break; 4576 case SCTP_PEER_ADDR_THLDS: 4577 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4578 false); 4579 break; 4580 case SCTP_PEER_ADDR_THLDS_V2: 4581 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4582 true); 4583 break; 4584 case SCTP_RECVRCVINFO: 4585 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4586 break; 4587 case SCTP_RECVNXTINFO: 4588 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4589 break; 4590 case SCTP_PR_SUPPORTED: 4591 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4592 break; 4593 case SCTP_DEFAULT_PRINFO: 4594 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4595 break; 4596 case SCTP_RECONFIG_SUPPORTED: 4597 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4598 break; 4599 case SCTP_ENABLE_STREAM_RESET: 4600 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4601 break; 4602 case SCTP_RESET_STREAMS: 4603 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4604 break; 4605 case SCTP_RESET_ASSOC: 4606 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4607 break; 4608 case SCTP_ADD_STREAMS: 4609 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4610 break; 4611 case SCTP_STREAM_SCHEDULER: 4612 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4613 break; 4614 case SCTP_STREAM_SCHEDULER_VALUE: 4615 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4616 break; 4617 case SCTP_INTERLEAVING_SUPPORTED: 4618 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4619 optlen); 4620 break; 4621 case SCTP_REUSE_PORT: 4622 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4623 break; 4624 case SCTP_EVENT: 4625 retval = sctp_setsockopt_event(sk, kopt, optlen); 4626 break; 4627 case SCTP_ASCONF_SUPPORTED: 4628 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4629 break; 4630 case SCTP_AUTH_SUPPORTED: 4631 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4632 break; 4633 case SCTP_ECN_SUPPORTED: 4634 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4635 break; 4636 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4637 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4638 break; 4639 default: 4640 retval = -ENOPROTOOPT; 4641 break; 4642 } 4643 4644 release_sock(sk); 4645 kfree(kopt); 4646 return retval; 4647 } 4648 4649 /* API 3.1.6 connect() - UDP Style Syntax 4650 * 4651 * An application may use the connect() call in the UDP model to initiate an 4652 * association without sending data. 4653 * 4654 * The syntax is: 4655 * 4656 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4657 * 4658 * sd: the socket descriptor to have a new association added to. 4659 * 4660 * nam: the address structure (either struct sockaddr_in or struct 4661 * sockaddr_in6 defined in RFC2553 [7]). 4662 * 4663 * len: the size of the address. 4664 */ 4665 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4666 int addr_len, int flags) 4667 { 4668 struct sctp_af *af; 4669 int err = -EINVAL; 4670 4671 lock_sock(sk); 4672 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4673 addr, addr_len); 4674 4675 /* Validate addr_len before calling common connect/connectx routine. */ 4676 af = sctp_get_af_specific(addr->sa_family); 4677 if (af && addr_len >= af->sockaddr_len) 4678 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4679 4680 release_sock(sk); 4681 return err; 4682 } 4683 4684 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4685 int addr_len, int flags) 4686 { 4687 if (addr_len < sizeof(uaddr->sa_family)) 4688 return -EINVAL; 4689 4690 if (uaddr->sa_family == AF_UNSPEC) 4691 return -EOPNOTSUPP; 4692 4693 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4694 } 4695 4696 /* FIXME: Write comments. */ 4697 static int sctp_disconnect(struct sock *sk, int flags) 4698 { 4699 return -EOPNOTSUPP; /* STUB */ 4700 } 4701 4702 /* 4.1.4 accept() - TCP Style Syntax 4703 * 4704 * Applications use accept() call to remove an established SCTP 4705 * association from the accept queue of the endpoint. A new socket 4706 * descriptor will be returned from accept() to represent the newly 4707 * formed association. 4708 */ 4709 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4710 { 4711 struct sctp_sock *sp; 4712 struct sctp_endpoint *ep; 4713 struct sock *newsk = NULL; 4714 struct sctp_association *asoc; 4715 long timeo; 4716 int error = 0; 4717 4718 lock_sock(sk); 4719 4720 sp = sctp_sk(sk); 4721 ep = sp->ep; 4722 4723 if (!sctp_style(sk, TCP)) { 4724 error = -EOPNOTSUPP; 4725 goto out; 4726 } 4727 4728 if (!sctp_sstate(sk, LISTENING)) { 4729 error = -EINVAL; 4730 goto out; 4731 } 4732 4733 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4734 4735 error = sctp_wait_for_accept(sk, timeo); 4736 if (error) 4737 goto out; 4738 4739 /* We treat the list of associations on the endpoint as the accept 4740 * queue and pick the first association on the list. 4741 */ 4742 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4743 4744 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4745 if (!newsk) { 4746 error = -ENOMEM; 4747 goto out; 4748 } 4749 4750 /* Populate the fields of the newsk from the oldsk and migrate the 4751 * asoc to the newsk. 4752 */ 4753 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4754 if (error) { 4755 sk_common_release(newsk); 4756 newsk = NULL; 4757 } 4758 4759 out: 4760 release_sock(sk); 4761 *err = error; 4762 return newsk; 4763 } 4764 4765 /* The SCTP ioctl handler. */ 4766 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4767 { 4768 int rc = -ENOTCONN; 4769 4770 lock_sock(sk); 4771 4772 /* 4773 * SEQPACKET-style sockets in LISTENING state are valid, for 4774 * SCTP, so only discard TCP-style sockets in LISTENING state. 4775 */ 4776 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4777 goto out; 4778 4779 switch (cmd) { 4780 case SIOCINQ: { 4781 struct sk_buff *skb; 4782 unsigned int amount = 0; 4783 4784 skb = skb_peek(&sk->sk_receive_queue); 4785 if (skb != NULL) { 4786 /* 4787 * We will only return the amount of this packet since 4788 * that is all that will be read. 4789 */ 4790 amount = skb->len; 4791 } 4792 rc = put_user(amount, (int __user *)arg); 4793 break; 4794 } 4795 default: 4796 rc = -ENOIOCTLCMD; 4797 break; 4798 } 4799 out: 4800 release_sock(sk); 4801 return rc; 4802 } 4803 4804 /* This is the function which gets called during socket creation to 4805 * initialized the SCTP-specific portion of the sock. 4806 * The sock structure should already be zero-filled memory. 4807 */ 4808 static int sctp_init_sock(struct sock *sk) 4809 { 4810 struct net *net = sock_net(sk); 4811 struct sctp_sock *sp; 4812 4813 pr_debug("%s: sk:%p\n", __func__, sk); 4814 4815 sp = sctp_sk(sk); 4816 4817 /* Initialize the SCTP per socket area. */ 4818 switch (sk->sk_type) { 4819 case SOCK_SEQPACKET: 4820 sp->type = SCTP_SOCKET_UDP; 4821 break; 4822 case SOCK_STREAM: 4823 sp->type = SCTP_SOCKET_TCP; 4824 break; 4825 default: 4826 return -ESOCKTNOSUPPORT; 4827 } 4828 4829 sk->sk_gso_type = SKB_GSO_SCTP; 4830 4831 /* Initialize default send parameters. These parameters can be 4832 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4833 */ 4834 sp->default_stream = 0; 4835 sp->default_ppid = 0; 4836 sp->default_flags = 0; 4837 sp->default_context = 0; 4838 sp->default_timetolive = 0; 4839 4840 sp->default_rcv_context = 0; 4841 sp->max_burst = net->sctp.max_burst; 4842 4843 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4844 4845 /* Initialize default setup parameters. These parameters 4846 * can be modified with the SCTP_INITMSG socket option or 4847 * overridden by the SCTP_INIT CMSG. 4848 */ 4849 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4850 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4851 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4852 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4853 4854 /* Initialize default RTO related parameters. These parameters can 4855 * be modified for with the SCTP_RTOINFO socket option. 4856 */ 4857 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4858 sp->rtoinfo.srto_max = net->sctp.rto_max; 4859 sp->rtoinfo.srto_min = net->sctp.rto_min; 4860 4861 /* Initialize default association related parameters. These parameters 4862 * can be modified with the SCTP_ASSOCINFO socket option. 4863 */ 4864 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4865 sp->assocparams.sasoc_number_peer_destinations = 0; 4866 sp->assocparams.sasoc_peer_rwnd = 0; 4867 sp->assocparams.sasoc_local_rwnd = 0; 4868 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4869 4870 /* Initialize default event subscriptions. By default, all the 4871 * options are off. 4872 */ 4873 sp->subscribe = 0; 4874 4875 /* Default Peer Address Parameters. These defaults can 4876 * be modified via SCTP_PEER_ADDR_PARAMS 4877 */ 4878 sp->hbinterval = net->sctp.hb_interval; 4879 sp->pathmaxrxt = net->sctp.max_retrans_path; 4880 sp->pf_retrans = net->sctp.pf_retrans; 4881 sp->ps_retrans = net->sctp.ps_retrans; 4882 sp->pf_expose = net->sctp.pf_expose; 4883 sp->pathmtu = 0; /* allow default discovery */ 4884 sp->sackdelay = net->sctp.sack_timeout; 4885 sp->sackfreq = 2; 4886 sp->param_flags = SPP_HB_ENABLE | 4887 SPP_PMTUD_ENABLE | 4888 SPP_SACKDELAY_ENABLE; 4889 sp->default_ss = SCTP_SS_DEFAULT; 4890 4891 /* If enabled no SCTP message fragmentation will be performed. 4892 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4893 */ 4894 sp->disable_fragments = 0; 4895 4896 /* Enable Nagle algorithm by default. */ 4897 sp->nodelay = 0; 4898 4899 sp->recvrcvinfo = 0; 4900 sp->recvnxtinfo = 0; 4901 4902 /* Enable by default. */ 4903 sp->v4mapped = 1; 4904 4905 /* Auto-close idle associations after the configured 4906 * number of seconds. A value of 0 disables this 4907 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4908 * for UDP-style sockets only. 4909 */ 4910 sp->autoclose = 0; 4911 4912 /* User specified fragmentation limit. */ 4913 sp->user_frag = 0; 4914 4915 sp->adaptation_ind = 0; 4916 4917 sp->pf = sctp_get_pf_specific(sk->sk_family); 4918 4919 /* Control variables for partial data delivery. */ 4920 atomic_set(&sp->pd_mode, 0); 4921 skb_queue_head_init(&sp->pd_lobby); 4922 sp->frag_interleave = 0; 4923 4924 /* Create a per socket endpoint structure. Even if we 4925 * change the data structure relationships, this may still 4926 * be useful for storing pre-connect address information. 4927 */ 4928 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4929 if (!sp->ep) 4930 return -ENOMEM; 4931 4932 sp->hmac = NULL; 4933 4934 sk->sk_destruct = sctp_destruct_sock; 4935 4936 SCTP_DBG_OBJCNT_INC(sock); 4937 4938 local_bh_disable(); 4939 sk_sockets_allocated_inc(sk); 4940 sock_prot_inuse_add(net, sk->sk_prot, 1); 4941 4942 /* Nothing can fail after this block, otherwise 4943 * sctp_destroy_sock() will be called without addr_wq_lock held 4944 */ 4945 if (net->sctp.default_auto_asconf) { 4946 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4947 list_add_tail(&sp->auto_asconf_list, 4948 &net->sctp.auto_asconf_splist); 4949 sp->do_auto_asconf = 1; 4950 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4951 } else { 4952 sp->do_auto_asconf = 0; 4953 } 4954 4955 local_bh_enable(); 4956 4957 return 0; 4958 } 4959 4960 /* Cleanup any SCTP per socket resources. Must be called with 4961 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4962 */ 4963 static void sctp_destroy_sock(struct sock *sk) 4964 { 4965 struct sctp_sock *sp; 4966 4967 pr_debug("%s: sk:%p\n", __func__, sk); 4968 4969 /* Release our hold on the endpoint. */ 4970 sp = sctp_sk(sk); 4971 /* This could happen during socket init, thus we bail out 4972 * early, since the rest of the below is not setup either. 4973 */ 4974 if (sp->ep == NULL) 4975 return; 4976 4977 if (sp->do_auto_asconf) { 4978 sp->do_auto_asconf = 0; 4979 list_del(&sp->auto_asconf_list); 4980 } 4981 sctp_endpoint_free(sp->ep); 4982 local_bh_disable(); 4983 sk_sockets_allocated_dec(sk); 4984 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4985 local_bh_enable(); 4986 } 4987 4988 /* Triggered when there are no references on the socket anymore */ 4989 static void sctp_destruct_sock(struct sock *sk) 4990 { 4991 struct sctp_sock *sp = sctp_sk(sk); 4992 4993 /* Free up the HMAC transform. */ 4994 crypto_free_shash(sp->hmac); 4995 4996 inet_sock_destruct(sk); 4997 } 4998 4999 /* API 4.1.7 shutdown() - TCP Style Syntax 5000 * int shutdown(int socket, int how); 5001 * 5002 * sd - the socket descriptor of the association to be closed. 5003 * how - Specifies the type of shutdown. The values are 5004 * as follows: 5005 * SHUT_RD 5006 * Disables further receive operations. No SCTP 5007 * protocol action is taken. 5008 * SHUT_WR 5009 * Disables further send operations, and initiates 5010 * the SCTP shutdown sequence. 5011 * SHUT_RDWR 5012 * Disables further send and receive operations 5013 * and initiates the SCTP shutdown sequence. 5014 */ 5015 static void sctp_shutdown(struct sock *sk, int how) 5016 { 5017 struct net *net = sock_net(sk); 5018 struct sctp_endpoint *ep; 5019 5020 if (!sctp_style(sk, TCP)) 5021 return; 5022 5023 ep = sctp_sk(sk)->ep; 5024 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5025 struct sctp_association *asoc; 5026 5027 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5028 asoc = list_entry(ep->asocs.next, 5029 struct sctp_association, asocs); 5030 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5031 } 5032 } 5033 5034 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5035 struct sctp_info *info) 5036 { 5037 struct sctp_transport *prim; 5038 struct list_head *pos; 5039 int mask; 5040 5041 memset(info, 0, sizeof(*info)); 5042 if (!asoc) { 5043 struct sctp_sock *sp = sctp_sk(sk); 5044 5045 info->sctpi_s_autoclose = sp->autoclose; 5046 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5047 info->sctpi_s_pd_point = sp->pd_point; 5048 info->sctpi_s_nodelay = sp->nodelay; 5049 info->sctpi_s_disable_fragments = sp->disable_fragments; 5050 info->sctpi_s_v4mapped = sp->v4mapped; 5051 info->sctpi_s_frag_interleave = sp->frag_interleave; 5052 info->sctpi_s_type = sp->type; 5053 5054 return 0; 5055 } 5056 5057 info->sctpi_tag = asoc->c.my_vtag; 5058 info->sctpi_state = asoc->state; 5059 info->sctpi_rwnd = asoc->a_rwnd; 5060 info->sctpi_unackdata = asoc->unack_data; 5061 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5062 info->sctpi_instrms = asoc->stream.incnt; 5063 info->sctpi_outstrms = asoc->stream.outcnt; 5064 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5065 info->sctpi_inqueue++; 5066 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5067 info->sctpi_outqueue++; 5068 info->sctpi_overall_error = asoc->overall_error_count; 5069 info->sctpi_max_burst = asoc->max_burst; 5070 info->sctpi_maxseg = asoc->frag_point; 5071 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5072 info->sctpi_peer_tag = asoc->c.peer_vtag; 5073 5074 mask = asoc->peer.ecn_capable << 1; 5075 mask = (mask | asoc->peer.ipv4_address) << 1; 5076 mask = (mask | asoc->peer.ipv6_address) << 1; 5077 mask = (mask | asoc->peer.hostname_address) << 1; 5078 mask = (mask | asoc->peer.asconf_capable) << 1; 5079 mask = (mask | asoc->peer.prsctp_capable) << 1; 5080 mask = (mask | asoc->peer.auth_capable); 5081 info->sctpi_peer_capable = mask; 5082 mask = asoc->peer.sack_needed << 1; 5083 mask = (mask | asoc->peer.sack_generation) << 1; 5084 mask = (mask | asoc->peer.zero_window_announced); 5085 info->sctpi_peer_sack = mask; 5086 5087 info->sctpi_isacks = asoc->stats.isacks; 5088 info->sctpi_osacks = asoc->stats.osacks; 5089 info->sctpi_opackets = asoc->stats.opackets; 5090 info->sctpi_ipackets = asoc->stats.ipackets; 5091 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5092 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5093 info->sctpi_idupchunks = asoc->stats.idupchunks; 5094 info->sctpi_gapcnt = asoc->stats.gapcnt; 5095 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5096 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5097 info->sctpi_oodchunks = asoc->stats.oodchunks; 5098 info->sctpi_iodchunks = asoc->stats.iodchunks; 5099 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5100 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5101 5102 prim = asoc->peer.primary_path; 5103 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5104 info->sctpi_p_state = prim->state; 5105 info->sctpi_p_cwnd = prim->cwnd; 5106 info->sctpi_p_srtt = prim->srtt; 5107 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5108 info->sctpi_p_hbinterval = prim->hbinterval; 5109 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5110 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5111 info->sctpi_p_ssthresh = prim->ssthresh; 5112 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5113 info->sctpi_p_flight_size = prim->flight_size; 5114 info->sctpi_p_error = prim->error_count; 5115 5116 return 0; 5117 } 5118 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5119 5120 /* use callback to avoid exporting the core structure */ 5121 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5122 { 5123 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5124 5125 rhashtable_walk_start(iter); 5126 } 5127 5128 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5129 { 5130 rhashtable_walk_stop(iter); 5131 rhashtable_walk_exit(iter); 5132 } 5133 5134 struct sctp_transport *sctp_transport_get_next(struct net *net, 5135 struct rhashtable_iter *iter) 5136 { 5137 struct sctp_transport *t; 5138 5139 t = rhashtable_walk_next(iter); 5140 for (; t; t = rhashtable_walk_next(iter)) { 5141 if (IS_ERR(t)) { 5142 if (PTR_ERR(t) == -EAGAIN) 5143 continue; 5144 break; 5145 } 5146 5147 if (!sctp_transport_hold(t)) 5148 continue; 5149 5150 if (net_eq(t->asoc->base.net, net) && 5151 t->asoc->peer.primary_path == t) 5152 break; 5153 5154 sctp_transport_put(t); 5155 } 5156 5157 return t; 5158 } 5159 5160 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5161 struct rhashtable_iter *iter, 5162 int pos) 5163 { 5164 struct sctp_transport *t; 5165 5166 if (!pos) 5167 return SEQ_START_TOKEN; 5168 5169 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5170 if (!--pos) 5171 break; 5172 sctp_transport_put(t); 5173 } 5174 5175 return t; 5176 } 5177 5178 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5179 void *p) { 5180 int err = 0; 5181 int hash = 0; 5182 struct sctp_ep_common *epb; 5183 struct sctp_hashbucket *head; 5184 5185 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5186 hash++, head++) { 5187 read_lock_bh(&head->lock); 5188 sctp_for_each_hentry(epb, &head->chain) { 5189 err = cb(sctp_ep(epb), p); 5190 if (err) 5191 break; 5192 } 5193 read_unlock_bh(&head->lock); 5194 } 5195 5196 return err; 5197 } 5198 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5199 5200 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5201 struct net *net, 5202 const union sctp_addr *laddr, 5203 const union sctp_addr *paddr, void *p) 5204 { 5205 struct sctp_transport *transport; 5206 int err; 5207 5208 rcu_read_lock(); 5209 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5210 rcu_read_unlock(); 5211 if (!transport) 5212 return -ENOENT; 5213 5214 err = cb(transport, p); 5215 sctp_transport_put(transport); 5216 5217 return err; 5218 } 5219 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5220 5221 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5222 int (*cb_done)(struct sctp_transport *, void *), 5223 struct net *net, int *pos, void *p) { 5224 struct rhashtable_iter hti; 5225 struct sctp_transport *tsp; 5226 int ret; 5227 5228 again: 5229 ret = 0; 5230 sctp_transport_walk_start(&hti); 5231 5232 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5233 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5234 ret = cb(tsp, p); 5235 if (ret) 5236 break; 5237 (*pos)++; 5238 sctp_transport_put(tsp); 5239 } 5240 sctp_transport_walk_stop(&hti); 5241 5242 if (ret) { 5243 if (cb_done && !cb_done(tsp, p)) { 5244 (*pos)++; 5245 sctp_transport_put(tsp); 5246 goto again; 5247 } 5248 sctp_transport_put(tsp); 5249 } 5250 5251 return ret; 5252 } 5253 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5254 5255 /* 7.2.1 Association Status (SCTP_STATUS) 5256 5257 * Applications can retrieve current status information about an 5258 * association, including association state, peer receiver window size, 5259 * number of unacked data chunks, and number of data chunks pending 5260 * receipt. This information is read-only. 5261 */ 5262 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5263 char __user *optval, 5264 int __user *optlen) 5265 { 5266 struct sctp_status status; 5267 struct sctp_association *asoc = NULL; 5268 struct sctp_transport *transport; 5269 sctp_assoc_t associd; 5270 int retval = 0; 5271 5272 if (len < sizeof(status)) { 5273 retval = -EINVAL; 5274 goto out; 5275 } 5276 5277 len = sizeof(status); 5278 if (copy_from_user(&status, optval, len)) { 5279 retval = -EFAULT; 5280 goto out; 5281 } 5282 5283 associd = status.sstat_assoc_id; 5284 asoc = sctp_id2assoc(sk, associd); 5285 if (!asoc) { 5286 retval = -EINVAL; 5287 goto out; 5288 } 5289 5290 transport = asoc->peer.primary_path; 5291 5292 status.sstat_assoc_id = sctp_assoc2id(asoc); 5293 status.sstat_state = sctp_assoc_to_state(asoc); 5294 status.sstat_rwnd = asoc->peer.rwnd; 5295 status.sstat_unackdata = asoc->unack_data; 5296 5297 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5298 status.sstat_instrms = asoc->stream.incnt; 5299 status.sstat_outstrms = asoc->stream.outcnt; 5300 status.sstat_fragmentation_point = asoc->frag_point; 5301 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5302 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5303 transport->af_specific->sockaddr_len); 5304 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5305 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5306 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5307 status.sstat_primary.spinfo_state = transport->state; 5308 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5309 status.sstat_primary.spinfo_srtt = transport->srtt; 5310 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5311 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5312 5313 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5314 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5315 5316 if (put_user(len, optlen)) { 5317 retval = -EFAULT; 5318 goto out; 5319 } 5320 5321 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5322 __func__, len, status.sstat_state, status.sstat_rwnd, 5323 status.sstat_assoc_id); 5324 5325 if (copy_to_user(optval, &status, len)) { 5326 retval = -EFAULT; 5327 goto out; 5328 } 5329 5330 out: 5331 return retval; 5332 } 5333 5334 5335 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5336 * 5337 * Applications can retrieve information about a specific peer address 5338 * of an association, including its reachability state, congestion 5339 * window, and retransmission timer values. This information is 5340 * read-only. 5341 */ 5342 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5343 char __user *optval, 5344 int __user *optlen) 5345 { 5346 struct sctp_paddrinfo pinfo; 5347 struct sctp_transport *transport; 5348 int retval = 0; 5349 5350 if (len < sizeof(pinfo)) { 5351 retval = -EINVAL; 5352 goto out; 5353 } 5354 5355 len = sizeof(pinfo); 5356 if (copy_from_user(&pinfo, optval, len)) { 5357 retval = -EFAULT; 5358 goto out; 5359 } 5360 5361 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5362 pinfo.spinfo_assoc_id); 5363 if (!transport) { 5364 retval = -EINVAL; 5365 goto out; 5366 } 5367 5368 if (transport->state == SCTP_PF && 5369 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5370 retval = -EACCES; 5371 goto out; 5372 } 5373 5374 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5375 pinfo.spinfo_state = transport->state; 5376 pinfo.spinfo_cwnd = transport->cwnd; 5377 pinfo.spinfo_srtt = transport->srtt; 5378 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5379 pinfo.spinfo_mtu = transport->pathmtu; 5380 5381 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5382 pinfo.spinfo_state = SCTP_ACTIVE; 5383 5384 if (put_user(len, optlen)) { 5385 retval = -EFAULT; 5386 goto out; 5387 } 5388 5389 if (copy_to_user(optval, &pinfo, len)) { 5390 retval = -EFAULT; 5391 goto out; 5392 } 5393 5394 out: 5395 return retval; 5396 } 5397 5398 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5399 * 5400 * This option is a on/off flag. If enabled no SCTP message 5401 * fragmentation will be performed. Instead if a message being sent 5402 * exceeds the current PMTU size, the message will NOT be sent and 5403 * instead a error will be indicated to the user. 5404 */ 5405 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5406 char __user *optval, int __user *optlen) 5407 { 5408 int val; 5409 5410 if (len < sizeof(int)) 5411 return -EINVAL; 5412 5413 len = sizeof(int); 5414 val = (sctp_sk(sk)->disable_fragments == 1); 5415 if (put_user(len, optlen)) 5416 return -EFAULT; 5417 if (copy_to_user(optval, &val, len)) 5418 return -EFAULT; 5419 return 0; 5420 } 5421 5422 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5423 * 5424 * This socket option is used to specify various notifications and 5425 * ancillary data the user wishes to receive. 5426 */ 5427 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5428 int __user *optlen) 5429 { 5430 struct sctp_event_subscribe subscribe; 5431 __u8 *sn_type = (__u8 *)&subscribe; 5432 int i; 5433 5434 if (len == 0) 5435 return -EINVAL; 5436 if (len > sizeof(struct sctp_event_subscribe)) 5437 len = sizeof(struct sctp_event_subscribe); 5438 if (put_user(len, optlen)) 5439 return -EFAULT; 5440 5441 for (i = 0; i < len; i++) 5442 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5443 SCTP_SN_TYPE_BASE + i); 5444 5445 if (copy_to_user(optval, &subscribe, len)) 5446 return -EFAULT; 5447 5448 return 0; 5449 } 5450 5451 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5452 * 5453 * This socket option is applicable to the UDP-style socket only. When 5454 * set it will cause associations that are idle for more than the 5455 * specified number of seconds to automatically close. An association 5456 * being idle is defined an association that has NOT sent or received 5457 * user data. The special value of '0' indicates that no automatic 5458 * close of any associations should be performed. The option expects an 5459 * integer defining the number of seconds of idle time before an 5460 * association is closed. 5461 */ 5462 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5463 { 5464 /* Applicable to UDP-style socket only */ 5465 if (sctp_style(sk, TCP)) 5466 return -EOPNOTSUPP; 5467 if (len < sizeof(int)) 5468 return -EINVAL; 5469 len = sizeof(int); 5470 if (put_user(len, optlen)) 5471 return -EFAULT; 5472 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5473 return -EFAULT; 5474 return 0; 5475 } 5476 5477 /* Helper routine to branch off an association to a new socket. */ 5478 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5479 { 5480 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5481 struct sctp_sock *sp = sctp_sk(sk); 5482 struct socket *sock; 5483 int err = 0; 5484 5485 /* Do not peel off from one netns to another one. */ 5486 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5487 return -EINVAL; 5488 5489 if (!asoc) 5490 return -EINVAL; 5491 5492 /* An association cannot be branched off from an already peeled-off 5493 * socket, nor is this supported for tcp style sockets. 5494 */ 5495 if (!sctp_style(sk, UDP)) 5496 return -EINVAL; 5497 5498 /* Create a new socket. */ 5499 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5500 if (err < 0) 5501 return err; 5502 5503 sctp_copy_sock(sock->sk, sk, asoc); 5504 5505 /* Make peeled-off sockets more like 1-1 accepted sockets. 5506 * Set the daddr and initialize id to something more random and also 5507 * copy over any ip options. 5508 */ 5509 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5510 sp->pf->copy_ip_options(sk, sock->sk); 5511 5512 /* Populate the fields of the newsk from the oldsk and migrate the 5513 * asoc to the newsk. 5514 */ 5515 err = sctp_sock_migrate(sk, sock->sk, asoc, 5516 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5517 if (err) { 5518 sock_release(sock); 5519 sock = NULL; 5520 } 5521 5522 *sockp = sock; 5523 5524 return err; 5525 } 5526 EXPORT_SYMBOL(sctp_do_peeloff); 5527 5528 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5529 struct file **newfile, unsigned flags) 5530 { 5531 struct socket *newsock; 5532 int retval; 5533 5534 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5535 if (retval < 0) 5536 goto out; 5537 5538 /* Map the socket to an unused fd that can be returned to the user. */ 5539 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5540 if (retval < 0) { 5541 sock_release(newsock); 5542 goto out; 5543 } 5544 5545 *newfile = sock_alloc_file(newsock, 0, NULL); 5546 if (IS_ERR(*newfile)) { 5547 put_unused_fd(retval); 5548 retval = PTR_ERR(*newfile); 5549 *newfile = NULL; 5550 return retval; 5551 } 5552 5553 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5554 retval); 5555 5556 peeloff->sd = retval; 5557 5558 if (flags & SOCK_NONBLOCK) 5559 (*newfile)->f_flags |= O_NONBLOCK; 5560 out: 5561 return retval; 5562 } 5563 5564 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5565 { 5566 sctp_peeloff_arg_t peeloff; 5567 struct file *newfile = NULL; 5568 int retval = 0; 5569 5570 if (len < sizeof(sctp_peeloff_arg_t)) 5571 return -EINVAL; 5572 len = sizeof(sctp_peeloff_arg_t); 5573 if (copy_from_user(&peeloff, optval, len)) 5574 return -EFAULT; 5575 5576 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5577 if (retval < 0) 5578 goto out; 5579 5580 /* Return the fd mapped to the new socket. */ 5581 if (put_user(len, optlen)) { 5582 fput(newfile); 5583 put_unused_fd(retval); 5584 return -EFAULT; 5585 } 5586 5587 if (copy_to_user(optval, &peeloff, len)) { 5588 fput(newfile); 5589 put_unused_fd(retval); 5590 return -EFAULT; 5591 } 5592 fd_install(retval, newfile); 5593 out: 5594 return retval; 5595 } 5596 5597 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5598 char __user *optval, int __user *optlen) 5599 { 5600 sctp_peeloff_flags_arg_t peeloff; 5601 struct file *newfile = NULL; 5602 int retval = 0; 5603 5604 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5605 return -EINVAL; 5606 len = sizeof(sctp_peeloff_flags_arg_t); 5607 if (copy_from_user(&peeloff, optval, len)) 5608 return -EFAULT; 5609 5610 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5611 &newfile, peeloff.flags); 5612 if (retval < 0) 5613 goto out; 5614 5615 /* Return the fd mapped to the new socket. */ 5616 if (put_user(len, optlen)) { 5617 fput(newfile); 5618 put_unused_fd(retval); 5619 return -EFAULT; 5620 } 5621 5622 if (copy_to_user(optval, &peeloff, len)) { 5623 fput(newfile); 5624 put_unused_fd(retval); 5625 return -EFAULT; 5626 } 5627 fd_install(retval, newfile); 5628 out: 5629 return retval; 5630 } 5631 5632 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5633 * 5634 * Applications can enable or disable heartbeats for any peer address of 5635 * an association, modify an address's heartbeat interval, force a 5636 * heartbeat to be sent immediately, and adjust the address's maximum 5637 * number of retransmissions sent before an address is considered 5638 * unreachable. The following structure is used to access and modify an 5639 * address's parameters: 5640 * 5641 * struct sctp_paddrparams { 5642 * sctp_assoc_t spp_assoc_id; 5643 * struct sockaddr_storage spp_address; 5644 * uint32_t spp_hbinterval; 5645 * uint16_t spp_pathmaxrxt; 5646 * uint32_t spp_pathmtu; 5647 * uint32_t spp_sackdelay; 5648 * uint32_t spp_flags; 5649 * }; 5650 * 5651 * spp_assoc_id - (one-to-many style socket) This is filled in the 5652 * application, and identifies the association for 5653 * this query. 5654 * spp_address - This specifies which address is of interest. 5655 * spp_hbinterval - This contains the value of the heartbeat interval, 5656 * in milliseconds. If a value of zero 5657 * is present in this field then no changes are to 5658 * be made to this parameter. 5659 * spp_pathmaxrxt - This contains the maximum number of 5660 * retransmissions before this address shall be 5661 * considered unreachable. If a value of zero 5662 * is present in this field then no changes are to 5663 * be made to this parameter. 5664 * spp_pathmtu - When Path MTU discovery is disabled the value 5665 * specified here will be the "fixed" path mtu. 5666 * Note that if the spp_address field is empty 5667 * then all associations on this address will 5668 * have this fixed path mtu set upon them. 5669 * 5670 * spp_sackdelay - When delayed sack is enabled, this value specifies 5671 * the number of milliseconds that sacks will be delayed 5672 * for. This value will apply to all addresses of an 5673 * association if the spp_address field is empty. Note 5674 * also, that if delayed sack is enabled and this 5675 * value is set to 0, no change is made to the last 5676 * recorded delayed sack timer value. 5677 * 5678 * spp_flags - These flags are used to control various features 5679 * on an association. The flag field may contain 5680 * zero or more of the following options. 5681 * 5682 * SPP_HB_ENABLE - Enable heartbeats on the 5683 * specified address. Note that if the address 5684 * field is empty all addresses for the association 5685 * have heartbeats enabled upon them. 5686 * 5687 * SPP_HB_DISABLE - Disable heartbeats on the 5688 * speicifed address. Note that if the address 5689 * field is empty all addresses for the association 5690 * will have their heartbeats disabled. Note also 5691 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5692 * mutually exclusive, only one of these two should 5693 * be specified. Enabling both fields will have 5694 * undetermined results. 5695 * 5696 * SPP_HB_DEMAND - Request a user initiated heartbeat 5697 * to be made immediately. 5698 * 5699 * SPP_PMTUD_ENABLE - This field will enable PMTU 5700 * discovery upon the specified address. Note that 5701 * if the address feild is empty then all addresses 5702 * on the association are effected. 5703 * 5704 * SPP_PMTUD_DISABLE - This field will disable PMTU 5705 * discovery upon the specified address. Note that 5706 * if the address feild is empty then all addresses 5707 * on the association are effected. Not also that 5708 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5709 * exclusive. Enabling both will have undetermined 5710 * results. 5711 * 5712 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5713 * on delayed sack. The time specified in spp_sackdelay 5714 * is used to specify the sack delay for this address. Note 5715 * that if spp_address is empty then all addresses will 5716 * enable delayed sack and take on the sack delay 5717 * value specified in spp_sackdelay. 5718 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5719 * off delayed sack. If the spp_address field is blank then 5720 * delayed sack is disabled for the entire association. Note 5721 * also that this field is mutually exclusive to 5722 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5723 * results. 5724 * 5725 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5726 * setting of the IPV6 flow label value. The value is 5727 * contained in the spp_ipv6_flowlabel field. 5728 * Upon retrieval, this flag will be set to indicate that 5729 * the spp_ipv6_flowlabel field has a valid value returned. 5730 * If a specific destination address is set (in the 5731 * spp_address field), then the value returned is that of 5732 * the address. If just an association is specified (and 5733 * no address), then the association's default flow label 5734 * is returned. If neither an association nor a destination 5735 * is specified, then the socket's default flow label is 5736 * returned. For non-IPv6 sockets, this flag will be left 5737 * cleared. 5738 * 5739 * SPP_DSCP: Setting this flag enables the setting of the 5740 * Differentiated Services Code Point (DSCP) value 5741 * associated with either the association or a specific 5742 * address. The value is obtained in the spp_dscp field. 5743 * Upon retrieval, this flag will be set to indicate that 5744 * the spp_dscp field has a valid value returned. If a 5745 * specific destination address is set when called (in the 5746 * spp_address field), then that specific destination 5747 * address's DSCP value is returned. If just an association 5748 * is specified, then the association's default DSCP is 5749 * returned. If neither an association nor a destination is 5750 * specified, then the socket's default DSCP is returned. 5751 * 5752 * spp_ipv6_flowlabel 5753 * - This field is used in conjunction with the 5754 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5755 * The 20 least significant bits are used for the flow 5756 * label. This setting has precedence over any IPv6-layer 5757 * setting. 5758 * 5759 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5760 * and contains the DSCP. The 6 most significant bits are 5761 * used for the DSCP. This setting has precedence over any 5762 * IPv4- or IPv6- layer setting. 5763 */ 5764 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5765 char __user *optval, int __user *optlen) 5766 { 5767 struct sctp_paddrparams params; 5768 struct sctp_transport *trans = NULL; 5769 struct sctp_association *asoc = NULL; 5770 struct sctp_sock *sp = sctp_sk(sk); 5771 5772 if (len >= sizeof(params)) 5773 len = sizeof(params); 5774 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5775 spp_ipv6_flowlabel), 4)) 5776 len = ALIGN(offsetof(struct sctp_paddrparams, 5777 spp_ipv6_flowlabel), 4); 5778 else 5779 return -EINVAL; 5780 5781 if (copy_from_user(¶ms, optval, len)) 5782 return -EFAULT; 5783 5784 /* If an address other than INADDR_ANY is specified, and 5785 * no transport is found, then the request is invalid. 5786 */ 5787 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5788 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5789 params.spp_assoc_id); 5790 if (!trans) { 5791 pr_debug("%s: failed no transport\n", __func__); 5792 return -EINVAL; 5793 } 5794 } 5795 5796 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5797 * socket is a one to many style socket, and an association 5798 * was not found, then the id was invalid. 5799 */ 5800 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5801 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5802 sctp_style(sk, UDP)) { 5803 pr_debug("%s: failed no association\n", __func__); 5804 return -EINVAL; 5805 } 5806 5807 if (trans) { 5808 /* Fetch transport values. */ 5809 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5810 params.spp_pathmtu = trans->pathmtu; 5811 params.spp_pathmaxrxt = trans->pathmaxrxt; 5812 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5813 5814 /*draft-11 doesn't say what to return in spp_flags*/ 5815 params.spp_flags = trans->param_flags; 5816 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5817 params.spp_ipv6_flowlabel = trans->flowlabel & 5818 SCTP_FLOWLABEL_VAL_MASK; 5819 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5820 } 5821 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5822 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5823 params.spp_flags |= SPP_DSCP; 5824 } 5825 } else if (asoc) { 5826 /* Fetch association values. */ 5827 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5828 params.spp_pathmtu = asoc->pathmtu; 5829 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5830 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5831 5832 /*draft-11 doesn't say what to return in spp_flags*/ 5833 params.spp_flags = asoc->param_flags; 5834 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5835 params.spp_ipv6_flowlabel = asoc->flowlabel & 5836 SCTP_FLOWLABEL_VAL_MASK; 5837 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5838 } 5839 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5840 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5841 params.spp_flags |= SPP_DSCP; 5842 } 5843 } else { 5844 /* Fetch socket values. */ 5845 params.spp_hbinterval = sp->hbinterval; 5846 params.spp_pathmtu = sp->pathmtu; 5847 params.spp_sackdelay = sp->sackdelay; 5848 params.spp_pathmaxrxt = sp->pathmaxrxt; 5849 5850 /*draft-11 doesn't say what to return in spp_flags*/ 5851 params.spp_flags = sp->param_flags; 5852 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5853 params.spp_ipv6_flowlabel = sp->flowlabel & 5854 SCTP_FLOWLABEL_VAL_MASK; 5855 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5856 } 5857 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5858 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5859 params.spp_flags |= SPP_DSCP; 5860 } 5861 } 5862 5863 if (copy_to_user(optval, ¶ms, len)) 5864 return -EFAULT; 5865 5866 if (put_user(len, optlen)) 5867 return -EFAULT; 5868 5869 return 0; 5870 } 5871 5872 /* 5873 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5874 * 5875 * This option will effect the way delayed acks are performed. This 5876 * option allows you to get or set the delayed ack time, in 5877 * milliseconds. It also allows changing the delayed ack frequency. 5878 * Changing the frequency to 1 disables the delayed sack algorithm. If 5879 * the assoc_id is 0, then this sets or gets the endpoints default 5880 * values. If the assoc_id field is non-zero, then the set or get 5881 * effects the specified association for the one to many model (the 5882 * assoc_id field is ignored by the one to one model). Note that if 5883 * sack_delay or sack_freq are 0 when setting this option, then the 5884 * current values will remain unchanged. 5885 * 5886 * struct sctp_sack_info { 5887 * sctp_assoc_t sack_assoc_id; 5888 * uint32_t sack_delay; 5889 * uint32_t sack_freq; 5890 * }; 5891 * 5892 * sack_assoc_id - This parameter, indicates which association the user 5893 * is performing an action upon. Note that if this field's value is 5894 * zero then the endpoints default value is changed (effecting future 5895 * associations only). 5896 * 5897 * sack_delay - This parameter contains the number of milliseconds that 5898 * the user is requesting the delayed ACK timer be set to. Note that 5899 * this value is defined in the standard to be between 200 and 500 5900 * milliseconds. 5901 * 5902 * sack_freq - This parameter contains the number of packets that must 5903 * be received before a sack is sent without waiting for the delay 5904 * timer to expire. The default value for this is 2, setting this 5905 * value to 1 will disable the delayed sack algorithm. 5906 */ 5907 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5908 char __user *optval, 5909 int __user *optlen) 5910 { 5911 struct sctp_sack_info params; 5912 struct sctp_association *asoc = NULL; 5913 struct sctp_sock *sp = sctp_sk(sk); 5914 5915 if (len >= sizeof(struct sctp_sack_info)) { 5916 len = sizeof(struct sctp_sack_info); 5917 5918 if (copy_from_user(¶ms, optval, len)) 5919 return -EFAULT; 5920 } else if (len == sizeof(struct sctp_assoc_value)) { 5921 pr_warn_ratelimited(DEPRECATED 5922 "%s (pid %d) " 5923 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5924 "Use struct sctp_sack_info instead\n", 5925 current->comm, task_pid_nr(current)); 5926 if (copy_from_user(¶ms, optval, len)) 5927 return -EFAULT; 5928 } else 5929 return -EINVAL; 5930 5931 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 5932 * socket is a one to many style socket, and an association 5933 * was not found, then the id was invalid. 5934 */ 5935 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5936 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 5937 sctp_style(sk, UDP)) 5938 return -EINVAL; 5939 5940 if (asoc) { 5941 /* Fetch association values. */ 5942 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5943 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 5944 params.sack_freq = asoc->sackfreq; 5945 5946 } else { 5947 params.sack_delay = 0; 5948 params.sack_freq = 1; 5949 } 5950 } else { 5951 /* Fetch socket values. */ 5952 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5953 params.sack_delay = sp->sackdelay; 5954 params.sack_freq = sp->sackfreq; 5955 } else { 5956 params.sack_delay = 0; 5957 params.sack_freq = 1; 5958 } 5959 } 5960 5961 if (copy_to_user(optval, ¶ms, len)) 5962 return -EFAULT; 5963 5964 if (put_user(len, optlen)) 5965 return -EFAULT; 5966 5967 return 0; 5968 } 5969 5970 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5971 * 5972 * Applications can specify protocol parameters for the default association 5973 * initialization. The option name argument to setsockopt() and getsockopt() 5974 * is SCTP_INITMSG. 5975 * 5976 * Setting initialization parameters is effective only on an unconnected 5977 * socket (for UDP-style sockets only future associations are effected 5978 * by the change). With TCP-style sockets, this option is inherited by 5979 * sockets derived from a listener socket. 5980 */ 5981 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5982 { 5983 if (len < sizeof(struct sctp_initmsg)) 5984 return -EINVAL; 5985 len = sizeof(struct sctp_initmsg); 5986 if (put_user(len, optlen)) 5987 return -EFAULT; 5988 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5989 return -EFAULT; 5990 return 0; 5991 } 5992 5993 5994 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5995 char __user *optval, int __user *optlen) 5996 { 5997 struct sctp_association *asoc; 5998 int cnt = 0; 5999 struct sctp_getaddrs getaddrs; 6000 struct sctp_transport *from; 6001 void __user *to; 6002 union sctp_addr temp; 6003 struct sctp_sock *sp = sctp_sk(sk); 6004 int addrlen; 6005 size_t space_left; 6006 int bytes_copied; 6007 6008 if (len < sizeof(struct sctp_getaddrs)) 6009 return -EINVAL; 6010 6011 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6012 return -EFAULT; 6013 6014 /* For UDP-style sockets, id specifies the association to query. */ 6015 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6016 if (!asoc) 6017 return -EINVAL; 6018 6019 to = optval + offsetof(struct sctp_getaddrs, addrs); 6020 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6021 6022 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6023 transports) { 6024 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6025 addrlen = sctp_get_pf_specific(sk->sk_family) 6026 ->addr_to_user(sp, &temp); 6027 if (space_left < addrlen) 6028 return -ENOMEM; 6029 if (copy_to_user(to, &temp, addrlen)) 6030 return -EFAULT; 6031 to += addrlen; 6032 cnt++; 6033 space_left -= addrlen; 6034 } 6035 6036 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6037 return -EFAULT; 6038 bytes_copied = ((char __user *)to) - optval; 6039 if (put_user(bytes_copied, optlen)) 6040 return -EFAULT; 6041 6042 return 0; 6043 } 6044 6045 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6046 size_t space_left, int *bytes_copied) 6047 { 6048 struct sctp_sockaddr_entry *addr; 6049 union sctp_addr temp; 6050 int cnt = 0; 6051 int addrlen; 6052 struct net *net = sock_net(sk); 6053 6054 rcu_read_lock(); 6055 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6056 if (!addr->valid) 6057 continue; 6058 6059 if ((PF_INET == sk->sk_family) && 6060 (AF_INET6 == addr->a.sa.sa_family)) 6061 continue; 6062 if ((PF_INET6 == sk->sk_family) && 6063 inet_v6_ipv6only(sk) && 6064 (AF_INET == addr->a.sa.sa_family)) 6065 continue; 6066 memcpy(&temp, &addr->a, sizeof(temp)); 6067 if (!temp.v4.sin_port) 6068 temp.v4.sin_port = htons(port); 6069 6070 addrlen = sctp_get_pf_specific(sk->sk_family) 6071 ->addr_to_user(sctp_sk(sk), &temp); 6072 6073 if (space_left < addrlen) { 6074 cnt = -ENOMEM; 6075 break; 6076 } 6077 memcpy(to, &temp, addrlen); 6078 6079 to += addrlen; 6080 cnt++; 6081 space_left -= addrlen; 6082 *bytes_copied += addrlen; 6083 } 6084 rcu_read_unlock(); 6085 6086 return cnt; 6087 } 6088 6089 6090 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6091 char __user *optval, int __user *optlen) 6092 { 6093 struct sctp_bind_addr *bp; 6094 struct sctp_association *asoc; 6095 int cnt = 0; 6096 struct sctp_getaddrs getaddrs; 6097 struct sctp_sockaddr_entry *addr; 6098 void __user *to; 6099 union sctp_addr temp; 6100 struct sctp_sock *sp = sctp_sk(sk); 6101 int addrlen; 6102 int err = 0; 6103 size_t space_left; 6104 int bytes_copied = 0; 6105 void *addrs; 6106 void *buf; 6107 6108 if (len < sizeof(struct sctp_getaddrs)) 6109 return -EINVAL; 6110 6111 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6112 return -EFAULT; 6113 6114 /* 6115 * For UDP-style sockets, id specifies the association to query. 6116 * If the id field is set to the value '0' then the locally bound 6117 * addresses are returned without regard to any particular 6118 * association. 6119 */ 6120 if (0 == getaddrs.assoc_id) { 6121 bp = &sctp_sk(sk)->ep->base.bind_addr; 6122 } else { 6123 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6124 if (!asoc) 6125 return -EINVAL; 6126 bp = &asoc->base.bind_addr; 6127 } 6128 6129 to = optval + offsetof(struct sctp_getaddrs, addrs); 6130 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6131 6132 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6133 if (!addrs) 6134 return -ENOMEM; 6135 6136 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6137 * addresses from the global local address list. 6138 */ 6139 if (sctp_list_single_entry(&bp->address_list)) { 6140 addr = list_entry(bp->address_list.next, 6141 struct sctp_sockaddr_entry, list); 6142 if (sctp_is_any(sk, &addr->a)) { 6143 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6144 space_left, &bytes_copied); 6145 if (cnt < 0) { 6146 err = cnt; 6147 goto out; 6148 } 6149 goto copy_getaddrs; 6150 } 6151 } 6152 6153 buf = addrs; 6154 /* Protection on the bound address list is not needed since 6155 * in the socket option context we hold a socket lock and 6156 * thus the bound address list can't change. 6157 */ 6158 list_for_each_entry(addr, &bp->address_list, list) { 6159 memcpy(&temp, &addr->a, sizeof(temp)); 6160 addrlen = sctp_get_pf_specific(sk->sk_family) 6161 ->addr_to_user(sp, &temp); 6162 if (space_left < addrlen) { 6163 err = -ENOMEM; /*fixme: right error?*/ 6164 goto out; 6165 } 6166 memcpy(buf, &temp, addrlen); 6167 buf += addrlen; 6168 bytes_copied += addrlen; 6169 cnt++; 6170 space_left -= addrlen; 6171 } 6172 6173 copy_getaddrs: 6174 if (copy_to_user(to, addrs, bytes_copied)) { 6175 err = -EFAULT; 6176 goto out; 6177 } 6178 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6179 err = -EFAULT; 6180 goto out; 6181 } 6182 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6183 * but we can't change it anymore. 6184 */ 6185 if (put_user(bytes_copied, optlen)) 6186 err = -EFAULT; 6187 out: 6188 kfree(addrs); 6189 return err; 6190 } 6191 6192 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6193 * 6194 * Requests that the local SCTP stack use the enclosed peer address as 6195 * the association primary. The enclosed address must be one of the 6196 * association peer's addresses. 6197 */ 6198 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6199 char __user *optval, int __user *optlen) 6200 { 6201 struct sctp_prim prim; 6202 struct sctp_association *asoc; 6203 struct sctp_sock *sp = sctp_sk(sk); 6204 6205 if (len < sizeof(struct sctp_prim)) 6206 return -EINVAL; 6207 6208 len = sizeof(struct sctp_prim); 6209 6210 if (copy_from_user(&prim, optval, len)) 6211 return -EFAULT; 6212 6213 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6214 if (!asoc) 6215 return -EINVAL; 6216 6217 if (!asoc->peer.primary_path) 6218 return -ENOTCONN; 6219 6220 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6221 asoc->peer.primary_path->af_specific->sockaddr_len); 6222 6223 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6224 (union sctp_addr *)&prim.ssp_addr); 6225 6226 if (put_user(len, optlen)) 6227 return -EFAULT; 6228 if (copy_to_user(optval, &prim, len)) 6229 return -EFAULT; 6230 6231 return 0; 6232 } 6233 6234 /* 6235 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6236 * 6237 * Requests that the local endpoint set the specified Adaptation Layer 6238 * Indication parameter for all future INIT and INIT-ACK exchanges. 6239 */ 6240 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6241 char __user *optval, int __user *optlen) 6242 { 6243 struct sctp_setadaptation adaptation; 6244 6245 if (len < sizeof(struct sctp_setadaptation)) 6246 return -EINVAL; 6247 6248 len = sizeof(struct sctp_setadaptation); 6249 6250 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6251 6252 if (put_user(len, optlen)) 6253 return -EFAULT; 6254 if (copy_to_user(optval, &adaptation, len)) 6255 return -EFAULT; 6256 6257 return 0; 6258 } 6259 6260 /* 6261 * 6262 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6263 * 6264 * Applications that wish to use the sendto() system call may wish to 6265 * specify a default set of parameters that would normally be supplied 6266 * through the inclusion of ancillary data. This socket option allows 6267 * such an application to set the default sctp_sndrcvinfo structure. 6268 6269 6270 * The application that wishes to use this socket option simply passes 6271 * in to this call the sctp_sndrcvinfo structure defined in Section 6272 * 5.2.2) The input parameters accepted by this call include 6273 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6274 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6275 * to this call if the caller is using the UDP model. 6276 * 6277 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6278 */ 6279 static int sctp_getsockopt_default_send_param(struct sock *sk, 6280 int len, char __user *optval, 6281 int __user *optlen) 6282 { 6283 struct sctp_sock *sp = sctp_sk(sk); 6284 struct sctp_association *asoc; 6285 struct sctp_sndrcvinfo info; 6286 6287 if (len < sizeof(info)) 6288 return -EINVAL; 6289 6290 len = sizeof(info); 6291 6292 if (copy_from_user(&info, optval, len)) 6293 return -EFAULT; 6294 6295 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6296 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6297 sctp_style(sk, UDP)) 6298 return -EINVAL; 6299 6300 if (asoc) { 6301 info.sinfo_stream = asoc->default_stream; 6302 info.sinfo_flags = asoc->default_flags; 6303 info.sinfo_ppid = asoc->default_ppid; 6304 info.sinfo_context = asoc->default_context; 6305 info.sinfo_timetolive = asoc->default_timetolive; 6306 } else { 6307 info.sinfo_stream = sp->default_stream; 6308 info.sinfo_flags = sp->default_flags; 6309 info.sinfo_ppid = sp->default_ppid; 6310 info.sinfo_context = sp->default_context; 6311 info.sinfo_timetolive = sp->default_timetolive; 6312 } 6313 6314 if (put_user(len, optlen)) 6315 return -EFAULT; 6316 if (copy_to_user(optval, &info, len)) 6317 return -EFAULT; 6318 6319 return 0; 6320 } 6321 6322 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6323 * (SCTP_DEFAULT_SNDINFO) 6324 */ 6325 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6326 char __user *optval, 6327 int __user *optlen) 6328 { 6329 struct sctp_sock *sp = sctp_sk(sk); 6330 struct sctp_association *asoc; 6331 struct sctp_sndinfo info; 6332 6333 if (len < sizeof(info)) 6334 return -EINVAL; 6335 6336 len = sizeof(info); 6337 6338 if (copy_from_user(&info, optval, len)) 6339 return -EFAULT; 6340 6341 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6342 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6343 sctp_style(sk, UDP)) 6344 return -EINVAL; 6345 6346 if (asoc) { 6347 info.snd_sid = asoc->default_stream; 6348 info.snd_flags = asoc->default_flags; 6349 info.snd_ppid = asoc->default_ppid; 6350 info.snd_context = asoc->default_context; 6351 } else { 6352 info.snd_sid = sp->default_stream; 6353 info.snd_flags = sp->default_flags; 6354 info.snd_ppid = sp->default_ppid; 6355 info.snd_context = sp->default_context; 6356 } 6357 6358 if (put_user(len, optlen)) 6359 return -EFAULT; 6360 if (copy_to_user(optval, &info, len)) 6361 return -EFAULT; 6362 6363 return 0; 6364 } 6365 6366 /* 6367 * 6368 * 7.1.5 SCTP_NODELAY 6369 * 6370 * Turn on/off any Nagle-like algorithm. This means that packets are 6371 * generally sent as soon as possible and no unnecessary delays are 6372 * introduced, at the cost of more packets in the network. Expects an 6373 * integer boolean flag. 6374 */ 6375 6376 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6377 char __user *optval, int __user *optlen) 6378 { 6379 int val; 6380 6381 if (len < sizeof(int)) 6382 return -EINVAL; 6383 6384 len = sizeof(int); 6385 val = (sctp_sk(sk)->nodelay == 1); 6386 if (put_user(len, optlen)) 6387 return -EFAULT; 6388 if (copy_to_user(optval, &val, len)) 6389 return -EFAULT; 6390 return 0; 6391 } 6392 6393 /* 6394 * 6395 * 7.1.1 SCTP_RTOINFO 6396 * 6397 * The protocol parameters used to initialize and bound retransmission 6398 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6399 * and modify these parameters. 6400 * All parameters are time values, in milliseconds. A value of 0, when 6401 * modifying the parameters, indicates that the current value should not 6402 * be changed. 6403 * 6404 */ 6405 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6406 char __user *optval, 6407 int __user *optlen) { 6408 struct sctp_rtoinfo rtoinfo; 6409 struct sctp_association *asoc; 6410 6411 if (len < sizeof (struct sctp_rtoinfo)) 6412 return -EINVAL; 6413 6414 len = sizeof(struct sctp_rtoinfo); 6415 6416 if (copy_from_user(&rtoinfo, optval, len)) 6417 return -EFAULT; 6418 6419 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6420 6421 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6422 sctp_style(sk, UDP)) 6423 return -EINVAL; 6424 6425 /* Values corresponding to the specific association. */ 6426 if (asoc) { 6427 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6428 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6429 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6430 } else { 6431 /* Values corresponding to the endpoint. */ 6432 struct sctp_sock *sp = sctp_sk(sk); 6433 6434 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6435 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6436 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6437 } 6438 6439 if (put_user(len, optlen)) 6440 return -EFAULT; 6441 6442 if (copy_to_user(optval, &rtoinfo, len)) 6443 return -EFAULT; 6444 6445 return 0; 6446 } 6447 6448 /* 6449 * 6450 * 7.1.2 SCTP_ASSOCINFO 6451 * 6452 * This option is used to tune the maximum retransmission attempts 6453 * of the association. 6454 * Returns an error if the new association retransmission value is 6455 * greater than the sum of the retransmission value of the peer. 6456 * See [SCTP] for more information. 6457 * 6458 */ 6459 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6460 char __user *optval, 6461 int __user *optlen) 6462 { 6463 6464 struct sctp_assocparams assocparams; 6465 struct sctp_association *asoc; 6466 struct list_head *pos; 6467 int cnt = 0; 6468 6469 if (len < sizeof (struct sctp_assocparams)) 6470 return -EINVAL; 6471 6472 len = sizeof(struct sctp_assocparams); 6473 6474 if (copy_from_user(&assocparams, optval, len)) 6475 return -EFAULT; 6476 6477 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6478 6479 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6480 sctp_style(sk, UDP)) 6481 return -EINVAL; 6482 6483 /* Values correspoinding to the specific association */ 6484 if (asoc) { 6485 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6486 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6487 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6488 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6489 6490 list_for_each(pos, &asoc->peer.transport_addr_list) { 6491 cnt++; 6492 } 6493 6494 assocparams.sasoc_number_peer_destinations = cnt; 6495 } else { 6496 /* Values corresponding to the endpoint */ 6497 struct sctp_sock *sp = sctp_sk(sk); 6498 6499 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6500 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6501 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6502 assocparams.sasoc_cookie_life = 6503 sp->assocparams.sasoc_cookie_life; 6504 assocparams.sasoc_number_peer_destinations = 6505 sp->assocparams. 6506 sasoc_number_peer_destinations; 6507 } 6508 6509 if (put_user(len, optlen)) 6510 return -EFAULT; 6511 6512 if (copy_to_user(optval, &assocparams, len)) 6513 return -EFAULT; 6514 6515 return 0; 6516 } 6517 6518 /* 6519 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6520 * 6521 * This socket option is a boolean flag which turns on or off mapped V4 6522 * addresses. If this option is turned on and the socket is type 6523 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6524 * If this option is turned off, then no mapping will be done of V4 6525 * addresses and a user will receive both PF_INET6 and PF_INET type 6526 * addresses on the socket. 6527 */ 6528 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6529 char __user *optval, int __user *optlen) 6530 { 6531 int val; 6532 struct sctp_sock *sp = sctp_sk(sk); 6533 6534 if (len < sizeof(int)) 6535 return -EINVAL; 6536 6537 len = sizeof(int); 6538 val = sp->v4mapped; 6539 if (put_user(len, optlen)) 6540 return -EFAULT; 6541 if (copy_to_user(optval, &val, len)) 6542 return -EFAULT; 6543 6544 return 0; 6545 } 6546 6547 /* 6548 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6549 * (chapter and verse is quoted at sctp_setsockopt_context()) 6550 */ 6551 static int sctp_getsockopt_context(struct sock *sk, int len, 6552 char __user *optval, int __user *optlen) 6553 { 6554 struct sctp_assoc_value params; 6555 struct sctp_association *asoc; 6556 6557 if (len < sizeof(struct sctp_assoc_value)) 6558 return -EINVAL; 6559 6560 len = sizeof(struct sctp_assoc_value); 6561 6562 if (copy_from_user(¶ms, optval, len)) 6563 return -EFAULT; 6564 6565 asoc = sctp_id2assoc(sk, params.assoc_id); 6566 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6567 sctp_style(sk, UDP)) 6568 return -EINVAL; 6569 6570 params.assoc_value = asoc ? asoc->default_rcv_context 6571 : sctp_sk(sk)->default_rcv_context; 6572 6573 if (put_user(len, optlen)) 6574 return -EFAULT; 6575 if (copy_to_user(optval, ¶ms, len)) 6576 return -EFAULT; 6577 6578 return 0; 6579 } 6580 6581 /* 6582 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6583 * This option will get or set the maximum size to put in any outgoing 6584 * SCTP DATA chunk. If a message is larger than this size it will be 6585 * fragmented by SCTP into the specified size. Note that the underlying 6586 * SCTP implementation may fragment into smaller sized chunks when the 6587 * PMTU of the underlying association is smaller than the value set by 6588 * the user. The default value for this option is '0' which indicates 6589 * the user is NOT limiting fragmentation and only the PMTU will effect 6590 * SCTP's choice of DATA chunk size. Note also that values set larger 6591 * than the maximum size of an IP datagram will effectively let SCTP 6592 * control fragmentation (i.e. the same as setting this option to 0). 6593 * 6594 * The following structure is used to access and modify this parameter: 6595 * 6596 * struct sctp_assoc_value { 6597 * sctp_assoc_t assoc_id; 6598 * uint32_t assoc_value; 6599 * }; 6600 * 6601 * assoc_id: This parameter is ignored for one-to-one style sockets. 6602 * For one-to-many style sockets this parameter indicates which 6603 * association the user is performing an action upon. Note that if 6604 * this field's value is zero then the endpoints default value is 6605 * changed (effecting future associations only). 6606 * assoc_value: This parameter specifies the maximum size in bytes. 6607 */ 6608 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6609 char __user *optval, int __user *optlen) 6610 { 6611 struct sctp_assoc_value params; 6612 struct sctp_association *asoc; 6613 6614 if (len == sizeof(int)) { 6615 pr_warn_ratelimited(DEPRECATED 6616 "%s (pid %d) " 6617 "Use of int in maxseg socket option.\n" 6618 "Use struct sctp_assoc_value instead\n", 6619 current->comm, task_pid_nr(current)); 6620 params.assoc_id = SCTP_FUTURE_ASSOC; 6621 } else if (len >= sizeof(struct sctp_assoc_value)) { 6622 len = sizeof(struct sctp_assoc_value); 6623 if (copy_from_user(¶ms, optval, len)) 6624 return -EFAULT; 6625 } else 6626 return -EINVAL; 6627 6628 asoc = sctp_id2assoc(sk, params.assoc_id); 6629 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6630 sctp_style(sk, UDP)) 6631 return -EINVAL; 6632 6633 if (asoc) 6634 params.assoc_value = asoc->frag_point; 6635 else 6636 params.assoc_value = sctp_sk(sk)->user_frag; 6637 6638 if (put_user(len, optlen)) 6639 return -EFAULT; 6640 if (len == sizeof(int)) { 6641 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6642 return -EFAULT; 6643 } else { 6644 if (copy_to_user(optval, ¶ms, len)) 6645 return -EFAULT; 6646 } 6647 6648 return 0; 6649 } 6650 6651 /* 6652 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6653 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6654 */ 6655 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6656 char __user *optval, int __user *optlen) 6657 { 6658 int val; 6659 6660 if (len < sizeof(int)) 6661 return -EINVAL; 6662 6663 len = sizeof(int); 6664 6665 val = sctp_sk(sk)->frag_interleave; 6666 if (put_user(len, optlen)) 6667 return -EFAULT; 6668 if (copy_to_user(optval, &val, len)) 6669 return -EFAULT; 6670 6671 return 0; 6672 } 6673 6674 /* 6675 * 7.1.25. Set or Get the sctp partial delivery point 6676 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6677 */ 6678 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6679 char __user *optval, 6680 int __user *optlen) 6681 { 6682 u32 val; 6683 6684 if (len < sizeof(u32)) 6685 return -EINVAL; 6686 6687 len = sizeof(u32); 6688 6689 val = sctp_sk(sk)->pd_point; 6690 if (put_user(len, optlen)) 6691 return -EFAULT; 6692 if (copy_to_user(optval, &val, len)) 6693 return -EFAULT; 6694 6695 return 0; 6696 } 6697 6698 /* 6699 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6700 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6701 */ 6702 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6703 char __user *optval, 6704 int __user *optlen) 6705 { 6706 struct sctp_assoc_value params; 6707 struct sctp_association *asoc; 6708 6709 if (len == sizeof(int)) { 6710 pr_warn_ratelimited(DEPRECATED 6711 "%s (pid %d) " 6712 "Use of int in max_burst socket option.\n" 6713 "Use struct sctp_assoc_value instead\n", 6714 current->comm, task_pid_nr(current)); 6715 params.assoc_id = SCTP_FUTURE_ASSOC; 6716 } else if (len >= sizeof(struct sctp_assoc_value)) { 6717 len = sizeof(struct sctp_assoc_value); 6718 if (copy_from_user(¶ms, optval, len)) 6719 return -EFAULT; 6720 } else 6721 return -EINVAL; 6722 6723 asoc = sctp_id2assoc(sk, params.assoc_id); 6724 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6725 sctp_style(sk, UDP)) 6726 return -EINVAL; 6727 6728 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6729 6730 if (len == sizeof(int)) { 6731 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6732 return -EFAULT; 6733 } else { 6734 if (copy_to_user(optval, ¶ms, len)) 6735 return -EFAULT; 6736 } 6737 6738 return 0; 6739 6740 } 6741 6742 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6743 char __user *optval, int __user *optlen) 6744 { 6745 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6746 struct sctp_hmacalgo __user *p = (void __user *)optval; 6747 struct sctp_hmac_algo_param *hmacs; 6748 __u16 data_len = 0; 6749 u32 num_idents; 6750 int i; 6751 6752 if (!ep->auth_enable) 6753 return -EACCES; 6754 6755 hmacs = ep->auth_hmacs_list; 6756 data_len = ntohs(hmacs->param_hdr.length) - 6757 sizeof(struct sctp_paramhdr); 6758 6759 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6760 return -EINVAL; 6761 6762 len = sizeof(struct sctp_hmacalgo) + data_len; 6763 num_idents = data_len / sizeof(u16); 6764 6765 if (put_user(len, optlen)) 6766 return -EFAULT; 6767 if (put_user(num_idents, &p->shmac_num_idents)) 6768 return -EFAULT; 6769 for (i = 0; i < num_idents; i++) { 6770 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6771 6772 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6773 return -EFAULT; 6774 } 6775 return 0; 6776 } 6777 6778 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6779 char __user *optval, int __user *optlen) 6780 { 6781 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6782 struct sctp_authkeyid val; 6783 struct sctp_association *asoc; 6784 6785 if (len < sizeof(struct sctp_authkeyid)) 6786 return -EINVAL; 6787 6788 len = sizeof(struct sctp_authkeyid); 6789 if (copy_from_user(&val, optval, len)) 6790 return -EFAULT; 6791 6792 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6793 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6794 return -EINVAL; 6795 6796 if (asoc) { 6797 if (!asoc->peer.auth_capable) 6798 return -EACCES; 6799 val.scact_keynumber = asoc->active_key_id; 6800 } else { 6801 if (!ep->auth_enable) 6802 return -EACCES; 6803 val.scact_keynumber = ep->active_key_id; 6804 } 6805 6806 if (put_user(len, optlen)) 6807 return -EFAULT; 6808 if (copy_to_user(optval, &val, len)) 6809 return -EFAULT; 6810 6811 return 0; 6812 } 6813 6814 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6815 char __user *optval, int __user *optlen) 6816 { 6817 struct sctp_authchunks __user *p = (void __user *)optval; 6818 struct sctp_authchunks val; 6819 struct sctp_association *asoc; 6820 struct sctp_chunks_param *ch; 6821 u32 num_chunks = 0; 6822 char __user *to; 6823 6824 if (len < sizeof(struct sctp_authchunks)) 6825 return -EINVAL; 6826 6827 if (copy_from_user(&val, optval, sizeof(val))) 6828 return -EFAULT; 6829 6830 to = p->gauth_chunks; 6831 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6832 if (!asoc) 6833 return -EINVAL; 6834 6835 if (!asoc->peer.auth_capable) 6836 return -EACCES; 6837 6838 ch = asoc->peer.peer_chunks; 6839 if (!ch) 6840 goto num; 6841 6842 /* See if the user provided enough room for all the data */ 6843 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6844 if (len < num_chunks) 6845 return -EINVAL; 6846 6847 if (copy_to_user(to, ch->chunks, num_chunks)) 6848 return -EFAULT; 6849 num: 6850 len = sizeof(struct sctp_authchunks) + num_chunks; 6851 if (put_user(len, optlen)) 6852 return -EFAULT; 6853 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6854 return -EFAULT; 6855 return 0; 6856 } 6857 6858 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6859 char __user *optval, int __user *optlen) 6860 { 6861 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6862 struct sctp_authchunks __user *p = (void __user *)optval; 6863 struct sctp_authchunks val; 6864 struct sctp_association *asoc; 6865 struct sctp_chunks_param *ch; 6866 u32 num_chunks = 0; 6867 char __user *to; 6868 6869 if (len < sizeof(struct sctp_authchunks)) 6870 return -EINVAL; 6871 6872 if (copy_from_user(&val, optval, sizeof(val))) 6873 return -EFAULT; 6874 6875 to = p->gauth_chunks; 6876 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6877 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6878 sctp_style(sk, UDP)) 6879 return -EINVAL; 6880 6881 if (asoc) { 6882 if (!asoc->peer.auth_capable) 6883 return -EACCES; 6884 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6885 } else { 6886 if (!ep->auth_enable) 6887 return -EACCES; 6888 ch = ep->auth_chunk_list; 6889 } 6890 if (!ch) 6891 goto num; 6892 6893 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6894 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6895 return -EINVAL; 6896 6897 if (copy_to_user(to, ch->chunks, num_chunks)) 6898 return -EFAULT; 6899 num: 6900 len = sizeof(struct sctp_authchunks) + num_chunks; 6901 if (put_user(len, optlen)) 6902 return -EFAULT; 6903 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6904 return -EFAULT; 6905 6906 return 0; 6907 } 6908 6909 /* 6910 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6911 * This option gets the current number of associations that are attached 6912 * to a one-to-many style socket. The option value is an uint32_t. 6913 */ 6914 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6915 char __user *optval, int __user *optlen) 6916 { 6917 struct sctp_sock *sp = sctp_sk(sk); 6918 struct sctp_association *asoc; 6919 u32 val = 0; 6920 6921 if (sctp_style(sk, TCP)) 6922 return -EOPNOTSUPP; 6923 6924 if (len < sizeof(u32)) 6925 return -EINVAL; 6926 6927 len = sizeof(u32); 6928 6929 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6930 val++; 6931 } 6932 6933 if (put_user(len, optlen)) 6934 return -EFAULT; 6935 if (copy_to_user(optval, &val, len)) 6936 return -EFAULT; 6937 6938 return 0; 6939 } 6940 6941 /* 6942 * 8.1.23 SCTP_AUTO_ASCONF 6943 * See the corresponding setsockopt entry as description 6944 */ 6945 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6946 char __user *optval, int __user *optlen) 6947 { 6948 int val = 0; 6949 6950 if (len < sizeof(int)) 6951 return -EINVAL; 6952 6953 len = sizeof(int); 6954 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6955 val = 1; 6956 if (put_user(len, optlen)) 6957 return -EFAULT; 6958 if (copy_to_user(optval, &val, len)) 6959 return -EFAULT; 6960 return 0; 6961 } 6962 6963 /* 6964 * 8.2.6. Get the Current Identifiers of Associations 6965 * (SCTP_GET_ASSOC_ID_LIST) 6966 * 6967 * This option gets the current list of SCTP association identifiers of 6968 * the SCTP associations handled by a one-to-many style socket. 6969 */ 6970 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6971 char __user *optval, int __user *optlen) 6972 { 6973 struct sctp_sock *sp = sctp_sk(sk); 6974 struct sctp_association *asoc; 6975 struct sctp_assoc_ids *ids; 6976 u32 num = 0; 6977 6978 if (sctp_style(sk, TCP)) 6979 return -EOPNOTSUPP; 6980 6981 if (len < sizeof(struct sctp_assoc_ids)) 6982 return -EINVAL; 6983 6984 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6985 num++; 6986 } 6987 6988 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6989 return -EINVAL; 6990 6991 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6992 6993 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6994 if (unlikely(!ids)) 6995 return -ENOMEM; 6996 6997 ids->gaids_number_of_ids = num; 6998 num = 0; 6999 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7000 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7001 } 7002 7003 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7004 kfree(ids); 7005 return -EFAULT; 7006 } 7007 7008 kfree(ids); 7009 return 0; 7010 } 7011 7012 /* 7013 * SCTP_PEER_ADDR_THLDS 7014 * 7015 * This option allows us to fetch the partially failed threshold for one or all 7016 * transports in an association. See Section 6.1 of: 7017 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7018 */ 7019 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7020 char __user *optval, int len, 7021 int __user *optlen, bool v2) 7022 { 7023 struct sctp_paddrthlds_v2 val; 7024 struct sctp_transport *trans; 7025 struct sctp_association *asoc; 7026 int min; 7027 7028 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7029 if (len < min) 7030 return -EINVAL; 7031 len = min; 7032 if (copy_from_user(&val, optval, len)) 7033 return -EFAULT; 7034 7035 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7036 trans = sctp_addr_id2transport(sk, &val.spt_address, 7037 val.spt_assoc_id); 7038 if (!trans) 7039 return -ENOENT; 7040 7041 val.spt_pathmaxrxt = trans->pathmaxrxt; 7042 val.spt_pathpfthld = trans->pf_retrans; 7043 val.spt_pathcpthld = trans->ps_retrans; 7044 7045 goto out; 7046 } 7047 7048 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7049 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7050 sctp_style(sk, UDP)) 7051 return -EINVAL; 7052 7053 if (asoc) { 7054 val.spt_pathpfthld = asoc->pf_retrans; 7055 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7056 val.spt_pathcpthld = asoc->ps_retrans; 7057 } else { 7058 struct sctp_sock *sp = sctp_sk(sk); 7059 7060 val.spt_pathpfthld = sp->pf_retrans; 7061 val.spt_pathmaxrxt = sp->pathmaxrxt; 7062 val.spt_pathcpthld = sp->ps_retrans; 7063 } 7064 7065 out: 7066 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7067 return -EFAULT; 7068 7069 return 0; 7070 } 7071 7072 /* 7073 * SCTP_GET_ASSOC_STATS 7074 * 7075 * This option retrieves local per endpoint statistics. It is modeled 7076 * after OpenSolaris' implementation 7077 */ 7078 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7079 char __user *optval, 7080 int __user *optlen) 7081 { 7082 struct sctp_assoc_stats sas; 7083 struct sctp_association *asoc = NULL; 7084 7085 /* User must provide at least the assoc id */ 7086 if (len < sizeof(sctp_assoc_t)) 7087 return -EINVAL; 7088 7089 /* Allow the struct to grow and fill in as much as possible */ 7090 len = min_t(size_t, len, sizeof(sas)); 7091 7092 if (copy_from_user(&sas, optval, len)) 7093 return -EFAULT; 7094 7095 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7096 if (!asoc) 7097 return -EINVAL; 7098 7099 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7100 sas.sas_gapcnt = asoc->stats.gapcnt; 7101 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7102 sas.sas_osacks = asoc->stats.osacks; 7103 sas.sas_isacks = asoc->stats.isacks; 7104 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7105 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7106 sas.sas_oodchunks = asoc->stats.oodchunks; 7107 sas.sas_iodchunks = asoc->stats.iodchunks; 7108 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7109 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7110 sas.sas_idupchunks = asoc->stats.idupchunks; 7111 sas.sas_opackets = asoc->stats.opackets; 7112 sas.sas_ipackets = asoc->stats.ipackets; 7113 7114 /* New high max rto observed, will return 0 if not a single 7115 * RTO update took place. obs_rto_ipaddr will be bogus 7116 * in such a case 7117 */ 7118 sas.sas_maxrto = asoc->stats.max_obs_rto; 7119 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7120 sizeof(struct sockaddr_storage)); 7121 7122 /* Mark beginning of a new observation period */ 7123 asoc->stats.max_obs_rto = asoc->rto_min; 7124 7125 if (put_user(len, optlen)) 7126 return -EFAULT; 7127 7128 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7129 7130 if (copy_to_user(optval, &sas, len)) 7131 return -EFAULT; 7132 7133 return 0; 7134 } 7135 7136 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7137 char __user *optval, 7138 int __user *optlen) 7139 { 7140 int val = 0; 7141 7142 if (len < sizeof(int)) 7143 return -EINVAL; 7144 7145 len = sizeof(int); 7146 if (sctp_sk(sk)->recvrcvinfo) 7147 val = 1; 7148 if (put_user(len, optlen)) 7149 return -EFAULT; 7150 if (copy_to_user(optval, &val, len)) 7151 return -EFAULT; 7152 7153 return 0; 7154 } 7155 7156 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7157 char __user *optval, 7158 int __user *optlen) 7159 { 7160 int val = 0; 7161 7162 if (len < sizeof(int)) 7163 return -EINVAL; 7164 7165 len = sizeof(int); 7166 if (sctp_sk(sk)->recvnxtinfo) 7167 val = 1; 7168 if (put_user(len, optlen)) 7169 return -EFAULT; 7170 if (copy_to_user(optval, &val, len)) 7171 return -EFAULT; 7172 7173 return 0; 7174 } 7175 7176 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7177 char __user *optval, 7178 int __user *optlen) 7179 { 7180 struct sctp_assoc_value params; 7181 struct sctp_association *asoc; 7182 int retval = -EFAULT; 7183 7184 if (len < sizeof(params)) { 7185 retval = -EINVAL; 7186 goto out; 7187 } 7188 7189 len = sizeof(params); 7190 if (copy_from_user(¶ms, optval, len)) 7191 goto out; 7192 7193 asoc = sctp_id2assoc(sk, params.assoc_id); 7194 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7195 sctp_style(sk, UDP)) { 7196 retval = -EINVAL; 7197 goto out; 7198 } 7199 7200 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7201 : sctp_sk(sk)->ep->prsctp_enable; 7202 7203 if (put_user(len, optlen)) 7204 goto out; 7205 7206 if (copy_to_user(optval, ¶ms, len)) 7207 goto out; 7208 7209 retval = 0; 7210 7211 out: 7212 return retval; 7213 } 7214 7215 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7216 char __user *optval, 7217 int __user *optlen) 7218 { 7219 struct sctp_default_prinfo info; 7220 struct sctp_association *asoc; 7221 int retval = -EFAULT; 7222 7223 if (len < sizeof(info)) { 7224 retval = -EINVAL; 7225 goto out; 7226 } 7227 7228 len = sizeof(info); 7229 if (copy_from_user(&info, optval, len)) 7230 goto out; 7231 7232 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7233 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7234 sctp_style(sk, UDP)) { 7235 retval = -EINVAL; 7236 goto out; 7237 } 7238 7239 if (asoc) { 7240 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7241 info.pr_value = asoc->default_timetolive; 7242 } else { 7243 struct sctp_sock *sp = sctp_sk(sk); 7244 7245 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7246 info.pr_value = sp->default_timetolive; 7247 } 7248 7249 if (put_user(len, optlen)) 7250 goto out; 7251 7252 if (copy_to_user(optval, &info, len)) 7253 goto out; 7254 7255 retval = 0; 7256 7257 out: 7258 return retval; 7259 } 7260 7261 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7262 char __user *optval, 7263 int __user *optlen) 7264 { 7265 struct sctp_prstatus params; 7266 struct sctp_association *asoc; 7267 int policy; 7268 int retval = -EINVAL; 7269 7270 if (len < sizeof(params)) 7271 goto out; 7272 7273 len = sizeof(params); 7274 if (copy_from_user(¶ms, optval, len)) { 7275 retval = -EFAULT; 7276 goto out; 7277 } 7278 7279 policy = params.sprstat_policy; 7280 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7281 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7282 goto out; 7283 7284 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7285 if (!asoc) 7286 goto out; 7287 7288 if (policy == SCTP_PR_SCTP_ALL) { 7289 params.sprstat_abandoned_unsent = 0; 7290 params.sprstat_abandoned_sent = 0; 7291 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7292 params.sprstat_abandoned_unsent += 7293 asoc->abandoned_unsent[policy]; 7294 params.sprstat_abandoned_sent += 7295 asoc->abandoned_sent[policy]; 7296 } 7297 } else { 7298 params.sprstat_abandoned_unsent = 7299 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7300 params.sprstat_abandoned_sent = 7301 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7302 } 7303 7304 if (put_user(len, optlen)) { 7305 retval = -EFAULT; 7306 goto out; 7307 } 7308 7309 if (copy_to_user(optval, ¶ms, len)) { 7310 retval = -EFAULT; 7311 goto out; 7312 } 7313 7314 retval = 0; 7315 7316 out: 7317 return retval; 7318 } 7319 7320 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7321 char __user *optval, 7322 int __user *optlen) 7323 { 7324 struct sctp_stream_out_ext *streamoute; 7325 struct sctp_association *asoc; 7326 struct sctp_prstatus params; 7327 int retval = -EINVAL; 7328 int policy; 7329 7330 if (len < sizeof(params)) 7331 goto out; 7332 7333 len = sizeof(params); 7334 if (copy_from_user(¶ms, optval, len)) { 7335 retval = -EFAULT; 7336 goto out; 7337 } 7338 7339 policy = params.sprstat_policy; 7340 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7341 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7342 goto out; 7343 7344 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7345 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7346 goto out; 7347 7348 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7349 if (!streamoute) { 7350 /* Not allocated yet, means all stats are 0 */ 7351 params.sprstat_abandoned_unsent = 0; 7352 params.sprstat_abandoned_sent = 0; 7353 retval = 0; 7354 goto out; 7355 } 7356 7357 if (policy == SCTP_PR_SCTP_ALL) { 7358 params.sprstat_abandoned_unsent = 0; 7359 params.sprstat_abandoned_sent = 0; 7360 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7361 params.sprstat_abandoned_unsent += 7362 streamoute->abandoned_unsent[policy]; 7363 params.sprstat_abandoned_sent += 7364 streamoute->abandoned_sent[policy]; 7365 } 7366 } else { 7367 params.sprstat_abandoned_unsent = 7368 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7369 params.sprstat_abandoned_sent = 7370 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7371 } 7372 7373 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7374 retval = -EFAULT; 7375 goto out; 7376 } 7377 7378 retval = 0; 7379 7380 out: 7381 return retval; 7382 } 7383 7384 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7385 char __user *optval, 7386 int __user *optlen) 7387 { 7388 struct sctp_assoc_value params; 7389 struct sctp_association *asoc; 7390 int retval = -EFAULT; 7391 7392 if (len < sizeof(params)) { 7393 retval = -EINVAL; 7394 goto out; 7395 } 7396 7397 len = sizeof(params); 7398 if (copy_from_user(¶ms, optval, len)) 7399 goto out; 7400 7401 asoc = sctp_id2assoc(sk, params.assoc_id); 7402 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7403 sctp_style(sk, UDP)) { 7404 retval = -EINVAL; 7405 goto out; 7406 } 7407 7408 params.assoc_value = asoc ? asoc->peer.reconf_capable 7409 : sctp_sk(sk)->ep->reconf_enable; 7410 7411 if (put_user(len, optlen)) 7412 goto out; 7413 7414 if (copy_to_user(optval, ¶ms, len)) 7415 goto out; 7416 7417 retval = 0; 7418 7419 out: 7420 return retval; 7421 } 7422 7423 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7424 char __user *optval, 7425 int __user *optlen) 7426 { 7427 struct sctp_assoc_value params; 7428 struct sctp_association *asoc; 7429 int retval = -EFAULT; 7430 7431 if (len < sizeof(params)) { 7432 retval = -EINVAL; 7433 goto out; 7434 } 7435 7436 len = sizeof(params); 7437 if (copy_from_user(¶ms, optval, len)) 7438 goto out; 7439 7440 asoc = sctp_id2assoc(sk, params.assoc_id); 7441 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7442 sctp_style(sk, UDP)) { 7443 retval = -EINVAL; 7444 goto out; 7445 } 7446 7447 params.assoc_value = asoc ? asoc->strreset_enable 7448 : sctp_sk(sk)->ep->strreset_enable; 7449 7450 if (put_user(len, optlen)) 7451 goto out; 7452 7453 if (copy_to_user(optval, ¶ms, len)) 7454 goto out; 7455 7456 retval = 0; 7457 7458 out: 7459 return retval; 7460 } 7461 7462 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7463 char __user *optval, 7464 int __user *optlen) 7465 { 7466 struct sctp_assoc_value params; 7467 struct sctp_association *asoc; 7468 int retval = -EFAULT; 7469 7470 if (len < sizeof(params)) { 7471 retval = -EINVAL; 7472 goto out; 7473 } 7474 7475 len = sizeof(params); 7476 if (copy_from_user(¶ms, optval, len)) 7477 goto out; 7478 7479 asoc = sctp_id2assoc(sk, params.assoc_id); 7480 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7481 sctp_style(sk, UDP)) { 7482 retval = -EINVAL; 7483 goto out; 7484 } 7485 7486 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7487 : sctp_sk(sk)->default_ss; 7488 7489 if (put_user(len, optlen)) 7490 goto out; 7491 7492 if (copy_to_user(optval, ¶ms, len)) 7493 goto out; 7494 7495 retval = 0; 7496 7497 out: 7498 return retval; 7499 } 7500 7501 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7502 char __user *optval, 7503 int __user *optlen) 7504 { 7505 struct sctp_stream_value params; 7506 struct sctp_association *asoc; 7507 int retval = -EFAULT; 7508 7509 if (len < sizeof(params)) { 7510 retval = -EINVAL; 7511 goto out; 7512 } 7513 7514 len = sizeof(params); 7515 if (copy_from_user(¶ms, optval, len)) 7516 goto out; 7517 7518 asoc = sctp_id2assoc(sk, params.assoc_id); 7519 if (!asoc) { 7520 retval = -EINVAL; 7521 goto out; 7522 } 7523 7524 retval = sctp_sched_get_value(asoc, params.stream_id, 7525 ¶ms.stream_value); 7526 if (retval) 7527 goto out; 7528 7529 if (put_user(len, optlen)) { 7530 retval = -EFAULT; 7531 goto out; 7532 } 7533 7534 if (copy_to_user(optval, ¶ms, len)) { 7535 retval = -EFAULT; 7536 goto out; 7537 } 7538 7539 out: 7540 return retval; 7541 } 7542 7543 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7544 char __user *optval, 7545 int __user *optlen) 7546 { 7547 struct sctp_assoc_value params; 7548 struct sctp_association *asoc; 7549 int retval = -EFAULT; 7550 7551 if (len < sizeof(params)) { 7552 retval = -EINVAL; 7553 goto out; 7554 } 7555 7556 len = sizeof(params); 7557 if (copy_from_user(¶ms, optval, len)) 7558 goto out; 7559 7560 asoc = sctp_id2assoc(sk, params.assoc_id); 7561 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7562 sctp_style(sk, UDP)) { 7563 retval = -EINVAL; 7564 goto out; 7565 } 7566 7567 params.assoc_value = asoc ? asoc->peer.intl_capable 7568 : sctp_sk(sk)->ep->intl_enable; 7569 7570 if (put_user(len, optlen)) 7571 goto out; 7572 7573 if (copy_to_user(optval, ¶ms, len)) 7574 goto out; 7575 7576 retval = 0; 7577 7578 out: 7579 return retval; 7580 } 7581 7582 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7583 char __user *optval, 7584 int __user *optlen) 7585 { 7586 int val; 7587 7588 if (len < sizeof(int)) 7589 return -EINVAL; 7590 7591 len = sizeof(int); 7592 val = sctp_sk(sk)->reuse; 7593 if (put_user(len, optlen)) 7594 return -EFAULT; 7595 7596 if (copy_to_user(optval, &val, len)) 7597 return -EFAULT; 7598 7599 return 0; 7600 } 7601 7602 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7603 int __user *optlen) 7604 { 7605 struct sctp_association *asoc; 7606 struct sctp_event param; 7607 __u16 subscribe; 7608 7609 if (len < sizeof(param)) 7610 return -EINVAL; 7611 7612 len = sizeof(param); 7613 if (copy_from_user(¶m, optval, len)) 7614 return -EFAULT; 7615 7616 if (param.se_type < SCTP_SN_TYPE_BASE || 7617 param.se_type > SCTP_SN_TYPE_MAX) 7618 return -EINVAL; 7619 7620 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7621 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7622 sctp_style(sk, UDP)) 7623 return -EINVAL; 7624 7625 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7626 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7627 7628 if (put_user(len, optlen)) 7629 return -EFAULT; 7630 7631 if (copy_to_user(optval, ¶m, len)) 7632 return -EFAULT; 7633 7634 return 0; 7635 } 7636 7637 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7638 char __user *optval, 7639 int __user *optlen) 7640 { 7641 struct sctp_assoc_value params; 7642 struct sctp_association *asoc; 7643 int retval = -EFAULT; 7644 7645 if (len < sizeof(params)) { 7646 retval = -EINVAL; 7647 goto out; 7648 } 7649 7650 len = sizeof(params); 7651 if (copy_from_user(¶ms, optval, len)) 7652 goto out; 7653 7654 asoc = sctp_id2assoc(sk, params.assoc_id); 7655 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7656 sctp_style(sk, UDP)) { 7657 retval = -EINVAL; 7658 goto out; 7659 } 7660 7661 params.assoc_value = asoc ? asoc->peer.asconf_capable 7662 : sctp_sk(sk)->ep->asconf_enable; 7663 7664 if (put_user(len, optlen)) 7665 goto out; 7666 7667 if (copy_to_user(optval, ¶ms, len)) 7668 goto out; 7669 7670 retval = 0; 7671 7672 out: 7673 return retval; 7674 } 7675 7676 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7677 char __user *optval, 7678 int __user *optlen) 7679 { 7680 struct sctp_assoc_value params; 7681 struct sctp_association *asoc; 7682 int retval = -EFAULT; 7683 7684 if (len < sizeof(params)) { 7685 retval = -EINVAL; 7686 goto out; 7687 } 7688 7689 len = sizeof(params); 7690 if (copy_from_user(¶ms, optval, len)) 7691 goto out; 7692 7693 asoc = sctp_id2assoc(sk, params.assoc_id); 7694 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7695 sctp_style(sk, UDP)) { 7696 retval = -EINVAL; 7697 goto out; 7698 } 7699 7700 params.assoc_value = asoc ? asoc->peer.auth_capable 7701 : sctp_sk(sk)->ep->auth_enable; 7702 7703 if (put_user(len, optlen)) 7704 goto out; 7705 7706 if (copy_to_user(optval, ¶ms, len)) 7707 goto out; 7708 7709 retval = 0; 7710 7711 out: 7712 return retval; 7713 } 7714 7715 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7716 char __user *optval, 7717 int __user *optlen) 7718 { 7719 struct sctp_assoc_value params; 7720 struct sctp_association *asoc; 7721 int retval = -EFAULT; 7722 7723 if (len < sizeof(params)) { 7724 retval = -EINVAL; 7725 goto out; 7726 } 7727 7728 len = sizeof(params); 7729 if (copy_from_user(¶ms, optval, len)) 7730 goto out; 7731 7732 asoc = sctp_id2assoc(sk, params.assoc_id); 7733 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7734 sctp_style(sk, UDP)) { 7735 retval = -EINVAL; 7736 goto out; 7737 } 7738 7739 params.assoc_value = asoc ? asoc->peer.ecn_capable 7740 : sctp_sk(sk)->ep->ecn_enable; 7741 7742 if (put_user(len, optlen)) 7743 goto out; 7744 7745 if (copy_to_user(optval, ¶ms, len)) 7746 goto out; 7747 7748 retval = 0; 7749 7750 out: 7751 return retval; 7752 } 7753 7754 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7755 char __user *optval, 7756 int __user *optlen) 7757 { 7758 struct sctp_assoc_value params; 7759 struct sctp_association *asoc; 7760 int retval = -EFAULT; 7761 7762 if (len < sizeof(params)) { 7763 retval = -EINVAL; 7764 goto out; 7765 } 7766 7767 len = sizeof(params); 7768 if (copy_from_user(¶ms, optval, len)) 7769 goto out; 7770 7771 asoc = sctp_id2assoc(sk, params.assoc_id); 7772 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7773 sctp_style(sk, UDP)) { 7774 retval = -EINVAL; 7775 goto out; 7776 } 7777 7778 params.assoc_value = asoc ? asoc->pf_expose 7779 : sctp_sk(sk)->pf_expose; 7780 7781 if (put_user(len, optlen)) 7782 goto out; 7783 7784 if (copy_to_user(optval, ¶ms, len)) 7785 goto out; 7786 7787 retval = 0; 7788 7789 out: 7790 return retval; 7791 } 7792 7793 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7794 char __user *optval, int __user *optlen) 7795 { 7796 int retval = 0; 7797 int len; 7798 7799 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7800 7801 /* I can hardly begin to describe how wrong this is. This is 7802 * so broken as to be worse than useless. The API draft 7803 * REALLY is NOT helpful here... I am not convinced that the 7804 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7805 * are at all well-founded. 7806 */ 7807 if (level != SOL_SCTP) { 7808 struct sctp_af *af = sctp_sk(sk)->pf->af; 7809 7810 retval = af->getsockopt(sk, level, optname, optval, optlen); 7811 return retval; 7812 } 7813 7814 if (get_user(len, optlen)) 7815 return -EFAULT; 7816 7817 if (len < 0) 7818 return -EINVAL; 7819 7820 lock_sock(sk); 7821 7822 switch (optname) { 7823 case SCTP_STATUS: 7824 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7825 break; 7826 case SCTP_DISABLE_FRAGMENTS: 7827 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7828 optlen); 7829 break; 7830 case SCTP_EVENTS: 7831 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7832 break; 7833 case SCTP_AUTOCLOSE: 7834 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7835 break; 7836 case SCTP_SOCKOPT_PEELOFF: 7837 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7838 break; 7839 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7840 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7841 break; 7842 case SCTP_PEER_ADDR_PARAMS: 7843 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7844 optlen); 7845 break; 7846 case SCTP_DELAYED_SACK: 7847 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7848 optlen); 7849 break; 7850 case SCTP_INITMSG: 7851 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7852 break; 7853 case SCTP_GET_PEER_ADDRS: 7854 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7855 optlen); 7856 break; 7857 case SCTP_GET_LOCAL_ADDRS: 7858 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7859 optlen); 7860 break; 7861 case SCTP_SOCKOPT_CONNECTX3: 7862 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7863 break; 7864 case SCTP_DEFAULT_SEND_PARAM: 7865 retval = sctp_getsockopt_default_send_param(sk, len, 7866 optval, optlen); 7867 break; 7868 case SCTP_DEFAULT_SNDINFO: 7869 retval = sctp_getsockopt_default_sndinfo(sk, len, 7870 optval, optlen); 7871 break; 7872 case SCTP_PRIMARY_ADDR: 7873 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7874 break; 7875 case SCTP_NODELAY: 7876 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7877 break; 7878 case SCTP_RTOINFO: 7879 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7880 break; 7881 case SCTP_ASSOCINFO: 7882 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7883 break; 7884 case SCTP_I_WANT_MAPPED_V4_ADDR: 7885 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7886 break; 7887 case SCTP_MAXSEG: 7888 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7889 break; 7890 case SCTP_GET_PEER_ADDR_INFO: 7891 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7892 optlen); 7893 break; 7894 case SCTP_ADAPTATION_LAYER: 7895 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7896 optlen); 7897 break; 7898 case SCTP_CONTEXT: 7899 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7900 break; 7901 case SCTP_FRAGMENT_INTERLEAVE: 7902 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7903 optlen); 7904 break; 7905 case SCTP_PARTIAL_DELIVERY_POINT: 7906 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7907 optlen); 7908 break; 7909 case SCTP_MAX_BURST: 7910 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7911 break; 7912 case SCTP_AUTH_KEY: 7913 case SCTP_AUTH_CHUNK: 7914 case SCTP_AUTH_DELETE_KEY: 7915 case SCTP_AUTH_DEACTIVATE_KEY: 7916 retval = -EOPNOTSUPP; 7917 break; 7918 case SCTP_HMAC_IDENT: 7919 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7920 break; 7921 case SCTP_AUTH_ACTIVE_KEY: 7922 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7923 break; 7924 case SCTP_PEER_AUTH_CHUNKS: 7925 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7926 optlen); 7927 break; 7928 case SCTP_LOCAL_AUTH_CHUNKS: 7929 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7930 optlen); 7931 break; 7932 case SCTP_GET_ASSOC_NUMBER: 7933 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7934 break; 7935 case SCTP_GET_ASSOC_ID_LIST: 7936 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7937 break; 7938 case SCTP_AUTO_ASCONF: 7939 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7940 break; 7941 case SCTP_PEER_ADDR_THLDS: 7942 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 7943 optlen, false); 7944 break; 7945 case SCTP_PEER_ADDR_THLDS_V2: 7946 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 7947 optlen, true); 7948 break; 7949 case SCTP_GET_ASSOC_STATS: 7950 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7951 break; 7952 case SCTP_RECVRCVINFO: 7953 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7954 break; 7955 case SCTP_RECVNXTINFO: 7956 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7957 break; 7958 case SCTP_PR_SUPPORTED: 7959 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7960 break; 7961 case SCTP_DEFAULT_PRINFO: 7962 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7963 optlen); 7964 break; 7965 case SCTP_PR_ASSOC_STATUS: 7966 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7967 optlen); 7968 break; 7969 case SCTP_PR_STREAM_STATUS: 7970 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7971 optlen); 7972 break; 7973 case SCTP_RECONFIG_SUPPORTED: 7974 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7975 optlen); 7976 break; 7977 case SCTP_ENABLE_STREAM_RESET: 7978 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7979 optlen); 7980 break; 7981 case SCTP_STREAM_SCHEDULER: 7982 retval = sctp_getsockopt_scheduler(sk, len, optval, 7983 optlen); 7984 break; 7985 case SCTP_STREAM_SCHEDULER_VALUE: 7986 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7987 optlen); 7988 break; 7989 case SCTP_INTERLEAVING_SUPPORTED: 7990 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7991 optlen); 7992 break; 7993 case SCTP_REUSE_PORT: 7994 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7995 break; 7996 case SCTP_EVENT: 7997 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7998 break; 7999 case SCTP_ASCONF_SUPPORTED: 8000 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8001 optlen); 8002 break; 8003 case SCTP_AUTH_SUPPORTED: 8004 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8005 optlen); 8006 break; 8007 case SCTP_ECN_SUPPORTED: 8008 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8009 break; 8010 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8011 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8012 break; 8013 default: 8014 retval = -ENOPROTOOPT; 8015 break; 8016 } 8017 8018 release_sock(sk); 8019 return retval; 8020 } 8021 8022 static int sctp_hash(struct sock *sk) 8023 { 8024 /* STUB */ 8025 return 0; 8026 } 8027 8028 static void sctp_unhash(struct sock *sk) 8029 { 8030 /* STUB */ 8031 } 8032 8033 /* Check if port is acceptable. Possibly find first available port. 8034 * 8035 * The port hash table (contained in the 'global' SCTP protocol storage 8036 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8037 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8038 * list (the list number is the port number hashed out, so as you 8039 * would expect from a hash function, all the ports in a given list have 8040 * such a number that hashes out to the same list number; you were 8041 * expecting that, right?); so each list has a set of ports, with a 8042 * link to the socket (struct sock) that uses it, the port number and 8043 * a fastreuse flag (FIXME: NPI ipg). 8044 */ 8045 static struct sctp_bind_bucket *sctp_bucket_create( 8046 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8047 8048 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8049 { 8050 struct sctp_sock *sp = sctp_sk(sk); 8051 bool reuse = (sk->sk_reuse || sp->reuse); 8052 struct sctp_bind_hashbucket *head; /* hash list */ 8053 struct net *net = sock_net(sk); 8054 kuid_t uid = sock_i_uid(sk); 8055 struct sctp_bind_bucket *pp; 8056 unsigned short snum; 8057 int ret; 8058 8059 snum = ntohs(addr->v4.sin_port); 8060 8061 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8062 8063 if (snum == 0) { 8064 /* Search for an available port. */ 8065 int low, high, remaining, index; 8066 unsigned int rover; 8067 8068 inet_get_local_port_range(net, &low, &high); 8069 remaining = (high - low) + 1; 8070 rover = prandom_u32() % remaining + low; 8071 8072 do { 8073 rover++; 8074 if ((rover < low) || (rover > high)) 8075 rover = low; 8076 if (inet_is_local_reserved_port(net, rover)) 8077 continue; 8078 index = sctp_phashfn(net, rover); 8079 head = &sctp_port_hashtable[index]; 8080 spin_lock_bh(&head->lock); 8081 sctp_for_each_hentry(pp, &head->chain) 8082 if ((pp->port == rover) && 8083 net_eq(net, pp->net)) 8084 goto next; 8085 break; 8086 next: 8087 spin_unlock_bh(&head->lock); 8088 cond_resched(); 8089 } while (--remaining > 0); 8090 8091 /* Exhausted local port range during search? */ 8092 ret = 1; 8093 if (remaining <= 0) 8094 return ret; 8095 8096 /* OK, here is the one we will use. HEAD (the port 8097 * hash table list entry) is non-NULL and we hold it's 8098 * mutex. 8099 */ 8100 snum = rover; 8101 } else { 8102 /* We are given an specific port number; we verify 8103 * that it is not being used. If it is used, we will 8104 * exahust the search in the hash list corresponding 8105 * to the port number (snum) - we detect that with the 8106 * port iterator, pp being NULL. 8107 */ 8108 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8109 spin_lock_bh(&head->lock); 8110 sctp_for_each_hentry(pp, &head->chain) { 8111 if ((pp->port == snum) && net_eq(pp->net, net)) 8112 goto pp_found; 8113 } 8114 } 8115 pp = NULL; 8116 goto pp_not_found; 8117 pp_found: 8118 if (!hlist_empty(&pp->owner)) { 8119 /* We had a port hash table hit - there is an 8120 * available port (pp != NULL) and it is being 8121 * used by other socket (pp->owner not empty); that other 8122 * socket is going to be sk2. 8123 */ 8124 struct sock *sk2; 8125 8126 pr_debug("%s: found a possible match\n", __func__); 8127 8128 if ((pp->fastreuse && reuse && 8129 sk->sk_state != SCTP_SS_LISTENING) || 8130 (pp->fastreuseport && sk->sk_reuseport && 8131 uid_eq(pp->fastuid, uid))) 8132 goto success; 8133 8134 /* Run through the list of sockets bound to the port 8135 * (pp->port) [via the pointers bind_next and 8136 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8137 * we get the endpoint they describe and run through 8138 * the endpoint's list of IP (v4 or v6) addresses, 8139 * comparing each of the addresses with the address of 8140 * the socket sk. If we find a match, then that means 8141 * that this port/socket (sk) combination are already 8142 * in an endpoint. 8143 */ 8144 sk_for_each_bound(sk2, &pp->owner) { 8145 struct sctp_sock *sp2 = sctp_sk(sk2); 8146 struct sctp_endpoint *ep2 = sp2->ep; 8147 8148 if (sk == sk2 || 8149 (reuse && (sk2->sk_reuse || sp2->reuse) && 8150 sk2->sk_state != SCTP_SS_LISTENING) || 8151 (sk->sk_reuseport && sk2->sk_reuseport && 8152 uid_eq(uid, sock_i_uid(sk2)))) 8153 continue; 8154 8155 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8156 addr, sp2, sp)) { 8157 ret = 1; 8158 goto fail_unlock; 8159 } 8160 } 8161 8162 pr_debug("%s: found a match\n", __func__); 8163 } 8164 pp_not_found: 8165 /* If there was a hash table miss, create a new port. */ 8166 ret = 1; 8167 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8168 goto fail_unlock; 8169 8170 /* In either case (hit or miss), make sure fastreuse is 1 only 8171 * if sk->sk_reuse is too (that is, if the caller requested 8172 * SO_REUSEADDR on this socket -sk-). 8173 */ 8174 if (hlist_empty(&pp->owner)) { 8175 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8176 pp->fastreuse = 1; 8177 else 8178 pp->fastreuse = 0; 8179 8180 if (sk->sk_reuseport) { 8181 pp->fastreuseport = 1; 8182 pp->fastuid = uid; 8183 } else { 8184 pp->fastreuseport = 0; 8185 } 8186 } else { 8187 if (pp->fastreuse && 8188 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8189 pp->fastreuse = 0; 8190 8191 if (pp->fastreuseport && 8192 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8193 pp->fastreuseport = 0; 8194 } 8195 8196 /* We are set, so fill up all the data in the hash table 8197 * entry, tie the socket list information with the rest of the 8198 * sockets FIXME: Blurry, NPI (ipg). 8199 */ 8200 success: 8201 if (!sp->bind_hash) { 8202 inet_sk(sk)->inet_num = snum; 8203 sk_add_bind_node(sk, &pp->owner); 8204 sp->bind_hash = pp; 8205 } 8206 ret = 0; 8207 8208 fail_unlock: 8209 spin_unlock_bh(&head->lock); 8210 return ret; 8211 } 8212 8213 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8214 * port is requested. 8215 */ 8216 static int sctp_get_port(struct sock *sk, unsigned short snum) 8217 { 8218 union sctp_addr addr; 8219 struct sctp_af *af = sctp_sk(sk)->pf->af; 8220 8221 /* Set up a dummy address struct from the sk. */ 8222 af->from_sk(&addr, sk); 8223 addr.v4.sin_port = htons(snum); 8224 8225 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8226 return sctp_get_port_local(sk, &addr); 8227 } 8228 8229 /* 8230 * Move a socket to LISTENING state. 8231 */ 8232 static int sctp_listen_start(struct sock *sk, int backlog) 8233 { 8234 struct sctp_sock *sp = sctp_sk(sk); 8235 struct sctp_endpoint *ep = sp->ep; 8236 struct crypto_shash *tfm = NULL; 8237 char alg[32]; 8238 8239 /* Allocate HMAC for generating cookie. */ 8240 if (!sp->hmac && sp->sctp_hmac_alg) { 8241 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8242 tfm = crypto_alloc_shash(alg, 0, 0); 8243 if (IS_ERR(tfm)) { 8244 net_info_ratelimited("failed to load transform for %s: %ld\n", 8245 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8246 return -ENOSYS; 8247 } 8248 sctp_sk(sk)->hmac = tfm; 8249 } 8250 8251 /* 8252 * If a bind() or sctp_bindx() is not called prior to a listen() 8253 * call that allows new associations to be accepted, the system 8254 * picks an ephemeral port and will choose an address set equivalent 8255 * to binding with a wildcard address. 8256 * 8257 * This is not currently spelled out in the SCTP sockets 8258 * extensions draft, but follows the practice as seen in TCP 8259 * sockets. 8260 * 8261 */ 8262 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8263 if (!ep->base.bind_addr.port) { 8264 if (sctp_autobind(sk)) 8265 return -EAGAIN; 8266 } else { 8267 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8268 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8269 return -EADDRINUSE; 8270 } 8271 } 8272 8273 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8274 return sctp_hash_endpoint(ep); 8275 } 8276 8277 /* 8278 * 4.1.3 / 5.1.3 listen() 8279 * 8280 * By default, new associations are not accepted for UDP style sockets. 8281 * An application uses listen() to mark a socket as being able to 8282 * accept new associations. 8283 * 8284 * On TCP style sockets, applications use listen() to ready the SCTP 8285 * endpoint for accepting inbound associations. 8286 * 8287 * On both types of endpoints a backlog of '0' disables listening. 8288 * 8289 * Move a socket to LISTENING state. 8290 */ 8291 int sctp_inet_listen(struct socket *sock, int backlog) 8292 { 8293 struct sock *sk = sock->sk; 8294 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8295 int err = -EINVAL; 8296 8297 if (unlikely(backlog < 0)) 8298 return err; 8299 8300 lock_sock(sk); 8301 8302 /* Peeled-off sockets are not allowed to listen(). */ 8303 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8304 goto out; 8305 8306 if (sock->state != SS_UNCONNECTED) 8307 goto out; 8308 8309 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8310 goto out; 8311 8312 /* If backlog is zero, disable listening. */ 8313 if (!backlog) { 8314 if (sctp_sstate(sk, CLOSED)) 8315 goto out; 8316 8317 err = 0; 8318 sctp_unhash_endpoint(ep); 8319 sk->sk_state = SCTP_SS_CLOSED; 8320 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8321 sctp_sk(sk)->bind_hash->fastreuse = 1; 8322 goto out; 8323 } 8324 8325 /* If we are already listening, just update the backlog */ 8326 if (sctp_sstate(sk, LISTENING)) 8327 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8328 else { 8329 err = sctp_listen_start(sk, backlog); 8330 if (err) 8331 goto out; 8332 } 8333 8334 err = 0; 8335 out: 8336 release_sock(sk); 8337 return err; 8338 } 8339 8340 /* 8341 * This function is done by modeling the current datagram_poll() and the 8342 * tcp_poll(). Note that, based on these implementations, we don't 8343 * lock the socket in this function, even though it seems that, 8344 * ideally, locking or some other mechanisms can be used to ensure 8345 * the integrity of the counters (sndbuf and wmem_alloc) used 8346 * in this place. We assume that we don't need locks either until proven 8347 * otherwise. 8348 * 8349 * Another thing to note is that we include the Async I/O support 8350 * here, again, by modeling the current TCP/UDP code. We don't have 8351 * a good way to test with it yet. 8352 */ 8353 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8354 { 8355 struct sock *sk = sock->sk; 8356 struct sctp_sock *sp = sctp_sk(sk); 8357 __poll_t mask; 8358 8359 poll_wait(file, sk_sleep(sk), wait); 8360 8361 sock_rps_record_flow(sk); 8362 8363 /* A TCP-style listening socket becomes readable when the accept queue 8364 * is not empty. 8365 */ 8366 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8367 return (!list_empty(&sp->ep->asocs)) ? 8368 (EPOLLIN | EPOLLRDNORM) : 0; 8369 8370 mask = 0; 8371 8372 /* Is there any exceptional events? */ 8373 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8374 mask |= EPOLLERR | 8375 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8376 if (sk->sk_shutdown & RCV_SHUTDOWN) 8377 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8378 if (sk->sk_shutdown == SHUTDOWN_MASK) 8379 mask |= EPOLLHUP; 8380 8381 /* Is it readable? Reconsider this code with TCP-style support. */ 8382 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8383 mask |= EPOLLIN | EPOLLRDNORM; 8384 8385 /* The association is either gone or not ready. */ 8386 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8387 return mask; 8388 8389 /* Is it writable? */ 8390 if (sctp_writeable(sk)) { 8391 mask |= EPOLLOUT | EPOLLWRNORM; 8392 } else { 8393 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8394 /* 8395 * Since the socket is not locked, the buffer 8396 * might be made available after the writeable check and 8397 * before the bit is set. This could cause a lost I/O 8398 * signal. tcp_poll() has a race breaker for this race 8399 * condition. Based on their implementation, we put 8400 * in the following code to cover it as well. 8401 */ 8402 if (sctp_writeable(sk)) 8403 mask |= EPOLLOUT | EPOLLWRNORM; 8404 } 8405 return mask; 8406 } 8407 8408 /******************************************************************** 8409 * 2nd Level Abstractions 8410 ********************************************************************/ 8411 8412 static struct sctp_bind_bucket *sctp_bucket_create( 8413 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8414 { 8415 struct sctp_bind_bucket *pp; 8416 8417 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8418 if (pp) { 8419 SCTP_DBG_OBJCNT_INC(bind_bucket); 8420 pp->port = snum; 8421 pp->fastreuse = 0; 8422 INIT_HLIST_HEAD(&pp->owner); 8423 pp->net = net; 8424 hlist_add_head(&pp->node, &head->chain); 8425 } 8426 return pp; 8427 } 8428 8429 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8430 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8431 { 8432 if (pp && hlist_empty(&pp->owner)) { 8433 __hlist_del(&pp->node); 8434 kmem_cache_free(sctp_bucket_cachep, pp); 8435 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8436 } 8437 } 8438 8439 /* Release this socket's reference to a local port. */ 8440 static inline void __sctp_put_port(struct sock *sk) 8441 { 8442 struct sctp_bind_hashbucket *head = 8443 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8444 inet_sk(sk)->inet_num)]; 8445 struct sctp_bind_bucket *pp; 8446 8447 spin_lock(&head->lock); 8448 pp = sctp_sk(sk)->bind_hash; 8449 __sk_del_bind_node(sk); 8450 sctp_sk(sk)->bind_hash = NULL; 8451 inet_sk(sk)->inet_num = 0; 8452 sctp_bucket_destroy(pp); 8453 spin_unlock(&head->lock); 8454 } 8455 8456 void sctp_put_port(struct sock *sk) 8457 { 8458 local_bh_disable(); 8459 __sctp_put_port(sk); 8460 local_bh_enable(); 8461 } 8462 8463 /* 8464 * The system picks an ephemeral port and choose an address set equivalent 8465 * to binding with a wildcard address. 8466 * One of those addresses will be the primary address for the association. 8467 * This automatically enables the multihoming capability of SCTP. 8468 */ 8469 static int sctp_autobind(struct sock *sk) 8470 { 8471 union sctp_addr autoaddr; 8472 struct sctp_af *af; 8473 __be16 port; 8474 8475 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8476 af = sctp_sk(sk)->pf->af; 8477 8478 port = htons(inet_sk(sk)->inet_num); 8479 af->inaddr_any(&autoaddr, port); 8480 8481 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8482 } 8483 8484 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8485 * 8486 * From RFC 2292 8487 * 4.2 The cmsghdr Structure * 8488 * 8489 * When ancillary data is sent or received, any number of ancillary data 8490 * objects can be specified by the msg_control and msg_controllen members of 8491 * the msghdr structure, because each object is preceded by 8492 * a cmsghdr structure defining the object's length (the cmsg_len member). 8493 * Historically Berkeley-derived implementations have passed only one object 8494 * at a time, but this API allows multiple objects to be 8495 * passed in a single call to sendmsg() or recvmsg(). The following example 8496 * shows two ancillary data objects in a control buffer. 8497 * 8498 * |<--------------------------- msg_controllen -------------------------->| 8499 * | | 8500 * 8501 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8502 * 8503 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8504 * | | | 8505 * 8506 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8507 * 8508 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8509 * | | | | | 8510 * 8511 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8512 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8513 * 8514 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8515 * 8516 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8517 * ^ 8518 * | 8519 * 8520 * msg_control 8521 * points here 8522 */ 8523 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8524 { 8525 struct msghdr *my_msg = (struct msghdr *)msg; 8526 struct cmsghdr *cmsg; 8527 8528 for_each_cmsghdr(cmsg, my_msg) { 8529 if (!CMSG_OK(my_msg, cmsg)) 8530 return -EINVAL; 8531 8532 /* Should we parse this header or ignore? */ 8533 if (cmsg->cmsg_level != IPPROTO_SCTP) 8534 continue; 8535 8536 /* Strictly check lengths following example in SCM code. */ 8537 switch (cmsg->cmsg_type) { 8538 case SCTP_INIT: 8539 /* SCTP Socket API Extension 8540 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8541 * 8542 * This cmsghdr structure provides information for 8543 * initializing new SCTP associations with sendmsg(). 8544 * The SCTP_INITMSG socket option uses this same data 8545 * structure. This structure is not used for 8546 * recvmsg(). 8547 * 8548 * cmsg_level cmsg_type cmsg_data[] 8549 * ------------ ------------ ---------------------- 8550 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8551 */ 8552 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8553 return -EINVAL; 8554 8555 cmsgs->init = CMSG_DATA(cmsg); 8556 break; 8557 8558 case SCTP_SNDRCV: 8559 /* SCTP Socket API Extension 8560 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8561 * 8562 * This cmsghdr structure specifies SCTP options for 8563 * sendmsg() and describes SCTP header information 8564 * about a received message through recvmsg(). 8565 * 8566 * cmsg_level cmsg_type cmsg_data[] 8567 * ------------ ------------ ---------------------- 8568 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8569 */ 8570 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8571 return -EINVAL; 8572 8573 cmsgs->srinfo = CMSG_DATA(cmsg); 8574 8575 if (cmsgs->srinfo->sinfo_flags & 8576 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8577 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8578 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8579 return -EINVAL; 8580 break; 8581 8582 case SCTP_SNDINFO: 8583 /* SCTP Socket API Extension 8584 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8585 * 8586 * This cmsghdr structure specifies SCTP options for 8587 * sendmsg(). This structure and SCTP_RCVINFO replaces 8588 * SCTP_SNDRCV which has been deprecated. 8589 * 8590 * cmsg_level cmsg_type cmsg_data[] 8591 * ------------ ------------ --------------------- 8592 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8593 */ 8594 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8595 return -EINVAL; 8596 8597 cmsgs->sinfo = CMSG_DATA(cmsg); 8598 8599 if (cmsgs->sinfo->snd_flags & 8600 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8601 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8602 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8603 return -EINVAL; 8604 break; 8605 case SCTP_PRINFO: 8606 /* SCTP Socket API Extension 8607 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8608 * 8609 * This cmsghdr structure specifies SCTP options for sendmsg(). 8610 * 8611 * cmsg_level cmsg_type cmsg_data[] 8612 * ------------ ------------ --------------------- 8613 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8614 */ 8615 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8616 return -EINVAL; 8617 8618 cmsgs->prinfo = CMSG_DATA(cmsg); 8619 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8620 return -EINVAL; 8621 8622 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8623 cmsgs->prinfo->pr_value = 0; 8624 break; 8625 case SCTP_AUTHINFO: 8626 /* SCTP Socket API Extension 8627 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8628 * 8629 * This cmsghdr structure specifies SCTP options for sendmsg(). 8630 * 8631 * cmsg_level cmsg_type cmsg_data[] 8632 * ------------ ------------ --------------------- 8633 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8634 */ 8635 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8636 return -EINVAL; 8637 8638 cmsgs->authinfo = CMSG_DATA(cmsg); 8639 break; 8640 case SCTP_DSTADDRV4: 8641 case SCTP_DSTADDRV6: 8642 /* SCTP Socket API Extension 8643 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8644 * 8645 * This cmsghdr structure specifies SCTP options for sendmsg(). 8646 * 8647 * cmsg_level cmsg_type cmsg_data[] 8648 * ------------ ------------ --------------------- 8649 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8650 * ------------ ------------ --------------------- 8651 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8652 */ 8653 cmsgs->addrs_msg = my_msg; 8654 break; 8655 default: 8656 return -EINVAL; 8657 } 8658 } 8659 8660 return 0; 8661 } 8662 8663 /* 8664 * Wait for a packet.. 8665 * Note: This function is the same function as in core/datagram.c 8666 * with a few modifications to make lksctp work. 8667 */ 8668 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8669 { 8670 int error; 8671 DEFINE_WAIT(wait); 8672 8673 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8674 8675 /* Socket errors? */ 8676 error = sock_error(sk); 8677 if (error) 8678 goto out; 8679 8680 if (!skb_queue_empty(&sk->sk_receive_queue)) 8681 goto ready; 8682 8683 /* Socket shut down? */ 8684 if (sk->sk_shutdown & RCV_SHUTDOWN) 8685 goto out; 8686 8687 /* Sequenced packets can come disconnected. If so we report the 8688 * problem. 8689 */ 8690 error = -ENOTCONN; 8691 8692 /* Is there a good reason to think that we may receive some data? */ 8693 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8694 goto out; 8695 8696 /* Handle signals. */ 8697 if (signal_pending(current)) 8698 goto interrupted; 8699 8700 /* Let another process have a go. Since we are going to sleep 8701 * anyway. Note: This may cause odd behaviors if the message 8702 * does not fit in the user's buffer, but this seems to be the 8703 * only way to honor MSG_DONTWAIT realistically. 8704 */ 8705 release_sock(sk); 8706 *timeo_p = schedule_timeout(*timeo_p); 8707 lock_sock(sk); 8708 8709 ready: 8710 finish_wait(sk_sleep(sk), &wait); 8711 return 0; 8712 8713 interrupted: 8714 error = sock_intr_errno(*timeo_p); 8715 8716 out: 8717 finish_wait(sk_sleep(sk), &wait); 8718 *err = error; 8719 return error; 8720 } 8721 8722 /* Receive a datagram. 8723 * Note: This is pretty much the same routine as in core/datagram.c 8724 * with a few changes to make lksctp work. 8725 */ 8726 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8727 int noblock, int *err) 8728 { 8729 int error; 8730 struct sk_buff *skb; 8731 long timeo; 8732 8733 timeo = sock_rcvtimeo(sk, noblock); 8734 8735 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8736 MAX_SCHEDULE_TIMEOUT); 8737 8738 do { 8739 /* Again only user level code calls this function, 8740 * so nothing interrupt level 8741 * will suddenly eat the receive_queue. 8742 * 8743 * Look at current nfs client by the way... 8744 * However, this function was correct in any case. 8) 8745 */ 8746 if (flags & MSG_PEEK) { 8747 skb = skb_peek(&sk->sk_receive_queue); 8748 if (skb) 8749 refcount_inc(&skb->users); 8750 } else { 8751 skb = __skb_dequeue(&sk->sk_receive_queue); 8752 } 8753 8754 if (skb) 8755 return skb; 8756 8757 /* Caller is allowed not to check sk->sk_err before calling. */ 8758 error = sock_error(sk); 8759 if (error) 8760 goto no_packet; 8761 8762 if (sk->sk_shutdown & RCV_SHUTDOWN) 8763 break; 8764 8765 if (sk_can_busy_loop(sk)) { 8766 sk_busy_loop(sk, noblock); 8767 8768 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8769 continue; 8770 } 8771 8772 /* User doesn't want to wait. */ 8773 error = -EAGAIN; 8774 if (!timeo) 8775 goto no_packet; 8776 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8777 8778 return NULL; 8779 8780 no_packet: 8781 *err = error; 8782 return NULL; 8783 } 8784 8785 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8786 static void __sctp_write_space(struct sctp_association *asoc) 8787 { 8788 struct sock *sk = asoc->base.sk; 8789 8790 if (sctp_wspace(asoc) <= 0) 8791 return; 8792 8793 if (waitqueue_active(&asoc->wait)) 8794 wake_up_interruptible(&asoc->wait); 8795 8796 if (sctp_writeable(sk)) { 8797 struct socket_wq *wq; 8798 8799 rcu_read_lock(); 8800 wq = rcu_dereference(sk->sk_wq); 8801 if (wq) { 8802 if (waitqueue_active(&wq->wait)) 8803 wake_up_interruptible(&wq->wait); 8804 8805 /* Note that we try to include the Async I/O support 8806 * here by modeling from the current TCP/UDP code. 8807 * We have not tested with it yet. 8808 */ 8809 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8810 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8811 } 8812 rcu_read_unlock(); 8813 } 8814 } 8815 8816 static void sctp_wake_up_waiters(struct sock *sk, 8817 struct sctp_association *asoc) 8818 { 8819 struct sctp_association *tmp = asoc; 8820 8821 /* We do accounting for the sndbuf space per association, 8822 * so we only need to wake our own association. 8823 */ 8824 if (asoc->ep->sndbuf_policy) 8825 return __sctp_write_space(asoc); 8826 8827 /* If association goes down and is just flushing its 8828 * outq, then just normally notify others. 8829 */ 8830 if (asoc->base.dead) 8831 return sctp_write_space(sk); 8832 8833 /* Accounting for the sndbuf space is per socket, so we 8834 * need to wake up others, try to be fair and in case of 8835 * other associations, let them have a go first instead 8836 * of just doing a sctp_write_space() call. 8837 * 8838 * Note that we reach sctp_wake_up_waiters() only when 8839 * associations free up queued chunks, thus we are under 8840 * lock and the list of associations on a socket is 8841 * guaranteed not to change. 8842 */ 8843 for (tmp = list_next_entry(tmp, asocs); 1; 8844 tmp = list_next_entry(tmp, asocs)) { 8845 /* Manually skip the head element. */ 8846 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8847 continue; 8848 /* Wake up association. */ 8849 __sctp_write_space(tmp); 8850 /* We've reached the end. */ 8851 if (tmp == asoc) 8852 break; 8853 } 8854 } 8855 8856 /* Do accounting for the sndbuf space. 8857 * Decrement the used sndbuf space of the corresponding association by the 8858 * data size which was just transmitted(freed). 8859 */ 8860 static void sctp_wfree(struct sk_buff *skb) 8861 { 8862 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8863 struct sctp_association *asoc = chunk->asoc; 8864 struct sock *sk = asoc->base.sk; 8865 8866 sk_mem_uncharge(sk, skb->truesize); 8867 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8868 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8869 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8870 &sk->sk_wmem_alloc)); 8871 8872 if (chunk->shkey) { 8873 struct sctp_shared_key *shkey = chunk->shkey; 8874 8875 /* refcnt == 2 and !list_empty mean after this release, it's 8876 * not being used anywhere, and it's time to notify userland 8877 * that this shkey can be freed if it's been deactivated. 8878 */ 8879 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8880 refcount_read(&shkey->refcnt) == 2) { 8881 struct sctp_ulpevent *ev; 8882 8883 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8884 SCTP_AUTH_FREE_KEY, 8885 GFP_KERNEL); 8886 if (ev) 8887 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8888 } 8889 sctp_auth_shkey_release(chunk->shkey); 8890 } 8891 8892 sock_wfree(skb); 8893 sctp_wake_up_waiters(sk, asoc); 8894 8895 sctp_association_put(asoc); 8896 } 8897 8898 /* Do accounting for the receive space on the socket. 8899 * Accounting for the association is done in ulpevent.c 8900 * We set this as a destructor for the cloned data skbs so that 8901 * accounting is done at the correct time. 8902 */ 8903 void sctp_sock_rfree(struct sk_buff *skb) 8904 { 8905 struct sock *sk = skb->sk; 8906 struct sctp_ulpevent *event = sctp_skb2event(skb); 8907 8908 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8909 8910 /* 8911 * Mimic the behavior of sock_rfree 8912 */ 8913 sk_mem_uncharge(sk, event->rmem_len); 8914 } 8915 8916 8917 /* Helper function to wait for space in the sndbuf. */ 8918 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8919 size_t msg_len) 8920 { 8921 struct sock *sk = asoc->base.sk; 8922 long current_timeo = *timeo_p; 8923 DEFINE_WAIT(wait); 8924 int err = 0; 8925 8926 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8927 *timeo_p, msg_len); 8928 8929 /* Increment the association's refcnt. */ 8930 sctp_association_hold(asoc); 8931 8932 /* Wait on the association specific sndbuf space. */ 8933 for (;;) { 8934 prepare_to_wait_exclusive(&asoc->wait, &wait, 8935 TASK_INTERRUPTIBLE); 8936 if (asoc->base.dead) 8937 goto do_dead; 8938 if (!*timeo_p) 8939 goto do_nonblock; 8940 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8941 goto do_error; 8942 if (signal_pending(current)) 8943 goto do_interrupted; 8944 if (sk_under_memory_pressure(sk)) 8945 sk_mem_reclaim(sk); 8946 if ((int)msg_len <= sctp_wspace(asoc) && 8947 sk_wmem_schedule(sk, msg_len)) 8948 break; 8949 8950 /* Let another process have a go. Since we are going 8951 * to sleep anyway. 8952 */ 8953 release_sock(sk); 8954 current_timeo = schedule_timeout(current_timeo); 8955 lock_sock(sk); 8956 if (sk != asoc->base.sk) 8957 goto do_error; 8958 8959 *timeo_p = current_timeo; 8960 } 8961 8962 out: 8963 finish_wait(&asoc->wait, &wait); 8964 8965 /* Release the association's refcnt. */ 8966 sctp_association_put(asoc); 8967 8968 return err; 8969 8970 do_dead: 8971 err = -ESRCH; 8972 goto out; 8973 8974 do_error: 8975 err = -EPIPE; 8976 goto out; 8977 8978 do_interrupted: 8979 err = sock_intr_errno(*timeo_p); 8980 goto out; 8981 8982 do_nonblock: 8983 err = -EAGAIN; 8984 goto out; 8985 } 8986 8987 void sctp_data_ready(struct sock *sk) 8988 { 8989 struct socket_wq *wq; 8990 8991 rcu_read_lock(); 8992 wq = rcu_dereference(sk->sk_wq); 8993 if (skwq_has_sleeper(wq)) 8994 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8995 EPOLLRDNORM | EPOLLRDBAND); 8996 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8997 rcu_read_unlock(); 8998 } 8999 9000 /* If socket sndbuf has changed, wake up all per association waiters. */ 9001 void sctp_write_space(struct sock *sk) 9002 { 9003 struct sctp_association *asoc; 9004 9005 /* Wake up the tasks in each wait queue. */ 9006 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9007 __sctp_write_space(asoc); 9008 } 9009 } 9010 9011 /* Is there any sndbuf space available on the socket? 9012 * 9013 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9014 * associations on the same socket. For a UDP-style socket with 9015 * multiple associations, it is possible for it to be "unwriteable" 9016 * prematurely. I assume that this is acceptable because 9017 * a premature "unwriteable" is better than an accidental "writeable" which 9018 * would cause an unwanted block under certain circumstances. For the 1-1 9019 * UDP-style sockets or TCP-style sockets, this code should work. 9020 * - Daisy 9021 */ 9022 static bool sctp_writeable(struct sock *sk) 9023 { 9024 return sk->sk_sndbuf > sk->sk_wmem_queued; 9025 } 9026 9027 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9028 * returns immediately with EINPROGRESS. 9029 */ 9030 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9031 { 9032 struct sock *sk = asoc->base.sk; 9033 int err = 0; 9034 long current_timeo = *timeo_p; 9035 DEFINE_WAIT(wait); 9036 9037 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9038 9039 /* Increment the association's refcnt. */ 9040 sctp_association_hold(asoc); 9041 9042 for (;;) { 9043 prepare_to_wait_exclusive(&asoc->wait, &wait, 9044 TASK_INTERRUPTIBLE); 9045 if (!*timeo_p) 9046 goto do_nonblock; 9047 if (sk->sk_shutdown & RCV_SHUTDOWN) 9048 break; 9049 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9050 asoc->base.dead) 9051 goto do_error; 9052 if (signal_pending(current)) 9053 goto do_interrupted; 9054 9055 if (sctp_state(asoc, ESTABLISHED)) 9056 break; 9057 9058 /* Let another process have a go. Since we are going 9059 * to sleep anyway. 9060 */ 9061 release_sock(sk); 9062 current_timeo = schedule_timeout(current_timeo); 9063 lock_sock(sk); 9064 9065 *timeo_p = current_timeo; 9066 } 9067 9068 out: 9069 finish_wait(&asoc->wait, &wait); 9070 9071 /* Release the association's refcnt. */ 9072 sctp_association_put(asoc); 9073 9074 return err; 9075 9076 do_error: 9077 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9078 err = -ETIMEDOUT; 9079 else 9080 err = -ECONNREFUSED; 9081 goto out; 9082 9083 do_interrupted: 9084 err = sock_intr_errno(*timeo_p); 9085 goto out; 9086 9087 do_nonblock: 9088 err = -EINPROGRESS; 9089 goto out; 9090 } 9091 9092 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9093 { 9094 struct sctp_endpoint *ep; 9095 int err = 0; 9096 DEFINE_WAIT(wait); 9097 9098 ep = sctp_sk(sk)->ep; 9099 9100 9101 for (;;) { 9102 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9103 TASK_INTERRUPTIBLE); 9104 9105 if (list_empty(&ep->asocs)) { 9106 release_sock(sk); 9107 timeo = schedule_timeout(timeo); 9108 lock_sock(sk); 9109 } 9110 9111 err = -EINVAL; 9112 if (!sctp_sstate(sk, LISTENING)) 9113 break; 9114 9115 err = 0; 9116 if (!list_empty(&ep->asocs)) 9117 break; 9118 9119 err = sock_intr_errno(timeo); 9120 if (signal_pending(current)) 9121 break; 9122 9123 err = -EAGAIN; 9124 if (!timeo) 9125 break; 9126 } 9127 9128 finish_wait(sk_sleep(sk), &wait); 9129 9130 return err; 9131 } 9132 9133 static void sctp_wait_for_close(struct sock *sk, long timeout) 9134 { 9135 DEFINE_WAIT(wait); 9136 9137 do { 9138 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9139 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9140 break; 9141 release_sock(sk); 9142 timeout = schedule_timeout(timeout); 9143 lock_sock(sk); 9144 } while (!signal_pending(current) && timeout); 9145 9146 finish_wait(sk_sleep(sk), &wait); 9147 } 9148 9149 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9150 { 9151 struct sk_buff *frag; 9152 9153 if (!skb->data_len) 9154 goto done; 9155 9156 /* Don't forget the fragments. */ 9157 skb_walk_frags(skb, frag) 9158 sctp_skb_set_owner_r_frag(frag, sk); 9159 9160 done: 9161 sctp_skb_set_owner_r(skb, sk); 9162 } 9163 9164 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9165 struct sctp_association *asoc) 9166 { 9167 struct inet_sock *inet = inet_sk(sk); 9168 struct inet_sock *newinet; 9169 struct sctp_sock *sp = sctp_sk(sk); 9170 struct sctp_endpoint *ep = sp->ep; 9171 9172 newsk->sk_type = sk->sk_type; 9173 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9174 newsk->sk_flags = sk->sk_flags; 9175 newsk->sk_tsflags = sk->sk_tsflags; 9176 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9177 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9178 newsk->sk_reuse = sk->sk_reuse; 9179 sctp_sk(newsk)->reuse = sp->reuse; 9180 9181 newsk->sk_shutdown = sk->sk_shutdown; 9182 newsk->sk_destruct = sctp_destruct_sock; 9183 newsk->sk_family = sk->sk_family; 9184 newsk->sk_protocol = IPPROTO_SCTP; 9185 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9186 newsk->sk_sndbuf = sk->sk_sndbuf; 9187 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9188 newsk->sk_lingertime = sk->sk_lingertime; 9189 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9190 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9191 newsk->sk_rxhash = sk->sk_rxhash; 9192 9193 newinet = inet_sk(newsk); 9194 9195 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9196 * getsockname() and getpeername() 9197 */ 9198 newinet->inet_sport = inet->inet_sport; 9199 newinet->inet_saddr = inet->inet_saddr; 9200 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9201 newinet->inet_dport = htons(asoc->peer.port); 9202 newinet->pmtudisc = inet->pmtudisc; 9203 newinet->inet_id = prandom_u32(); 9204 9205 newinet->uc_ttl = inet->uc_ttl; 9206 newinet->mc_loop = 1; 9207 newinet->mc_ttl = 1; 9208 newinet->mc_index = 0; 9209 newinet->mc_list = NULL; 9210 9211 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9212 net_enable_timestamp(); 9213 9214 /* Set newsk security attributes from orginal sk and connection 9215 * security attribute from ep. 9216 */ 9217 security_sctp_sk_clone(ep, sk, newsk); 9218 } 9219 9220 static inline void sctp_copy_descendant(struct sock *sk_to, 9221 const struct sock *sk_from) 9222 { 9223 size_t ancestor_size = sizeof(struct inet_sock); 9224 9225 ancestor_size += sk_from->sk_prot->obj_size; 9226 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9227 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9228 } 9229 9230 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9231 * and its messages to the newsk. 9232 */ 9233 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9234 struct sctp_association *assoc, 9235 enum sctp_socket_type type) 9236 { 9237 struct sctp_sock *oldsp = sctp_sk(oldsk); 9238 struct sctp_sock *newsp = sctp_sk(newsk); 9239 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9240 struct sctp_endpoint *newep = newsp->ep; 9241 struct sk_buff *skb, *tmp; 9242 struct sctp_ulpevent *event; 9243 struct sctp_bind_hashbucket *head; 9244 int err; 9245 9246 /* Migrate socket buffer sizes and all the socket level options to the 9247 * new socket. 9248 */ 9249 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9250 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9251 /* Brute force copy old sctp opt. */ 9252 sctp_copy_descendant(newsk, oldsk); 9253 9254 /* Restore the ep value that was overwritten with the above structure 9255 * copy. 9256 */ 9257 newsp->ep = newep; 9258 newsp->hmac = NULL; 9259 9260 /* Hook this new socket in to the bind_hash list. */ 9261 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9262 inet_sk(oldsk)->inet_num)]; 9263 spin_lock_bh(&head->lock); 9264 pp = sctp_sk(oldsk)->bind_hash; 9265 sk_add_bind_node(newsk, &pp->owner); 9266 sctp_sk(newsk)->bind_hash = pp; 9267 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9268 spin_unlock_bh(&head->lock); 9269 9270 /* Copy the bind_addr list from the original endpoint to the new 9271 * endpoint so that we can handle restarts properly 9272 */ 9273 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9274 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9275 if (err) 9276 return err; 9277 9278 /* New ep's auth_hmacs should be set if old ep's is set, in case 9279 * that net->sctp.auth_enable has been changed to 0 by users and 9280 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9281 */ 9282 if (oldsp->ep->auth_hmacs) { 9283 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9284 if (err) 9285 return err; 9286 } 9287 9288 /* Move any messages in the old socket's receive queue that are for the 9289 * peeled off association to the new socket's receive queue. 9290 */ 9291 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9292 event = sctp_skb2event(skb); 9293 if (event->asoc == assoc) { 9294 __skb_unlink(skb, &oldsk->sk_receive_queue); 9295 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9296 sctp_skb_set_owner_r_frag(skb, newsk); 9297 } 9298 } 9299 9300 /* Clean up any messages pending delivery due to partial 9301 * delivery. Three cases: 9302 * 1) No partial deliver; no work. 9303 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9304 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9305 */ 9306 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9307 9308 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9309 struct sk_buff_head *queue; 9310 9311 /* Decide which queue to move pd_lobby skbs to. */ 9312 if (assoc->ulpq.pd_mode) { 9313 queue = &newsp->pd_lobby; 9314 } else 9315 queue = &newsk->sk_receive_queue; 9316 9317 /* Walk through the pd_lobby, looking for skbs that 9318 * need moved to the new socket. 9319 */ 9320 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9321 event = sctp_skb2event(skb); 9322 if (event->asoc == assoc) { 9323 __skb_unlink(skb, &oldsp->pd_lobby); 9324 __skb_queue_tail(queue, skb); 9325 sctp_skb_set_owner_r_frag(skb, newsk); 9326 } 9327 } 9328 9329 /* Clear up any skbs waiting for the partial 9330 * delivery to finish. 9331 */ 9332 if (assoc->ulpq.pd_mode) 9333 sctp_clear_pd(oldsk, NULL); 9334 9335 } 9336 9337 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9338 9339 /* Set the type of socket to indicate that it is peeled off from the 9340 * original UDP-style socket or created with the accept() call on a 9341 * TCP-style socket.. 9342 */ 9343 newsp->type = type; 9344 9345 /* Mark the new socket "in-use" by the user so that any packets 9346 * that may arrive on the association after we've moved it are 9347 * queued to the backlog. This prevents a potential race between 9348 * backlog processing on the old socket and new-packet processing 9349 * on the new socket. 9350 * 9351 * The caller has just allocated newsk so we can guarantee that other 9352 * paths won't try to lock it and then oldsk. 9353 */ 9354 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9355 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9356 sctp_assoc_migrate(assoc, newsk); 9357 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9358 9359 /* If the association on the newsk is already closed before accept() 9360 * is called, set RCV_SHUTDOWN flag. 9361 */ 9362 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9363 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9364 newsk->sk_shutdown |= RCV_SHUTDOWN; 9365 } else { 9366 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9367 } 9368 9369 release_sock(newsk); 9370 9371 return 0; 9372 } 9373 9374 9375 /* This proto struct describes the ULP interface for SCTP. */ 9376 struct proto sctp_prot = { 9377 .name = "SCTP", 9378 .owner = THIS_MODULE, 9379 .close = sctp_close, 9380 .disconnect = sctp_disconnect, 9381 .accept = sctp_accept, 9382 .ioctl = sctp_ioctl, 9383 .init = sctp_init_sock, 9384 .destroy = sctp_destroy_sock, 9385 .shutdown = sctp_shutdown, 9386 .setsockopt = sctp_setsockopt, 9387 .getsockopt = sctp_getsockopt, 9388 .sendmsg = sctp_sendmsg, 9389 .recvmsg = sctp_recvmsg, 9390 .bind = sctp_bind, 9391 .bind_add = sctp_bind_add, 9392 .backlog_rcv = sctp_backlog_rcv, 9393 .hash = sctp_hash, 9394 .unhash = sctp_unhash, 9395 .no_autobind = true, 9396 .obj_size = sizeof(struct sctp_sock), 9397 .useroffset = offsetof(struct sctp_sock, subscribe), 9398 .usersize = offsetof(struct sctp_sock, initmsg) - 9399 offsetof(struct sctp_sock, subscribe) + 9400 sizeof_field(struct sctp_sock, initmsg), 9401 .sysctl_mem = sysctl_sctp_mem, 9402 .sysctl_rmem = sysctl_sctp_rmem, 9403 .sysctl_wmem = sysctl_sctp_wmem, 9404 .memory_pressure = &sctp_memory_pressure, 9405 .enter_memory_pressure = sctp_enter_memory_pressure, 9406 .memory_allocated = &sctp_memory_allocated, 9407 .sockets_allocated = &sctp_sockets_allocated, 9408 }; 9409 9410 #if IS_ENABLED(CONFIG_IPV6) 9411 9412 #include <net/transp_v6.h> 9413 static void sctp_v6_destroy_sock(struct sock *sk) 9414 { 9415 sctp_destroy_sock(sk); 9416 inet6_destroy_sock(sk); 9417 } 9418 9419 struct proto sctpv6_prot = { 9420 .name = "SCTPv6", 9421 .owner = THIS_MODULE, 9422 .close = sctp_close, 9423 .disconnect = sctp_disconnect, 9424 .accept = sctp_accept, 9425 .ioctl = sctp_ioctl, 9426 .init = sctp_init_sock, 9427 .destroy = sctp_v6_destroy_sock, 9428 .shutdown = sctp_shutdown, 9429 .setsockopt = sctp_setsockopt, 9430 .getsockopt = sctp_getsockopt, 9431 .sendmsg = sctp_sendmsg, 9432 .recvmsg = sctp_recvmsg, 9433 .bind = sctp_bind, 9434 .bind_add = sctp_bind_add, 9435 .backlog_rcv = sctp_backlog_rcv, 9436 .hash = sctp_hash, 9437 .unhash = sctp_unhash, 9438 .no_autobind = true, 9439 .obj_size = sizeof(struct sctp6_sock), 9440 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9441 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9442 offsetof(struct sctp6_sock, sctp.subscribe) + 9443 sizeof_field(struct sctp6_sock, sctp.initmsg), 9444 .sysctl_mem = sysctl_sctp_mem, 9445 .sysctl_rmem = sysctl_sctp_rmem, 9446 .sysctl_wmem = sysctl_sctp_wmem, 9447 .memory_pressure = &sctp_memory_pressure, 9448 .enter_memory_pressure = sctp_enter_memory_pressure, 9449 .memory_allocated = &sctp_memory_allocated, 9450 .sockets_allocated = &sctp_sockets_allocated, 9451 }; 9452 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9453