1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <net/sock.h> 82 #include <net/sctp/sctp.h> 83 #include <net/sctp/sm.h> 84 85 /* WARNING: Please do not remove the SCTP_STATIC attribute to 86 * any of the functions below as they are used to export functions 87 * used by a project regression testsuite. 88 */ 89 90 /* Forward declarations for internal helper functions. */ 91 static int sctp_writeable(struct sock *sk); 92 static void sctp_wfree(struct sk_buff *skb); 93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 94 size_t msg_len); 95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 97 static int sctp_wait_for_accept(struct sock *sk, long timeo); 98 static void sctp_wait_for_close(struct sock *sk, long timeo); 99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 100 union sctp_addr *addr, int len); 101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf(struct sctp_association *asoc, 106 struct sctp_chunk *chunk); 107 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 108 static int sctp_autobind(struct sock *sk); 109 static void sctp_sock_migrate(struct sock *, struct sock *, 110 struct sctp_association *, sctp_socket_type_t); 111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 112 113 extern struct kmem_cache *sctp_bucket_cachep; 114 extern long sysctl_sctp_mem[3]; 115 extern int sysctl_sctp_rmem[3]; 116 extern int sysctl_sctp_wmem[3]; 117 118 static int sctp_memory_pressure; 119 static atomic_long_t sctp_memory_allocated; 120 struct percpu_counter sctp_sockets_allocated; 121 122 static void sctp_enter_memory_pressure(struct sock *sk) 123 { 124 sctp_memory_pressure = 1; 125 } 126 127 128 /* Get the sndbuf space available at the time on the association. */ 129 static inline int sctp_wspace(struct sctp_association *asoc) 130 { 131 int amt; 132 133 if (asoc->ep->sndbuf_policy) 134 amt = asoc->sndbuf_used; 135 else 136 amt = sk_wmem_alloc_get(asoc->base.sk); 137 138 if (amt >= asoc->base.sk->sk_sndbuf) { 139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 140 amt = 0; 141 else { 142 amt = sk_stream_wspace(asoc->base.sk); 143 if (amt < 0) 144 amt = 0; 145 } 146 } else { 147 amt = asoc->base.sk->sk_sndbuf - amt; 148 } 149 return amt; 150 } 151 152 /* Increment the used sndbuf space count of the corresponding association by 153 * the size of the outgoing data chunk. 154 * Also, set the skb destructor for sndbuf accounting later. 155 * 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 158 * destructor in the data chunk skb for the purpose of the sndbuf space 159 * tracking. 160 */ 161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 162 { 163 struct sctp_association *asoc = chunk->asoc; 164 struct sock *sk = asoc->base.sk; 165 166 /* The sndbuf space is tracked per association. */ 167 sctp_association_hold(asoc); 168 169 skb_set_owner_w(chunk->skb, sk); 170 171 chunk->skb->destructor = sctp_wfree; 172 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 174 175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 176 sizeof(struct sk_buff) + 177 sizeof(struct sctp_chunk); 178 179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 180 sk->sk_wmem_queued += chunk->skb->truesize; 181 sk_mem_charge(sk, chunk->skb->truesize); 182 } 183 184 /* Verify that this is a valid address. */ 185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 186 int len) 187 { 188 struct sctp_af *af; 189 190 /* Verify basic sockaddr. */ 191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 192 if (!af) 193 return -EINVAL; 194 195 /* Is this a valid SCTP address? */ 196 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 197 return -EINVAL; 198 199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 200 return -EINVAL; 201 202 return 0; 203 } 204 205 /* Look up the association by its id. If this is not a UDP-style 206 * socket, the ID field is always ignored. 207 */ 208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 209 { 210 struct sctp_association *asoc = NULL; 211 212 /* If this is not a UDP-style socket, assoc id should be ignored. */ 213 if (!sctp_style(sk, UDP)) { 214 /* Return NULL if the socket state is not ESTABLISHED. It 215 * could be a TCP-style listening socket or a socket which 216 * hasn't yet called connect() to establish an association. 217 */ 218 if (!sctp_sstate(sk, ESTABLISHED)) 219 return NULL; 220 221 /* Get the first and the only association from the list. */ 222 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 224 struct sctp_association, asocs); 225 return asoc; 226 } 227 228 /* Otherwise this is a UDP-style socket. */ 229 if (!id || (id == (sctp_assoc_t)-1)) 230 return NULL; 231 232 spin_lock_bh(&sctp_assocs_id_lock); 233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 234 spin_unlock_bh(&sctp_assocs_id_lock); 235 236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 237 return NULL; 238 239 return asoc; 240 } 241 242 /* Look up the transport from an address and an assoc id. If both address and 243 * id are specified, the associations matching the address and the id should be 244 * the same. 245 */ 246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 247 struct sockaddr_storage *addr, 248 sctp_assoc_t id) 249 { 250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 251 struct sctp_transport *transport; 252 union sctp_addr *laddr = (union sctp_addr *)addr; 253 254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 255 laddr, 256 &transport); 257 258 if (!addr_asoc) 259 return NULL; 260 261 id_asoc = sctp_id2assoc(sk, id); 262 if (id_asoc && (id_asoc != addr_asoc)) 263 return NULL; 264 265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 266 (union sctp_addr *)addr); 267 268 return transport; 269 } 270 271 /* API 3.1.2 bind() - UDP Style Syntax 272 * The syntax of bind() is, 273 * 274 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 275 * 276 * sd - the socket descriptor returned by socket(). 277 * addr - the address structure (struct sockaddr_in or struct 278 * sockaddr_in6 [RFC 2553]), 279 * addr_len - the size of the address structure. 280 */ 281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 282 { 283 int retval = 0; 284 285 sctp_lock_sock(sk); 286 287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 288 sk, addr, addr_len); 289 290 /* Disallow binding twice. */ 291 if (!sctp_sk(sk)->ep->base.bind_addr.port) 292 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 293 addr_len); 294 else 295 retval = -EINVAL; 296 297 sctp_release_sock(sk); 298 299 return retval; 300 } 301 302 static long sctp_get_port_local(struct sock *, union sctp_addr *); 303 304 /* Verify this is a valid sockaddr. */ 305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 306 union sctp_addr *addr, int len) 307 { 308 struct sctp_af *af; 309 310 /* Check minimum size. */ 311 if (len < sizeof (struct sockaddr)) 312 return NULL; 313 314 /* V4 mapped address are really of AF_INET family */ 315 if (addr->sa.sa_family == AF_INET6 && 316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 317 if (!opt->pf->af_supported(AF_INET, opt)) 318 return NULL; 319 } else { 320 /* Does this PF support this AF? */ 321 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 322 return NULL; 323 } 324 325 /* If we get this far, af is valid. */ 326 af = sctp_get_af_specific(addr->sa.sa_family); 327 328 if (len < af->sockaddr_len) 329 return NULL; 330 331 return af; 332 } 333 334 /* Bind a local address either to an endpoint or to an association. */ 335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 336 { 337 struct sctp_sock *sp = sctp_sk(sk); 338 struct sctp_endpoint *ep = sp->ep; 339 struct sctp_bind_addr *bp = &ep->base.bind_addr; 340 struct sctp_af *af; 341 unsigned short snum; 342 int ret = 0; 343 344 /* Common sockaddr verification. */ 345 af = sctp_sockaddr_af(sp, addr, len); 346 if (!af) { 347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 348 sk, addr, len); 349 return -EINVAL; 350 } 351 352 snum = ntohs(addr->v4.sin_port); 353 354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 355 ", port: %d, new port: %d, len: %d)\n", 356 sk, 357 addr, 358 bp->port, snum, 359 len); 360 361 /* PF specific bind() address verification. */ 362 if (!sp->pf->bind_verify(sp, addr)) 363 return -EADDRNOTAVAIL; 364 365 /* We must either be unbound, or bind to the same port. 366 * It's OK to allow 0 ports if we are already bound. 367 * We'll just inhert an already bound port in this case 368 */ 369 if (bp->port) { 370 if (!snum) 371 snum = bp->port; 372 else if (snum != bp->port) { 373 SCTP_DEBUG_PRINTK("sctp_do_bind:" 374 " New port %d does not match existing port " 375 "%d.\n", snum, bp->port); 376 return -EINVAL; 377 } 378 } 379 380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 381 return -EACCES; 382 383 /* See if the address matches any of the addresses we may have 384 * already bound before checking against other endpoints. 385 */ 386 if (sctp_bind_addr_match(bp, addr, sp)) 387 return -EINVAL; 388 389 /* Make sure we are allowed to bind here. 390 * The function sctp_get_port_local() does duplicate address 391 * detection. 392 */ 393 addr->v4.sin_port = htons(snum); 394 if ((ret = sctp_get_port_local(sk, addr))) { 395 return -EADDRINUSE; 396 } 397 398 /* Refresh ephemeral port. */ 399 if (!bp->port) 400 bp->port = inet_sk(sk)->inet_num; 401 402 /* Add the address to the bind address list. 403 * Use GFP_ATOMIC since BHs will be disabled. 404 */ 405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 406 407 /* Copy back into socket for getsockname() use. */ 408 if (!ret) { 409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 410 af->to_sk_saddr(addr, sk); 411 } 412 413 return ret; 414 } 415 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 417 * 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 419 * at any one time. If a sender, after sending an ASCONF chunk, decides 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 422 * subsequent ASCONF. Note this restriction binds each side, so at any 423 * time two ASCONF may be in-transit on any given association (one sent 424 * from each endpoint). 425 */ 426 static int sctp_send_asconf(struct sctp_association *asoc, 427 struct sctp_chunk *chunk) 428 { 429 int retval = 0; 430 431 /* If there is an outstanding ASCONF chunk, queue it for later 432 * transmission. 433 */ 434 if (asoc->addip_last_asconf) { 435 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 436 goto out; 437 } 438 439 /* Hold the chunk until an ASCONF_ACK is received. */ 440 sctp_chunk_hold(chunk); 441 retval = sctp_primitive_ASCONF(asoc, chunk); 442 if (retval) 443 sctp_chunk_free(chunk); 444 else 445 asoc->addip_last_asconf = chunk; 446 447 out: 448 return retval; 449 } 450 451 /* Add a list of addresses as bind addresses to local endpoint or 452 * association. 453 * 454 * Basically run through each address specified in the addrs/addrcnt 455 * array/length pair, determine if it is IPv6 or IPv4 and call 456 * sctp_do_bind() on it. 457 * 458 * If any of them fails, then the operation will be reversed and the 459 * ones that were added will be removed. 460 * 461 * Only sctp_setsockopt_bindx() is supposed to call this function. 462 */ 463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 464 { 465 int cnt; 466 int retval = 0; 467 void *addr_buf; 468 struct sockaddr *sa_addr; 469 struct sctp_af *af; 470 471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 472 sk, addrs, addrcnt); 473 474 addr_buf = addrs; 475 for (cnt = 0; cnt < addrcnt; cnt++) { 476 /* The list may contain either IPv4 or IPv6 address; 477 * determine the address length for walking thru the list. 478 */ 479 sa_addr = (struct sockaddr *)addr_buf; 480 af = sctp_get_af_specific(sa_addr->sa_family); 481 if (!af) { 482 retval = -EINVAL; 483 goto err_bindx_add; 484 } 485 486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 487 af->sockaddr_len); 488 489 addr_buf += af->sockaddr_len; 490 491 err_bindx_add: 492 if (retval < 0) { 493 /* Failed. Cleanup the ones that have been added */ 494 if (cnt > 0) 495 sctp_bindx_rem(sk, addrs, cnt); 496 return retval; 497 } 498 } 499 500 return retval; 501 } 502 503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 504 * associations that are part of the endpoint indicating that a list of local 505 * addresses are added to the endpoint. 506 * 507 * If any of the addresses is already in the bind address list of the 508 * association, we do not send the chunk for that association. But it will not 509 * affect other associations. 510 * 511 * Only sctp_setsockopt_bindx() is supposed to call this function. 512 */ 513 static int sctp_send_asconf_add_ip(struct sock *sk, 514 struct sockaddr *addrs, 515 int addrcnt) 516 { 517 struct sctp_sock *sp; 518 struct sctp_endpoint *ep; 519 struct sctp_association *asoc; 520 struct sctp_bind_addr *bp; 521 struct sctp_chunk *chunk; 522 struct sctp_sockaddr_entry *laddr; 523 union sctp_addr *addr; 524 union sctp_addr saveaddr; 525 void *addr_buf; 526 struct sctp_af *af; 527 struct list_head *p; 528 int i; 529 int retval = 0; 530 531 if (!sctp_addip_enable) 532 return retval; 533 534 sp = sctp_sk(sk); 535 ep = sp->ep; 536 537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 538 __func__, sk, addrs, addrcnt); 539 540 list_for_each_entry(asoc, &ep->asocs, asocs) { 541 542 if (!asoc->peer.asconf_capable) 543 continue; 544 545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 546 continue; 547 548 if (!sctp_state(asoc, ESTABLISHED)) 549 continue; 550 551 /* Check if any address in the packed array of addresses is 552 * in the bind address list of the association. If so, 553 * do not send the asconf chunk to its peer, but continue with 554 * other associations. 555 */ 556 addr_buf = addrs; 557 for (i = 0; i < addrcnt; i++) { 558 addr = (union sctp_addr *)addr_buf; 559 af = sctp_get_af_specific(addr->v4.sin_family); 560 if (!af) { 561 retval = -EINVAL; 562 goto out; 563 } 564 565 if (sctp_assoc_lookup_laddr(asoc, addr)) 566 break; 567 568 addr_buf += af->sockaddr_len; 569 } 570 if (i < addrcnt) 571 continue; 572 573 /* Use the first valid address in bind addr list of 574 * association as Address Parameter of ASCONF CHUNK. 575 */ 576 bp = &asoc->base.bind_addr; 577 p = bp->address_list.next; 578 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 580 addrcnt, SCTP_PARAM_ADD_IP); 581 if (!chunk) { 582 retval = -ENOMEM; 583 goto out; 584 } 585 586 retval = sctp_send_asconf(asoc, chunk); 587 if (retval) 588 goto out; 589 590 /* Add the new addresses to the bind address list with 591 * use_as_src set to 0. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = (union sctp_addr *)addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 memcpy(&saveaddr, addr, af->sockaddr_len); 598 retval = sctp_add_bind_addr(bp, &saveaddr, 599 SCTP_ADDR_NEW, GFP_ATOMIC); 600 addr_buf += af->sockaddr_len; 601 } 602 } 603 604 out: 605 return retval; 606 } 607 608 /* Remove a list of addresses from bind addresses list. Do not remove the 609 * last address. 610 * 611 * Basically run through each address specified in the addrs/addrcnt 612 * array/length pair, determine if it is IPv6 or IPv4 and call 613 * sctp_del_bind() on it. 614 * 615 * If any of them fails, then the operation will be reversed and the 616 * ones that were removed will be added back. 617 * 618 * At least one address has to be left; if only one address is 619 * available, the operation will return -EBUSY. 620 * 621 * Only sctp_setsockopt_bindx() is supposed to call this function. 622 */ 623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 624 { 625 struct sctp_sock *sp = sctp_sk(sk); 626 struct sctp_endpoint *ep = sp->ep; 627 int cnt; 628 struct sctp_bind_addr *bp = &ep->base.bind_addr; 629 int retval = 0; 630 void *addr_buf; 631 union sctp_addr *sa_addr; 632 struct sctp_af *af; 633 634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 635 sk, addrs, addrcnt); 636 637 addr_buf = addrs; 638 for (cnt = 0; cnt < addrcnt; cnt++) { 639 /* If the bind address list is empty or if there is only one 640 * bind address, there is nothing more to be removed (we need 641 * at least one address here). 642 */ 643 if (list_empty(&bp->address_list) || 644 (sctp_list_single_entry(&bp->address_list))) { 645 retval = -EBUSY; 646 goto err_bindx_rem; 647 } 648 649 sa_addr = (union sctp_addr *)addr_buf; 650 af = sctp_get_af_specific(sa_addr->sa.sa_family); 651 if (!af) { 652 retval = -EINVAL; 653 goto err_bindx_rem; 654 } 655 656 if (!af->addr_valid(sa_addr, sp, NULL)) { 657 retval = -EADDRNOTAVAIL; 658 goto err_bindx_rem; 659 } 660 661 if (sa_addr->v4.sin_port && 662 sa_addr->v4.sin_port != htons(bp->port)) { 663 retval = -EINVAL; 664 goto err_bindx_rem; 665 } 666 667 if (!sa_addr->v4.sin_port) 668 sa_addr->v4.sin_port = htons(bp->port); 669 670 /* FIXME - There is probably a need to check if sk->sk_saddr and 671 * sk->sk_rcv_addr are currently set to one of the addresses to 672 * be removed. This is something which needs to be looked into 673 * when we are fixing the outstanding issues with multi-homing 674 * socket routing and failover schemes. Refer to comments in 675 * sctp_do_bind(). -daisy 676 */ 677 retval = sctp_del_bind_addr(bp, sa_addr); 678 679 addr_buf += af->sockaddr_len; 680 err_bindx_rem: 681 if (retval < 0) { 682 /* Failed. Add the ones that has been removed back */ 683 if (cnt > 0) 684 sctp_bindx_add(sk, addrs, cnt); 685 return retval; 686 } 687 } 688 689 return retval; 690 } 691 692 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 693 * the associations that are part of the endpoint indicating that a list of 694 * local addresses are removed from the endpoint. 695 * 696 * If any of the addresses is already in the bind address list of the 697 * association, we do not send the chunk for that association. But it will not 698 * affect other associations. 699 * 700 * Only sctp_setsockopt_bindx() is supposed to call this function. 701 */ 702 static int sctp_send_asconf_del_ip(struct sock *sk, 703 struct sockaddr *addrs, 704 int addrcnt) 705 { 706 struct sctp_sock *sp; 707 struct sctp_endpoint *ep; 708 struct sctp_association *asoc; 709 struct sctp_transport *transport; 710 struct sctp_bind_addr *bp; 711 struct sctp_chunk *chunk; 712 union sctp_addr *laddr; 713 void *addr_buf; 714 struct sctp_af *af; 715 struct sctp_sockaddr_entry *saddr; 716 int i; 717 int retval = 0; 718 719 if (!sctp_addip_enable) 720 return retval; 721 722 sp = sctp_sk(sk); 723 ep = sp->ep; 724 725 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 726 __func__, sk, addrs, addrcnt); 727 728 list_for_each_entry(asoc, &ep->asocs, asocs) { 729 730 if (!asoc->peer.asconf_capable) 731 continue; 732 733 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 734 continue; 735 736 if (!sctp_state(asoc, ESTABLISHED)) 737 continue; 738 739 /* Check if any address in the packed array of addresses is 740 * not present in the bind address list of the association. 741 * If so, do not send the asconf chunk to its peer, but 742 * continue with other associations. 743 */ 744 addr_buf = addrs; 745 for (i = 0; i < addrcnt; i++) { 746 laddr = (union sctp_addr *)addr_buf; 747 af = sctp_get_af_specific(laddr->v4.sin_family); 748 if (!af) { 749 retval = -EINVAL; 750 goto out; 751 } 752 753 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 754 break; 755 756 addr_buf += af->sockaddr_len; 757 } 758 if (i < addrcnt) 759 continue; 760 761 /* Find one address in the association's bind address list 762 * that is not in the packed array of addresses. This is to 763 * make sure that we do not delete all the addresses in the 764 * association. 765 */ 766 bp = &asoc->base.bind_addr; 767 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 768 addrcnt, sp); 769 if (!laddr) 770 continue; 771 772 /* We do not need RCU protection throughout this loop 773 * because this is done under a socket lock from the 774 * setsockopt call. 775 */ 776 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 777 SCTP_PARAM_DEL_IP); 778 if (!chunk) { 779 retval = -ENOMEM; 780 goto out; 781 } 782 783 /* Reset use_as_src flag for the addresses in the bind address 784 * list that are to be deleted. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = (union sctp_addr *)addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 list_for_each_entry(saddr, &bp->address_list, list) { 791 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 792 saddr->state = SCTP_ADDR_DEL; 793 } 794 addr_buf += af->sockaddr_len; 795 } 796 797 /* Update the route and saddr entries for all the transports 798 * as some of the addresses in the bind address list are 799 * about to be deleted and cannot be used as source addresses. 800 */ 801 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 802 transports) { 803 dst_release(transport->dst); 804 sctp_transport_route(transport, NULL, 805 sctp_sk(asoc->base.sk)); 806 } 807 808 retval = sctp_send_asconf(asoc, chunk); 809 } 810 out: 811 return retval; 812 } 813 814 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 815 * 816 * API 8.1 817 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 818 * int flags); 819 * 820 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 821 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 822 * or IPv6 addresses. 823 * 824 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 825 * Section 3.1.2 for this usage. 826 * 827 * addrs is a pointer to an array of one or more socket addresses. Each 828 * address is contained in its appropriate structure (i.e. struct 829 * sockaddr_in or struct sockaddr_in6) the family of the address type 830 * must be used to distinguish the address length (note that this 831 * representation is termed a "packed array" of addresses). The caller 832 * specifies the number of addresses in the array with addrcnt. 833 * 834 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 835 * -1, and sets errno to the appropriate error code. 836 * 837 * For SCTP, the port given in each socket address must be the same, or 838 * sctp_bindx() will fail, setting errno to EINVAL. 839 * 840 * The flags parameter is formed from the bitwise OR of zero or more of 841 * the following currently defined flags: 842 * 843 * SCTP_BINDX_ADD_ADDR 844 * 845 * SCTP_BINDX_REM_ADDR 846 * 847 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 848 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 849 * addresses from the association. The two flags are mutually exclusive; 850 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 851 * not remove all addresses from an association; sctp_bindx() will 852 * reject such an attempt with EINVAL. 853 * 854 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 855 * additional addresses with an endpoint after calling bind(). Or use 856 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 857 * socket is associated with so that no new association accepted will be 858 * associated with those addresses. If the endpoint supports dynamic 859 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 860 * endpoint to send the appropriate message to the peer to change the 861 * peers address lists. 862 * 863 * Adding and removing addresses from a connected association is 864 * optional functionality. Implementations that do not support this 865 * functionality should return EOPNOTSUPP. 866 * 867 * Basically do nothing but copying the addresses from user to kernel 868 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 869 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 870 * from userspace. 871 * 872 * We don't use copy_from_user() for optimization: we first do the 873 * sanity checks (buffer size -fast- and access check-healthy 874 * pointer); if all of those succeed, then we can alloc the memory 875 * (expensive operation) needed to copy the data to kernel. Then we do 876 * the copying without checking the user space area 877 * (__copy_from_user()). 878 * 879 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 880 * it. 881 * 882 * sk The sk of the socket 883 * addrs The pointer to the addresses in user land 884 * addrssize Size of the addrs buffer 885 * op Operation to perform (add or remove, see the flags of 886 * sctp_bindx) 887 * 888 * Returns 0 if ok, <0 errno code on error. 889 */ 890 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 891 struct sockaddr __user *addrs, 892 int addrs_size, int op) 893 { 894 struct sockaddr *kaddrs; 895 int err; 896 int addrcnt = 0; 897 int walk_size = 0; 898 struct sockaddr *sa_addr; 899 void *addr_buf; 900 struct sctp_af *af; 901 902 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 903 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 904 905 if (unlikely(addrs_size <= 0)) 906 return -EINVAL; 907 908 /* Check the user passed a healthy pointer. */ 909 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 910 return -EFAULT; 911 912 /* Alloc space for the address array in kernel memory. */ 913 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 914 if (unlikely(!kaddrs)) 915 return -ENOMEM; 916 917 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 918 kfree(kaddrs); 919 return -EFAULT; 920 } 921 922 /* Walk through the addrs buffer and count the number of addresses. */ 923 addr_buf = kaddrs; 924 while (walk_size < addrs_size) { 925 if (walk_size + sizeof(sa_family_t) > addrs_size) { 926 kfree(kaddrs); 927 return -EINVAL; 928 } 929 930 sa_addr = (struct sockaddr *)addr_buf; 931 af = sctp_get_af_specific(sa_addr->sa_family); 932 933 /* If the address family is not supported or if this address 934 * causes the address buffer to overflow return EINVAL. 935 */ 936 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 937 kfree(kaddrs); 938 return -EINVAL; 939 } 940 addrcnt++; 941 addr_buf += af->sockaddr_len; 942 walk_size += af->sockaddr_len; 943 } 944 945 /* Do the work. */ 946 switch (op) { 947 case SCTP_BINDX_ADD_ADDR: 948 err = sctp_bindx_add(sk, kaddrs, addrcnt); 949 if (err) 950 goto out; 951 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 952 break; 953 954 case SCTP_BINDX_REM_ADDR: 955 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 956 if (err) 957 goto out; 958 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 959 break; 960 961 default: 962 err = -EINVAL; 963 break; 964 } 965 966 out: 967 kfree(kaddrs); 968 969 return err; 970 } 971 972 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 973 * 974 * Common routine for handling connect() and sctp_connectx(). 975 * Connect will come in with just a single address. 976 */ 977 static int __sctp_connect(struct sock* sk, 978 struct sockaddr *kaddrs, 979 int addrs_size, 980 sctp_assoc_t *assoc_id) 981 { 982 struct sctp_sock *sp; 983 struct sctp_endpoint *ep; 984 struct sctp_association *asoc = NULL; 985 struct sctp_association *asoc2; 986 struct sctp_transport *transport; 987 union sctp_addr to; 988 struct sctp_af *af; 989 sctp_scope_t scope; 990 long timeo; 991 int err = 0; 992 int addrcnt = 0; 993 int walk_size = 0; 994 union sctp_addr *sa_addr = NULL; 995 void *addr_buf; 996 unsigned short port; 997 unsigned int f_flags = 0; 998 999 sp = sctp_sk(sk); 1000 ep = sp->ep; 1001 1002 /* connect() cannot be done on a socket that is already in ESTABLISHED 1003 * state - UDP-style peeled off socket or a TCP-style socket that 1004 * is already connected. 1005 * It cannot be done even on a TCP-style listening socket. 1006 */ 1007 if (sctp_sstate(sk, ESTABLISHED) || 1008 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1009 err = -EISCONN; 1010 goto out_free; 1011 } 1012 1013 /* Walk through the addrs buffer and count the number of addresses. */ 1014 addr_buf = kaddrs; 1015 while (walk_size < addrs_size) { 1016 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1017 err = -EINVAL; 1018 goto out_free; 1019 } 1020 1021 sa_addr = (union sctp_addr *)addr_buf; 1022 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1023 1024 /* If the address family is not supported or if this address 1025 * causes the address buffer to overflow return EINVAL. 1026 */ 1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1028 err = -EINVAL; 1029 goto out_free; 1030 } 1031 1032 port = ntohs(sa_addr->v4.sin_port); 1033 1034 /* Save current address so we can work with it */ 1035 memcpy(&to, sa_addr, af->sockaddr_len); 1036 1037 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1038 if (err) 1039 goto out_free; 1040 1041 /* Make sure the destination port is correctly set 1042 * in all addresses. 1043 */ 1044 if (asoc && asoc->peer.port && asoc->peer.port != port) 1045 goto out_free; 1046 1047 1048 /* Check if there already is a matching association on the 1049 * endpoint (other than the one created here). 1050 */ 1051 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1052 if (asoc2 && asoc2 != asoc) { 1053 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1054 err = -EISCONN; 1055 else 1056 err = -EALREADY; 1057 goto out_free; 1058 } 1059 1060 /* If we could not find a matching association on the endpoint, 1061 * make sure that there is no peeled-off association matching 1062 * the peer address even on another socket. 1063 */ 1064 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1065 err = -EADDRNOTAVAIL; 1066 goto out_free; 1067 } 1068 1069 if (!asoc) { 1070 /* If a bind() or sctp_bindx() is not called prior to 1071 * an sctp_connectx() call, the system picks an 1072 * ephemeral port and will choose an address set 1073 * equivalent to binding with a wildcard address. 1074 */ 1075 if (!ep->base.bind_addr.port) { 1076 if (sctp_autobind(sk)) { 1077 err = -EAGAIN; 1078 goto out_free; 1079 } 1080 } else { 1081 /* 1082 * If an unprivileged user inherits a 1-many 1083 * style socket with open associations on a 1084 * privileged port, it MAY be permitted to 1085 * accept new associations, but it SHOULD NOT 1086 * be permitted to open new associations. 1087 */ 1088 if (ep->base.bind_addr.port < PROT_SOCK && 1089 !capable(CAP_NET_BIND_SERVICE)) { 1090 err = -EACCES; 1091 goto out_free; 1092 } 1093 } 1094 1095 scope = sctp_scope(&to); 1096 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1097 if (!asoc) { 1098 err = -ENOMEM; 1099 goto out_free; 1100 } 1101 1102 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1103 GFP_KERNEL); 1104 if (err < 0) { 1105 goto out_free; 1106 } 1107 1108 } 1109 1110 /* Prime the peer's transport structures. */ 1111 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1112 SCTP_UNKNOWN); 1113 if (!transport) { 1114 err = -ENOMEM; 1115 goto out_free; 1116 } 1117 1118 addrcnt++; 1119 addr_buf += af->sockaddr_len; 1120 walk_size += af->sockaddr_len; 1121 } 1122 1123 /* In case the user of sctp_connectx() wants an association 1124 * id back, assign one now. 1125 */ 1126 if (assoc_id) { 1127 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1128 if (err < 0) 1129 goto out_free; 1130 } 1131 1132 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1133 if (err < 0) { 1134 goto out_free; 1135 } 1136 1137 /* Initialize sk's dport and daddr for getpeername() */ 1138 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1139 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1140 af->to_sk_daddr(sa_addr, sk); 1141 sk->sk_err = 0; 1142 1143 /* in-kernel sockets don't generally have a file allocated to them 1144 * if all they do is call sock_create_kern(). 1145 */ 1146 if (sk->sk_socket->file) 1147 f_flags = sk->sk_socket->file->f_flags; 1148 1149 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1150 1151 err = sctp_wait_for_connect(asoc, &timeo); 1152 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1153 *assoc_id = asoc->assoc_id; 1154 1155 /* Don't free association on exit. */ 1156 asoc = NULL; 1157 1158 out_free: 1159 1160 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1161 " kaddrs: %p err: %d\n", 1162 asoc, kaddrs, err); 1163 if (asoc) 1164 sctp_association_free(asoc); 1165 return err; 1166 } 1167 1168 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1169 * 1170 * API 8.9 1171 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1172 * sctp_assoc_t *asoc); 1173 * 1174 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1175 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1176 * or IPv6 addresses. 1177 * 1178 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1179 * Section 3.1.2 for this usage. 1180 * 1181 * addrs is a pointer to an array of one or more socket addresses. Each 1182 * address is contained in its appropriate structure (i.e. struct 1183 * sockaddr_in or struct sockaddr_in6) the family of the address type 1184 * must be used to distengish the address length (note that this 1185 * representation is termed a "packed array" of addresses). The caller 1186 * specifies the number of addresses in the array with addrcnt. 1187 * 1188 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1189 * the association id of the new association. On failure, sctp_connectx() 1190 * returns -1, and sets errno to the appropriate error code. The assoc_id 1191 * is not touched by the kernel. 1192 * 1193 * For SCTP, the port given in each socket address must be the same, or 1194 * sctp_connectx() will fail, setting errno to EINVAL. 1195 * 1196 * An application can use sctp_connectx to initiate an association with 1197 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1198 * allows a caller to specify multiple addresses at which a peer can be 1199 * reached. The way the SCTP stack uses the list of addresses to set up 1200 * the association is implementation dependent. This function only 1201 * specifies that the stack will try to make use of all the addresses in 1202 * the list when needed. 1203 * 1204 * Note that the list of addresses passed in is only used for setting up 1205 * the association. It does not necessarily equal the set of addresses 1206 * the peer uses for the resulting association. If the caller wants to 1207 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1208 * retrieve them after the association has been set up. 1209 * 1210 * Basically do nothing but copying the addresses from user to kernel 1211 * land and invoking either sctp_connectx(). This is used for tunneling 1212 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1213 * 1214 * We don't use copy_from_user() for optimization: we first do the 1215 * sanity checks (buffer size -fast- and access check-healthy 1216 * pointer); if all of those succeed, then we can alloc the memory 1217 * (expensive operation) needed to copy the data to kernel. Then we do 1218 * the copying without checking the user space area 1219 * (__copy_from_user()). 1220 * 1221 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1222 * it. 1223 * 1224 * sk The sk of the socket 1225 * addrs The pointer to the addresses in user land 1226 * addrssize Size of the addrs buffer 1227 * 1228 * Returns >=0 if ok, <0 errno code on error. 1229 */ 1230 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1231 struct sockaddr __user *addrs, 1232 int addrs_size, 1233 sctp_assoc_t *assoc_id) 1234 { 1235 int err = 0; 1236 struct sockaddr *kaddrs; 1237 1238 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1239 __func__, sk, addrs, addrs_size); 1240 1241 if (unlikely(addrs_size <= 0)) 1242 return -EINVAL; 1243 1244 /* Check the user passed a healthy pointer. */ 1245 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1246 return -EFAULT; 1247 1248 /* Alloc space for the address array in kernel memory. */ 1249 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1250 if (unlikely(!kaddrs)) 1251 return -ENOMEM; 1252 1253 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1254 err = -EFAULT; 1255 } else { 1256 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1257 } 1258 1259 kfree(kaddrs); 1260 1261 return err; 1262 } 1263 1264 /* 1265 * This is an older interface. It's kept for backward compatibility 1266 * to the option that doesn't provide association id. 1267 */ 1268 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1269 struct sockaddr __user *addrs, 1270 int addrs_size) 1271 { 1272 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1273 } 1274 1275 /* 1276 * New interface for the API. The since the API is done with a socket 1277 * option, to make it simple we feed back the association id is as a return 1278 * indication to the call. Error is always negative and association id is 1279 * always positive. 1280 */ 1281 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1282 struct sockaddr __user *addrs, 1283 int addrs_size) 1284 { 1285 sctp_assoc_t assoc_id = 0; 1286 int err = 0; 1287 1288 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1289 1290 if (err) 1291 return err; 1292 else 1293 return assoc_id; 1294 } 1295 1296 /* 1297 * New (hopefully final) interface for the API. 1298 * We use the sctp_getaddrs_old structure so that use-space library 1299 * can avoid any unnecessary allocations. The only defferent part 1300 * is that we store the actual length of the address buffer into the 1301 * addrs_num structure member. That way we can re-use the existing 1302 * code. 1303 */ 1304 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1305 char __user *optval, 1306 int __user *optlen) 1307 { 1308 struct sctp_getaddrs_old param; 1309 sctp_assoc_t assoc_id = 0; 1310 int err = 0; 1311 1312 if (len < sizeof(param)) 1313 return -EINVAL; 1314 1315 if (copy_from_user(¶m, optval, sizeof(param))) 1316 return -EFAULT; 1317 1318 err = __sctp_setsockopt_connectx(sk, 1319 (struct sockaddr __user *)param.addrs, 1320 param.addr_num, &assoc_id); 1321 1322 if (err == 0 || err == -EINPROGRESS) { 1323 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1324 return -EFAULT; 1325 if (put_user(sizeof(assoc_id), optlen)) 1326 return -EFAULT; 1327 } 1328 1329 return err; 1330 } 1331 1332 /* API 3.1.4 close() - UDP Style Syntax 1333 * Applications use close() to perform graceful shutdown (as described in 1334 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1335 * by a UDP-style socket. 1336 * 1337 * The syntax is 1338 * 1339 * ret = close(int sd); 1340 * 1341 * sd - the socket descriptor of the associations to be closed. 1342 * 1343 * To gracefully shutdown a specific association represented by the 1344 * UDP-style socket, an application should use the sendmsg() call, 1345 * passing no user data, but including the appropriate flag in the 1346 * ancillary data (see Section xxxx). 1347 * 1348 * If sd in the close() call is a branched-off socket representing only 1349 * one association, the shutdown is performed on that association only. 1350 * 1351 * 4.1.6 close() - TCP Style Syntax 1352 * 1353 * Applications use close() to gracefully close down an association. 1354 * 1355 * The syntax is: 1356 * 1357 * int close(int sd); 1358 * 1359 * sd - the socket descriptor of the association to be closed. 1360 * 1361 * After an application calls close() on a socket descriptor, no further 1362 * socket operations will succeed on that descriptor. 1363 * 1364 * API 7.1.4 SO_LINGER 1365 * 1366 * An application using the TCP-style socket can use this option to 1367 * perform the SCTP ABORT primitive. The linger option structure is: 1368 * 1369 * struct linger { 1370 * int l_onoff; // option on/off 1371 * int l_linger; // linger time 1372 * }; 1373 * 1374 * To enable the option, set l_onoff to 1. If the l_linger value is set 1375 * to 0, calling close() is the same as the ABORT primitive. If the 1376 * value is set to a negative value, the setsockopt() call will return 1377 * an error. If the value is set to a positive value linger_time, the 1378 * close() can be blocked for at most linger_time ms. If the graceful 1379 * shutdown phase does not finish during this period, close() will 1380 * return but the graceful shutdown phase continues in the system. 1381 */ 1382 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1383 { 1384 struct sctp_endpoint *ep; 1385 struct sctp_association *asoc; 1386 struct list_head *pos, *temp; 1387 1388 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1389 1390 sctp_lock_sock(sk); 1391 sk->sk_shutdown = SHUTDOWN_MASK; 1392 sk->sk_state = SCTP_SS_CLOSING; 1393 1394 ep = sctp_sk(sk)->ep; 1395 1396 /* Walk all associations on an endpoint. */ 1397 list_for_each_safe(pos, temp, &ep->asocs) { 1398 asoc = list_entry(pos, struct sctp_association, asocs); 1399 1400 if (sctp_style(sk, TCP)) { 1401 /* A closed association can still be in the list if 1402 * it belongs to a TCP-style listening socket that is 1403 * not yet accepted. If so, free it. If not, send an 1404 * ABORT or SHUTDOWN based on the linger options. 1405 */ 1406 if (sctp_state(asoc, CLOSED)) { 1407 sctp_unhash_established(asoc); 1408 sctp_association_free(asoc); 1409 continue; 1410 } 1411 } 1412 1413 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1414 struct sctp_chunk *chunk; 1415 1416 chunk = sctp_make_abort_user(asoc, NULL, 0); 1417 if (chunk) 1418 sctp_primitive_ABORT(asoc, chunk); 1419 } else 1420 sctp_primitive_SHUTDOWN(asoc, NULL); 1421 } 1422 1423 /* Clean up any skbs sitting on the receive queue. */ 1424 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1425 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1426 1427 /* On a TCP-style socket, block for at most linger_time if set. */ 1428 if (sctp_style(sk, TCP) && timeout) 1429 sctp_wait_for_close(sk, timeout); 1430 1431 /* This will run the backlog queue. */ 1432 sctp_release_sock(sk); 1433 1434 /* Supposedly, no process has access to the socket, but 1435 * the net layers still may. 1436 */ 1437 sctp_local_bh_disable(); 1438 sctp_bh_lock_sock(sk); 1439 1440 /* Hold the sock, since sk_common_release() will put sock_put() 1441 * and we have just a little more cleanup. 1442 */ 1443 sock_hold(sk); 1444 sk_common_release(sk); 1445 1446 sctp_bh_unlock_sock(sk); 1447 sctp_local_bh_enable(); 1448 1449 sock_put(sk); 1450 1451 SCTP_DBG_OBJCNT_DEC(sock); 1452 } 1453 1454 /* Handle EPIPE error. */ 1455 static int sctp_error(struct sock *sk, int flags, int err) 1456 { 1457 if (err == -EPIPE) 1458 err = sock_error(sk) ? : -EPIPE; 1459 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1460 send_sig(SIGPIPE, current, 0); 1461 return err; 1462 } 1463 1464 /* API 3.1.3 sendmsg() - UDP Style Syntax 1465 * 1466 * An application uses sendmsg() and recvmsg() calls to transmit data to 1467 * and receive data from its peer. 1468 * 1469 * ssize_t sendmsg(int socket, const struct msghdr *message, 1470 * int flags); 1471 * 1472 * socket - the socket descriptor of the endpoint. 1473 * message - pointer to the msghdr structure which contains a single 1474 * user message and possibly some ancillary data. 1475 * 1476 * See Section 5 for complete description of the data 1477 * structures. 1478 * 1479 * flags - flags sent or received with the user message, see Section 1480 * 5 for complete description of the flags. 1481 * 1482 * Note: This function could use a rewrite especially when explicit 1483 * connect support comes in. 1484 */ 1485 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1486 1487 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1488 1489 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1490 struct msghdr *msg, size_t msg_len) 1491 { 1492 struct sctp_sock *sp; 1493 struct sctp_endpoint *ep; 1494 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1495 struct sctp_transport *transport, *chunk_tp; 1496 struct sctp_chunk *chunk; 1497 union sctp_addr to; 1498 struct sockaddr *msg_name = NULL; 1499 struct sctp_sndrcvinfo default_sinfo; 1500 struct sctp_sndrcvinfo *sinfo; 1501 struct sctp_initmsg *sinit; 1502 sctp_assoc_t associd = 0; 1503 sctp_cmsgs_t cmsgs = { NULL }; 1504 int err; 1505 sctp_scope_t scope; 1506 long timeo; 1507 __u16 sinfo_flags = 0; 1508 struct sctp_datamsg *datamsg; 1509 int msg_flags = msg->msg_flags; 1510 1511 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1512 sk, msg, msg_len); 1513 1514 err = 0; 1515 sp = sctp_sk(sk); 1516 ep = sp->ep; 1517 1518 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1519 1520 /* We cannot send a message over a TCP-style listening socket. */ 1521 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1522 err = -EPIPE; 1523 goto out_nounlock; 1524 } 1525 1526 /* Parse out the SCTP CMSGs. */ 1527 err = sctp_msghdr_parse(msg, &cmsgs); 1528 1529 if (err) { 1530 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1531 goto out_nounlock; 1532 } 1533 1534 /* Fetch the destination address for this packet. This 1535 * address only selects the association--it is not necessarily 1536 * the address we will send to. 1537 * For a peeled-off socket, msg_name is ignored. 1538 */ 1539 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1540 int msg_namelen = msg->msg_namelen; 1541 1542 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1543 msg_namelen); 1544 if (err) 1545 return err; 1546 1547 if (msg_namelen > sizeof(to)) 1548 msg_namelen = sizeof(to); 1549 memcpy(&to, msg->msg_name, msg_namelen); 1550 msg_name = msg->msg_name; 1551 } 1552 1553 sinfo = cmsgs.info; 1554 sinit = cmsgs.init; 1555 1556 /* Did the user specify SNDRCVINFO? */ 1557 if (sinfo) { 1558 sinfo_flags = sinfo->sinfo_flags; 1559 associd = sinfo->sinfo_assoc_id; 1560 } 1561 1562 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1563 msg_len, sinfo_flags); 1564 1565 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1566 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1567 err = -EINVAL; 1568 goto out_nounlock; 1569 } 1570 1571 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1572 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1573 * If SCTP_ABORT is set, the message length could be non zero with 1574 * the msg_iov set to the user abort reason. 1575 */ 1576 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1577 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1578 err = -EINVAL; 1579 goto out_nounlock; 1580 } 1581 1582 /* If SCTP_ADDR_OVER is set, there must be an address 1583 * specified in msg_name. 1584 */ 1585 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1586 err = -EINVAL; 1587 goto out_nounlock; 1588 } 1589 1590 transport = NULL; 1591 1592 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1593 1594 sctp_lock_sock(sk); 1595 1596 /* If a msg_name has been specified, assume this is to be used. */ 1597 if (msg_name) { 1598 /* Look for a matching association on the endpoint. */ 1599 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1600 if (!asoc) { 1601 /* If we could not find a matching association on the 1602 * endpoint, make sure that it is not a TCP-style 1603 * socket that already has an association or there is 1604 * no peeled-off association on another socket. 1605 */ 1606 if ((sctp_style(sk, TCP) && 1607 sctp_sstate(sk, ESTABLISHED)) || 1608 sctp_endpoint_is_peeled_off(ep, &to)) { 1609 err = -EADDRNOTAVAIL; 1610 goto out_unlock; 1611 } 1612 } 1613 } else { 1614 asoc = sctp_id2assoc(sk, associd); 1615 if (!asoc) { 1616 err = -EPIPE; 1617 goto out_unlock; 1618 } 1619 } 1620 1621 if (asoc) { 1622 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1623 1624 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1625 * socket that has an association in CLOSED state. This can 1626 * happen when an accepted socket has an association that is 1627 * already CLOSED. 1628 */ 1629 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1630 err = -EPIPE; 1631 goto out_unlock; 1632 } 1633 1634 if (sinfo_flags & SCTP_EOF) { 1635 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1636 asoc); 1637 sctp_primitive_SHUTDOWN(asoc, NULL); 1638 err = 0; 1639 goto out_unlock; 1640 } 1641 if (sinfo_flags & SCTP_ABORT) { 1642 1643 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1644 if (!chunk) { 1645 err = -ENOMEM; 1646 goto out_unlock; 1647 } 1648 1649 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1650 sctp_primitive_ABORT(asoc, chunk); 1651 err = 0; 1652 goto out_unlock; 1653 } 1654 } 1655 1656 /* Do we need to create the association? */ 1657 if (!asoc) { 1658 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1659 1660 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1661 err = -EINVAL; 1662 goto out_unlock; 1663 } 1664 1665 /* Check for invalid stream against the stream counts, 1666 * either the default or the user specified stream counts. 1667 */ 1668 if (sinfo) { 1669 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1670 /* Check against the defaults. */ 1671 if (sinfo->sinfo_stream >= 1672 sp->initmsg.sinit_num_ostreams) { 1673 err = -EINVAL; 1674 goto out_unlock; 1675 } 1676 } else { 1677 /* Check against the requested. */ 1678 if (sinfo->sinfo_stream >= 1679 sinit->sinit_num_ostreams) { 1680 err = -EINVAL; 1681 goto out_unlock; 1682 } 1683 } 1684 } 1685 1686 /* 1687 * API 3.1.2 bind() - UDP Style Syntax 1688 * If a bind() or sctp_bindx() is not called prior to a 1689 * sendmsg() call that initiates a new association, the 1690 * system picks an ephemeral port and will choose an address 1691 * set equivalent to binding with a wildcard address. 1692 */ 1693 if (!ep->base.bind_addr.port) { 1694 if (sctp_autobind(sk)) { 1695 err = -EAGAIN; 1696 goto out_unlock; 1697 } 1698 } else { 1699 /* 1700 * If an unprivileged user inherits a one-to-many 1701 * style socket with open associations on a privileged 1702 * port, it MAY be permitted to accept new associations, 1703 * but it SHOULD NOT be permitted to open new 1704 * associations. 1705 */ 1706 if (ep->base.bind_addr.port < PROT_SOCK && 1707 !capable(CAP_NET_BIND_SERVICE)) { 1708 err = -EACCES; 1709 goto out_unlock; 1710 } 1711 } 1712 1713 scope = sctp_scope(&to); 1714 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1715 if (!new_asoc) { 1716 err = -ENOMEM; 1717 goto out_unlock; 1718 } 1719 asoc = new_asoc; 1720 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1721 if (err < 0) { 1722 err = -ENOMEM; 1723 goto out_free; 1724 } 1725 1726 /* If the SCTP_INIT ancillary data is specified, set all 1727 * the association init values accordingly. 1728 */ 1729 if (sinit) { 1730 if (sinit->sinit_num_ostreams) { 1731 asoc->c.sinit_num_ostreams = 1732 sinit->sinit_num_ostreams; 1733 } 1734 if (sinit->sinit_max_instreams) { 1735 asoc->c.sinit_max_instreams = 1736 sinit->sinit_max_instreams; 1737 } 1738 if (sinit->sinit_max_attempts) { 1739 asoc->max_init_attempts 1740 = sinit->sinit_max_attempts; 1741 } 1742 if (sinit->sinit_max_init_timeo) { 1743 asoc->max_init_timeo = 1744 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1745 } 1746 } 1747 1748 /* Prime the peer's transport structures. */ 1749 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1750 if (!transport) { 1751 err = -ENOMEM; 1752 goto out_free; 1753 } 1754 } 1755 1756 /* ASSERT: we have a valid association at this point. */ 1757 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1758 1759 if (!sinfo) { 1760 /* If the user didn't specify SNDRCVINFO, make up one with 1761 * some defaults. 1762 */ 1763 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1764 default_sinfo.sinfo_stream = asoc->default_stream; 1765 default_sinfo.sinfo_flags = asoc->default_flags; 1766 default_sinfo.sinfo_ppid = asoc->default_ppid; 1767 default_sinfo.sinfo_context = asoc->default_context; 1768 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1769 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1770 sinfo = &default_sinfo; 1771 } 1772 1773 /* API 7.1.7, the sndbuf size per association bounds the 1774 * maximum size of data that can be sent in a single send call. 1775 */ 1776 if (msg_len > sk->sk_sndbuf) { 1777 err = -EMSGSIZE; 1778 goto out_free; 1779 } 1780 1781 if (asoc->pmtu_pending) 1782 sctp_assoc_pending_pmtu(asoc); 1783 1784 /* If fragmentation is disabled and the message length exceeds the 1785 * association fragmentation point, return EMSGSIZE. The I-D 1786 * does not specify what this error is, but this looks like 1787 * a great fit. 1788 */ 1789 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1790 err = -EMSGSIZE; 1791 goto out_free; 1792 } 1793 1794 /* Check for invalid stream. */ 1795 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1796 err = -EINVAL; 1797 goto out_free; 1798 } 1799 1800 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1801 if (!sctp_wspace(asoc)) { 1802 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1803 if (err) 1804 goto out_free; 1805 } 1806 1807 /* If an address is passed with the sendto/sendmsg call, it is used 1808 * to override the primary destination address in the TCP model, or 1809 * when SCTP_ADDR_OVER flag is set in the UDP model. 1810 */ 1811 if ((sctp_style(sk, TCP) && msg_name) || 1812 (sinfo_flags & SCTP_ADDR_OVER)) { 1813 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1814 if (!chunk_tp) { 1815 err = -EINVAL; 1816 goto out_free; 1817 } 1818 } else 1819 chunk_tp = NULL; 1820 1821 /* Auto-connect, if we aren't connected already. */ 1822 if (sctp_state(asoc, CLOSED)) { 1823 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1824 if (err < 0) 1825 goto out_free; 1826 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1827 } 1828 1829 /* Break the message into multiple chunks of maximum size. */ 1830 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1831 if (!datamsg) { 1832 err = -ENOMEM; 1833 goto out_free; 1834 } 1835 1836 /* Now send the (possibly) fragmented message. */ 1837 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1838 sctp_chunk_hold(chunk); 1839 1840 /* Do accounting for the write space. */ 1841 sctp_set_owner_w(chunk); 1842 1843 chunk->transport = chunk_tp; 1844 } 1845 1846 /* Send it to the lower layers. Note: all chunks 1847 * must either fail or succeed. The lower layer 1848 * works that way today. Keep it that way or this 1849 * breaks. 1850 */ 1851 err = sctp_primitive_SEND(asoc, datamsg); 1852 /* Did the lower layer accept the chunk? */ 1853 if (err) 1854 sctp_datamsg_free(datamsg); 1855 else 1856 sctp_datamsg_put(datamsg); 1857 1858 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1859 1860 if (err) 1861 goto out_free; 1862 else 1863 err = msg_len; 1864 1865 /* If we are already past ASSOCIATE, the lower 1866 * layers are responsible for association cleanup. 1867 */ 1868 goto out_unlock; 1869 1870 out_free: 1871 if (new_asoc) 1872 sctp_association_free(asoc); 1873 out_unlock: 1874 sctp_release_sock(sk); 1875 1876 out_nounlock: 1877 return sctp_error(sk, msg_flags, err); 1878 1879 #if 0 1880 do_sock_err: 1881 if (msg_len) 1882 err = msg_len; 1883 else 1884 err = sock_error(sk); 1885 goto out; 1886 1887 do_interrupted: 1888 if (msg_len) 1889 err = msg_len; 1890 goto out; 1891 #endif /* 0 */ 1892 } 1893 1894 /* This is an extended version of skb_pull() that removes the data from the 1895 * start of a skb even when data is spread across the list of skb's in the 1896 * frag_list. len specifies the total amount of data that needs to be removed. 1897 * when 'len' bytes could be removed from the skb, it returns 0. 1898 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1899 * could not be removed. 1900 */ 1901 static int sctp_skb_pull(struct sk_buff *skb, int len) 1902 { 1903 struct sk_buff *list; 1904 int skb_len = skb_headlen(skb); 1905 int rlen; 1906 1907 if (len <= skb_len) { 1908 __skb_pull(skb, len); 1909 return 0; 1910 } 1911 len -= skb_len; 1912 __skb_pull(skb, skb_len); 1913 1914 skb_walk_frags(skb, list) { 1915 rlen = sctp_skb_pull(list, len); 1916 skb->len -= (len-rlen); 1917 skb->data_len -= (len-rlen); 1918 1919 if (!rlen) 1920 return 0; 1921 1922 len = rlen; 1923 } 1924 1925 return len; 1926 } 1927 1928 /* API 3.1.3 recvmsg() - UDP Style Syntax 1929 * 1930 * ssize_t recvmsg(int socket, struct msghdr *message, 1931 * int flags); 1932 * 1933 * socket - the socket descriptor of the endpoint. 1934 * message - pointer to the msghdr structure which contains a single 1935 * user message and possibly some ancillary data. 1936 * 1937 * See Section 5 for complete description of the data 1938 * structures. 1939 * 1940 * flags - flags sent or received with the user message, see Section 1941 * 5 for complete description of the flags. 1942 */ 1943 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1944 1945 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1946 struct msghdr *msg, size_t len, int noblock, 1947 int flags, int *addr_len) 1948 { 1949 struct sctp_ulpevent *event = NULL; 1950 struct sctp_sock *sp = sctp_sk(sk); 1951 struct sk_buff *skb; 1952 int copied; 1953 int err = 0; 1954 int skb_len; 1955 1956 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1957 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1958 "len", len, "knoblauch", noblock, 1959 "flags", flags, "addr_len", addr_len); 1960 1961 sctp_lock_sock(sk); 1962 1963 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1964 err = -ENOTCONN; 1965 goto out; 1966 } 1967 1968 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1969 if (!skb) 1970 goto out; 1971 1972 /* Get the total length of the skb including any skb's in the 1973 * frag_list. 1974 */ 1975 skb_len = skb->len; 1976 1977 copied = skb_len; 1978 if (copied > len) 1979 copied = len; 1980 1981 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1982 1983 event = sctp_skb2event(skb); 1984 1985 if (err) 1986 goto out_free; 1987 1988 sock_recv_ts_and_drops(msg, sk, skb); 1989 if (sctp_ulpevent_is_notification(event)) { 1990 msg->msg_flags |= MSG_NOTIFICATION; 1991 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1992 } else { 1993 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1994 } 1995 1996 /* Check if we allow SCTP_SNDRCVINFO. */ 1997 if (sp->subscribe.sctp_data_io_event) 1998 sctp_ulpevent_read_sndrcvinfo(event, msg); 1999 #if 0 2000 /* FIXME: we should be calling IP/IPv6 layers. */ 2001 if (sk->sk_protinfo.af_inet.cmsg_flags) 2002 ip_cmsg_recv(msg, skb); 2003 #endif 2004 2005 err = copied; 2006 2007 /* If skb's length exceeds the user's buffer, update the skb and 2008 * push it back to the receive_queue so that the next call to 2009 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2010 */ 2011 if (skb_len > copied) { 2012 msg->msg_flags &= ~MSG_EOR; 2013 if (flags & MSG_PEEK) 2014 goto out_free; 2015 sctp_skb_pull(skb, copied); 2016 skb_queue_head(&sk->sk_receive_queue, skb); 2017 2018 /* When only partial message is copied to the user, increase 2019 * rwnd by that amount. If all the data in the skb is read, 2020 * rwnd is updated when the event is freed. 2021 */ 2022 if (!sctp_ulpevent_is_notification(event)) 2023 sctp_assoc_rwnd_increase(event->asoc, copied); 2024 goto out; 2025 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2026 (event->msg_flags & MSG_EOR)) 2027 msg->msg_flags |= MSG_EOR; 2028 else 2029 msg->msg_flags &= ~MSG_EOR; 2030 2031 out_free: 2032 if (flags & MSG_PEEK) { 2033 /* Release the skb reference acquired after peeking the skb in 2034 * sctp_skb_recv_datagram(). 2035 */ 2036 kfree_skb(skb); 2037 } else { 2038 /* Free the event which includes releasing the reference to 2039 * the owner of the skb, freeing the skb and updating the 2040 * rwnd. 2041 */ 2042 sctp_ulpevent_free(event); 2043 } 2044 out: 2045 sctp_release_sock(sk); 2046 return err; 2047 } 2048 2049 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2050 * 2051 * This option is a on/off flag. If enabled no SCTP message 2052 * fragmentation will be performed. Instead if a message being sent 2053 * exceeds the current PMTU size, the message will NOT be sent and 2054 * instead a error will be indicated to the user. 2055 */ 2056 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2057 char __user *optval, 2058 unsigned int optlen) 2059 { 2060 int val; 2061 2062 if (optlen < sizeof(int)) 2063 return -EINVAL; 2064 2065 if (get_user(val, (int __user *)optval)) 2066 return -EFAULT; 2067 2068 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2069 2070 return 0; 2071 } 2072 2073 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2074 unsigned int optlen) 2075 { 2076 if (optlen > sizeof(struct sctp_event_subscribe)) 2077 return -EINVAL; 2078 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2079 return -EFAULT; 2080 return 0; 2081 } 2082 2083 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2084 * 2085 * This socket option is applicable to the UDP-style socket only. When 2086 * set it will cause associations that are idle for more than the 2087 * specified number of seconds to automatically close. An association 2088 * being idle is defined an association that has NOT sent or received 2089 * user data. The special value of '0' indicates that no automatic 2090 * close of any associations should be performed. The option expects an 2091 * integer defining the number of seconds of idle time before an 2092 * association is closed. 2093 */ 2094 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2095 unsigned int optlen) 2096 { 2097 struct sctp_sock *sp = sctp_sk(sk); 2098 2099 /* Applicable to UDP-style socket only */ 2100 if (sctp_style(sk, TCP)) 2101 return -EOPNOTSUPP; 2102 if (optlen != sizeof(int)) 2103 return -EINVAL; 2104 if (copy_from_user(&sp->autoclose, optval, optlen)) 2105 return -EFAULT; 2106 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2107 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ); 2108 2109 return 0; 2110 } 2111 2112 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2113 * 2114 * Applications can enable or disable heartbeats for any peer address of 2115 * an association, modify an address's heartbeat interval, force a 2116 * heartbeat to be sent immediately, and adjust the address's maximum 2117 * number of retransmissions sent before an address is considered 2118 * unreachable. The following structure is used to access and modify an 2119 * address's parameters: 2120 * 2121 * struct sctp_paddrparams { 2122 * sctp_assoc_t spp_assoc_id; 2123 * struct sockaddr_storage spp_address; 2124 * uint32_t spp_hbinterval; 2125 * uint16_t spp_pathmaxrxt; 2126 * uint32_t spp_pathmtu; 2127 * uint32_t spp_sackdelay; 2128 * uint32_t spp_flags; 2129 * }; 2130 * 2131 * spp_assoc_id - (one-to-many style socket) This is filled in the 2132 * application, and identifies the association for 2133 * this query. 2134 * spp_address - This specifies which address is of interest. 2135 * spp_hbinterval - This contains the value of the heartbeat interval, 2136 * in milliseconds. If a value of zero 2137 * is present in this field then no changes are to 2138 * be made to this parameter. 2139 * spp_pathmaxrxt - This contains the maximum number of 2140 * retransmissions before this address shall be 2141 * considered unreachable. If a value of zero 2142 * is present in this field then no changes are to 2143 * be made to this parameter. 2144 * spp_pathmtu - When Path MTU discovery is disabled the value 2145 * specified here will be the "fixed" path mtu. 2146 * Note that if the spp_address field is empty 2147 * then all associations on this address will 2148 * have this fixed path mtu set upon them. 2149 * 2150 * spp_sackdelay - When delayed sack is enabled, this value specifies 2151 * the number of milliseconds that sacks will be delayed 2152 * for. This value will apply to all addresses of an 2153 * association if the spp_address field is empty. Note 2154 * also, that if delayed sack is enabled and this 2155 * value is set to 0, no change is made to the last 2156 * recorded delayed sack timer value. 2157 * 2158 * spp_flags - These flags are used to control various features 2159 * on an association. The flag field may contain 2160 * zero or more of the following options. 2161 * 2162 * SPP_HB_ENABLE - Enable heartbeats on the 2163 * specified address. Note that if the address 2164 * field is empty all addresses for the association 2165 * have heartbeats enabled upon them. 2166 * 2167 * SPP_HB_DISABLE - Disable heartbeats on the 2168 * speicifed address. Note that if the address 2169 * field is empty all addresses for the association 2170 * will have their heartbeats disabled. Note also 2171 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2172 * mutually exclusive, only one of these two should 2173 * be specified. Enabling both fields will have 2174 * undetermined results. 2175 * 2176 * SPP_HB_DEMAND - Request a user initiated heartbeat 2177 * to be made immediately. 2178 * 2179 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2180 * heartbeat delayis to be set to the value of 0 2181 * milliseconds. 2182 * 2183 * SPP_PMTUD_ENABLE - This field will enable PMTU 2184 * discovery upon the specified address. Note that 2185 * if the address feild is empty then all addresses 2186 * on the association are effected. 2187 * 2188 * SPP_PMTUD_DISABLE - This field will disable PMTU 2189 * discovery upon the specified address. Note that 2190 * if the address feild is empty then all addresses 2191 * on the association are effected. Not also that 2192 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2193 * exclusive. Enabling both will have undetermined 2194 * results. 2195 * 2196 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2197 * on delayed sack. The time specified in spp_sackdelay 2198 * is used to specify the sack delay for this address. Note 2199 * that if spp_address is empty then all addresses will 2200 * enable delayed sack and take on the sack delay 2201 * value specified in spp_sackdelay. 2202 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2203 * off delayed sack. If the spp_address field is blank then 2204 * delayed sack is disabled for the entire association. Note 2205 * also that this field is mutually exclusive to 2206 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2207 * results. 2208 */ 2209 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2210 struct sctp_transport *trans, 2211 struct sctp_association *asoc, 2212 struct sctp_sock *sp, 2213 int hb_change, 2214 int pmtud_change, 2215 int sackdelay_change) 2216 { 2217 int error; 2218 2219 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2220 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2221 if (error) 2222 return error; 2223 } 2224 2225 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2226 * this field is ignored. Note also that a value of zero indicates 2227 * the current setting should be left unchanged. 2228 */ 2229 if (params->spp_flags & SPP_HB_ENABLE) { 2230 2231 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2232 * set. This lets us use 0 value when this flag 2233 * is set. 2234 */ 2235 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2236 params->spp_hbinterval = 0; 2237 2238 if (params->spp_hbinterval || 2239 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2240 if (trans) { 2241 trans->hbinterval = 2242 msecs_to_jiffies(params->spp_hbinterval); 2243 } else if (asoc) { 2244 asoc->hbinterval = 2245 msecs_to_jiffies(params->spp_hbinterval); 2246 } else { 2247 sp->hbinterval = params->spp_hbinterval; 2248 } 2249 } 2250 } 2251 2252 if (hb_change) { 2253 if (trans) { 2254 trans->param_flags = 2255 (trans->param_flags & ~SPP_HB) | hb_change; 2256 } else if (asoc) { 2257 asoc->param_flags = 2258 (asoc->param_flags & ~SPP_HB) | hb_change; 2259 } else { 2260 sp->param_flags = 2261 (sp->param_flags & ~SPP_HB) | hb_change; 2262 } 2263 } 2264 2265 /* When Path MTU discovery is disabled the value specified here will 2266 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2267 * include the flag SPP_PMTUD_DISABLE for this field to have any 2268 * effect). 2269 */ 2270 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2271 if (trans) { 2272 trans->pathmtu = params->spp_pathmtu; 2273 sctp_assoc_sync_pmtu(asoc); 2274 } else if (asoc) { 2275 asoc->pathmtu = params->spp_pathmtu; 2276 sctp_frag_point(asoc, params->spp_pathmtu); 2277 } else { 2278 sp->pathmtu = params->spp_pathmtu; 2279 } 2280 } 2281 2282 if (pmtud_change) { 2283 if (trans) { 2284 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2285 (params->spp_flags & SPP_PMTUD_ENABLE); 2286 trans->param_flags = 2287 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2288 if (update) { 2289 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2290 sctp_assoc_sync_pmtu(asoc); 2291 } 2292 } else if (asoc) { 2293 asoc->param_flags = 2294 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2295 } else { 2296 sp->param_flags = 2297 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2298 } 2299 } 2300 2301 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2302 * value of this field is ignored. Note also that a value of zero 2303 * indicates the current setting should be left unchanged. 2304 */ 2305 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2306 if (trans) { 2307 trans->sackdelay = 2308 msecs_to_jiffies(params->spp_sackdelay); 2309 } else if (asoc) { 2310 asoc->sackdelay = 2311 msecs_to_jiffies(params->spp_sackdelay); 2312 } else { 2313 sp->sackdelay = params->spp_sackdelay; 2314 } 2315 } 2316 2317 if (sackdelay_change) { 2318 if (trans) { 2319 trans->param_flags = 2320 (trans->param_flags & ~SPP_SACKDELAY) | 2321 sackdelay_change; 2322 } else if (asoc) { 2323 asoc->param_flags = 2324 (asoc->param_flags & ~SPP_SACKDELAY) | 2325 sackdelay_change; 2326 } else { 2327 sp->param_flags = 2328 (sp->param_flags & ~SPP_SACKDELAY) | 2329 sackdelay_change; 2330 } 2331 } 2332 2333 /* Note that a value of zero indicates the current setting should be 2334 left unchanged. 2335 */ 2336 if (params->spp_pathmaxrxt) { 2337 if (trans) { 2338 trans->pathmaxrxt = params->spp_pathmaxrxt; 2339 } else if (asoc) { 2340 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2341 } else { 2342 sp->pathmaxrxt = params->spp_pathmaxrxt; 2343 } 2344 } 2345 2346 return 0; 2347 } 2348 2349 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2350 char __user *optval, 2351 unsigned int optlen) 2352 { 2353 struct sctp_paddrparams params; 2354 struct sctp_transport *trans = NULL; 2355 struct sctp_association *asoc = NULL; 2356 struct sctp_sock *sp = sctp_sk(sk); 2357 int error; 2358 int hb_change, pmtud_change, sackdelay_change; 2359 2360 if (optlen != sizeof(struct sctp_paddrparams)) 2361 return - EINVAL; 2362 2363 if (copy_from_user(¶ms, optval, optlen)) 2364 return -EFAULT; 2365 2366 /* Validate flags and value parameters. */ 2367 hb_change = params.spp_flags & SPP_HB; 2368 pmtud_change = params.spp_flags & SPP_PMTUD; 2369 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2370 2371 if (hb_change == SPP_HB || 2372 pmtud_change == SPP_PMTUD || 2373 sackdelay_change == SPP_SACKDELAY || 2374 params.spp_sackdelay > 500 || 2375 (params.spp_pathmtu && 2376 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2377 return -EINVAL; 2378 2379 /* If an address other than INADDR_ANY is specified, and 2380 * no transport is found, then the request is invalid. 2381 */ 2382 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2383 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2384 params.spp_assoc_id); 2385 if (!trans) 2386 return -EINVAL; 2387 } 2388 2389 /* Get association, if assoc_id != 0 and the socket is a one 2390 * to many style socket, and an association was not found, then 2391 * the id was invalid. 2392 */ 2393 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2394 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2395 return -EINVAL; 2396 2397 /* Heartbeat demand can only be sent on a transport or 2398 * association, but not a socket. 2399 */ 2400 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2401 return -EINVAL; 2402 2403 /* Process parameters. */ 2404 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2405 hb_change, pmtud_change, 2406 sackdelay_change); 2407 2408 if (error) 2409 return error; 2410 2411 /* If changes are for association, also apply parameters to each 2412 * transport. 2413 */ 2414 if (!trans && asoc) { 2415 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2416 transports) { 2417 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2418 hb_change, pmtud_change, 2419 sackdelay_change); 2420 } 2421 } 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2428 * 2429 * This option will effect the way delayed acks are performed. This 2430 * option allows you to get or set the delayed ack time, in 2431 * milliseconds. It also allows changing the delayed ack frequency. 2432 * Changing the frequency to 1 disables the delayed sack algorithm. If 2433 * the assoc_id is 0, then this sets or gets the endpoints default 2434 * values. If the assoc_id field is non-zero, then the set or get 2435 * effects the specified association for the one to many model (the 2436 * assoc_id field is ignored by the one to one model). Note that if 2437 * sack_delay or sack_freq are 0 when setting this option, then the 2438 * current values will remain unchanged. 2439 * 2440 * struct sctp_sack_info { 2441 * sctp_assoc_t sack_assoc_id; 2442 * uint32_t sack_delay; 2443 * uint32_t sack_freq; 2444 * }; 2445 * 2446 * sack_assoc_id - This parameter, indicates which association the user 2447 * is performing an action upon. Note that if this field's value is 2448 * zero then the endpoints default value is changed (effecting future 2449 * associations only). 2450 * 2451 * sack_delay - This parameter contains the number of milliseconds that 2452 * the user is requesting the delayed ACK timer be set to. Note that 2453 * this value is defined in the standard to be between 200 and 500 2454 * milliseconds. 2455 * 2456 * sack_freq - This parameter contains the number of packets that must 2457 * be received before a sack is sent without waiting for the delay 2458 * timer to expire. The default value for this is 2, setting this 2459 * value to 1 will disable the delayed sack algorithm. 2460 */ 2461 2462 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2463 char __user *optval, unsigned int optlen) 2464 { 2465 struct sctp_sack_info params; 2466 struct sctp_transport *trans = NULL; 2467 struct sctp_association *asoc = NULL; 2468 struct sctp_sock *sp = sctp_sk(sk); 2469 2470 if (optlen == sizeof(struct sctp_sack_info)) { 2471 if (copy_from_user(¶ms, optval, optlen)) 2472 return -EFAULT; 2473 2474 if (params.sack_delay == 0 && params.sack_freq == 0) 2475 return 0; 2476 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2477 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2478 pr_warn("Use struct sctp_sack_info instead\n"); 2479 if (copy_from_user(¶ms, optval, optlen)) 2480 return -EFAULT; 2481 2482 if (params.sack_delay == 0) 2483 params.sack_freq = 1; 2484 else 2485 params.sack_freq = 0; 2486 } else 2487 return - EINVAL; 2488 2489 /* Validate value parameter. */ 2490 if (params.sack_delay > 500) 2491 return -EINVAL; 2492 2493 /* Get association, if sack_assoc_id != 0 and the socket is a one 2494 * to many style socket, and an association was not found, then 2495 * the id was invalid. 2496 */ 2497 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2498 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2499 return -EINVAL; 2500 2501 if (params.sack_delay) { 2502 if (asoc) { 2503 asoc->sackdelay = 2504 msecs_to_jiffies(params.sack_delay); 2505 asoc->param_flags = 2506 (asoc->param_flags & ~SPP_SACKDELAY) | 2507 SPP_SACKDELAY_ENABLE; 2508 } else { 2509 sp->sackdelay = params.sack_delay; 2510 sp->param_flags = 2511 (sp->param_flags & ~SPP_SACKDELAY) | 2512 SPP_SACKDELAY_ENABLE; 2513 } 2514 } 2515 2516 if (params.sack_freq == 1) { 2517 if (asoc) { 2518 asoc->param_flags = 2519 (asoc->param_flags & ~SPP_SACKDELAY) | 2520 SPP_SACKDELAY_DISABLE; 2521 } else { 2522 sp->param_flags = 2523 (sp->param_flags & ~SPP_SACKDELAY) | 2524 SPP_SACKDELAY_DISABLE; 2525 } 2526 } else if (params.sack_freq > 1) { 2527 if (asoc) { 2528 asoc->sackfreq = params.sack_freq; 2529 asoc->param_flags = 2530 (asoc->param_flags & ~SPP_SACKDELAY) | 2531 SPP_SACKDELAY_ENABLE; 2532 } else { 2533 sp->sackfreq = params.sack_freq; 2534 sp->param_flags = 2535 (sp->param_flags & ~SPP_SACKDELAY) | 2536 SPP_SACKDELAY_ENABLE; 2537 } 2538 } 2539 2540 /* If change is for association, also apply to each transport. */ 2541 if (asoc) { 2542 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2543 transports) { 2544 if (params.sack_delay) { 2545 trans->sackdelay = 2546 msecs_to_jiffies(params.sack_delay); 2547 trans->param_flags = 2548 (trans->param_flags & ~SPP_SACKDELAY) | 2549 SPP_SACKDELAY_ENABLE; 2550 } 2551 if (params.sack_freq == 1) { 2552 trans->param_flags = 2553 (trans->param_flags & ~SPP_SACKDELAY) | 2554 SPP_SACKDELAY_DISABLE; 2555 } else if (params.sack_freq > 1) { 2556 trans->sackfreq = params.sack_freq; 2557 trans->param_flags = 2558 (trans->param_flags & ~SPP_SACKDELAY) | 2559 SPP_SACKDELAY_ENABLE; 2560 } 2561 } 2562 } 2563 2564 return 0; 2565 } 2566 2567 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2568 * 2569 * Applications can specify protocol parameters for the default association 2570 * initialization. The option name argument to setsockopt() and getsockopt() 2571 * is SCTP_INITMSG. 2572 * 2573 * Setting initialization parameters is effective only on an unconnected 2574 * socket (for UDP-style sockets only future associations are effected 2575 * by the change). With TCP-style sockets, this option is inherited by 2576 * sockets derived from a listener socket. 2577 */ 2578 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2579 { 2580 struct sctp_initmsg sinit; 2581 struct sctp_sock *sp = sctp_sk(sk); 2582 2583 if (optlen != sizeof(struct sctp_initmsg)) 2584 return -EINVAL; 2585 if (copy_from_user(&sinit, optval, optlen)) 2586 return -EFAULT; 2587 2588 if (sinit.sinit_num_ostreams) 2589 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2590 if (sinit.sinit_max_instreams) 2591 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2592 if (sinit.sinit_max_attempts) 2593 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2594 if (sinit.sinit_max_init_timeo) 2595 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2596 2597 return 0; 2598 } 2599 2600 /* 2601 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2602 * 2603 * Applications that wish to use the sendto() system call may wish to 2604 * specify a default set of parameters that would normally be supplied 2605 * through the inclusion of ancillary data. This socket option allows 2606 * such an application to set the default sctp_sndrcvinfo structure. 2607 * The application that wishes to use this socket option simply passes 2608 * in to this call the sctp_sndrcvinfo structure defined in Section 2609 * 5.2.2) The input parameters accepted by this call include 2610 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2611 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2612 * to this call if the caller is using the UDP model. 2613 */ 2614 static int sctp_setsockopt_default_send_param(struct sock *sk, 2615 char __user *optval, 2616 unsigned int optlen) 2617 { 2618 struct sctp_sndrcvinfo info; 2619 struct sctp_association *asoc; 2620 struct sctp_sock *sp = sctp_sk(sk); 2621 2622 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2623 return -EINVAL; 2624 if (copy_from_user(&info, optval, optlen)) 2625 return -EFAULT; 2626 2627 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2628 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2629 return -EINVAL; 2630 2631 if (asoc) { 2632 asoc->default_stream = info.sinfo_stream; 2633 asoc->default_flags = info.sinfo_flags; 2634 asoc->default_ppid = info.sinfo_ppid; 2635 asoc->default_context = info.sinfo_context; 2636 asoc->default_timetolive = info.sinfo_timetolive; 2637 } else { 2638 sp->default_stream = info.sinfo_stream; 2639 sp->default_flags = info.sinfo_flags; 2640 sp->default_ppid = info.sinfo_ppid; 2641 sp->default_context = info.sinfo_context; 2642 sp->default_timetolive = info.sinfo_timetolive; 2643 } 2644 2645 return 0; 2646 } 2647 2648 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2649 * 2650 * Requests that the local SCTP stack use the enclosed peer address as 2651 * the association primary. The enclosed address must be one of the 2652 * association peer's addresses. 2653 */ 2654 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2655 unsigned int optlen) 2656 { 2657 struct sctp_prim prim; 2658 struct sctp_transport *trans; 2659 2660 if (optlen != sizeof(struct sctp_prim)) 2661 return -EINVAL; 2662 2663 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2664 return -EFAULT; 2665 2666 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2667 if (!trans) 2668 return -EINVAL; 2669 2670 sctp_assoc_set_primary(trans->asoc, trans); 2671 2672 return 0; 2673 } 2674 2675 /* 2676 * 7.1.5 SCTP_NODELAY 2677 * 2678 * Turn on/off any Nagle-like algorithm. This means that packets are 2679 * generally sent as soon as possible and no unnecessary delays are 2680 * introduced, at the cost of more packets in the network. Expects an 2681 * integer boolean flag. 2682 */ 2683 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2684 unsigned int optlen) 2685 { 2686 int val; 2687 2688 if (optlen < sizeof(int)) 2689 return -EINVAL; 2690 if (get_user(val, (int __user *)optval)) 2691 return -EFAULT; 2692 2693 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2694 return 0; 2695 } 2696 2697 /* 2698 * 2699 * 7.1.1 SCTP_RTOINFO 2700 * 2701 * The protocol parameters used to initialize and bound retransmission 2702 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2703 * and modify these parameters. 2704 * All parameters are time values, in milliseconds. A value of 0, when 2705 * modifying the parameters, indicates that the current value should not 2706 * be changed. 2707 * 2708 */ 2709 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2710 { 2711 struct sctp_rtoinfo rtoinfo; 2712 struct sctp_association *asoc; 2713 2714 if (optlen != sizeof (struct sctp_rtoinfo)) 2715 return -EINVAL; 2716 2717 if (copy_from_user(&rtoinfo, optval, optlen)) 2718 return -EFAULT; 2719 2720 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2721 2722 /* Set the values to the specific association */ 2723 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2724 return -EINVAL; 2725 2726 if (asoc) { 2727 if (rtoinfo.srto_initial != 0) 2728 asoc->rto_initial = 2729 msecs_to_jiffies(rtoinfo.srto_initial); 2730 if (rtoinfo.srto_max != 0) 2731 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2732 if (rtoinfo.srto_min != 0) 2733 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2734 } else { 2735 /* If there is no association or the association-id = 0 2736 * set the values to the endpoint. 2737 */ 2738 struct sctp_sock *sp = sctp_sk(sk); 2739 2740 if (rtoinfo.srto_initial != 0) 2741 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2742 if (rtoinfo.srto_max != 0) 2743 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2744 if (rtoinfo.srto_min != 0) 2745 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2746 } 2747 2748 return 0; 2749 } 2750 2751 /* 2752 * 2753 * 7.1.2 SCTP_ASSOCINFO 2754 * 2755 * This option is used to tune the maximum retransmission attempts 2756 * of the association. 2757 * Returns an error if the new association retransmission value is 2758 * greater than the sum of the retransmission value of the peer. 2759 * See [SCTP] for more information. 2760 * 2761 */ 2762 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2763 { 2764 2765 struct sctp_assocparams assocparams; 2766 struct sctp_association *asoc; 2767 2768 if (optlen != sizeof(struct sctp_assocparams)) 2769 return -EINVAL; 2770 if (copy_from_user(&assocparams, optval, optlen)) 2771 return -EFAULT; 2772 2773 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2774 2775 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2776 return -EINVAL; 2777 2778 /* Set the values to the specific association */ 2779 if (asoc) { 2780 if (assocparams.sasoc_asocmaxrxt != 0) { 2781 __u32 path_sum = 0; 2782 int paths = 0; 2783 struct sctp_transport *peer_addr; 2784 2785 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2786 transports) { 2787 path_sum += peer_addr->pathmaxrxt; 2788 paths++; 2789 } 2790 2791 /* Only validate asocmaxrxt if we have more than 2792 * one path/transport. We do this because path 2793 * retransmissions are only counted when we have more 2794 * then one path. 2795 */ 2796 if (paths > 1 && 2797 assocparams.sasoc_asocmaxrxt > path_sum) 2798 return -EINVAL; 2799 2800 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2801 } 2802 2803 if (assocparams.sasoc_cookie_life != 0) { 2804 asoc->cookie_life.tv_sec = 2805 assocparams.sasoc_cookie_life / 1000; 2806 asoc->cookie_life.tv_usec = 2807 (assocparams.sasoc_cookie_life % 1000) 2808 * 1000; 2809 } 2810 } else { 2811 /* Set the values to the endpoint */ 2812 struct sctp_sock *sp = sctp_sk(sk); 2813 2814 if (assocparams.sasoc_asocmaxrxt != 0) 2815 sp->assocparams.sasoc_asocmaxrxt = 2816 assocparams.sasoc_asocmaxrxt; 2817 if (assocparams.sasoc_cookie_life != 0) 2818 sp->assocparams.sasoc_cookie_life = 2819 assocparams.sasoc_cookie_life; 2820 } 2821 return 0; 2822 } 2823 2824 /* 2825 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2826 * 2827 * This socket option is a boolean flag which turns on or off mapped V4 2828 * addresses. If this option is turned on and the socket is type 2829 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2830 * If this option is turned off, then no mapping will be done of V4 2831 * addresses and a user will receive both PF_INET6 and PF_INET type 2832 * addresses on the socket. 2833 */ 2834 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2835 { 2836 int val; 2837 struct sctp_sock *sp = sctp_sk(sk); 2838 2839 if (optlen < sizeof(int)) 2840 return -EINVAL; 2841 if (get_user(val, (int __user *)optval)) 2842 return -EFAULT; 2843 if (val) 2844 sp->v4mapped = 1; 2845 else 2846 sp->v4mapped = 0; 2847 2848 return 0; 2849 } 2850 2851 /* 2852 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2853 * This option will get or set the maximum size to put in any outgoing 2854 * SCTP DATA chunk. If a message is larger than this size it will be 2855 * fragmented by SCTP into the specified size. Note that the underlying 2856 * SCTP implementation may fragment into smaller sized chunks when the 2857 * PMTU of the underlying association is smaller than the value set by 2858 * the user. The default value for this option is '0' which indicates 2859 * the user is NOT limiting fragmentation and only the PMTU will effect 2860 * SCTP's choice of DATA chunk size. Note also that values set larger 2861 * than the maximum size of an IP datagram will effectively let SCTP 2862 * control fragmentation (i.e. the same as setting this option to 0). 2863 * 2864 * The following structure is used to access and modify this parameter: 2865 * 2866 * struct sctp_assoc_value { 2867 * sctp_assoc_t assoc_id; 2868 * uint32_t assoc_value; 2869 * }; 2870 * 2871 * assoc_id: This parameter is ignored for one-to-one style sockets. 2872 * For one-to-many style sockets this parameter indicates which 2873 * association the user is performing an action upon. Note that if 2874 * this field's value is zero then the endpoints default value is 2875 * changed (effecting future associations only). 2876 * assoc_value: This parameter specifies the maximum size in bytes. 2877 */ 2878 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2879 { 2880 struct sctp_assoc_value params; 2881 struct sctp_association *asoc; 2882 struct sctp_sock *sp = sctp_sk(sk); 2883 int val; 2884 2885 if (optlen == sizeof(int)) { 2886 pr_warn("Use of int in maxseg socket option deprecated\n"); 2887 pr_warn("Use struct sctp_assoc_value instead\n"); 2888 if (copy_from_user(&val, optval, optlen)) 2889 return -EFAULT; 2890 params.assoc_id = 0; 2891 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2892 if (copy_from_user(¶ms, optval, optlen)) 2893 return -EFAULT; 2894 val = params.assoc_value; 2895 } else 2896 return -EINVAL; 2897 2898 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2899 return -EINVAL; 2900 2901 asoc = sctp_id2assoc(sk, params.assoc_id); 2902 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2903 return -EINVAL; 2904 2905 if (asoc) { 2906 if (val == 0) { 2907 val = asoc->pathmtu; 2908 val -= sp->pf->af->net_header_len; 2909 val -= sizeof(struct sctphdr) + 2910 sizeof(struct sctp_data_chunk); 2911 } 2912 asoc->user_frag = val; 2913 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2914 } else { 2915 sp->user_frag = val; 2916 } 2917 2918 return 0; 2919 } 2920 2921 2922 /* 2923 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2924 * 2925 * Requests that the peer mark the enclosed address as the association 2926 * primary. The enclosed address must be one of the association's 2927 * locally bound addresses. The following structure is used to make a 2928 * set primary request: 2929 */ 2930 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2931 unsigned int optlen) 2932 { 2933 struct sctp_sock *sp; 2934 struct sctp_association *asoc = NULL; 2935 struct sctp_setpeerprim prim; 2936 struct sctp_chunk *chunk; 2937 struct sctp_af *af; 2938 int err; 2939 2940 sp = sctp_sk(sk); 2941 2942 if (!sctp_addip_enable) 2943 return -EPERM; 2944 2945 if (optlen != sizeof(struct sctp_setpeerprim)) 2946 return -EINVAL; 2947 2948 if (copy_from_user(&prim, optval, optlen)) 2949 return -EFAULT; 2950 2951 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2952 if (!asoc) 2953 return -EINVAL; 2954 2955 if (!asoc->peer.asconf_capable) 2956 return -EPERM; 2957 2958 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2959 return -EPERM; 2960 2961 if (!sctp_state(asoc, ESTABLISHED)) 2962 return -ENOTCONN; 2963 2964 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 2965 if (!af) 2966 return -EINVAL; 2967 2968 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 2969 return -EADDRNOTAVAIL; 2970 2971 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2972 return -EADDRNOTAVAIL; 2973 2974 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2975 chunk = sctp_make_asconf_set_prim(asoc, 2976 (union sctp_addr *)&prim.sspp_addr); 2977 if (!chunk) 2978 return -ENOMEM; 2979 2980 err = sctp_send_asconf(asoc, chunk); 2981 2982 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2983 2984 return err; 2985 } 2986 2987 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2988 unsigned int optlen) 2989 { 2990 struct sctp_setadaptation adaptation; 2991 2992 if (optlen != sizeof(struct sctp_setadaptation)) 2993 return -EINVAL; 2994 if (copy_from_user(&adaptation, optval, optlen)) 2995 return -EFAULT; 2996 2997 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2998 2999 return 0; 3000 } 3001 3002 /* 3003 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3004 * 3005 * The context field in the sctp_sndrcvinfo structure is normally only 3006 * used when a failed message is retrieved holding the value that was 3007 * sent down on the actual send call. This option allows the setting of 3008 * a default context on an association basis that will be received on 3009 * reading messages from the peer. This is especially helpful in the 3010 * one-2-many model for an application to keep some reference to an 3011 * internal state machine that is processing messages on the 3012 * association. Note that the setting of this value only effects 3013 * received messages from the peer and does not effect the value that is 3014 * saved with outbound messages. 3015 */ 3016 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3017 unsigned int optlen) 3018 { 3019 struct sctp_assoc_value params; 3020 struct sctp_sock *sp; 3021 struct sctp_association *asoc; 3022 3023 if (optlen != sizeof(struct sctp_assoc_value)) 3024 return -EINVAL; 3025 if (copy_from_user(¶ms, optval, optlen)) 3026 return -EFAULT; 3027 3028 sp = sctp_sk(sk); 3029 3030 if (params.assoc_id != 0) { 3031 asoc = sctp_id2assoc(sk, params.assoc_id); 3032 if (!asoc) 3033 return -EINVAL; 3034 asoc->default_rcv_context = params.assoc_value; 3035 } else { 3036 sp->default_rcv_context = params.assoc_value; 3037 } 3038 3039 return 0; 3040 } 3041 3042 /* 3043 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3044 * 3045 * This options will at a minimum specify if the implementation is doing 3046 * fragmented interleave. Fragmented interleave, for a one to many 3047 * socket, is when subsequent calls to receive a message may return 3048 * parts of messages from different associations. Some implementations 3049 * may allow you to turn this value on or off. If so, when turned off, 3050 * no fragment interleave will occur (which will cause a head of line 3051 * blocking amongst multiple associations sharing the same one to many 3052 * socket). When this option is turned on, then each receive call may 3053 * come from a different association (thus the user must receive data 3054 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3055 * association each receive belongs to. 3056 * 3057 * This option takes a boolean value. A non-zero value indicates that 3058 * fragmented interleave is on. A value of zero indicates that 3059 * fragmented interleave is off. 3060 * 3061 * Note that it is important that an implementation that allows this 3062 * option to be turned on, have it off by default. Otherwise an unaware 3063 * application using the one to many model may become confused and act 3064 * incorrectly. 3065 */ 3066 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3067 char __user *optval, 3068 unsigned int optlen) 3069 { 3070 int val; 3071 3072 if (optlen != sizeof(int)) 3073 return -EINVAL; 3074 if (get_user(val, (int __user *)optval)) 3075 return -EFAULT; 3076 3077 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3078 3079 return 0; 3080 } 3081 3082 /* 3083 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3084 * (SCTP_PARTIAL_DELIVERY_POINT) 3085 * 3086 * This option will set or get the SCTP partial delivery point. This 3087 * point is the size of a message where the partial delivery API will be 3088 * invoked to help free up rwnd space for the peer. Setting this to a 3089 * lower value will cause partial deliveries to happen more often. The 3090 * calls argument is an integer that sets or gets the partial delivery 3091 * point. Note also that the call will fail if the user attempts to set 3092 * this value larger than the socket receive buffer size. 3093 * 3094 * Note that any single message having a length smaller than or equal to 3095 * the SCTP partial delivery point will be delivered in one single read 3096 * call as long as the user provided buffer is large enough to hold the 3097 * message. 3098 */ 3099 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3100 char __user *optval, 3101 unsigned int optlen) 3102 { 3103 u32 val; 3104 3105 if (optlen != sizeof(u32)) 3106 return -EINVAL; 3107 if (get_user(val, (int __user *)optval)) 3108 return -EFAULT; 3109 3110 /* Note: We double the receive buffer from what the user sets 3111 * it to be, also initial rwnd is based on rcvbuf/2. 3112 */ 3113 if (val > (sk->sk_rcvbuf >> 1)) 3114 return -EINVAL; 3115 3116 sctp_sk(sk)->pd_point = val; 3117 3118 return 0; /* is this the right error code? */ 3119 } 3120 3121 /* 3122 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3123 * 3124 * This option will allow a user to change the maximum burst of packets 3125 * that can be emitted by this association. Note that the default value 3126 * is 4, and some implementations may restrict this setting so that it 3127 * can only be lowered. 3128 * 3129 * NOTE: This text doesn't seem right. Do this on a socket basis with 3130 * future associations inheriting the socket value. 3131 */ 3132 static int sctp_setsockopt_maxburst(struct sock *sk, 3133 char __user *optval, 3134 unsigned int optlen) 3135 { 3136 struct sctp_assoc_value params; 3137 struct sctp_sock *sp; 3138 struct sctp_association *asoc; 3139 int val; 3140 int assoc_id = 0; 3141 3142 if (optlen == sizeof(int)) { 3143 pr_warn("Use of int in max_burst socket option deprecated\n"); 3144 pr_warn("Use struct sctp_assoc_value instead\n"); 3145 if (copy_from_user(&val, optval, optlen)) 3146 return -EFAULT; 3147 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3148 if (copy_from_user(¶ms, optval, optlen)) 3149 return -EFAULT; 3150 val = params.assoc_value; 3151 assoc_id = params.assoc_id; 3152 } else 3153 return -EINVAL; 3154 3155 sp = sctp_sk(sk); 3156 3157 if (assoc_id != 0) { 3158 asoc = sctp_id2assoc(sk, assoc_id); 3159 if (!asoc) 3160 return -EINVAL; 3161 asoc->max_burst = val; 3162 } else 3163 sp->max_burst = val; 3164 3165 return 0; 3166 } 3167 3168 /* 3169 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3170 * 3171 * This set option adds a chunk type that the user is requesting to be 3172 * received only in an authenticated way. Changes to the list of chunks 3173 * will only effect future associations on the socket. 3174 */ 3175 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3176 char __user *optval, 3177 unsigned int optlen) 3178 { 3179 struct sctp_authchunk val; 3180 3181 if (!sctp_auth_enable) 3182 return -EACCES; 3183 3184 if (optlen != sizeof(struct sctp_authchunk)) 3185 return -EINVAL; 3186 if (copy_from_user(&val, optval, optlen)) 3187 return -EFAULT; 3188 3189 switch (val.sauth_chunk) { 3190 case SCTP_CID_INIT: 3191 case SCTP_CID_INIT_ACK: 3192 case SCTP_CID_SHUTDOWN_COMPLETE: 3193 case SCTP_CID_AUTH: 3194 return -EINVAL; 3195 } 3196 3197 /* add this chunk id to the endpoint */ 3198 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3199 } 3200 3201 /* 3202 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3203 * 3204 * This option gets or sets the list of HMAC algorithms that the local 3205 * endpoint requires the peer to use. 3206 */ 3207 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3208 char __user *optval, 3209 unsigned int optlen) 3210 { 3211 struct sctp_hmacalgo *hmacs; 3212 u32 idents; 3213 int err; 3214 3215 if (!sctp_auth_enable) 3216 return -EACCES; 3217 3218 if (optlen < sizeof(struct sctp_hmacalgo)) 3219 return -EINVAL; 3220 3221 hmacs= memdup_user(optval, optlen); 3222 if (IS_ERR(hmacs)) 3223 return PTR_ERR(hmacs); 3224 3225 idents = hmacs->shmac_num_idents; 3226 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3227 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3228 err = -EINVAL; 3229 goto out; 3230 } 3231 3232 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3233 out: 3234 kfree(hmacs); 3235 return err; 3236 } 3237 3238 /* 3239 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3240 * 3241 * This option will set a shared secret key which is used to build an 3242 * association shared key. 3243 */ 3244 static int sctp_setsockopt_auth_key(struct sock *sk, 3245 char __user *optval, 3246 unsigned int optlen) 3247 { 3248 struct sctp_authkey *authkey; 3249 struct sctp_association *asoc; 3250 int ret; 3251 3252 if (!sctp_auth_enable) 3253 return -EACCES; 3254 3255 if (optlen <= sizeof(struct sctp_authkey)) 3256 return -EINVAL; 3257 3258 authkey= memdup_user(optval, optlen); 3259 if (IS_ERR(authkey)) 3260 return PTR_ERR(authkey); 3261 3262 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3263 ret = -EINVAL; 3264 goto out; 3265 } 3266 3267 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3268 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3269 ret = -EINVAL; 3270 goto out; 3271 } 3272 3273 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3274 out: 3275 kfree(authkey); 3276 return ret; 3277 } 3278 3279 /* 3280 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3281 * 3282 * This option will get or set the active shared key to be used to build 3283 * the association shared key. 3284 */ 3285 static int sctp_setsockopt_active_key(struct sock *sk, 3286 char __user *optval, 3287 unsigned int optlen) 3288 { 3289 struct sctp_authkeyid val; 3290 struct sctp_association *asoc; 3291 3292 if (!sctp_auth_enable) 3293 return -EACCES; 3294 3295 if (optlen != sizeof(struct sctp_authkeyid)) 3296 return -EINVAL; 3297 if (copy_from_user(&val, optval, optlen)) 3298 return -EFAULT; 3299 3300 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3301 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3302 return -EINVAL; 3303 3304 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3305 val.scact_keynumber); 3306 } 3307 3308 /* 3309 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3310 * 3311 * This set option will delete a shared secret key from use. 3312 */ 3313 static int sctp_setsockopt_del_key(struct sock *sk, 3314 char __user *optval, 3315 unsigned int optlen) 3316 { 3317 struct sctp_authkeyid val; 3318 struct sctp_association *asoc; 3319 3320 if (!sctp_auth_enable) 3321 return -EACCES; 3322 3323 if (optlen != sizeof(struct sctp_authkeyid)) 3324 return -EINVAL; 3325 if (copy_from_user(&val, optval, optlen)) 3326 return -EFAULT; 3327 3328 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3329 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3330 return -EINVAL; 3331 3332 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3333 val.scact_keynumber); 3334 3335 } 3336 3337 3338 /* API 6.2 setsockopt(), getsockopt() 3339 * 3340 * Applications use setsockopt() and getsockopt() to set or retrieve 3341 * socket options. Socket options are used to change the default 3342 * behavior of sockets calls. They are described in Section 7. 3343 * 3344 * The syntax is: 3345 * 3346 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3347 * int __user *optlen); 3348 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3349 * int optlen); 3350 * 3351 * sd - the socket descript. 3352 * level - set to IPPROTO_SCTP for all SCTP options. 3353 * optname - the option name. 3354 * optval - the buffer to store the value of the option. 3355 * optlen - the size of the buffer. 3356 */ 3357 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3358 char __user *optval, unsigned int optlen) 3359 { 3360 int retval = 0; 3361 3362 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3363 sk, optname); 3364 3365 /* I can hardly begin to describe how wrong this is. This is 3366 * so broken as to be worse than useless. The API draft 3367 * REALLY is NOT helpful here... I am not convinced that the 3368 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3369 * are at all well-founded. 3370 */ 3371 if (level != SOL_SCTP) { 3372 struct sctp_af *af = sctp_sk(sk)->pf->af; 3373 retval = af->setsockopt(sk, level, optname, optval, optlen); 3374 goto out_nounlock; 3375 } 3376 3377 sctp_lock_sock(sk); 3378 3379 switch (optname) { 3380 case SCTP_SOCKOPT_BINDX_ADD: 3381 /* 'optlen' is the size of the addresses buffer. */ 3382 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3383 optlen, SCTP_BINDX_ADD_ADDR); 3384 break; 3385 3386 case SCTP_SOCKOPT_BINDX_REM: 3387 /* 'optlen' is the size of the addresses buffer. */ 3388 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3389 optlen, SCTP_BINDX_REM_ADDR); 3390 break; 3391 3392 case SCTP_SOCKOPT_CONNECTX_OLD: 3393 /* 'optlen' is the size of the addresses buffer. */ 3394 retval = sctp_setsockopt_connectx_old(sk, 3395 (struct sockaddr __user *)optval, 3396 optlen); 3397 break; 3398 3399 case SCTP_SOCKOPT_CONNECTX: 3400 /* 'optlen' is the size of the addresses buffer. */ 3401 retval = sctp_setsockopt_connectx(sk, 3402 (struct sockaddr __user *)optval, 3403 optlen); 3404 break; 3405 3406 case SCTP_DISABLE_FRAGMENTS: 3407 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3408 break; 3409 3410 case SCTP_EVENTS: 3411 retval = sctp_setsockopt_events(sk, optval, optlen); 3412 break; 3413 3414 case SCTP_AUTOCLOSE: 3415 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3416 break; 3417 3418 case SCTP_PEER_ADDR_PARAMS: 3419 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3420 break; 3421 3422 case SCTP_DELAYED_SACK: 3423 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3424 break; 3425 case SCTP_PARTIAL_DELIVERY_POINT: 3426 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3427 break; 3428 3429 case SCTP_INITMSG: 3430 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3431 break; 3432 case SCTP_DEFAULT_SEND_PARAM: 3433 retval = sctp_setsockopt_default_send_param(sk, optval, 3434 optlen); 3435 break; 3436 case SCTP_PRIMARY_ADDR: 3437 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3438 break; 3439 case SCTP_SET_PEER_PRIMARY_ADDR: 3440 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3441 break; 3442 case SCTP_NODELAY: 3443 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3444 break; 3445 case SCTP_RTOINFO: 3446 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3447 break; 3448 case SCTP_ASSOCINFO: 3449 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3450 break; 3451 case SCTP_I_WANT_MAPPED_V4_ADDR: 3452 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3453 break; 3454 case SCTP_MAXSEG: 3455 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3456 break; 3457 case SCTP_ADAPTATION_LAYER: 3458 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3459 break; 3460 case SCTP_CONTEXT: 3461 retval = sctp_setsockopt_context(sk, optval, optlen); 3462 break; 3463 case SCTP_FRAGMENT_INTERLEAVE: 3464 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3465 break; 3466 case SCTP_MAX_BURST: 3467 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3468 break; 3469 case SCTP_AUTH_CHUNK: 3470 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3471 break; 3472 case SCTP_HMAC_IDENT: 3473 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3474 break; 3475 case SCTP_AUTH_KEY: 3476 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3477 break; 3478 case SCTP_AUTH_ACTIVE_KEY: 3479 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3480 break; 3481 case SCTP_AUTH_DELETE_KEY: 3482 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3483 break; 3484 default: 3485 retval = -ENOPROTOOPT; 3486 break; 3487 } 3488 3489 sctp_release_sock(sk); 3490 3491 out_nounlock: 3492 return retval; 3493 } 3494 3495 /* API 3.1.6 connect() - UDP Style Syntax 3496 * 3497 * An application may use the connect() call in the UDP model to initiate an 3498 * association without sending data. 3499 * 3500 * The syntax is: 3501 * 3502 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3503 * 3504 * sd: the socket descriptor to have a new association added to. 3505 * 3506 * nam: the address structure (either struct sockaddr_in or struct 3507 * sockaddr_in6 defined in RFC2553 [7]). 3508 * 3509 * len: the size of the address. 3510 */ 3511 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3512 int addr_len) 3513 { 3514 int err = 0; 3515 struct sctp_af *af; 3516 3517 sctp_lock_sock(sk); 3518 3519 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3520 __func__, sk, addr, addr_len); 3521 3522 /* Validate addr_len before calling common connect/connectx routine. */ 3523 af = sctp_get_af_specific(addr->sa_family); 3524 if (!af || addr_len < af->sockaddr_len) { 3525 err = -EINVAL; 3526 } else { 3527 /* Pass correct addr len to common routine (so it knows there 3528 * is only one address being passed. 3529 */ 3530 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3531 } 3532 3533 sctp_release_sock(sk); 3534 return err; 3535 } 3536 3537 /* FIXME: Write comments. */ 3538 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3539 { 3540 return -EOPNOTSUPP; /* STUB */ 3541 } 3542 3543 /* 4.1.4 accept() - TCP Style Syntax 3544 * 3545 * Applications use accept() call to remove an established SCTP 3546 * association from the accept queue of the endpoint. A new socket 3547 * descriptor will be returned from accept() to represent the newly 3548 * formed association. 3549 */ 3550 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3551 { 3552 struct sctp_sock *sp; 3553 struct sctp_endpoint *ep; 3554 struct sock *newsk = NULL; 3555 struct sctp_association *asoc; 3556 long timeo; 3557 int error = 0; 3558 3559 sctp_lock_sock(sk); 3560 3561 sp = sctp_sk(sk); 3562 ep = sp->ep; 3563 3564 if (!sctp_style(sk, TCP)) { 3565 error = -EOPNOTSUPP; 3566 goto out; 3567 } 3568 3569 if (!sctp_sstate(sk, LISTENING)) { 3570 error = -EINVAL; 3571 goto out; 3572 } 3573 3574 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3575 3576 error = sctp_wait_for_accept(sk, timeo); 3577 if (error) 3578 goto out; 3579 3580 /* We treat the list of associations on the endpoint as the accept 3581 * queue and pick the first association on the list. 3582 */ 3583 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3584 3585 newsk = sp->pf->create_accept_sk(sk, asoc); 3586 if (!newsk) { 3587 error = -ENOMEM; 3588 goto out; 3589 } 3590 3591 /* Populate the fields of the newsk from the oldsk and migrate the 3592 * asoc to the newsk. 3593 */ 3594 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3595 3596 out: 3597 sctp_release_sock(sk); 3598 *err = error; 3599 return newsk; 3600 } 3601 3602 /* The SCTP ioctl handler. */ 3603 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3604 { 3605 int rc = -ENOTCONN; 3606 3607 sctp_lock_sock(sk); 3608 3609 /* 3610 * SEQPACKET-style sockets in LISTENING state are valid, for 3611 * SCTP, so only discard TCP-style sockets in LISTENING state. 3612 */ 3613 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3614 goto out; 3615 3616 switch (cmd) { 3617 case SIOCINQ: { 3618 struct sk_buff *skb; 3619 unsigned int amount = 0; 3620 3621 skb = skb_peek(&sk->sk_receive_queue); 3622 if (skb != NULL) { 3623 /* 3624 * We will only return the amount of this packet since 3625 * that is all that will be read. 3626 */ 3627 amount = skb->len; 3628 } 3629 rc = put_user(amount, (int __user *)arg); 3630 break; 3631 } 3632 default: 3633 rc = -ENOIOCTLCMD; 3634 break; 3635 } 3636 out: 3637 sctp_release_sock(sk); 3638 return rc; 3639 } 3640 3641 /* This is the function which gets called during socket creation to 3642 * initialized the SCTP-specific portion of the sock. 3643 * The sock structure should already be zero-filled memory. 3644 */ 3645 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3646 { 3647 struct sctp_endpoint *ep; 3648 struct sctp_sock *sp; 3649 3650 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3651 3652 sp = sctp_sk(sk); 3653 3654 /* Initialize the SCTP per socket area. */ 3655 switch (sk->sk_type) { 3656 case SOCK_SEQPACKET: 3657 sp->type = SCTP_SOCKET_UDP; 3658 break; 3659 case SOCK_STREAM: 3660 sp->type = SCTP_SOCKET_TCP; 3661 break; 3662 default: 3663 return -ESOCKTNOSUPPORT; 3664 } 3665 3666 /* Initialize default send parameters. These parameters can be 3667 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3668 */ 3669 sp->default_stream = 0; 3670 sp->default_ppid = 0; 3671 sp->default_flags = 0; 3672 sp->default_context = 0; 3673 sp->default_timetolive = 0; 3674 3675 sp->default_rcv_context = 0; 3676 sp->max_burst = sctp_max_burst; 3677 3678 /* Initialize default setup parameters. These parameters 3679 * can be modified with the SCTP_INITMSG socket option or 3680 * overridden by the SCTP_INIT CMSG. 3681 */ 3682 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3683 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3684 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3685 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3686 3687 /* Initialize default RTO related parameters. These parameters can 3688 * be modified for with the SCTP_RTOINFO socket option. 3689 */ 3690 sp->rtoinfo.srto_initial = sctp_rto_initial; 3691 sp->rtoinfo.srto_max = sctp_rto_max; 3692 sp->rtoinfo.srto_min = sctp_rto_min; 3693 3694 /* Initialize default association related parameters. These parameters 3695 * can be modified with the SCTP_ASSOCINFO socket option. 3696 */ 3697 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3698 sp->assocparams.sasoc_number_peer_destinations = 0; 3699 sp->assocparams.sasoc_peer_rwnd = 0; 3700 sp->assocparams.sasoc_local_rwnd = 0; 3701 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3702 3703 /* Initialize default event subscriptions. By default, all the 3704 * options are off. 3705 */ 3706 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3707 3708 /* Default Peer Address Parameters. These defaults can 3709 * be modified via SCTP_PEER_ADDR_PARAMS 3710 */ 3711 sp->hbinterval = sctp_hb_interval; 3712 sp->pathmaxrxt = sctp_max_retrans_path; 3713 sp->pathmtu = 0; // allow default discovery 3714 sp->sackdelay = sctp_sack_timeout; 3715 sp->sackfreq = 2; 3716 sp->param_flags = SPP_HB_ENABLE | 3717 SPP_PMTUD_ENABLE | 3718 SPP_SACKDELAY_ENABLE; 3719 3720 /* If enabled no SCTP message fragmentation will be performed. 3721 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3722 */ 3723 sp->disable_fragments = 0; 3724 3725 /* Enable Nagle algorithm by default. */ 3726 sp->nodelay = 0; 3727 3728 /* Enable by default. */ 3729 sp->v4mapped = 1; 3730 3731 /* Auto-close idle associations after the configured 3732 * number of seconds. A value of 0 disables this 3733 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3734 * for UDP-style sockets only. 3735 */ 3736 sp->autoclose = 0; 3737 3738 /* User specified fragmentation limit. */ 3739 sp->user_frag = 0; 3740 3741 sp->adaptation_ind = 0; 3742 3743 sp->pf = sctp_get_pf_specific(sk->sk_family); 3744 3745 /* Control variables for partial data delivery. */ 3746 atomic_set(&sp->pd_mode, 0); 3747 skb_queue_head_init(&sp->pd_lobby); 3748 sp->frag_interleave = 0; 3749 3750 /* Create a per socket endpoint structure. Even if we 3751 * change the data structure relationships, this may still 3752 * be useful for storing pre-connect address information. 3753 */ 3754 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3755 if (!ep) 3756 return -ENOMEM; 3757 3758 sp->ep = ep; 3759 sp->hmac = NULL; 3760 3761 SCTP_DBG_OBJCNT_INC(sock); 3762 3763 local_bh_disable(); 3764 percpu_counter_inc(&sctp_sockets_allocated); 3765 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3766 local_bh_enable(); 3767 3768 return 0; 3769 } 3770 3771 /* Cleanup any SCTP per socket resources. */ 3772 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3773 { 3774 struct sctp_endpoint *ep; 3775 3776 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3777 3778 /* Release our hold on the endpoint. */ 3779 ep = sctp_sk(sk)->ep; 3780 sctp_endpoint_free(ep); 3781 local_bh_disable(); 3782 percpu_counter_dec(&sctp_sockets_allocated); 3783 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3784 local_bh_enable(); 3785 } 3786 3787 /* API 4.1.7 shutdown() - TCP Style Syntax 3788 * int shutdown(int socket, int how); 3789 * 3790 * sd - the socket descriptor of the association to be closed. 3791 * how - Specifies the type of shutdown. The values are 3792 * as follows: 3793 * SHUT_RD 3794 * Disables further receive operations. No SCTP 3795 * protocol action is taken. 3796 * SHUT_WR 3797 * Disables further send operations, and initiates 3798 * the SCTP shutdown sequence. 3799 * SHUT_RDWR 3800 * Disables further send and receive operations 3801 * and initiates the SCTP shutdown sequence. 3802 */ 3803 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3804 { 3805 struct sctp_endpoint *ep; 3806 struct sctp_association *asoc; 3807 3808 if (!sctp_style(sk, TCP)) 3809 return; 3810 3811 if (how & SEND_SHUTDOWN) { 3812 ep = sctp_sk(sk)->ep; 3813 if (!list_empty(&ep->asocs)) { 3814 asoc = list_entry(ep->asocs.next, 3815 struct sctp_association, asocs); 3816 sctp_primitive_SHUTDOWN(asoc, NULL); 3817 } 3818 } 3819 } 3820 3821 /* 7.2.1 Association Status (SCTP_STATUS) 3822 3823 * Applications can retrieve current status information about an 3824 * association, including association state, peer receiver window size, 3825 * number of unacked data chunks, and number of data chunks pending 3826 * receipt. This information is read-only. 3827 */ 3828 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3829 char __user *optval, 3830 int __user *optlen) 3831 { 3832 struct sctp_status status; 3833 struct sctp_association *asoc = NULL; 3834 struct sctp_transport *transport; 3835 sctp_assoc_t associd; 3836 int retval = 0; 3837 3838 if (len < sizeof(status)) { 3839 retval = -EINVAL; 3840 goto out; 3841 } 3842 3843 len = sizeof(status); 3844 if (copy_from_user(&status, optval, len)) { 3845 retval = -EFAULT; 3846 goto out; 3847 } 3848 3849 associd = status.sstat_assoc_id; 3850 asoc = sctp_id2assoc(sk, associd); 3851 if (!asoc) { 3852 retval = -EINVAL; 3853 goto out; 3854 } 3855 3856 transport = asoc->peer.primary_path; 3857 3858 status.sstat_assoc_id = sctp_assoc2id(asoc); 3859 status.sstat_state = asoc->state; 3860 status.sstat_rwnd = asoc->peer.rwnd; 3861 status.sstat_unackdata = asoc->unack_data; 3862 3863 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3864 status.sstat_instrms = asoc->c.sinit_max_instreams; 3865 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3866 status.sstat_fragmentation_point = asoc->frag_point; 3867 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3868 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3869 transport->af_specific->sockaddr_len); 3870 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3871 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3872 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3873 status.sstat_primary.spinfo_state = transport->state; 3874 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3875 status.sstat_primary.spinfo_srtt = transport->srtt; 3876 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3877 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3878 3879 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3880 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3881 3882 if (put_user(len, optlen)) { 3883 retval = -EFAULT; 3884 goto out; 3885 } 3886 3887 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3888 len, status.sstat_state, status.sstat_rwnd, 3889 status.sstat_assoc_id); 3890 3891 if (copy_to_user(optval, &status, len)) { 3892 retval = -EFAULT; 3893 goto out; 3894 } 3895 3896 out: 3897 return retval; 3898 } 3899 3900 3901 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3902 * 3903 * Applications can retrieve information about a specific peer address 3904 * of an association, including its reachability state, congestion 3905 * window, and retransmission timer values. This information is 3906 * read-only. 3907 */ 3908 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3909 char __user *optval, 3910 int __user *optlen) 3911 { 3912 struct sctp_paddrinfo pinfo; 3913 struct sctp_transport *transport; 3914 int retval = 0; 3915 3916 if (len < sizeof(pinfo)) { 3917 retval = -EINVAL; 3918 goto out; 3919 } 3920 3921 len = sizeof(pinfo); 3922 if (copy_from_user(&pinfo, optval, len)) { 3923 retval = -EFAULT; 3924 goto out; 3925 } 3926 3927 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3928 pinfo.spinfo_assoc_id); 3929 if (!transport) 3930 return -EINVAL; 3931 3932 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3933 pinfo.spinfo_state = transport->state; 3934 pinfo.spinfo_cwnd = transport->cwnd; 3935 pinfo.spinfo_srtt = transport->srtt; 3936 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3937 pinfo.spinfo_mtu = transport->pathmtu; 3938 3939 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3940 pinfo.spinfo_state = SCTP_ACTIVE; 3941 3942 if (put_user(len, optlen)) { 3943 retval = -EFAULT; 3944 goto out; 3945 } 3946 3947 if (copy_to_user(optval, &pinfo, len)) { 3948 retval = -EFAULT; 3949 goto out; 3950 } 3951 3952 out: 3953 return retval; 3954 } 3955 3956 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3957 * 3958 * This option is a on/off flag. If enabled no SCTP message 3959 * fragmentation will be performed. Instead if a message being sent 3960 * exceeds the current PMTU size, the message will NOT be sent and 3961 * instead a error will be indicated to the user. 3962 */ 3963 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3964 char __user *optval, int __user *optlen) 3965 { 3966 int val; 3967 3968 if (len < sizeof(int)) 3969 return -EINVAL; 3970 3971 len = sizeof(int); 3972 val = (sctp_sk(sk)->disable_fragments == 1); 3973 if (put_user(len, optlen)) 3974 return -EFAULT; 3975 if (copy_to_user(optval, &val, len)) 3976 return -EFAULT; 3977 return 0; 3978 } 3979 3980 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3981 * 3982 * This socket option is used to specify various notifications and 3983 * ancillary data the user wishes to receive. 3984 */ 3985 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3986 int __user *optlen) 3987 { 3988 if (len < sizeof(struct sctp_event_subscribe)) 3989 return -EINVAL; 3990 len = sizeof(struct sctp_event_subscribe); 3991 if (put_user(len, optlen)) 3992 return -EFAULT; 3993 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3994 return -EFAULT; 3995 return 0; 3996 } 3997 3998 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3999 * 4000 * This socket option is applicable to the UDP-style socket only. When 4001 * set it will cause associations that are idle for more than the 4002 * specified number of seconds to automatically close. An association 4003 * being idle is defined an association that has NOT sent or received 4004 * user data. The special value of '0' indicates that no automatic 4005 * close of any associations should be performed. The option expects an 4006 * integer defining the number of seconds of idle time before an 4007 * association is closed. 4008 */ 4009 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4010 { 4011 /* Applicable to UDP-style socket only */ 4012 if (sctp_style(sk, TCP)) 4013 return -EOPNOTSUPP; 4014 if (len < sizeof(int)) 4015 return -EINVAL; 4016 len = sizeof(int); 4017 if (put_user(len, optlen)) 4018 return -EFAULT; 4019 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4020 return -EFAULT; 4021 return 0; 4022 } 4023 4024 /* Helper routine to branch off an association to a new socket. */ 4025 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4026 struct socket **sockp) 4027 { 4028 struct sock *sk = asoc->base.sk; 4029 struct socket *sock; 4030 struct sctp_af *af; 4031 int err = 0; 4032 4033 /* An association cannot be branched off from an already peeled-off 4034 * socket, nor is this supported for tcp style sockets. 4035 */ 4036 if (!sctp_style(sk, UDP)) 4037 return -EINVAL; 4038 4039 /* Create a new socket. */ 4040 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4041 if (err < 0) 4042 return err; 4043 4044 sctp_copy_sock(sock->sk, sk, asoc); 4045 4046 /* Make peeled-off sockets more like 1-1 accepted sockets. 4047 * Set the daddr and initialize id to something more random 4048 */ 4049 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4050 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4051 4052 /* Populate the fields of the newsk from the oldsk and migrate the 4053 * asoc to the newsk. 4054 */ 4055 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4056 4057 *sockp = sock; 4058 4059 return err; 4060 } 4061 4062 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4063 { 4064 sctp_peeloff_arg_t peeloff; 4065 struct socket *newsock; 4066 int retval = 0; 4067 struct sctp_association *asoc; 4068 4069 if (len < sizeof(sctp_peeloff_arg_t)) 4070 return -EINVAL; 4071 len = sizeof(sctp_peeloff_arg_t); 4072 if (copy_from_user(&peeloff, optval, len)) 4073 return -EFAULT; 4074 4075 asoc = sctp_id2assoc(sk, peeloff.associd); 4076 if (!asoc) { 4077 retval = -EINVAL; 4078 goto out; 4079 } 4080 4081 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4082 4083 retval = sctp_do_peeloff(asoc, &newsock); 4084 if (retval < 0) 4085 goto out; 4086 4087 /* Map the socket to an unused fd that can be returned to the user. */ 4088 retval = sock_map_fd(newsock, 0); 4089 if (retval < 0) { 4090 sock_release(newsock); 4091 goto out; 4092 } 4093 4094 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4095 __func__, sk, asoc, newsock->sk, retval); 4096 4097 /* Return the fd mapped to the new socket. */ 4098 peeloff.sd = retval; 4099 if (put_user(len, optlen)) 4100 return -EFAULT; 4101 if (copy_to_user(optval, &peeloff, len)) 4102 retval = -EFAULT; 4103 4104 out: 4105 return retval; 4106 } 4107 4108 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4109 * 4110 * Applications can enable or disable heartbeats for any peer address of 4111 * an association, modify an address's heartbeat interval, force a 4112 * heartbeat to be sent immediately, and adjust the address's maximum 4113 * number of retransmissions sent before an address is considered 4114 * unreachable. The following structure is used to access and modify an 4115 * address's parameters: 4116 * 4117 * struct sctp_paddrparams { 4118 * sctp_assoc_t spp_assoc_id; 4119 * struct sockaddr_storage spp_address; 4120 * uint32_t spp_hbinterval; 4121 * uint16_t spp_pathmaxrxt; 4122 * uint32_t spp_pathmtu; 4123 * uint32_t spp_sackdelay; 4124 * uint32_t spp_flags; 4125 * }; 4126 * 4127 * spp_assoc_id - (one-to-many style socket) This is filled in the 4128 * application, and identifies the association for 4129 * this query. 4130 * spp_address - This specifies which address is of interest. 4131 * spp_hbinterval - This contains the value of the heartbeat interval, 4132 * in milliseconds. If a value of zero 4133 * is present in this field then no changes are to 4134 * be made to this parameter. 4135 * spp_pathmaxrxt - This contains the maximum number of 4136 * retransmissions before this address shall be 4137 * considered unreachable. If a value of zero 4138 * is present in this field then no changes are to 4139 * be made to this parameter. 4140 * spp_pathmtu - When Path MTU discovery is disabled the value 4141 * specified here will be the "fixed" path mtu. 4142 * Note that if the spp_address field is empty 4143 * then all associations on this address will 4144 * have this fixed path mtu set upon them. 4145 * 4146 * spp_sackdelay - When delayed sack is enabled, this value specifies 4147 * the number of milliseconds that sacks will be delayed 4148 * for. This value will apply to all addresses of an 4149 * association if the spp_address field is empty. Note 4150 * also, that if delayed sack is enabled and this 4151 * value is set to 0, no change is made to the last 4152 * recorded delayed sack timer value. 4153 * 4154 * spp_flags - These flags are used to control various features 4155 * on an association. The flag field may contain 4156 * zero or more of the following options. 4157 * 4158 * SPP_HB_ENABLE - Enable heartbeats on the 4159 * specified address. Note that if the address 4160 * field is empty all addresses for the association 4161 * have heartbeats enabled upon them. 4162 * 4163 * SPP_HB_DISABLE - Disable heartbeats on the 4164 * speicifed address. Note that if the address 4165 * field is empty all addresses for the association 4166 * will have their heartbeats disabled. Note also 4167 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4168 * mutually exclusive, only one of these two should 4169 * be specified. Enabling both fields will have 4170 * undetermined results. 4171 * 4172 * SPP_HB_DEMAND - Request a user initiated heartbeat 4173 * to be made immediately. 4174 * 4175 * SPP_PMTUD_ENABLE - This field will enable PMTU 4176 * discovery upon the specified address. Note that 4177 * if the address feild is empty then all addresses 4178 * on the association are effected. 4179 * 4180 * SPP_PMTUD_DISABLE - This field will disable PMTU 4181 * discovery upon the specified address. Note that 4182 * if the address feild is empty then all addresses 4183 * on the association are effected. Not also that 4184 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4185 * exclusive. Enabling both will have undetermined 4186 * results. 4187 * 4188 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4189 * on delayed sack. The time specified in spp_sackdelay 4190 * is used to specify the sack delay for this address. Note 4191 * that if spp_address is empty then all addresses will 4192 * enable delayed sack and take on the sack delay 4193 * value specified in spp_sackdelay. 4194 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4195 * off delayed sack. If the spp_address field is blank then 4196 * delayed sack is disabled for the entire association. Note 4197 * also that this field is mutually exclusive to 4198 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4199 * results. 4200 */ 4201 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4202 char __user *optval, int __user *optlen) 4203 { 4204 struct sctp_paddrparams params; 4205 struct sctp_transport *trans = NULL; 4206 struct sctp_association *asoc = NULL; 4207 struct sctp_sock *sp = sctp_sk(sk); 4208 4209 if (len < sizeof(struct sctp_paddrparams)) 4210 return -EINVAL; 4211 len = sizeof(struct sctp_paddrparams); 4212 if (copy_from_user(¶ms, optval, len)) 4213 return -EFAULT; 4214 4215 /* If an address other than INADDR_ANY is specified, and 4216 * no transport is found, then the request is invalid. 4217 */ 4218 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4219 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4220 params.spp_assoc_id); 4221 if (!trans) { 4222 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4223 return -EINVAL; 4224 } 4225 } 4226 4227 /* Get association, if assoc_id != 0 and the socket is a one 4228 * to many style socket, and an association was not found, then 4229 * the id was invalid. 4230 */ 4231 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4232 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4233 SCTP_DEBUG_PRINTK("Failed no association\n"); 4234 return -EINVAL; 4235 } 4236 4237 if (trans) { 4238 /* Fetch transport values. */ 4239 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4240 params.spp_pathmtu = trans->pathmtu; 4241 params.spp_pathmaxrxt = trans->pathmaxrxt; 4242 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4243 4244 /*draft-11 doesn't say what to return in spp_flags*/ 4245 params.spp_flags = trans->param_flags; 4246 } else if (asoc) { 4247 /* Fetch association values. */ 4248 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4249 params.spp_pathmtu = asoc->pathmtu; 4250 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4251 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4252 4253 /*draft-11 doesn't say what to return in spp_flags*/ 4254 params.spp_flags = asoc->param_flags; 4255 } else { 4256 /* Fetch socket values. */ 4257 params.spp_hbinterval = sp->hbinterval; 4258 params.spp_pathmtu = sp->pathmtu; 4259 params.spp_sackdelay = sp->sackdelay; 4260 params.spp_pathmaxrxt = sp->pathmaxrxt; 4261 4262 /*draft-11 doesn't say what to return in spp_flags*/ 4263 params.spp_flags = sp->param_flags; 4264 } 4265 4266 if (copy_to_user(optval, ¶ms, len)) 4267 return -EFAULT; 4268 4269 if (put_user(len, optlen)) 4270 return -EFAULT; 4271 4272 return 0; 4273 } 4274 4275 /* 4276 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4277 * 4278 * This option will effect the way delayed acks are performed. This 4279 * option allows you to get or set the delayed ack time, in 4280 * milliseconds. It also allows changing the delayed ack frequency. 4281 * Changing the frequency to 1 disables the delayed sack algorithm. If 4282 * the assoc_id is 0, then this sets or gets the endpoints default 4283 * values. If the assoc_id field is non-zero, then the set or get 4284 * effects the specified association for the one to many model (the 4285 * assoc_id field is ignored by the one to one model). Note that if 4286 * sack_delay or sack_freq are 0 when setting this option, then the 4287 * current values will remain unchanged. 4288 * 4289 * struct sctp_sack_info { 4290 * sctp_assoc_t sack_assoc_id; 4291 * uint32_t sack_delay; 4292 * uint32_t sack_freq; 4293 * }; 4294 * 4295 * sack_assoc_id - This parameter, indicates which association the user 4296 * is performing an action upon. Note that if this field's value is 4297 * zero then the endpoints default value is changed (effecting future 4298 * associations only). 4299 * 4300 * sack_delay - This parameter contains the number of milliseconds that 4301 * the user is requesting the delayed ACK timer be set to. Note that 4302 * this value is defined in the standard to be between 200 and 500 4303 * milliseconds. 4304 * 4305 * sack_freq - This parameter contains the number of packets that must 4306 * be received before a sack is sent without waiting for the delay 4307 * timer to expire. The default value for this is 2, setting this 4308 * value to 1 will disable the delayed sack algorithm. 4309 */ 4310 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4311 char __user *optval, 4312 int __user *optlen) 4313 { 4314 struct sctp_sack_info params; 4315 struct sctp_association *asoc = NULL; 4316 struct sctp_sock *sp = sctp_sk(sk); 4317 4318 if (len >= sizeof(struct sctp_sack_info)) { 4319 len = sizeof(struct sctp_sack_info); 4320 4321 if (copy_from_user(¶ms, optval, len)) 4322 return -EFAULT; 4323 } else if (len == sizeof(struct sctp_assoc_value)) { 4324 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4325 pr_warn("Use struct sctp_sack_info instead\n"); 4326 if (copy_from_user(¶ms, optval, len)) 4327 return -EFAULT; 4328 } else 4329 return - EINVAL; 4330 4331 /* Get association, if sack_assoc_id != 0 and the socket is a one 4332 * to many style socket, and an association was not found, then 4333 * the id was invalid. 4334 */ 4335 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4336 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4337 return -EINVAL; 4338 4339 if (asoc) { 4340 /* Fetch association values. */ 4341 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4342 params.sack_delay = jiffies_to_msecs( 4343 asoc->sackdelay); 4344 params.sack_freq = asoc->sackfreq; 4345 4346 } else { 4347 params.sack_delay = 0; 4348 params.sack_freq = 1; 4349 } 4350 } else { 4351 /* Fetch socket values. */ 4352 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4353 params.sack_delay = sp->sackdelay; 4354 params.sack_freq = sp->sackfreq; 4355 } else { 4356 params.sack_delay = 0; 4357 params.sack_freq = 1; 4358 } 4359 } 4360 4361 if (copy_to_user(optval, ¶ms, len)) 4362 return -EFAULT; 4363 4364 if (put_user(len, optlen)) 4365 return -EFAULT; 4366 4367 return 0; 4368 } 4369 4370 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4371 * 4372 * Applications can specify protocol parameters for the default association 4373 * initialization. The option name argument to setsockopt() and getsockopt() 4374 * is SCTP_INITMSG. 4375 * 4376 * Setting initialization parameters is effective only on an unconnected 4377 * socket (for UDP-style sockets only future associations are effected 4378 * by the change). With TCP-style sockets, this option is inherited by 4379 * sockets derived from a listener socket. 4380 */ 4381 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4382 { 4383 if (len < sizeof(struct sctp_initmsg)) 4384 return -EINVAL; 4385 len = sizeof(struct sctp_initmsg); 4386 if (put_user(len, optlen)) 4387 return -EFAULT; 4388 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4389 return -EFAULT; 4390 return 0; 4391 } 4392 4393 4394 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4395 char __user *optval, int __user *optlen) 4396 { 4397 struct sctp_association *asoc; 4398 int cnt = 0; 4399 struct sctp_getaddrs getaddrs; 4400 struct sctp_transport *from; 4401 void __user *to; 4402 union sctp_addr temp; 4403 struct sctp_sock *sp = sctp_sk(sk); 4404 int addrlen; 4405 size_t space_left; 4406 int bytes_copied; 4407 4408 if (len < sizeof(struct sctp_getaddrs)) 4409 return -EINVAL; 4410 4411 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4412 return -EFAULT; 4413 4414 /* For UDP-style sockets, id specifies the association to query. */ 4415 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4416 if (!asoc) 4417 return -EINVAL; 4418 4419 to = optval + offsetof(struct sctp_getaddrs,addrs); 4420 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4421 4422 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4423 transports) { 4424 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4425 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4426 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4427 if (space_left < addrlen) 4428 return -ENOMEM; 4429 if (copy_to_user(to, &temp, addrlen)) 4430 return -EFAULT; 4431 to += addrlen; 4432 cnt++; 4433 space_left -= addrlen; 4434 } 4435 4436 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4437 return -EFAULT; 4438 bytes_copied = ((char __user *)to) - optval; 4439 if (put_user(bytes_copied, optlen)) 4440 return -EFAULT; 4441 4442 return 0; 4443 } 4444 4445 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4446 size_t space_left, int *bytes_copied) 4447 { 4448 struct sctp_sockaddr_entry *addr; 4449 union sctp_addr temp; 4450 int cnt = 0; 4451 int addrlen; 4452 4453 rcu_read_lock(); 4454 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4455 if (!addr->valid) 4456 continue; 4457 4458 if ((PF_INET == sk->sk_family) && 4459 (AF_INET6 == addr->a.sa.sa_family)) 4460 continue; 4461 if ((PF_INET6 == sk->sk_family) && 4462 inet_v6_ipv6only(sk) && 4463 (AF_INET == addr->a.sa.sa_family)) 4464 continue; 4465 memcpy(&temp, &addr->a, sizeof(temp)); 4466 if (!temp.v4.sin_port) 4467 temp.v4.sin_port = htons(port); 4468 4469 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4470 &temp); 4471 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4472 if (space_left < addrlen) { 4473 cnt = -ENOMEM; 4474 break; 4475 } 4476 memcpy(to, &temp, addrlen); 4477 4478 to += addrlen; 4479 cnt ++; 4480 space_left -= addrlen; 4481 *bytes_copied += addrlen; 4482 } 4483 rcu_read_unlock(); 4484 4485 return cnt; 4486 } 4487 4488 4489 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4490 char __user *optval, int __user *optlen) 4491 { 4492 struct sctp_bind_addr *bp; 4493 struct sctp_association *asoc; 4494 int cnt = 0; 4495 struct sctp_getaddrs getaddrs; 4496 struct sctp_sockaddr_entry *addr; 4497 void __user *to; 4498 union sctp_addr temp; 4499 struct sctp_sock *sp = sctp_sk(sk); 4500 int addrlen; 4501 int err = 0; 4502 size_t space_left; 4503 int bytes_copied = 0; 4504 void *addrs; 4505 void *buf; 4506 4507 if (len < sizeof(struct sctp_getaddrs)) 4508 return -EINVAL; 4509 4510 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4511 return -EFAULT; 4512 4513 /* 4514 * For UDP-style sockets, id specifies the association to query. 4515 * If the id field is set to the value '0' then the locally bound 4516 * addresses are returned without regard to any particular 4517 * association. 4518 */ 4519 if (0 == getaddrs.assoc_id) { 4520 bp = &sctp_sk(sk)->ep->base.bind_addr; 4521 } else { 4522 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4523 if (!asoc) 4524 return -EINVAL; 4525 bp = &asoc->base.bind_addr; 4526 } 4527 4528 to = optval + offsetof(struct sctp_getaddrs,addrs); 4529 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4530 4531 addrs = kmalloc(space_left, GFP_KERNEL); 4532 if (!addrs) 4533 return -ENOMEM; 4534 4535 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4536 * addresses from the global local address list. 4537 */ 4538 if (sctp_list_single_entry(&bp->address_list)) { 4539 addr = list_entry(bp->address_list.next, 4540 struct sctp_sockaddr_entry, list); 4541 if (sctp_is_any(sk, &addr->a)) { 4542 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4543 space_left, &bytes_copied); 4544 if (cnt < 0) { 4545 err = cnt; 4546 goto out; 4547 } 4548 goto copy_getaddrs; 4549 } 4550 } 4551 4552 buf = addrs; 4553 /* Protection on the bound address list is not needed since 4554 * in the socket option context we hold a socket lock and 4555 * thus the bound address list can't change. 4556 */ 4557 list_for_each_entry(addr, &bp->address_list, list) { 4558 memcpy(&temp, &addr->a, sizeof(temp)); 4559 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4560 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4561 if (space_left < addrlen) { 4562 err = -ENOMEM; /*fixme: right error?*/ 4563 goto out; 4564 } 4565 memcpy(buf, &temp, addrlen); 4566 buf += addrlen; 4567 bytes_copied += addrlen; 4568 cnt ++; 4569 space_left -= addrlen; 4570 } 4571 4572 copy_getaddrs: 4573 if (copy_to_user(to, addrs, bytes_copied)) { 4574 err = -EFAULT; 4575 goto out; 4576 } 4577 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4578 err = -EFAULT; 4579 goto out; 4580 } 4581 if (put_user(bytes_copied, optlen)) 4582 err = -EFAULT; 4583 out: 4584 kfree(addrs); 4585 return err; 4586 } 4587 4588 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4589 * 4590 * Requests that the local SCTP stack use the enclosed peer address as 4591 * the association primary. The enclosed address must be one of the 4592 * association peer's addresses. 4593 */ 4594 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4595 char __user *optval, int __user *optlen) 4596 { 4597 struct sctp_prim prim; 4598 struct sctp_association *asoc; 4599 struct sctp_sock *sp = sctp_sk(sk); 4600 4601 if (len < sizeof(struct sctp_prim)) 4602 return -EINVAL; 4603 4604 len = sizeof(struct sctp_prim); 4605 4606 if (copy_from_user(&prim, optval, len)) 4607 return -EFAULT; 4608 4609 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4610 if (!asoc) 4611 return -EINVAL; 4612 4613 if (!asoc->peer.primary_path) 4614 return -ENOTCONN; 4615 4616 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4617 asoc->peer.primary_path->af_specific->sockaddr_len); 4618 4619 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4620 (union sctp_addr *)&prim.ssp_addr); 4621 4622 if (put_user(len, optlen)) 4623 return -EFAULT; 4624 if (copy_to_user(optval, &prim, len)) 4625 return -EFAULT; 4626 4627 return 0; 4628 } 4629 4630 /* 4631 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4632 * 4633 * Requests that the local endpoint set the specified Adaptation Layer 4634 * Indication parameter for all future INIT and INIT-ACK exchanges. 4635 */ 4636 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4637 char __user *optval, int __user *optlen) 4638 { 4639 struct sctp_setadaptation adaptation; 4640 4641 if (len < sizeof(struct sctp_setadaptation)) 4642 return -EINVAL; 4643 4644 len = sizeof(struct sctp_setadaptation); 4645 4646 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4647 4648 if (put_user(len, optlen)) 4649 return -EFAULT; 4650 if (copy_to_user(optval, &adaptation, len)) 4651 return -EFAULT; 4652 4653 return 0; 4654 } 4655 4656 /* 4657 * 4658 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4659 * 4660 * Applications that wish to use the sendto() system call may wish to 4661 * specify a default set of parameters that would normally be supplied 4662 * through the inclusion of ancillary data. This socket option allows 4663 * such an application to set the default sctp_sndrcvinfo structure. 4664 4665 4666 * The application that wishes to use this socket option simply passes 4667 * in to this call the sctp_sndrcvinfo structure defined in Section 4668 * 5.2.2) The input parameters accepted by this call include 4669 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4670 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4671 * to this call if the caller is using the UDP model. 4672 * 4673 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4674 */ 4675 static int sctp_getsockopt_default_send_param(struct sock *sk, 4676 int len, char __user *optval, 4677 int __user *optlen) 4678 { 4679 struct sctp_sndrcvinfo info; 4680 struct sctp_association *asoc; 4681 struct sctp_sock *sp = sctp_sk(sk); 4682 4683 if (len < sizeof(struct sctp_sndrcvinfo)) 4684 return -EINVAL; 4685 4686 len = sizeof(struct sctp_sndrcvinfo); 4687 4688 if (copy_from_user(&info, optval, len)) 4689 return -EFAULT; 4690 4691 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4692 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4693 return -EINVAL; 4694 4695 if (asoc) { 4696 info.sinfo_stream = asoc->default_stream; 4697 info.sinfo_flags = asoc->default_flags; 4698 info.sinfo_ppid = asoc->default_ppid; 4699 info.sinfo_context = asoc->default_context; 4700 info.sinfo_timetolive = asoc->default_timetolive; 4701 } else { 4702 info.sinfo_stream = sp->default_stream; 4703 info.sinfo_flags = sp->default_flags; 4704 info.sinfo_ppid = sp->default_ppid; 4705 info.sinfo_context = sp->default_context; 4706 info.sinfo_timetolive = sp->default_timetolive; 4707 } 4708 4709 if (put_user(len, optlen)) 4710 return -EFAULT; 4711 if (copy_to_user(optval, &info, len)) 4712 return -EFAULT; 4713 4714 return 0; 4715 } 4716 4717 /* 4718 * 4719 * 7.1.5 SCTP_NODELAY 4720 * 4721 * Turn on/off any Nagle-like algorithm. This means that packets are 4722 * generally sent as soon as possible and no unnecessary delays are 4723 * introduced, at the cost of more packets in the network. Expects an 4724 * integer boolean flag. 4725 */ 4726 4727 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4728 char __user *optval, int __user *optlen) 4729 { 4730 int val; 4731 4732 if (len < sizeof(int)) 4733 return -EINVAL; 4734 4735 len = sizeof(int); 4736 val = (sctp_sk(sk)->nodelay == 1); 4737 if (put_user(len, optlen)) 4738 return -EFAULT; 4739 if (copy_to_user(optval, &val, len)) 4740 return -EFAULT; 4741 return 0; 4742 } 4743 4744 /* 4745 * 4746 * 7.1.1 SCTP_RTOINFO 4747 * 4748 * The protocol parameters used to initialize and bound retransmission 4749 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4750 * and modify these parameters. 4751 * All parameters are time values, in milliseconds. A value of 0, when 4752 * modifying the parameters, indicates that the current value should not 4753 * be changed. 4754 * 4755 */ 4756 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4757 char __user *optval, 4758 int __user *optlen) { 4759 struct sctp_rtoinfo rtoinfo; 4760 struct sctp_association *asoc; 4761 4762 if (len < sizeof (struct sctp_rtoinfo)) 4763 return -EINVAL; 4764 4765 len = sizeof(struct sctp_rtoinfo); 4766 4767 if (copy_from_user(&rtoinfo, optval, len)) 4768 return -EFAULT; 4769 4770 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4771 4772 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4773 return -EINVAL; 4774 4775 /* Values corresponding to the specific association. */ 4776 if (asoc) { 4777 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4778 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4779 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4780 } else { 4781 /* Values corresponding to the endpoint. */ 4782 struct sctp_sock *sp = sctp_sk(sk); 4783 4784 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4785 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4786 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4787 } 4788 4789 if (put_user(len, optlen)) 4790 return -EFAULT; 4791 4792 if (copy_to_user(optval, &rtoinfo, len)) 4793 return -EFAULT; 4794 4795 return 0; 4796 } 4797 4798 /* 4799 * 4800 * 7.1.2 SCTP_ASSOCINFO 4801 * 4802 * This option is used to tune the maximum retransmission attempts 4803 * of the association. 4804 * Returns an error if the new association retransmission value is 4805 * greater than the sum of the retransmission value of the peer. 4806 * See [SCTP] for more information. 4807 * 4808 */ 4809 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4810 char __user *optval, 4811 int __user *optlen) 4812 { 4813 4814 struct sctp_assocparams assocparams; 4815 struct sctp_association *asoc; 4816 struct list_head *pos; 4817 int cnt = 0; 4818 4819 if (len < sizeof (struct sctp_assocparams)) 4820 return -EINVAL; 4821 4822 len = sizeof(struct sctp_assocparams); 4823 4824 if (copy_from_user(&assocparams, optval, len)) 4825 return -EFAULT; 4826 4827 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4828 4829 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4830 return -EINVAL; 4831 4832 /* Values correspoinding to the specific association */ 4833 if (asoc) { 4834 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4835 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4836 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4837 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4838 * 1000) + 4839 (asoc->cookie_life.tv_usec 4840 / 1000); 4841 4842 list_for_each(pos, &asoc->peer.transport_addr_list) { 4843 cnt ++; 4844 } 4845 4846 assocparams.sasoc_number_peer_destinations = cnt; 4847 } else { 4848 /* Values corresponding to the endpoint */ 4849 struct sctp_sock *sp = sctp_sk(sk); 4850 4851 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4852 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4853 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4854 assocparams.sasoc_cookie_life = 4855 sp->assocparams.sasoc_cookie_life; 4856 assocparams.sasoc_number_peer_destinations = 4857 sp->assocparams. 4858 sasoc_number_peer_destinations; 4859 } 4860 4861 if (put_user(len, optlen)) 4862 return -EFAULT; 4863 4864 if (copy_to_user(optval, &assocparams, len)) 4865 return -EFAULT; 4866 4867 return 0; 4868 } 4869 4870 /* 4871 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4872 * 4873 * This socket option is a boolean flag which turns on or off mapped V4 4874 * addresses. If this option is turned on and the socket is type 4875 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4876 * If this option is turned off, then no mapping will be done of V4 4877 * addresses and a user will receive both PF_INET6 and PF_INET type 4878 * addresses on the socket. 4879 */ 4880 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4881 char __user *optval, int __user *optlen) 4882 { 4883 int val; 4884 struct sctp_sock *sp = sctp_sk(sk); 4885 4886 if (len < sizeof(int)) 4887 return -EINVAL; 4888 4889 len = sizeof(int); 4890 val = sp->v4mapped; 4891 if (put_user(len, optlen)) 4892 return -EFAULT; 4893 if (copy_to_user(optval, &val, len)) 4894 return -EFAULT; 4895 4896 return 0; 4897 } 4898 4899 /* 4900 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4901 * (chapter and verse is quoted at sctp_setsockopt_context()) 4902 */ 4903 static int sctp_getsockopt_context(struct sock *sk, int len, 4904 char __user *optval, int __user *optlen) 4905 { 4906 struct sctp_assoc_value params; 4907 struct sctp_sock *sp; 4908 struct sctp_association *asoc; 4909 4910 if (len < sizeof(struct sctp_assoc_value)) 4911 return -EINVAL; 4912 4913 len = sizeof(struct sctp_assoc_value); 4914 4915 if (copy_from_user(¶ms, optval, len)) 4916 return -EFAULT; 4917 4918 sp = sctp_sk(sk); 4919 4920 if (params.assoc_id != 0) { 4921 asoc = sctp_id2assoc(sk, params.assoc_id); 4922 if (!asoc) 4923 return -EINVAL; 4924 params.assoc_value = asoc->default_rcv_context; 4925 } else { 4926 params.assoc_value = sp->default_rcv_context; 4927 } 4928 4929 if (put_user(len, optlen)) 4930 return -EFAULT; 4931 if (copy_to_user(optval, ¶ms, len)) 4932 return -EFAULT; 4933 4934 return 0; 4935 } 4936 4937 /* 4938 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 4939 * This option will get or set the maximum size to put in any outgoing 4940 * SCTP DATA chunk. If a message is larger than this size it will be 4941 * fragmented by SCTP into the specified size. Note that the underlying 4942 * SCTP implementation may fragment into smaller sized chunks when the 4943 * PMTU of the underlying association is smaller than the value set by 4944 * the user. The default value for this option is '0' which indicates 4945 * the user is NOT limiting fragmentation and only the PMTU will effect 4946 * SCTP's choice of DATA chunk size. Note also that values set larger 4947 * than the maximum size of an IP datagram will effectively let SCTP 4948 * control fragmentation (i.e. the same as setting this option to 0). 4949 * 4950 * The following structure is used to access and modify this parameter: 4951 * 4952 * struct sctp_assoc_value { 4953 * sctp_assoc_t assoc_id; 4954 * uint32_t assoc_value; 4955 * }; 4956 * 4957 * assoc_id: This parameter is ignored for one-to-one style sockets. 4958 * For one-to-many style sockets this parameter indicates which 4959 * association the user is performing an action upon. Note that if 4960 * this field's value is zero then the endpoints default value is 4961 * changed (effecting future associations only). 4962 * assoc_value: This parameter specifies the maximum size in bytes. 4963 */ 4964 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4965 char __user *optval, int __user *optlen) 4966 { 4967 struct sctp_assoc_value params; 4968 struct sctp_association *asoc; 4969 4970 if (len == sizeof(int)) { 4971 pr_warn("Use of int in maxseg socket option deprecated\n"); 4972 pr_warn("Use struct sctp_assoc_value instead\n"); 4973 params.assoc_id = 0; 4974 } else if (len >= sizeof(struct sctp_assoc_value)) { 4975 len = sizeof(struct sctp_assoc_value); 4976 if (copy_from_user(¶ms, optval, sizeof(params))) 4977 return -EFAULT; 4978 } else 4979 return -EINVAL; 4980 4981 asoc = sctp_id2assoc(sk, params.assoc_id); 4982 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4983 return -EINVAL; 4984 4985 if (asoc) 4986 params.assoc_value = asoc->frag_point; 4987 else 4988 params.assoc_value = sctp_sk(sk)->user_frag; 4989 4990 if (put_user(len, optlen)) 4991 return -EFAULT; 4992 if (len == sizeof(int)) { 4993 if (copy_to_user(optval, ¶ms.assoc_value, len)) 4994 return -EFAULT; 4995 } else { 4996 if (copy_to_user(optval, ¶ms, len)) 4997 return -EFAULT; 4998 } 4999 5000 return 0; 5001 } 5002 5003 /* 5004 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5005 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5006 */ 5007 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5008 char __user *optval, int __user *optlen) 5009 { 5010 int val; 5011 5012 if (len < sizeof(int)) 5013 return -EINVAL; 5014 5015 len = sizeof(int); 5016 5017 val = sctp_sk(sk)->frag_interleave; 5018 if (put_user(len, optlen)) 5019 return -EFAULT; 5020 if (copy_to_user(optval, &val, len)) 5021 return -EFAULT; 5022 5023 return 0; 5024 } 5025 5026 /* 5027 * 7.1.25. Set or Get the sctp partial delivery point 5028 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5029 */ 5030 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5031 char __user *optval, 5032 int __user *optlen) 5033 { 5034 u32 val; 5035 5036 if (len < sizeof(u32)) 5037 return -EINVAL; 5038 5039 len = sizeof(u32); 5040 5041 val = sctp_sk(sk)->pd_point; 5042 if (put_user(len, optlen)) 5043 return -EFAULT; 5044 if (copy_to_user(optval, &val, len)) 5045 return -EFAULT; 5046 5047 return 0; 5048 } 5049 5050 /* 5051 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5052 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5053 */ 5054 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5055 char __user *optval, 5056 int __user *optlen) 5057 { 5058 struct sctp_assoc_value params; 5059 struct sctp_sock *sp; 5060 struct sctp_association *asoc; 5061 5062 if (len == sizeof(int)) { 5063 pr_warn("Use of int in max_burst socket option deprecated\n"); 5064 pr_warn("Use struct sctp_assoc_value instead\n"); 5065 params.assoc_id = 0; 5066 } else if (len >= sizeof(struct sctp_assoc_value)) { 5067 len = sizeof(struct sctp_assoc_value); 5068 if (copy_from_user(¶ms, optval, len)) 5069 return -EFAULT; 5070 } else 5071 return -EINVAL; 5072 5073 sp = sctp_sk(sk); 5074 5075 if (params.assoc_id != 0) { 5076 asoc = sctp_id2assoc(sk, params.assoc_id); 5077 if (!asoc) 5078 return -EINVAL; 5079 params.assoc_value = asoc->max_burst; 5080 } else 5081 params.assoc_value = sp->max_burst; 5082 5083 if (len == sizeof(int)) { 5084 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5085 return -EFAULT; 5086 } else { 5087 if (copy_to_user(optval, ¶ms, len)) 5088 return -EFAULT; 5089 } 5090 5091 return 0; 5092 5093 } 5094 5095 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5096 char __user *optval, int __user *optlen) 5097 { 5098 struct sctp_hmacalgo __user *p = (void __user *)optval; 5099 struct sctp_hmac_algo_param *hmacs; 5100 __u16 data_len = 0; 5101 u32 num_idents; 5102 5103 if (!sctp_auth_enable) 5104 return -EACCES; 5105 5106 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5107 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5108 5109 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5110 return -EINVAL; 5111 5112 len = sizeof(struct sctp_hmacalgo) + data_len; 5113 num_idents = data_len / sizeof(u16); 5114 5115 if (put_user(len, optlen)) 5116 return -EFAULT; 5117 if (put_user(num_idents, &p->shmac_num_idents)) 5118 return -EFAULT; 5119 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5120 return -EFAULT; 5121 return 0; 5122 } 5123 5124 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5125 char __user *optval, int __user *optlen) 5126 { 5127 struct sctp_authkeyid val; 5128 struct sctp_association *asoc; 5129 5130 if (!sctp_auth_enable) 5131 return -EACCES; 5132 5133 if (len < sizeof(struct sctp_authkeyid)) 5134 return -EINVAL; 5135 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5136 return -EFAULT; 5137 5138 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5139 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5140 return -EINVAL; 5141 5142 if (asoc) 5143 val.scact_keynumber = asoc->active_key_id; 5144 else 5145 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5146 5147 len = sizeof(struct sctp_authkeyid); 5148 if (put_user(len, optlen)) 5149 return -EFAULT; 5150 if (copy_to_user(optval, &val, len)) 5151 return -EFAULT; 5152 5153 return 0; 5154 } 5155 5156 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5157 char __user *optval, int __user *optlen) 5158 { 5159 struct sctp_authchunks __user *p = (void __user *)optval; 5160 struct sctp_authchunks val; 5161 struct sctp_association *asoc; 5162 struct sctp_chunks_param *ch; 5163 u32 num_chunks = 0; 5164 char __user *to; 5165 5166 if (!sctp_auth_enable) 5167 return -EACCES; 5168 5169 if (len < sizeof(struct sctp_authchunks)) 5170 return -EINVAL; 5171 5172 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5173 return -EFAULT; 5174 5175 to = p->gauth_chunks; 5176 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5177 if (!asoc) 5178 return -EINVAL; 5179 5180 ch = asoc->peer.peer_chunks; 5181 if (!ch) 5182 goto num; 5183 5184 /* See if the user provided enough room for all the data */ 5185 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5186 if (len < num_chunks) 5187 return -EINVAL; 5188 5189 if (copy_to_user(to, ch->chunks, num_chunks)) 5190 return -EFAULT; 5191 num: 5192 len = sizeof(struct sctp_authchunks) + num_chunks; 5193 if (put_user(len, optlen)) return -EFAULT; 5194 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5195 return -EFAULT; 5196 return 0; 5197 } 5198 5199 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5200 char __user *optval, int __user *optlen) 5201 { 5202 struct sctp_authchunks __user *p = (void __user *)optval; 5203 struct sctp_authchunks val; 5204 struct sctp_association *asoc; 5205 struct sctp_chunks_param *ch; 5206 u32 num_chunks = 0; 5207 char __user *to; 5208 5209 if (!sctp_auth_enable) 5210 return -EACCES; 5211 5212 if (len < sizeof(struct sctp_authchunks)) 5213 return -EINVAL; 5214 5215 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5216 return -EFAULT; 5217 5218 to = p->gauth_chunks; 5219 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5220 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5221 return -EINVAL; 5222 5223 if (asoc) 5224 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5225 else 5226 ch = sctp_sk(sk)->ep->auth_chunk_list; 5227 5228 if (!ch) 5229 goto num; 5230 5231 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5232 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5233 return -EINVAL; 5234 5235 if (copy_to_user(to, ch->chunks, num_chunks)) 5236 return -EFAULT; 5237 num: 5238 len = sizeof(struct sctp_authchunks) + num_chunks; 5239 if (put_user(len, optlen)) 5240 return -EFAULT; 5241 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5242 return -EFAULT; 5243 5244 return 0; 5245 } 5246 5247 /* 5248 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5249 * This option gets the current number of associations that are attached 5250 * to a one-to-many style socket. The option value is an uint32_t. 5251 */ 5252 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5253 char __user *optval, int __user *optlen) 5254 { 5255 struct sctp_sock *sp = sctp_sk(sk); 5256 struct sctp_association *asoc; 5257 u32 val = 0; 5258 5259 if (sctp_style(sk, TCP)) 5260 return -EOPNOTSUPP; 5261 5262 if (len < sizeof(u32)) 5263 return -EINVAL; 5264 5265 len = sizeof(u32); 5266 5267 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5268 val++; 5269 } 5270 5271 if (put_user(len, optlen)) 5272 return -EFAULT; 5273 if (copy_to_user(optval, &val, len)) 5274 return -EFAULT; 5275 5276 return 0; 5277 } 5278 5279 /* 5280 * 8.2.6. Get the Current Identifiers of Associations 5281 * (SCTP_GET_ASSOC_ID_LIST) 5282 * 5283 * This option gets the current list of SCTP association identifiers of 5284 * the SCTP associations handled by a one-to-many style socket. 5285 */ 5286 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5287 char __user *optval, int __user *optlen) 5288 { 5289 struct sctp_sock *sp = sctp_sk(sk); 5290 struct sctp_association *asoc; 5291 struct sctp_assoc_ids *ids; 5292 u32 num = 0; 5293 5294 if (sctp_style(sk, TCP)) 5295 return -EOPNOTSUPP; 5296 5297 if (len < sizeof(struct sctp_assoc_ids)) 5298 return -EINVAL; 5299 5300 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5301 num++; 5302 } 5303 5304 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5305 return -EINVAL; 5306 5307 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5308 5309 ids = kmalloc(len, GFP_KERNEL); 5310 if (unlikely(!ids)) 5311 return -ENOMEM; 5312 5313 ids->gaids_number_of_ids = num; 5314 num = 0; 5315 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5316 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5317 } 5318 5319 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5320 kfree(ids); 5321 return -EFAULT; 5322 } 5323 5324 kfree(ids); 5325 return 0; 5326 } 5327 5328 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5329 char __user *optval, int __user *optlen) 5330 { 5331 int retval = 0; 5332 int len; 5333 5334 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5335 sk, optname); 5336 5337 /* I can hardly begin to describe how wrong this is. This is 5338 * so broken as to be worse than useless. The API draft 5339 * REALLY is NOT helpful here... I am not convinced that the 5340 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5341 * are at all well-founded. 5342 */ 5343 if (level != SOL_SCTP) { 5344 struct sctp_af *af = sctp_sk(sk)->pf->af; 5345 5346 retval = af->getsockopt(sk, level, optname, optval, optlen); 5347 return retval; 5348 } 5349 5350 if (get_user(len, optlen)) 5351 return -EFAULT; 5352 5353 sctp_lock_sock(sk); 5354 5355 switch (optname) { 5356 case SCTP_STATUS: 5357 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5358 break; 5359 case SCTP_DISABLE_FRAGMENTS: 5360 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5361 optlen); 5362 break; 5363 case SCTP_EVENTS: 5364 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5365 break; 5366 case SCTP_AUTOCLOSE: 5367 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5368 break; 5369 case SCTP_SOCKOPT_PEELOFF: 5370 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5371 break; 5372 case SCTP_PEER_ADDR_PARAMS: 5373 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5374 optlen); 5375 break; 5376 case SCTP_DELAYED_SACK: 5377 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5378 optlen); 5379 break; 5380 case SCTP_INITMSG: 5381 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5382 break; 5383 case SCTP_GET_PEER_ADDRS: 5384 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5385 optlen); 5386 break; 5387 case SCTP_GET_LOCAL_ADDRS: 5388 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5389 optlen); 5390 break; 5391 case SCTP_SOCKOPT_CONNECTX3: 5392 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5393 break; 5394 case SCTP_DEFAULT_SEND_PARAM: 5395 retval = sctp_getsockopt_default_send_param(sk, len, 5396 optval, optlen); 5397 break; 5398 case SCTP_PRIMARY_ADDR: 5399 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5400 break; 5401 case SCTP_NODELAY: 5402 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5403 break; 5404 case SCTP_RTOINFO: 5405 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5406 break; 5407 case SCTP_ASSOCINFO: 5408 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5409 break; 5410 case SCTP_I_WANT_MAPPED_V4_ADDR: 5411 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5412 break; 5413 case SCTP_MAXSEG: 5414 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5415 break; 5416 case SCTP_GET_PEER_ADDR_INFO: 5417 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5418 optlen); 5419 break; 5420 case SCTP_ADAPTATION_LAYER: 5421 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5422 optlen); 5423 break; 5424 case SCTP_CONTEXT: 5425 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5426 break; 5427 case SCTP_FRAGMENT_INTERLEAVE: 5428 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5429 optlen); 5430 break; 5431 case SCTP_PARTIAL_DELIVERY_POINT: 5432 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5433 optlen); 5434 break; 5435 case SCTP_MAX_BURST: 5436 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5437 break; 5438 case SCTP_AUTH_KEY: 5439 case SCTP_AUTH_CHUNK: 5440 case SCTP_AUTH_DELETE_KEY: 5441 retval = -EOPNOTSUPP; 5442 break; 5443 case SCTP_HMAC_IDENT: 5444 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5445 break; 5446 case SCTP_AUTH_ACTIVE_KEY: 5447 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5448 break; 5449 case SCTP_PEER_AUTH_CHUNKS: 5450 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5451 optlen); 5452 break; 5453 case SCTP_LOCAL_AUTH_CHUNKS: 5454 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5455 optlen); 5456 break; 5457 case SCTP_GET_ASSOC_NUMBER: 5458 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5459 break; 5460 case SCTP_GET_ASSOC_ID_LIST: 5461 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5462 break; 5463 default: 5464 retval = -ENOPROTOOPT; 5465 break; 5466 } 5467 5468 sctp_release_sock(sk); 5469 return retval; 5470 } 5471 5472 static void sctp_hash(struct sock *sk) 5473 { 5474 /* STUB */ 5475 } 5476 5477 static void sctp_unhash(struct sock *sk) 5478 { 5479 /* STUB */ 5480 } 5481 5482 /* Check if port is acceptable. Possibly find first available port. 5483 * 5484 * The port hash table (contained in the 'global' SCTP protocol storage 5485 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5486 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5487 * list (the list number is the port number hashed out, so as you 5488 * would expect from a hash function, all the ports in a given list have 5489 * such a number that hashes out to the same list number; you were 5490 * expecting that, right?); so each list has a set of ports, with a 5491 * link to the socket (struct sock) that uses it, the port number and 5492 * a fastreuse flag (FIXME: NPI ipg). 5493 */ 5494 static struct sctp_bind_bucket *sctp_bucket_create( 5495 struct sctp_bind_hashbucket *head, unsigned short snum); 5496 5497 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5498 { 5499 struct sctp_bind_hashbucket *head; /* hash list */ 5500 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5501 struct hlist_node *node; 5502 unsigned short snum; 5503 int ret; 5504 5505 snum = ntohs(addr->v4.sin_port); 5506 5507 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5508 sctp_local_bh_disable(); 5509 5510 if (snum == 0) { 5511 /* Search for an available port. */ 5512 int low, high, remaining, index; 5513 unsigned int rover; 5514 5515 inet_get_local_port_range(&low, &high); 5516 remaining = (high - low) + 1; 5517 rover = net_random() % remaining + low; 5518 5519 do { 5520 rover++; 5521 if ((rover < low) || (rover > high)) 5522 rover = low; 5523 if (inet_is_reserved_local_port(rover)) 5524 continue; 5525 index = sctp_phashfn(rover); 5526 head = &sctp_port_hashtable[index]; 5527 sctp_spin_lock(&head->lock); 5528 sctp_for_each_hentry(pp, node, &head->chain) 5529 if (pp->port == rover) 5530 goto next; 5531 break; 5532 next: 5533 sctp_spin_unlock(&head->lock); 5534 } while (--remaining > 0); 5535 5536 /* Exhausted local port range during search? */ 5537 ret = 1; 5538 if (remaining <= 0) 5539 goto fail; 5540 5541 /* OK, here is the one we will use. HEAD (the port 5542 * hash table list entry) is non-NULL and we hold it's 5543 * mutex. 5544 */ 5545 snum = rover; 5546 } else { 5547 /* We are given an specific port number; we verify 5548 * that it is not being used. If it is used, we will 5549 * exahust the search in the hash list corresponding 5550 * to the port number (snum) - we detect that with the 5551 * port iterator, pp being NULL. 5552 */ 5553 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5554 sctp_spin_lock(&head->lock); 5555 sctp_for_each_hentry(pp, node, &head->chain) { 5556 if (pp->port == snum) 5557 goto pp_found; 5558 } 5559 } 5560 pp = NULL; 5561 goto pp_not_found; 5562 pp_found: 5563 if (!hlist_empty(&pp->owner)) { 5564 /* We had a port hash table hit - there is an 5565 * available port (pp != NULL) and it is being 5566 * used by other socket (pp->owner not empty); that other 5567 * socket is going to be sk2. 5568 */ 5569 int reuse = sk->sk_reuse; 5570 struct sock *sk2; 5571 5572 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5573 if (pp->fastreuse && sk->sk_reuse && 5574 sk->sk_state != SCTP_SS_LISTENING) 5575 goto success; 5576 5577 /* Run through the list of sockets bound to the port 5578 * (pp->port) [via the pointers bind_next and 5579 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5580 * we get the endpoint they describe and run through 5581 * the endpoint's list of IP (v4 or v6) addresses, 5582 * comparing each of the addresses with the address of 5583 * the socket sk. If we find a match, then that means 5584 * that this port/socket (sk) combination are already 5585 * in an endpoint. 5586 */ 5587 sk_for_each_bound(sk2, node, &pp->owner) { 5588 struct sctp_endpoint *ep2; 5589 ep2 = sctp_sk(sk2)->ep; 5590 5591 if (sk == sk2 || 5592 (reuse && sk2->sk_reuse && 5593 sk2->sk_state != SCTP_SS_LISTENING)) 5594 continue; 5595 5596 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5597 sctp_sk(sk2), sctp_sk(sk))) { 5598 ret = (long)sk2; 5599 goto fail_unlock; 5600 } 5601 } 5602 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5603 } 5604 pp_not_found: 5605 /* If there was a hash table miss, create a new port. */ 5606 ret = 1; 5607 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5608 goto fail_unlock; 5609 5610 /* In either case (hit or miss), make sure fastreuse is 1 only 5611 * if sk->sk_reuse is too (that is, if the caller requested 5612 * SO_REUSEADDR on this socket -sk-). 5613 */ 5614 if (hlist_empty(&pp->owner)) { 5615 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5616 pp->fastreuse = 1; 5617 else 5618 pp->fastreuse = 0; 5619 } else if (pp->fastreuse && 5620 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5621 pp->fastreuse = 0; 5622 5623 /* We are set, so fill up all the data in the hash table 5624 * entry, tie the socket list information with the rest of the 5625 * sockets FIXME: Blurry, NPI (ipg). 5626 */ 5627 success: 5628 if (!sctp_sk(sk)->bind_hash) { 5629 inet_sk(sk)->inet_num = snum; 5630 sk_add_bind_node(sk, &pp->owner); 5631 sctp_sk(sk)->bind_hash = pp; 5632 } 5633 ret = 0; 5634 5635 fail_unlock: 5636 sctp_spin_unlock(&head->lock); 5637 5638 fail: 5639 sctp_local_bh_enable(); 5640 return ret; 5641 } 5642 5643 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5644 * port is requested. 5645 */ 5646 static int sctp_get_port(struct sock *sk, unsigned short snum) 5647 { 5648 long ret; 5649 union sctp_addr addr; 5650 struct sctp_af *af = sctp_sk(sk)->pf->af; 5651 5652 /* Set up a dummy address struct from the sk. */ 5653 af->from_sk(&addr, sk); 5654 addr.v4.sin_port = htons(snum); 5655 5656 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5657 ret = sctp_get_port_local(sk, &addr); 5658 5659 return ret ? 1 : 0; 5660 } 5661 5662 /* 5663 * Move a socket to LISTENING state. 5664 */ 5665 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5666 { 5667 struct sctp_sock *sp = sctp_sk(sk); 5668 struct sctp_endpoint *ep = sp->ep; 5669 struct crypto_hash *tfm = NULL; 5670 5671 /* Allocate HMAC for generating cookie. */ 5672 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5673 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5674 if (IS_ERR(tfm)) { 5675 if (net_ratelimit()) { 5676 pr_info("failed to load transform for %s: %ld\n", 5677 sctp_hmac_alg, PTR_ERR(tfm)); 5678 } 5679 return -ENOSYS; 5680 } 5681 sctp_sk(sk)->hmac = tfm; 5682 } 5683 5684 /* 5685 * If a bind() or sctp_bindx() is not called prior to a listen() 5686 * call that allows new associations to be accepted, the system 5687 * picks an ephemeral port and will choose an address set equivalent 5688 * to binding with a wildcard address. 5689 * 5690 * This is not currently spelled out in the SCTP sockets 5691 * extensions draft, but follows the practice as seen in TCP 5692 * sockets. 5693 * 5694 */ 5695 sk->sk_state = SCTP_SS_LISTENING; 5696 if (!ep->base.bind_addr.port) { 5697 if (sctp_autobind(sk)) 5698 return -EAGAIN; 5699 } else { 5700 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5701 sk->sk_state = SCTP_SS_CLOSED; 5702 return -EADDRINUSE; 5703 } 5704 } 5705 5706 sk->sk_max_ack_backlog = backlog; 5707 sctp_hash_endpoint(ep); 5708 return 0; 5709 } 5710 5711 /* 5712 * 4.1.3 / 5.1.3 listen() 5713 * 5714 * By default, new associations are not accepted for UDP style sockets. 5715 * An application uses listen() to mark a socket as being able to 5716 * accept new associations. 5717 * 5718 * On TCP style sockets, applications use listen() to ready the SCTP 5719 * endpoint for accepting inbound associations. 5720 * 5721 * On both types of endpoints a backlog of '0' disables listening. 5722 * 5723 * Move a socket to LISTENING state. 5724 */ 5725 int sctp_inet_listen(struct socket *sock, int backlog) 5726 { 5727 struct sock *sk = sock->sk; 5728 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5729 int err = -EINVAL; 5730 5731 if (unlikely(backlog < 0)) 5732 return err; 5733 5734 sctp_lock_sock(sk); 5735 5736 /* Peeled-off sockets are not allowed to listen(). */ 5737 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5738 goto out; 5739 5740 if (sock->state != SS_UNCONNECTED) 5741 goto out; 5742 5743 /* If backlog is zero, disable listening. */ 5744 if (!backlog) { 5745 if (sctp_sstate(sk, CLOSED)) 5746 goto out; 5747 5748 err = 0; 5749 sctp_unhash_endpoint(ep); 5750 sk->sk_state = SCTP_SS_CLOSED; 5751 if (sk->sk_reuse) 5752 sctp_sk(sk)->bind_hash->fastreuse = 1; 5753 goto out; 5754 } 5755 5756 /* If we are already listening, just update the backlog */ 5757 if (sctp_sstate(sk, LISTENING)) 5758 sk->sk_max_ack_backlog = backlog; 5759 else { 5760 err = sctp_listen_start(sk, backlog); 5761 if (err) 5762 goto out; 5763 } 5764 5765 err = 0; 5766 out: 5767 sctp_release_sock(sk); 5768 return err; 5769 } 5770 5771 /* 5772 * This function is done by modeling the current datagram_poll() and the 5773 * tcp_poll(). Note that, based on these implementations, we don't 5774 * lock the socket in this function, even though it seems that, 5775 * ideally, locking or some other mechanisms can be used to ensure 5776 * the integrity of the counters (sndbuf and wmem_alloc) used 5777 * in this place. We assume that we don't need locks either until proven 5778 * otherwise. 5779 * 5780 * Another thing to note is that we include the Async I/O support 5781 * here, again, by modeling the current TCP/UDP code. We don't have 5782 * a good way to test with it yet. 5783 */ 5784 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5785 { 5786 struct sock *sk = sock->sk; 5787 struct sctp_sock *sp = sctp_sk(sk); 5788 unsigned int mask; 5789 5790 poll_wait(file, sk_sleep(sk), wait); 5791 5792 /* A TCP-style listening socket becomes readable when the accept queue 5793 * is not empty. 5794 */ 5795 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5796 return (!list_empty(&sp->ep->asocs)) ? 5797 (POLLIN | POLLRDNORM) : 0; 5798 5799 mask = 0; 5800 5801 /* Is there any exceptional events? */ 5802 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5803 mask |= POLLERR; 5804 if (sk->sk_shutdown & RCV_SHUTDOWN) 5805 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5806 if (sk->sk_shutdown == SHUTDOWN_MASK) 5807 mask |= POLLHUP; 5808 5809 /* Is it readable? Reconsider this code with TCP-style support. */ 5810 if (!skb_queue_empty(&sk->sk_receive_queue)) 5811 mask |= POLLIN | POLLRDNORM; 5812 5813 /* The association is either gone or not ready. */ 5814 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5815 return mask; 5816 5817 /* Is it writable? */ 5818 if (sctp_writeable(sk)) { 5819 mask |= POLLOUT | POLLWRNORM; 5820 } else { 5821 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5822 /* 5823 * Since the socket is not locked, the buffer 5824 * might be made available after the writeable check and 5825 * before the bit is set. This could cause a lost I/O 5826 * signal. tcp_poll() has a race breaker for this race 5827 * condition. Based on their implementation, we put 5828 * in the following code to cover it as well. 5829 */ 5830 if (sctp_writeable(sk)) 5831 mask |= POLLOUT | POLLWRNORM; 5832 } 5833 return mask; 5834 } 5835 5836 /******************************************************************** 5837 * 2nd Level Abstractions 5838 ********************************************************************/ 5839 5840 static struct sctp_bind_bucket *sctp_bucket_create( 5841 struct sctp_bind_hashbucket *head, unsigned short snum) 5842 { 5843 struct sctp_bind_bucket *pp; 5844 5845 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5846 if (pp) { 5847 SCTP_DBG_OBJCNT_INC(bind_bucket); 5848 pp->port = snum; 5849 pp->fastreuse = 0; 5850 INIT_HLIST_HEAD(&pp->owner); 5851 hlist_add_head(&pp->node, &head->chain); 5852 } 5853 return pp; 5854 } 5855 5856 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5857 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5858 { 5859 if (pp && hlist_empty(&pp->owner)) { 5860 __hlist_del(&pp->node); 5861 kmem_cache_free(sctp_bucket_cachep, pp); 5862 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5863 } 5864 } 5865 5866 /* Release this socket's reference to a local port. */ 5867 static inline void __sctp_put_port(struct sock *sk) 5868 { 5869 struct sctp_bind_hashbucket *head = 5870 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 5871 struct sctp_bind_bucket *pp; 5872 5873 sctp_spin_lock(&head->lock); 5874 pp = sctp_sk(sk)->bind_hash; 5875 __sk_del_bind_node(sk); 5876 sctp_sk(sk)->bind_hash = NULL; 5877 inet_sk(sk)->inet_num = 0; 5878 sctp_bucket_destroy(pp); 5879 sctp_spin_unlock(&head->lock); 5880 } 5881 5882 void sctp_put_port(struct sock *sk) 5883 { 5884 sctp_local_bh_disable(); 5885 __sctp_put_port(sk); 5886 sctp_local_bh_enable(); 5887 } 5888 5889 /* 5890 * The system picks an ephemeral port and choose an address set equivalent 5891 * to binding with a wildcard address. 5892 * One of those addresses will be the primary address for the association. 5893 * This automatically enables the multihoming capability of SCTP. 5894 */ 5895 static int sctp_autobind(struct sock *sk) 5896 { 5897 union sctp_addr autoaddr; 5898 struct sctp_af *af; 5899 __be16 port; 5900 5901 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5902 af = sctp_sk(sk)->pf->af; 5903 5904 port = htons(inet_sk(sk)->inet_num); 5905 af->inaddr_any(&autoaddr, port); 5906 5907 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5908 } 5909 5910 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5911 * 5912 * From RFC 2292 5913 * 4.2 The cmsghdr Structure * 5914 * 5915 * When ancillary data is sent or received, any number of ancillary data 5916 * objects can be specified by the msg_control and msg_controllen members of 5917 * the msghdr structure, because each object is preceded by 5918 * a cmsghdr structure defining the object's length (the cmsg_len member). 5919 * Historically Berkeley-derived implementations have passed only one object 5920 * at a time, but this API allows multiple objects to be 5921 * passed in a single call to sendmsg() or recvmsg(). The following example 5922 * shows two ancillary data objects in a control buffer. 5923 * 5924 * |<--------------------------- msg_controllen -------------------------->| 5925 * | | 5926 * 5927 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5928 * 5929 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5930 * | | | 5931 * 5932 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5933 * 5934 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5935 * | | | | | 5936 * 5937 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5938 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5939 * 5940 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5941 * 5942 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5943 * ^ 5944 * | 5945 * 5946 * msg_control 5947 * points here 5948 */ 5949 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5950 sctp_cmsgs_t *cmsgs) 5951 { 5952 struct cmsghdr *cmsg; 5953 struct msghdr *my_msg = (struct msghdr *)msg; 5954 5955 for (cmsg = CMSG_FIRSTHDR(msg); 5956 cmsg != NULL; 5957 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 5958 if (!CMSG_OK(my_msg, cmsg)) 5959 return -EINVAL; 5960 5961 /* Should we parse this header or ignore? */ 5962 if (cmsg->cmsg_level != IPPROTO_SCTP) 5963 continue; 5964 5965 /* Strictly check lengths following example in SCM code. */ 5966 switch (cmsg->cmsg_type) { 5967 case SCTP_INIT: 5968 /* SCTP Socket API Extension 5969 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5970 * 5971 * This cmsghdr structure provides information for 5972 * initializing new SCTP associations with sendmsg(). 5973 * The SCTP_INITMSG socket option uses this same data 5974 * structure. This structure is not used for 5975 * recvmsg(). 5976 * 5977 * cmsg_level cmsg_type cmsg_data[] 5978 * ------------ ------------ ---------------------- 5979 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5980 */ 5981 if (cmsg->cmsg_len != 5982 CMSG_LEN(sizeof(struct sctp_initmsg))) 5983 return -EINVAL; 5984 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5985 break; 5986 5987 case SCTP_SNDRCV: 5988 /* SCTP Socket API Extension 5989 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5990 * 5991 * This cmsghdr structure specifies SCTP options for 5992 * sendmsg() and describes SCTP header information 5993 * about a received message through recvmsg(). 5994 * 5995 * cmsg_level cmsg_type cmsg_data[] 5996 * ------------ ------------ ---------------------- 5997 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5998 */ 5999 if (cmsg->cmsg_len != 6000 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6001 return -EINVAL; 6002 6003 cmsgs->info = 6004 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6005 6006 /* Minimally, validate the sinfo_flags. */ 6007 if (cmsgs->info->sinfo_flags & 6008 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6009 SCTP_ABORT | SCTP_EOF)) 6010 return -EINVAL; 6011 break; 6012 6013 default: 6014 return -EINVAL; 6015 } 6016 } 6017 return 0; 6018 } 6019 6020 /* 6021 * Wait for a packet.. 6022 * Note: This function is the same function as in core/datagram.c 6023 * with a few modifications to make lksctp work. 6024 */ 6025 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6026 { 6027 int error; 6028 DEFINE_WAIT(wait); 6029 6030 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6031 6032 /* Socket errors? */ 6033 error = sock_error(sk); 6034 if (error) 6035 goto out; 6036 6037 if (!skb_queue_empty(&sk->sk_receive_queue)) 6038 goto ready; 6039 6040 /* Socket shut down? */ 6041 if (sk->sk_shutdown & RCV_SHUTDOWN) 6042 goto out; 6043 6044 /* Sequenced packets can come disconnected. If so we report the 6045 * problem. 6046 */ 6047 error = -ENOTCONN; 6048 6049 /* Is there a good reason to think that we may receive some data? */ 6050 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6051 goto out; 6052 6053 /* Handle signals. */ 6054 if (signal_pending(current)) 6055 goto interrupted; 6056 6057 /* Let another process have a go. Since we are going to sleep 6058 * anyway. Note: This may cause odd behaviors if the message 6059 * does not fit in the user's buffer, but this seems to be the 6060 * only way to honor MSG_DONTWAIT realistically. 6061 */ 6062 sctp_release_sock(sk); 6063 *timeo_p = schedule_timeout(*timeo_p); 6064 sctp_lock_sock(sk); 6065 6066 ready: 6067 finish_wait(sk_sleep(sk), &wait); 6068 return 0; 6069 6070 interrupted: 6071 error = sock_intr_errno(*timeo_p); 6072 6073 out: 6074 finish_wait(sk_sleep(sk), &wait); 6075 *err = error; 6076 return error; 6077 } 6078 6079 /* Receive a datagram. 6080 * Note: This is pretty much the same routine as in core/datagram.c 6081 * with a few changes to make lksctp work. 6082 */ 6083 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6084 int noblock, int *err) 6085 { 6086 int error; 6087 struct sk_buff *skb; 6088 long timeo; 6089 6090 timeo = sock_rcvtimeo(sk, noblock); 6091 6092 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6093 timeo, MAX_SCHEDULE_TIMEOUT); 6094 6095 do { 6096 /* Again only user level code calls this function, 6097 * so nothing interrupt level 6098 * will suddenly eat the receive_queue. 6099 * 6100 * Look at current nfs client by the way... 6101 * However, this function was correct in any case. 8) 6102 */ 6103 if (flags & MSG_PEEK) { 6104 spin_lock_bh(&sk->sk_receive_queue.lock); 6105 skb = skb_peek(&sk->sk_receive_queue); 6106 if (skb) 6107 atomic_inc(&skb->users); 6108 spin_unlock_bh(&sk->sk_receive_queue.lock); 6109 } else { 6110 skb = skb_dequeue(&sk->sk_receive_queue); 6111 } 6112 6113 if (skb) 6114 return skb; 6115 6116 /* Caller is allowed not to check sk->sk_err before calling. */ 6117 error = sock_error(sk); 6118 if (error) 6119 goto no_packet; 6120 6121 if (sk->sk_shutdown & RCV_SHUTDOWN) 6122 break; 6123 6124 /* User doesn't want to wait. */ 6125 error = -EAGAIN; 6126 if (!timeo) 6127 goto no_packet; 6128 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6129 6130 return NULL; 6131 6132 no_packet: 6133 *err = error; 6134 return NULL; 6135 } 6136 6137 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6138 static void __sctp_write_space(struct sctp_association *asoc) 6139 { 6140 struct sock *sk = asoc->base.sk; 6141 struct socket *sock = sk->sk_socket; 6142 6143 if ((sctp_wspace(asoc) > 0) && sock) { 6144 if (waitqueue_active(&asoc->wait)) 6145 wake_up_interruptible(&asoc->wait); 6146 6147 if (sctp_writeable(sk)) { 6148 wait_queue_head_t *wq = sk_sleep(sk); 6149 6150 if (wq && waitqueue_active(wq)) 6151 wake_up_interruptible(wq); 6152 6153 /* Note that we try to include the Async I/O support 6154 * here by modeling from the current TCP/UDP code. 6155 * We have not tested with it yet. 6156 */ 6157 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6158 sock_wake_async(sock, 6159 SOCK_WAKE_SPACE, POLL_OUT); 6160 } 6161 } 6162 } 6163 6164 /* Do accounting for the sndbuf space. 6165 * Decrement the used sndbuf space of the corresponding association by the 6166 * data size which was just transmitted(freed). 6167 */ 6168 static void sctp_wfree(struct sk_buff *skb) 6169 { 6170 struct sctp_association *asoc; 6171 struct sctp_chunk *chunk; 6172 struct sock *sk; 6173 6174 /* Get the saved chunk pointer. */ 6175 chunk = *((struct sctp_chunk **)(skb->cb)); 6176 asoc = chunk->asoc; 6177 sk = asoc->base.sk; 6178 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6179 sizeof(struct sk_buff) + 6180 sizeof(struct sctp_chunk); 6181 6182 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6183 6184 /* 6185 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6186 */ 6187 sk->sk_wmem_queued -= skb->truesize; 6188 sk_mem_uncharge(sk, skb->truesize); 6189 6190 sock_wfree(skb); 6191 __sctp_write_space(asoc); 6192 6193 sctp_association_put(asoc); 6194 } 6195 6196 /* Do accounting for the receive space on the socket. 6197 * Accounting for the association is done in ulpevent.c 6198 * We set this as a destructor for the cloned data skbs so that 6199 * accounting is done at the correct time. 6200 */ 6201 void sctp_sock_rfree(struct sk_buff *skb) 6202 { 6203 struct sock *sk = skb->sk; 6204 struct sctp_ulpevent *event = sctp_skb2event(skb); 6205 6206 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6207 6208 /* 6209 * Mimic the behavior of sock_rfree 6210 */ 6211 sk_mem_uncharge(sk, event->rmem_len); 6212 } 6213 6214 6215 /* Helper function to wait for space in the sndbuf. */ 6216 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6217 size_t msg_len) 6218 { 6219 struct sock *sk = asoc->base.sk; 6220 int err = 0; 6221 long current_timeo = *timeo_p; 6222 DEFINE_WAIT(wait); 6223 6224 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6225 asoc, (long)(*timeo_p), msg_len); 6226 6227 /* Increment the association's refcnt. */ 6228 sctp_association_hold(asoc); 6229 6230 /* Wait on the association specific sndbuf space. */ 6231 for (;;) { 6232 prepare_to_wait_exclusive(&asoc->wait, &wait, 6233 TASK_INTERRUPTIBLE); 6234 if (!*timeo_p) 6235 goto do_nonblock; 6236 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6237 asoc->base.dead) 6238 goto do_error; 6239 if (signal_pending(current)) 6240 goto do_interrupted; 6241 if (msg_len <= sctp_wspace(asoc)) 6242 break; 6243 6244 /* Let another process have a go. Since we are going 6245 * to sleep anyway. 6246 */ 6247 sctp_release_sock(sk); 6248 current_timeo = schedule_timeout(current_timeo); 6249 BUG_ON(sk != asoc->base.sk); 6250 sctp_lock_sock(sk); 6251 6252 *timeo_p = current_timeo; 6253 } 6254 6255 out: 6256 finish_wait(&asoc->wait, &wait); 6257 6258 /* Release the association's refcnt. */ 6259 sctp_association_put(asoc); 6260 6261 return err; 6262 6263 do_error: 6264 err = -EPIPE; 6265 goto out; 6266 6267 do_interrupted: 6268 err = sock_intr_errno(*timeo_p); 6269 goto out; 6270 6271 do_nonblock: 6272 err = -EAGAIN; 6273 goto out; 6274 } 6275 6276 void sctp_data_ready(struct sock *sk, int len) 6277 { 6278 struct socket_wq *wq; 6279 6280 rcu_read_lock(); 6281 wq = rcu_dereference(sk->sk_wq); 6282 if (wq_has_sleeper(wq)) 6283 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6284 POLLRDNORM | POLLRDBAND); 6285 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6286 rcu_read_unlock(); 6287 } 6288 6289 /* If socket sndbuf has changed, wake up all per association waiters. */ 6290 void sctp_write_space(struct sock *sk) 6291 { 6292 struct sctp_association *asoc; 6293 6294 /* Wake up the tasks in each wait queue. */ 6295 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6296 __sctp_write_space(asoc); 6297 } 6298 } 6299 6300 /* Is there any sndbuf space available on the socket? 6301 * 6302 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6303 * associations on the same socket. For a UDP-style socket with 6304 * multiple associations, it is possible for it to be "unwriteable" 6305 * prematurely. I assume that this is acceptable because 6306 * a premature "unwriteable" is better than an accidental "writeable" which 6307 * would cause an unwanted block under certain circumstances. For the 1-1 6308 * UDP-style sockets or TCP-style sockets, this code should work. 6309 * - Daisy 6310 */ 6311 static int sctp_writeable(struct sock *sk) 6312 { 6313 int amt = 0; 6314 6315 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6316 if (amt < 0) 6317 amt = 0; 6318 return amt; 6319 } 6320 6321 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6322 * returns immediately with EINPROGRESS. 6323 */ 6324 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6325 { 6326 struct sock *sk = asoc->base.sk; 6327 int err = 0; 6328 long current_timeo = *timeo_p; 6329 DEFINE_WAIT(wait); 6330 6331 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6332 (long)(*timeo_p)); 6333 6334 /* Increment the association's refcnt. */ 6335 sctp_association_hold(asoc); 6336 6337 for (;;) { 6338 prepare_to_wait_exclusive(&asoc->wait, &wait, 6339 TASK_INTERRUPTIBLE); 6340 if (!*timeo_p) 6341 goto do_nonblock; 6342 if (sk->sk_shutdown & RCV_SHUTDOWN) 6343 break; 6344 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6345 asoc->base.dead) 6346 goto do_error; 6347 if (signal_pending(current)) 6348 goto do_interrupted; 6349 6350 if (sctp_state(asoc, ESTABLISHED)) 6351 break; 6352 6353 /* Let another process have a go. Since we are going 6354 * to sleep anyway. 6355 */ 6356 sctp_release_sock(sk); 6357 current_timeo = schedule_timeout(current_timeo); 6358 sctp_lock_sock(sk); 6359 6360 *timeo_p = current_timeo; 6361 } 6362 6363 out: 6364 finish_wait(&asoc->wait, &wait); 6365 6366 /* Release the association's refcnt. */ 6367 sctp_association_put(asoc); 6368 6369 return err; 6370 6371 do_error: 6372 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6373 err = -ETIMEDOUT; 6374 else 6375 err = -ECONNREFUSED; 6376 goto out; 6377 6378 do_interrupted: 6379 err = sock_intr_errno(*timeo_p); 6380 goto out; 6381 6382 do_nonblock: 6383 err = -EINPROGRESS; 6384 goto out; 6385 } 6386 6387 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6388 { 6389 struct sctp_endpoint *ep; 6390 int err = 0; 6391 DEFINE_WAIT(wait); 6392 6393 ep = sctp_sk(sk)->ep; 6394 6395 6396 for (;;) { 6397 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6398 TASK_INTERRUPTIBLE); 6399 6400 if (list_empty(&ep->asocs)) { 6401 sctp_release_sock(sk); 6402 timeo = schedule_timeout(timeo); 6403 sctp_lock_sock(sk); 6404 } 6405 6406 err = -EINVAL; 6407 if (!sctp_sstate(sk, LISTENING)) 6408 break; 6409 6410 err = 0; 6411 if (!list_empty(&ep->asocs)) 6412 break; 6413 6414 err = sock_intr_errno(timeo); 6415 if (signal_pending(current)) 6416 break; 6417 6418 err = -EAGAIN; 6419 if (!timeo) 6420 break; 6421 } 6422 6423 finish_wait(sk_sleep(sk), &wait); 6424 6425 return err; 6426 } 6427 6428 static void sctp_wait_for_close(struct sock *sk, long timeout) 6429 { 6430 DEFINE_WAIT(wait); 6431 6432 do { 6433 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6434 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6435 break; 6436 sctp_release_sock(sk); 6437 timeout = schedule_timeout(timeout); 6438 sctp_lock_sock(sk); 6439 } while (!signal_pending(current) && timeout); 6440 6441 finish_wait(sk_sleep(sk), &wait); 6442 } 6443 6444 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6445 { 6446 struct sk_buff *frag; 6447 6448 if (!skb->data_len) 6449 goto done; 6450 6451 /* Don't forget the fragments. */ 6452 skb_walk_frags(skb, frag) 6453 sctp_skb_set_owner_r_frag(frag, sk); 6454 6455 done: 6456 sctp_skb_set_owner_r(skb, sk); 6457 } 6458 6459 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6460 struct sctp_association *asoc) 6461 { 6462 struct inet_sock *inet = inet_sk(sk); 6463 struct inet_sock *newinet; 6464 6465 newsk->sk_type = sk->sk_type; 6466 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6467 newsk->sk_flags = sk->sk_flags; 6468 newsk->sk_no_check = sk->sk_no_check; 6469 newsk->sk_reuse = sk->sk_reuse; 6470 6471 newsk->sk_shutdown = sk->sk_shutdown; 6472 newsk->sk_destruct = inet_sock_destruct; 6473 newsk->sk_family = sk->sk_family; 6474 newsk->sk_protocol = IPPROTO_SCTP; 6475 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6476 newsk->sk_sndbuf = sk->sk_sndbuf; 6477 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6478 newsk->sk_lingertime = sk->sk_lingertime; 6479 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6480 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6481 6482 newinet = inet_sk(newsk); 6483 6484 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6485 * getsockname() and getpeername() 6486 */ 6487 newinet->inet_sport = inet->inet_sport; 6488 newinet->inet_saddr = inet->inet_saddr; 6489 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6490 newinet->inet_dport = htons(asoc->peer.port); 6491 newinet->pmtudisc = inet->pmtudisc; 6492 newinet->inet_id = asoc->next_tsn ^ jiffies; 6493 6494 newinet->uc_ttl = inet->uc_ttl; 6495 newinet->mc_loop = 1; 6496 newinet->mc_ttl = 1; 6497 newinet->mc_index = 0; 6498 newinet->mc_list = NULL; 6499 } 6500 6501 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6502 * and its messages to the newsk. 6503 */ 6504 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6505 struct sctp_association *assoc, 6506 sctp_socket_type_t type) 6507 { 6508 struct sctp_sock *oldsp = sctp_sk(oldsk); 6509 struct sctp_sock *newsp = sctp_sk(newsk); 6510 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6511 struct sctp_endpoint *newep = newsp->ep; 6512 struct sk_buff *skb, *tmp; 6513 struct sctp_ulpevent *event; 6514 struct sctp_bind_hashbucket *head; 6515 6516 /* Migrate socket buffer sizes and all the socket level options to the 6517 * new socket. 6518 */ 6519 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6520 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6521 /* Brute force copy old sctp opt. */ 6522 inet_sk_copy_descendant(newsk, oldsk); 6523 6524 /* Restore the ep value that was overwritten with the above structure 6525 * copy. 6526 */ 6527 newsp->ep = newep; 6528 newsp->hmac = NULL; 6529 6530 /* Hook this new socket in to the bind_hash list. */ 6531 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6532 sctp_local_bh_disable(); 6533 sctp_spin_lock(&head->lock); 6534 pp = sctp_sk(oldsk)->bind_hash; 6535 sk_add_bind_node(newsk, &pp->owner); 6536 sctp_sk(newsk)->bind_hash = pp; 6537 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6538 sctp_spin_unlock(&head->lock); 6539 sctp_local_bh_enable(); 6540 6541 /* Copy the bind_addr list from the original endpoint to the new 6542 * endpoint so that we can handle restarts properly 6543 */ 6544 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6545 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6546 6547 /* Move any messages in the old socket's receive queue that are for the 6548 * peeled off association to the new socket's receive queue. 6549 */ 6550 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6551 event = sctp_skb2event(skb); 6552 if (event->asoc == assoc) { 6553 __skb_unlink(skb, &oldsk->sk_receive_queue); 6554 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6555 sctp_skb_set_owner_r_frag(skb, newsk); 6556 } 6557 } 6558 6559 /* Clean up any messages pending delivery due to partial 6560 * delivery. Three cases: 6561 * 1) No partial deliver; no work. 6562 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6563 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6564 */ 6565 skb_queue_head_init(&newsp->pd_lobby); 6566 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6567 6568 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6569 struct sk_buff_head *queue; 6570 6571 /* Decide which queue to move pd_lobby skbs to. */ 6572 if (assoc->ulpq.pd_mode) { 6573 queue = &newsp->pd_lobby; 6574 } else 6575 queue = &newsk->sk_receive_queue; 6576 6577 /* Walk through the pd_lobby, looking for skbs that 6578 * need moved to the new socket. 6579 */ 6580 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6581 event = sctp_skb2event(skb); 6582 if (event->asoc == assoc) { 6583 __skb_unlink(skb, &oldsp->pd_lobby); 6584 __skb_queue_tail(queue, skb); 6585 sctp_skb_set_owner_r_frag(skb, newsk); 6586 } 6587 } 6588 6589 /* Clear up any skbs waiting for the partial 6590 * delivery to finish. 6591 */ 6592 if (assoc->ulpq.pd_mode) 6593 sctp_clear_pd(oldsk, NULL); 6594 6595 } 6596 6597 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6598 sctp_skb_set_owner_r_frag(skb, newsk); 6599 6600 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6601 sctp_skb_set_owner_r_frag(skb, newsk); 6602 6603 /* Set the type of socket to indicate that it is peeled off from the 6604 * original UDP-style socket or created with the accept() call on a 6605 * TCP-style socket.. 6606 */ 6607 newsp->type = type; 6608 6609 /* Mark the new socket "in-use" by the user so that any packets 6610 * that may arrive on the association after we've moved it are 6611 * queued to the backlog. This prevents a potential race between 6612 * backlog processing on the old socket and new-packet processing 6613 * on the new socket. 6614 * 6615 * The caller has just allocated newsk so we can guarantee that other 6616 * paths won't try to lock it and then oldsk. 6617 */ 6618 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6619 sctp_assoc_migrate(assoc, newsk); 6620 6621 /* If the association on the newsk is already closed before accept() 6622 * is called, set RCV_SHUTDOWN flag. 6623 */ 6624 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6625 newsk->sk_shutdown |= RCV_SHUTDOWN; 6626 6627 newsk->sk_state = SCTP_SS_ESTABLISHED; 6628 sctp_release_sock(newsk); 6629 } 6630 6631 6632 /* This proto struct describes the ULP interface for SCTP. */ 6633 struct proto sctp_prot = { 6634 .name = "SCTP", 6635 .owner = THIS_MODULE, 6636 .close = sctp_close, 6637 .connect = sctp_connect, 6638 .disconnect = sctp_disconnect, 6639 .accept = sctp_accept, 6640 .ioctl = sctp_ioctl, 6641 .init = sctp_init_sock, 6642 .destroy = sctp_destroy_sock, 6643 .shutdown = sctp_shutdown, 6644 .setsockopt = sctp_setsockopt, 6645 .getsockopt = sctp_getsockopt, 6646 .sendmsg = sctp_sendmsg, 6647 .recvmsg = sctp_recvmsg, 6648 .bind = sctp_bind, 6649 .backlog_rcv = sctp_backlog_rcv, 6650 .hash = sctp_hash, 6651 .unhash = sctp_unhash, 6652 .get_port = sctp_get_port, 6653 .obj_size = sizeof(struct sctp_sock), 6654 .sysctl_mem = sysctl_sctp_mem, 6655 .sysctl_rmem = sysctl_sctp_rmem, 6656 .sysctl_wmem = sysctl_sctp_wmem, 6657 .memory_pressure = &sctp_memory_pressure, 6658 .enter_memory_pressure = sctp_enter_memory_pressure, 6659 .memory_allocated = &sctp_memory_allocated, 6660 .sockets_allocated = &sctp_sockets_allocated, 6661 }; 6662 6663 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6664 6665 struct proto sctpv6_prot = { 6666 .name = "SCTPv6", 6667 .owner = THIS_MODULE, 6668 .close = sctp_close, 6669 .connect = sctp_connect, 6670 .disconnect = sctp_disconnect, 6671 .accept = sctp_accept, 6672 .ioctl = sctp_ioctl, 6673 .init = sctp_init_sock, 6674 .destroy = sctp_destroy_sock, 6675 .shutdown = sctp_shutdown, 6676 .setsockopt = sctp_setsockopt, 6677 .getsockopt = sctp_getsockopt, 6678 .sendmsg = sctp_sendmsg, 6679 .recvmsg = sctp_recvmsg, 6680 .bind = sctp_bind, 6681 .backlog_rcv = sctp_backlog_rcv, 6682 .hash = sctp_hash, 6683 .unhash = sctp_unhash, 6684 .get_port = sctp_get_port, 6685 .obj_size = sizeof(struct sctp6_sock), 6686 .sysctl_mem = sysctl_sctp_mem, 6687 .sysctl_rmem = sysctl_sctp_rmem, 6688 .sysctl_wmem = sysctl_sctp_wmem, 6689 .memory_pressure = &sctp_memory_pressure, 6690 .enter_memory_pressure = sctp_enter_memory_pressure, 6691 .memory_allocated = &sctp_memory_allocated, 6692 .sockets_allocated = &sctp_sockets_allocated, 6693 }; 6694 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6695