1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/config.h> 61 #include <linux/types.h> 62 #include <linux/kernel.h> 63 #include <linux/wait.h> 64 #include <linux/time.h> 65 #include <linux/ip.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern kmem_cache_t *sctp_bucket_cachep; 111 112 /* Get the sndbuf space available at the time on the association. */ 113 static inline int sctp_wspace(struct sctp_association *asoc) 114 { 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130 } 131 132 /* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142 { 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 sk->sk_wmem_queued += SCTP_DATA_SNDSIZE(chunk) + 160 sizeof(struct sk_buff) + 161 sizeof(struct sctp_chunk); 162 163 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 164 } 165 166 /* Verify that this is a valid address. */ 167 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 168 int len) 169 { 170 struct sctp_af *af; 171 172 /* Verify basic sockaddr. */ 173 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 174 if (!af) 175 return -EINVAL; 176 177 /* Is this a valid SCTP address? */ 178 if (!af->addr_valid(addr, sctp_sk(sk))) 179 return -EINVAL; 180 181 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 182 return -EINVAL; 183 184 return 0; 185 } 186 187 /* Look up the association by its id. If this is not a UDP-style 188 * socket, the ID field is always ignored. 189 */ 190 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 191 { 192 struct sctp_association *asoc = NULL; 193 194 /* If this is not a UDP-style socket, assoc id should be ignored. */ 195 if (!sctp_style(sk, UDP)) { 196 /* Return NULL if the socket state is not ESTABLISHED. It 197 * could be a TCP-style listening socket or a socket which 198 * hasn't yet called connect() to establish an association. 199 */ 200 if (!sctp_sstate(sk, ESTABLISHED)) 201 return NULL; 202 203 /* Get the first and the only association from the list. */ 204 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 205 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 206 struct sctp_association, asocs); 207 return asoc; 208 } 209 210 /* Otherwise this is a UDP-style socket. */ 211 if (!id || (id == (sctp_assoc_t)-1)) 212 return NULL; 213 214 spin_lock_bh(&sctp_assocs_id_lock); 215 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 216 spin_unlock_bh(&sctp_assocs_id_lock); 217 218 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 219 return NULL; 220 221 return asoc; 222 } 223 224 /* Look up the transport from an address and an assoc id. If both address and 225 * id are specified, the associations matching the address and the id should be 226 * the same. 227 */ 228 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 229 struct sockaddr_storage *addr, 230 sctp_assoc_t id) 231 { 232 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 233 struct sctp_transport *transport; 234 union sctp_addr *laddr = (union sctp_addr *)addr; 235 236 laddr->v4.sin_port = ntohs(laddr->v4.sin_port); 237 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 238 (union sctp_addr *)addr, 239 &transport); 240 laddr->v4.sin_port = htons(laddr->v4.sin_port); 241 242 if (!addr_asoc) 243 return NULL; 244 245 id_asoc = sctp_id2assoc(sk, id); 246 if (id_asoc && (id_asoc != addr_asoc)) 247 return NULL; 248 249 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 250 (union sctp_addr *)addr); 251 252 return transport; 253 } 254 255 /* API 3.1.2 bind() - UDP Style Syntax 256 * The syntax of bind() is, 257 * 258 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 259 * 260 * sd - the socket descriptor returned by socket(). 261 * addr - the address structure (struct sockaddr_in or struct 262 * sockaddr_in6 [RFC 2553]), 263 * addr_len - the size of the address structure. 264 */ 265 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len) 266 { 267 int retval = 0; 268 269 sctp_lock_sock(sk); 270 271 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, uaddr: %p, addr_len: %d)\n", 272 sk, uaddr, addr_len); 273 274 /* Disallow binding twice. */ 275 if (!sctp_sk(sk)->ep->base.bind_addr.port) 276 retval = sctp_do_bind(sk, (union sctp_addr *)uaddr, 277 addr_len); 278 else 279 retval = -EINVAL; 280 281 sctp_release_sock(sk); 282 283 return retval; 284 } 285 286 static long sctp_get_port_local(struct sock *, union sctp_addr *); 287 288 /* Verify this is a valid sockaddr. */ 289 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 290 union sctp_addr *addr, int len) 291 { 292 struct sctp_af *af; 293 294 /* Check minimum size. */ 295 if (len < sizeof (struct sockaddr)) 296 return NULL; 297 298 /* Does this PF support this AF? */ 299 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 300 return NULL; 301 302 /* If we get this far, af is valid. */ 303 af = sctp_get_af_specific(addr->sa.sa_family); 304 305 if (len < af->sockaddr_len) 306 return NULL; 307 308 return af; 309 } 310 311 /* Bind a local address either to an endpoint or to an association. */ 312 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 313 { 314 struct sctp_sock *sp = sctp_sk(sk); 315 struct sctp_endpoint *ep = sp->ep; 316 struct sctp_bind_addr *bp = &ep->base.bind_addr; 317 struct sctp_af *af; 318 unsigned short snum; 319 int ret = 0; 320 321 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d)\n", 322 sk, addr, len); 323 324 /* Common sockaddr verification. */ 325 af = sctp_sockaddr_af(sp, addr, len); 326 if (!af) 327 return -EINVAL; 328 329 /* PF specific bind() address verification. */ 330 if (!sp->pf->bind_verify(sp, addr)) 331 return -EADDRNOTAVAIL; 332 333 snum= ntohs(addr->v4.sin_port); 334 335 SCTP_DEBUG_PRINTK("sctp_do_bind: port: %d, new port: %d\n", 336 bp->port, snum); 337 338 /* We must either be unbound, or bind to the same port. */ 339 if (bp->port && (snum != bp->port)) { 340 SCTP_DEBUG_PRINTK("sctp_do_bind:" 341 " New port %d does not match existing port " 342 "%d.\n", snum, bp->port); 343 return -EINVAL; 344 } 345 346 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 347 return -EACCES; 348 349 /* Make sure we are allowed to bind here. 350 * The function sctp_get_port_local() does duplicate address 351 * detection. 352 */ 353 if ((ret = sctp_get_port_local(sk, addr))) { 354 if (ret == (long) sk) { 355 /* This endpoint has a conflicting address. */ 356 return -EINVAL; 357 } else { 358 return -EADDRINUSE; 359 } 360 } 361 362 /* Refresh ephemeral port. */ 363 if (!bp->port) 364 bp->port = inet_sk(sk)->num; 365 366 /* Add the address to the bind address list. */ 367 sctp_local_bh_disable(); 368 sctp_write_lock(&ep->base.addr_lock); 369 370 /* Use GFP_ATOMIC since BHs are disabled. */ 371 addr->v4.sin_port = ntohs(addr->v4.sin_port); 372 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC); 373 addr->v4.sin_port = htons(addr->v4.sin_port); 374 sctp_write_unlock(&ep->base.addr_lock); 375 sctp_local_bh_enable(); 376 377 /* Copy back into socket for getsockname() use. */ 378 if (!ret) { 379 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 380 af->to_sk_saddr(addr, sk); 381 } 382 383 return ret; 384 } 385 386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 387 * 388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 389 * at any one time. If a sender, after sending an ASCONF chunk, decides 390 * it needs to transfer another ASCONF Chunk, it MUST wait until the 391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 392 * subsequent ASCONF. Note this restriction binds each side, so at any 393 * time two ASCONF may be in-transit on any given association (one sent 394 * from each endpoint). 395 */ 396 static int sctp_send_asconf(struct sctp_association *asoc, 397 struct sctp_chunk *chunk) 398 { 399 int retval = 0; 400 401 /* If there is an outstanding ASCONF chunk, queue it for later 402 * transmission. 403 */ 404 if (asoc->addip_last_asconf) { 405 __skb_queue_tail(&asoc->addip_chunks, (struct sk_buff *)chunk); 406 goto out; 407 } 408 409 /* Hold the chunk until an ASCONF_ACK is received. */ 410 sctp_chunk_hold(chunk); 411 retval = sctp_primitive_ASCONF(asoc, chunk); 412 if (retval) 413 sctp_chunk_free(chunk); 414 else 415 asoc->addip_last_asconf = chunk; 416 417 out: 418 return retval; 419 } 420 421 /* Add a list of addresses as bind addresses to local endpoint or 422 * association. 423 * 424 * Basically run through each address specified in the addrs/addrcnt 425 * array/length pair, determine if it is IPv6 or IPv4 and call 426 * sctp_do_bind() on it. 427 * 428 * If any of them fails, then the operation will be reversed and the 429 * ones that were added will be removed. 430 * 431 * Only sctp_setsockopt_bindx() is supposed to call this function. 432 */ 433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 434 { 435 int cnt; 436 int retval = 0; 437 void *addr_buf; 438 struct sockaddr *sa_addr; 439 struct sctp_af *af; 440 441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 442 sk, addrs, addrcnt); 443 444 addr_buf = addrs; 445 for (cnt = 0; cnt < addrcnt; cnt++) { 446 /* The list may contain either IPv4 or IPv6 address; 447 * determine the address length for walking thru the list. 448 */ 449 sa_addr = (struct sockaddr *)addr_buf; 450 af = sctp_get_af_specific(sa_addr->sa_family); 451 if (!af) { 452 retval = -EINVAL; 453 goto err_bindx_add; 454 } 455 456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 457 af->sockaddr_len); 458 459 addr_buf += af->sockaddr_len; 460 461 err_bindx_add: 462 if (retval < 0) { 463 /* Failed. Cleanup the ones that have been added */ 464 if (cnt > 0) 465 sctp_bindx_rem(sk, addrs, cnt); 466 return retval; 467 } 468 } 469 470 return retval; 471 } 472 473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 474 * associations that are part of the endpoint indicating that a list of local 475 * addresses are added to the endpoint. 476 * 477 * If any of the addresses is already in the bind address list of the 478 * association, we do not send the chunk for that association. But it will not 479 * affect other associations. 480 * 481 * Only sctp_setsockopt_bindx() is supposed to call this function. 482 */ 483 static int sctp_send_asconf_add_ip(struct sock *sk, 484 struct sockaddr *addrs, 485 int addrcnt) 486 { 487 struct sctp_sock *sp; 488 struct sctp_endpoint *ep; 489 struct sctp_association *asoc; 490 struct sctp_bind_addr *bp; 491 struct sctp_chunk *chunk; 492 struct sctp_sockaddr_entry *laddr; 493 union sctp_addr *addr; 494 void *addr_buf; 495 struct sctp_af *af; 496 struct list_head *pos; 497 struct list_head *p; 498 int i; 499 int retval = 0; 500 501 if (!sctp_addip_enable) 502 return retval; 503 504 sp = sctp_sk(sk); 505 ep = sp->ep; 506 507 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 508 __FUNCTION__, sk, addrs, addrcnt); 509 510 list_for_each(pos, &ep->asocs) { 511 asoc = list_entry(pos, struct sctp_association, asocs); 512 513 if (!asoc->peer.asconf_capable) 514 continue; 515 516 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 517 continue; 518 519 if (!sctp_state(asoc, ESTABLISHED)) 520 continue; 521 522 /* Check if any address in the packed array of addresses is 523 * in the bind address list of the association. If so, 524 * do not send the asconf chunk to its peer, but continue with 525 * other associations. 526 */ 527 addr_buf = addrs; 528 for (i = 0; i < addrcnt; i++) { 529 addr = (union sctp_addr *)addr_buf; 530 af = sctp_get_af_specific(addr->v4.sin_family); 531 if (!af) { 532 retval = -EINVAL; 533 goto out; 534 } 535 536 if (sctp_assoc_lookup_laddr(asoc, addr)) 537 break; 538 539 addr_buf += af->sockaddr_len; 540 } 541 if (i < addrcnt) 542 continue; 543 544 /* Use the first address in bind addr list of association as 545 * Address Parameter of ASCONF CHUNK. 546 */ 547 sctp_read_lock(&asoc->base.addr_lock); 548 bp = &asoc->base.bind_addr; 549 p = bp->address_list.next; 550 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 551 sctp_read_unlock(&asoc->base.addr_lock); 552 553 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 554 addrcnt, SCTP_PARAM_ADD_IP); 555 if (!chunk) { 556 retval = -ENOMEM; 557 goto out; 558 } 559 560 retval = sctp_send_asconf(asoc, chunk); 561 562 /* FIXME: After sending the add address ASCONF chunk, we 563 * cannot append the address to the association's binding 564 * address list, because the new address may be used as the 565 * source of a message sent to the peer before the ASCONF 566 * chunk is received by the peer. So we should wait until 567 * ASCONF_ACK is received. 568 */ 569 } 570 571 out: 572 return retval; 573 } 574 575 /* Remove a list of addresses from bind addresses list. Do not remove the 576 * last address. 577 * 578 * Basically run through each address specified in the addrs/addrcnt 579 * array/length pair, determine if it is IPv6 or IPv4 and call 580 * sctp_del_bind() on it. 581 * 582 * If any of them fails, then the operation will be reversed and the 583 * ones that were removed will be added back. 584 * 585 * At least one address has to be left; if only one address is 586 * available, the operation will return -EBUSY. 587 * 588 * Only sctp_setsockopt_bindx() is supposed to call this function. 589 */ 590 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 591 { 592 struct sctp_sock *sp = sctp_sk(sk); 593 struct sctp_endpoint *ep = sp->ep; 594 int cnt; 595 struct sctp_bind_addr *bp = &ep->base.bind_addr; 596 int retval = 0; 597 union sctp_addr saveaddr; 598 void *addr_buf; 599 struct sockaddr *sa_addr; 600 struct sctp_af *af; 601 602 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 603 sk, addrs, addrcnt); 604 605 addr_buf = addrs; 606 for (cnt = 0; cnt < addrcnt; cnt++) { 607 /* If the bind address list is empty or if there is only one 608 * bind address, there is nothing more to be removed (we need 609 * at least one address here). 610 */ 611 if (list_empty(&bp->address_list) || 612 (sctp_list_single_entry(&bp->address_list))) { 613 retval = -EBUSY; 614 goto err_bindx_rem; 615 } 616 617 /* The list may contain either IPv4 or IPv6 address; 618 * determine the address length to copy the address to 619 * saveaddr. 620 */ 621 sa_addr = (struct sockaddr *)addr_buf; 622 af = sctp_get_af_specific(sa_addr->sa_family); 623 if (!af) { 624 retval = -EINVAL; 625 goto err_bindx_rem; 626 } 627 memcpy(&saveaddr, sa_addr, af->sockaddr_len); 628 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 629 if (saveaddr.v4.sin_port != bp->port) { 630 retval = -EINVAL; 631 goto err_bindx_rem; 632 } 633 634 /* FIXME - There is probably a need to check if sk->sk_saddr and 635 * sk->sk_rcv_addr are currently set to one of the addresses to 636 * be removed. This is something which needs to be looked into 637 * when we are fixing the outstanding issues with multi-homing 638 * socket routing and failover schemes. Refer to comments in 639 * sctp_do_bind(). -daisy 640 */ 641 sctp_local_bh_disable(); 642 sctp_write_lock(&ep->base.addr_lock); 643 644 retval = sctp_del_bind_addr(bp, &saveaddr); 645 646 sctp_write_unlock(&ep->base.addr_lock); 647 sctp_local_bh_enable(); 648 649 addr_buf += af->sockaddr_len; 650 err_bindx_rem: 651 if (retval < 0) { 652 /* Failed. Add the ones that has been removed back */ 653 if (cnt > 0) 654 sctp_bindx_add(sk, addrs, cnt); 655 return retval; 656 } 657 } 658 659 return retval; 660 } 661 662 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 663 * the associations that are part of the endpoint indicating that a list of 664 * local addresses are removed from the endpoint. 665 * 666 * If any of the addresses is already in the bind address list of the 667 * association, we do not send the chunk for that association. But it will not 668 * affect other associations. 669 * 670 * Only sctp_setsockopt_bindx() is supposed to call this function. 671 */ 672 static int sctp_send_asconf_del_ip(struct sock *sk, 673 struct sockaddr *addrs, 674 int addrcnt) 675 { 676 struct sctp_sock *sp; 677 struct sctp_endpoint *ep; 678 struct sctp_association *asoc; 679 struct sctp_bind_addr *bp; 680 struct sctp_chunk *chunk; 681 union sctp_addr *laddr; 682 void *addr_buf; 683 struct sctp_af *af; 684 struct list_head *pos; 685 int i; 686 int retval = 0; 687 688 if (!sctp_addip_enable) 689 return retval; 690 691 sp = sctp_sk(sk); 692 ep = sp->ep; 693 694 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 695 __FUNCTION__, sk, addrs, addrcnt); 696 697 list_for_each(pos, &ep->asocs) { 698 asoc = list_entry(pos, struct sctp_association, asocs); 699 700 if (!asoc->peer.asconf_capable) 701 continue; 702 703 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 704 continue; 705 706 if (!sctp_state(asoc, ESTABLISHED)) 707 continue; 708 709 /* Check if any address in the packed array of addresses is 710 * not present in the bind address list of the association. 711 * If so, do not send the asconf chunk to its peer, but 712 * continue with other associations. 713 */ 714 addr_buf = addrs; 715 for (i = 0; i < addrcnt; i++) { 716 laddr = (union sctp_addr *)addr_buf; 717 af = sctp_get_af_specific(laddr->v4.sin_family); 718 if (!af) { 719 retval = -EINVAL; 720 goto out; 721 } 722 723 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 724 break; 725 726 addr_buf += af->sockaddr_len; 727 } 728 if (i < addrcnt) 729 continue; 730 731 /* Find one address in the association's bind address list 732 * that is not in the packed array of addresses. This is to 733 * make sure that we do not delete all the addresses in the 734 * association. 735 */ 736 sctp_read_lock(&asoc->base.addr_lock); 737 bp = &asoc->base.bind_addr; 738 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 739 addrcnt, sp); 740 sctp_read_unlock(&asoc->base.addr_lock); 741 if (!laddr) 742 continue; 743 744 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 745 SCTP_PARAM_DEL_IP); 746 if (!chunk) { 747 retval = -ENOMEM; 748 goto out; 749 } 750 751 retval = sctp_send_asconf(asoc, chunk); 752 753 /* FIXME: After sending the delete address ASCONF chunk, we 754 * cannot remove the addresses from the association's bind 755 * address list, because there maybe some packet send to 756 * the delete addresses, so we should wait until ASCONF_ACK 757 * packet is received. 758 */ 759 } 760 out: 761 return retval; 762 } 763 764 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 765 * 766 * API 8.1 767 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 768 * int flags); 769 * 770 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 771 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 772 * or IPv6 addresses. 773 * 774 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 775 * Section 3.1.2 for this usage. 776 * 777 * addrs is a pointer to an array of one or more socket addresses. Each 778 * address is contained in its appropriate structure (i.e. struct 779 * sockaddr_in or struct sockaddr_in6) the family of the address type 780 * must be used to distengish the address length (note that this 781 * representation is termed a "packed array" of addresses). The caller 782 * specifies the number of addresses in the array with addrcnt. 783 * 784 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 785 * -1, and sets errno to the appropriate error code. 786 * 787 * For SCTP, the port given in each socket address must be the same, or 788 * sctp_bindx() will fail, setting errno to EINVAL. 789 * 790 * The flags parameter is formed from the bitwise OR of zero or more of 791 * the following currently defined flags: 792 * 793 * SCTP_BINDX_ADD_ADDR 794 * 795 * SCTP_BINDX_REM_ADDR 796 * 797 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 798 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 799 * addresses from the association. The two flags are mutually exclusive; 800 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 801 * not remove all addresses from an association; sctp_bindx() will 802 * reject such an attempt with EINVAL. 803 * 804 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 805 * additional addresses with an endpoint after calling bind(). Or use 806 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 807 * socket is associated with so that no new association accepted will be 808 * associated with those addresses. If the endpoint supports dynamic 809 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 810 * endpoint to send the appropriate message to the peer to change the 811 * peers address lists. 812 * 813 * Adding and removing addresses from a connected association is 814 * optional functionality. Implementations that do not support this 815 * functionality should return EOPNOTSUPP. 816 * 817 * Basically do nothing but copying the addresses from user to kernel 818 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 819 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace. 820 * 821 * We don't use copy_from_user() for optimization: we first do the 822 * sanity checks (buffer size -fast- and access check-healthy 823 * pointer); if all of those succeed, then we can alloc the memory 824 * (expensive operation) needed to copy the data to kernel. Then we do 825 * the copying without checking the user space area 826 * (__copy_from_user()). 827 * 828 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 829 * it. 830 * 831 * sk The sk of the socket 832 * addrs The pointer to the addresses in user land 833 * addrssize Size of the addrs buffer 834 * op Operation to perform (add or remove, see the flags of 835 * sctp_bindx) 836 * 837 * Returns 0 if ok, <0 errno code on error. 838 */ 839 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 840 struct sockaddr __user *addrs, 841 int addrs_size, int op) 842 { 843 struct sockaddr *kaddrs; 844 int err; 845 int addrcnt = 0; 846 int walk_size = 0; 847 struct sockaddr *sa_addr; 848 void *addr_buf; 849 struct sctp_af *af; 850 851 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 852 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 853 854 if (unlikely(addrs_size <= 0)) 855 return -EINVAL; 856 857 /* Check the user passed a healthy pointer. */ 858 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 859 return -EFAULT; 860 861 /* Alloc space for the address array in kernel memory. */ 862 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL); 863 if (unlikely(!kaddrs)) 864 return -ENOMEM; 865 866 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 867 kfree(kaddrs); 868 return -EFAULT; 869 } 870 871 /* Walk through the addrs buffer and count the number of addresses. */ 872 addr_buf = kaddrs; 873 while (walk_size < addrs_size) { 874 sa_addr = (struct sockaddr *)addr_buf; 875 af = sctp_get_af_specific(sa_addr->sa_family); 876 877 /* If the address family is not supported or if this address 878 * causes the address buffer to overflow return EINVAL. 879 */ 880 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 881 kfree(kaddrs); 882 return -EINVAL; 883 } 884 addrcnt++; 885 addr_buf += af->sockaddr_len; 886 walk_size += af->sockaddr_len; 887 } 888 889 /* Do the work. */ 890 switch (op) { 891 case SCTP_BINDX_ADD_ADDR: 892 err = sctp_bindx_add(sk, kaddrs, addrcnt); 893 if (err) 894 goto out; 895 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 896 break; 897 898 case SCTP_BINDX_REM_ADDR: 899 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 900 if (err) 901 goto out; 902 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 903 break; 904 905 default: 906 err = -EINVAL; 907 break; 908 }; 909 910 out: 911 kfree(kaddrs); 912 913 return err; 914 } 915 916 /* API 3.1.4 close() - UDP Style Syntax 917 * Applications use close() to perform graceful shutdown (as described in 918 * Section 10.1 of [SCTP]) on ALL the associations currently represented 919 * by a UDP-style socket. 920 * 921 * The syntax is 922 * 923 * ret = close(int sd); 924 * 925 * sd - the socket descriptor of the associations to be closed. 926 * 927 * To gracefully shutdown a specific association represented by the 928 * UDP-style socket, an application should use the sendmsg() call, 929 * passing no user data, but including the appropriate flag in the 930 * ancillary data (see Section xxxx). 931 * 932 * If sd in the close() call is a branched-off socket representing only 933 * one association, the shutdown is performed on that association only. 934 * 935 * 4.1.6 close() - TCP Style Syntax 936 * 937 * Applications use close() to gracefully close down an association. 938 * 939 * The syntax is: 940 * 941 * int close(int sd); 942 * 943 * sd - the socket descriptor of the association to be closed. 944 * 945 * After an application calls close() on a socket descriptor, no further 946 * socket operations will succeed on that descriptor. 947 * 948 * API 7.1.4 SO_LINGER 949 * 950 * An application using the TCP-style socket can use this option to 951 * perform the SCTP ABORT primitive. The linger option structure is: 952 * 953 * struct linger { 954 * int l_onoff; // option on/off 955 * int l_linger; // linger time 956 * }; 957 * 958 * To enable the option, set l_onoff to 1. If the l_linger value is set 959 * to 0, calling close() is the same as the ABORT primitive. If the 960 * value is set to a negative value, the setsockopt() call will return 961 * an error. If the value is set to a positive value linger_time, the 962 * close() can be blocked for at most linger_time ms. If the graceful 963 * shutdown phase does not finish during this period, close() will 964 * return but the graceful shutdown phase continues in the system. 965 */ 966 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 967 { 968 struct sctp_endpoint *ep; 969 struct sctp_association *asoc; 970 struct list_head *pos, *temp; 971 972 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 973 974 sctp_lock_sock(sk); 975 sk->sk_shutdown = SHUTDOWN_MASK; 976 977 ep = sctp_sk(sk)->ep; 978 979 /* Walk all associations on a socket, not on an endpoint. */ 980 list_for_each_safe(pos, temp, &ep->asocs) { 981 asoc = list_entry(pos, struct sctp_association, asocs); 982 983 if (sctp_style(sk, TCP)) { 984 /* A closed association can still be in the list if 985 * it belongs to a TCP-style listening socket that is 986 * not yet accepted. If so, free it. If not, send an 987 * ABORT or SHUTDOWN based on the linger options. 988 */ 989 if (sctp_state(asoc, CLOSED)) { 990 sctp_unhash_established(asoc); 991 sctp_association_free(asoc); 992 993 } else if (sock_flag(sk, SOCK_LINGER) && 994 !sk->sk_lingertime) 995 sctp_primitive_ABORT(asoc, NULL); 996 else 997 sctp_primitive_SHUTDOWN(asoc, NULL); 998 } else 999 sctp_primitive_SHUTDOWN(asoc, NULL); 1000 } 1001 1002 /* Clean up any skbs sitting on the receive queue. */ 1003 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1004 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1005 1006 /* On a TCP-style socket, block for at most linger_time if set. */ 1007 if (sctp_style(sk, TCP) && timeout) 1008 sctp_wait_for_close(sk, timeout); 1009 1010 /* This will run the backlog queue. */ 1011 sctp_release_sock(sk); 1012 1013 /* Supposedly, no process has access to the socket, but 1014 * the net layers still may. 1015 */ 1016 sctp_local_bh_disable(); 1017 sctp_bh_lock_sock(sk); 1018 1019 /* Hold the sock, since sk_common_release() will put sock_put() 1020 * and we have just a little more cleanup. 1021 */ 1022 sock_hold(sk); 1023 sk_common_release(sk); 1024 1025 sctp_bh_unlock_sock(sk); 1026 sctp_local_bh_enable(); 1027 1028 sock_put(sk); 1029 1030 SCTP_DBG_OBJCNT_DEC(sock); 1031 } 1032 1033 /* Handle EPIPE error. */ 1034 static int sctp_error(struct sock *sk, int flags, int err) 1035 { 1036 if (err == -EPIPE) 1037 err = sock_error(sk) ? : -EPIPE; 1038 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1039 send_sig(SIGPIPE, current, 0); 1040 return err; 1041 } 1042 1043 /* API 3.1.3 sendmsg() - UDP Style Syntax 1044 * 1045 * An application uses sendmsg() and recvmsg() calls to transmit data to 1046 * and receive data from its peer. 1047 * 1048 * ssize_t sendmsg(int socket, const struct msghdr *message, 1049 * int flags); 1050 * 1051 * socket - the socket descriptor of the endpoint. 1052 * message - pointer to the msghdr structure which contains a single 1053 * user message and possibly some ancillary data. 1054 * 1055 * See Section 5 for complete description of the data 1056 * structures. 1057 * 1058 * flags - flags sent or received with the user message, see Section 1059 * 5 for complete description of the flags. 1060 * 1061 * Note: This function could use a rewrite especially when explicit 1062 * connect support comes in. 1063 */ 1064 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1065 1066 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1067 1068 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1069 struct msghdr *msg, size_t msg_len) 1070 { 1071 struct sctp_sock *sp; 1072 struct sctp_endpoint *ep; 1073 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1074 struct sctp_transport *transport, *chunk_tp; 1075 struct sctp_chunk *chunk; 1076 union sctp_addr to; 1077 struct sockaddr *msg_name = NULL; 1078 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1079 struct sctp_sndrcvinfo *sinfo; 1080 struct sctp_initmsg *sinit; 1081 sctp_assoc_t associd = 0; 1082 sctp_cmsgs_t cmsgs = { NULL }; 1083 int err; 1084 sctp_scope_t scope; 1085 long timeo; 1086 __u16 sinfo_flags = 0; 1087 struct sctp_datamsg *datamsg; 1088 struct list_head *pos; 1089 int msg_flags = msg->msg_flags; 1090 1091 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1092 sk, msg, msg_len); 1093 1094 err = 0; 1095 sp = sctp_sk(sk); 1096 ep = sp->ep; 1097 1098 SCTP_DEBUG_PRINTK("Using endpoint: %s.\n", ep->debug_name); 1099 1100 /* We cannot send a message over a TCP-style listening socket. */ 1101 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1102 err = -EPIPE; 1103 goto out_nounlock; 1104 } 1105 1106 /* Parse out the SCTP CMSGs. */ 1107 err = sctp_msghdr_parse(msg, &cmsgs); 1108 1109 if (err) { 1110 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1111 goto out_nounlock; 1112 } 1113 1114 /* Fetch the destination address for this packet. This 1115 * address only selects the association--it is not necessarily 1116 * the address we will send to. 1117 * For a peeled-off socket, msg_name is ignored. 1118 */ 1119 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1120 int msg_namelen = msg->msg_namelen; 1121 1122 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1123 msg_namelen); 1124 if (err) 1125 return err; 1126 1127 if (msg_namelen > sizeof(to)) 1128 msg_namelen = sizeof(to); 1129 memcpy(&to, msg->msg_name, msg_namelen); 1130 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is " 1131 "0x%x:%u.\n", 1132 to.v4.sin_addr.s_addr, to.v4.sin_port); 1133 1134 to.v4.sin_port = ntohs(to.v4.sin_port); 1135 msg_name = msg->msg_name; 1136 } 1137 1138 sinfo = cmsgs.info; 1139 sinit = cmsgs.init; 1140 1141 /* Did the user specify SNDRCVINFO? */ 1142 if (sinfo) { 1143 sinfo_flags = sinfo->sinfo_flags; 1144 associd = sinfo->sinfo_assoc_id; 1145 } 1146 1147 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1148 msg_len, sinfo_flags); 1149 1150 /* MSG_EOF or MSG_ABORT cannot be set on a TCP-style socket. */ 1151 if (sctp_style(sk, TCP) && (sinfo_flags & (MSG_EOF | MSG_ABORT))) { 1152 err = -EINVAL; 1153 goto out_nounlock; 1154 } 1155 1156 /* If MSG_EOF is set, no data can be sent. Disallow sending zero 1157 * length messages when MSG_EOF|MSG_ABORT is not set. 1158 * If MSG_ABORT is set, the message length could be non zero with 1159 * the msg_iov set to the user abort reason. 1160 */ 1161 if (((sinfo_flags & MSG_EOF) && (msg_len > 0)) || 1162 (!(sinfo_flags & (MSG_EOF|MSG_ABORT)) && (msg_len == 0))) { 1163 err = -EINVAL; 1164 goto out_nounlock; 1165 } 1166 1167 /* If MSG_ADDR_OVER is set, there must be an address 1168 * specified in msg_name. 1169 */ 1170 if ((sinfo_flags & MSG_ADDR_OVER) && (!msg->msg_name)) { 1171 err = -EINVAL; 1172 goto out_nounlock; 1173 } 1174 1175 transport = NULL; 1176 1177 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1178 1179 sctp_lock_sock(sk); 1180 1181 /* If a msg_name has been specified, assume this is to be used. */ 1182 if (msg_name) { 1183 /* Look for a matching association on the endpoint. */ 1184 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1185 if (!asoc) { 1186 /* If we could not find a matching association on the 1187 * endpoint, make sure that it is not a TCP-style 1188 * socket that already has an association or there is 1189 * no peeled-off association on another socket. 1190 */ 1191 if ((sctp_style(sk, TCP) && 1192 sctp_sstate(sk, ESTABLISHED)) || 1193 sctp_endpoint_is_peeled_off(ep, &to)) { 1194 err = -EADDRNOTAVAIL; 1195 goto out_unlock; 1196 } 1197 } 1198 } else { 1199 asoc = sctp_id2assoc(sk, associd); 1200 if (!asoc) { 1201 err = -EPIPE; 1202 goto out_unlock; 1203 } 1204 } 1205 1206 if (asoc) { 1207 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1208 1209 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1210 * socket that has an association in CLOSED state. This can 1211 * happen when an accepted socket has an association that is 1212 * already CLOSED. 1213 */ 1214 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1215 err = -EPIPE; 1216 goto out_unlock; 1217 } 1218 1219 if (sinfo_flags & MSG_EOF) { 1220 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1221 asoc); 1222 sctp_primitive_SHUTDOWN(asoc, NULL); 1223 err = 0; 1224 goto out_unlock; 1225 } 1226 if (sinfo_flags & MSG_ABORT) { 1227 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1228 sctp_primitive_ABORT(asoc, msg); 1229 err = 0; 1230 goto out_unlock; 1231 } 1232 } 1233 1234 /* Do we need to create the association? */ 1235 if (!asoc) { 1236 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1237 1238 if (sinfo_flags & (MSG_EOF | MSG_ABORT)) { 1239 err = -EINVAL; 1240 goto out_unlock; 1241 } 1242 1243 /* Check for invalid stream against the stream counts, 1244 * either the default or the user specified stream counts. 1245 */ 1246 if (sinfo) { 1247 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1248 /* Check against the defaults. */ 1249 if (sinfo->sinfo_stream >= 1250 sp->initmsg.sinit_num_ostreams) { 1251 err = -EINVAL; 1252 goto out_unlock; 1253 } 1254 } else { 1255 /* Check against the requested. */ 1256 if (sinfo->sinfo_stream >= 1257 sinit->sinit_num_ostreams) { 1258 err = -EINVAL; 1259 goto out_unlock; 1260 } 1261 } 1262 } 1263 1264 /* 1265 * API 3.1.2 bind() - UDP Style Syntax 1266 * If a bind() or sctp_bindx() is not called prior to a 1267 * sendmsg() call that initiates a new association, the 1268 * system picks an ephemeral port and will choose an address 1269 * set equivalent to binding with a wildcard address. 1270 */ 1271 if (!ep->base.bind_addr.port) { 1272 if (sctp_autobind(sk)) { 1273 err = -EAGAIN; 1274 goto out_unlock; 1275 } 1276 } 1277 1278 scope = sctp_scope(&to); 1279 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1280 if (!new_asoc) { 1281 err = -ENOMEM; 1282 goto out_unlock; 1283 } 1284 asoc = new_asoc; 1285 1286 /* If the SCTP_INIT ancillary data is specified, set all 1287 * the association init values accordingly. 1288 */ 1289 if (sinit) { 1290 if (sinit->sinit_num_ostreams) { 1291 asoc->c.sinit_num_ostreams = 1292 sinit->sinit_num_ostreams; 1293 } 1294 if (sinit->sinit_max_instreams) { 1295 asoc->c.sinit_max_instreams = 1296 sinit->sinit_max_instreams; 1297 } 1298 if (sinit->sinit_max_attempts) { 1299 asoc->max_init_attempts 1300 = sinit->sinit_max_attempts; 1301 } 1302 if (sinit->sinit_max_init_timeo) { 1303 asoc->max_init_timeo = 1304 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1305 } 1306 } 1307 1308 /* Prime the peer's transport structures. */ 1309 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL); 1310 if (!transport) { 1311 err = -ENOMEM; 1312 goto out_free; 1313 } 1314 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1315 if (err < 0) { 1316 err = -ENOMEM; 1317 goto out_free; 1318 } 1319 } 1320 1321 /* ASSERT: we have a valid association at this point. */ 1322 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1323 1324 if (!sinfo) { 1325 /* If the user didn't specify SNDRCVINFO, make up one with 1326 * some defaults. 1327 */ 1328 default_sinfo.sinfo_stream = asoc->default_stream; 1329 default_sinfo.sinfo_flags = asoc->default_flags; 1330 default_sinfo.sinfo_ppid = asoc->default_ppid; 1331 default_sinfo.sinfo_context = asoc->default_context; 1332 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1333 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1334 sinfo = &default_sinfo; 1335 } 1336 1337 /* API 7.1.7, the sndbuf size per association bounds the 1338 * maximum size of data that can be sent in a single send call. 1339 */ 1340 if (msg_len > sk->sk_sndbuf) { 1341 err = -EMSGSIZE; 1342 goto out_free; 1343 } 1344 1345 /* If fragmentation is disabled and the message length exceeds the 1346 * association fragmentation point, return EMSGSIZE. The I-D 1347 * does not specify what this error is, but this looks like 1348 * a great fit. 1349 */ 1350 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1351 err = -EMSGSIZE; 1352 goto out_free; 1353 } 1354 1355 if (sinfo) { 1356 /* Check for invalid stream. */ 1357 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1358 err = -EINVAL; 1359 goto out_free; 1360 } 1361 } 1362 1363 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1364 if (!sctp_wspace(asoc)) { 1365 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1366 if (err) 1367 goto out_free; 1368 } 1369 1370 /* If an address is passed with the sendto/sendmsg call, it is used 1371 * to override the primary destination address in the TCP model, or 1372 * when MSG_ADDR_OVER flag is set in the UDP model. 1373 */ 1374 if ((sctp_style(sk, TCP) && msg_name) || 1375 (sinfo_flags & MSG_ADDR_OVER)) { 1376 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1377 if (!chunk_tp) { 1378 err = -EINVAL; 1379 goto out_free; 1380 } 1381 } else 1382 chunk_tp = NULL; 1383 1384 /* Auto-connect, if we aren't connected already. */ 1385 if (sctp_state(asoc, CLOSED)) { 1386 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1387 if (err < 0) 1388 goto out_free; 1389 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1390 } 1391 1392 /* Break the message into multiple chunks of maximum size. */ 1393 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1394 if (!datamsg) { 1395 err = -ENOMEM; 1396 goto out_free; 1397 } 1398 1399 /* Now send the (possibly) fragmented message. */ 1400 list_for_each(pos, &datamsg->chunks) { 1401 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1402 sctp_datamsg_track(chunk); 1403 1404 /* Do accounting for the write space. */ 1405 sctp_set_owner_w(chunk); 1406 1407 chunk->transport = chunk_tp; 1408 1409 /* Send it to the lower layers. Note: all chunks 1410 * must either fail or succeed. The lower layer 1411 * works that way today. Keep it that way or this 1412 * breaks. 1413 */ 1414 err = sctp_primitive_SEND(asoc, chunk); 1415 /* Did the lower layer accept the chunk? */ 1416 if (err) 1417 sctp_chunk_free(chunk); 1418 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1419 } 1420 1421 sctp_datamsg_free(datamsg); 1422 if (err) 1423 goto out_free; 1424 else 1425 err = msg_len; 1426 1427 /* If we are already past ASSOCIATE, the lower 1428 * layers are responsible for association cleanup. 1429 */ 1430 goto out_unlock; 1431 1432 out_free: 1433 if (new_asoc) 1434 sctp_association_free(asoc); 1435 out_unlock: 1436 sctp_release_sock(sk); 1437 1438 out_nounlock: 1439 return sctp_error(sk, msg_flags, err); 1440 1441 #if 0 1442 do_sock_err: 1443 if (msg_len) 1444 err = msg_len; 1445 else 1446 err = sock_error(sk); 1447 goto out; 1448 1449 do_interrupted: 1450 if (msg_len) 1451 err = msg_len; 1452 goto out; 1453 #endif /* 0 */ 1454 } 1455 1456 /* This is an extended version of skb_pull() that removes the data from the 1457 * start of a skb even when data is spread across the list of skb's in the 1458 * frag_list. len specifies the total amount of data that needs to be removed. 1459 * when 'len' bytes could be removed from the skb, it returns 0. 1460 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1461 * could not be removed. 1462 */ 1463 static int sctp_skb_pull(struct sk_buff *skb, int len) 1464 { 1465 struct sk_buff *list; 1466 int skb_len = skb_headlen(skb); 1467 int rlen; 1468 1469 if (len <= skb_len) { 1470 __skb_pull(skb, len); 1471 return 0; 1472 } 1473 len -= skb_len; 1474 __skb_pull(skb, skb_len); 1475 1476 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1477 rlen = sctp_skb_pull(list, len); 1478 skb->len -= (len-rlen); 1479 skb->data_len -= (len-rlen); 1480 1481 if (!rlen) 1482 return 0; 1483 1484 len = rlen; 1485 } 1486 1487 return len; 1488 } 1489 1490 /* API 3.1.3 recvmsg() - UDP Style Syntax 1491 * 1492 * ssize_t recvmsg(int socket, struct msghdr *message, 1493 * int flags); 1494 * 1495 * socket - the socket descriptor of the endpoint. 1496 * message - pointer to the msghdr structure which contains a single 1497 * user message and possibly some ancillary data. 1498 * 1499 * See Section 5 for complete description of the data 1500 * structures. 1501 * 1502 * flags - flags sent or received with the user message, see Section 1503 * 5 for complete description of the flags. 1504 */ 1505 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1506 1507 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1508 struct msghdr *msg, size_t len, int noblock, 1509 int flags, int *addr_len) 1510 { 1511 struct sctp_ulpevent *event = NULL; 1512 struct sctp_sock *sp = sctp_sk(sk); 1513 struct sk_buff *skb; 1514 int copied; 1515 int err = 0; 1516 int skb_len; 1517 1518 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1519 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1520 "len", len, "knoblauch", noblock, 1521 "flags", flags, "addr_len", addr_len); 1522 1523 sctp_lock_sock(sk); 1524 1525 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1526 err = -ENOTCONN; 1527 goto out; 1528 } 1529 1530 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1531 if (!skb) 1532 goto out; 1533 1534 /* Get the total length of the skb including any skb's in the 1535 * frag_list. 1536 */ 1537 skb_len = skb->len; 1538 1539 copied = skb_len; 1540 if (copied > len) 1541 copied = len; 1542 1543 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1544 1545 event = sctp_skb2event(skb); 1546 1547 if (err) 1548 goto out_free; 1549 1550 sock_recv_timestamp(msg, sk, skb); 1551 if (sctp_ulpevent_is_notification(event)) { 1552 msg->msg_flags |= MSG_NOTIFICATION; 1553 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1554 } else { 1555 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1556 } 1557 1558 /* Check if we allow SCTP_SNDRCVINFO. */ 1559 if (sp->subscribe.sctp_data_io_event) 1560 sctp_ulpevent_read_sndrcvinfo(event, msg); 1561 #if 0 1562 /* FIXME: we should be calling IP/IPv6 layers. */ 1563 if (sk->sk_protinfo.af_inet.cmsg_flags) 1564 ip_cmsg_recv(msg, skb); 1565 #endif 1566 1567 err = copied; 1568 1569 /* If skb's length exceeds the user's buffer, update the skb and 1570 * push it back to the receive_queue so that the next call to 1571 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1572 */ 1573 if (skb_len > copied) { 1574 msg->msg_flags &= ~MSG_EOR; 1575 if (flags & MSG_PEEK) 1576 goto out_free; 1577 sctp_skb_pull(skb, copied); 1578 skb_queue_head(&sk->sk_receive_queue, skb); 1579 1580 /* When only partial message is copied to the user, increase 1581 * rwnd by that amount. If all the data in the skb is read, 1582 * rwnd is updated when the event is freed. 1583 */ 1584 sctp_assoc_rwnd_increase(event->asoc, copied); 1585 goto out; 1586 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1587 (event->msg_flags & MSG_EOR)) 1588 msg->msg_flags |= MSG_EOR; 1589 else 1590 msg->msg_flags &= ~MSG_EOR; 1591 1592 out_free: 1593 if (flags & MSG_PEEK) { 1594 /* Release the skb reference acquired after peeking the skb in 1595 * sctp_skb_recv_datagram(). 1596 */ 1597 kfree_skb(skb); 1598 } else { 1599 /* Free the event which includes releasing the reference to 1600 * the owner of the skb, freeing the skb and updating the 1601 * rwnd. 1602 */ 1603 sctp_ulpevent_free(event); 1604 } 1605 out: 1606 sctp_release_sock(sk); 1607 return err; 1608 } 1609 1610 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1611 * 1612 * This option is a on/off flag. If enabled no SCTP message 1613 * fragmentation will be performed. Instead if a message being sent 1614 * exceeds the current PMTU size, the message will NOT be sent and 1615 * instead a error will be indicated to the user. 1616 */ 1617 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1618 char __user *optval, int optlen) 1619 { 1620 int val; 1621 1622 if (optlen < sizeof(int)) 1623 return -EINVAL; 1624 1625 if (get_user(val, (int __user *)optval)) 1626 return -EFAULT; 1627 1628 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1629 1630 return 0; 1631 } 1632 1633 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1634 int optlen) 1635 { 1636 if (optlen != sizeof(struct sctp_event_subscribe)) 1637 return -EINVAL; 1638 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1639 return -EFAULT; 1640 return 0; 1641 } 1642 1643 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1644 * 1645 * This socket option is applicable to the UDP-style socket only. When 1646 * set it will cause associations that are idle for more than the 1647 * specified number of seconds to automatically close. An association 1648 * being idle is defined an association that has NOT sent or received 1649 * user data. The special value of '0' indicates that no automatic 1650 * close of any associations should be performed. The option expects an 1651 * integer defining the number of seconds of idle time before an 1652 * association is closed. 1653 */ 1654 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1655 int optlen) 1656 { 1657 struct sctp_sock *sp = sctp_sk(sk); 1658 1659 /* Applicable to UDP-style socket only */ 1660 if (sctp_style(sk, TCP)) 1661 return -EOPNOTSUPP; 1662 if (optlen != sizeof(int)) 1663 return -EINVAL; 1664 if (copy_from_user(&sp->autoclose, optval, optlen)) 1665 return -EFAULT; 1666 1667 sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 1668 return 0; 1669 } 1670 1671 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1672 * 1673 * Applications can enable or disable heartbeats for any peer address of 1674 * an association, modify an address's heartbeat interval, force a 1675 * heartbeat to be sent immediately, and adjust the address's maximum 1676 * number of retransmissions sent before an address is considered 1677 * unreachable. The following structure is used to access and modify an 1678 * address's parameters: 1679 * 1680 * struct sctp_paddrparams { 1681 * sctp_assoc_t spp_assoc_id; 1682 * struct sockaddr_storage spp_address; 1683 * uint32_t spp_hbinterval; 1684 * uint16_t spp_pathmaxrxt; 1685 * }; 1686 * 1687 * spp_assoc_id - (UDP style socket) This is filled in the application, 1688 * and identifies the association for this query. 1689 * spp_address - This specifies which address is of interest. 1690 * spp_hbinterval - This contains the value of the heartbeat interval, 1691 * in milliseconds. A value of 0, when modifying the 1692 * parameter, specifies that the heartbeat on this 1693 * address should be disabled. A value of UINT32_MAX 1694 * (4294967295), when modifying the parameter, 1695 * specifies that a heartbeat should be sent 1696 * immediately to the peer address, and the current 1697 * interval should remain unchanged. 1698 * spp_pathmaxrxt - This contains the maximum number of 1699 * retransmissions before this address shall be 1700 * considered unreachable. 1701 */ 1702 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 1703 char __user *optval, int optlen) 1704 { 1705 struct sctp_paddrparams params; 1706 struct sctp_transport *trans; 1707 int error; 1708 1709 if (optlen != sizeof(struct sctp_paddrparams)) 1710 return -EINVAL; 1711 if (copy_from_user(¶ms, optval, optlen)) 1712 return -EFAULT; 1713 1714 /* 1715 * API 7. Socket Options (setting the default value for the endpoint) 1716 * All options that support specific settings on an association by 1717 * filling in either an association id variable or a sockaddr_storage 1718 * SHOULD also support setting of the same value for the entire endpoint 1719 * (i.e. future associations). To accomplish this the following logic is 1720 * used when setting one of these options: 1721 1722 * c) If neither the sockaddr_storage or association identification is 1723 * set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and 1724 * the association identification is 0, the settings are a default 1725 * and to be applied to the endpoint (all future associations). 1726 */ 1727 1728 /* update default value for endpoint (all future associations) */ 1729 if (!params.spp_assoc_id && 1730 sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 1731 /* Manual heartbeat on an endpoint is invalid. */ 1732 if (0xffffffff == params.spp_hbinterval) 1733 return -EINVAL; 1734 else if (params.spp_hbinterval) 1735 sctp_sk(sk)->paddrparam.spp_hbinterval = 1736 params.spp_hbinterval; 1737 if (params.spp_pathmaxrxt) 1738 sctp_sk(sk)->paddrparam.spp_pathmaxrxt = 1739 params.spp_pathmaxrxt; 1740 return 0; 1741 } 1742 1743 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 1744 params.spp_assoc_id); 1745 if (!trans) 1746 return -EINVAL; 1747 1748 /* Applications can enable or disable heartbeats for any peer address 1749 * of an association, modify an address's heartbeat interval, force a 1750 * heartbeat to be sent immediately, and adjust the address's maximum 1751 * number of retransmissions sent before an address is considered 1752 * unreachable. 1753 * 1754 * The value of the heartbeat interval, in milliseconds. A value of 1755 * UINT32_MAX (4294967295), when modifying the parameter, specifies 1756 * that a heartbeat should be sent immediately to the peer address, 1757 * and the current interval should remain unchanged. 1758 */ 1759 if (0xffffffff == params.spp_hbinterval) { 1760 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 1761 if (error) 1762 return error; 1763 } else { 1764 /* The value of the heartbeat interval, in milliseconds. A value of 0, 1765 * when modifying the parameter, specifies that the heartbeat on this 1766 * address should be disabled. 1767 */ 1768 if (params.spp_hbinterval) { 1769 trans->hb_allowed = 1; 1770 trans->hb_interval = 1771 msecs_to_jiffies(params.spp_hbinterval); 1772 } else 1773 trans->hb_allowed = 0; 1774 } 1775 1776 /* spp_pathmaxrxt contains the maximum number of retransmissions 1777 * before this address shall be considered unreachable. 1778 */ 1779 if (params.spp_pathmaxrxt) 1780 trans->max_retrans = params.spp_pathmaxrxt; 1781 1782 return 0; 1783 } 1784 1785 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 1786 * 1787 * Applications can specify protocol parameters for the default association 1788 * initialization. The option name argument to setsockopt() and getsockopt() 1789 * is SCTP_INITMSG. 1790 * 1791 * Setting initialization parameters is effective only on an unconnected 1792 * socket (for UDP-style sockets only future associations are effected 1793 * by the change). With TCP-style sockets, this option is inherited by 1794 * sockets derived from a listener socket. 1795 */ 1796 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 1797 { 1798 struct sctp_initmsg sinit; 1799 struct sctp_sock *sp = sctp_sk(sk); 1800 1801 if (optlen != sizeof(struct sctp_initmsg)) 1802 return -EINVAL; 1803 if (copy_from_user(&sinit, optval, optlen)) 1804 return -EFAULT; 1805 1806 if (sinit.sinit_num_ostreams) 1807 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 1808 if (sinit.sinit_max_instreams) 1809 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 1810 if (sinit.sinit_max_attempts) 1811 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 1812 if (sinit.sinit_max_init_timeo) 1813 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 1814 1815 return 0; 1816 } 1817 1818 /* 1819 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 1820 * 1821 * Applications that wish to use the sendto() system call may wish to 1822 * specify a default set of parameters that would normally be supplied 1823 * through the inclusion of ancillary data. This socket option allows 1824 * such an application to set the default sctp_sndrcvinfo structure. 1825 * The application that wishes to use this socket option simply passes 1826 * in to this call the sctp_sndrcvinfo structure defined in Section 1827 * 5.2.2) The input parameters accepted by this call include 1828 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 1829 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 1830 * to this call if the caller is using the UDP model. 1831 */ 1832 static int sctp_setsockopt_default_send_param(struct sock *sk, 1833 char __user *optval, int optlen) 1834 { 1835 struct sctp_sndrcvinfo info; 1836 struct sctp_association *asoc; 1837 struct sctp_sock *sp = sctp_sk(sk); 1838 1839 if (optlen != sizeof(struct sctp_sndrcvinfo)) 1840 return -EINVAL; 1841 if (copy_from_user(&info, optval, optlen)) 1842 return -EFAULT; 1843 1844 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 1845 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 1846 return -EINVAL; 1847 1848 if (asoc) { 1849 asoc->default_stream = info.sinfo_stream; 1850 asoc->default_flags = info.sinfo_flags; 1851 asoc->default_ppid = info.sinfo_ppid; 1852 asoc->default_context = info.sinfo_context; 1853 asoc->default_timetolive = info.sinfo_timetolive; 1854 } else { 1855 sp->default_stream = info.sinfo_stream; 1856 sp->default_flags = info.sinfo_flags; 1857 sp->default_ppid = info.sinfo_ppid; 1858 sp->default_context = info.sinfo_context; 1859 sp->default_timetolive = info.sinfo_timetolive; 1860 } 1861 1862 return 0; 1863 } 1864 1865 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 1866 * 1867 * Requests that the local SCTP stack use the enclosed peer address as 1868 * the association primary. The enclosed address must be one of the 1869 * association peer's addresses. 1870 */ 1871 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 1872 int optlen) 1873 { 1874 struct sctp_prim prim; 1875 struct sctp_transport *trans; 1876 1877 if (optlen != sizeof(struct sctp_prim)) 1878 return -EINVAL; 1879 1880 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 1881 return -EFAULT; 1882 1883 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 1884 if (!trans) 1885 return -EINVAL; 1886 1887 sctp_assoc_set_primary(trans->asoc, trans); 1888 1889 return 0; 1890 } 1891 1892 /* 1893 * 7.1.5 SCTP_NODELAY 1894 * 1895 * Turn on/off any Nagle-like algorithm. This means that packets are 1896 * generally sent as soon as possible and no unnecessary delays are 1897 * introduced, at the cost of more packets in the network. Expects an 1898 * integer boolean flag. 1899 */ 1900 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 1901 int optlen) 1902 { 1903 int val; 1904 1905 if (optlen < sizeof(int)) 1906 return -EINVAL; 1907 if (get_user(val, (int __user *)optval)) 1908 return -EFAULT; 1909 1910 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 1911 return 0; 1912 } 1913 1914 /* 1915 * 1916 * 7.1.1 SCTP_RTOINFO 1917 * 1918 * The protocol parameters used to initialize and bound retransmission 1919 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 1920 * and modify these parameters. 1921 * All parameters are time values, in milliseconds. A value of 0, when 1922 * modifying the parameters, indicates that the current value should not 1923 * be changed. 1924 * 1925 */ 1926 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 1927 struct sctp_rtoinfo rtoinfo; 1928 struct sctp_association *asoc; 1929 1930 if (optlen != sizeof (struct sctp_rtoinfo)) 1931 return -EINVAL; 1932 1933 if (copy_from_user(&rtoinfo, optval, optlen)) 1934 return -EFAULT; 1935 1936 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 1937 1938 /* Set the values to the specific association */ 1939 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 1940 return -EINVAL; 1941 1942 if (asoc) { 1943 if (rtoinfo.srto_initial != 0) 1944 asoc->rto_initial = 1945 msecs_to_jiffies(rtoinfo.srto_initial); 1946 if (rtoinfo.srto_max != 0) 1947 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 1948 if (rtoinfo.srto_min != 0) 1949 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 1950 } else { 1951 /* If there is no association or the association-id = 0 1952 * set the values to the endpoint. 1953 */ 1954 struct sctp_sock *sp = sctp_sk(sk); 1955 1956 if (rtoinfo.srto_initial != 0) 1957 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 1958 if (rtoinfo.srto_max != 0) 1959 sp->rtoinfo.srto_max = rtoinfo.srto_max; 1960 if (rtoinfo.srto_min != 0) 1961 sp->rtoinfo.srto_min = rtoinfo.srto_min; 1962 } 1963 1964 return 0; 1965 } 1966 1967 /* 1968 * 1969 * 7.1.2 SCTP_ASSOCINFO 1970 * 1971 * This option is used to tune the the maximum retransmission attempts 1972 * of the association. 1973 * Returns an error if the new association retransmission value is 1974 * greater than the sum of the retransmission value of the peer. 1975 * See [SCTP] for more information. 1976 * 1977 */ 1978 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 1979 { 1980 1981 struct sctp_assocparams assocparams; 1982 struct sctp_association *asoc; 1983 1984 if (optlen != sizeof(struct sctp_assocparams)) 1985 return -EINVAL; 1986 if (copy_from_user(&assocparams, optval, optlen)) 1987 return -EFAULT; 1988 1989 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 1990 1991 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 1992 return -EINVAL; 1993 1994 /* Set the values to the specific association */ 1995 if (asoc) { 1996 if (assocparams.sasoc_asocmaxrxt != 0) 1997 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 1998 if (assocparams.sasoc_cookie_life != 0) { 1999 asoc->cookie_life.tv_sec = 2000 assocparams.sasoc_cookie_life / 1000; 2001 asoc->cookie_life.tv_usec = 2002 (assocparams.sasoc_cookie_life % 1000) 2003 * 1000; 2004 } 2005 } else { 2006 /* Set the values to the endpoint */ 2007 struct sctp_sock *sp = sctp_sk(sk); 2008 2009 if (assocparams.sasoc_asocmaxrxt != 0) 2010 sp->assocparams.sasoc_asocmaxrxt = 2011 assocparams.sasoc_asocmaxrxt; 2012 if (assocparams.sasoc_cookie_life != 0) 2013 sp->assocparams.sasoc_cookie_life = 2014 assocparams.sasoc_cookie_life; 2015 } 2016 return 0; 2017 } 2018 2019 /* 2020 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2021 * 2022 * This socket option is a boolean flag which turns on or off mapped V4 2023 * addresses. If this option is turned on and the socket is type 2024 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2025 * If this option is turned off, then no mapping will be done of V4 2026 * addresses and a user will receive both PF_INET6 and PF_INET type 2027 * addresses on the socket. 2028 */ 2029 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2030 { 2031 int val; 2032 struct sctp_sock *sp = sctp_sk(sk); 2033 2034 if (optlen < sizeof(int)) 2035 return -EINVAL; 2036 if (get_user(val, (int __user *)optval)) 2037 return -EFAULT; 2038 if (val) 2039 sp->v4mapped = 1; 2040 else 2041 sp->v4mapped = 0; 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2048 * 2049 * This socket option specifies the maximum size to put in any outgoing 2050 * SCTP chunk. If a message is larger than this size it will be 2051 * fragmented by SCTP into the specified size. Note that the underlying 2052 * SCTP implementation may fragment into smaller sized chunks when the 2053 * PMTU of the underlying association is smaller than the value set by 2054 * the user. 2055 */ 2056 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2057 { 2058 struct sctp_association *asoc; 2059 struct list_head *pos; 2060 struct sctp_sock *sp = sctp_sk(sk); 2061 int val; 2062 2063 if (optlen < sizeof(int)) 2064 return -EINVAL; 2065 if (get_user(val, (int __user *)optval)) 2066 return -EFAULT; 2067 if ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)) 2068 return -EINVAL; 2069 sp->user_frag = val; 2070 2071 if (val) { 2072 /* Update the frag_point of the existing associations. */ 2073 list_for_each(pos, &(sp->ep->asocs)) { 2074 asoc = list_entry(pos, struct sctp_association, asocs); 2075 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu); 2076 } 2077 } 2078 2079 return 0; 2080 } 2081 2082 2083 /* 2084 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2085 * 2086 * Requests that the peer mark the enclosed address as the association 2087 * primary. The enclosed address must be one of the association's 2088 * locally bound addresses. The following structure is used to make a 2089 * set primary request: 2090 */ 2091 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2092 int optlen) 2093 { 2094 struct sctp_sock *sp; 2095 struct sctp_endpoint *ep; 2096 struct sctp_association *asoc = NULL; 2097 struct sctp_setpeerprim prim; 2098 struct sctp_chunk *chunk; 2099 int err; 2100 2101 sp = sctp_sk(sk); 2102 ep = sp->ep; 2103 2104 if (!sctp_addip_enable) 2105 return -EPERM; 2106 2107 if (optlen != sizeof(struct sctp_setpeerprim)) 2108 return -EINVAL; 2109 2110 if (copy_from_user(&prim, optval, optlen)) 2111 return -EFAULT; 2112 2113 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2114 if (!asoc) 2115 return -EINVAL; 2116 2117 if (!asoc->peer.asconf_capable) 2118 return -EPERM; 2119 2120 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2121 return -EPERM; 2122 2123 if (!sctp_state(asoc, ESTABLISHED)) 2124 return -ENOTCONN; 2125 2126 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2127 return -EADDRNOTAVAIL; 2128 2129 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2130 chunk = sctp_make_asconf_set_prim(asoc, 2131 (union sctp_addr *)&prim.sspp_addr); 2132 if (!chunk) 2133 return -ENOMEM; 2134 2135 err = sctp_send_asconf(asoc, chunk); 2136 2137 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2138 2139 return err; 2140 } 2141 2142 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval, 2143 int optlen) 2144 { 2145 __u32 val; 2146 2147 if (optlen < sizeof(__u32)) 2148 return -EINVAL; 2149 if (copy_from_user(&val, optval, sizeof(__u32))) 2150 return -EFAULT; 2151 2152 sctp_sk(sk)->adaption_ind = val; 2153 2154 return 0; 2155 } 2156 2157 /* API 6.2 setsockopt(), getsockopt() 2158 * 2159 * Applications use setsockopt() and getsockopt() to set or retrieve 2160 * socket options. Socket options are used to change the default 2161 * behavior of sockets calls. They are described in Section 7. 2162 * 2163 * The syntax is: 2164 * 2165 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2166 * int __user *optlen); 2167 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2168 * int optlen); 2169 * 2170 * sd - the socket descript. 2171 * level - set to IPPROTO_SCTP for all SCTP options. 2172 * optname - the option name. 2173 * optval - the buffer to store the value of the option. 2174 * optlen - the size of the buffer. 2175 */ 2176 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2177 char __user *optval, int optlen) 2178 { 2179 int retval = 0; 2180 2181 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2182 sk, optname); 2183 2184 /* I can hardly begin to describe how wrong this is. This is 2185 * so broken as to be worse than useless. The API draft 2186 * REALLY is NOT helpful here... I am not convinced that the 2187 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2188 * are at all well-founded. 2189 */ 2190 if (level != SOL_SCTP) { 2191 struct sctp_af *af = sctp_sk(sk)->pf->af; 2192 retval = af->setsockopt(sk, level, optname, optval, optlen); 2193 goto out_nounlock; 2194 } 2195 2196 sctp_lock_sock(sk); 2197 2198 switch (optname) { 2199 case SCTP_SOCKOPT_BINDX_ADD: 2200 /* 'optlen' is the size of the addresses buffer. */ 2201 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2202 optlen, SCTP_BINDX_ADD_ADDR); 2203 break; 2204 2205 case SCTP_SOCKOPT_BINDX_REM: 2206 /* 'optlen' is the size of the addresses buffer. */ 2207 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2208 optlen, SCTP_BINDX_REM_ADDR); 2209 break; 2210 2211 case SCTP_DISABLE_FRAGMENTS: 2212 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2213 break; 2214 2215 case SCTP_EVENTS: 2216 retval = sctp_setsockopt_events(sk, optval, optlen); 2217 break; 2218 2219 case SCTP_AUTOCLOSE: 2220 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2221 break; 2222 2223 case SCTP_PEER_ADDR_PARAMS: 2224 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2225 break; 2226 2227 case SCTP_INITMSG: 2228 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2229 break; 2230 case SCTP_DEFAULT_SEND_PARAM: 2231 retval = sctp_setsockopt_default_send_param(sk, optval, 2232 optlen); 2233 break; 2234 case SCTP_PRIMARY_ADDR: 2235 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2236 break; 2237 case SCTP_SET_PEER_PRIMARY_ADDR: 2238 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2239 break; 2240 case SCTP_NODELAY: 2241 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2242 break; 2243 case SCTP_RTOINFO: 2244 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2245 break; 2246 case SCTP_ASSOCINFO: 2247 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2248 break; 2249 case SCTP_I_WANT_MAPPED_V4_ADDR: 2250 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2251 break; 2252 case SCTP_MAXSEG: 2253 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2254 break; 2255 case SCTP_ADAPTION_LAYER: 2256 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen); 2257 break; 2258 2259 default: 2260 retval = -ENOPROTOOPT; 2261 break; 2262 }; 2263 2264 sctp_release_sock(sk); 2265 2266 out_nounlock: 2267 return retval; 2268 } 2269 2270 /* API 3.1.6 connect() - UDP Style Syntax 2271 * 2272 * An application may use the connect() call in the UDP model to initiate an 2273 * association without sending data. 2274 * 2275 * The syntax is: 2276 * 2277 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2278 * 2279 * sd: the socket descriptor to have a new association added to. 2280 * 2281 * nam: the address structure (either struct sockaddr_in or struct 2282 * sockaddr_in6 defined in RFC2553 [7]). 2283 * 2284 * len: the size of the address. 2285 */ 2286 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *uaddr, 2287 int addr_len) 2288 { 2289 struct sctp_sock *sp; 2290 struct sctp_endpoint *ep; 2291 struct sctp_association *asoc; 2292 struct sctp_transport *transport; 2293 union sctp_addr to; 2294 struct sctp_af *af; 2295 sctp_scope_t scope; 2296 long timeo; 2297 int err = 0; 2298 2299 sctp_lock_sock(sk); 2300 2301 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d)\n", 2302 __FUNCTION__, sk, uaddr, addr_len); 2303 2304 sp = sctp_sk(sk); 2305 ep = sp->ep; 2306 2307 /* connect() cannot be done on a socket that is already in ESTABLISHED 2308 * state - UDP-style peeled off socket or a TCP-style socket that 2309 * is already connected. 2310 * It cannot be done even on a TCP-style listening socket. 2311 */ 2312 if (sctp_sstate(sk, ESTABLISHED) || 2313 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 2314 err = -EISCONN; 2315 goto out_unlock; 2316 } 2317 2318 err = sctp_verify_addr(sk, (union sctp_addr *)uaddr, addr_len); 2319 if (err) 2320 goto out_unlock; 2321 2322 if (addr_len > sizeof(to)) 2323 addr_len = sizeof(to); 2324 memcpy(&to, uaddr, addr_len); 2325 to.v4.sin_port = ntohs(to.v4.sin_port); 2326 2327 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 2328 if (asoc) { 2329 if (asoc->state >= SCTP_STATE_ESTABLISHED) 2330 err = -EISCONN; 2331 else 2332 err = -EALREADY; 2333 goto out_unlock; 2334 } 2335 2336 /* If we could not find a matching association on the endpoint, 2337 * make sure that there is no peeled-off association matching the 2338 * peer address even on another socket. 2339 */ 2340 if (sctp_endpoint_is_peeled_off(ep, &to)) { 2341 err = -EADDRNOTAVAIL; 2342 goto out_unlock; 2343 } 2344 2345 /* If a bind() or sctp_bindx() is not called prior to a connect() 2346 * call, the system picks an ephemeral port and will choose an address 2347 * set equivalent to binding with a wildcard address. 2348 */ 2349 if (!ep->base.bind_addr.port) { 2350 if (sctp_autobind(sk)) { 2351 err = -EAGAIN; 2352 goto out_unlock; 2353 } 2354 } 2355 2356 scope = sctp_scope(&to); 2357 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 2358 if (!asoc) { 2359 err = -ENOMEM; 2360 goto out_unlock; 2361 } 2362 2363 /* Prime the peer's transport structures. */ 2364 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL); 2365 if (!transport) { 2366 sctp_association_free(asoc); 2367 goto out_unlock; 2368 } 2369 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 2370 if (err < 0) { 2371 sctp_association_free(asoc); 2372 goto out_unlock; 2373 } 2374 2375 err = sctp_primitive_ASSOCIATE(asoc, NULL); 2376 if (err < 0) { 2377 sctp_association_free(asoc); 2378 goto out_unlock; 2379 } 2380 2381 /* Initialize sk's dport and daddr for getpeername() */ 2382 inet_sk(sk)->dport = htons(asoc->peer.port); 2383 af = sctp_get_af_specific(to.sa.sa_family); 2384 af->to_sk_daddr(&to, sk); 2385 2386 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 2387 err = sctp_wait_for_connect(asoc, &timeo); 2388 2389 out_unlock: 2390 sctp_release_sock(sk); 2391 2392 return err; 2393 } 2394 2395 /* FIXME: Write comments. */ 2396 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2397 { 2398 return -EOPNOTSUPP; /* STUB */ 2399 } 2400 2401 /* 4.1.4 accept() - TCP Style Syntax 2402 * 2403 * Applications use accept() call to remove an established SCTP 2404 * association from the accept queue of the endpoint. A new socket 2405 * descriptor will be returned from accept() to represent the newly 2406 * formed association. 2407 */ 2408 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2409 { 2410 struct sctp_sock *sp; 2411 struct sctp_endpoint *ep; 2412 struct sock *newsk = NULL; 2413 struct sctp_association *asoc; 2414 long timeo; 2415 int error = 0; 2416 2417 sctp_lock_sock(sk); 2418 2419 sp = sctp_sk(sk); 2420 ep = sp->ep; 2421 2422 if (!sctp_style(sk, TCP)) { 2423 error = -EOPNOTSUPP; 2424 goto out; 2425 } 2426 2427 if (!sctp_sstate(sk, LISTENING)) { 2428 error = -EINVAL; 2429 goto out; 2430 } 2431 2432 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 2433 2434 error = sctp_wait_for_accept(sk, timeo); 2435 if (error) 2436 goto out; 2437 2438 /* We treat the list of associations on the endpoint as the accept 2439 * queue and pick the first association on the list. 2440 */ 2441 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 2442 2443 newsk = sp->pf->create_accept_sk(sk, asoc); 2444 if (!newsk) { 2445 error = -ENOMEM; 2446 goto out; 2447 } 2448 2449 /* Populate the fields of the newsk from the oldsk and migrate the 2450 * asoc to the newsk. 2451 */ 2452 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 2453 2454 out: 2455 sctp_release_sock(sk); 2456 *err = error; 2457 return newsk; 2458 } 2459 2460 /* The SCTP ioctl handler. */ 2461 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 2462 { 2463 return -ENOIOCTLCMD; 2464 } 2465 2466 /* This is the function which gets called during socket creation to 2467 * initialized the SCTP-specific portion of the sock. 2468 * The sock structure should already be zero-filled memory. 2469 */ 2470 SCTP_STATIC int sctp_init_sock(struct sock *sk) 2471 { 2472 struct sctp_endpoint *ep; 2473 struct sctp_sock *sp; 2474 2475 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 2476 2477 sp = sctp_sk(sk); 2478 2479 /* Initialize the SCTP per socket area. */ 2480 switch (sk->sk_type) { 2481 case SOCK_SEQPACKET: 2482 sp->type = SCTP_SOCKET_UDP; 2483 break; 2484 case SOCK_STREAM: 2485 sp->type = SCTP_SOCKET_TCP; 2486 break; 2487 default: 2488 return -ESOCKTNOSUPPORT; 2489 } 2490 2491 /* Initialize default send parameters. These parameters can be 2492 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 2493 */ 2494 sp->default_stream = 0; 2495 sp->default_ppid = 0; 2496 sp->default_flags = 0; 2497 sp->default_context = 0; 2498 sp->default_timetolive = 0; 2499 2500 /* Initialize default setup parameters. These parameters 2501 * can be modified with the SCTP_INITMSG socket option or 2502 * overridden by the SCTP_INIT CMSG. 2503 */ 2504 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 2505 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 2506 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 2507 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max); 2508 2509 /* Initialize default RTO related parameters. These parameters can 2510 * be modified for with the SCTP_RTOINFO socket option. 2511 */ 2512 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial); 2513 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max); 2514 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min); 2515 2516 /* Initialize default association related parameters. These parameters 2517 * can be modified with the SCTP_ASSOCINFO socket option. 2518 */ 2519 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 2520 sp->assocparams.sasoc_number_peer_destinations = 0; 2521 sp->assocparams.sasoc_peer_rwnd = 0; 2522 sp->assocparams.sasoc_local_rwnd = 0; 2523 sp->assocparams.sasoc_cookie_life = 2524 jiffies_to_msecs(sctp_valid_cookie_life); 2525 2526 /* Initialize default event subscriptions. By default, all the 2527 * options are off. 2528 */ 2529 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 2530 2531 /* Default Peer Address Parameters. These defaults can 2532 * be modified via SCTP_PEER_ADDR_PARAMS 2533 */ 2534 sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval); 2535 sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path; 2536 2537 /* If enabled no SCTP message fragmentation will be performed. 2538 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 2539 */ 2540 sp->disable_fragments = 0; 2541 2542 /* Turn on/off any Nagle-like algorithm. */ 2543 sp->nodelay = 1; 2544 2545 /* Enable by default. */ 2546 sp->v4mapped = 1; 2547 2548 /* Auto-close idle associations after the configured 2549 * number of seconds. A value of 0 disables this 2550 * feature. Configure through the SCTP_AUTOCLOSE socket option, 2551 * for UDP-style sockets only. 2552 */ 2553 sp->autoclose = 0; 2554 2555 /* User specified fragmentation limit. */ 2556 sp->user_frag = 0; 2557 2558 sp->adaption_ind = 0; 2559 2560 sp->pf = sctp_get_pf_specific(sk->sk_family); 2561 2562 /* Control variables for partial data delivery. */ 2563 sp->pd_mode = 0; 2564 skb_queue_head_init(&sp->pd_lobby); 2565 2566 /* Create a per socket endpoint structure. Even if we 2567 * change the data structure relationships, this may still 2568 * be useful for storing pre-connect address information. 2569 */ 2570 ep = sctp_endpoint_new(sk, GFP_KERNEL); 2571 if (!ep) 2572 return -ENOMEM; 2573 2574 sp->ep = ep; 2575 sp->hmac = NULL; 2576 2577 SCTP_DBG_OBJCNT_INC(sock); 2578 return 0; 2579 } 2580 2581 /* Cleanup any SCTP per socket resources. */ 2582 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 2583 { 2584 struct sctp_endpoint *ep; 2585 2586 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 2587 2588 /* Release our hold on the endpoint. */ 2589 ep = sctp_sk(sk)->ep; 2590 sctp_endpoint_free(ep); 2591 2592 return 0; 2593 } 2594 2595 /* API 4.1.7 shutdown() - TCP Style Syntax 2596 * int shutdown(int socket, int how); 2597 * 2598 * sd - the socket descriptor of the association to be closed. 2599 * how - Specifies the type of shutdown. The values are 2600 * as follows: 2601 * SHUT_RD 2602 * Disables further receive operations. No SCTP 2603 * protocol action is taken. 2604 * SHUT_WR 2605 * Disables further send operations, and initiates 2606 * the SCTP shutdown sequence. 2607 * SHUT_RDWR 2608 * Disables further send and receive operations 2609 * and initiates the SCTP shutdown sequence. 2610 */ 2611 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 2612 { 2613 struct sctp_endpoint *ep; 2614 struct sctp_association *asoc; 2615 2616 if (!sctp_style(sk, TCP)) 2617 return; 2618 2619 if (how & SEND_SHUTDOWN) { 2620 ep = sctp_sk(sk)->ep; 2621 if (!list_empty(&ep->asocs)) { 2622 asoc = list_entry(ep->asocs.next, 2623 struct sctp_association, asocs); 2624 sctp_primitive_SHUTDOWN(asoc, NULL); 2625 } 2626 } 2627 } 2628 2629 /* 7.2.1 Association Status (SCTP_STATUS) 2630 2631 * Applications can retrieve current status information about an 2632 * association, including association state, peer receiver window size, 2633 * number of unacked data chunks, and number of data chunks pending 2634 * receipt. This information is read-only. 2635 */ 2636 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 2637 char __user *optval, 2638 int __user *optlen) 2639 { 2640 struct sctp_status status; 2641 struct sctp_association *asoc = NULL; 2642 struct sctp_transport *transport; 2643 sctp_assoc_t associd; 2644 int retval = 0; 2645 2646 if (len != sizeof(status)) { 2647 retval = -EINVAL; 2648 goto out; 2649 } 2650 2651 if (copy_from_user(&status, optval, sizeof(status))) { 2652 retval = -EFAULT; 2653 goto out; 2654 } 2655 2656 associd = status.sstat_assoc_id; 2657 asoc = sctp_id2assoc(sk, associd); 2658 if (!asoc) { 2659 retval = -EINVAL; 2660 goto out; 2661 } 2662 2663 transport = asoc->peer.primary_path; 2664 2665 status.sstat_assoc_id = sctp_assoc2id(asoc); 2666 status.sstat_state = asoc->state; 2667 status.sstat_rwnd = asoc->peer.rwnd; 2668 status.sstat_unackdata = asoc->unack_data; 2669 2670 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 2671 status.sstat_instrms = asoc->c.sinit_max_instreams; 2672 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 2673 status.sstat_fragmentation_point = asoc->frag_point; 2674 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 2675 memcpy(&status.sstat_primary.spinfo_address, 2676 &(transport->ipaddr), sizeof(union sctp_addr)); 2677 /* Map ipv4 address into v4-mapped-on-v6 address. */ 2678 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 2679 (union sctp_addr *)&status.sstat_primary.spinfo_address); 2680 status.sstat_primary.spinfo_state = transport->active; 2681 status.sstat_primary.spinfo_cwnd = transport->cwnd; 2682 status.sstat_primary.spinfo_srtt = transport->srtt; 2683 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 2684 status.sstat_primary.spinfo_mtu = transport->pmtu; 2685 2686 if (put_user(len, optlen)) { 2687 retval = -EFAULT; 2688 goto out; 2689 } 2690 2691 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 2692 len, status.sstat_state, status.sstat_rwnd, 2693 status.sstat_assoc_id); 2694 2695 if (copy_to_user(optval, &status, len)) { 2696 retval = -EFAULT; 2697 goto out; 2698 } 2699 2700 out: 2701 return (retval); 2702 } 2703 2704 2705 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 2706 * 2707 * Applications can retrieve information about a specific peer address 2708 * of an association, including its reachability state, congestion 2709 * window, and retransmission timer values. This information is 2710 * read-only. 2711 */ 2712 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 2713 char __user *optval, 2714 int __user *optlen) 2715 { 2716 struct sctp_paddrinfo pinfo; 2717 struct sctp_transport *transport; 2718 int retval = 0; 2719 2720 if (len != sizeof(pinfo)) { 2721 retval = -EINVAL; 2722 goto out; 2723 } 2724 2725 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 2726 retval = -EFAULT; 2727 goto out; 2728 } 2729 2730 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 2731 pinfo.spinfo_assoc_id); 2732 if (!transport) 2733 return -EINVAL; 2734 2735 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 2736 pinfo.spinfo_state = transport->active; 2737 pinfo.spinfo_cwnd = transport->cwnd; 2738 pinfo.spinfo_srtt = transport->srtt; 2739 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 2740 pinfo.spinfo_mtu = transport->pmtu; 2741 2742 if (put_user(len, optlen)) { 2743 retval = -EFAULT; 2744 goto out; 2745 } 2746 2747 if (copy_to_user(optval, &pinfo, len)) { 2748 retval = -EFAULT; 2749 goto out; 2750 } 2751 2752 out: 2753 return (retval); 2754 } 2755 2756 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2757 * 2758 * This option is a on/off flag. If enabled no SCTP message 2759 * fragmentation will be performed. Instead if a message being sent 2760 * exceeds the current PMTU size, the message will NOT be sent and 2761 * instead a error will be indicated to the user. 2762 */ 2763 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 2764 char __user *optval, int __user *optlen) 2765 { 2766 int val; 2767 2768 if (len < sizeof(int)) 2769 return -EINVAL; 2770 2771 len = sizeof(int); 2772 val = (sctp_sk(sk)->disable_fragments == 1); 2773 if (put_user(len, optlen)) 2774 return -EFAULT; 2775 if (copy_to_user(optval, &val, len)) 2776 return -EFAULT; 2777 return 0; 2778 } 2779 2780 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 2781 * 2782 * This socket option is used to specify various notifications and 2783 * ancillary data the user wishes to receive. 2784 */ 2785 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 2786 int __user *optlen) 2787 { 2788 if (len != sizeof(struct sctp_event_subscribe)) 2789 return -EINVAL; 2790 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 2791 return -EFAULT; 2792 return 0; 2793 } 2794 2795 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2796 * 2797 * This socket option is applicable to the UDP-style socket only. When 2798 * set it will cause associations that are idle for more than the 2799 * specified number of seconds to automatically close. An association 2800 * being idle is defined an association that has NOT sent or received 2801 * user data. The special value of '0' indicates that no automatic 2802 * close of any associations should be performed. The option expects an 2803 * integer defining the number of seconds of idle time before an 2804 * association is closed. 2805 */ 2806 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 2807 { 2808 /* Applicable to UDP-style socket only */ 2809 if (sctp_style(sk, TCP)) 2810 return -EOPNOTSUPP; 2811 if (len != sizeof(int)) 2812 return -EINVAL; 2813 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 2814 return -EFAULT; 2815 return 0; 2816 } 2817 2818 /* Helper routine to branch off an association to a new socket. */ 2819 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 2820 struct socket **sockp) 2821 { 2822 struct sock *sk = asoc->base.sk; 2823 struct socket *sock; 2824 int err = 0; 2825 2826 /* An association cannot be branched off from an already peeled-off 2827 * socket, nor is this supported for tcp style sockets. 2828 */ 2829 if (!sctp_style(sk, UDP)) 2830 return -EINVAL; 2831 2832 /* Create a new socket. */ 2833 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 2834 if (err < 0) 2835 return err; 2836 2837 /* Populate the fields of the newsk from the oldsk and migrate the 2838 * asoc to the newsk. 2839 */ 2840 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 2841 *sockp = sock; 2842 2843 return err; 2844 } 2845 2846 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 2847 { 2848 sctp_peeloff_arg_t peeloff; 2849 struct socket *newsock; 2850 int retval = 0; 2851 struct sctp_association *asoc; 2852 2853 if (len != sizeof(sctp_peeloff_arg_t)) 2854 return -EINVAL; 2855 if (copy_from_user(&peeloff, optval, len)) 2856 return -EFAULT; 2857 2858 asoc = sctp_id2assoc(sk, peeloff.associd); 2859 if (!asoc) { 2860 retval = -EINVAL; 2861 goto out; 2862 } 2863 2864 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 2865 2866 retval = sctp_do_peeloff(asoc, &newsock); 2867 if (retval < 0) 2868 goto out; 2869 2870 /* Map the socket to an unused fd that can be returned to the user. */ 2871 retval = sock_map_fd(newsock); 2872 if (retval < 0) { 2873 sock_release(newsock); 2874 goto out; 2875 } 2876 2877 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 2878 __FUNCTION__, sk, asoc, newsock->sk, retval); 2879 2880 /* Return the fd mapped to the new socket. */ 2881 peeloff.sd = retval; 2882 if (copy_to_user(optval, &peeloff, len)) 2883 retval = -EFAULT; 2884 2885 out: 2886 return retval; 2887 } 2888 2889 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2890 * 2891 * Applications can enable or disable heartbeats for any peer address of 2892 * an association, modify an address's heartbeat interval, force a 2893 * heartbeat to be sent immediately, and adjust the address's maximum 2894 * number of retransmissions sent before an address is considered 2895 * unreachable. The following structure is used to access and modify an 2896 * address's parameters: 2897 * 2898 * struct sctp_paddrparams { 2899 * sctp_assoc_t spp_assoc_id; 2900 * struct sockaddr_storage spp_address; 2901 * uint32_t spp_hbinterval; 2902 * uint16_t spp_pathmaxrxt; 2903 * }; 2904 * 2905 * spp_assoc_id - (UDP style socket) This is filled in the application, 2906 * and identifies the association for this query. 2907 * spp_address - This specifies which address is of interest. 2908 * spp_hbinterval - This contains the value of the heartbeat interval, 2909 * in milliseconds. A value of 0, when modifying the 2910 * parameter, specifies that the heartbeat on this 2911 * address should be disabled. A value of UINT32_MAX 2912 * (4294967295), when modifying the parameter, 2913 * specifies that a heartbeat should be sent 2914 * immediately to the peer address, and the current 2915 * interval should remain unchanged. 2916 * spp_pathmaxrxt - This contains the maximum number of 2917 * retransmissions before this address shall be 2918 * considered unreachable. 2919 */ 2920 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 2921 char __user *optval, int __user *optlen) 2922 { 2923 struct sctp_paddrparams params; 2924 struct sctp_transport *trans; 2925 2926 if (len != sizeof(struct sctp_paddrparams)) 2927 return -EINVAL; 2928 if (copy_from_user(¶ms, optval, len)) 2929 return -EFAULT; 2930 2931 /* If no association id is specified retrieve the default value 2932 * for the endpoint that will be used for all future associations 2933 */ 2934 if (!params.spp_assoc_id && 2935 sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2936 params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval; 2937 params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt; 2938 2939 goto done; 2940 } 2941 2942 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2943 params.spp_assoc_id); 2944 if (!trans) 2945 return -EINVAL; 2946 2947 /* The value of the heartbeat interval, in milliseconds. A value of 0, 2948 * when modifying the parameter, specifies that the heartbeat on this 2949 * address should be disabled. 2950 */ 2951 if (!trans->hb_allowed) 2952 params.spp_hbinterval = 0; 2953 else 2954 params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval); 2955 2956 /* spp_pathmaxrxt contains the maximum number of retransmissions 2957 * before this address shall be considered unreachable. 2958 */ 2959 params.spp_pathmaxrxt = trans->max_retrans; 2960 2961 done: 2962 if (copy_to_user(optval, ¶ms, len)) 2963 return -EFAULT; 2964 2965 if (put_user(len, optlen)) 2966 return -EFAULT; 2967 2968 return 0; 2969 } 2970 2971 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2972 * 2973 * Applications can specify protocol parameters for the default association 2974 * initialization. The option name argument to setsockopt() and getsockopt() 2975 * is SCTP_INITMSG. 2976 * 2977 * Setting initialization parameters is effective only on an unconnected 2978 * socket (for UDP-style sockets only future associations are effected 2979 * by the change). With TCP-style sockets, this option is inherited by 2980 * sockets derived from a listener socket. 2981 */ 2982 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 2983 { 2984 if (len != sizeof(struct sctp_initmsg)) 2985 return -EINVAL; 2986 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 2987 return -EFAULT; 2988 return 0; 2989 } 2990 2991 static int sctp_getsockopt_peer_addrs_num(struct sock *sk, int len, 2992 char __user *optval, int __user *optlen) 2993 { 2994 sctp_assoc_t id; 2995 struct sctp_association *asoc; 2996 struct list_head *pos; 2997 int cnt = 0; 2998 2999 if (len != sizeof(sctp_assoc_t)) 3000 return -EINVAL; 3001 3002 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3003 return -EFAULT; 3004 3005 /* For UDP-style sockets, id specifies the association to query. */ 3006 asoc = sctp_id2assoc(sk, id); 3007 if (!asoc) 3008 return -EINVAL; 3009 3010 list_for_each(pos, &asoc->peer.transport_addr_list) { 3011 cnt ++; 3012 } 3013 3014 return cnt; 3015 } 3016 3017 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3018 char __user *optval, int __user *optlen) 3019 { 3020 struct sctp_association *asoc; 3021 struct list_head *pos; 3022 int cnt = 0; 3023 struct sctp_getaddrs getaddrs; 3024 struct sctp_transport *from; 3025 void __user *to; 3026 union sctp_addr temp; 3027 struct sctp_sock *sp = sctp_sk(sk); 3028 int addrlen; 3029 3030 if (len != sizeof(struct sctp_getaddrs)) 3031 return -EINVAL; 3032 3033 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3034 return -EFAULT; 3035 3036 if (getaddrs.addr_num <= 0) return -EINVAL; 3037 3038 /* For UDP-style sockets, id specifies the association to query. */ 3039 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3040 if (!asoc) 3041 return -EINVAL; 3042 3043 to = (void __user *)getaddrs.addrs; 3044 list_for_each(pos, &asoc->peer.transport_addr_list) { 3045 from = list_entry(pos, struct sctp_transport, transports); 3046 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3047 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3048 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3049 temp.v4.sin_port = htons(temp.v4.sin_port); 3050 if (copy_to_user(to, &temp, addrlen)) 3051 return -EFAULT; 3052 to += addrlen ; 3053 cnt ++; 3054 if (cnt >= getaddrs.addr_num) break; 3055 } 3056 getaddrs.addr_num = cnt; 3057 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs))) 3058 return -EFAULT; 3059 3060 return 0; 3061 } 3062 3063 static int sctp_getsockopt_local_addrs_num(struct sock *sk, int len, 3064 char __user *optval, 3065 int __user *optlen) 3066 { 3067 sctp_assoc_t id; 3068 struct sctp_bind_addr *bp; 3069 struct sctp_association *asoc; 3070 struct list_head *pos; 3071 struct sctp_sockaddr_entry *addr; 3072 rwlock_t *addr_lock; 3073 unsigned long flags; 3074 int cnt = 0; 3075 3076 if (len != sizeof(sctp_assoc_t)) 3077 return -EINVAL; 3078 3079 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3080 return -EFAULT; 3081 3082 /* 3083 * For UDP-style sockets, id specifies the association to query. 3084 * If the id field is set to the value '0' then the locally bound 3085 * addresses are returned without regard to any particular 3086 * association. 3087 */ 3088 if (0 == id) { 3089 bp = &sctp_sk(sk)->ep->base.bind_addr; 3090 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3091 } else { 3092 asoc = sctp_id2assoc(sk, id); 3093 if (!asoc) 3094 return -EINVAL; 3095 bp = &asoc->base.bind_addr; 3096 addr_lock = &asoc->base.addr_lock; 3097 } 3098 3099 sctp_read_lock(addr_lock); 3100 3101 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3102 * addresses from the global local address list. 3103 */ 3104 if (sctp_list_single_entry(&bp->address_list)) { 3105 addr = list_entry(bp->address_list.next, 3106 struct sctp_sockaddr_entry, list); 3107 if (sctp_is_any(&addr->a)) { 3108 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3109 list_for_each(pos, &sctp_local_addr_list) { 3110 addr = list_entry(pos, 3111 struct sctp_sockaddr_entry, 3112 list); 3113 if ((PF_INET == sk->sk_family) && 3114 (AF_INET6 == addr->a.sa.sa_family)) 3115 continue; 3116 cnt++; 3117 } 3118 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3119 flags); 3120 } else { 3121 cnt = 1; 3122 } 3123 goto done; 3124 } 3125 3126 list_for_each(pos, &bp->address_list) { 3127 cnt ++; 3128 } 3129 3130 done: 3131 sctp_read_unlock(addr_lock); 3132 return cnt; 3133 } 3134 3135 /* Helper function that copies local addresses to user and returns the number 3136 * of addresses copied. 3137 */ 3138 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, int max_addrs, 3139 void __user *to) 3140 { 3141 struct list_head *pos; 3142 struct sctp_sockaddr_entry *addr; 3143 unsigned long flags; 3144 union sctp_addr temp; 3145 int cnt = 0; 3146 int addrlen; 3147 3148 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3149 list_for_each(pos, &sctp_local_addr_list) { 3150 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3151 if ((PF_INET == sk->sk_family) && 3152 (AF_INET6 == addr->a.sa.sa_family)) 3153 continue; 3154 memcpy(&temp, &addr->a, sizeof(temp)); 3155 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3156 &temp); 3157 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3158 temp.v4.sin_port = htons(port); 3159 if (copy_to_user(to, &temp, addrlen)) { 3160 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3161 flags); 3162 return -EFAULT; 3163 } 3164 to += addrlen; 3165 cnt ++; 3166 if (cnt >= max_addrs) break; 3167 } 3168 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3169 3170 return cnt; 3171 } 3172 3173 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 3174 char __user *optval, int __user *optlen) 3175 { 3176 struct sctp_bind_addr *bp; 3177 struct sctp_association *asoc; 3178 struct list_head *pos; 3179 int cnt = 0; 3180 struct sctp_getaddrs getaddrs; 3181 struct sctp_sockaddr_entry *addr; 3182 void __user *to; 3183 union sctp_addr temp; 3184 struct sctp_sock *sp = sctp_sk(sk); 3185 int addrlen; 3186 rwlock_t *addr_lock; 3187 int err = 0; 3188 3189 if (len != sizeof(struct sctp_getaddrs)) 3190 return -EINVAL; 3191 3192 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3193 return -EFAULT; 3194 3195 if (getaddrs.addr_num <= 0) return -EINVAL; 3196 /* 3197 * For UDP-style sockets, id specifies the association to query. 3198 * If the id field is set to the value '0' then the locally bound 3199 * addresses are returned without regard to any particular 3200 * association. 3201 */ 3202 if (0 == getaddrs.assoc_id) { 3203 bp = &sctp_sk(sk)->ep->base.bind_addr; 3204 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3205 } else { 3206 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3207 if (!asoc) 3208 return -EINVAL; 3209 bp = &asoc->base.bind_addr; 3210 addr_lock = &asoc->base.addr_lock; 3211 } 3212 3213 to = getaddrs.addrs; 3214 3215 sctp_read_lock(addr_lock); 3216 3217 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 3218 * addresses from the global local address list. 3219 */ 3220 if (sctp_list_single_entry(&bp->address_list)) { 3221 addr = list_entry(bp->address_list.next, 3222 struct sctp_sockaddr_entry, list); 3223 if (sctp_is_any(&addr->a)) { 3224 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 3225 getaddrs.addr_num, to); 3226 if (cnt < 0) { 3227 err = cnt; 3228 goto unlock; 3229 } 3230 goto copy_getaddrs; 3231 } 3232 } 3233 3234 list_for_each(pos, &bp->address_list) { 3235 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3236 memcpy(&temp, &addr->a, sizeof(temp)); 3237 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3238 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3239 temp.v4.sin_port = htons(temp.v4.sin_port); 3240 if (copy_to_user(to, &temp, addrlen)) { 3241 err = -EFAULT; 3242 goto unlock; 3243 } 3244 to += addrlen; 3245 cnt ++; 3246 if (cnt >= getaddrs.addr_num) break; 3247 } 3248 3249 copy_getaddrs: 3250 getaddrs.addr_num = cnt; 3251 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs))) 3252 err = -EFAULT; 3253 3254 unlock: 3255 sctp_read_unlock(addr_lock); 3256 return err; 3257 } 3258 3259 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3260 * 3261 * Requests that the local SCTP stack use the enclosed peer address as 3262 * the association primary. The enclosed address must be one of the 3263 * association peer's addresses. 3264 */ 3265 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 3266 char __user *optval, int __user *optlen) 3267 { 3268 struct sctp_prim prim; 3269 struct sctp_association *asoc; 3270 struct sctp_sock *sp = sctp_sk(sk); 3271 3272 if (len != sizeof(struct sctp_prim)) 3273 return -EINVAL; 3274 3275 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3276 return -EFAULT; 3277 3278 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 3279 if (!asoc) 3280 return -EINVAL; 3281 3282 if (!asoc->peer.primary_path) 3283 return -ENOTCONN; 3284 3285 asoc->peer.primary_path->ipaddr.v4.sin_port = 3286 htons(asoc->peer.primary_path->ipaddr.v4.sin_port); 3287 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 3288 sizeof(union sctp_addr)); 3289 asoc->peer.primary_path->ipaddr.v4.sin_port = 3290 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port); 3291 3292 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 3293 (union sctp_addr *)&prim.ssp_addr); 3294 3295 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 3296 return -EFAULT; 3297 3298 return 0; 3299 } 3300 3301 /* 3302 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER) 3303 * 3304 * Requests that the local endpoint set the specified Adaption Layer 3305 * Indication parameter for all future INIT and INIT-ACK exchanges. 3306 */ 3307 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len, 3308 char __user *optval, int __user *optlen) 3309 { 3310 __u32 val; 3311 3312 if (len < sizeof(__u32)) 3313 return -EINVAL; 3314 3315 len = sizeof(__u32); 3316 val = sctp_sk(sk)->adaption_ind; 3317 if (put_user(len, optlen)) 3318 return -EFAULT; 3319 if (copy_to_user(optval, &val, len)) 3320 return -EFAULT; 3321 return 0; 3322 } 3323 3324 /* 3325 * 3326 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 3327 * 3328 * Applications that wish to use the sendto() system call may wish to 3329 * specify a default set of parameters that would normally be supplied 3330 * through the inclusion of ancillary data. This socket option allows 3331 * such an application to set the default sctp_sndrcvinfo structure. 3332 3333 3334 * The application that wishes to use this socket option simply passes 3335 * in to this call the sctp_sndrcvinfo structure defined in Section 3336 * 5.2.2) The input parameters accepted by this call include 3337 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 3338 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 3339 * to this call if the caller is using the UDP model. 3340 * 3341 * For getsockopt, it get the default sctp_sndrcvinfo structure. 3342 */ 3343 static int sctp_getsockopt_default_send_param(struct sock *sk, 3344 int len, char __user *optval, 3345 int __user *optlen) 3346 { 3347 struct sctp_sndrcvinfo info; 3348 struct sctp_association *asoc; 3349 struct sctp_sock *sp = sctp_sk(sk); 3350 3351 if (len != sizeof(struct sctp_sndrcvinfo)) 3352 return -EINVAL; 3353 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 3354 return -EFAULT; 3355 3356 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3357 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 3358 return -EINVAL; 3359 3360 if (asoc) { 3361 info.sinfo_stream = asoc->default_stream; 3362 info.sinfo_flags = asoc->default_flags; 3363 info.sinfo_ppid = asoc->default_ppid; 3364 info.sinfo_context = asoc->default_context; 3365 info.sinfo_timetolive = asoc->default_timetolive; 3366 } else { 3367 info.sinfo_stream = sp->default_stream; 3368 info.sinfo_flags = sp->default_flags; 3369 info.sinfo_ppid = sp->default_ppid; 3370 info.sinfo_context = sp->default_context; 3371 info.sinfo_timetolive = sp->default_timetolive; 3372 } 3373 3374 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 3375 return -EFAULT; 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * 3382 * 7.1.5 SCTP_NODELAY 3383 * 3384 * Turn on/off any Nagle-like algorithm. This means that packets are 3385 * generally sent as soon as possible and no unnecessary delays are 3386 * introduced, at the cost of more packets in the network. Expects an 3387 * integer boolean flag. 3388 */ 3389 3390 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 3391 char __user *optval, int __user *optlen) 3392 { 3393 int val; 3394 3395 if (len < sizeof(int)) 3396 return -EINVAL; 3397 3398 len = sizeof(int); 3399 val = (sctp_sk(sk)->nodelay == 1); 3400 if (put_user(len, optlen)) 3401 return -EFAULT; 3402 if (copy_to_user(optval, &val, len)) 3403 return -EFAULT; 3404 return 0; 3405 } 3406 3407 /* 3408 * 3409 * 7.1.1 SCTP_RTOINFO 3410 * 3411 * The protocol parameters used to initialize and bound retransmission 3412 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3413 * and modify these parameters. 3414 * All parameters are time values, in milliseconds. A value of 0, when 3415 * modifying the parameters, indicates that the current value should not 3416 * be changed. 3417 * 3418 */ 3419 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 3420 char __user *optval, 3421 int __user *optlen) { 3422 struct sctp_rtoinfo rtoinfo; 3423 struct sctp_association *asoc; 3424 3425 if (len != sizeof (struct sctp_rtoinfo)) 3426 return -EINVAL; 3427 3428 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 3429 return -EFAULT; 3430 3431 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3432 3433 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3434 return -EINVAL; 3435 3436 /* Values corresponding to the specific association. */ 3437 if (asoc) { 3438 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 3439 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 3440 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 3441 } else { 3442 /* Values corresponding to the endpoint. */ 3443 struct sctp_sock *sp = sctp_sk(sk); 3444 3445 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 3446 rtoinfo.srto_max = sp->rtoinfo.srto_max; 3447 rtoinfo.srto_min = sp->rtoinfo.srto_min; 3448 } 3449 3450 if (put_user(len, optlen)) 3451 return -EFAULT; 3452 3453 if (copy_to_user(optval, &rtoinfo, len)) 3454 return -EFAULT; 3455 3456 return 0; 3457 } 3458 3459 /* 3460 * 3461 * 7.1.2 SCTP_ASSOCINFO 3462 * 3463 * This option is used to tune the the maximum retransmission attempts 3464 * of the association. 3465 * Returns an error if the new association retransmission value is 3466 * greater than the sum of the retransmission value of the peer. 3467 * See [SCTP] for more information. 3468 * 3469 */ 3470 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 3471 char __user *optval, 3472 int __user *optlen) 3473 { 3474 3475 struct sctp_assocparams assocparams; 3476 struct sctp_association *asoc; 3477 struct list_head *pos; 3478 int cnt = 0; 3479 3480 if (len != sizeof (struct sctp_assocparams)) 3481 return -EINVAL; 3482 3483 if (copy_from_user(&assocparams, optval, 3484 sizeof (struct sctp_assocparams))) 3485 return -EFAULT; 3486 3487 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3488 3489 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3490 return -EINVAL; 3491 3492 /* Values correspoinding to the specific association */ 3493 if (asoc) { 3494 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 3495 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 3496 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 3497 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 3498 * 1000) + 3499 (asoc->cookie_life.tv_usec 3500 / 1000); 3501 3502 list_for_each(pos, &asoc->peer.transport_addr_list) { 3503 cnt ++; 3504 } 3505 3506 assocparams.sasoc_number_peer_destinations = cnt; 3507 } else { 3508 /* Values corresponding to the endpoint */ 3509 struct sctp_sock *sp = sctp_sk(sk); 3510 3511 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 3512 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 3513 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 3514 assocparams.sasoc_cookie_life = 3515 sp->assocparams.sasoc_cookie_life; 3516 assocparams.sasoc_number_peer_destinations = 3517 sp->assocparams. 3518 sasoc_number_peer_destinations; 3519 } 3520 3521 if (put_user(len, optlen)) 3522 return -EFAULT; 3523 3524 if (copy_to_user(optval, &assocparams, len)) 3525 return -EFAULT; 3526 3527 return 0; 3528 } 3529 3530 /* 3531 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3532 * 3533 * This socket option is a boolean flag which turns on or off mapped V4 3534 * addresses. If this option is turned on and the socket is type 3535 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3536 * If this option is turned off, then no mapping will be done of V4 3537 * addresses and a user will receive both PF_INET6 and PF_INET type 3538 * addresses on the socket. 3539 */ 3540 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 3541 char __user *optval, int __user *optlen) 3542 { 3543 int val; 3544 struct sctp_sock *sp = sctp_sk(sk); 3545 3546 if (len < sizeof(int)) 3547 return -EINVAL; 3548 3549 len = sizeof(int); 3550 val = sp->v4mapped; 3551 if (put_user(len, optlen)) 3552 return -EFAULT; 3553 if (copy_to_user(optval, &val, len)) 3554 return -EFAULT; 3555 3556 return 0; 3557 } 3558 3559 /* 3560 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 3561 * 3562 * This socket option specifies the maximum size to put in any outgoing 3563 * SCTP chunk. If a message is larger than this size it will be 3564 * fragmented by SCTP into the specified size. Note that the underlying 3565 * SCTP implementation may fragment into smaller sized chunks when the 3566 * PMTU of the underlying association is smaller than the value set by 3567 * the user. 3568 */ 3569 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 3570 char __user *optval, int __user *optlen) 3571 { 3572 int val; 3573 3574 if (len < sizeof(int)) 3575 return -EINVAL; 3576 3577 len = sizeof(int); 3578 3579 val = sctp_sk(sk)->user_frag; 3580 if (put_user(len, optlen)) 3581 return -EFAULT; 3582 if (copy_to_user(optval, &val, len)) 3583 return -EFAULT; 3584 3585 return 0; 3586 } 3587 3588 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 3589 char __user *optval, int __user *optlen) 3590 { 3591 int retval = 0; 3592 int len; 3593 3594 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p, ...)\n", sk); 3595 3596 /* I can hardly begin to describe how wrong this is. This is 3597 * so broken as to be worse than useless. The API draft 3598 * REALLY is NOT helpful here... I am not convinced that the 3599 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 3600 * are at all well-founded. 3601 */ 3602 if (level != SOL_SCTP) { 3603 struct sctp_af *af = sctp_sk(sk)->pf->af; 3604 3605 retval = af->getsockopt(sk, level, optname, optval, optlen); 3606 return retval; 3607 } 3608 3609 if (get_user(len, optlen)) 3610 return -EFAULT; 3611 3612 sctp_lock_sock(sk); 3613 3614 switch (optname) { 3615 case SCTP_STATUS: 3616 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 3617 break; 3618 case SCTP_DISABLE_FRAGMENTS: 3619 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 3620 optlen); 3621 break; 3622 case SCTP_EVENTS: 3623 retval = sctp_getsockopt_events(sk, len, optval, optlen); 3624 break; 3625 case SCTP_AUTOCLOSE: 3626 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 3627 break; 3628 case SCTP_SOCKOPT_PEELOFF: 3629 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 3630 break; 3631 case SCTP_PEER_ADDR_PARAMS: 3632 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 3633 optlen); 3634 break; 3635 case SCTP_INITMSG: 3636 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 3637 break; 3638 case SCTP_GET_PEER_ADDRS_NUM: 3639 retval = sctp_getsockopt_peer_addrs_num(sk, len, optval, 3640 optlen); 3641 break; 3642 case SCTP_GET_LOCAL_ADDRS_NUM: 3643 retval = sctp_getsockopt_local_addrs_num(sk, len, optval, 3644 optlen); 3645 break; 3646 case SCTP_GET_PEER_ADDRS: 3647 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 3648 optlen); 3649 break; 3650 case SCTP_GET_LOCAL_ADDRS: 3651 retval = sctp_getsockopt_local_addrs(sk, len, optval, 3652 optlen); 3653 break; 3654 case SCTP_DEFAULT_SEND_PARAM: 3655 retval = sctp_getsockopt_default_send_param(sk, len, 3656 optval, optlen); 3657 break; 3658 case SCTP_PRIMARY_ADDR: 3659 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 3660 break; 3661 case SCTP_NODELAY: 3662 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 3663 break; 3664 case SCTP_RTOINFO: 3665 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 3666 break; 3667 case SCTP_ASSOCINFO: 3668 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 3669 break; 3670 case SCTP_I_WANT_MAPPED_V4_ADDR: 3671 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 3672 break; 3673 case SCTP_MAXSEG: 3674 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 3675 break; 3676 case SCTP_GET_PEER_ADDR_INFO: 3677 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 3678 optlen); 3679 break; 3680 case SCTP_ADAPTION_LAYER: 3681 retval = sctp_getsockopt_adaption_layer(sk, len, optval, 3682 optlen); 3683 break; 3684 default: 3685 retval = -ENOPROTOOPT; 3686 break; 3687 }; 3688 3689 sctp_release_sock(sk); 3690 return retval; 3691 } 3692 3693 static void sctp_hash(struct sock *sk) 3694 { 3695 /* STUB */ 3696 } 3697 3698 static void sctp_unhash(struct sock *sk) 3699 { 3700 /* STUB */ 3701 } 3702 3703 /* Check if port is acceptable. Possibly find first available port. 3704 * 3705 * The port hash table (contained in the 'global' SCTP protocol storage 3706 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 3707 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 3708 * list (the list number is the port number hashed out, so as you 3709 * would expect from a hash function, all the ports in a given list have 3710 * such a number that hashes out to the same list number; you were 3711 * expecting that, right?); so each list has a set of ports, with a 3712 * link to the socket (struct sock) that uses it, the port number and 3713 * a fastreuse flag (FIXME: NPI ipg). 3714 */ 3715 static struct sctp_bind_bucket *sctp_bucket_create( 3716 struct sctp_bind_hashbucket *head, unsigned short snum); 3717 3718 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 3719 { 3720 struct sctp_bind_hashbucket *head; /* hash list */ 3721 struct sctp_bind_bucket *pp; /* hash list port iterator */ 3722 unsigned short snum; 3723 int ret; 3724 3725 /* NOTE: Remember to put this back to net order. */ 3726 addr->v4.sin_port = ntohs(addr->v4.sin_port); 3727 snum = addr->v4.sin_port; 3728 3729 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 3730 sctp_local_bh_disable(); 3731 3732 if (snum == 0) { 3733 /* Search for an available port. 3734 * 3735 * 'sctp_port_rover' was the last port assigned, so 3736 * we start to search from 'sctp_port_rover + 3737 * 1'. What we do is first check if port 'rover' is 3738 * already in the hash table; if not, we use that; if 3739 * it is, we try next. 3740 */ 3741 int low = sysctl_local_port_range[0]; 3742 int high = sysctl_local_port_range[1]; 3743 int remaining = (high - low) + 1; 3744 int rover; 3745 int index; 3746 3747 sctp_spin_lock(&sctp_port_alloc_lock); 3748 rover = sctp_port_rover; 3749 do { 3750 rover++; 3751 if ((rover < low) || (rover > high)) 3752 rover = low; 3753 index = sctp_phashfn(rover); 3754 head = &sctp_port_hashtable[index]; 3755 sctp_spin_lock(&head->lock); 3756 for (pp = head->chain; pp; pp = pp->next) 3757 if (pp->port == rover) 3758 goto next; 3759 break; 3760 next: 3761 sctp_spin_unlock(&head->lock); 3762 } while (--remaining > 0); 3763 sctp_port_rover = rover; 3764 sctp_spin_unlock(&sctp_port_alloc_lock); 3765 3766 /* Exhausted local port range during search? */ 3767 ret = 1; 3768 if (remaining <= 0) 3769 goto fail; 3770 3771 /* OK, here is the one we will use. HEAD (the port 3772 * hash table list entry) is non-NULL and we hold it's 3773 * mutex. 3774 */ 3775 snum = rover; 3776 } else { 3777 /* We are given an specific port number; we verify 3778 * that it is not being used. If it is used, we will 3779 * exahust the search in the hash list corresponding 3780 * to the port number (snum) - we detect that with the 3781 * port iterator, pp being NULL. 3782 */ 3783 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 3784 sctp_spin_lock(&head->lock); 3785 for (pp = head->chain; pp; pp = pp->next) { 3786 if (pp->port == snum) 3787 goto pp_found; 3788 } 3789 } 3790 pp = NULL; 3791 goto pp_not_found; 3792 pp_found: 3793 if (!hlist_empty(&pp->owner)) { 3794 /* We had a port hash table hit - there is an 3795 * available port (pp != NULL) and it is being 3796 * used by other socket (pp->owner not empty); that other 3797 * socket is going to be sk2. 3798 */ 3799 int reuse = sk->sk_reuse; 3800 struct sock *sk2; 3801 struct hlist_node *node; 3802 3803 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 3804 if (pp->fastreuse && sk->sk_reuse) 3805 goto success; 3806 3807 /* Run through the list of sockets bound to the port 3808 * (pp->port) [via the pointers bind_next and 3809 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 3810 * we get the endpoint they describe and run through 3811 * the endpoint's list of IP (v4 or v6) addresses, 3812 * comparing each of the addresses with the address of 3813 * the socket sk. If we find a match, then that means 3814 * that this port/socket (sk) combination are already 3815 * in an endpoint. 3816 */ 3817 sk_for_each_bound(sk2, node, &pp->owner) { 3818 struct sctp_endpoint *ep2; 3819 ep2 = sctp_sk(sk2)->ep; 3820 3821 if (reuse && sk2->sk_reuse) 3822 continue; 3823 3824 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 3825 sctp_sk(sk))) { 3826 ret = (long)sk2; 3827 goto fail_unlock; 3828 } 3829 } 3830 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 3831 } 3832 pp_not_found: 3833 /* If there was a hash table miss, create a new port. */ 3834 ret = 1; 3835 if (!pp && !(pp = sctp_bucket_create(head, snum))) 3836 goto fail_unlock; 3837 3838 /* In either case (hit or miss), make sure fastreuse is 1 only 3839 * if sk->sk_reuse is too (that is, if the caller requested 3840 * SO_REUSEADDR on this socket -sk-). 3841 */ 3842 if (hlist_empty(&pp->owner)) 3843 pp->fastreuse = sk->sk_reuse ? 1 : 0; 3844 else if (pp->fastreuse && !sk->sk_reuse) 3845 pp->fastreuse = 0; 3846 3847 /* We are set, so fill up all the data in the hash table 3848 * entry, tie the socket list information with the rest of the 3849 * sockets FIXME: Blurry, NPI (ipg). 3850 */ 3851 success: 3852 inet_sk(sk)->num = snum; 3853 if (!sctp_sk(sk)->bind_hash) { 3854 sk_add_bind_node(sk, &pp->owner); 3855 sctp_sk(sk)->bind_hash = pp; 3856 } 3857 ret = 0; 3858 3859 fail_unlock: 3860 sctp_spin_unlock(&head->lock); 3861 3862 fail: 3863 sctp_local_bh_enable(); 3864 addr->v4.sin_port = htons(addr->v4.sin_port); 3865 return ret; 3866 } 3867 3868 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 3869 * port is requested. 3870 */ 3871 static int sctp_get_port(struct sock *sk, unsigned short snum) 3872 { 3873 long ret; 3874 union sctp_addr addr; 3875 struct sctp_af *af = sctp_sk(sk)->pf->af; 3876 3877 /* Set up a dummy address struct from the sk. */ 3878 af->from_sk(&addr, sk); 3879 addr.v4.sin_port = htons(snum); 3880 3881 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 3882 ret = sctp_get_port_local(sk, &addr); 3883 3884 return (ret ? 1 : 0); 3885 } 3886 3887 /* 3888 * 3.1.3 listen() - UDP Style Syntax 3889 * 3890 * By default, new associations are not accepted for UDP style sockets. 3891 * An application uses listen() to mark a socket as being able to 3892 * accept new associations. 3893 */ 3894 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 3895 { 3896 struct sctp_sock *sp = sctp_sk(sk); 3897 struct sctp_endpoint *ep = sp->ep; 3898 3899 /* Only UDP style sockets that are not peeled off are allowed to 3900 * listen(). 3901 */ 3902 if (!sctp_style(sk, UDP)) 3903 return -EINVAL; 3904 3905 /* If backlog is zero, disable listening. */ 3906 if (!backlog) { 3907 if (sctp_sstate(sk, CLOSED)) 3908 return 0; 3909 3910 sctp_unhash_endpoint(ep); 3911 sk->sk_state = SCTP_SS_CLOSED; 3912 } 3913 3914 /* Return if we are already listening. */ 3915 if (sctp_sstate(sk, LISTENING)) 3916 return 0; 3917 3918 /* 3919 * If a bind() or sctp_bindx() is not called prior to a listen() 3920 * call that allows new associations to be accepted, the system 3921 * picks an ephemeral port and will choose an address set equivalent 3922 * to binding with a wildcard address. 3923 * 3924 * This is not currently spelled out in the SCTP sockets 3925 * extensions draft, but follows the practice as seen in TCP 3926 * sockets. 3927 */ 3928 if (!ep->base.bind_addr.port) { 3929 if (sctp_autobind(sk)) 3930 return -EAGAIN; 3931 } 3932 sk->sk_state = SCTP_SS_LISTENING; 3933 sctp_hash_endpoint(ep); 3934 return 0; 3935 } 3936 3937 /* 3938 * 4.1.3 listen() - TCP Style Syntax 3939 * 3940 * Applications uses listen() to ready the SCTP endpoint for accepting 3941 * inbound associations. 3942 */ 3943 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 3944 { 3945 struct sctp_sock *sp = sctp_sk(sk); 3946 struct sctp_endpoint *ep = sp->ep; 3947 3948 /* If backlog is zero, disable listening. */ 3949 if (!backlog) { 3950 if (sctp_sstate(sk, CLOSED)) 3951 return 0; 3952 3953 sctp_unhash_endpoint(ep); 3954 sk->sk_state = SCTP_SS_CLOSED; 3955 } 3956 3957 if (sctp_sstate(sk, LISTENING)) 3958 return 0; 3959 3960 /* 3961 * If a bind() or sctp_bindx() is not called prior to a listen() 3962 * call that allows new associations to be accepted, the system 3963 * picks an ephemeral port and will choose an address set equivalent 3964 * to binding with a wildcard address. 3965 * 3966 * This is not currently spelled out in the SCTP sockets 3967 * extensions draft, but follows the practice as seen in TCP 3968 * sockets. 3969 */ 3970 if (!ep->base.bind_addr.port) { 3971 if (sctp_autobind(sk)) 3972 return -EAGAIN; 3973 } 3974 sk->sk_state = SCTP_SS_LISTENING; 3975 sk->sk_max_ack_backlog = backlog; 3976 sctp_hash_endpoint(ep); 3977 return 0; 3978 } 3979 3980 /* 3981 * Move a socket to LISTENING state. 3982 */ 3983 int sctp_inet_listen(struct socket *sock, int backlog) 3984 { 3985 struct sock *sk = sock->sk; 3986 struct crypto_tfm *tfm=NULL; 3987 int err = -EINVAL; 3988 3989 if (unlikely(backlog < 0)) 3990 goto out; 3991 3992 sctp_lock_sock(sk); 3993 3994 if (sock->state != SS_UNCONNECTED) 3995 goto out; 3996 3997 /* Allocate HMAC for generating cookie. */ 3998 if (sctp_hmac_alg) { 3999 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0); 4000 if (!tfm) { 4001 err = -ENOSYS; 4002 goto out; 4003 } 4004 } 4005 4006 switch (sock->type) { 4007 case SOCK_SEQPACKET: 4008 err = sctp_seqpacket_listen(sk, backlog); 4009 break; 4010 case SOCK_STREAM: 4011 err = sctp_stream_listen(sk, backlog); 4012 break; 4013 default: 4014 break; 4015 }; 4016 if (err) 4017 goto cleanup; 4018 4019 /* Store away the transform reference. */ 4020 sctp_sk(sk)->hmac = tfm; 4021 out: 4022 sctp_release_sock(sk); 4023 return err; 4024 cleanup: 4025 if (tfm) 4026 sctp_crypto_free_tfm(tfm); 4027 goto out; 4028 } 4029 4030 /* 4031 * This function is done by modeling the current datagram_poll() and the 4032 * tcp_poll(). Note that, based on these implementations, we don't 4033 * lock the socket in this function, even though it seems that, 4034 * ideally, locking or some other mechanisms can be used to ensure 4035 * the integrity of the counters (sndbuf and wmem_queued) used 4036 * in this place. We assume that we don't need locks either until proven 4037 * otherwise. 4038 * 4039 * Another thing to note is that we include the Async I/O support 4040 * here, again, by modeling the current TCP/UDP code. We don't have 4041 * a good way to test with it yet. 4042 */ 4043 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 4044 { 4045 struct sock *sk = sock->sk; 4046 struct sctp_sock *sp = sctp_sk(sk); 4047 unsigned int mask; 4048 4049 poll_wait(file, sk->sk_sleep, wait); 4050 4051 /* A TCP-style listening socket becomes readable when the accept queue 4052 * is not empty. 4053 */ 4054 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4055 return (!list_empty(&sp->ep->asocs)) ? 4056 (POLLIN | POLLRDNORM) : 0; 4057 4058 mask = 0; 4059 4060 /* Is there any exceptional events? */ 4061 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 4062 mask |= POLLERR; 4063 if (sk->sk_shutdown == SHUTDOWN_MASK) 4064 mask |= POLLHUP; 4065 4066 /* Is it readable? Reconsider this code with TCP-style support. */ 4067 if (!skb_queue_empty(&sk->sk_receive_queue) || 4068 (sk->sk_shutdown & RCV_SHUTDOWN)) 4069 mask |= POLLIN | POLLRDNORM; 4070 4071 /* The association is either gone or not ready. */ 4072 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 4073 return mask; 4074 4075 /* Is it writable? */ 4076 if (sctp_writeable(sk)) { 4077 mask |= POLLOUT | POLLWRNORM; 4078 } else { 4079 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 4080 /* 4081 * Since the socket is not locked, the buffer 4082 * might be made available after the writeable check and 4083 * before the bit is set. This could cause a lost I/O 4084 * signal. tcp_poll() has a race breaker for this race 4085 * condition. Based on their implementation, we put 4086 * in the following code to cover it as well. 4087 */ 4088 if (sctp_writeable(sk)) 4089 mask |= POLLOUT | POLLWRNORM; 4090 } 4091 return mask; 4092 } 4093 4094 /******************************************************************** 4095 * 2nd Level Abstractions 4096 ********************************************************************/ 4097 4098 static struct sctp_bind_bucket *sctp_bucket_create( 4099 struct sctp_bind_hashbucket *head, unsigned short snum) 4100 { 4101 struct sctp_bind_bucket *pp; 4102 4103 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC); 4104 SCTP_DBG_OBJCNT_INC(bind_bucket); 4105 if (pp) { 4106 pp->port = snum; 4107 pp->fastreuse = 0; 4108 INIT_HLIST_HEAD(&pp->owner); 4109 if ((pp->next = head->chain) != NULL) 4110 pp->next->pprev = &pp->next; 4111 head->chain = pp; 4112 pp->pprev = &head->chain; 4113 } 4114 return pp; 4115 } 4116 4117 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 4118 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 4119 { 4120 if (hlist_empty(&pp->owner)) { 4121 if (pp->next) 4122 pp->next->pprev = pp->pprev; 4123 *(pp->pprev) = pp->next; 4124 kmem_cache_free(sctp_bucket_cachep, pp); 4125 SCTP_DBG_OBJCNT_DEC(bind_bucket); 4126 } 4127 } 4128 4129 /* Release this socket's reference to a local port. */ 4130 static inline void __sctp_put_port(struct sock *sk) 4131 { 4132 struct sctp_bind_hashbucket *head = 4133 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 4134 struct sctp_bind_bucket *pp; 4135 4136 sctp_spin_lock(&head->lock); 4137 pp = sctp_sk(sk)->bind_hash; 4138 __sk_del_bind_node(sk); 4139 sctp_sk(sk)->bind_hash = NULL; 4140 inet_sk(sk)->num = 0; 4141 sctp_bucket_destroy(pp); 4142 sctp_spin_unlock(&head->lock); 4143 } 4144 4145 void sctp_put_port(struct sock *sk) 4146 { 4147 sctp_local_bh_disable(); 4148 __sctp_put_port(sk); 4149 sctp_local_bh_enable(); 4150 } 4151 4152 /* 4153 * The system picks an ephemeral port and choose an address set equivalent 4154 * to binding with a wildcard address. 4155 * One of those addresses will be the primary address for the association. 4156 * This automatically enables the multihoming capability of SCTP. 4157 */ 4158 static int sctp_autobind(struct sock *sk) 4159 { 4160 union sctp_addr autoaddr; 4161 struct sctp_af *af; 4162 unsigned short port; 4163 4164 /* Initialize a local sockaddr structure to INADDR_ANY. */ 4165 af = sctp_sk(sk)->pf->af; 4166 4167 port = htons(inet_sk(sk)->num); 4168 af->inaddr_any(&autoaddr, port); 4169 4170 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 4171 } 4172 4173 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 4174 * 4175 * From RFC 2292 4176 * 4.2 The cmsghdr Structure * 4177 * 4178 * When ancillary data is sent or received, any number of ancillary data 4179 * objects can be specified by the msg_control and msg_controllen members of 4180 * the msghdr structure, because each object is preceded by 4181 * a cmsghdr structure defining the object's length (the cmsg_len member). 4182 * Historically Berkeley-derived implementations have passed only one object 4183 * at a time, but this API allows multiple objects to be 4184 * passed in a single call to sendmsg() or recvmsg(). The following example 4185 * shows two ancillary data objects in a control buffer. 4186 * 4187 * |<--------------------------- msg_controllen -------------------------->| 4188 * | | 4189 * 4190 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 4191 * 4192 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 4193 * | | | 4194 * 4195 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 4196 * 4197 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 4198 * | | | | | 4199 * 4200 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 4201 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 4202 * 4203 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 4204 * 4205 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 4206 * ^ 4207 * | 4208 * 4209 * msg_control 4210 * points here 4211 */ 4212 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 4213 sctp_cmsgs_t *cmsgs) 4214 { 4215 struct cmsghdr *cmsg; 4216 4217 for (cmsg = CMSG_FIRSTHDR(msg); 4218 cmsg != NULL; 4219 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 4220 if (!CMSG_OK(msg, cmsg)) 4221 return -EINVAL; 4222 4223 /* Should we parse this header or ignore? */ 4224 if (cmsg->cmsg_level != IPPROTO_SCTP) 4225 continue; 4226 4227 /* Strictly check lengths following example in SCM code. */ 4228 switch (cmsg->cmsg_type) { 4229 case SCTP_INIT: 4230 /* SCTP Socket API Extension 4231 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 4232 * 4233 * This cmsghdr structure provides information for 4234 * initializing new SCTP associations with sendmsg(). 4235 * The SCTP_INITMSG socket option uses this same data 4236 * structure. This structure is not used for 4237 * recvmsg(). 4238 * 4239 * cmsg_level cmsg_type cmsg_data[] 4240 * ------------ ------------ ---------------------- 4241 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 4242 */ 4243 if (cmsg->cmsg_len != 4244 CMSG_LEN(sizeof(struct sctp_initmsg))) 4245 return -EINVAL; 4246 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 4247 break; 4248 4249 case SCTP_SNDRCV: 4250 /* SCTP Socket API Extension 4251 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 4252 * 4253 * This cmsghdr structure specifies SCTP options for 4254 * sendmsg() and describes SCTP header information 4255 * about a received message through recvmsg(). 4256 * 4257 * cmsg_level cmsg_type cmsg_data[] 4258 * ------------ ------------ ---------------------- 4259 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 4260 */ 4261 if (cmsg->cmsg_len != 4262 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 4263 return -EINVAL; 4264 4265 cmsgs->info = 4266 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 4267 4268 /* Minimally, validate the sinfo_flags. */ 4269 if (cmsgs->info->sinfo_flags & 4270 ~(MSG_UNORDERED | MSG_ADDR_OVER | 4271 MSG_ABORT | MSG_EOF)) 4272 return -EINVAL; 4273 break; 4274 4275 default: 4276 return -EINVAL; 4277 }; 4278 } 4279 return 0; 4280 } 4281 4282 /* 4283 * Wait for a packet.. 4284 * Note: This function is the same function as in core/datagram.c 4285 * with a few modifications to make lksctp work. 4286 */ 4287 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 4288 { 4289 int error; 4290 DEFINE_WAIT(wait); 4291 4292 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 4293 4294 /* Socket errors? */ 4295 error = sock_error(sk); 4296 if (error) 4297 goto out; 4298 4299 if (!skb_queue_empty(&sk->sk_receive_queue)) 4300 goto ready; 4301 4302 /* Socket shut down? */ 4303 if (sk->sk_shutdown & RCV_SHUTDOWN) 4304 goto out; 4305 4306 /* Sequenced packets can come disconnected. If so we report the 4307 * problem. 4308 */ 4309 error = -ENOTCONN; 4310 4311 /* Is there a good reason to think that we may receive some data? */ 4312 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 4313 goto out; 4314 4315 /* Handle signals. */ 4316 if (signal_pending(current)) 4317 goto interrupted; 4318 4319 /* Let another process have a go. Since we are going to sleep 4320 * anyway. Note: This may cause odd behaviors if the message 4321 * does not fit in the user's buffer, but this seems to be the 4322 * only way to honor MSG_DONTWAIT realistically. 4323 */ 4324 sctp_release_sock(sk); 4325 *timeo_p = schedule_timeout(*timeo_p); 4326 sctp_lock_sock(sk); 4327 4328 ready: 4329 finish_wait(sk->sk_sleep, &wait); 4330 return 0; 4331 4332 interrupted: 4333 error = sock_intr_errno(*timeo_p); 4334 4335 out: 4336 finish_wait(sk->sk_sleep, &wait); 4337 *err = error; 4338 return error; 4339 } 4340 4341 /* Receive a datagram. 4342 * Note: This is pretty much the same routine as in core/datagram.c 4343 * with a few changes to make lksctp work. 4344 */ 4345 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 4346 int noblock, int *err) 4347 { 4348 int error; 4349 struct sk_buff *skb; 4350 long timeo; 4351 4352 /* Caller is allowed not to check sk->sk_err before calling. */ 4353 error = sock_error(sk); 4354 if (error) 4355 goto no_packet; 4356 4357 timeo = sock_rcvtimeo(sk, noblock); 4358 4359 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 4360 timeo, MAX_SCHEDULE_TIMEOUT); 4361 4362 do { 4363 /* Again only user level code calls this function, 4364 * so nothing interrupt level 4365 * will suddenly eat the receive_queue. 4366 * 4367 * Look at current nfs client by the way... 4368 * However, this function was corrent in any case. 8) 4369 */ 4370 if (flags & MSG_PEEK) { 4371 unsigned long cpu_flags; 4372 4373 sctp_spin_lock_irqsave(&sk->sk_receive_queue.lock, 4374 cpu_flags); 4375 skb = skb_peek(&sk->sk_receive_queue); 4376 if (skb) 4377 atomic_inc(&skb->users); 4378 sctp_spin_unlock_irqrestore(&sk->sk_receive_queue.lock, 4379 cpu_flags); 4380 } else { 4381 skb = skb_dequeue(&sk->sk_receive_queue); 4382 } 4383 4384 if (skb) 4385 return skb; 4386 4387 if (sk->sk_shutdown & RCV_SHUTDOWN) 4388 break; 4389 4390 /* User doesn't want to wait. */ 4391 error = -EAGAIN; 4392 if (!timeo) 4393 goto no_packet; 4394 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 4395 4396 return NULL; 4397 4398 no_packet: 4399 *err = error; 4400 return NULL; 4401 } 4402 4403 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 4404 static void __sctp_write_space(struct sctp_association *asoc) 4405 { 4406 struct sock *sk = asoc->base.sk; 4407 struct socket *sock = sk->sk_socket; 4408 4409 if ((sctp_wspace(asoc) > 0) && sock) { 4410 if (waitqueue_active(&asoc->wait)) 4411 wake_up_interruptible(&asoc->wait); 4412 4413 if (sctp_writeable(sk)) { 4414 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 4415 wake_up_interruptible(sk->sk_sleep); 4416 4417 /* Note that we try to include the Async I/O support 4418 * here by modeling from the current TCP/UDP code. 4419 * We have not tested with it yet. 4420 */ 4421 if (sock->fasync_list && 4422 !(sk->sk_shutdown & SEND_SHUTDOWN)) 4423 sock_wake_async(sock, 2, POLL_OUT); 4424 } 4425 } 4426 } 4427 4428 /* Do accounting for the sndbuf space. 4429 * Decrement the used sndbuf space of the corresponding association by the 4430 * data size which was just transmitted(freed). 4431 */ 4432 static void sctp_wfree(struct sk_buff *skb) 4433 { 4434 struct sctp_association *asoc; 4435 struct sctp_chunk *chunk; 4436 struct sock *sk; 4437 4438 /* Get the saved chunk pointer. */ 4439 chunk = *((struct sctp_chunk **)(skb->cb)); 4440 asoc = chunk->asoc; 4441 sk = asoc->base.sk; 4442 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 4443 sizeof(struct sk_buff) + 4444 sizeof(struct sctp_chunk); 4445 4446 sk->sk_wmem_queued -= SCTP_DATA_SNDSIZE(chunk) + 4447 sizeof(struct sk_buff) + 4448 sizeof(struct sctp_chunk); 4449 4450 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 4451 4452 sock_wfree(skb); 4453 __sctp_write_space(asoc); 4454 4455 sctp_association_put(asoc); 4456 } 4457 4458 /* Helper function to wait for space in the sndbuf. */ 4459 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 4460 size_t msg_len) 4461 { 4462 struct sock *sk = asoc->base.sk; 4463 int err = 0; 4464 long current_timeo = *timeo_p; 4465 DEFINE_WAIT(wait); 4466 4467 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 4468 asoc, (long)(*timeo_p), msg_len); 4469 4470 /* Increment the association's refcnt. */ 4471 sctp_association_hold(asoc); 4472 4473 /* Wait on the association specific sndbuf space. */ 4474 for (;;) { 4475 prepare_to_wait_exclusive(&asoc->wait, &wait, 4476 TASK_INTERRUPTIBLE); 4477 if (!*timeo_p) 4478 goto do_nonblock; 4479 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 4480 asoc->base.dead) 4481 goto do_error; 4482 if (signal_pending(current)) 4483 goto do_interrupted; 4484 if (msg_len <= sctp_wspace(asoc)) 4485 break; 4486 4487 /* Let another process have a go. Since we are going 4488 * to sleep anyway. 4489 */ 4490 sctp_release_sock(sk); 4491 current_timeo = schedule_timeout(current_timeo); 4492 sctp_lock_sock(sk); 4493 4494 *timeo_p = current_timeo; 4495 } 4496 4497 out: 4498 finish_wait(&asoc->wait, &wait); 4499 4500 /* Release the association's refcnt. */ 4501 sctp_association_put(asoc); 4502 4503 return err; 4504 4505 do_error: 4506 err = -EPIPE; 4507 goto out; 4508 4509 do_interrupted: 4510 err = sock_intr_errno(*timeo_p); 4511 goto out; 4512 4513 do_nonblock: 4514 err = -EAGAIN; 4515 goto out; 4516 } 4517 4518 /* If socket sndbuf has changed, wake up all per association waiters. */ 4519 void sctp_write_space(struct sock *sk) 4520 { 4521 struct sctp_association *asoc; 4522 struct list_head *pos; 4523 4524 /* Wake up the tasks in each wait queue. */ 4525 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 4526 asoc = list_entry(pos, struct sctp_association, asocs); 4527 __sctp_write_space(asoc); 4528 } 4529 } 4530 4531 /* Is there any sndbuf space available on the socket? 4532 * 4533 * Note that wmem_queued is the sum of the send buffers on all of the 4534 * associations on the same socket. For a UDP-style socket with 4535 * multiple associations, it is possible for it to be "unwriteable" 4536 * prematurely. I assume that this is acceptable because 4537 * a premature "unwriteable" is better than an accidental "writeable" which 4538 * would cause an unwanted block under certain circumstances. For the 1-1 4539 * UDP-style sockets or TCP-style sockets, this code should work. 4540 * - Daisy 4541 */ 4542 static int sctp_writeable(struct sock *sk) 4543 { 4544 int amt = 0; 4545 4546 amt = sk->sk_sndbuf - sk->sk_wmem_queued; 4547 if (amt < 0) 4548 amt = 0; 4549 return amt; 4550 } 4551 4552 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 4553 * returns immediately with EINPROGRESS. 4554 */ 4555 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 4556 { 4557 struct sock *sk = asoc->base.sk; 4558 int err = 0; 4559 long current_timeo = *timeo_p; 4560 DEFINE_WAIT(wait); 4561 4562 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 4563 (long)(*timeo_p)); 4564 4565 /* Increment the association's refcnt. */ 4566 sctp_association_hold(asoc); 4567 4568 for (;;) { 4569 prepare_to_wait_exclusive(&asoc->wait, &wait, 4570 TASK_INTERRUPTIBLE); 4571 if (!*timeo_p) 4572 goto do_nonblock; 4573 if (sk->sk_shutdown & RCV_SHUTDOWN) 4574 break; 4575 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 4576 asoc->base.dead) 4577 goto do_error; 4578 if (signal_pending(current)) 4579 goto do_interrupted; 4580 4581 if (sctp_state(asoc, ESTABLISHED)) 4582 break; 4583 4584 /* Let another process have a go. Since we are going 4585 * to sleep anyway. 4586 */ 4587 sctp_release_sock(sk); 4588 current_timeo = schedule_timeout(current_timeo); 4589 sctp_lock_sock(sk); 4590 4591 *timeo_p = current_timeo; 4592 } 4593 4594 out: 4595 finish_wait(&asoc->wait, &wait); 4596 4597 /* Release the association's refcnt. */ 4598 sctp_association_put(asoc); 4599 4600 return err; 4601 4602 do_error: 4603 if (asoc->counters[SCTP_COUNTER_INIT_ERROR] + 1 >= 4604 asoc->max_init_attempts) 4605 err = -ETIMEDOUT; 4606 else 4607 err = -ECONNREFUSED; 4608 goto out; 4609 4610 do_interrupted: 4611 err = sock_intr_errno(*timeo_p); 4612 goto out; 4613 4614 do_nonblock: 4615 err = -EINPROGRESS; 4616 goto out; 4617 } 4618 4619 static int sctp_wait_for_accept(struct sock *sk, long timeo) 4620 { 4621 struct sctp_endpoint *ep; 4622 int err = 0; 4623 DEFINE_WAIT(wait); 4624 4625 ep = sctp_sk(sk)->ep; 4626 4627 4628 for (;;) { 4629 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 4630 TASK_INTERRUPTIBLE); 4631 4632 if (list_empty(&ep->asocs)) { 4633 sctp_release_sock(sk); 4634 timeo = schedule_timeout(timeo); 4635 sctp_lock_sock(sk); 4636 } 4637 4638 err = -EINVAL; 4639 if (!sctp_sstate(sk, LISTENING)) 4640 break; 4641 4642 err = 0; 4643 if (!list_empty(&ep->asocs)) 4644 break; 4645 4646 err = sock_intr_errno(timeo); 4647 if (signal_pending(current)) 4648 break; 4649 4650 err = -EAGAIN; 4651 if (!timeo) 4652 break; 4653 } 4654 4655 finish_wait(sk->sk_sleep, &wait); 4656 4657 return err; 4658 } 4659 4660 void sctp_wait_for_close(struct sock *sk, long timeout) 4661 { 4662 DEFINE_WAIT(wait); 4663 4664 do { 4665 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 4666 if (list_empty(&sctp_sk(sk)->ep->asocs)) 4667 break; 4668 sctp_release_sock(sk); 4669 timeout = schedule_timeout(timeout); 4670 sctp_lock_sock(sk); 4671 } while (!signal_pending(current) && timeout); 4672 4673 finish_wait(sk->sk_sleep, &wait); 4674 } 4675 4676 /* Populate the fields of the newsk from the oldsk and migrate the assoc 4677 * and its messages to the newsk. 4678 */ 4679 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 4680 struct sctp_association *assoc, 4681 sctp_socket_type_t type) 4682 { 4683 struct sctp_sock *oldsp = sctp_sk(oldsk); 4684 struct sctp_sock *newsp = sctp_sk(newsk); 4685 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4686 struct sctp_endpoint *newep = newsp->ep; 4687 struct sk_buff *skb, *tmp; 4688 struct sctp_ulpevent *event; 4689 int flags = 0; 4690 4691 /* Migrate socket buffer sizes and all the socket level options to the 4692 * new socket. 4693 */ 4694 newsk->sk_sndbuf = oldsk->sk_sndbuf; 4695 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 4696 /* Brute force copy old sctp opt. */ 4697 inet_sk_copy_descendant(newsk, oldsk); 4698 4699 /* Restore the ep value that was overwritten with the above structure 4700 * copy. 4701 */ 4702 newsp->ep = newep; 4703 newsp->hmac = NULL; 4704 4705 /* Hook this new socket in to the bind_hash list. */ 4706 pp = sctp_sk(oldsk)->bind_hash; 4707 sk_add_bind_node(newsk, &pp->owner); 4708 sctp_sk(newsk)->bind_hash = pp; 4709 inet_sk(newsk)->num = inet_sk(oldsk)->num; 4710 4711 /* Copy the bind_addr list from the original endpoint to the new 4712 * endpoint so that we can handle restarts properly 4713 */ 4714 if (assoc->peer.ipv4_address) 4715 flags |= SCTP_ADDR4_PEERSUPP; 4716 if (assoc->peer.ipv6_address) 4717 flags |= SCTP_ADDR6_PEERSUPP; 4718 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 4719 &oldsp->ep->base.bind_addr, 4720 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 4721 4722 /* Move any messages in the old socket's receive queue that are for the 4723 * peeled off association to the new socket's receive queue. 4724 */ 4725 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 4726 event = sctp_skb2event(skb); 4727 if (event->asoc == assoc) { 4728 __skb_unlink(skb, skb->list); 4729 __skb_queue_tail(&newsk->sk_receive_queue, skb); 4730 } 4731 } 4732 4733 /* Clean up any messages pending delivery due to partial 4734 * delivery. Three cases: 4735 * 1) No partial deliver; no work. 4736 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 4737 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 4738 */ 4739 skb_queue_head_init(&newsp->pd_lobby); 4740 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 4741 4742 if (sctp_sk(oldsk)->pd_mode) { 4743 struct sk_buff_head *queue; 4744 4745 /* Decide which queue to move pd_lobby skbs to. */ 4746 if (assoc->ulpq.pd_mode) { 4747 queue = &newsp->pd_lobby; 4748 } else 4749 queue = &newsk->sk_receive_queue; 4750 4751 /* Walk through the pd_lobby, looking for skbs that 4752 * need moved to the new socket. 4753 */ 4754 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 4755 event = sctp_skb2event(skb); 4756 if (event->asoc == assoc) { 4757 __skb_unlink(skb, skb->list); 4758 __skb_queue_tail(queue, skb); 4759 } 4760 } 4761 4762 /* Clear up any skbs waiting for the partial 4763 * delivery to finish. 4764 */ 4765 if (assoc->ulpq.pd_mode) 4766 sctp_clear_pd(oldsk); 4767 4768 } 4769 4770 /* Set the type of socket to indicate that it is peeled off from the 4771 * original UDP-style socket or created with the accept() call on a 4772 * TCP-style socket.. 4773 */ 4774 newsp->type = type; 4775 4776 /* Migrate the association to the new socket. */ 4777 sctp_assoc_migrate(assoc, newsk); 4778 4779 /* If the association on the newsk is already closed before accept() 4780 * is called, set RCV_SHUTDOWN flag. 4781 */ 4782 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 4783 newsk->sk_shutdown |= RCV_SHUTDOWN; 4784 4785 newsk->sk_state = SCTP_SS_ESTABLISHED; 4786 } 4787 4788 /* This proto struct describes the ULP interface for SCTP. */ 4789 struct proto sctp_prot = { 4790 .name = "SCTP", 4791 .owner = THIS_MODULE, 4792 .close = sctp_close, 4793 .connect = sctp_connect, 4794 .disconnect = sctp_disconnect, 4795 .accept = sctp_accept, 4796 .ioctl = sctp_ioctl, 4797 .init = sctp_init_sock, 4798 .destroy = sctp_destroy_sock, 4799 .shutdown = sctp_shutdown, 4800 .setsockopt = sctp_setsockopt, 4801 .getsockopt = sctp_getsockopt, 4802 .sendmsg = sctp_sendmsg, 4803 .recvmsg = sctp_recvmsg, 4804 .bind = sctp_bind, 4805 .backlog_rcv = sctp_backlog_rcv, 4806 .hash = sctp_hash, 4807 .unhash = sctp_unhash, 4808 .get_port = sctp_get_port, 4809 .obj_size = sizeof(struct sctp_sock), 4810 }; 4811 4812 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4813 struct proto sctpv6_prot = { 4814 .name = "SCTPv6", 4815 .owner = THIS_MODULE, 4816 .close = sctp_close, 4817 .connect = sctp_connect, 4818 .disconnect = sctp_disconnect, 4819 .accept = sctp_accept, 4820 .ioctl = sctp_ioctl, 4821 .init = sctp_init_sock, 4822 .destroy = sctp_destroy_sock, 4823 .shutdown = sctp_shutdown, 4824 .setsockopt = sctp_setsockopt, 4825 .getsockopt = sctp_getsockopt, 4826 .sendmsg = sctp_sendmsg, 4827 .recvmsg = sctp_recvmsg, 4828 .bind = sctp_bind, 4829 .backlog_rcv = sctp_backlog_rcv, 4830 .hash = sctp_hash, 4831 .unhash = sctp_unhash, 4832 .get_port = sctp_get_port, 4833 .obj_size = sizeof(struct sctp6_sock), 4834 }; 4835 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 4836