xref: /linux/net/sctp/socket.c (revision 405849610fd96b4f34cd1875c4c033228fea6c0f)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 /* Get the sndbuf space available at the time on the association.  */
111 static inline int sctp_wspace(struct sctp_association *asoc)
112 {
113 	struct sock *sk = asoc->base.sk;
114 	int amt = 0;
115 
116 	if (asoc->ep->sndbuf_policy) {
117 		/* make sure that no association uses more than sk_sndbuf */
118 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
119 	} else {
120 		/* do socket level accounting */
121 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
122 	}
123 
124 	if (amt < 0)
125 		amt = 0;
126 
127 	return amt;
128 }
129 
130 /* Increment the used sndbuf space count of the corresponding association by
131  * the size of the outgoing data chunk.
132  * Also, set the skb destructor for sndbuf accounting later.
133  *
134  * Since it is always 1-1 between chunk and skb, and also a new skb is always
135  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
136  * destructor in the data chunk skb for the purpose of the sndbuf space
137  * tracking.
138  */
139 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
140 {
141 	struct sctp_association *asoc = chunk->asoc;
142 	struct sock *sk = asoc->base.sk;
143 
144 	/* The sndbuf space is tracked per association.  */
145 	sctp_association_hold(asoc);
146 
147 	skb_set_owner_w(chunk->skb, sk);
148 
149 	chunk->skb->destructor = sctp_wfree;
150 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
151 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
152 
153 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
154 				sizeof(struct sk_buff) +
155 				sizeof(struct sctp_chunk);
156 
157 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
158 }
159 
160 /* Verify that this is a valid address. */
161 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
162 				   int len)
163 {
164 	struct sctp_af *af;
165 
166 	/* Verify basic sockaddr. */
167 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
168 	if (!af)
169 		return -EINVAL;
170 
171 	/* Is this a valid SCTP address?  */
172 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
173 		return -EINVAL;
174 
175 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 
181 /* Look up the association by its id.  If this is not a UDP-style
182  * socket, the ID field is always ignored.
183  */
184 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
185 {
186 	struct sctp_association *asoc = NULL;
187 
188 	/* If this is not a UDP-style socket, assoc id should be ignored. */
189 	if (!sctp_style(sk, UDP)) {
190 		/* Return NULL if the socket state is not ESTABLISHED. It
191 		 * could be a TCP-style listening socket or a socket which
192 		 * hasn't yet called connect() to establish an association.
193 		 */
194 		if (!sctp_sstate(sk, ESTABLISHED))
195 			return NULL;
196 
197 		/* Get the first and the only association from the list. */
198 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
199 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
200 					  struct sctp_association, asocs);
201 		return asoc;
202 	}
203 
204 	/* Otherwise this is a UDP-style socket. */
205 	if (!id || (id == (sctp_assoc_t)-1))
206 		return NULL;
207 
208 	spin_lock_bh(&sctp_assocs_id_lock);
209 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
210 	spin_unlock_bh(&sctp_assocs_id_lock);
211 
212 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
213 		return NULL;
214 
215 	return asoc;
216 }
217 
218 /* Look up the transport from an address and an assoc id. If both address and
219  * id are specified, the associations matching the address and the id should be
220  * the same.
221  */
222 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
223 					      struct sockaddr_storage *addr,
224 					      sctp_assoc_t id)
225 {
226 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
227 	struct sctp_transport *transport;
228 	union sctp_addr *laddr = (union sctp_addr *)addr;
229 
230 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
231 					       laddr,
232 					       &transport);
233 
234 	if (!addr_asoc)
235 		return NULL;
236 
237 	id_asoc = sctp_id2assoc(sk, id);
238 	if (id_asoc && (id_asoc != addr_asoc))
239 		return NULL;
240 
241 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
242 						(union sctp_addr *)addr);
243 
244 	return transport;
245 }
246 
247 /* API 3.1.2 bind() - UDP Style Syntax
248  * The syntax of bind() is,
249  *
250  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
251  *
252  *   sd      - the socket descriptor returned by socket().
253  *   addr    - the address structure (struct sockaddr_in or struct
254  *             sockaddr_in6 [RFC 2553]),
255  *   addr_len - the size of the address structure.
256  */
257 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
258 {
259 	int retval = 0;
260 
261 	sctp_lock_sock(sk);
262 
263 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
264 			  sk, addr, addr_len);
265 
266 	/* Disallow binding twice. */
267 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
268 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
269 				      addr_len);
270 	else
271 		retval = -EINVAL;
272 
273 	sctp_release_sock(sk);
274 
275 	return retval;
276 }
277 
278 static long sctp_get_port_local(struct sock *, union sctp_addr *);
279 
280 /* Verify this is a valid sockaddr. */
281 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
282 					union sctp_addr *addr, int len)
283 {
284 	struct sctp_af *af;
285 
286 	/* Check minimum size.  */
287 	if (len < sizeof (struct sockaddr))
288 		return NULL;
289 
290 	/* Does this PF support this AF? */
291 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
292 		return NULL;
293 
294 	/* If we get this far, af is valid. */
295 	af = sctp_get_af_specific(addr->sa.sa_family);
296 
297 	if (len < af->sockaddr_len)
298 		return NULL;
299 
300 	return af;
301 }
302 
303 /* Bind a local address either to an endpoint or to an association.  */
304 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
305 {
306 	struct sctp_sock *sp = sctp_sk(sk);
307 	struct sctp_endpoint *ep = sp->ep;
308 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
309 	struct sctp_af *af;
310 	unsigned short snum;
311 	int ret = 0;
312 
313 	/* Common sockaddr verification. */
314 	af = sctp_sockaddr_af(sp, addr, len);
315 	if (!af) {
316 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
317 				  sk, addr, len);
318 		return -EINVAL;
319 	}
320 
321 	snum = ntohs(addr->v4.sin_port);
322 
323 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
324 				 ", port: %d, new port: %d, len: %d)\n",
325 				 sk,
326 				 addr,
327 				 bp->port, snum,
328 				 len);
329 
330 	/* PF specific bind() address verification. */
331 	if (!sp->pf->bind_verify(sp, addr))
332 		return -EADDRNOTAVAIL;
333 
334 	/* We must either be unbound, or bind to the same port.
335 	 * It's OK to allow 0 ports if we are already bound.
336 	 * We'll just inhert an already bound port in this case
337 	 */
338 	if (bp->port) {
339 		if (!snum)
340 			snum = bp->port;
341 		else if (snum != bp->port) {
342 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
343 				  " New port %d does not match existing port "
344 				  "%d.\n", snum, bp->port);
345 			return -EINVAL;
346 		}
347 	}
348 
349 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
350 		return -EACCES;
351 
352 	/* Make sure we are allowed to bind here.
353 	 * The function sctp_get_port_local() does duplicate address
354 	 * detection.
355 	 */
356 	if ((ret = sctp_get_port_local(sk, addr))) {
357 		if (ret == (long) sk) {
358 			/* This endpoint has a conflicting address. */
359 			return -EINVAL;
360 		} else {
361 			return -EADDRINUSE;
362 		}
363 	}
364 
365 	/* Refresh ephemeral port.  */
366 	if (!bp->port)
367 		bp->port = inet_sk(sk)->num;
368 
369 	/* Add the address to the bind address list.  */
370 	sctp_local_bh_disable();
371 	sctp_write_lock(&ep->base.addr_lock);
372 
373 	/* Use GFP_ATOMIC since BHs are disabled.  */
374 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
375 	sctp_write_unlock(&ep->base.addr_lock);
376 	sctp_local_bh_enable();
377 
378 	/* Copy back into socket for getsockname() use. */
379 	if (!ret) {
380 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
381 		af->to_sk_saddr(addr, sk);
382 	}
383 
384 	return ret;
385 }
386 
387  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
388  *
389  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
390  * at any one time.  If a sender, after sending an ASCONF chunk, decides
391  * it needs to transfer another ASCONF Chunk, it MUST wait until the
392  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
393  * subsequent ASCONF. Note this restriction binds each side, so at any
394  * time two ASCONF may be in-transit on any given association (one sent
395  * from each endpoint).
396  */
397 static int sctp_send_asconf(struct sctp_association *asoc,
398 			    struct sctp_chunk *chunk)
399 {
400 	int		retval = 0;
401 
402 	/* If there is an outstanding ASCONF chunk, queue it for later
403 	 * transmission.
404 	 */
405 	if (asoc->addip_last_asconf) {
406 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
407 		goto out;
408 	}
409 
410 	/* Hold the chunk until an ASCONF_ACK is received. */
411 	sctp_chunk_hold(chunk);
412 	retval = sctp_primitive_ASCONF(asoc, chunk);
413 	if (retval)
414 		sctp_chunk_free(chunk);
415 	else
416 		asoc->addip_last_asconf = chunk;
417 
418 out:
419 	return retval;
420 }
421 
422 /* Add a list of addresses as bind addresses to local endpoint or
423  * association.
424  *
425  * Basically run through each address specified in the addrs/addrcnt
426  * array/length pair, determine if it is IPv6 or IPv4 and call
427  * sctp_do_bind() on it.
428  *
429  * If any of them fails, then the operation will be reversed and the
430  * ones that were added will be removed.
431  *
432  * Only sctp_setsockopt_bindx() is supposed to call this function.
433  */
434 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
435 {
436 	int cnt;
437 	int retval = 0;
438 	void *addr_buf;
439 	struct sockaddr *sa_addr;
440 	struct sctp_af *af;
441 
442 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
443 			  sk, addrs, addrcnt);
444 
445 	addr_buf = addrs;
446 	for (cnt = 0; cnt < addrcnt; cnt++) {
447 		/* The list may contain either IPv4 or IPv6 address;
448 		 * determine the address length for walking thru the list.
449 		 */
450 		sa_addr = (struct sockaddr *)addr_buf;
451 		af = sctp_get_af_specific(sa_addr->sa_family);
452 		if (!af) {
453 			retval = -EINVAL;
454 			goto err_bindx_add;
455 		}
456 
457 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
458 				      af->sockaddr_len);
459 
460 		addr_buf += af->sockaddr_len;
461 
462 err_bindx_add:
463 		if (retval < 0) {
464 			/* Failed. Cleanup the ones that have been added */
465 			if (cnt > 0)
466 				sctp_bindx_rem(sk, addrs, cnt);
467 			return retval;
468 		}
469 	}
470 
471 	return retval;
472 }
473 
474 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
475  * associations that are part of the endpoint indicating that a list of local
476  * addresses are added to the endpoint.
477  *
478  * If any of the addresses is already in the bind address list of the
479  * association, we do not send the chunk for that association.  But it will not
480  * affect other associations.
481  *
482  * Only sctp_setsockopt_bindx() is supposed to call this function.
483  */
484 static int sctp_send_asconf_add_ip(struct sock		*sk,
485 				   struct sockaddr	*addrs,
486 				   int 			addrcnt)
487 {
488 	struct sctp_sock		*sp;
489 	struct sctp_endpoint		*ep;
490 	struct sctp_association		*asoc;
491 	struct sctp_bind_addr		*bp;
492 	struct sctp_chunk		*chunk;
493 	struct sctp_sockaddr_entry	*laddr;
494 	union sctp_addr			*addr;
495 	union sctp_addr			saveaddr;
496 	void				*addr_buf;
497 	struct sctp_af			*af;
498 	struct list_head		*pos;
499 	struct list_head		*p;
500 	int 				i;
501 	int 				retval = 0;
502 
503 	if (!sctp_addip_enable)
504 		return retval;
505 
506 	sp = sctp_sk(sk);
507 	ep = sp->ep;
508 
509 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
510 			  __FUNCTION__, sk, addrs, addrcnt);
511 
512 	list_for_each(pos, &ep->asocs) {
513 		asoc = list_entry(pos, struct sctp_association, asocs);
514 
515 		if (!asoc->peer.asconf_capable)
516 			continue;
517 
518 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
519 			continue;
520 
521 		if (!sctp_state(asoc, ESTABLISHED))
522 			continue;
523 
524 		/* Check if any address in the packed array of addresses is
525 		 * in the bind address list of the association. If so,
526 		 * do not send the asconf chunk to its peer, but continue with
527 		 * other associations.
528 		 */
529 		addr_buf = addrs;
530 		for (i = 0; i < addrcnt; i++) {
531 			addr = (union sctp_addr *)addr_buf;
532 			af = sctp_get_af_specific(addr->v4.sin_family);
533 			if (!af) {
534 				retval = -EINVAL;
535 				goto out;
536 			}
537 
538 			if (sctp_assoc_lookup_laddr(asoc, addr))
539 				break;
540 
541 			addr_buf += af->sockaddr_len;
542 		}
543 		if (i < addrcnt)
544 			continue;
545 
546 		/* Use the first address in bind addr list of association as
547 		 * Address Parameter of ASCONF CHUNK.
548 		 */
549 		sctp_read_lock(&asoc->base.addr_lock);
550 		bp = &asoc->base.bind_addr;
551 		p = bp->address_list.next;
552 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
553 		sctp_read_unlock(&asoc->base.addr_lock);
554 
555 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
556 						   addrcnt, SCTP_PARAM_ADD_IP);
557 		if (!chunk) {
558 			retval = -ENOMEM;
559 			goto out;
560 		}
561 
562 		retval = sctp_send_asconf(asoc, chunk);
563 		if (retval)
564 			goto out;
565 
566 		/* Add the new addresses to the bind address list with
567 		 * use_as_src set to 0.
568 		 */
569 		sctp_local_bh_disable();
570 		sctp_write_lock(&asoc->base.addr_lock);
571 		addr_buf = addrs;
572 		for (i = 0; i < addrcnt; i++) {
573 			addr = (union sctp_addr *)addr_buf;
574 			af = sctp_get_af_specific(addr->v4.sin_family);
575 			memcpy(&saveaddr, addr, af->sockaddr_len);
576 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
577 						    GFP_ATOMIC);
578 			addr_buf += af->sockaddr_len;
579 		}
580 		sctp_write_unlock(&asoc->base.addr_lock);
581 		sctp_local_bh_enable();
582 	}
583 
584 out:
585 	return retval;
586 }
587 
588 /* Remove a list of addresses from bind addresses list.  Do not remove the
589  * last address.
590  *
591  * Basically run through each address specified in the addrs/addrcnt
592  * array/length pair, determine if it is IPv6 or IPv4 and call
593  * sctp_del_bind() on it.
594  *
595  * If any of them fails, then the operation will be reversed and the
596  * ones that were removed will be added back.
597  *
598  * At least one address has to be left; if only one address is
599  * available, the operation will return -EBUSY.
600  *
601  * Only sctp_setsockopt_bindx() is supposed to call this function.
602  */
603 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
604 {
605 	struct sctp_sock *sp = sctp_sk(sk);
606 	struct sctp_endpoint *ep = sp->ep;
607 	int cnt;
608 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
609 	int retval = 0;
610 	void *addr_buf;
611 	union sctp_addr *sa_addr;
612 	struct sctp_af *af;
613 
614 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
615 			  sk, addrs, addrcnt);
616 
617 	addr_buf = addrs;
618 	for (cnt = 0; cnt < addrcnt; cnt++) {
619 		/* If the bind address list is empty or if there is only one
620 		 * bind address, there is nothing more to be removed (we need
621 		 * at least one address here).
622 		 */
623 		if (list_empty(&bp->address_list) ||
624 		    (sctp_list_single_entry(&bp->address_list))) {
625 			retval = -EBUSY;
626 			goto err_bindx_rem;
627 		}
628 
629 		sa_addr = (union sctp_addr *)addr_buf;
630 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
631 		if (!af) {
632 			retval = -EINVAL;
633 			goto err_bindx_rem;
634 		}
635 
636 		if (!af->addr_valid(sa_addr, sp, NULL)) {
637 			retval = -EADDRNOTAVAIL;
638 			goto err_bindx_rem;
639 		}
640 
641 		if (sa_addr->v4.sin_port != htons(bp->port)) {
642 			retval = -EINVAL;
643 			goto err_bindx_rem;
644 		}
645 
646 		/* FIXME - There is probably a need to check if sk->sk_saddr and
647 		 * sk->sk_rcv_addr are currently set to one of the addresses to
648 		 * be removed. This is something which needs to be looked into
649 		 * when we are fixing the outstanding issues with multi-homing
650 		 * socket routing and failover schemes. Refer to comments in
651 		 * sctp_do_bind(). -daisy
652 		 */
653 		sctp_local_bh_disable();
654 		sctp_write_lock(&ep->base.addr_lock);
655 
656 		retval = sctp_del_bind_addr(bp, sa_addr);
657 
658 		sctp_write_unlock(&ep->base.addr_lock);
659 		sctp_local_bh_enable();
660 
661 		addr_buf += af->sockaddr_len;
662 err_bindx_rem:
663 		if (retval < 0) {
664 			/* Failed. Add the ones that has been removed back */
665 			if (cnt > 0)
666 				sctp_bindx_add(sk, addrs, cnt);
667 			return retval;
668 		}
669 	}
670 
671 	return retval;
672 }
673 
674 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
675  * the associations that are part of the endpoint indicating that a list of
676  * local addresses are removed from the endpoint.
677  *
678  * If any of the addresses is already in the bind address list of the
679  * association, we do not send the chunk for that association.  But it will not
680  * affect other associations.
681  *
682  * Only sctp_setsockopt_bindx() is supposed to call this function.
683  */
684 static int sctp_send_asconf_del_ip(struct sock		*sk,
685 				   struct sockaddr	*addrs,
686 				   int			addrcnt)
687 {
688 	struct sctp_sock	*sp;
689 	struct sctp_endpoint	*ep;
690 	struct sctp_association	*asoc;
691 	struct sctp_transport	*transport;
692 	struct sctp_bind_addr	*bp;
693 	struct sctp_chunk	*chunk;
694 	union sctp_addr		*laddr;
695 	void			*addr_buf;
696 	struct sctp_af		*af;
697 	struct list_head	*pos, *pos1;
698 	struct sctp_sockaddr_entry *saddr;
699 	int 			i;
700 	int 			retval = 0;
701 
702 	if (!sctp_addip_enable)
703 		return retval;
704 
705 	sp = sctp_sk(sk);
706 	ep = sp->ep;
707 
708 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
709 			  __FUNCTION__, sk, addrs, addrcnt);
710 
711 	list_for_each(pos, &ep->asocs) {
712 		asoc = list_entry(pos, struct sctp_association, asocs);
713 
714 		if (!asoc->peer.asconf_capable)
715 			continue;
716 
717 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
718 			continue;
719 
720 		if (!sctp_state(asoc, ESTABLISHED))
721 			continue;
722 
723 		/* Check if any address in the packed array of addresses is
724 		 * not present in the bind address list of the association.
725 		 * If so, do not send the asconf chunk to its peer, but
726 		 * continue with other associations.
727 		 */
728 		addr_buf = addrs;
729 		for (i = 0; i < addrcnt; i++) {
730 			laddr = (union sctp_addr *)addr_buf;
731 			af = sctp_get_af_specific(laddr->v4.sin_family);
732 			if (!af) {
733 				retval = -EINVAL;
734 				goto out;
735 			}
736 
737 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
738 				break;
739 
740 			addr_buf += af->sockaddr_len;
741 		}
742 		if (i < addrcnt)
743 			continue;
744 
745 		/* Find one address in the association's bind address list
746 		 * that is not in the packed array of addresses. This is to
747 		 * make sure that we do not delete all the addresses in the
748 		 * association.
749 		 */
750 		sctp_read_lock(&asoc->base.addr_lock);
751 		bp = &asoc->base.bind_addr;
752 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
753 					       addrcnt, sp);
754 		sctp_read_unlock(&asoc->base.addr_lock);
755 		if (!laddr)
756 			continue;
757 
758 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
759 						   SCTP_PARAM_DEL_IP);
760 		if (!chunk) {
761 			retval = -ENOMEM;
762 			goto out;
763 		}
764 
765 		/* Reset use_as_src flag for the addresses in the bind address
766 		 * list that are to be deleted.
767 		 */
768 		sctp_local_bh_disable();
769 		sctp_write_lock(&asoc->base.addr_lock);
770 		addr_buf = addrs;
771 		for (i = 0; i < addrcnt; i++) {
772 			laddr = (union sctp_addr *)addr_buf;
773 			af = sctp_get_af_specific(laddr->v4.sin_family);
774 			list_for_each(pos1, &bp->address_list) {
775 				saddr = list_entry(pos1,
776 						   struct sctp_sockaddr_entry,
777 						   list);
778 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
779 					saddr->use_as_src = 0;
780 			}
781 			addr_buf += af->sockaddr_len;
782 		}
783 		sctp_write_unlock(&asoc->base.addr_lock);
784 		sctp_local_bh_enable();
785 
786 		/* Update the route and saddr entries for all the transports
787 		 * as some of the addresses in the bind address list are
788 		 * about to be deleted and cannot be used as source addresses.
789 		 */
790 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
791 			transport = list_entry(pos1, struct sctp_transport,
792 					       transports);
793 			dst_release(transport->dst);
794 			sctp_transport_route(transport, NULL,
795 					     sctp_sk(asoc->base.sk));
796 		}
797 
798 		retval = sctp_send_asconf(asoc, chunk);
799 	}
800 out:
801 	return retval;
802 }
803 
804 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
805  *
806  * API 8.1
807  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
808  *                int flags);
809  *
810  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
811  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
812  * or IPv6 addresses.
813  *
814  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
815  * Section 3.1.2 for this usage.
816  *
817  * addrs is a pointer to an array of one or more socket addresses. Each
818  * address is contained in its appropriate structure (i.e. struct
819  * sockaddr_in or struct sockaddr_in6) the family of the address type
820  * must be used to distinguish the address length (note that this
821  * representation is termed a "packed array" of addresses). The caller
822  * specifies the number of addresses in the array with addrcnt.
823  *
824  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
825  * -1, and sets errno to the appropriate error code.
826  *
827  * For SCTP, the port given in each socket address must be the same, or
828  * sctp_bindx() will fail, setting errno to EINVAL.
829  *
830  * The flags parameter is formed from the bitwise OR of zero or more of
831  * the following currently defined flags:
832  *
833  * SCTP_BINDX_ADD_ADDR
834  *
835  * SCTP_BINDX_REM_ADDR
836  *
837  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
838  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
839  * addresses from the association. The two flags are mutually exclusive;
840  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
841  * not remove all addresses from an association; sctp_bindx() will
842  * reject such an attempt with EINVAL.
843  *
844  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
845  * additional addresses with an endpoint after calling bind().  Or use
846  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
847  * socket is associated with so that no new association accepted will be
848  * associated with those addresses. If the endpoint supports dynamic
849  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
850  * endpoint to send the appropriate message to the peer to change the
851  * peers address lists.
852  *
853  * Adding and removing addresses from a connected association is
854  * optional functionality. Implementations that do not support this
855  * functionality should return EOPNOTSUPP.
856  *
857  * Basically do nothing but copying the addresses from user to kernel
858  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
859  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
860  * from userspace.
861  *
862  * We don't use copy_from_user() for optimization: we first do the
863  * sanity checks (buffer size -fast- and access check-healthy
864  * pointer); if all of those succeed, then we can alloc the memory
865  * (expensive operation) needed to copy the data to kernel. Then we do
866  * the copying without checking the user space area
867  * (__copy_from_user()).
868  *
869  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
870  * it.
871  *
872  * sk        The sk of the socket
873  * addrs     The pointer to the addresses in user land
874  * addrssize Size of the addrs buffer
875  * op        Operation to perform (add or remove, see the flags of
876  *           sctp_bindx)
877  *
878  * Returns 0 if ok, <0 errno code on error.
879  */
880 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
881 				      struct sockaddr __user *addrs,
882 				      int addrs_size, int op)
883 {
884 	struct sockaddr *kaddrs;
885 	int err;
886 	int addrcnt = 0;
887 	int walk_size = 0;
888 	struct sockaddr *sa_addr;
889 	void *addr_buf;
890 	struct sctp_af *af;
891 
892 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
893 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
894 
895 	if (unlikely(addrs_size <= 0))
896 		return -EINVAL;
897 
898 	/* Check the user passed a healthy pointer.  */
899 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
900 		return -EFAULT;
901 
902 	/* Alloc space for the address array in kernel memory.  */
903 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
904 	if (unlikely(!kaddrs))
905 		return -ENOMEM;
906 
907 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
908 		kfree(kaddrs);
909 		return -EFAULT;
910 	}
911 
912 	/* Walk through the addrs buffer and count the number of addresses. */
913 	addr_buf = kaddrs;
914 	while (walk_size < addrs_size) {
915 		sa_addr = (struct sockaddr *)addr_buf;
916 		af = sctp_get_af_specific(sa_addr->sa_family);
917 
918 		/* If the address family is not supported or if this address
919 		 * causes the address buffer to overflow return EINVAL.
920 		 */
921 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
922 			kfree(kaddrs);
923 			return -EINVAL;
924 		}
925 		addrcnt++;
926 		addr_buf += af->sockaddr_len;
927 		walk_size += af->sockaddr_len;
928 	}
929 
930 	/* Do the work. */
931 	switch (op) {
932 	case SCTP_BINDX_ADD_ADDR:
933 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
934 		if (err)
935 			goto out;
936 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
937 		break;
938 
939 	case SCTP_BINDX_REM_ADDR:
940 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
941 		if (err)
942 			goto out;
943 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
944 		break;
945 
946 	default:
947 		err = -EINVAL;
948 		break;
949 	}
950 
951 out:
952 	kfree(kaddrs);
953 
954 	return err;
955 }
956 
957 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
958  *
959  * Common routine for handling connect() and sctp_connectx().
960  * Connect will come in with just a single address.
961  */
962 static int __sctp_connect(struct sock* sk,
963 			  struct sockaddr *kaddrs,
964 			  int addrs_size)
965 {
966 	struct sctp_sock *sp;
967 	struct sctp_endpoint *ep;
968 	struct sctp_association *asoc = NULL;
969 	struct sctp_association *asoc2;
970 	struct sctp_transport *transport;
971 	union sctp_addr to;
972 	struct sctp_af *af;
973 	sctp_scope_t scope;
974 	long timeo;
975 	int err = 0;
976 	int addrcnt = 0;
977 	int walk_size = 0;
978 	union sctp_addr *sa_addr = NULL;
979 	void *addr_buf;
980 	unsigned short port;
981 	unsigned int f_flags = 0;
982 
983 	sp = sctp_sk(sk);
984 	ep = sp->ep;
985 
986 	/* connect() cannot be done on a socket that is already in ESTABLISHED
987 	 * state - UDP-style peeled off socket or a TCP-style socket that
988 	 * is already connected.
989 	 * It cannot be done even on a TCP-style listening socket.
990 	 */
991 	if (sctp_sstate(sk, ESTABLISHED) ||
992 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
993 		err = -EISCONN;
994 		goto out_free;
995 	}
996 
997 	/* Walk through the addrs buffer and count the number of addresses. */
998 	addr_buf = kaddrs;
999 	while (walk_size < addrs_size) {
1000 		sa_addr = (union sctp_addr *)addr_buf;
1001 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1002 		port = ntohs(sa_addr->v4.sin_port);
1003 
1004 		/* If the address family is not supported or if this address
1005 		 * causes the address buffer to overflow return EINVAL.
1006 		 */
1007 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 			err = -EINVAL;
1009 			goto out_free;
1010 		}
1011 
1012 		/* Save current address so we can work with it */
1013 		memcpy(&to, sa_addr, af->sockaddr_len);
1014 
1015 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1016 		if (err)
1017 			goto out_free;
1018 
1019 		/* Make sure the destination port is correctly set
1020 		 * in all addresses.
1021 		 */
1022 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1023 			goto out_free;
1024 
1025 
1026 		/* Check if there already is a matching association on the
1027 		 * endpoint (other than the one created here).
1028 		 */
1029 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1030 		if (asoc2 && asoc2 != asoc) {
1031 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1032 				err = -EISCONN;
1033 			else
1034 				err = -EALREADY;
1035 			goto out_free;
1036 		}
1037 
1038 		/* If we could not find a matching association on the endpoint,
1039 		 * make sure that there is no peeled-off association matching
1040 		 * the peer address even on another socket.
1041 		 */
1042 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1043 			err = -EADDRNOTAVAIL;
1044 			goto out_free;
1045 		}
1046 
1047 		if (!asoc) {
1048 			/* If a bind() or sctp_bindx() is not called prior to
1049 			 * an sctp_connectx() call, the system picks an
1050 			 * ephemeral port and will choose an address set
1051 			 * equivalent to binding with a wildcard address.
1052 			 */
1053 			if (!ep->base.bind_addr.port) {
1054 				if (sctp_autobind(sk)) {
1055 					err = -EAGAIN;
1056 					goto out_free;
1057 				}
1058 			} else {
1059 				/*
1060 				 * If an unprivileged user inherits a 1-many
1061 				 * style socket with open associations on a
1062 				 * privileged port, it MAY be permitted to
1063 				 * accept new associations, but it SHOULD NOT
1064 				 * be permitted to open new associations.
1065 				 */
1066 				if (ep->base.bind_addr.port < PROT_SOCK &&
1067 				    !capable(CAP_NET_BIND_SERVICE)) {
1068 					err = -EACCES;
1069 					goto out_free;
1070 				}
1071 			}
1072 
1073 			scope = sctp_scope(&to);
1074 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 			if (!asoc) {
1076 				err = -ENOMEM;
1077 				goto out_free;
1078 			}
1079 		}
1080 
1081 		/* Prime the peer's transport structures.  */
1082 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1083 						SCTP_UNKNOWN);
1084 		if (!transport) {
1085 			err = -ENOMEM;
1086 			goto out_free;
1087 		}
1088 
1089 		addrcnt++;
1090 		addr_buf += af->sockaddr_len;
1091 		walk_size += af->sockaddr_len;
1092 	}
1093 
1094 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1095 	if (err < 0) {
1096 		goto out_free;
1097 	}
1098 
1099 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1100 	if (err < 0) {
1101 		goto out_free;
1102 	}
1103 
1104 	/* Initialize sk's dport and daddr for getpeername() */
1105 	inet_sk(sk)->dport = htons(asoc->peer.port);
1106 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1107 	af->to_sk_daddr(sa_addr, sk);
1108 	sk->sk_err = 0;
1109 
1110 	/* in-kernel sockets don't generally have a file allocated to them
1111 	 * if all they do is call sock_create_kern().
1112 	 */
1113 	if (sk->sk_socket->file)
1114 		f_flags = sk->sk_socket->file->f_flags;
1115 
1116 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1117 
1118 	err = sctp_wait_for_connect(asoc, &timeo);
1119 
1120 	/* Don't free association on exit. */
1121 	asoc = NULL;
1122 
1123 out_free:
1124 
1125 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1126 			  " kaddrs: %p err: %d\n",
1127 			  asoc, kaddrs, err);
1128 	if (asoc)
1129 		sctp_association_free(asoc);
1130 	return err;
1131 }
1132 
1133 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1134  *
1135  * API 8.9
1136  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1137  *
1138  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1139  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1140  * or IPv6 addresses.
1141  *
1142  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1143  * Section 3.1.2 for this usage.
1144  *
1145  * addrs is a pointer to an array of one or more socket addresses. Each
1146  * address is contained in its appropriate structure (i.e. struct
1147  * sockaddr_in or struct sockaddr_in6) the family of the address type
1148  * must be used to distengish the address length (note that this
1149  * representation is termed a "packed array" of addresses). The caller
1150  * specifies the number of addresses in the array with addrcnt.
1151  *
1152  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1153  * -1, and sets errno to the appropriate error code.
1154  *
1155  * For SCTP, the port given in each socket address must be the same, or
1156  * sctp_connectx() will fail, setting errno to EINVAL.
1157  *
1158  * An application can use sctp_connectx to initiate an association with
1159  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1160  * allows a caller to specify multiple addresses at which a peer can be
1161  * reached.  The way the SCTP stack uses the list of addresses to set up
1162  * the association is implementation dependant.  This function only
1163  * specifies that the stack will try to make use of all the addresses in
1164  * the list when needed.
1165  *
1166  * Note that the list of addresses passed in is only used for setting up
1167  * the association.  It does not necessarily equal the set of addresses
1168  * the peer uses for the resulting association.  If the caller wants to
1169  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1170  * retrieve them after the association has been set up.
1171  *
1172  * Basically do nothing but copying the addresses from user to kernel
1173  * land and invoking either sctp_connectx(). This is used for tunneling
1174  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1175  *
1176  * We don't use copy_from_user() for optimization: we first do the
1177  * sanity checks (buffer size -fast- and access check-healthy
1178  * pointer); if all of those succeed, then we can alloc the memory
1179  * (expensive operation) needed to copy the data to kernel. Then we do
1180  * the copying without checking the user space area
1181  * (__copy_from_user()).
1182  *
1183  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1184  * it.
1185  *
1186  * sk        The sk of the socket
1187  * addrs     The pointer to the addresses in user land
1188  * addrssize Size of the addrs buffer
1189  *
1190  * Returns 0 if ok, <0 errno code on error.
1191  */
1192 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1193 				      struct sockaddr __user *addrs,
1194 				      int addrs_size)
1195 {
1196 	int err = 0;
1197 	struct sockaddr *kaddrs;
1198 
1199 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1200 			  __FUNCTION__, sk, addrs, addrs_size);
1201 
1202 	if (unlikely(addrs_size <= 0))
1203 		return -EINVAL;
1204 
1205 	/* Check the user passed a healthy pointer.  */
1206 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1207 		return -EFAULT;
1208 
1209 	/* Alloc space for the address array in kernel memory.  */
1210 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1211 	if (unlikely(!kaddrs))
1212 		return -ENOMEM;
1213 
1214 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1215 		err = -EFAULT;
1216 	} else {
1217 		err = __sctp_connect(sk, kaddrs, addrs_size);
1218 	}
1219 
1220 	kfree(kaddrs);
1221 	return err;
1222 }
1223 
1224 /* API 3.1.4 close() - UDP Style Syntax
1225  * Applications use close() to perform graceful shutdown (as described in
1226  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1227  * by a UDP-style socket.
1228  *
1229  * The syntax is
1230  *
1231  *   ret = close(int sd);
1232  *
1233  *   sd      - the socket descriptor of the associations to be closed.
1234  *
1235  * To gracefully shutdown a specific association represented by the
1236  * UDP-style socket, an application should use the sendmsg() call,
1237  * passing no user data, but including the appropriate flag in the
1238  * ancillary data (see Section xxxx).
1239  *
1240  * If sd in the close() call is a branched-off socket representing only
1241  * one association, the shutdown is performed on that association only.
1242  *
1243  * 4.1.6 close() - TCP Style Syntax
1244  *
1245  * Applications use close() to gracefully close down an association.
1246  *
1247  * The syntax is:
1248  *
1249  *    int close(int sd);
1250  *
1251  *      sd      - the socket descriptor of the association to be closed.
1252  *
1253  * After an application calls close() on a socket descriptor, no further
1254  * socket operations will succeed on that descriptor.
1255  *
1256  * API 7.1.4 SO_LINGER
1257  *
1258  * An application using the TCP-style socket can use this option to
1259  * perform the SCTP ABORT primitive.  The linger option structure is:
1260  *
1261  *  struct  linger {
1262  *     int     l_onoff;                // option on/off
1263  *     int     l_linger;               // linger time
1264  * };
1265  *
1266  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1267  * to 0, calling close() is the same as the ABORT primitive.  If the
1268  * value is set to a negative value, the setsockopt() call will return
1269  * an error.  If the value is set to a positive value linger_time, the
1270  * close() can be blocked for at most linger_time ms.  If the graceful
1271  * shutdown phase does not finish during this period, close() will
1272  * return but the graceful shutdown phase continues in the system.
1273  */
1274 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1275 {
1276 	struct sctp_endpoint *ep;
1277 	struct sctp_association *asoc;
1278 	struct list_head *pos, *temp;
1279 
1280 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1281 
1282 	sctp_lock_sock(sk);
1283 	sk->sk_shutdown = SHUTDOWN_MASK;
1284 
1285 	ep = sctp_sk(sk)->ep;
1286 
1287 	/* Walk all associations on an endpoint.  */
1288 	list_for_each_safe(pos, temp, &ep->asocs) {
1289 		asoc = list_entry(pos, struct sctp_association, asocs);
1290 
1291 		if (sctp_style(sk, TCP)) {
1292 			/* A closed association can still be in the list if
1293 			 * it belongs to a TCP-style listening socket that is
1294 			 * not yet accepted. If so, free it. If not, send an
1295 			 * ABORT or SHUTDOWN based on the linger options.
1296 			 */
1297 			if (sctp_state(asoc, CLOSED)) {
1298 				sctp_unhash_established(asoc);
1299 				sctp_association_free(asoc);
1300 				continue;
1301 			}
1302 		}
1303 
1304 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1305 			struct sctp_chunk *chunk;
1306 
1307 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1308 			if (chunk)
1309 				sctp_primitive_ABORT(asoc, chunk);
1310 		} else
1311 			sctp_primitive_SHUTDOWN(asoc, NULL);
1312 	}
1313 
1314 	/* Clean up any skbs sitting on the receive queue.  */
1315 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1316 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1317 
1318 	/* On a TCP-style socket, block for at most linger_time if set. */
1319 	if (sctp_style(sk, TCP) && timeout)
1320 		sctp_wait_for_close(sk, timeout);
1321 
1322 	/* This will run the backlog queue.  */
1323 	sctp_release_sock(sk);
1324 
1325 	/* Supposedly, no process has access to the socket, but
1326 	 * the net layers still may.
1327 	 */
1328 	sctp_local_bh_disable();
1329 	sctp_bh_lock_sock(sk);
1330 
1331 	/* Hold the sock, since sk_common_release() will put sock_put()
1332 	 * and we have just a little more cleanup.
1333 	 */
1334 	sock_hold(sk);
1335 	sk_common_release(sk);
1336 
1337 	sctp_bh_unlock_sock(sk);
1338 	sctp_local_bh_enable();
1339 
1340 	sock_put(sk);
1341 
1342 	SCTP_DBG_OBJCNT_DEC(sock);
1343 }
1344 
1345 /* Handle EPIPE error. */
1346 static int sctp_error(struct sock *sk, int flags, int err)
1347 {
1348 	if (err == -EPIPE)
1349 		err = sock_error(sk) ? : -EPIPE;
1350 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1351 		send_sig(SIGPIPE, current, 0);
1352 	return err;
1353 }
1354 
1355 /* API 3.1.3 sendmsg() - UDP Style Syntax
1356  *
1357  * An application uses sendmsg() and recvmsg() calls to transmit data to
1358  * and receive data from its peer.
1359  *
1360  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1361  *                  int flags);
1362  *
1363  *  socket  - the socket descriptor of the endpoint.
1364  *  message - pointer to the msghdr structure which contains a single
1365  *            user message and possibly some ancillary data.
1366  *
1367  *            See Section 5 for complete description of the data
1368  *            structures.
1369  *
1370  *  flags   - flags sent or received with the user message, see Section
1371  *            5 for complete description of the flags.
1372  *
1373  * Note:  This function could use a rewrite especially when explicit
1374  * connect support comes in.
1375  */
1376 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1377 
1378 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1379 
1380 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1381 			     struct msghdr *msg, size_t msg_len)
1382 {
1383 	struct sctp_sock *sp;
1384 	struct sctp_endpoint *ep;
1385 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1386 	struct sctp_transport *transport, *chunk_tp;
1387 	struct sctp_chunk *chunk;
1388 	union sctp_addr to;
1389 	struct sockaddr *msg_name = NULL;
1390 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1391 	struct sctp_sndrcvinfo *sinfo;
1392 	struct sctp_initmsg *sinit;
1393 	sctp_assoc_t associd = 0;
1394 	sctp_cmsgs_t cmsgs = { NULL };
1395 	int err;
1396 	sctp_scope_t scope;
1397 	long timeo;
1398 	__u16 sinfo_flags = 0;
1399 	struct sctp_datamsg *datamsg;
1400 	struct list_head *pos;
1401 	int msg_flags = msg->msg_flags;
1402 
1403 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1404 			  sk, msg, msg_len);
1405 
1406 	err = 0;
1407 	sp = sctp_sk(sk);
1408 	ep = sp->ep;
1409 
1410 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1411 
1412 	/* We cannot send a message over a TCP-style listening socket. */
1413 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1414 		err = -EPIPE;
1415 		goto out_nounlock;
1416 	}
1417 
1418 	/* Parse out the SCTP CMSGs.  */
1419 	err = sctp_msghdr_parse(msg, &cmsgs);
1420 
1421 	if (err) {
1422 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1423 		goto out_nounlock;
1424 	}
1425 
1426 	/* Fetch the destination address for this packet.  This
1427 	 * address only selects the association--it is not necessarily
1428 	 * the address we will send to.
1429 	 * For a peeled-off socket, msg_name is ignored.
1430 	 */
1431 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1432 		int msg_namelen = msg->msg_namelen;
1433 
1434 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1435 				       msg_namelen);
1436 		if (err)
1437 			return err;
1438 
1439 		if (msg_namelen > sizeof(to))
1440 			msg_namelen = sizeof(to);
1441 		memcpy(&to, msg->msg_name, msg_namelen);
1442 		msg_name = msg->msg_name;
1443 	}
1444 
1445 	sinfo = cmsgs.info;
1446 	sinit = cmsgs.init;
1447 
1448 	/* Did the user specify SNDRCVINFO?  */
1449 	if (sinfo) {
1450 		sinfo_flags = sinfo->sinfo_flags;
1451 		associd = sinfo->sinfo_assoc_id;
1452 	}
1453 
1454 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1455 			  msg_len, sinfo_flags);
1456 
1457 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1458 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1459 		err = -EINVAL;
1460 		goto out_nounlock;
1461 	}
1462 
1463 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1464 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1465 	 * If SCTP_ABORT is set, the message length could be non zero with
1466 	 * the msg_iov set to the user abort reason.
1467 	 */
1468 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1469 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1470 		err = -EINVAL;
1471 		goto out_nounlock;
1472 	}
1473 
1474 	/* If SCTP_ADDR_OVER is set, there must be an address
1475 	 * specified in msg_name.
1476 	 */
1477 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1478 		err = -EINVAL;
1479 		goto out_nounlock;
1480 	}
1481 
1482 	transport = NULL;
1483 
1484 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1485 
1486 	sctp_lock_sock(sk);
1487 
1488 	/* If a msg_name has been specified, assume this is to be used.  */
1489 	if (msg_name) {
1490 		/* Look for a matching association on the endpoint. */
1491 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1492 		if (!asoc) {
1493 			/* If we could not find a matching association on the
1494 			 * endpoint, make sure that it is not a TCP-style
1495 			 * socket that already has an association or there is
1496 			 * no peeled-off association on another socket.
1497 			 */
1498 			if ((sctp_style(sk, TCP) &&
1499 			     sctp_sstate(sk, ESTABLISHED)) ||
1500 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1501 				err = -EADDRNOTAVAIL;
1502 				goto out_unlock;
1503 			}
1504 		}
1505 	} else {
1506 		asoc = sctp_id2assoc(sk, associd);
1507 		if (!asoc) {
1508 			err = -EPIPE;
1509 			goto out_unlock;
1510 		}
1511 	}
1512 
1513 	if (asoc) {
1514 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1515 
1516 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1517 		 * socket that has an association in CLOSED state. This can
1518 		 * happen when an accepted socket has an association that is
1519 		 * already CLOSED.
1520 		 */
1521 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1522 			err = -EPIPE;
1523 			goto out_unlock;
1524 		}
1525 
1526 		if (sinfo_flags & SCTP_EOF) {
1527 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1528 					  asoc);
1529 			sctp_primitive_SHUTDOWN(asoc, NULL);
1530 			err = 0;
1531 			goto out_unlock;
1532 		}
1533 		if (sinfo_flags & SCTP_ABORT) {
1534 
1535 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1536 			if (!chunk) {
1537 				err = -ENOMEM;
1538 				goto out_unlock;
1539 			}
1540 
1541 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1542 			sctp_primitive_ABORT(asoc, chunk);
1543 			err = 0;
1544 			goto out_unlock;
1545 		}
1546 	}
1547 
1548 	/* Do we need to create the association?  */
1549 	if (!asoc) {
1550 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1551 
1552 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1553 			err = -EINVAL;
1554 			goto out_unlock;
1555 		}
1556 
1557 		/* Check for invalid stream against the stream counts,
1558 		 * either the default or the user specified stream counts.
1559 		 */
1560 		if (sinfo) {
1561 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1562 				/* Check against the defaults. */
1563 				if (sinfo->sinfo_stream >=
1564 				    sp->initmsg.sinit_num_ostreams) {
1565 					err = -EINVAL;
1566 					goto out_unlock;
1567 				}
1568 			} else {
1569 				/* Check against the requested.  */
1570 				if (sinfo->sinfo_stream >=
1571 				    sinit->sinit_num_ostreams) {
1572 					err = -EINVAL;
1573 					goto out_unlock;
1574 				}
1575 			}
1576 		}
1577 
1578 		/*
1579 		 * API 3.1.2 bind() - UDP Style Syntax
1580 		 * If a bind() or sctp_bindx() is not called prior to a
1581 		 * sendmsg() call that initiates a new association, the
1582 		 * system picks an ephemeral port and will choose an address
1583 		 * set equivalent to binding with a wildcard address.
1584 		 */
1585 		if (!ep->base.bind_addr.port) {
1586 			if (sctp_autobind(sk)) {
1587 				err = -EAGAIN;
1588 				goto out_unlock;
1589 			}
1590 		} else {
1591 			/*
1592 			 * If an unprivileged user inherits a one-to-many
1593 			 * style socket with open associations on a privileged
1594 			 * port, it MAY be permitted to accept new associations,
1595 			 * but it SHOULD NOT be permitted to open new
1596 			 * associations.
1597 			 */
1598 			if (ep->base.bind_addr.port < PROT_SOCK &&
1599 			    !capable(CAP_NET_BIND_SERVICE)) {
1600 				err = -EACCES;
1601 				goto out_unlock;
1602 			}
1603 		}
1604 
1605 		scope = sctp_scope(&to);
1606 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1607 		if (!new_asoc) {
1608 			err = -ENOMEM;
1609 			goto out_unlock;
1610 		}
1611 		asoc = new_asoc;
1612 
1613 		/* If the SCTP_INIT ancillary data is specified, set all
1614 		 * the association init values accordingly.
1615 		 */
1616 		if (sinit) {
1617 			if (sinit->sinit_num_ostreams) {
1618 				asoc->c.sinit_num_ostreams =
1619 					sinit->sinit_num_ostreams;
1620 			}
1621 			if (sinit->sinit_max_instreams) {
1622 				asoc->c.sinit_max_instreams =
1623 					sinit->sinit_max_instreams;
1624 			}
1625 			if (sinit->sinit_max_attempts) {
1626 				asoc->max_init_attempts
1627 					= sinit->sinit_max_attempts;
1628 			}
1629 			if (sinit->sinit_max_init_timeo) {
1630 				asoc->max_init_timeo =
1631 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1632 			}
1633 		}
1634 
1635 		/* Prime the peer's transport structures.  */
1636 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1637 		if (!transport) {
1638 			err = -ENOMEM;
1639 			goto out_free;
1640 		}
1641 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1642 		if (err < 0) {
1643 			err = -ENOMEM;
1644 			goto out_free;
1645 		}
1646 	}
1647 
1648 	/* ASSERT: we have a valid association at this point.  */
1649 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1650 
1651 	if (!sinfo) {
1652 		/* If the user didn't specify SNDRCVINFO, make up one with
1653 		 * some defaults.
1654 		 */
1655 		default_sinfo.sinfo_stream = asoc->default_stream;
1656 		default_sinfo.sinfo_flags = asoc->default_flags;
1657 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1658 		default_sinfo.sinfo_context = asoc->default_context;
1659 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1660 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1661 		sinfo = &default_sinfo;
1662 	}
1663 
1664 	/* API 7.1.7, the sndbuf size per association bounds the
1665 	 * maximum size of data that can be sent in a single send call.
1666 	 */
1667 	if (msg_len > sk->sk_sndbuf) {
1668 		err = -EMSGSIZE;
1669 		goto out_free;
1670 	}
1671 
1672 	if (asoc->pmtu_pending)
1673 		sctp_assoc_pending_pmtu(asoc);
1674 
1675 	/* If fragmentation is disabled and the message length exceeds the
1676 	 * association fragmentation point, return EMSGSIZE.  The I-D
1677 	 * does not specify what this error is, but this looks like
1678 	 * a great fit.
1679 	 */
1680 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1681 		err = -EMSGSIZE;
1682 		goto out_free;
1683 	}
1684 
1685 	if (sinfo) {
1686 		/* Check for invalid stream. */
1687 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1688 			err = -EINVAL;
1689 			goto out_free;
1690 		}
1691 	}
1692 
1693 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1694 	if (!sctp_wspace(asoc)) {
1695 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1696 		if (err)
1697 			goto out_free;
1698 	}
1699 
1700 	/* If an address is passed with the sendto/sendmsg call, it is used
1701 	 * to override the primary destination address in the TCP model, or
1702 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1703 	 */
1704 	if ((sctp_style(sk, TCP) && msg_name) ||
1705 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1706 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1707 		if (!chunk_tp) {
1708 			err = -EINVAL;
1709 			goto out_free;
1710 		}
1711 	} else
1712 		chunk_tp = NULL;
1713 
1714 	/* Auto-connect, if we aren't connected already. */
1715 	if (sctp_state(asoc, CLOSED)) {
1716 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1717 		if (err < 0)
1718 			goto out_free;
1719 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1720 	}
1721 
1722 	/* Break the message into multiple chunks of maximum size. */
1723 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1724 	if (!datamsg) {
1725 		err = -ENOMEM;
1726 		goto out_free;
1727 	}
1728 
1729 	/* Now send the (possibly) fragmented message. */
1730 	list_for_each(pos, &datamsg->chunks) {
1731 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1732 		sctp_datamsg_track(chunk);
1733 
1734 		/* Do accounting for the write space.  */
1735 		sctp_set_owner_w(chunk);
1736 
1737 		chunk->transport = chunk_tp;
1738 
1739 		/* Send it to the lower layers.  Note:  all chunks
1740 		 * must either fail or succeed.   The lower layer
1741 		 * works that way today.  Keep it that way or this
1742 		 * breaks.
1743 		 */
1744 		err = sctp_primitive_SEND(asoc, chunk);
1745 		/* Did the lower layer accept the chunk? */
1746 		if (err)
1747 			sctp_chunk_free(chunk);
1748 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1749 	}
1750 
1751 	sctp_datamsg_free(datamsg);
1752 	if (err)
1753 		goto out_free;
1754 	else
1755 		err = msg_len;
1756 
1757 	/* If we are already past ASSOCIATE, the lower
1758 	 * layers are responsible for association cleanup.
1759 	 */
1760 	goto out_unlock;
1761 
1762 out_free:
1763 	if (new_asoc)
1764 		sctp_association_free(asoc);
1765 out_unlock:
1766 	sctp_release_sock(sk);
1767 
1768 out_nounlock:
1769 	return sctp_error(sk, msg_flags, err);
1770 
1771 #if 0
1772 do_sock_err:
1773 	if (msg_len)
1774 		err = msg_len;
1775 	else
1776 		err = sock_error(sk);
1777 	goto out;
1778 
1779 do_interrupted:
1780 	if (msg_len)
1781 		err = msg_len;
1782 	goto out;
1783 #endif /* 0 */
1784 }
1785 
1786 /* This is an extended version of skb_pull() that removes the data from the
1787  * start of a skb even when data is spread across the list of skb's in the
1788  * frag_list. len specifies the total amount of data that needs to be removed.
1789  * when 'len' bytes could be removed from the skb, it returns 0.
1790  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1791  * could not be removed.
1792  */
1793 static int sctp_skb_pull(struct sk_buff *skb, int len)
1794 {
1795 	struct sk_buff *list;
1796 	int skb_len = skb_headlen(skb);
1797 	int rlen;
1798 
1799 	if (len <= skb_len) {
1800 		__skb_pull(skb, len);
1801 		return 0;
1802 	}
1803 	len -= skb_len;
1804 	__skb_pull(skb, skb_len);
1805 
1806 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1807 		rlen = sctp_skb_pull(list, len);
1808 		skb->len -= (len-rlen);
1809 		skb->data_len -= (len-rlen);
1810 
1811 		if (!rlen)
1812 			return 0;
1813 
1814 		len = rlen;
1815 	}
1816 
1817 	return len;
1818 }
1819 
1820 /* API 3.1.3  recvmsg() - UDP Style Syntax
1821  *
1822  *  ssize_t recvmsg(int socket, struct msghdr *message,
1823  *                    int flags);
1824  *
1825  *  socket  - the socket descriptor of the endpoint.
1826  *  message - pointer to the msghdr structure which contains a single
1827  *            user message and possibly some ancillary data.
1828  *
1829  *            See Section 5 for complete description of the data
1830  *            structures.
1831  *
1832  *  flags   - flags sent or received with the user message, see Section
1833  *            5 for complete description of the flags.
1834  */
1835 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1836 
1837 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1838 			     struct msghdr *msg, size_t len, int noblock,
1839 			     int flags, int *addr_len)
1840 {
1841 	struct sctp_ulpevent *event = NULL;
1842 	struct sctp_sock *sp = sctp_sk(sk);
1843 	struct sk_buff *skb;
1844 	int copied;
1845 	int err = 0;
1846 	int skb_len;
1847 
1848 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1849 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1850 			  "len", len, "knoblauch", noblock,
1851 			  "flags", flags, "addr_len", addr_len);
1852 
1853 	sctp_lock_sock(sk);
1854 
1855 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1856 		err = -ENOTCONN;
1857 		goto out;
1858 	}
1859 
1860 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1861 	if (!skb)
1862 		goto out;
1863 
1864 	/* Get the total length of the skb including any skb's in the
1865 	 * frag_list.
1866 	 */
1867 	skb_len = skb->len;
1868 
1869 	copied = skb_len;
1870 	if (copied > len)
1871 		copied = len;
1872 
1873 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1874 
1875 	event = sctp_skb2event(skb);
1876 
1877 	if (err)
1878 		goto out_free;
1879 
1880 	sock_recv_timestamp(msg, sk, skb);
1881 	if (sctp_ulpevent_is_notification(event)) {
1882 		msg->msg_flags |= MSG_NOTIFICATION;
1883 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1884 	} else {
1885 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1886 	}
1887 
1888 	/* Check if we allow SCTP_SNDRCVINFO. */
1889 	if (sp->subscribe.sctp_data_io_event)
1890 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1891 #if 0
1892 	/* FIXME: we should be calling IP/IPv6 layers.  */
1893 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1894 		ip_cmsg_recv(msg, skb);
1895 #endif
1896 
1897 	err = copied;
1898 
1899 	/* If skb's length exceeds the user's buffer, update the skb and
1900 	 * push it back to the receive_queue so that the next call to
1901 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1902 	 */
1903 	if (skb_len > copied) {
1904 		msg->msg_flags &= ~MSG_EOR;
1905 		if (flags & MSG_PEEK)
1906 			goto out_free;
1907 		sctp_skb_pull(skb, copied);
1908 		skb_queue_head(&sk->sk_receive_queue, skb);
1909 
1910 		/* When only partial message is copied to the user, increase
1911 		 * rwnd by that amount. If all the data in the skb is read,
1912 		 * rwnd is updated when the event is freed.
1913 		 */
1914 		sctp_assoc_rwnd_increase(event->asoc, copied);
1915 		goto out;
1916 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1917 		   (event->msg_flags & MSG_EOR))
1918 		msg->msg_flags |= MSG_EOR;
1919 	else
1920 		msg->msg_flags &= ~MSG_EOR;
1921 
1922 out_free:
1923 	if (flags & MSG_PEEK) {
1924 		/* Release the skb reference acquired after peeking the skb in
1925 		 * sctp_skb_recv_datagram().
1926 		 */
1927 		kfree_skb(skb);
1928 	} else {
1929 		/* Free the event which includes releasing the reference to
1930 		 * the owner of the skb, freeing the skb and updating the
1931 		 * rwnd.
1932 		 */
1933 		sctp_ulpevent_free(event);
1934 	}
1935 out:
1936 	sctp_release_sock(sk);
1937 	return err;
1938 }
1939 
1940 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1941  *
1942  * This option is a on/off flag.  If enabled no SCTP message
1943  * fragmentation will be performed.  Instead if a message being sent
1944  * exceeds the current PMTU size, the message will NOT be sent and
1945  * instead a error will be indicated to the user.
1946  */
1947 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1948 					    char __user *optval, int optlen)
1949 {
1950 	int val;
1951 
1952 	if (optlen < sizeof(int))
1953 		return -EINVAL;
1954 
1955 	if (get_user(val, (int __user *)optval))
1956 		return -EFAULT;
1957 
1958 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1959 
1960 	return 0;
1961 }
1962 
1963 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1964 					int optlen)
1965 {
1966 	if (optlen != sizeof(struct sctp_event_subscribe))
1967 		return -EINVAL;
1968 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1969 		return -EFAULT;
1970 	return 0;
1971 }
1972 
1973 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1974  *
1975  * This socket option is applicable to the UDP-style socket only.  When
1976  * set it will cause associations that are idle for more than the
1977  * specified number of seconds to automatically close.  An association
1978  * being idle is defined an association that has NOT sent or received
1979  * user data.  The special value of '0' indicates that no automatic
1980  * close of any associations should be performed.  The option expects an
1981  * integer defining the number of seconds of idle time before an
1982  * association is closed.
1983  */
1984 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1985 					    int optlen)
1986 {
1987 	struct sctp_sock *sp = sctp_sk(sk);
1988 
1989 	/* Applicable to UDP-style socket only */
1990 	if (sctp_style(sk, TCP))
1991 		return -EOPNOTSUPP;
1992 	if (optlen != sizeof(int))
1993 		return -EINVAL;
1994 	if (copy_from_user(&sp->autoclose, optval, optlen))
1995 		return -EFAULT;
1996 
1997 	return 0;
1998 }
1999 
2000 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2001  *
2002  * Applications can enable or disable heartbeats for any peer address of
2003  * an association, modify an address's heartbeat interval, force a
2004  * heartbeat to be sent immediately, and adjust the address's maximum
2005  * number of retransmissions sent before an address is considered
2006  * unreachable.  The following structure is used to access and modify an
2007  * address's parameters:
2008  *
2009  *  struct sctp_paddrparams {
2010  *     sctp_assoc_t            spp_assoc_id;
2011  *     struct sockaddr_storage spp_address;
2012  *     uint32_t                spp_hbinterval;
2013  *     uint16_t                spp_pathmaxrxt;
2014  *     uint32_t                spp_pathmtu;
2015  *     uint32_t                spp_sackdelay;
2016  *     uint32_t                spp_flags;
2017  * };
2018  *
2019  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2020  *                     application, and identifies the association for
2021  *                     this query.
2022  *   spp_address     - This specifies which address is of interest.
2023  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2024  *                     in milliseconds.  If a  value of zero
2025  *                     is present in this field then no changes are to
2026  *                     be made to this parameter.
2027  *   spp_pathmaxrxt  - This contains the maximum number of
2028  *                     retransmissions before this address shall be
2029  *                     considered unreachable. If a  value of zero
2030  *                     is present in this field then no changes are to
2031  *                     be made to this parameter.
2032  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2033  *                     specified here will be the "fixed" path mtu.
2034  *                     Note that if the spp_address field is empty
2035  *                     then all associations on this address will
2036  *                     have this fixed path mtu set upon them.
2037  *
2038  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2039  *                     the number of milliseconds that sacks will be delayed
2040  *                     for. This value will apply to all addresses of an
2041  *                     association if the spp_address field is empty. Note
2042  *                     also, that if delayed sack is enabled and this
2043  *                     value is set to 0, no change is made to the last
2044  *                     recorded delayed sack timer value.
2045  *
2046  *   spp_flags       - These flags are used to control various features
2047  *                     on an association. The flag field may contain
2048  *                     zero or more of the following options.
2049  *
2050  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2051  *                     specified address. Note that if the address
2052  *                     field is empty all addresses for the association
2053  *                     have heartbeats enabled upon them.
2054  *
2055  *                     SPP_HB_DISABLE - Disable heartbeats on the
2056  *                     speicifed address. Note that if the address
2057  *                     field is empty all addresses for the association
2058  *                     will have their heartbeats disabled. Note also
2059  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2060  *                     mutually exclusive, only one of these two should
2061  *                     be specified. Enabling both fields will have
2062  *                     undetermined results.
2063  *
2064  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2065  *                     to be made immediately.
2066  *
2067  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2068  *                     heartbeat delayis to be set to the value of 0
2069  *                     milliseconds.
2070  *
2071  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2072  *                     discovery upon the specified address. Note that
2073  *                     if the address feild is empty then all addresses
2074  *                     on the association are effected.
2075  *
2076  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2077  *                     discovery upon the specified address. Note that
2078  *                     if the address feild is empty then all addresses
2079  *                     on the association are effected. Not also that
2080  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2081  *                     exclusive. Enabling both will have undetermined
2082  *                     results.
2083  *
2084  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2085  *                     on delayed sack. The time specified in spp_sackdelay
2086  *                     is used to specify the sack delay for this address. Note
2087  *                     that if spp_address is empty then all addresses will
2088  *                     enable delayed sack and take on the sack delay
2089  *                     value specified in spp_sackdelay.
2090  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2091  *                     off delayed sack. If the spp_address field is blank then
2092  *                     delayed sack is disabled for the entire association. Note
2093  *                     also that this field is mutually exclusive to
2094  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2095  *                     results.
2096  */
2097 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2098 				       struct sctp_transport   *trans,
2099 				       struct sctp_association *asoc,
2100 				       struct sctp_sock        *sp,
2101 				       int                      hb_change,
2102 				       int                      pmtud_change,
2103 				       int                      sackdelay_change)
2104 {
2105 	int error;
2106 
2107 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2108 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2109 		if (error)
2110 			return error;
2111 	}
2112 
2113 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2114 	 * this field is ignored.  Note also that a value of zero indicates
2115 	 * the current setting should be left unchanged.
2116 	 */
2117 	if (params->spp_flags & SPP_HB_ENABLE) {
2118 
2119 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2120 		 * set.  This lets us use 0 value when this flag
2121 		 * is set.
2122 		 */
2123 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2124 			params->spp_hbinterval = 0;
2125 
2126 		if (params->spp_hbinterval ||
2127 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2128 			if (trans) {
2129 				trans->hbinterval =
2130 				    msecs_to_jiffies(params->spp_hbinterval);
2131 			} else if (asoc) {
2132 				asoc->hbinterval =
2133 				    msecs_to_jiffies(params->spp_hbinterval);
2134 			} else {
2135 				sp->hbinterval = params->spp_hbinterval;
2136 			}
2137 		}
2138 	}
2139 
2140 	if (hb_change) {
2141 		if (trans) {
2142 			trans->param_flags =
2143 				(trans->param_flags & ~SPP_HB) | hb_change;
2144 		} else if (asoc) {
2145 			asoc->param_flags =
2146 				(asoc->param_flags & ~SPP_HB) | hb_change;
2147 		} else {
2148 			sp->param_flags =
2149 				(sp->param_flags & ~SPP_HB) | hb_change;
2150 		}
2151 	}
2152 
2153 	/* When Path MTU discovery is disabled the value specified here will
2154 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2155 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2156 	 * effect).
2157 	 */
2158 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2159 		if (trans) {
2160 			trans->pathmtu = params->spp_pathmtu;
2161 			sctp_assoc_sync_pmtu(asoc);
2162 		} else if (asoc) {
2163 			asoc->pathmtu = params->spp_pathmtu;
2164 			sctp_frag_point(sp, params->spp_pathmtu);
2165 		} else {
2166 			sp->pathmtu = params->spp_pathmtu;
2167 		}
2168 	}
2169 
2170 	if (pmtud_change) {
2171 		if (trans) {
2172 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2173 				(params->spp_flags & SPP_PMTUD_ENABLE);
2174 			trans->param_flags =
2175 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2176 			if (update) {
2177 				sctp_transport_pmtu(trans);
2178 				sctp_assoc_sync_pmtu(asoc);
2179 			}
2180 		} else if (asoc) {
2181 			asoc->param_flags =
2182 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2183 		} else {
2184 			sp->param_flags =
2185 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2186 		}
2187 	}
2188 
2189 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2190 	 * value of this field is ignored.  Note also that a value of zero
2191 	 * indicates the current setting should be left unchanged.
2192 	 */
2193 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2194 		if (trans) {
2195 			trans->sackdelay =
2196 				msecs_to_jiffies(params->spp_sackdelay);
2197 		} else if (asoc) {
2198 			asoc->sackdelay =
2199 				msecs_to_jiffies(params->spp_sackdelay);
2200 		} else {
2201 			sp->sackdelay = params->spp_sackdelay;
2202 		}
2203 	}
2204 
2205 	if (sackdelay_change) {
2206 		if (trans) {
2207 			trans->param_flags =
2208 				(trans->param_flags & ~SPP_SACKDELAY) |
2209 				sackdelay_change;
2210 		} else if (asoc) {
2211 			asoc->param_flags =
2212 				(asoc->param_flags & ~SPP_SACKDELAY) |
2213 				sackdelay_change;
2214 		} else {
2215 			sp->param_flags =
2216 				(sp->param_flags & ~SPP_SACKDELAY) |
2217 				sackdelay_change;
2218 		}
2219 	}
2220 
2221 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2222 	 * of this field is ignored.  Note also that a value of zero
2223 	 * indicates the current setting should be left unchanged.
2224 	 */
2225 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2226 		if (trans) {
2227 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2228 		} else if (asoc) {
2229 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2230 		} else {
2231 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2232 		}
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2239 					    char __user *optval, int optlen)
2240 {
2241 	struct sctp_paddrparams  params;
2242 	struct sctp_transport   *trans = NULL;
2243 	struct sctp_association *asoc = NULL;
2244 	struct sctp_sock        *sp = sctp_sk(sk);
2245 	int error;
2246 	int hb_change, pmtud_change, sackdelay_change;
2247 
2248 	if (optlen != sizeof(struct sctp_paddrparams))
2249 		return - EINVAL;
2250 
2251 	if (copy_from_user(&params, optval, optlen))
2252 		return -EFAULT;
2253 
2254 	/* Validate flags and value parameters. */
2255 	hb_change        = params.spp_flags & SPP_HB;
2256 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2257 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2258 
2259 	if (hb_change        == SPP_HB ||
2260 	    pmtud_change     == SPP_PMTUD ||
2261 	    sackdelay_change == SPP_SACKDELAY ||
2262 	    params.spp_sackdelay > 500 ||
2263 	    (params.spp_pathmtu
2264 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2265 		return -EINVAL;
2266 
2267 	/* If an address other than INADDR_ANY is specified, and
2268 	 * no transport is found, then the request is invalid.
2269 	 */
2270 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2271 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2272 					       params.spp_assoc_id);
2273 		if (!trans)
2274 			return -EINVAL;
2275 	}
2276 
2277 	/* Get association, if assoc_id != 0 and the socket is a one
2278 	 * to many style socket, and an association was not found, then
2279 	 * the id was invalid.
2280 	 */
2281 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2282 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2283 		return -EINVAL;
2284 
2285 	/* Heartbeat demand can only be sent on a transport or
2286 	 * association, but not a socket.
2287 	 */
2288 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2289 		return -EINVAL;
2290 
2291 	/* Process parameters. */
2292 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2293 					    hb_change, pmtud_change,
2294 					    sackdelay_change);
2295 
2296 	if (error)
2297 		return error;
2298 
2299 	/* If changes are for association, also apply parameters to each
2300 	 * transport.
2301 	 */
2302 	if (!trans && asoc) {
2303 		struct list_head *pos;
2304 
2305 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2306 			trans = list_entry(pos, struct sctp_transport,
2307 					   transports);
2308 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2309 						    hb_change, pmtud_change,
2310 						    sackdelay_change);
2311 		}
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2318  *
2319  *   This options will get or set the delayed ack timer.  The time is set
2320  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2321  *   endpoints default delayed ack timer value.  If the assoc_id field is
2322  *   non-zero, then the set or get effects the specified association.
2323  *
2324  *   struct sctp_assoc_value {
2325  *       sctp_assoc_t            assoc_id;
2326  *       uint32_t                assoc_value;
2327  *   };
2328  *
2329  *     assoc_id    - This parameter, indicates which association the
2330  *                   user is preforming an action upon. Note that if
2331  *                   this field's value is zero then the endpoints
2332  *                   default value is changed (effecting future
2333  *                   associations only).
2334  *
2335  *     assoc_value - This parameter contains the number of milliseconds
2336  *                   that the user is requesting the delayed ACK timer
2337  *                   be set to. Note that this value is defined in
2338  *                   the standard to be between 200 and 500 milliseconds.
2339  *
2340  *                   Note: a value of zero will leave the value alone,
2341  *                   but disable SACK delay. A non-zero value will also
2342  *                   enable SACK delay.
2343  */
2344 
2345 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2346 					    char __user *optval, int optlen)
2347 {
2348 	struct sctp_assoc_value  params;
2349 	struct sctp_transport   *trans = NULL;
2350 	struct sctp_association *asoc = NULL;
2351 	struct sctp_sock        *sp = sctp_sk(sk);
2352 
2353 	if (optlen != sizeof(struct sctp_assoc_value))
2354 		return - EINVAL;
2355 
2356 	if (copy_from_user(&params, optval, optlen))
2357 		return -EFAULT;
2358 
2359 	/* Validate value parameter. */
2360 	if (params.assoc_value > 500)
2361 		return -EINVAL;
2362 
2363 	/* Get association, if assoc_id != 0 and the socket is a one
2364 	 * to many style socket, and an association was not found, then
2365 	 * the id was invalid.
2366 	 */
2367 	asoc = sctp_id2assoc(sk, params.assoc_id);
2368 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2369 		return -EINVAL;
2370 
2371 	if (params.assoc_value) {
2372 		if (asoc) {
2373 			asoc->sackdelay =
2374 				msecs_to_jiffies(params.assoc_value);
2375 			asoc->param_flags =
2376 				(asoc->param_flags & ~SPP_SACKDELAY) |
2377 				SPP_SACKDELAY_ENABLE;
2378 		} else {
2379 			sp->sackdelay = params.assoc_value;
2380 			sp->param_flags =
2381 				(sp->param_flags & ~SPP_SACKDELAY) |
2382 				SPP_SACKDELAY_ENABLE;
2383 		}
2384 	} else {
2385 		if (asoc) {
2386 			asoc->param_flags =
2387 				(asoc->param_flags & ~SPP_SACKDELAY) |
2388 				SPP_SACKDELAY_DISABLE;
2389 		} else {
2390 			sp->param_flags =
2391 				(sp->param_flags & ~SPP_SACKDELAY) |
2392 				SPP_SACKDELAY_DISABLE;
2393 		}
2394 	}
2395 
2396 	/* If change is for association, also apply to each transport. */
2397 	if (asoc) {
2398 		struct list_head *pos;
2399 
2400 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2401 			trans = list_entry(pos, struct sctp_transport,
2402 					   transports);
2403 			if (params.assoc_value) {
2404 				trans->sackdelay =
2405 					msecs_to_jiffies(params.assoc_value);
2406 				trans->param_flags =
2407 					(trans->param_flags & ~SPP_SACKDELAY) |
2408 					SPP_SACKDELAY_ENABLE;
2409 			} else {
2410 				trans->param_flags =
2411 					(trans->param_flags & ~SPP_SACKDELAY) |
2412 					SPP_SACKDELAY_DISABLE;
2413 			}
2414 		}
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2421  *
2422  * Applications can specify protocol parameters for the default association
2423  * initialization.  The option name argument to setsockopt() and getsockopt()
2424  * is SCTP_INITMSG.
2425  *
2426  * Setting initialization parameters is effective only on an unconnected
2427  * socket (for UDP-style sockets only future associations are effected
2428  * by the change).  With TCP-style sockets, this option is inherited by
2429  * sockets derived from a listener socket.
2430  */
2431 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2432 {
2433 	struct sctp_initmsg sinit;
2434 	struct sctp_sock *sp = sctp_sk(sk);
2435 
2436 	if (optlen != sizeof(struct sctp_initmsg))
2437 		return -EINVAL;
2438 	if (copy_from_user(&sinit, optval, optlen))
2439 		return -EFAULT;
2440 
2441 	if (sinit.sinit_num_ostreams)
2442 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2443 	if (sinit.sinit_max_instreams)
2444 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2445 	if (sinit.sinit_max_attempts)
2446 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2447 	if (sinit.sinit_max_init_timeo)
2448 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2449 
2450 	return 0;
2451 }
2452 
2453 /*
2454  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2455  *
2456  *   Applications that wish to use the sendto() system call may wish to
2457  *   specify a default set of parameters that would normally be supplied
2458  *   through the inclusion of ancillary data.  This socket option allows
2459  *   such an application to set the default sctp_sndrcvinfo structure.
2460  *   The application that wishes to use this socket option simply passes
2461  *   in to this call the sctp_sndrcvinfo structure defined in Section
2462  *   5.2.2) The input parameters accepted by this call include
2463  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2464  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2465  *   to this call if the caller is using the UDP model.
2466  */
2467 static int sctp_setsockopt_default_send_param(struct sock *sk,
2468 						char __user *optval, int optlen)
2469 {
2470 	struct sctp_sndrcvinfo info;
2471 	struct sctp_association *asoc;
2472 	struct sctp_sock *sp = sctp_sk(sk);
2473 
2474 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2475 		return -EINVAL;
2476 	if (copy_from_user(&info, optval, optlen))
2477 		return -EFAULT;
2478 
2479 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2480 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2481 		return -EINVAL;
2482 
2483 	if (asoc) {
2484 		asoc->default_stream = info.sinfo_stream;
2485 		asoc->default_flags = info.sinfo_flags;
2486 		asoc->default_ppid = info.sinfo_ppid;
2487 		asoc->default_context = info.sinfo_context;
2488 		asoc->default_timetolive = info.sinfo_timetolive;
2489 	} else {
2490 		sp->default_stream = info.sinfo_stream;
2491 		sp->default_flags = info.sinfo_flags;
2492 		sp->default_ppid = info.sinfo_ppid;
2493 		sp->default_context = info.sinfo_context;
2494 		sp->default_timetolive = info.sinfo_timetolive;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2501  *
2502  * Requests that the local SCTP stack use the enclosed peer address as
2503  * the association primary.  The enclosed address must be one of the
2504  * association peer's addresses.
2505  */
2506 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2507 					int optlen)
2508 {
2509 	struct sctp_prim prim;
2510 	struct sctp_transport *trans;
2511 
2512 	if (optlen != sizeof(struct sctp_prim))
2513 		return -EINVAL;
2514 
2515 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2516 		return -EFAULT;
2517 
2518 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2519 	if (!trans)
2520 		return -EINVAL;
2521 
2522 	sctp_assoc_set_primary(trans->asoc, trans);
2523 
2524 	return 0;
2525 }
2526 
2527 /*
2528  * 7.1.5 SCTP_NODELAY
2529  *
2530  * Turn on/off any Nagle-like algorithm.  This means that packets are
2531  * generally sent as soon as possible and no unnecessary delays are
2532  * introduced, at the cost of more packets in the network.  Expects an
2533  *  integer boolean flag.
2534  */
2535 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2536 					int optlen)
2537 {
2538 	int val;
2539 
2540 	if (optlen < sizeof(int))
2541 		return -EINVAL;
2542 	if (get_user(val, (int __user *)optval))
2543 		return -EFAULT;
2544 
2545 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2546 	return 0;
2547 }
2548 
2549 /*
2550  *
2551  * 7.1.1 SCTP_RTOINFO
2552  *
2553  * The protocol parameters used to initialize and bound retransmission
2554  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2555  * and modify these parameters.
2556  * All parameters are time values, in milliseconds.  A value of 0, when
2557  * modifying the parameters, indicates that the current value should not
2558  * be changed.
2559  *
2560  */
2561 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2562 	struct sctp_rtoinfo rtoinfo;
2563 	struct sctp_association *asoc;
2564 
2565 	if (optlen != sizeof (struct sctp_rtoinfo))
2566 		return -EINVAL;
2567 
2568 	if (copy_from_user(&rtoinfo, optval, optlen))
2569 		return -EFAULT;
2570 
2571 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2572 
2573 	/* Set the values to the specific association */
2574 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2575 		return -EINVAL;
2576 
2577 	if (asoc) {
2578 		if (rtoinfo.srto_initial != 0)
2579 			asoc->rto_initial =
2580 				msecs_to_jiffies(rtoinfo.srto_initial);
2581 		if (rtoinfo.srto_max != 0)
2582 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2583 		if (rtoinfo.srto_min != 0)
2584 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2585 	} else {
2586 		/* If there is no association or the association-id = 0
2587 		 * set the values to the endpoint.
2588 		 */
2589 		struct sctp_sock *sp = sctp_sk(sk);
2590 
2591 		if (rtoinfo.srto_initial != 0)
2592 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2593 		if (rtoinfo.srto_max != 0)
2594 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2595 		if (rtoinfo.srto_min != 0)
2596 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 /*
2603  *
2604  * 7.1.2 SCTP_ASSOCINFO
2605  *
2606  * This option is used to tune the maximum retransmission attempts
2607  * of the association.
2608  * Returns an error if the new association retransmission value is
2609  * greater than the sum of the retransmission value  of the peer.
2610  * See [SCTP] for more information.
2611  *
2612  */
2613 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2614 {
2615 
2616 	struct sctp_assocparams assocparams;
2617 	struct sctp_association *asoc;
2618 
2619 	if (optlen != sizeof(struct sctp_assocparams))
2620 		return -EINVAL;
2621 	if (copy_from_user(&assocparams, optval, optlen))
2622 		return -EFAULT;
2623 
2624 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2625 
2626 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2627 		return -EINVAL;
2628 
2629 	/* Set the values to the specific association */
2630 	if (asoc) {
2631 		if (assocparams.sasoc_asocmaxrxt != 0) {
2632 			__u32 path_sum = 0;
2633 			int   paths = 0;
2634 			struct list_head *pos;
2635 			struct sctp_transport *peer_addr;
2636 
2637 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2638 				peer_addr = list_entry(pos,
2639 						struct sctp_transport,
2640 						transports);
2641 				path_sum += peer_addr->pathmaxrxt;
2642 				paths++;
2643 			}
2644 
2645 			/* Only validate asocmaxrxt if we have more then
2646 			 * one path/transport.  We do this because path
2647 			 * retransmissions are only counted when we have more
2648 			 * then one path.
2649 			 */
2650 			if (paths > 1 &&
2651 			    assocparams.sasoc_asocmaxrxt > path_sum)
2652 				return -EINVAL;
2653 
2654 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2655 		}
2656 
2657 		if (assocparams.sasoc_cookie_life != 0) {
2658 			asoc->cookie_life.tv_sec =
2659 					assocparams.sasoc_cookie_life / 1000;
2660 			asoc->cookie_life.tv_usec =
2661 					(assocparams.sasoc_cookie_life % 1000)
2662 					* 1000;
2663 		}
2664 	} else {
2665 		/* Set the values to the endpoint */
2666 		struct sctp_sock *sp = sctp_sk(sk);
2667 
2668 		if (assocparams.sasoc_asocmaxrxt != 0)
2669 			sp->assocparams.sasoc_asocmaxrxt =
2670 						assocparams.sasoc_asocmaxrxt;
2671 		if (assocparams.sasoc_cookie_life != 0)
2672 			sp->assocparams.sasoc_cookie_life =
2673 						assocparams.sasoc_cookie_life;
2674 	}
2675 	return 0;
2676 }
2677 
2678 /*
2679  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2680  *
2681  * This socket option is a boolean flag which turns on or off mapped V4
2682  * addresses.  If this option is turned on and the socket is type
2683  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2684  * If this option is turned off, then no mapping will be done of V4
2685  * addresses and a user will receive both PF_INET6 and PF_INET type
2686  * addresses on the socket.
2687  */
2688 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2689 {
2690 	int val;
2691 	struct sctp_sock *sp = sctp_sk(sk);
2692 
2693 	if (optlen < sizeof(int))
2694 		return -EINVAL;
2695 	if (get_user(val, (int __user *)optval))
2696 		return -EFAULT;
2697 	if (val)
2698 		sp->v4mapped = 1;
2699 	else
2700 		sp->v4mapped = 0;
2701 
2702 	return 0;
2703 }
2704 
2705 /*
2706  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2707  *
2708  * This socket option specifies the maximum size to put in any outgoing
2709  * SCTP chunk.  If a message is larger than this size it will be
2710  * fragmented by SCTP into the specified size.  Note that the underlying
2711  * SCTP implementation may fragment into smaller sized chunks when the
2712  * PMTU of the underlying association is smaller than the value set by
2713  * the user.
2714  */
2715 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2716 {
2717 	struct sctp_association *asoc;
2718 	struct list_head *pos;
2719 	struct sctp_sock *sp = sctp_sk(sk);
2720 	int val;
2721 
2722 	if (optlen < sizeof(int))
2723 		return -EINVAL;
2724 	if (get_user(val, (int __user *)optval))
2725 		return -EFAULT;
2726 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2727 		return -EINVAL;
2728 	sp->user_frag = val;
2729 
2730 	/* Update the frag_point of the existing associations. */
2731 	list_for_each(pos, &(sp->ep->asocs)) {
2732 		asoc = list_entry(pos, struct sctp_association, asocs);
2733 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 
2740 /*
2741  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2742  *
2743  *   Requests that the peer mark the enclosed address as the association
2744  *   primary. The enclosed address must be one of the association's
2745  *   locally bound addresses. The following structure is used to make a
2746  *   set primary request:
2747  */
2748 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2749 					     int optlen)
2750 {
2751 	struct sctp_sock	*sp;
2752 	struct sctp_endpoint	*ep;
2753 	struct sctp_association	*asoc = NULL;
2754 	struct sctp_setpeerprim	prim;
2755 	struct sctp_chunk	*chunk;
2756 	int 			err;
2757 
2758 	sp = sctp_sk(sk);
2759 	ep = sp->ep;
2760 
2761 	if (!sctp_addip_enable)
2762 		return -EPERM;
2763 
2764 	if (optlen != sizeof(struct sctp_setpeerprim))
2765 		return -EINVAL;
2766 
2767 	if (copy_from_user(&prim, optval, optlen))
2768 		return -EFAULT;
2769 
2770 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2771 	if (!asoc)
2772 		return -EINVAL;
2773 
2774 	if (!asoc->peer.asconf_capable)
2775 		return -EPERM;
2776 
2777 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2778 		return -EPERM;
2779 
2780 	if (!sctp_state(asoc, ESTABLISHED))
2781 		return -ENOTCONN;
2782 
2783 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2784 		return -EADDRNOTAVAIL;
2785 
2786 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2787 	chunk = sctp_make_asconf_set_prim(asoc,
2788 					  (union sctp_addr *)&prim.sspp_addr);
2789 	if (!chunk)
2790 		return -ENOMEM;
2791 
2792 	err = sctp_send_asconf(asoc, chunk);
2793 
2794 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2795 
2796 	return err;
2797 }
2798 
2799 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2800 					  int optlen)
2801 {
2802 	struct sctp_setadaptation adaptation;
2803 
2804 	if (optlen != sizeof(struct sctp_setadaptation))
2805 		return -EINVAL;
2806 	if (copy_from_user(&adaptation, optval, optlen))
2807 		return -EFAULT;
2808 
2809 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2810 
2811 	return 0;
2812 }
2813 
2814 /*
2815  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2816  *
2817  * The context field in the sctp_sndrcvinfo structure is normally only
2818  * used when a failed message is retrieved holding the value that was
2819  * sent down on the actual send call.  This option allows the setting of
2820  * a default context on an association basis that will be received on
2821  * reading messages from the peer.  This is especially helpful in the
2822  * one-2-many model for an application to keep some reference to an
2823  * internal state machine that is processing messages on the
2824  * association.  Note that the setting of this value only effects
2825  * received messages from the peer and does not effect the value that is
2826  * saved with outbound messages.
2827  */
2828 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2829 				   int optlen)
2830 {
2831 	struct sctp_assoc_value params;
2832 	struct sctp_sock *sp;
2833 	struct sctp_association *asoc;
2834 
2835 	if (optlen != sizeof(struct sctp_assoc_value))
2836 		return -EINVAL;
2837 	if (copy_from_user(&params, optval, optlen))
2838 		return -EFAULT;
2839 
2840 	sp = sctp_sk(sk);
2841 
2842 	if (params.assoc_id != 0) {
2843 		asoc = sctp_id2assoc(sk, params.assoc_id);
2844 		if (!asoc)
2845 			return -EINVAL;
2846 		asoc->default_rcv_context = params.assoc_value;
2847 	} else {
2848 		sp->default_rcv_context = params.assoc_value;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2856  *
2857  * This options will at a minimum specify if the implementation is doing
2858  * fragmented interleave.  Fragmented interleave, for a one to many
2859  * socket, is when subsequent calls to receive a message may return
2860  * parts of messages from different associations.  Some implementations
2861  * may allow you to turn this value on or off.  If so, when turned off,
2862  * no fragment interleave will occur (which will cause a head of line
2863  * blocking amongst multiple associations sharing the same one to many
2864  * socket).  When this option is turned on, then each receive call may
2865  * come from a different association (thus the user must receive data
2866  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2867  * association each receive belongs to.
2868  *
2869  * This option takes a boolean value.  A non-zero value indicates that
2870  * fragmented interleave is on.  A value of zero indicates that
2871  * fragmented interleave is off.
2872  *
2873  * Note that it is important that an implementation that allows this
2874  * option to be turned on, have it off by default.  Otherwise an unaware
2875  * application using the one to many model may become confused and act
2876  * incorrectly.
2877  */
2878 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2879 					       char __user *optval,
2880 					       int optlen)
2881 {
2882 	int val;
2883 
2884 	if (optlen != sizeof(int))
2885 		return -EINVAL;
2886 	if (get_user(val, (int __user *)optval))
2887 		return -EFAULT;
2888 
2889 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2890 
2891 	return 0;
2892 }
2893 
2894 /*
2895  * 7.1.25.  Set or Get the sctp partial delivery point
2896  *       (SCTP_PARTIAL_DELIVERY_POINT)
2897  * This option will set or get the SCTP partial delivery point.  This
2898  * point is the size of a message where the partial delivery API will be
2899  * invoked to help free up rwnd space for the peer.  Setting this to a
2900  * lower value will cause partial delivery's to happen more often.  The
2901  * calls argument is an integer that sets or gets the partial delivery
2902  * point.
2903  */
2904 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2905 						  char __user *optval,
2906 						  int optlen)
2907 {
2908 	u32 val;
2909 
2910 	if (optlen != sizeof(u32))
2911 		return -EINVAL;
2912 	if (get_user(val, (int __user *)optval))
2913 		return -EFAULT;
2914 
2915 	sctp_sk(sk)->pd_point = val;
2916 
2917 	return 0; /* is this the right error code? */
2918 }
2919 
2920 /*
2921  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
2922  *
2923  * This option will allow a user to change the maximum burst of packets
2924  * that can be emitted by this association.  Note that the default value
2925  * is 4, and some implementations may restrict this setting so that it
2926  * can only be lowered.
2927  *
2928  * NOTE: This text doesn't seem right.  Do this on a socket basis with
2929  * future associations inheriting the socket value.
2930  */
2931 static int sctp_setsockopt_maxburst(struct sock *sk,
2932 				    char __user *optval,
2933 				    int optlen)
2934 {
2935 	int val;
2936 
2937 	if (optlen != sizeof(int))
2938 		return -EINVAL;
2939 	if (get_user(val, (int __user *)optval))
2940 		return -EFAULT;
2941 
2942 	if (val < 0)
2943 		return -EINVAL;
2944 
2945 	sctp_sk(sk)->max_burst = val;
2946 
2947 	return 0;
2948 }
2949 
2950 /* API 6.2 setsockopt(), getsockopt()
2951  *
2952  * Applications use setsockopt() and getsockopt() to set or retrieve
2953  * socket options.  Socket options are used to change the default
2954  * behavior of sockets calls.  They are described in Section 7.
2955  *
2956  * The syntax is:
2957  *
2958  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2959  *                    int __user *optlen);
2960  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2961  *                    int optlen);
2962  *
2963  *   sd      - the socket descript.
2964  *   level   - set to IPPROTO_SCTP for all SCTP options.
2965  *   optname - the option name.
2966  *   optval  - the buffer to store the value of the option.
2967  *   optlen  - the size of the buffer.
2968  */
2969 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2970 				char __user *optval, int optlen)
2971 {
2972 	int retval = 0;
2973 
2974 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2975 			  sk, optname);
2976 
2977 	/* I can hardly begin to describe how wrong this is.  This is
2978 	 * so broken as to be worse than useless.  The API draft
2979 	 * REALLY is NOT helpful here...  I am not convinced that the
2980 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2981 	 * are at all well-founded.
2982 	 */
2983 	if (level != SOL_SCTP) {
2984 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2985 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2986 		goto out_nounlock;
2987 	}
2988 
2989 	sctp_lock_sock(sk);
2990 
2991 	switch (optname) {
2992 	case SCTP_SOCKOPT_BINDX_ADD:
2993 		/* 'optlen' is the size of the addresses buffer. */
2994 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2995 					       optlen, SCTP_BINDX_ADD_ADDR);
2996 		break;
2997 
2998 	case SCTP_SOCKOPT_BINDX_REM:
2999 		/* 'optlen' is the size of the addresses buffer. */
3000 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3001 					       optlen, SCTP_BINDX_REM_ADDR);
3002 		break;
3003 
3004 	case SCTP_SOCKOPT_CONNECTX:
3005 		/* 'optlen' is the size of the addresses buffer. */
3006 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3007 					       optlen);
3008 		break;
3009 
3010 	case SCTP_DISABLE_FRAGMENTS:
3011 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3012 		break;
3013 
3014 	case SCTP_EVENTS:
3015 		retval = sctp_setsockopt_events(sk, optval, optlen);
3016 		break;
3017 
3018 	case SCTP_AUTOCLOSE:
3019 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3020 		break;
3021 
3022 	case SCTP_PEER_ADDR_PARAMS:
3023 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3024 		break;
3025 
3026 	case SCTP_DELAYED_ACK_TIME:
3027 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3028 		break;
3029 	case SCTP_PARTIAL_DELIVERY_POINT:
3030 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3031 		break;
3032 
3033 	case SCTP_INITMSG:
3034 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3035 		break;
3036 	case SCTP_DEFAULT_SEND_PARAM:
3037 		retval = sctp_setsockopt_default_send_param(sk, optval,
3038 							    optlen);
3039 		break;
3040 	case SCTP_PRIMARY_ADDR:
3041 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3042 		break;
3043 	case SCTP_SET_PEER_PRIMARY_ADDR:
3044 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3045 		break;
3046 	case SCTP_NODELAY:
3047 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3048 		break;
3049 	case SCTP_RTOINFO:
3050 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3051 		break;
3052 	case SCTP_ASSOCINFO:
3053 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3054 		break;
3055 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3056 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3057 		break;
3058 	case SCTP_MAXSEG:
3059 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3060 		break;
3061 	case SCTP_ADAPTATION_LAYER:
3062 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3063 		break;
3064 	case SCTP_CONTEXT:
3065 		retval = sctp_setsockopt_context(sk, optval, optlen);
3066 		break;
3067 	case SCTP_FRAGMENT_INTERLEAVE:
3068 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3069 		break;
3070 	case SCTP_MAX_BURST:
3071 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3072 		break;
3073 	default:
3074 		retval = -ENOPROTOOPT;
3075 		break;
3076 	}
3077 
3078 	sctp_release_sock(sk);
3079 
3080 out_nounlock:
3081 	return retval;
3082 }
3083 
3084 /* API 3.1.6 connect() - UDP Style Syntax
3085  *
3086  * An application may use the connect() call in the UDP model to initiate an
3087  * association without sending data.
3088  *
3089  * The syntax is:
3090  *
3091  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3092  *
3093  * sd: the socket descriptor to have a new association added to.
3094  *
3095  * nam: the address structure (either struct sockaddr_in or struct
3096  *    sockaddr_in6 defined in RFC2553 [7]).
3097  *
3098  * len: the size of the address.
3099  */
3100 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3101 			     int addr_len)
3102 {
3103 	int err = 0;
3104 	struct sctp_af *af;
3105 
3106 	sctp_lock_sock(sk);
3107 
3108 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3109 			  __FUNCTION__, sk, addr, addr_len);
3110 
3111 	/* Validate addr_len before calling common connect/connectx routine. */
3112 	af = sctp_get_af_specific(addr->sa_family);
3113 	if (!af || addr_len < af->sockaddr_len) {
3114 		err = -EINVAL;
3115 	} else {
3116 		/* Pass correct addr len to common routine (so it knows there
3117 		 * is only one address being passed.
3118 		 */
3119 		err = __sctp_connect(sk, addr, af->sockaddr_len);
3120 	}
3121 
3122 	sctp_release_sock(sk);
3123 	return err;
3124 }
3125 
3126 /* FIXME: Write comments. */
3127 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3128 {
3129 	return -EOPNOTSUPP; /* STUB */
3130 }
3131 
3132 /* 4.1.4 accept() - TCP Style Syntax
3133  *
3134  * Applications use accept() call to remove an established SCTP
3135  * association from the accept queue of the endpoint.  A new socket
3136  * descriptor will be returned from accept() to represent the newly
3137  * formed association.
3138  */
3139 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3140 {
3141 	struct sctp_sock *sp;
3142 	struct sctp_endpoint *ep;
3143 	struct sock *newsk = NULL;
3144 	struct sctp_association *asoc;
3145 	long timeo;
3146 	int error = 0;
3147 
3148 	sctp_lock_sock(sk);
3149 
3150 	sp = sctp_sk(sk);
3151 	ep = sp->ep;
3152 
3153 	if (!sctp_style(sk, TCP)) {
3154 		error = -EOPNOTSUPP;
3155 		goto out;
3156 	}
3157 
3158 	if (!sctp_sstate(sk, LISTENING)) {
3159 		error = -EINVAL;
3160 		goto out;
3161 	}
3162 
3163 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3164 
3165 	error = sctp_wait_for_accept(sk, timeo);
3166 	if (error)
3167 		goto out;
3168 
3169 	/* We treat the list of associations on the endpoint as the accept
3170 	 * queue and pick the first association on the list.
3171 	 */
3172 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3173 
3174 	newsk = sp->pf->create_accept_sk(sk, asoc);
3175 	if (!newsk) {
3176 		error = -ENOMEM;
3177 		goto out;
3178 	}
3179 
3180 	/* Populate the fields of the newsk from the oldsk and migrate the
3181 	 * asoc to the newsk.
3182 	 */
3183 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3184 
3185 out:
3186 	sctp_release_sock(sk);
3187 	*err = error;
3188 	return newsk;
3189 }
3190 
3191 /* The SCTP ioctl handler. */
3192 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3193 {
3194 	return -ENOIOCTLCMD;
3195 }
3196 
3197 /* This is the function which gets called during socket creation to
3198  * initialized the SCTP-specific portion of the sock.
3199  * The sock structure should already be zero-filled memory.
3200  */
3201 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3202 {
3203 	struct sctp_endpoint *ep;
3204 	struct sctp_sock *sp;
3205 
3206 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3207 
3208 	sp = sctp_sk(sk);
3209 
3210 	/* Initialize the SCTP per socket area.  */
3211 	switch (sk->sk_type) {
3212 	case SOCK_SEQPACKET:
3213 		sp->type = SCTP_SOCKET_UDP;
3214 		break;
3215 	case SOCK_STREAM:
3216 		sp->type = SCTP_SOCKET_TCP;
3217 		break;
3218 	default:
3219 		return -ESOCKTNOSUPPORT;
3220 	}
3221 
3222 	/* Initialize default send parameters. These parameters can be
3223 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3224 	 */
3225 	sp->default_stream = 0;
3226 	sp->default_ppid = 0;
3227 	sp->default_flags = 0;
3228 	sp->default_context = 0;
3229 	sp->default_timetolive = 0;
3230 
3231 	sp->default_rcv_context = 0;
3232 	sp->max_burst = sctp_max_burst;
3233 
3234 	/* Initialize default setup parameters. These parameters
3235 	 * can be modified with the SCTP_INITMSG socket option or
3236 	 * overridden by the SCTP_INIT CMSG.
3237 	 */
3238 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3239 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3240 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3241 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3242 
3243 	/* Initialize default RTO related parameters.  These parameters can
3244 	 * be modified for with the SCTP_RTOINFO socket option.
3245 	 */
3246 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3247 	sp->rtoinfo.srto_max     = sctp_rto_max;
3248 	sp->rtoinfo.srto_min     = sctp_rto_min;
3249 
3250 	/* Initialize default association related parameters. These parameters
3251 	 * can be modified with the SCTP_ASSOCINFO socket option.
3252 	 */
3253 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3254 	sp->assocparams.sasoc_number_peer_destinations = 0;
3255 	sp->assocparams.sasoc_peer_rwnd = 0;
3256 	sp->assocparams.sasoc_local_rwnd = 0;
3257 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3258 
3259 	/* Initialize default event subscriptions. By default, all the
3260 	 * options are off.
3261 	 */
3262 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3263 
3264 	/* Default Peer Address Parameters.  These defaults can
3265 	 * be modified via SCTP_PEER_ADDR_PARAMS
3266 	 */
3267 	sp->hbinterval  = sctp_hb_interval;
3268 	sp->pathmaxrxt  = sctp_max_retrans_path;
3269 	sp->pathmtu     = 0; // allow default discovery
3270 	sp->sackdelay   = sctp_sack_timeout;
3271 	sp->param_flags = SPP_HB_ENABLE |
3272 			  SPP_PMTUD_ENABLE |
3273 			  SPP_SACKDELAY_ENABLE;
3274 
3275 	/* If enabled no SCTP message fragmentation will be performed.
3276 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3277 	 */
3278 	sp->disable_fragments = 0;
3279 
3280 	/* Enable Nagle algorithm by default.  */
3281 	sp->nodelay           = 0;
3282 
3283 	/* Enable by default. */
3284 	sp->v4mapped          = 1;
3285 
3286 	/* Auto-close idle associations after the configured
3287 	 * number of seconds.  A value of 0 disables this
3288 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3289 	 * for UDP-style sockets only.
3290 	 */
3291 	sp->autoclose         = 0;
3292 
3293 	/* User specified fragmentation limit. */
3294 	sp->user_frag         = 0;
3295 
3296 	sp->adaptation_ind = 0;
3297 
3298 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3299 
3300 	/* Control variables for partial data delivery. */
3301 	atomic_set(&sp->pd_mode, 0);
3302 	skb_queue_head_init(&sp->pd_lobby);
3303 	sp->frag_interleave = 0;
3304 
3305 	/* Create a per socket endpoint structure.  Even if we
3306 	 * change the data structure relationships, this may still
3307 	 * be useful for storing pre-connect address information.
3308 	 */
3309 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3310 	if (!ep)
3311 		return -ENOMEM;
3312 
3313 	sp->ep = ep;
3314 	sp->hmac = NULL;
3315 
3316 	SCTP_DBG_OBJCNT_INC(sock);
3317 	return 0;
3318 }
3319 
3320 /* Cleanup any SCTP per socket resources.  */
3321 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3322 {
3323 	struct sctp_endpoint *ep;
3324 
3325 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3326 
3327 	/* Release our hold on the endpoint. */
3328 	ep = sctp_sk(sk)->ep;
3329 	sctp_endpoint_free(ep);
3330 
3331 	return 0;
3332 }
3333 
3334 /* API 4.1.7 shutdown() - TCP Style Syntax
3335  *     int shutdown(int socket, int how);
3336  *
3337  *     sd      - the socket descriptor of the association to be closed.
3338  *     how     - Specifies the type of shutdown.  The  values  are
3339  *               as follows:
3340  *               SHUT_RD
3341  *                     Disables further receive operations. No SCTP
3342  *                     protocol action is taken.
3343  *               SHUT_WR
3344  *                     Disables further send operations, and initiates
3345  *                     the SCTP shutdown sequence.
3346  *               SHUT_RDWR
3347  *                     Disables further send  and  receive  operations
3348  *                     and initiates the SCTP shutdown sequence.
3349  */
3350 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3351 {
3352 	struct sctp_endpoint *ep;
3353 	struct sctp_association *asoc;
3354 
3355 	if (!sctp_style(sk, TCP))
3356 		return;
3357 
3358 	if (how & SEND_SHUTDOWN) {
3359 		ep = sctp_sk(sk)->ep;
3360 		if (!list_empty(&ep->asocs)) {
3361 			asoc = list_entry(ep->asocs.next,
3362 					  struct sctp_association, asocs);
3363 			sctp_primitive_SHUTDOWN(asoc, NULL);
3364 		}
3365 	}
3366 }
3367 
3368 /* 7.2.1 Association Status (SCTP_STATUS)
3369 
3370  * Applications can retrieve current status information about an
3371  * association, including association state, peer receiver window size,
3372  * number of unacked data chunks, and number of data chunks pending
3373  * receipt.  This information is read-only.
3374  */
3375 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3376 				       char __user *optval,
3377 				       int __user *optlen)
3378 {
3379 	struct sctp_status status;
3380 	struct sctp_association *asoc = NULL;
3381 	struct sctp_transport *transport;
3382 	sctp_assoc_t associd;
3383 	int retval = 0;
3384 
3385 	if (len < sizeof(status)) {
3386 		retval = -EINVAL;
3387 		goto out;
3388 	}
3389 
3390 	len = sizeof(status);
3391 	if (copy_from_user(&status, optval, len)) {
3392 		retval = -EFAULT;
3393 		goto out;
3394 	}
3395 
3396 	associd = status.sstat_assoc_id;
3397 	asoc = sctp_id2assoc(sk, associd);
3398 	if (!asoc) {
3399 		retval = -EINVAL;
3400 		goto out;
3401 	}
3402 
3403 	transport = asoc->peer.primary_path;
3404 
3405 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3406 	status.sstat_state = asoc->state;
3407 	status.sstat_rwnd =  asoc->peer.rwnd;
3408 	status.sstat_unackdata = asoc->unack_data;
3409 
3410 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3411 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3412 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3413 	status.sstat_fragmentation_point = asoc->frag_point;
3414 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3415 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3416 			transport->af_specific->sockaddr_len);
3417 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3418 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3419 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3420 	status.sstat_primary.spinfo_state = transport->state;
3421 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3422 	status.sstat_primary.spinfo_srtt = transport->srtt;
3423 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3424 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3425 
3426 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3427 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3428 
3429 	if (put_user(len, optlen)) {
3430 		retval = -EFAULT;
3431 		goto out;
3432 	}
3433 
3434 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3435 			  len, status.sstat_state, status.sstat_rwnd,
3436 			  status.sstat_assoc_id);
3437 
3438 	if (copy_to_user(optval, &status, len)) {
3439 		retval = -EFAULT;
3440 		goto out;
3441 	}
3442 
3443 out:
3444 	return (retval);
3445 }
3446 
3447 
3448 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3449  *
3450  * Applications can retrieve information about a specific peer address
3451  * of an association, including its reachability state, congestion
3452  * window, and retransmission timer values.  This information is
3453  * read-only.
3454  */
3455 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3456 					  char __user *optval,
3457 					  int __user *optlen)
3458 {
3459 	struct sctp_paddrinfo pinfo;
3460 	struct sctp_transport *transport;
3461 	int retval = 0;
3462 
3463 	if (len < sizeof(pinfo)) {
3464 		retval = -EINVAL;
3465 		goto out;
3466 	}
3467 
3468 	len = sizeof(pinfo);
3469 	if (copy_from_user(&pinfo, optval, len)) {
3470 		retval = -EFAULT;
3471 		goto out;
3472 	}
3473 
3474 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3475 					   pinfo.spinfo_assoc_id);
3476 	if (!transport)
3477 		return -EINVAL;
3478 
3479 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3480 	pinfo.spinfo_state = transport->state;
3481 	pinfo.spinfo_cwnd = transport->cwnd;
3482 	pinfo.spinfo_srtt = transport->srtt;
3483 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3484 	pinfo.spinfo_mtu = transport->pathmtu;
3485 
3486 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3487 		pinfo.spinfo_state = SCTP_ACTIVE;
3488 
3489 	if (put_user(len, optlen)) {
3490 		retval = -EFAULT;
3491 		goto out;
3492 	}
3493 
3494 	if (copy_to_user(optval, &pinfo, len)) {
3495 		retval = -EFAULT;
3496 		goto out;
3497 	}
3498 
3499 out:
3500 	return (retval);
3501 }
3502 
3503 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3504  *
3505  * This option is a on/off flag.  If enabled no SCTP message
3506  * fragmentation will be performed.  Instead if a message being sent
3507  * exceeds the current PMTU size, the message will NOT be sent and
3508  * instead a error will be indicated to the user.
3509  */
3510 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3511 					char __user *optval, int __user *optlen)
3512 {
3513 	int val;
3514 
3515 	if (len < sizeof(int))
3516 		return -EINVAL;
3517 
3518 	len = sizeof(int);
3519 	val = (sctp_sk(sk)->disable_fragments == 1);
3520 	if (put_user(len, optlen))
3521 		return -EFAULT;
3522 	if (copy_to_user(optval, &val, len))
3523 		return -EFAULT;
3524 	return 0;
3525 }
3526 
3527 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3528  *
3529  * This socket option is used to specify various notifications and
3530  * ancillary data the user wishes to receive.
3531  */
3532 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3533 				  int __user *optlen)
3534 {
3535 	if (len < sizeof(struct sctp_event_subscribe))
3536 		return -EINVAL;
3537 	len = sizeof(struct sctp_event_subscribe);
3538 	if (put_user(len, optlen))
3539 		return -EFAULT;
3540 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3541 		return -EFAULT;
3542 	return 0;
3543 }
3544 
3545 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3546  *
3547  * This socket option is applicable to the UDP-style socket only.  When
3548  * set it will cause associations that are idle for more than the
3549  * specified number of seconds to automatically close.  An association
3550  * being idle is defined an association that has NOT sent or received
3551  * user data.  The special value of '0' indicates that no automatic
3552  * close of any associations should be performed.  The option expects an
3553  * integer defining the number of seconds of idle time before an
3554  * association is closed.
3555  */
3556 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3557 {
3558 	/* Applicable to UDP-style socket only */
3559 	if (sctp_style(sk, TCP))
3560 		return -EOPNOTSUPP;
3561 	if (len < sizeof(int))
3562 		return -EINVAL;
3563 	len = sizeof(int);
3564 	if (put_user(len, optlen))
3565 		return -EFAULT;
3566 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3567 		return -EFAULT;
3568 	return 0;
3569 }
3570 
3571 /* Helper routine to branch off an association to a new socket.  */
3572 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3573 				struct socket **sockp)
3574 {
3575 	struct sock *sk = asoc->base.sk;
3576 	struct socket *sock;
3577 	struct inet_sock *inetsk;
3578 	struct sctp_af *af;
3579 	int err = 0;
3580 
3581 	/* An association cannot be branched off from an already peeled-off
3582 	 * socket, nor is this supported for tcp style sockets.
3583 	 */
3584 	if (!sctp_style(sk, UDP))
3585 		return -EINVAL;
3586 
3587 	/* Create a new socket.  */
3588 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3589 	if (err < 0)
3590 		return err;
3591 
3592 	/* Populate the fields of the newsk from the oldsk and migrate the
3593 	 * asoc to the newsk.
3594 	 */
3595 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3596 
3597 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3598 	 * Set the daddr and initialize id to something more random
3599 	 */
3600 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3601 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3602 	inetsk = inet_sk(sock->sk);
3603 	inetsk->id = asoc->next_tsn ^ jiffies;
3604 
3605 	*sockp = sock;
3606 
3607 	return err;
3608 }
3609 
3610 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3611 {
3612 	sctp_peeloff_arg_t peeloff;
3613 	struct socket *newsock;
3614 	int retval = 0;
3615 	struct sctp_association *asoc;
3616 
3617 	if (len < sizeof(sctp_peeloff_arg_t))
3618 		return -EINVAL;
3619 	len = sizeof(sctp_peeloff_arg_t);
3620 	if (copy_from_user(&peeloff, optval, len))
3621 		return -EFAULT;
3622 
3623 	asoc = sctp_id2assoc(sk, peeloff.associd);
3624 	if (!asoc) {
3625 		retval = -EINVAL;
3626 		goto out;
3627 	}
3628 
3629 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3630 
3631 	retval = sctp_do_peeloff(asoc, &newsock);
3632 	if (retval < 0)
3633 		goto out;
3634 
3635 	/* Map the socket to an unused fd that can be returned to the user.  */
3636 	retval = sock_map_fd(newsock);
3637 	if (retval < 0) {
3638 		sock_release(newsock);
3639 		goto out;
3640 	}
3641 
3642 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3643 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3644 
3645 	/* Return the fd mapped to the new socket.  */
3646 	peeloff.sd = retval;
3647 	if (put_user(len, optlen))
3648 		return -EFAULT;
3649 	if (copy_to_user(optval, &peeloff, len))
3650 		retval = -EFAULT;
3651 
3652 out:
3653 	return retval;
3654 }
3655 
3656 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3657  *
3658  * Applications can enable or disable heartbeats for any peer address of
3659  * an association, modify an address's heartbeat interval, force a
3660  * heartbeat to be sent immediately, and adjust the address's maximum
3661  * number of retransmissions sent before an address is considered
3662  * unreachable.  The following structure is used to access and modify an
3663  * address's parameters:
3664  *
3665  *  struct sctp_paddrparams {
3666  *     sctp_assoc_t            spp_assoc_id;
3667  *     struct sockaddr_storage spp_address;
3668  *     uint32_t                spp_hbinterval;
3669  *     uint16_t                spp_pathmaxrxt;
3670  *     uint32_t                spp_pathmtu;
3671  *     uint32_t                spp_sackdelay;
3672  *     uint32_t                spp_flags;
3673  * };
3674  *
3675  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3676  *                     application, and identifies the association for
3677  *                     this query.
3678  *   spp_address     - This specifies which address is of interest.
3679  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3680  *                     in milliseconds.  If a  value of zero
3681  *                     is present in this field then no changes are to
3682  *                     be made to this parameter.
3683  *   spp_pathmaxrxt  - This contains the maximum number of
3684  *                     retransmissions before this address shall be
3685  *                     considered unreachable. If a  value of zero
3686  *                     is present in this field then no changes are to
3687  *                     be made to this parameter.
3688  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3689  *                     specified here will be the "fixed" path mtu.
3690  *                     Note that if the spp_address field is empty
3691  *                     then all associations on this address will
3692  *                     have this fixed path mtu set upon them.
3693  *
3694  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3695  *                     the number of milliseconds that sacks will be delayed
3696  *                     for. This value will apply to all addresses of an
3697  *                     association if the spp_address field is empty. Note
3698  *                     also, that if delayed sack is enabled and this
3699  *                     value is set to 0, no change is made to the last
3700  *                     recorded delayed sack timer value.
3701  *
3702  *   spp_flags       - These flags are used to control various features
3703  *                     on an association. The flag field may contain
3704  *                     zero or more of the following options.
3705  *
3706  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3707  *                     specified address. Note that if the address
3708  *                     field is empty all addresses for the association
3709  *                     have heartbeats enabled upon them.
3710  *
3711  *                     SPP_HB_DISABLE - Disable heartbeats on the
3712  *                     speicifed address. Note that if the address
3713  *                     field is empty all addresses for the association
3714  *                     will have their heartbeats disabled. Note also
3715  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3716  *                     mutually exclusive, only one of these two should
3717  *                     be specified. Enabling both fields will have
3718  *                     undetermined results.
3719  *
3720  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3721  *                     to be made immediately.
3722  *
3723  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3724  *                     discovery upon the specified address. Note that
3725  *                     if the address feild is empty then all addresses
3726  *                     on the association are effected.
3727  *
3728  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3729  *                     discovery upon the specified address. Note that
3730  *                     if the address feild is empty then all addresses
3731  *                     on the association are effected. Not also that
3732  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3733  *                     exclusive. Enabling both will have undetermined
3734  *                     results.
3735  *
3736  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3737  *                     on delayed sack. The time specified in spp_sackdelay
3738  *                     is used to specify the sack delay for this address. Note
3739  *                     that if spp_address is empty then all addresses will
3740  *                     enable delayed sack and take on the sack delay
3741  *                     value specified in spp_sackdelay.
3742  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3743  *                     off delayed sack. If the spp_address field is blank then
3744  *                     delayed sack is disabled for the entire association. Note
3745  *                     also that this field is mutually exclusive to
3746  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3747  *                     results.
3748  */
3749 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3750 					    char __user *optval, int __user *optlen)
3751 {
3752 	struct sctp_paddrparams  params;
3753 	struct sctp_transport   *trans = NULL;
3754 	struct sctp_association *asoc = NULL;
3755 	struct sctp_sock        *sp = sctp_sk(sk);
3756 
3757 	if (len < sizeof(struct sctp_paddrparams))
3758 		return -EINVAL;
3759 	len = sizeof(struct sctp_paddrparams);
3760 	if (copy_from_user(&params, optval, len))
3761 		return -EFAULT;
3762 
3763 	/* If an address other than INADDR_ANY is specified, and
3764 	 * no transport is found, then the request is invalid.
3765 	 */
3766 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3767 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3768 					       params.spp_assoc_id);
3769 		if (!trans) {
3770 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3771 			return -EINVAL;
3772 		}
3773 	}
3774 
3775 	/* Get association, if assoc_id != 0 and the socket is a one
3776 	 * to many style socket, and an association was not found, then
3777 	 * the id was invalid.
3778 	 */
3779 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3780 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3781 		SCTP_DEBUG_PRINTK("Failed no association\n");
3782 		return -EINVAL;
3783 	}
3784 
3785 	if (trans) {
3786 		/* Fetch transport values. */
3787 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3788 		params.spp_pathmtu    = trans->pathmtu;
3789 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3790 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3791 
3792 		/*draft-11 doesn't say what to return in spp_flags*/
3793 		params.spp_flags      = trans->param_flags;
3794 	} else if (asoc) {
3795 		/* Fetch association values. */
3796 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3797 		params.spp_pathmtu    = asoc->pathmtu;
3798 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3799 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3800 
3801 		/*draft-11 doesn't say what to return in spp_flags*/
3802 		params.spp_flags      = asoc->param_flags;
3803 	} else {
3804 		/* Fetch socket values. */
3805 		params.spp_hbinterval = sp->hbinterval;
3806 		params.spp_pathmtu    = sp->pathmtu;
3807 		params.spp_sackdelay  = sp->sackdelay;
3808 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3809 
3810 		/*draft-11 doesn't say what to return in spp_flags*/
3811 		params.spp_flags      = sp->param_flags;
3812 	}
3813 
3814 	if (copy_to_user(optval, &params, len))
3815 		return -EFAULT;
3816 
3817 	if (put_user(len, optlen))
3818 		return -EFAULT;
3819 
3820 	return 0;
3821 }
3822 
3823 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3824  *
3825  *   This options will get or set the delayed ack timer.  The time is set
3826  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3827  *   endpoints default delayed ack timer value.  If the assoc_id field is
3828  *   non-zero, then the set or get effects the specified association.
3829  *
3830  *   struct sctp_assoc_value {
3831  *       sctp_assoc_t            assoc_id;
3832  *       uint32_t                assoc_value;
3833  *   };
3834  *
3835  *     assoc_id    - This parameter, indicates which association the
3836  *                   user is preforming an action upon. Note that if
3837  *                   this field's value is zero then the endpoints
3838  *                   default value is changed (effecting future
3839  *                   associations only).
3840  *
3841  *     assoc_value - This parameter contains the number of milliseconds
3842  *                   that the user is requesting the delayed ACK timer
3843  *                   be set to. Note that this value is defined in
3844  *                   the standard to be between 200 and 500 milliseconds.
3845  *
3846  *                   Note: a value of zero will leave the value alone,
3847  *                   but disable SACK delay. A non-zero value will also
3848  *                   enable SACK delay.
3849  */
3850 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3851 					    char __user *optval,
3852 					    int __user *optlen)
3853 {
3854 	struct sctp_assoc_value  params;
3855 	struct sctp_association *asoc = NULL;
3856 	struct sctp_sock        *sp = sctp_sk(sk);
3857 
3858 	if (len < sizeof(struct sctp_assoc_value))
3859 		return - EINVAL;
3860 
3861 	len = sizeof(struct sctp_assoc_value);
3862 
3863 	if (copy_from_user(&params, optval, len))
3864 		return -EFAULT;
3865 
3866 	/* Get association, if assoc_id != 0 and the socket is a one
3867 	 * to many style socket, and an association was not found, then
3868 	 * the id was invalid.
3869 	 */
3870 	asoc = sctp_id2assoc(sk, params.assoc_id);
3871 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3872 		return -EINVAL;
3873 
3874 	if (asoc) {
3875 		/* Fetch association values. */
3876 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3877 			params.assoc_value = jiffies_to_msecs(
3878 				asoc->sackdelay);
3879 		else
3880 			params.assoc_value = 0;
3881 	} else {
3882 		/* Fetch socket values. */
3883 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3884 			params.assoc_value  = sp->sackdelay;
3885 		else
3886 			params.assoc_value  = 0;
3887 	}
3888 
3889 	if (copy_to_user(optval, &params, len))
3890 		return -EFAULT;
3891 
3892 	if (put_user(len, optlen))
3893 		return -EFAULT;
3894 
3895 	return 0;
3896 }
3897 
3898 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3899  *
3900  * Applications can specify protocol parameters for the default association
3901  * initialization.  The option name argument to setsockopt() and getsockopt()
3902  * is SCTP_INITMSG.
3903  *
3904  * Setting initialization parameters is effective only on an unconnected
3905  * socket (for UDP-style sockets only future associations are effected
3906  * by the change).  With TCP-style sockets, this option is inherited by
3907  * sockets derived from a listener socket.
3908  */
3909 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3910 {
3911 	if (len < sizeof(struct sctp_initmsg))
3912 		return -EINVAL;
3913 	len = sizeof(struct sctp_initmsg);
3914 	if (put_user(len, optlen))
3915 		return -EFAULT;
3916 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3917 		return -EFAULT;
3918 	return 0;
3919 }
3920 
3921 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3922 					      char __user *optval,
3923 					      int __user *optlen)
3924 {
3925 	sctp_assoc_t id;
3926 	struct sctp_association *asoc;
3927 	struct list_head *pos;
3928 	int cnt = 0;
3929 
3930 	if (len < sizeof(sctp_assoc_t))
3931 		return -EINVAL;
3932 
3933 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3934 		return -EFAULT;
3935 
3936 	/* For UDP-style sockets, id specifies the association to query.  */
3937 	asoc = sctp_id2assoc(sk, id);
3938 	if (!asoc)
3939 		return -EINVAL;
3940 
3941 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3942 		cnt ++;
3943 	}
3944 
3945 	return cnt;
3946 }
3947 
3948 /*
3949  * Old API for getting list of peer addresses. Does not work for 32-bit
3950  * programs running on a 64-bit kernel
3951  */
3952 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3953 					  char __user *optval,
3954 					  int __user *optlen)
3955 {
3956 	struct sctp_association *asoc;
3957 	struct list_head *pos;
3958 	int cnt = 0;
3959 	struct sctp_getaddrs_old getaddrs;
3960 	struct sctp_transport *from;
3961 	void __user *to;
3962 	union sctp_addr temp;
3963 	struct sctp_sock *sp = sctp_sk(sk);
3964 	int addrlen;
3965 
3966 	if (len < sizeof(struct sctp_getaddrs_old))
3967 		return -EINVAL;
3968 
3969 	len = sizeof(struct sctp_getaddrs_old);
3970 
3971 	if (copy_from_user(&getaddrs, optval, len))
3972 		return -EFAULT;
3973 
3974 	if (getaddrs.addr_num <= 0) return -EINVAL;
3975 
3976 	/* For UDP-style sockets, id specifies the association to query.  */
3977 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3978 	if (!asoc)
3979 		return -EINVAL;
3980 
3981 	to = (void __user *)getaddrs.addrs;
3982 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3983 		from = list_entry(pos, struct sctp_transport, transports);
3984 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3985 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3986 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3987 		if (copy_to_user(to, &temp, addrlen))
3988 			return -EFAULT;
3989 		to += addrlen ;
3990 		cnt ++;
3991 		if (cnt >= getaddrs.addr_num) break;
3992 	}
3993 	getaddrs.addr_num = cnt;
3994 	if (put_user(len, optlen))
3995 		return -EFAULT;
3996 	if (copy_to_user(optval, &getaddrs, len))
3997 		return -EFAULT;
3998 
3999 	return 0;
4000 }
4001 
4002 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4003 				      char __user *optval, int __user *optlen)
4004 {
4005 	struct sctp_association *asoc;
4006 	struct list_head *pos;
4007 	int cnt = 0;
4008 	struct sctp_getaddrs getaddrs;
4009 	struct sctp_transport *from;
4010 	void __user *to;
4011 	union sctp_addr temp;
4012 	struct sctp_sock *sp = sctp_sk(sk);
4013 	int addrlen;
4014 	size_t space_left;
4015 	int bytes_copied;
4016 
4017 	if (len < sizeof(struct sctp_getaddrs))
4018 		return -EINVAL;
4019 
4020 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4021 		return -EFAULT;
4022 
4023 	/* For UDP-style sockets, id specifies the association to query.  */
4024 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4025 	if (!asoc)
4026 		return -EINVAL;
4027 
4028 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4029 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4030 
4031 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4032 		from = list_entry(pos, struct sctp_transport, transports);
4033 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4034 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4035 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4036 		if (space_left < addrlen)
4037 			return -ENOMEM;
4038 		if (copy_to_user(to, &temp, addrlen))
4039 			return -EFAULT;
4040 		to += addrlen;
4041 		cnt++;
4042 		space_left -= addrlen;
4043 	}
4044 
4045 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4046 		return -EFAULT;
4047 	bytes_copied = ((char __user *)to) - optval;
4048 	if (put_user(bytes_copied, optlen))
4049 		return -EFAULT;
4050 
4051 	return 0;
4052 }
4053 
4054 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4055 					       char __user *optval,
4056 					       int __user *optlen)
4057 {
4058 	sctp_assoc_t id;
4059 	struct sctp_bind_addr *bp;
4060 	struct sctp_association *asoc;
4061 	struct list_head *pos, *temp;
4062 	struct sctp_sockaddr_entry *addr;
4063 	rwlock_t *addr_lock;
4064 	int cnt = 0;
4065 
4066 	if (len < sizeof(sctp_assoc_t))
4067 		return -EINVAL;
4068 
4069 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4070 		return -EFAULT;
4071 
4072 	/*
4073 	 *  For UDP-style sockets, id specifies the association to query.
4074 	 *  If the id field is set to the value '0' then the locally bound
4075 	 *  addresses are returned without regard to any particular
4076 	 *  association.
4077 	 */
4078 	if (0 == id) {
4079 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4080 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4081 	} else {
4082 		asoc = sctp_id2assoc(sk, id);
4083 		if (!asoc)
4084 			return -EINVAL;
4085 		bp = &asoc->base.bind_addr;
4086 		addr_lock = &asoc->base.addr_lock;
4087 	}
4088 
4089 	sctp_read_lock(addr_lock);
4090 
4091 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4092 	 * addresses from the global local address list.
4093 	 */
4094 	if (sctp_list_single_entry(&bp->address_list)) {
4095 		addr = list_entry(bp->address_list.next,
4096 				  struct sctp_sockaddr_entry, list);
4097 		if (sctp_is_any(&addr->a)) {
4098 			list_for_each_safe(pos, temp, &sctp_local_addr_list) {
4099 				addr = list_entry(pos,
4100 						  struct sctp_sockaddr_entry,
4101 						  list);
4102 				if ((PF_INET == sk->sk_family) &&
4103 				    (AF_INET6 == addr->a.sa.sa_family))
4104 					continue;
4105 				cnt++;
4106 			}
4107 		} else {
4108 			cnt = 1;
4109 		}
4110 		goto done;
4111 	}
4112 
4113 	list_for_each(pos, &bp->address_list) {
4114 		cnt ++;
4115 	}
4116 
4117 done:
4118 	sctp_read_unlock(addr_lock);
4119 	return cnt;
4120 }
4121 
4122 /* Helper function that copies local addresses to user and returns the number
4123  * of addresses copied.
4124  */
4125 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4126 					int max_addrs, void *to,
4127 					int *bytes_copied)
4128 {
4129 	struct list_head *pos, *next;
4130 	struct sctp_sockaddr_entry *addr;
4131 	union sctp_addr temp;
4132 	int cnt = 0;
4133 	int addrlen;
4134 
4135 	list_for_each_safe(pos, next, &sctp_local_addr_list) {
4136 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4137 		if ((PF_INET == sk->sk_family) &&
4138 		    (AF_INET6 == addr->a.sa.sa_family))
4139 			continue;
4140 		memcpy(&temp, &addr->a, sizeof(temp));
4141 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4142 								&temp);
4143 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4144 		memcpy(to, &temp, addrlen);
4145 
4146 		to += addrlen;
4147 		*bytes_copied += addrlen;
4148 		cnt ++;
4149 		if (cnt >= max_addrs) break;
4150 	}
4151 
4152 	return cnt;
4153 }
4154 
4155 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4156 			    size_t space_left, int *bytes_copied)
4157 {
4158 	struct list_head *pos, *next;
4159 	struct sctp_sockaddr_entry *addr;
4160 	union sctp_addr temp;
4161 	int cnt = 0;
4162 	int addrlen;
4163 
4164 	list_for_each_safe(pos, next, &sctp_local_addr_list) {
4165 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4166 		if ((PF_INET == sk->sk_family) &&
4167 		    (AF_INET6 == addr->a.sa.sa_family))
4168 			continue;
4169 		memcpy(&temp, &addr->a, sizeof(temp));
4170 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4171 								&temp);
4172 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4173 		if (space_left < addrlen)
4174 			return -ENOMEM;
4175 		memcpy(to, &temp, addrlen);
4176 
4177 		to += addrlen;
4178 		cnt ++;
4179 		space_left -= addrlen;
4180 		*bytes_copied += addrlen;
4181 	}
4182 
4183 	return cnt;
4184 }
4185 
4186 /* Old API for getting list of local addresses. Does not work for 32-bit
4187  * programs running on a 64-bit kernel
4188  */
4189 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4190 					   char __user *optval, int __user *optlen)
4191 {
4192 	struct sctp_bind_addr *bp;
4193 	struct sctp_association *asoc;
4194 	struct list_head *pos;
4195 	int cnt = 0;
4196 	struct sctp_getaddrs_old getaddrs;
4197 	struct sctp_sockaddr_entry *addr;
4198 	void __user *to;
4199 	union sctp_addr temp;
4200 	struct sctp_sock *sp = sctp_sk(sk);
4201 	int addrlen;
4202 	rwlock_t *addr_lock;
4203 	int err = 0;
4204 	void *addrs;
4205 	void *buf;
4206 	int bytes_copied = 0;
4207 
4208 	if (len < sizeof(struct sctp_getaddrs_old))
4209 		return -EINVAL;
4210 
4211 	len = sizeof(struct sctp_getaddrs_old);
4212 	if (copy_from_user(&getaddrs, optval, len))
4213 		return -EFAULT;
4214 
4215 	if (getaddrs.addr_num <= 0) return -EINVAL;
4216 	/*
4217 	 *  For UDP-style sockets, id specifies the association to query.
4218 	 *  If the id field is set to the value '0' then the locally bound
4219 	 *  addresses are returned without regard to any particular
4220 	 *  association.
4221 	 */
4222 	if (0 == getaddrs.assoc_id) {
4223 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4224 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4225 	} else {
4226 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4227 		if (!asoc)
4228 			return -EINVAL;
4229 		bp = &asoc->base.bind_addr;
4230 		addr_lock = &asoc->base.addr_lock;
4231 	}
4232 
4233 	to = getaddrs.addrs;
4234 
4235 	/* Allocate space for a local instance of packed array to hold all
4236 	 * the data.  We store addresses here first and then put write them
4237 	 * to the user in one shot.
4238 	 */
4239 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4240 			GFP_KERNEL);
4241 	if (!addrs)
4242 		return -ENOMEM;
4243 
4244 	sctp_read_lock(addr_lock);
4245 
4246 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4247 	 * addresses from the global local address list.
4248 	 */
4249 	if (sctp_list_single_entry(&bp->address_list)) {
4250 		addr = list_entry(bp->address_list.next,
4251 				  struct sctp_sockaddr_entry, list);
4252 		if (sctp_is_any(&addr->a)) {
4253 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4254 						   getaddrs.addr_num,
4255 						   addrs, &bytes_copied);
4256 			goto copy_getaddrs;
4257 		}
4258 	}
4259 
4260 	buf = addrs;
4261 	list_for_each(pos, &bp->address_list) {
4262 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4263 		memcpy(&temp, &addr->a, sizeof(temp));
4264 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4265 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4266 		memcpy(buf, &temp, addrlen);
4267 		buf += addrlen;
4268 		bytes_copied += addrlen;
4269 		cnt ++;
4270 		if (cnt >= getaddrs.addr_num) break;
4271 	}
4272 
4273 copy_getaddrs:
4274 	sctp_read_unlock(addr_lock);
4275 
4276 	/* copy the entire address list into the user provided space */
4277 	if (copy_to_user(to, addrs, bytes_copied)) {
4278 		err = -EFAULT;
4279 		goto error;
4280 	}
4281 
4282 	/* copy the leading structure back to user */
4283 	getaddrs.addr_num = cnt;
4284 	if (copy_to_user(optval, &getaddrs, len))
4285 		err = -EFAULT;
4286 
4287 error:
4288 	kfree(addrs);
4289 	return err;
4290 }
4291 
4292 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4293 				       char __user *optval, int __user *optlen)
4294 {
4295 	struct sctp_bind_addr *bp;
4296 	struct sctp_association *asoc;
4297 	struct list_head *pos;
4298 	int cnt = 0;
4299 	struct sctp_getaddrs getaddrs;
4300 	struct sctp_sockaddr_entry *addr;
4301 	void __user *to;
4302 	union sctp_addr temp;
4303 	struct sctp_sock *sp = sctp_sk(sk);
4304 	int addrlen;
4305 	rwlock_t *addr_lock;
4306 	int err = 0;
4307 	size_t space_left;
4308 	int bytes_copied = 0;
4309 	void *addrs;
4310 	void *buf;
4311 
4312 	if (len < sizeof(struct sctp_getaddrs))
4313 		return -EINVAL;
4314 
4315 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4316 		return -EFAULT;
4317 
4318 	/*
4319 	 *  For UDP-style sockets, id specifies the association to query.
4320 	 *  If the id field is set to the value '0' then the locally bound
4321 	 *  addresses are returned without regard to any particular
4322 	 *  association.
4323 	 */
4324 	if (0 == getaddrs.assoc_id) {
4325 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4326 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4327 	} else {
4328 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4329 		if (!asoc)
4330 			return -EINVAL;
4331 		bp = &asoc->base.bind_addr;
4332 		addr_lock = &asoc->base.addr_lock;
4333 	}
4334 
4335 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4336 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4337 
4338 	addrs = kmalloc(space_left, GFP_KERNEL);
4339 	if (!addrs)
4340 		return -ENOMEM;
4341 
4342 	sctp_read_lock(addr_lock);
4343 
4344 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4345 	 * addresses from the global local address list.
4346 	 */
4347 	if (sctp_list_single_entry(&bp->address_list)) {
4348 		addr = list_entry(bp->address_list.next,
4349 				  struct sctp_sockaddr_entry, list);
4350 		if (sctp_is_any(&addr->a)) {
4351 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4352 						space_left, &bytes_copied);
4353 			if (cnt < 0) {
4354 				err = cnt;
4355 				goto error_lock;
4356 			}
4357 			goto copy_getaddrs;
4358 		}
4359 	}
4360 
4361 	buf = addrs;
4362 	list_for_each(pos, &bp->address_list) {
4363 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4364 		memcpy(&temp, &addr->a, sizeof(temp));
4365 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4366 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4367 		if (space_left < addrlen) {
4368 			err =  -ENOMEM; /*fixme: right error?*/
4369 			goto error_lock;
4370 		}
4371 		memcpy(buf, &temp, addrlen);
4372 		buf += addrlen;
4373 		bytes_copied += addrlen;
4374 		cnt ++;
4375 		space_left -= addrlen;
4376 	}
4377 
4378 copy_getaddrs:
4379 	sctp_read_unlock(addr_lock);
4380 
4381 	if (copy_to_user(to, addrs, bytes_copied)) {
4382 		err = -EFAULT;
4383 		goto out;
4384 	}
4385 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4386 		err = -EFAULT;
4387 		goto out;
4388 	}
4389 	if (put_user(bytes_copied, optlen))
4390 		err = -EFAULT;
4391 
4392 	goto out;
4393 
4394 error_lock:
4395 	sctp_read_unlock(addr_lock);
4396 
4397 out:
4398 	kfree(addrs);
4399 	return err;
4400 }
4401 
4402 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4403  *
4404  * Requests that the local SCTP stack use the enclosed peer address as
4405  * the association primary.  The enclosed address must be one of the
4406  * association peer's addresses.
4407  */
4408 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4409 					char __user *optval, int __user *optlen)
4410 {
4411 	struct sctp_prim prim;
4412 	struct sctp_association *asoc;
4413 	struct sctp_sock *sp = sctp_sk(sk);
4414 
4415 	if (len < sizeof(struct sctp_prim))
4416 		return -EINVAL;
4417 
4418 	len = sizeof(struct sctp_prim);
4419 
4420 	if (copy_from_user(&prim, optval, len))
4421 		return -EFAULT;
4422 
4423 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4424 	if (!asoc)
4425 		return -EINVAL;
4426 
4427 	if (!asoc->peer.primary_path)
4428 		return -ENOTCONN;
4429 
4430 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4431 		asoc->peer.primary_path->af_specific->sockaddr_len);
4432 
4433 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4434 			(union sctp_addr *)&prim.ssp_addr);
4435 
4436 	if (put_user(len, optlen))
4437 		return -EFAULT;
4438 	if (copy_to_user(optval, &prim, len))
4439 		return -EFAULT;
4440 
4441 	return 0;
4442 }
4443 
4444 /*
4445  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4446  *
4447  * Requests that the local endpoint set the specified Adaptation Layer
4448  * Indication parameter for all future INIT and INIT-ACK exchanges.
4449  */
4450 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4451 				  char __user *optval, int __user *optlen)
4452 {
4453 	struct sctp_setadaptation adaptation;
4454 
4455 	if (len < sizeof(struct sctp_setadaptation))
4456 		return -EINVAL;
4457 
4458 	len = sizeof(struct sctp_setadaptation);
4459 
4460 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4461 
4462 	if (put_user(len, optlen))
4463 		return -EFAULT;
4464 	if (copy_to_user(optval, &adaptation, len))
4465 		return -EFAULT;
4466 
4467 	return 0;
4468 }
4469 
4470 /*
4471  *
4472  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4473  *
4474  *   Applications that wish to use the sendto() system call may wish to
4475  *   specify a default set of parameters that would normally be supplied
4476  *   through the inclusion of ancillary data.  This socket option allows
4477  *   such an application to set the default sctp_sndrcvinfo structure.
4478 
4479 
4480  *   The application that wishes to use this socket option simply passes
4481  *   in to this call the sctp_sndrcvinfo structure defined in Section
4482  *   5.2.2) The input parameters accepted by this call include
4483  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4484  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4485  *   to this call if the caller is using the UDP model.
4486  *
4487  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4488  */
4489 static int sctp_getsockopt_default_send_param(struct sock *sk,
4490 					int len, char __user *optval,
4491 					int __user *optlen)
4492 {
4493 	struct sctp_sndrcvinfo info;
4494 	struct sctp_association *asoc;
4495 	struct sctp_sock *sp = sctp_sk(sk);
4496 
4497 	if (len < sizeof(struct sctp_sndrcvinfo))
4498 		return -EINVAL;
4499 
4500 	len = sizeof(struct sctp_sndrcvinfo);
4501 
4502 	if (copy_from_user(&info, optval, len))
4503 		return -EFAULT;
4504 
4505 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4506 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4507 		return -EINVAL;
4508 
4509 	if (asoc) {
4510 		info.sinfo_stream = asoc->default_stream;
4511 		info.sinfo_flags = asoc->default_flags;
4512 		info.sinfo_ppid = asoc->default_ppid;
4513 		info.sinfo_context = asoc->default_context;
4514 		info.sinfo_timetolive = asoc->default_timetolive;
4515 	} else {
4516 		info.sinfo_stream = sp->default_stream;
4517 		info.sinfo_flags = sp->default_flags;
4518 		info.sinfo_ppid = sp->default_ppid;
4519 		info.sinfo_context = sp->default_context;
4520 		info.sinfo_timetolive = sp->default_timetolive;
4521 	}
4522 
4523 	if (put_user(len, optlen))
4524 		return -EFAULT;
4525 	if (copy_to_user(optval, &info, len))
4526 		return -EFAULT;
4527 
4528 	return 0;
4529 }
4530 
4531 /*
4532  *
4533  * 7.1.5 SCTP_NODELAY
4534  *
4535  * Turn on/off any Nagle-like algorithm.  This means that packets are
4536  * generally sent as soon as possible and no unnecessary delays are
4537  * introduced, at the cost of more packets in the network.  Expects an
4538  * integer boolean flag.
4539  */
4540 
4541 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4542 				   char __user *optval, int __user *optlen)
4543 {
4544 	int val;
4545 
4546 	if (len < sizeof(int))
4547 		return -EINVAL;
4548 
4549 	len = sizeof(int);
4550 	val = (sctp_sk(sk)->nodelay == 1);
4551 	if (put_user(len, optlen))
4552 		return -EFAULT;
4553 	if (copy_to_user(optval, &val, len))
4554 		return -EFAULT;
4555 	return 0;
4556 }
4557 
4558 /*
4559  *
4560  * 7.1.1 SCTP_RTOINFO
4561  *
4562  * The protocol parameters used to initialize and bound retransmission
4563  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4564  * and modify these parameters.
4565  * All parameters are time values, in milliseconds.  A value of 0, when
4566  * modifying the parameters, indicates that the current value should not
4567  * be changed.
4568  *
4569  */
4570 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4571 				char __user *optval,
4572 				int __user *optlen) {
4573 	struct sctp_rtoinfo rtoinfo;
4574 	struct sctp_association *asoc;
4575 
4576 	if (len < sizeof (struct sctp_rtoinfo))
4577 		return -EINVAL;
4578 
4579 	len = sizeof(struct sctp_rtoinfo);
4580 
4581 	if (copy_from_user(&rtoinfo, optval, len))
4582 		return -EFAULT;
4583 
4584 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4585 
4586 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4587 		return -EINVAL;
4588 
4589 	/* Values corresponding to the specific association. */
4590 	if (asoc) {
4591 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4592 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4593 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4594 	} else {
4595 		/* Values corresponding to the endpoint. */
4596 		struct sctp_sock *sp = sctp_sk(sk);
4597 
4598 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4599 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4600 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4601 	}
4602 
4603 	if (put_user(len, optlen))
4604 		return -EFAULT;
4605 
4606 	if (copy_to_user(optval, &rtoinfo, len))
4607 		return -EFAULT;
4608 
4609 	return 0;
4610 }
4611 
4612 /*
4613  *
4614  * 7.1.2 SCTP_ASSOCINFO
4615  *
4616  * This option is used to tune the maximum retransmission attempts
4617  * of the association.
4618  * Returns an error if the new association retransmission value is
4619  * greater than the sum of the retransmission value  of the peer.
4620  * See [SCTP] for more information.
4621  *
4622  */
4623 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4624 				     char __user *optval,
4625 				     int __user *optlen)
4626 {
4627 
4628 	struct sctp_assocparams assocparams;
4629 	struct sctp_association *asoc;
4630 	struct list_head *pos;
4631 	int cnt = 0;
4632 
4633 	if (len < sizeof (struct sctp_assocparams))
4634 		return -EINVAL;
4635 
4636 	len = sizeof(struct sctp_assocparams);
4637 
4638 	if (copy_from_user(&assocparams, optval, len))
4639 		return -EFAULT;
4640 
4641 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4642 
4643 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4644 		return -EINVAL;
4645 
4646 	/* Values correspoinding to the specific association */
4647 	if (asoc) {
4648 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4649 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4650 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4651 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4652 						* 1000) +
4653 						(asoc->cookie_life.tv_usec
4654 						/ 1000);
4655 
4656 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4657 			cnt ++;
4658 		}
4659 
4660 		assocparams.sasoc_number_peer_destinations = cnt;
4661 	} else {
4662 		/* Values corresponding to the endpoint */
4663 		struct sctp_sock *sp = sctp_sk(sk);
4664 
4665 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4666 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4667 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4668 		assocparams.sasoc_cookie_life =
4669 					sp->assocparams.sasoc_cookie_life;
4670 		assocparams.sasoc_number_peer_destinations =
4671 					sp->assocparams.
4672 					sasoc_number_peer_destinations;
4673 	}
4674 
4675 	if (put_user(len, optlen))
4676 		return -EFAULT;
4677 
4678 	if (copy_to_user(optval, &assocparams, len))
4679 		return -EFAULT;
4680 
4681 	return 0;
4682 }
4683 
4684 /*
4685  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4686  *
4687  * This socket option is a boolean flag which turns on or off mapped V4
4688  * addresses.  If this option is turned on and the socket is type
4689  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4690  * If this option is turned off, then no mapping will be done of V4
4691  * addresses and a user will receive both PF_INET6 and PF_INET type
4692  * addresses on the socket.
4693  */
4694 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4695 				    char __user *optval, int __user *optlen)
4696 {
4697 	int val;
4698 	struct sctp_sock *sp = sctp_sk(sk);
4699 
4700 	if (len < sizeof(int))
4701 		return -EINVAL;
4702 
4703 	len = sizeof(int);
4704 	val = sp->v4mapped;
4705 	if (put_user(len, optlen))
4706 		return -EFAULT;
4707 	if (copy_to_user(optval, &val, len))
4708 		return -EFAULT;
4709 
4710 	return 0;
4711 }
4712 
4713 /*
4714  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
4715  * (chapter and verse is quoted at sctp_setsockopt_context())
4716  */
4717 static int sctp_getsockopt_context(struct sock *sk, int len,
4718 				   char __user *optval, int __user *optlen)
4719 {
4720 	struct sctp_assoc_value params;
4721 	struct sctp_sock *sp;
4722 	struct sctp_association *asoc;
4723 
4724 	if (len < sizeof(struct sctp_assoc_value))
4725 		return -EINVAL;
4726 
4727 	len = sizeof(struct sctp_assoc_value);
4728 
4729 	if (copy_from_user(&params, optval, len))
4730 		return -EFAULT;
4731 
4732 	sp = sctp_sk(sk);
4733 
4734 	if (params.assoc_id != 0) {
4735 		asoc = sctp_id2assoc(sk, params.assoc_id);
4736 		if (!asoc)
4737 			return -EINVAL;
4738 		params.assoc_value = asoc->default_rcv_context;
4739 	} else {
4740 		params.assoc_value = sp->default_rcv_context;
4741 	}
4742 
4743 	if (put_user(len, optlen))
4744 		return -EFAULT;
4745 	if (copy_to_user(optval, &params, len))
4746 		return -EFAULT;
4747 
4748 	return 0;
4749 }
4750 
4751 /*
4752  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4753  *
4754  * This socket option specifies the maximum size to put in any outgoing
4755  * SCTP chunk.  If a message is larger than this size it will be
4756  * fragmented by SCTP into the specified size.  Note that the underlying
4757  * SCTP implementation may fragment into smaller sized chunks when the
4758  * PMTU of the underlying association is smaller than the value set by
4759  * the user.
4760  */
4761 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4762 				  char __user *optval, int __user *optlen)
4763 {
4764 	int val;
4765 
4766 	if (len < sizeof(int))
4767 		return -EINVAL;
4768 
4769 	len = sizeof(int);
4770 
4771 	val = sctp_sk(sk)->user_frag;
4772 	if (put_user(len, optlen))
4773 		return -EFAULT;
4774 	if (copy_to_user(optval, &val, len))
4775 		return -EFAULT;
4776 
4777 	return 0;
4778 }
4779 
4780 /*
4781  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4782  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4783  */
4784 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4785 					       char __user *optval, int __user *optlen)
4786 {
4787 	int val;
4788 
4789 	if (len < sizeof(int))
4790 		return -EINVAL;
4791 
4792 	len = sizeof(int);
4793 
4794 	val = sctp_sk(sk)->frag_interleave;
4795 	if (put_user(len, optlen))
4796 		return -EFAULT;
4797 	if (copy_to_user(optval, &val, len))
4798 		return -EFAULT;
4799 
4800 	return 0;
4801 }
4802 
4803 /*
4804  * 7.1.25.  Set or Get the sctp partial delivery point
4805  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4806  */
4807 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4808 						  char __user *optval,
4809 						  int __user *optlen)
4810 {
4811 	u32 val;
4812 
4813 	if (len < sizeof(u32))
4814 		return -EINVAL;
4815 
4816 	len = sizeof(u32);
4817 
4818 	val = sctp_sk(sk)->pd_point;
4819 	if (put_user(len, optlen))
4820 		return -EFAULT;
4821 	if (copy_to_user(optval, &val, len))
4822 		return -EFAULT;
4823 
4824 	return -ENOTSUPP;
4825 }
4826 
4827 /*
4828  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
4829  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4830  */
4831 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4832 				    char __user *optval,
4833 				    int __user *optlen)
4834 {
4835 	int val;
4836 
4837 	if (len < sizeof(int))
4838 		return -EINVAL;
4839 
4840 	len = sizeof(int);
4841 
4842 	val = sctp_sk(sk)->max_burst;
4843 	if (put_user(len, optlen))
4844 		return -EFAULT;
4845 	if (copy_to_user(optval, &val, len))
4846 		return -EFAULT;
4847 
4848 	return -ENOTSUPP;
4849 }
4850 
4851 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4852 				char __user *optval, int __user *optlen)
4853 {
4854 	int retval = 0;
4855 	int len;
4856 
4857 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4858 			  sk, optname);
4859 
4860 	/* I can hardly begin to describe how wrong this is.  This is
4861 	 * so broken as to be worse than useless.  The API draft
4862 	 * REALLY is NOT helpful here...  I am not convinced that the
4863 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4864 	 * are at all well-founded.
4865 	 */
4866 	if (level != SOL_SCTP) {
4867 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4868 
4869 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4870 		return retval;
4871 	}
4872 
4873 	if (get_user(len, optlen))
4874 		return -EFAULT;
4875 
4876 	sctp_lock_sock(sk);
4877 
4878 	switch (optname) {
4879 	case SCTP_STATUS:
4880 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4881 		break;
4882 	case SCTP_DISABLE_FRAGMENTS:
4883 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4884 							   optlen);
4885 		break;
4886 	case SCTP_EVENTS:
4887 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4888 		break;
4889 	case SCTP_AUTOCLOSE:
4890 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4891 		break;
4892 	case SCTP_SOCKOPT_PEELOFF:
4893 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4894 		break;
4895 	case SCTP_PEER_ADDR_PARAMS:
4896 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4897 							  optlen);
4898 		break;
4899 	case SCTP_DELAYED_ACK_TIME:
4900 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4901 							  optlen);
4902 		break;
4903 	case SCTP_INITMSG:
4904 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4905 		break;
4906 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4907 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4908 							    optlen);
4909 		break;
4910 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4911 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4912 							     optlen);
4913 		break;
4914 	case SCTP_GET_PEER_ADDRS_OLD:
4915 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4916 							optlen);
4917 		break;
4918 	case SCTP_GET_LOCAL_ADDRS_OLD:
4919 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4920 							 optlen);
4921 		break;
4922 	case SCTP_GET_PEER_ADDRS:
4923 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4924 						    optlen);
4925 		break;
4926 	case SCTP_GET_LOCAL_ADDRS:
4927 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4928 						     optlen);
4929 		break;
4930 	case SCTP_DEFAULT_SEND_PARAM:
4931 		retval = sctp_getsockopt_default_send_param(sk, len,
4932 							    optval, optlen);
4933 		break;
4934 	case SCTP_PRIMARY_ADDR:
4935 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4936 		break;
4937 	case SCTP_NODELAY:
4938 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4939 		break;
4940 	case SCTP_RTOINFO:
4941 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4942 		break;
4943 	case SCTP_ASSOCINFO:
4944 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4945 		break;
4946 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4947 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4948 		break;
4949 	case SCTP_MAXSEG:
4950 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4951 		break;
4952 	case SCTP_GET_PEER_ADDR_INFO:
4953 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4954 							optlen);
4955 		break;
4956 	case SCTP_ADAPTATION_LAYER:
4957 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
4958 							optlen);
4959 		break;
4960 	case SCTP_CONTEXT:
4961 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
4962 		break;
4963 	case SCTP_FRAGMENT_INTERLEAVE:
4964 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
4965 							     optlen);
4966 		break;
4967 	case SCTP_PARTIAL_DELIVERY_POINT:
4968 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
4969 								optlen);
4970 		break;
4971 	case SCTP_MAX_BURST:
4972 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
4973 		break;
4974 	default:
4975 		retval = -ENOPROTOOPT;
4976 		break;
4977 	}
4978 
4979 	sctp_release_sock(sk);
4980 	return retval;
4981 }
4982 
4983 static void sctp_hash(struct sock *sk)
4984 {
4985 	/* STUB */
4986 }
4987 
4988 static void sctp_unhash(struct sock *sk)
4989 {
4990 	/* STUB */
4991 }
4992 
4993 /* Check if port is acceptable.  Possibly find first available port.
4994  *
4995  * The port hash table (contained in the 'global' SCTP protocol storage
4996  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4997  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4998  * list (the list number is the port number hashed out, so as you
4999  * would expect from a hash function, all the ports in a given list have
5000  * such a number that hashes out to the same list number; you were
5001  * expecting that, right?); so each list has a set of ports, with a
5002  * link to the socket (struct sock) that uses it, the port number and
5003  * a fastreuse flag (FIXME: NPI ipg).
5004  */
5005 static struct sctp_bind_bucket *sctp_bucket_create(
5006 	struct sctp_bind_hashbucket *head, unsigned short snum);
5007 
5008 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5009 {
5010 	struct sctp_bind_hashbucket *head; /* hash list */
5011 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5012 	unsigned short snum;
5013 	int ret;
5014 
5015 	snum = ntohs(addr->v4.sin_port);
5016 
5017 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5018 	sctp_local_bh_disable();
5019 
5020 	if (snum == 0) {
5021 		/* Search for an available port.
5022 		 *
5023 		 * 'sctp_port_rover' was the last port assigned, so
5024 		 * we start to search from 'sctp_port_rover +
5025 		 * 1'. What we do is first check if port 'rover' is
5026 		 * already in the hash table; if not, we use that; if
5027 		 * it is, we try next.
5028 		 */
5029 		int low = sysctl_local_port_range[0];
5030 		int high = sysctl_local_port_range[1];
5031 		int remaining = (high - low) + 1;
5032 		int rover;
5033 		int index;
5034 
5035 		sctp_spin_lock(&sctp_port_alloc_lock);
5036 		rover = sctp_port_rover;
5037 		do {
5038 			rover++;
5039 			if ((rover < low) || (rover > high))
5040 				rover = low;
5041 			index = sctp_phashfn(rover);
5042 			head = &sctp_port_hashtable[index];
5043 			sctp_spin_lock(&head->lock);
5044 			for (pp = head->chain; pp; pp = pp->next)
5045 				if (pp->port == rover)
5046 					goto next;
5047 			break;
5048 		next:
5049 			sctp_spin_unlock(&head->lock);
5050 		} while (--remaining > 0);
5051 		sctp_port_rover = rover;
5052 		sctp_spin_unlock(&sctp_port_alloc_lock);
5053 
5054 		/* Exhausted local port range during search? */
5055 		ret = 1;
5056 		if (remaining <= 0)
5057 			goto fail;
5058 
5059 		/* OK, here is the one we will use.  HEAD (the port
5060 		 * hash table list entry) is non-NULL and we hold it's
5061 		 * mutex.
5062 		 */
5063 		snum = rover;
5064 	} else {
5065 		/* We are given an specific port number; we verify
5066 		 * that it is not being used. If it is used, we will
5067 		 * exahust the search in the hash list corresponding
5068 		 * to the port number (snum) - we detect that with the
5069 		 * port iterator, pp being NULL.
5070 		 */
5071 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5072 		sctp_spin_lock(&head->lock);
5073 		for (pp = head->chain; pp; pp = pp->next) {
5074 			if (pp->port == snum)
5075 				goto pp_found;
5076 		}
5077 	}
5078 	pp = NULL;
5079 	goto pp_not_found;
5080 pp_found:
5081 	if (!hlist_empty(&pp->owner)) {
5082 		/* We had a port hash table hit - there is an
5083 		 * available port (pp != NULL) and it is being
5084 		 * used by other socket (pp->owner not empty); that other
5085 		 * socket is going to be sk2.
5086 		 */
5087 		int reuse = sk->sk_reuse;
5088 		struct sock *sk2;
5089 		struct hlist_node *node;
5090 
5091 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5092 		if (pp->fastreuse && sk->sk_reuse &&
5093 			sk->sk_state != SCTP_SS_LISTENING)
5094 			goto success;
5095 
5096 		/* Run through the list of sockets bound to the port
5097 		 * (pp->port) [via the pointers bind_next and
5098 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5099 		 * we get the endpoint they describe and run through
5100 		 * the endpoint's list of IP (v4 or v6) addresses,
5101 		 * comparing each of the addresses with the address of
5102 		 * the socket sk. If we find a match, then that means
5103 		 * that this port/socket (sk) combination are already
5104 		 * in an endpoint.
5105 		 */
5106 		sk_for_each_bound(sk2, node, &pp->owner) {
5107 			struct sctp_endpoint *ep2;
5108 			ep2 = sctp_sk(sk2)->ep;
5109 
5110 			if (reuse && sk2->sk_reuse &&
5111 			    sk2->sk_state != SCTP_SS_LISTENING)
5112 				continue;
5113 
5114 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5115 						 sctp_sk(sk))) {
5116 				ret = (long)sk2;
5117 				goto fail_unlock;
5118 			}
5119 		}
5120 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5121 	}
5122 pp_not_found:
5123 	/* If there was a hash table miss, create a new port.  */
5124 	ret = 1;
5125 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5126 		goto fail_unlock;
5127 
5128 	/* In either case (hit or miss), make sure fastreuse is 1 only
5129 	 * if sk->sk_reuse is too (that is, if the caller requested
5130 	 * SO_REUSEADDR on this socket -sk-).
5131 	 */
5132 	if (hlist_empty(&pp->owner)) {
5133 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5134 			pp->fastreuse = 1;
5135 		else
5136 			pp->fastreuse = 0;
5137 	} else if (pp->fastreuse &&
5138 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5139 		pp->fastreuse = 0;
5140 
5141 	/* We are set, so fill up all the data in the hash table
5142 	 * entry, tie the socket list information with the rest of the
5143 	 * sockets FIXME: Blurry, NPI (ipg).
5144 	 */
5145 success:
5146 	if (!sctp_sk(sk)->bind_hash) {
5147 		inet_sk(sk)->num = snum;
5148 		sk_add_bind_node(sk, &pp->owner);
5149 		sctp_sk(sk)->bind_hash = pp;
5150 	}
5151 	ret = 0;
5152 
5153 fail_unlock:
5154 	sctp_spin_unlock(&head->lock);
5155 
5156 fail:
5157 	sctp_local_bh_enable();
5158 	return ret;
5159 }
5160 
5161 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5162  * port is requested.
5163  */
5164 static int sctp_get_port(struct sock *sk, unsigned short snum)
5165 {
5166 	long ret;
5167 	union sctp_addr addr;
5168 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5169 
5170 	/* Set up a dummy address struct from the sk. */
5171 	af->from_sk(&addr, sk);
5172 	addr.v4.sin_port = htons(snum);
5173 
5174 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5175 	ret = sctp_get_port_local(sk, &addr);
5176 
5177 	return (ret ? 1 : 0);
5178 }
5179 
5180 /*
5181  * 3.1.3 listen() - UDP Style Syntax
5182  *
5183  *   By default, new associations are not accepted for UDP style sockets.
5184  *   An application uses listen() to mark a socket as being able to
5185  *   accept new associations.
5186  */
5187 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5188 {
5189 	struct sctp_sock *sp = sctp_sk(sk);
5190 	struct sctp_endpoint *ep = sp->ep;
5191 
5192 	/* Only UDP style sockets that are not peeled off are allowed to
5193 	 * listen().
5194 	 */
5195 	if (!sctp_style(sk, UDP))
5196 		return -EINVAL;
5197 
5198 	/* If backlog is zero, disable listening. */
5199 	if (!backlog) {
5200 		if (sctp_sstate(sk, CLOSED))
5201 			return 0;
5202 
5203 		sctp_unhash_endpoint(ep);
5204 		sk->sk_state = SCTP_SS_CLOSED;
5205 	}
5206 
5207 	/* Return if we are already listening. */
5208 	if (sctp_sstate(sk, LISTENING))
5209 		return 0;
5210 
5211 	/*
5212 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5213 	 * call that allows new associations to be accepted, the system
5214 	 * picks an ephemeral port and will choose an address set equivalent
5215 	 * to binding with a wildcard address.
5216 	 *
5217 	 * This is not currently spelled out in the SCTP sockets
5218 	 * extensions draft, but follows the practice as seen in TCP
5219 	 * sockets.
5220 	 *
5221 	 * Additionally, turn off fastreuse flag since we are not listening
5222 	 */
5223 	sk->sk_state = SCTP_SS_LISTENING;
5224 	if (!ep->base.bind_addr.port) {
5225 		if (sctp_autobind(sk))
5226 			return -EAGAIN;
5227 	} else
5228 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5229 
5230 	sctp_hash_endpoint(ep);
5231 	return 0;
5232 }
5233 
5234 /*
5235  * 4.1.3 listen() - TCP Style Syntax
5236  *
5237  *   Applications uses listen() to ready the SCTP endpoint for accepting
5238  *   inbound associations.
5239  */
5240 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5241 {
5242 	struct sctp_sock *sp = sctp_sk(sk);
5243 	struct sctp_endpoint *ep = sp->ep;
5244 
5245 	/* If backlog is zero, disable listening. */
5246 	if (!backlog) {
5247 		if (sctp_sstate(sk, CLOSED))
5248 			return 0;
5249 
5250 		sctp_unhash_endpoint(ep);
5251 		sk->sk_state = SCTP_SS_CLOSED;
5252 	}
5253 
5254 	if (sctp_sstate(sk, LISTENING))
5255 		return 0;
5256 
5257 	/*
5258 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5259 	 * call that allows new associations to be accepted, the system
5260 	 * picks an ephemeral port and will choose an address set equivalent
5261 	 * to binding with a wildcard address.
5262 	 *
5263 	 * This is not currently spelled out in the SCTP sockets
5264 	 * extensions draft, but follows the practice as seen in TCP
5265 	 * sockets.
5266 	 */
5267 	sk->sk_state = SCTP_SS_LISTENING;
5268 	if (!ep->base.bind_addr.port) {
5269 		if (sctp_autobind(sk))
5270 			return -EAGAIN;
5271 	} else
5272 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5273 
5274 	sk->sk_max_ack_backlog = backlog;
5275 	sctp_hash_endpoint(ep);
5276 	return 0;
5277 }
5278 
5279 /*
5280  *  Move a socket to LISTENING state.
5281  */
5282 int sctp_inet_listen(struct socket *sock, int backlog)
5283 {
5284 	struct sock *sk = sock->sk;
5285 	struct crypto_hash *tfm = NULL;
5286 	int err = -EINVAL;
5287 
5288 	if (unlikely(backlog < 0))
5289 		goto out;
5290 
5291 	sctp_lock_sock(sk);
5292 
5293 	if (sock->state != SS_UNCONNECTED)
5294 		goto out;
5295 
5296 	/* Allocate HMAC for generating cookie. */
5297 	if (sctp_hmac_alg) {
5298 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5299 		if (IS_ERR(tfm)) {
5300 			if (net_ratelimit()) {
5301 				printk(KERN_INFO
5302 				       "SCTP: failed to load transform for %s: %ld\n",
5303 					sctp_hmac_alg, PTR_ERR(tfm));
5304 			}
5305 			err = -ENOSYS;
5306 			goto out;
5307 		}
5308 	}
5309 
5310 	switch (sock->type) {
5311 	case SOCK_SEQPACKET:
5312 		err = sctp_seqpacket_listen(sk, backlog);
5313 		break;
5314 	case SOCK_STREAM:
5315 		err = sctp_stream_listen(sk, backlog);
5316 		break;
5317 	default:
5318 		break;
5319 	}
5320 
5321 	if (err)
5322 		goto cleanup;
5323 
5324 	/* Store away the transform reference. */
5325 	sctp_sk(sk)->hmac = tfm;
5326 out:
5327 	sctp_release_sock(sk);
5328 	return err;
5329 cleanup:
5330 	crypto_free_hash(tfm);
5331 	goto out;
5332 }
5333 
5334 /*
5335  * This function is done by modeling the current datagram_poll() and the
5336  * tcp_poll().  Note that, based on these implementations, we don't
5337  * lock the socket in this function, even though it seems that,
5338  * ideally, locking or some other mechanisms can be used to ensure
5339  * the integrity of the counters (sndbuf and wmem_alloc) used
5340  * in this place.  We assume that we don't need locks either until proven
5341  * otherwise.
5342  *
5343  * Another thing to note is that we include the Async I/O support
5344  * here, again, by modeling the current TCP/UDP code.  We don't have
5345  * a good way to test with it yet.
5346  */
5347 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5348 {
5349 	struct sock *sk = sock->sk;
5350 	struct sctp_sock *sp = sctp_sk(sk);
5351 	unsigned int mask;
5352 
5353 	poll_wait(file, sk->sk_sleep, wait);
5354 
5355 	/* A TCP-style listening socket becomes readable when the accept queue
5356 	 * is not empty.
5357 	 */
5358 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5359 		return (!list_empty(&sp->ep->asocs)) ?
5360 			(POLLIN | POLLRDNORM) : 0;
5361 
5362 	mask = 0;
5363 
5364 	/* Is there any exceptional events?  */
5365 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5366 		mask |= POLLERR;
5367 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5368 		mask |= POLLRDHUP;
5369 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5370 		mask |= POLLHUP;
5371 
5372 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5373 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5374 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5375 		mask |= POLLIN | POLLRDNORM;
5376 
5377 	/* The association is either gone or not ready.  */
5378 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5379 		return mask;
5380 
5381 	/* Is it writable?  */
5382 	if (sctp_writeable(sk)) {
5383 		mask |= POLLOUT | POLLWRNORM;
5384 	} else {
5385 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5386 		/*
5387 		 * Since the socket is not locked, the buffer
5388 		 * might be made available after the writeable check and
5389 		 * before the bit is set.  This could cause a lost I/O
5390 		 * signal.  tcp_poll() has a race breaker for this race
5391 		 * condition.  Based on their implementation, we put
5392 		 * in the following code to cover it as well.
5393 		 */
5394 		if (sctp_writeable(sk))
5395 			mask |= POLLOUT | POLLWRNORM;
5396 	}
5397 	return mask;
5398 }
5399 
5400 /********************************************************************
5401  * 2nd Level Abstractions
5402  ********************************************************************/
5403 
5404 static struct sctp_bind_bucket *sctp_bucket_create(
5405 	struct sctp_bind_hashbucket *head, unsigned short snum)
5406 {
5407 	struct sctp_bind_bucket *pp;
5408 
5409 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5410 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5411 	if (pp) {
5412 		pp->port = snum;
5413 		pp->fastreuse = 0;
5414 		INIT_HLIST_HEAD(&pp->owner);
5415 		if ((pp->next = head->chain) != NULL)
5416 			pp->next->pprev = &pp->next;
5417 		head->chain = pp;
5418 		pp->pprev = &head->chain;
5419 	}
5420 	return pp;
5421 }
5422 
5423 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5424 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5425 {
5426 	if (pp && hlist_empty(&pp->owner)) {
5427 		if (pp->next)
5428 			pp->next->pprev = pp->pprev;
5429 		*(pp->pprev) = pp->next;
5430 		kmem_cache_free(sctp_bucket_cachep, pp);
5431 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5432 	}
5433 }
5434 
5435 /* Release this socket's reference to a local port.  */
5436 static inline void __sctp_put_port(struct sock *sk)
5437 {
5438 	struct sctp_bind_hashbucket *head =
5439 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5440 	struct sctp_bind_bucket *pp;
5441 
5442 	sctp_spin_lock(&head->lock);
5443 	pp = sctp_sk(sk)->bind_hash;
5444 	__sk_del_bind_node(sk);
5445 	sctp_sk(sk)->bind_hash = NULL;
5446 	inet_sk(sk)->num = 0;
5447 	sctp_bucket_destroy(pp);
5448 	sctp_spin_unlock(&head->lock);
5449 }
5450 
5451 void sctp_put_port(struct sock *sk)
5452 {
5453 	sctp_local_bh_disable();
5454 	__sctp_put_port(sk);
5455 	sctp_local_bh_enable();
5456 }
5457 
5458 /*
5459  * The system picks an ephemeral port and choose an address set equivalent
5460  * to binding with a wildcard address.
5461  * One of those addresses will be the primary address for the association.
5462  * This automatically enables the multihoming capability of SCTP.
5463  */
5464 static int sctp_autobind(struct sock *sk)
5465 {
5466 	union sctp_addr autoaddr;
5467 	struct sctp_af *af;
5468 	__be16 port;
5469 
5470 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5471 	af = sctp_sk(sk)->pf->af;
5472 
5473 	port = htons(inet_sk(sk)->num);
5474 	af->inaddr_any(&autoaddr, port);
5475 
5476 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5477 }
5478 
5479 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5480  *
5481  * From RFC 2292
5482  * 4.2 The cmsghdr Structure *
5483  *
5484  * When ancillary data is sent or received, any number of ancillary data
5485  * objects can be specified by the msg_control and msg_controllen members of
5486  * the msghdr structure, because each object is preceded by
5487  * a cmsghdr structure defining the object's length (the cmsg_len member).
5488  * Historically Berkeley-derived implementations have passed only one object
5489  * at a time, but this API allows multiple objects to be
5490  * passed in a single call to sendmsg() or recvmsg(). The following example
5491  * shows two ancillary data objects in a control buffer.
5492  *
5493  *   |<--------------------------- msg_controllen -------------------------->|
5494  *   |                                                                       |
5495  *
5496  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5497  *
5498  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5499  *   |                                   |                                   |
5500  *
5501  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5502  *
5503  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5504  *   |                                |  |                                |  |
5505  *
5506  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5507  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5508  *
5509  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5510  *
5511  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5512  *    ^
5513  *    |
5514  *
5515  * msg_control
5516  * points here
5517  */
5518 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5519 				  sctp_cmsgs_t *cmsgs)
5520 {
5521 	struct cmsghdr *cmsg;
5522 
5523 	for (cmsg = CMSG_FIRSTHDR(msg);
5524 	     cmsg != NULL;
5525 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5526 		if (!CMSG_OK(msg, cmsg))
5527 			return -EINVAL;
5528 
5529 		/* Should we parse this header or ignore?  */
5530 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5531 			continue;
5532 
5533 		/* Strictly check lengths following example in SCM code.  */
5534 		switch (cmsg->cmsg_type) {
5535 		case SCTP_INIT:
5536 			/* SCTP Socket API Extension
5537 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5538 			 *
5539 			 * This cmsghdr structure provides information for
5540 			 * initializing new SCTP associations with sendmsg().
5541 			 * The SCTP_INITMSG socket option uses this same data
5542 			 * structure.  This structure is not used for
5543 			 * recvmsg().
5544 			 *
5545 			 * cmsg_level    cmsg_type      cmsg_data[]
5546 			 * ------------  ------------   ----------------------
5547 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5548 			 */
5549 			if (cmsg->cmsg_len !=
5550 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5551 				return -EINVAL;
5552 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5553 			break;
5554 
5555 		case SCTP_SNDRCV:
5556 			/* SCTP Socket API Extension
5557 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5558 			 *
5559 			 * This cmsghdr structure specifies SCTP options for
5560 			 * sendmsg() and describes SCTP header information
5561 			 * about a received message through recvmsg().
5562 			 *
5563 			 * cmsg_level    cmsg_type      cmsg_data[]
5564 			 * ------------  ------------   ----------------------
5565 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5566 			 */
5567 			if (cmsg->cmsg_len !=
5568 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5569 				return -EINVAL;
5570 
5571 			cmsgs->info =
5572 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5573 
5574 			/* Minimally, validate the sinfo_flags. */
5575 			if (cmsgs->info->sinfo_flags &
5576 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5577 			      SCTP_ABORT | SCTP_EOF))
5578 				return -EINVAL;
5579 			break;
5580 
5581 		default:
5582 			return -EINVAL;
5583 		}
5584 	}
5585 	return 0;
5586 }
5587 
5588 /*
5589  * Wait for a packet..
5590  * Note: This function is the same function as in core/datagram.c
5591  * with a few modifications to make lksctp work.
5592  */
5593 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5594 {
5595 	int error;
5596 	DEFINE_WAIT(wait);
5597 
5598 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5599 
5600 	/* Socket errors? */
5601 	error = sock_error(sk);
5602 	if (error)
5603 		goto out;
5604 
5605 	if (!skb_queue_empty(&sk->sk_receive_queue))
5606 		goto ready;
5607 
5608 	/* Socket shut down?  */
5609 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5610 		goto out;
5611 
5612 	/* Sequenced packets can come disconnected.  If so we report the
5613 	 * problem.
5614 	 */
5615 	error = -ENOTCONN;
5616 
5617 	/* Is there a good reason to think that we may receive some data?  */
5618 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5619 		goto out;
5620 
5621 	/* Handle signals.  */
5622 	if (signal_pending(current))
5623 		goto interrupted;
5624 
5625 	/* Let another process have a go.  Since we are going to sleep
5626 	 * anyway.  Note: This may cause odd behaviors if the message
5627 	 * does not fit in the user's buffer, but this seems to be the
5628 	 * only way to honor MSG_DONTWAIT realistically.
5629 	 */
5630 	sctp_release_sock(sk);
5631 	*timeo_p = schedule_timeout(*timeo_p);
5632 	sctp_lock_sock(sk);
5633 
5634 ready:
5635 	finish_wait(sk->sk_sleep, &wait);
5636 	return 0;
5637 
5638 interrupted:
5639 	error = sock_intr_errno(*timeo_p);
5640 
5641 out:
5642 	finish_wait(sk->sk_sleep, &wait);
5643 	*err = error;
5644 	return error;
5645 }
5646 
5647 /* Receive a datagram.
5648  * Note: This is pretty much the same routine as in core/datagram.c
5649  * with a few changes to make lksctp work.
5650  */
5651 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5652 					      int noblock, int *err)
5653 {
5654 	int error;
5655 	struct sk_buff *skb;
5656 	long timeo;
5657 
5658 	timeo = sock_rcvtimeo(sk, noblock);
5659 
5660 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5661 			  timeo, MAX_SCHEDULE_TIMEOUT);
5662 
5663 	do {
5664 		/* Again only user level code calls this function,
5665 		 * so nothing interrupt level
5666 		 * will suddenly eat the receive_queue.
5667 		 *
5668 		 *  Look at current nfs client by the way...
5669 		 *  However, this function was corrent in any case. 8)
5670 		 */
5671 		if (flags & MSG_PEEK) {
5672 			spin_lock_bh(&sk->sk_receive_queue.lock);
5673 			skb = skb_peek(&sk->sk_receive_queue);
5674 			if (skb)
5675 				atomic_inc(&skb->users);
5676 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5677 		} else {
5678 			skb = skb_dequeue(&sk->sk_receive_queue);
5679 		}
5680 
5681 		if (skb)
5682 			return skb;
5683 
5684 		/* Caller is allowed not to check sk->sk_err before calling. */
5685 		error = sock_error(sk);
5686 		if (error)
5687 			goto no_packet;
5688 
5689 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5690 			break;
5691 
5692 		/* User doesn't want to wait.  */
5693 		error = -EAGAIN;
5694 		if (!timeo)
5695 			goto no_packet;
5696 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5697 
5698 	return NULL;
5699 
5700 no_packet:
5701 	*err = error;
5702 	return NULL;
5703 }
5704 
5705 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5706 static void __sctp_write_space(struct sctp_association *asoc)
5707 {
5708 	struct sock *sk = asoc->base.sk;
5709 	struct socket *sock = sk->sk_socket;
5710 
5711 	if ((sctp_wspace(asoc) > 0) && sock) {
5712 		if (waitqueue_active(&asoc->wait))
5713 			wake_up_interruptible(&asoc->wait);
5714 
5715 		if (sctp_writeable(sk)) {
5716 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5717 				wake_up_interruptible(sk->sk_sleep);
5718 
5719 			/* Note that we try to include the Async I/O support
5720 			 * here by modeling from the current TCP/UDP code.
5721 			 * We have not tested with it yet.
5722 			 */
5723 			if (sock->fasync_list &&
5724 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5725 				sock_wake_async(sock, 2, POLL_OUT);
5726 		}
5727 	}
5728 }
5729 
5730 /* Do accounting for the sndbuf space.
5731  * Decrement the used sndbuf space of the corresponding association by the
5732  * data size which was just transmitted(freed).
5733  */
5734 static void sctp_wfree(struct sk_buff *skb)
5735 {
5736 	struct sctp_association *asoc;
5737 	struct sctp_chunk *chunk;
5738 	struct sock *sk;
5739 
5740 	/* Get the saved chunk pointer.  */
5741 	chunk = *((struct sctp_chunk **)(skb->cb));
5742 	asoc = chunk->asoc;
5743 	sk = asoc->base.sk;
5744 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5745 				sizeof(struct sk_buff) +
5746 				sizeof(struct sctp_chunk);
5747 
5748 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5749 
5750 	sock_wfree(skb);
5751 	__sctp_write_space(asoc);
5752 
5753 	sctp_association_put(asoc);
5754 }
5755 
5756 /* Do accounting for the receive space on the socket.
5757  * Accounting for the association is done in ulpevent.c
5758  * We set this as a destructor for the cloned data skbs so that
5759  * accounting is done at the correct time.
5760  */
5761 void sctp_sock_rfree(struct sk_buff *skb)
5762 {
5763 	struct sock *sk = skb->sk;
5764 	struct sctp_ulpevent *event = sctp_skb2event(skb);
5765 
5766 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5767 }
5768 
5769 
5770 /* Helper function to wait for space in the sndbuf.  */
5771 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5772 				size_t msg_len)
5773 {
5774 	struct sock *sk = asoc->base.sk;
5775 	int err = 0;
5776 	long current_timeo = *timeo_p;
5777 	DEFINE_WAIT(wait);
5778 
5779 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5780 			  asoc, (long)(*timeo_p), msg_len);
5781 
5782 	/* Increment the association's refcnt.  */
5783 	sctp_association_hold(asoc);
5784 
5785 	/* Wait on the association specific sndbuf space. */
5786 	for (;;) {
5787 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5788 					  TASK_INTERRUPTIBLE);
5789 		if (!*timeo_p)
5790 			goto do_nonblock;
5791 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5792 		    asoc->base.dead)
5793 			goto do_error;
5794 		if (signal_pending(current))
5795 			goto do_interrupted;
5796 		if (msg_len <= sctp_wspace(asoc))
5797 			break;
5798 
5799 		/* Let another process have a go.  Since we are going
5800 		 * to sleep anyway.
5801 		 */
5802 		sctp_release_sock(sk);
5803 		current_timeo = schedule_timeout(current_timeo);
5804 		BUG_ON(sk != asoc->base.sk);
5805 		sctp_lock_sock(sk);
5806 
5807 		*timeo_p = current_timeo;
5808 	}
5809 
5810 out:
5811 	finish_wait(&asoc->wait, &wait);
5812 
5813 	/* Release the association's refcnt.  */
5814 	sctp_association_put(asoc);
5815 
5816 	return err;
5817 
5818 do_error:
5819 	err = -EPIPE;
5820 	goto out;
5821 
5822 do_interrupted:
5823 	err = sock_intr_errno(*timeo_p);
5824 	goto out;
5825 
5826 do_nonblock:
5827 	err = -EAGAIN;
5828 	goto out;
5829 }
5830 
5831 /* If socket sndbuf has changed, wake up all per association waiters.  */
5832 void sctp_write_space(struct sock *sk)
5833 {
5834 	struct sctp_association *asoc;
5835 	struct list_head *pos;
5836 
5837 	/* Wake up the tasks in each wait queue.  */
5838 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5839 		asoc = list_entry(pos, struct sctp_association, asocs);
5840 		__sctp_write_space(asoc);
5841 	}
5842 }
5843 
5844 /* Is there any sndbuf space available on the socket?
5845  *
5846  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5847  * associations on the same socket.  For a UDP-style socket with
5848  * multiple associations, it is possible for it to be "unwriteable"
5849  * prematurely.  I assume that this is acceptable because
5850  * a premature "unwriteable" is better than an accidental "writeable" which
5851  * would cause an unwanted block under certain circumstances.  For the 1-1
5852  * UDP-style sockets or TCP-style sockets, this code should work.
5853  *  - Daisy
5854  */
5855 static int sctp_writeable(struct sock *sk)
5856 {
5857 	int amt = 0;
5858 
5859 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5860 	if (amt < 0)
5861 		amt = 0;
5862 	return amt;
5863 }
5864 
5865 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5866  * returns immediately with EINPROGRESS.
5867  */
5868 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5869 {
5870 	struct sock *sk = asoc->base.sk;
5871 	int err = 0;
5872 	long current_timeo = *timeo_p;
5873 	DEFINE_WAIT(wait);
5874 
5875 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5876 			  (long)(*timeo_p));
5877 
5878 	/* Increment the association's refcnt.  */
5879 	sctp_association_hold(asoc);
5880 
5881 	for (;;) {
5882 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5883 					  TASK_INTERRUPTIBLE);
5884 		if (!*timeo_p)
5885 			goto do_nonblock;
5886 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5887 			break;
5888 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5889 		    asoc->base.dead)
5890 			goto do_error;
5891 		if (signal_pending(current))
5892 			goto do_interrupted;
5893 
5894 		if (sctp_state(asoc, ESTABLISHED))
5895 			break;
5896 
5897 		/* Let another process have a go.  Since we are going
5898 		 * to sleep anyway.
5899 		 */
5900 		sctp_release_sock(sk);
5901 		current_timeo = schedule_timeout(current_timeo);
5902 		sctp_lock_sock(sk);
5903 
5904 		*timeo_p = current_timeo;
5905 	}
5906 
5907 out:
5908 	finish_wait(&asoc->wait, &wait);
5909 
5910 	/* Release the association's refcnt.  */
5911 	sctp_association_put(asoc);
5912 
5913 	return err;
5914 
5915 do_error:
5916 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5917 		err = -ETIMEDOUT;
5918 	else
5919 		err = -ECONNREFUSED;
5920 	goto out;
5921 
5922 do_interrupted:
5923 	err = sock_intr_errno(*timeo_p);
5924 	goto out;
5925 
5926 do_nonblock:
5927 	err = -EINPROGRESS;
5928 	goto out;
5929 }
5930 
5931 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5932 {
5933 	struct sctp_endpoint *ep;
5934 	int err = 0;
5935 	DEFINE_WAIT(wait);
5936 
5937 	ep = sctp_sk(sk)->ep;
5938 
5939 
5940 	for (;;) {
5941 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5942 					  TASK_INTERRUPTIBLE);
5943 
5944 		if (list_empty(&ep->asocs)) {
5945 			sctp_release_sock(sk);
5946 			timeo = schedule_timeout(timeo);
5947 			sctp_lock_sock(sk);
5948 		}
5949 
5950 		err = -EINVAL;
5951 		if (!sctp_sstate(sk, LISTENING))
5952 			break;
5953 
5954 		err = 0;
5955 		if (!list_empty(&ep->asocs))
5956 			break;
5957 
5958 		err = sock_intr_errno(timeo);
5959 		if (signal_pending(current))
5960 			break;
5961 
5962 		err = -EAGAIN;
5963 		if (!timeo)
5964 			break;
5965 	}
5966 
5967 	finish_wait(sk->sk_sleep, &wait);
5968 
5969 	return err;
5970 }
5971 
5972 static void sctp_wait_for_close(struct sock *sk, long timeout)
5973 {
5974 	DEFINE_WAIT(wait);
5975 
5976 	do {
5977 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5978 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5979 			break;
5980 		sctp_release_sock(sk);
5981 		timeout = schedule_timeout(timeout);
5982 		sctp_lock_sock(sk);
5983 	} while (!signal_pending(current) && timeout);
5984 
5985 	finish_wait(sk->sk_sleep, &wait);
5986 }
5987 
5988 static void sctp_sock_rfree_frag(struct sk_buff *skb)
5989 {
5990 	struct sk_buff *frag;
5991 
5992 	if (!skb->data_len)
5993 		goto done;
5994 
5995 	/* Don't forget the fragments. */
5996 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
5997 		sctp_sock_rfree_frag(frag);
5998 
5999 done:
6000 	sctp_sock_rfree(skb);
6001 }
6002 
6003 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6004 {
6005 	struct sk_buff *frag;
6006 
6007 	if (!skb->data_len)
6008 		goto done;
6009 
6010 	/* Don't forget the fragments. */
6011 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6012 		sctp_skb_set_owner_r_frag(frag, sk);
6013 
6014 done:
6015 	sctp_skb_set_owner_r(skb, sk);
6016 }
6017 
6018 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6019  * and its messages to the newsk.
6020  */
6021 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6022 			      struct sctp_association *assoc,
6023 			      sctp_socket_type_t type)
6024 {
6025 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6026 	struct sctp_sock *newsp = sctp_sk(newsk);
6027 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6028 	struct sctp_endpoint *newep = newsp->ep;
6029 	struct sk_buff *skb, *tmp;
6030 	struct sctp_ulpevent *event;
6031 	int flags = 0;
6032 
6033 	/* Migrate socket buffer sizes and all the socket level options to the
6034 	 * new socket.
6035 	 */
6036 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6037 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6038 	/* Brute force copy old sctp opt. */
6039 	inet_sk_copy_descendant(newsk, oldsk);
6040 
6041 	/* Restore the ep value that was overwritten with the above structure
6042 	 * copy.
6043 	 */
6044 	newsp->ep = newep;
6045 	newsp->hmac = NULL;
6046 
6047 	/* Hook this new socket in to the bind_hash list. */
6048 	pp = sctp_sk(oldsk)->bind_hash;
6049 	sk_add_bind_node(newsk, &pp->owner);
6050 	sctp_sk(newsk)->bind_hash = pp;
6051 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6052 
6053 	/* Copy the bind_addr list from the original endpoint to the new
6054 	 * endpoint so that we can handle restarts properly
6055 	 */
6056 	if (PF_INET6 == assoc->base.sk->sk_family)
6057 		flags = SCTP_ADDR6_ALLOWED;
6058 	if (assoc->peer.ipv4_address)
6059 		flags |= SCTP_ADDR4_PEERSUPP;
6060 	if (assoc->peer.ipv6_address)
6061 		flags |= SCTP_ADDR6_PEERSUPP;
6062 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6063 			     &oldsp->ep->base.bind_addr,
6064 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6065 
6066 	/* Move any messages in the old socket's receive queue that are for the
6067 	 * peeled off association to the new socket's receive queue.
6068 	 */
6069 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6070 		event = sctp_skb2event(skb);
6071 		if (event->asoc == assoc) {
6072 			sctp_sock_rfree_frag(skb);
6073 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6074 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6075 			sctp_skb_set_owner_r_frag(skb, newsk);
6076 		}
6077 	}
6078 
6079 	/* Clean up any messages pending delivery due to partial
6080 	 * delivery.   Three cases:
6081 	 * 1) No partial deliver;  no work.
6082 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6083 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6084 	 */
6085 	skb_queue_head_init(&newsp->pd_lobby);
6086 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6087 
6088 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6089 		struct sk_buff_head *queue;
6090 
6091 		/* Decide which queue to move pd_lobby skbs to. */
6092 		if (assoc->ulpq.pd_mode) {
6093 			queue = &newsp->pd_lobby;
6094 		} else
6095 			queue = &newsk->sk_receive_queue;
6096 
6097 		/* Walk through the pd_lobby, looking for skbs that
6098 		 * need moved to the new socket.
6099 		 */
6100 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6101 			event = sctp_skb2event(skb);
6102 			if (event->asoc == assoc) {
6103 				sctp_sock_rfree_frag(skb);
6104 				__skb_unlink(skb, &oldsp->pd_lobby);
6105 				__skb_queue_tail(queue, skb);
6106 				sctp_skb_set_owner_r_frag(skb, newsk);
6107 			}
6108 		}
6109 
6110 		/* Clear up any skbs waiting for the partial
6111 		 * delivery to finish.
6112 		 */
6113 		if (assoc->ulpq.pd_mode)
6114 			sctp_clear_pd(oldsk, NULL);
6115 
6116 	}
6117 
6118 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6119 		sctp_sock_rfree_frag(skb);
6120 		sctp_skb_set_owner_r_frag(skb, newsk);
6121 	}
6122 
6123 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6124 		sctp_sock_rfree_frag(skb);
6125 		sctp_skb_set_owner_r_frag(skb, newsk);
6126 	}
6127 
6128 	/* Set the type of socket to indicate that it is peeled off from the
6129 	 * original UDP-style socket or created with the accept() call on a
6130 	 * TCP-style socket..
6131 	 */
6132 	newsp->type = type;
6133 
6134 	/* Mark the new socket "in-use" by the user so that any packets
6135 	 * that may arrive on the association after we've moved it are
6136 	 * queued to the backlog.  This prevents a potential race between
6137 	 * backlog processing on the old socket and new-packet processing
6138 	 * on the new socket.
6139 	 *
6140 	 * The caller has just allocated newsk so we can guarantee that other
6141 	 * paths won't try to lock it and then oldsk.
6142 	 */
6143 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6144 	sctp_assoc_migrate(assoc, newsk);
6145 
6146 	/* If the association on the newsk is already closed before accept()
6147 	 * is called, set RCV_SHUTDOWN flag.
6148 	 */
6149 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6150 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6151 
6152 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6153 	sctp_release_sock(newsk);
6154 }
6155 
6156 /* This proto struct describes the ULP interface for SCTP.  */
6157 struct proto sctp_prot = {
6158 	.name        =	"SCTP",
6159 	.owner       =	THIS_MODULE,
6160 	.close       =	sctp_close,
6161 	.connect     =	sctp_connect,
6162 	.disconnect  =	sctp_disconnect,
6163 	.accept      =	sctp_accept,
6164 	.ioctl       =	sctp_ioctl,
6165 	.init        =	sctp_init_sock,
6166 	.destroy     =	sctp_destroy_sock,
6167 	.shutdown    =	sctp_shutdown,
6168 	.setsockopt  =	sctp_setsockopt,
6169 	.getsockopt  =	sctp_getsockopt,
6170 	.sendmsg     =	sctp_sendmsg,
6171 	.recvmsg     =	sctp_recvmsg,
6172 	.bind        =	sctp_bind,
6173 	.backlog_rcv =	sctp_backlog_rcv,
6174 	.hash        =	sctp_hash,
6175 	.unhash      =	sctp_unhash,
6176 	.get_port    =	sctp_get_port,
6177 	.obj_size    =  sizeof(struct sctp_sock),
6178 };
6179 
6180 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6181 struct proto sctpv6_prot = {
6182 	.name		= "SCTPv6",
6183 	.owner		= THIS_MODULE,
6184 	.close		= sctp_close,
6185 	.connect	= sctp_connect,
6186 	.disconnect	= sctp_disconnect,
6187 	.accept		= sctp_accept,
6188 	.ioctl		= sctp_ioctl,
6189 	.init		= sctp_init_sock,
6190 	.destroy	= sctp_destroy_sock,
6191 	.shutdown	= sctp_shutdown,
6192 	.setsockopt	= sctp_setsockopt,
6193 	.getsockopt	= sctp_getsockopt,
6194 	.sendmsg	= sctp_sendmsg,
6195 	.recvmsg	= sctp_recvmsg,
6196 	.bind		= sctp_bind,
6197 	.backlog_rcv	= sctp_backlog_rcv,
6198 	.hash		= sctp_hash,
6199 	.unhash		= sctp_unhash,
6200 	.get_port	= sctp_get_port,
6201 	.obj_size	= sizeof(struct sctp6_sock),
6202 };
6203 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6204