1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 skb_set_owner_w(chunk->skb, sk); 160 161 chunk->skb->destructor = sctp_wfree; 162 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 163 skb_shinfo(chunk->skb)->destructor_arg = chunk; 164 165 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 166 sizeof(struct sk_buff) + 167 sizeof(struct sctp_chunk); 168 169 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 170 sk->sk_wmem_queued += chunk->skb->truesize; 171 sk_mem_charge(sk, chunk->skb->truesize); 172 } 173 174 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 175 { 176 skb_orphan(chunk->skb); 177 } 178 179 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 180 void (*cb)(struct sctp_chunk *)) 181 182 { 183 struct sctp_outq *q = &asoc->outqueue; 184 struct sctp_transport *t; 185 struct sctp_chunk *chunk; 186 187 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 188 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 189 cb(chunk); 190 191 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->sacked, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->out_chunk_list, list) 201 cb(chunk); 202 } 203 204 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 205 void (*cb)(struct sk_buff *, struct sock *)) 206 207 { 208 struct sk_buff *skb, *tmp; 209 210 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 211 cb(skb, sk); 212 213 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 214 cb(skb, sk); 215 216 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 217 cb(skb, sk); 218 } 219 220 /* Verify that this is a valid address. */ 221 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 222 int len) 223 { 224 struct sctp_af *af; 225 226 /* Verify basic sockaddr. */ 227 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 228 if (!af) 229 return -EINVAL; 230 231 /* Is this a valid SCTP address? */ 232 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 233 return -EINVAL; 234 235 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 236 return -EINVAL; 237 238 return 0; 239 } 240 241 /* Look up the association by its id. If this is not a UDP-style 242 * socket, the ID field is always ignored. 243 */ 244 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 245 { 246 struct sctp_association *asoc = NULL; 247 248 /* If this is not a UDP-style socket, assoc id should be ignored. */ 249 if (!sctp_style(sk, UDP)) { 250 /* Return NULL if the socket state is not ESTABLISHED. It 251 * could be a TCP-style listening socket or a socket which 252 * hasn't yet called connect() to establish an association. 253 */ 254 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 255 return NULL; 256 257 /* Get the first and the only association from the list. */ 258 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 259 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 260 struct sctp_association, asocs); 261 return asoc; 262 } 263 264 /* Otherwise this is a UDP-style socket. */ 265 if (!id || (id == (sctp_assoc_t)-1)) 266 return NULL; 267 268 spin_lock_bh(&sctp_assocs_id_lock); 269 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 270 spin_unlock_bh(&sctp_assocs_id_lock); 271 272 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 273 return NULL; 274 275 return asoc; 276 } 277 278 /* Look up the transport from an address and an assoc id. If both address and 279 * id are specified, the associations matching the address and the id should be 280 * the same. 281 */ 282 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 283 struct sockaddr_storage *addr, 284 sctp_assoc_t id) 285 { 286 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 287 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 288 union sctp_addr *laddr = (union sctp_addr *)addr; 289 struct sctp_transport *transport; 290 291 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 292 return NULL; 293 294 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 295 laddr, 296 &transport); 297 298 if (!addr_asoc) 299 return NULL; 300 301 id_asoc = sctp_id2assoc(sk, id); 302 if (id_asoc && (id_asoc != addr_asoc)) 303 return NULL; 304 305 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 306 (union sctp_addr *)addr); 307 308 return transport; 309 } 310 311 /* API 3.1.2 bind() - UDP Style Syntax 312 * The syntax of bind() is, 313 * 314 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 315 * 316 * sd - the socket descriptor returned by socket(). 317 * addr - the address structure (struct sockaddr_in or struct 318 * sockaddr_in6 [RFC 2553]), 319 * addr_len - the size of the address structure. 320 */ 321 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 322 { 323 int retval = 0; 324 325 lock_sock(sk); 326 327 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 328 addr, addr_len); 329 330 /* Disallow binding twice. */ 331 if (!sctp_sk(sk)->ep->base.bind_addr.port) 332 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 333 addr_len); 334 else 335 retval = -EINVAL; 336 337 release_sock(sk); 338 339 return retval; 340 } 341 342 static long sctp_get_port_local(struct sock *, union sctp_addr *); 343 344 /* Verify this is a valid sockaddr. */ 345 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 346 union sctp_addr *addr, int len) 347 { 348 struct sctp_af *af; 349 350 /* Check minimum size. */ 351 if (len < sizeof (struct sockaddr)) 352 return NULL; 353 354 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 355 return NULL; 356 357 /* V4 mapped address are really of AF_INET family */ 358 if (addr->sa.sa_family == AF_INET6 && 359 ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 360 !opt->pf->af_supported(AF_INET, opt)) 361 return NULL; 362 363 /* If we get this far, af is valid. */ 364 af = sctp_get_af_specific(addr->sa.sa_family); 365 366 if (len < af->sockaddr_len) 367 return NULL; 368 369 return af; 370 } 371 372 /* Bind a local address either to an endpoint or to an association. */ 373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 374 { 375 struct net *net = sock_net(sk); 376 struct sctp_sock *sp = sctp_sk(sk); 377 struct sctp_endpoint *ep = sp->ep; 378 struct sctp_bind_addr *bp = &ep->base.bind_addr; 379 struct sctp_af *af; 380 unsigned short snum; 381 int ret = 0; 382 383 /* Common sockaddr verification. */ 384 af = sctp_sockaddr_af(sp, addr, len); 385 if (!af) { 386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 387 __func__, sk, addr, len); 388 return -EINVAL; 389 } 390 391 snum = ntohs(addr->v4.sin_port); 392 393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 394 __func__, sk, &addr->sa, bp->port, snum, len); 395 396 /* PF specific bind() address verification. */ 397 if (!sp->pf->bind_verify(sp, addr)) 398 return -EADDRNOTAVAIL; 399 400 /* We must either be unbound, or bind to the same port. 401 * It's OK to allow 0 ports if we are already bound. 402 * We'll just inhert an already bound port in this case 403 */ 404 if (bp->port) { 405 if (!snum) 406 snum = bp->port; 407 else if (snum != bp->port) { 408 pr_debug("%s: new port %d doesn't match existing port " 409 "%d\n", __func__, snum, bp->port); 410 return -EINVAL; 411 } 412 } 413 414 if (snum && snum < inet_prot_sock(net) && 415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 416 return -EACCES; 417 418 /* See if the address matches any of the addresses we may have 419 * already bound before checking against other endpoints. 420 */ 421 if (sctp_bind_addr_match(bp, addr, sp)) 422 return -EINVAL; 423 424 /* Make sure we are allowed to bind here. 425 * The function sctp_get_port_local() does duplicate address 426 * detection. 427 */ 428 addr->v4.sin_port = htons(snum); 429 if ((ret = sctp_get_port_local(sk, addr))) { 430 return -EADDRINUSE; 431 } 432 433 /* Refresh ephemeral port. */ 434 if (!bp->port) 435 bp->port = inet_sk(sk)->inet_num; 436 437 /* Add the address to the bind address list. 438 * Use GFP_ATOMIC since BHs will be disabled. 439 */ 440 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 441 SCTP_ADDR_SRC, GFP_ATOMIC); 442 443 /* Copy back into socket for getsockname() use. */ 444 if (!ret) { 445 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 446 sp->pf->to_sk_saddr(addr, sk); 447 } 448 449 return ret; 450 } 451 452 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 453 * 454 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 455 * at any one time. If a sender, after sending an ASCONF chunk, decides 456 * it needs to transfer another ASCONF Chunk, it MUST wait until the 457 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 458 * subsequent ASCONF. Note this restriction binds each side, so at any 459 * time two ASCONF may be in-transit on any given association (one sent 460 * from each endpoint). 461 */ 462 static int sctp_send_asconf(struct sctp_association *asoc, 463 struct sctp_chunk *chunk) 464 { 465 struct net *net = sock_net(asoc->base.sk); 466 int retval = 0; 467 468 /* If there is an outstanding ASCONF chunk, queue it for later 469 * transmission. 470 */ 471 if (asoc->addip_last_asconf) { 472 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 473 goto out; 474 } 475 476 /* Hold the chunk until an ASCONF_ACK is received. */ 477 sctp_chunk_hold(chunk); 478 retval = sctp_primitive_ASCONF(net, asoc, chunk); 479 if (retval) 480 sctp_chunk_free(chunk); 481 else 482 asoc->addip_last_asconf = chunk; 483 484 out: 485 return retval; 486 } 487 488 /* Add a list of addresses as bind addresses to local endpoint or 489 * association. 490 * 491 * Basically run through each address specified in the addrs/addrcnt 492 * array/length pair, determine if it is IPv6 or IPv4 and call 493 * sctp_do_bind() on it. 494 * 495 * If any of them fails, then the operation will be reversed and the 496 * ones that were added will be removed. 497 * 498 * Only sctp_setsockopt_bindx() is supposed to call this function. 499 */ 500 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 501 { 502 int cnt; 503 int retval = 0; 504 void *addr_buf; 505 struct sockaddr *sa_addr; 506 struct sctp_af *af; 507 508 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 509 addrs, addrcnt); 510 511 addr_buf = addrs; 512 for (cnt = 0; cnt < addrcnt; cnt++) { 513 /* The list may contain either IPv4 or IPv6 address; 514 * determine the address length for walking thru the list. 515 */ 516 sa_addr = addr_buf; 517 af = sctp_get_af_specific(sa_addr->sa_family); 518 if (!af) { 519 retval = -EINVAL; 520 goto err_bindx_add; 521 } 522 523 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 524 af->sockaddr_len); 525 526 addr_buf += af->sockaddr_len; 527 528 err_bindx_add: 529 if (retval < 0) { 530 /* Failed. Cleanup the ones that have been added */ 531 if (cnt > 0) 532 sctp_bindx_rem(sk, addrs, cnt); 533 return retval; 534 } 535 } 536 537 return retval; 538 } 539 540 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 541 * associations that are part of the endpoint indicating that a list of local 542 * addresses are added to the endpoint. 543 * 544 * If any of the addresses is already in the bind address list of the 545 * association, we do not send the chunk for that association. But it will not 546 * affect other associations. 547 * 548 * Only sctp_setsockopt_bindx() is supposed to call this function. 549 */ 550 static int sctp_send_asconf_add_ip(struct sock *sk, 551 struct sockaddr *addrs, 552 int addrcnt) 553 { 554 struct net *net = sock_net(sk); 555 struct sctp_sock *sp; 556 struct sctp_endpoint *ep; 557 struct sctp_association *asoc; 558 struct sctp_bind_addr *bp; 559 struct sctp_chunk *chunk; 560 struct sctp_sockaddr_entry *laddr; 561 union sctp_addr *addr; 562 union sctp_addr saveaddr; 563 void *addr_buf; 564 struct sctp_af *af; 565 struct list_head *p; 566 int i; 567 int retval = 0; 568 569 if (!net->sctp.addip_enable) 570 return retval; 571 572 sp = sctp_sk(sk); 573 ep = sp->ep; 574 575 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 576 __func__, sk, addrs, addrcnt); 577 578 list_for_each_entry(asoc, &ep->asocs, asocs) { 579 if (!asoc->peer.asconf_capable) 580 continue; 581 582 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 583 continue; 584 585 if (!sctp_state(asoc, ESTABLISHED)) 586 continue; 587 588 /* Check if any address in the packed array of addresses is 589 * in the bind address list of the association. If so, 590 * do not send the asconf chunk to its peer, but continue with 591 * other associations. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 if (!af) { 598 retval = -EINVAL; 599 goto out; 600 } 601 602 if (sctp_assoc_lookup_laddr(asoc, addr)) 603 break; 604 605 addr_buf += af->sockaddr_len; 606 } 607 if (i < addrcnt) 608 continue; 609 610 /* Use the first valid address in bind addr list of 611 * association as Address Parameter of ASCONF CHUNK. 612 */ 613 bp = &asoc->base.bind_addr; 614 p = bp->address_list.next; 615 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 616 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 617 addrcnt, SCTP_PARAM_ADD_IP); 618 if (!chunk) { 619 retval = -ENOMEM; 620 goto out; 621 } 622 623 /* Add the new addresses to the bind address list with 624 * use_as_src set to 0. 625 */ 626 addr_buf = addrs; 627 for (i = 0; i < addrcnt; i++) { 628 addr = addr_buf; 629 af = sctp_get_af_specific(addr->v4.sin_family); 630 memcpy(&saveaddr, addr, af->sockaddr_len); 631 retval = sctp_add_bind_addr(bp, &saveaddr, 632 sizeof(saveaddr), 633 SCTP_ADDR_NEW, GFP_ATOMIC); 634 addr_buf += af->sockaddr_len; 635 } 636 if (asoc->src_out_of_asoc_ok) { 637 struct sctp_transport *trans; 638 639 list_for_each_entry(trans, 640 &asoc->peer.transport_addr_list, transports) { 641 /* Clear the source and route cache */ 642 sctp_transport_dst_release(trans); 643 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 644 2*asoc->pathmtu, 4380)); 645 trans->ssthresh = asoc->peer.i.a_rwnd; 646 trans->rto = asoc->rto_initial; 647 sctp_max_rto(asoc, trans); 648 trans->rtt = trans->srtt = trans->rttvar = 0; 649 sctp_transport_route(trans, NULL, 650 sctp_sk(asoc->base.sk)); 651 } 652 } 653 retval = sctp_send_asconf(asoc, chunk); 654 } 655 656 out: 657 return retval; 658 } 659 660 /* Remove a list of addresses from bind addresses list. Do not remove the 661 * last address. 662 * 663 * Basically run through each address specified in the addrs/addrcnt 664 * array/length pair, determine if it is IPv6 or IPv4 and call 665 * sctp_del_bind() on it. 666 * 667 * If any of them fails, then the operation will be reversed and the 668 * ones that were removed will be added back. 669 * 670 * At least one address has to be left; if only one address is 671 * available, the operation will return -EBUSY. 672 * 673 * Only sctp_setsockopt_bindx() is supposed to call this function. 674 */ 675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 676 { 677 struct sctp_sock *sp = sctp_sk(sk); 678 struct sctp_endpoint *ep = sp->ep; 679 int cnt; 680 struct sctp_bind_addr *bp = &ep->base.bind_addr; 681 int retval = 0; 682 void *addr_buf; 683 union sctp_addr *sa_addr; 684 struct sctp_af *af; 685 686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 687 __func__, sk, addrs, addrcnt); 688 689 addr_buf = addrs; 690 for (cnt = 0; cnt < addrcnt; cnt++) { 691 /* If the bind address list is empty or if there is only one 692 * bind address, there is nothing more to be removed (we need 693 * at least one address here). 694 */ 695 if (list_empty(&bp->address_list) || 696 (sctp_list_single_entry(&bp->address_list))) { 697 retval = -EBUSY; 698 goto err_bindx_rem; 699 } 700 701 sa_addr = addr_buf; 702 af = sctp_get_af_specific(sa_addr->sa.sa_family); 703 if (!af) { 704 retval = -EINVAL; 705 goto err_bindx_rem; 706 } 707 708 if (!af->addr_valid(sa_addr, sp, NULL)) { 709 retval = -EADDRNOTAVAIL; 710 goto err_bindx_rem; 711 } 712 713 if (sa_addr->v4.sin_port && 714 sa_addr->v4.sin_port != htons(bp->port)) { 715 retval = -EINVAL; 716 goto err_bindx_rem; 717 } 718 719 if (!sa_addr->v4.sin_port) 720 sa_addr->v4.sin_port = htons(bp->port); 721 722 /* FIXME - There is probably a need to check if sk->sk_saddr and 723 * sk->sk_rcv_addr are currently set to one of the addresses to 724 * be removed. This is something which needs to be looked into 725 * when we are fixing the outstanding issues with multi-homing 726 * socket routing and failover schemes. Refer to comments in 727 * sctp_do_bind(). -daisy 728 */ 729 retval = sctp_del_bind_addr(bp, sa_addr); 730 731 addr_buf += af->sockaddr_len; 732 err_bindx_rem: 733 if (retval < 0) { 734 /* Failed. Add the ones that has been removed back */ 735 if (cnt > 0) 736 sctp_bindx_add(sk, addrs, cnt); 737 return retval; 738 } 739 } 740 741 return retval; 742 } 743 744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 745 * the associations that are part of the endpoint indicating that a list of 746 * local addresses are removed from the endpoint. 747 * 748 * If any of the addresses is already in the bind address list of the 749 * association, we do not send the chunk for that association. But it will not 750 * affect other associations. 751 * 752 * Only sctp_setsockopt_bindx() is supposed to call this function. 753 */ 754 static int sctp_send_asconf_del_ip(struct sock *sk, 755 struct sockaddr *addrs, 756 int addrcnt) 757 { 758 struct net *net = sock_net(sk); 759 struct sctp_sock *sp; 760 struct sctp_endpoint *ep; 761 struct sctp_association *asoc; 762 struct sctp_transport *transport; 763 struct sctp_bind_addr *bp; 764 struct sctp_chunk *chunk; 765 union sctp_addr *laddr; 766 void *addr_buf; 767 struct sctp_af *af; 768 struct sctp_sockaddr_entry *saddr; 769 int i; 770 int retval = 0; 771 int stored = 0; 772 773 chunk = NULL; 774 if (!net->sctp.addip_enable) 775 return retval; 776 777 sp = sctp_sk(sk); 778 ep = sp->ep; 779 780 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 781 __func__, sk, addrs, addrcnt); 782 783 list_for_each_entry(asoc, &ep->asocs, asocs) { 784 785 if (!asoc->peer.asconf_capable) 786 continue; 787 788 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 789 continue; 790 791 if (!sctp_state(asoc, ESTABLISHED)) 792 continue; 793 794 /* Check if any address in the packed array of addresses is 795 * not present in the bind address list of the association. 796 * If so, do not send the asconf chunk to its peer, but 797 * continue with other associations. 798 */ 799 addr_buf = addrs; 800 for (i = 0; i < addrcnt; i++) { 801 laddr = addr_buf; 802 af = sctp_get_af_specific(laddr->v4.sin_family); 803 if (!af) { 804 retval = -EINVAL; 805 goto out; 806 } 807 808 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 809 break; 810 811 addr_buf += af->sockaddr_len; 812 } 813 if (i < addrcnt) 814 continue; 815 816 /* Find one address in the association's bind address list 817 * that is not in the packed array of addresses. This is to 818 * make sure that we do not delete all the addresses in the 819 * association. 820 */ 821 bp = &asoc->base.bind_addr; 822 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 823 addrcnt, sp); 824 if ((laddr == NULL) && (addrcnt == 1)) { 825 if (asoc->asconf_addr_del_pending) 826 continue; 827 asoc->asconf_addr_del_pending = 828 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 829 if (asoc->asconf_addr_del_pending == NULL) { 830 retval = -ENOMEM; 831 goto out; 832 } 833 asoc->asconf_addr_del_pending->sa.sa_family = 834 addrs->sa_family; 835 asoc->asconf_addr_del_pending->v4.sin_port = 836 htons(bp->port); 837 if (addrs->sa_family == AF_INET) { 838 struct sockaddr_in *sin; 839 840 sin = (struct sockaddr_in *)addrs; 841 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 842 } else if (addrs->sa_family == AF_INET6) { 843 struct sockaddr_in6 *sin6; 844 845 sin6 = (struct sockaddr_in6 *)addrs; 846 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 847 } 848 849 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 850 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 851 asoc->asconf_addr_del_pending); 852 853 asoc->src_out_of_asoc_ok = 1; 854 stored = 1; 855 goto skip_mkasconf; 856 } 857 858 if (laddr == NULL) 859 return -EINVAL; 860 861 /* We do not need RCU protection throughout this loop 862 * because this is done under a socket lock from the 863 * setsockopt call. 864 */ 865 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 866 SCTP_PARAM_DEL_IP); 867 if (!chunk) { 868 retval = -ENOMEM; 869 goto out; 870 } 871 872 skip_mkasconf: 873 /* Reset use_as_src flag for the addresses in the bind address 874 * list that are to be deleted. 875 */ 876 addr_buf = addrs; 877 for (i = 0; i < addrcnt; i++) { 878 laddr = addr_buf; 879 af = sctp_get_af_specific(laddr->v4.sin_family); 880 list_for_each_entry(saddr, &bp->address_list, list) { 881 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 882 saddr->state = SCTP_ADDR_DEL; 883 } 884 addr_buf += af->sockaddr_len; 885 } 886 887 /* Update the route and saddr entries for all the transports 888 * as some of the addresses in the bind address list are 889 * about to be deleted and cannot be used as source addresses. 890 */ 891 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 892 transports) { 893 sctp_transport_dst_release(transport); 894 sctp_transport_route(transport, NULL, 895 sctp_sk(asoc->base.sk)); 896 } 897 898 if (stored) 899 /* We don't need to transmit ASCONF */ 900 continue; 901 retval = sctp_send_asconf(asoc, chunk); 902 } 903 out: 904 return retval; 905 } 906 907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 909 { 910 struct sock *sk = sctp_opt2sk(sp); 911 union sctp_addr *addr; 912 struct sctp_af *af; 913 914 /* It is safe to write port space in caller. */ 915 addr = &addrw->a; 916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 917 af = sctp_get_af_specific(addr->sa.sa_family); 918 if (!af) 919 return -EINVAL; 920 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 921 return -EINVAL; 922 923 if (addrw->state == SCTP_ADDR_NEW) 924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 925 else 926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 927 } 928 929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 930 * 931 * API 8.1 932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 933 * int flags); 934 * 935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 937 * or IPv6 addresses. 938 * 939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 940 * Section 3.1.2 for this usage. 941 * 942 * addrs is a pointer to an array of one or more socket addresses. Each 943 * address is contained in its appropriate structure (i.e. struct 944 * sockaddr_in or struct sockaddr_in6) the family of the address type 945 * must be used to distinguish the address length (note that this 946 * representation is termed a "packed array" of addresses). The caller 947 * specifies the number of addresses in the array with addrcnt. 948 * 949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 950 * -1, and sets errno to the appropriate error code. 951 * 952 * For SCTP, the port given in each socket address must be the same, or 953 * sctp_bindx() will fail, setting errno to EINVAL. 954 * 955 * The flags parameter is formed from the bitwise OR of zero or more of 956 * the following currently defined flags: 957 * 958 * SCTP_BINDX_ADD_ADDR 959 * 960 * SCTP_BINDX_REM_ADDR 961 * 962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 964 * addresses from the association. The two flags are mutually exclusive; 965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 966 * not remove all addresses from an association; sctp_bindx() will 967 * reject such an attempt with EINVAL. 968 * 969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 970 * additional addresses with an endpoint after calling bind(). Or use 971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 972 * socket is associated with so that no new association accepted will be 973 * associated with those addresses. If the endpoint supports dynamic 974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 975 * endpoint to send the appropriate message to the peer to change the 976 * peers address lists. 977 * 978 * Adding and removing addresses from a connected association is 979 * optional functionality. Implementations that do not support this 980 * functionality should return EOPNOTSUPP. 981 * 982 * Basically do nothing but copying the addresses from user to kernel 983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 985 * from userspace. 986 * 987 * We don't use copy_from_user() for optimization: we first do the 988 * sanity checks (buffer size -fast- and access check-healthy 989 * pointer); if all of those succeed, then we can alloc the memory 990 * (expensive operation) needed to copy the data to kernel. Then we do 991 * the copying without checking the user space area 992 * (__copy_from_user()). 993 * 994 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 995 * it. 996 * 997 * sk The sk of the socket 998 * addrs The pointer to the addresses in user land 999 * addrssize Size of the addrs buffer 1000 * op Operation to perform (add or remove, see the flags of 1001 * sctp_bindx) 1002 * 1003 * Returns 0 if ok, <0 errno code on error. 1004 */ 1005 static int sctp_setsockopt_bindx(struct sock *sk, 1006 struct sockaddr __user *addrs, 1007 int addrs_size, int op) 1008 { 1009 struct sockaddr *kaddrs; 1010 int err; 1011 int addrcnt = 0; 1012 int walk_size = 0; 1013 struct sockaddr *sa_addr; 1014 void *addr_buf; 1015 struct sctp_af *af; 1016 1017 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1018 __func__, sk, addrs, addrs_size, op); 1019 1020 if (unlikely(addrs_size <= 0)) 1021 return -EINVAL; 1022 1023 /* Check the user passed a healthy pointer. */ 1024 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1025 return -EFAULT; 1026 1027 /* Alloc space for the address array in kernel memory. */ 1028 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 1029 if (unlikely(!kaddrs)) 1030 return -ENOMEM; 1031 1032 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1033 kfree(kaddrs); 1034 return -EFAULT; 1035 } 1036 1037 /* Walk through the addrs buffer and count the number of addresses. */ 1038 addr_buf = kaddrs; 1039 while (walk_size < addrs_size) { 1040 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1041 kfree(kaddrs); 1042 return -EINVAL; 1043 } 1044 1045 sa_addr = addr_buf; 1046 af = sctp_get_af_specific(sa_addr->sa_family); 1047 1048 /* If the address family is not supported or if this address 1049 * causes the address buffer to overflow return EINVAL. 1050 */ 1051 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1052 kfree(kaddrs); 1053 return -EINVAL; 1054 } 1055 addrcnt++; 1056 addr_buf += af->sockaddr_len; 1057 walk_size += af->sockaddr_len; 1058 } 1059 1060 /* Do the work. */ 1061 switch (op) { 1062 case SCTP_BINDX_ADD_ADDR: 1063 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1064 if (err) 1065 goto out; 1066 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1067 break; 1068 1069 case SCTP_BINDX_REM_ADDR: 1070 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1071 if (err) 1072 goto out; 1073 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1074 break; 1075 1076 default: 1077 err = -EINVAL; 1078 break; 1079 } 1080 1081 out: 1082 kfree(kaddrs); 1083 1084 return err; 1085 } 1086 1087 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1088 * 1089 * Common routine for handling connect() and sctp_connectx(). 1090 * Connect will come in with just a single address. 1091 */ 1092 static int __sctp_connect(struct sock *sk, 1093 struct sockaddr *kaddrs, 1094 int addrs_size, 1095 sctp_assoc_t *assoc_id) 1096 { 1097 struct net *net = sock_net(sk); 1098 struct sctp_sock *sp; 1099 struct sctp_endpoint *ep; 1100 struct sctp_association *asoc = NULL; 1101 struct sctp_association *asoc2; 1102 struct sctp_transport *transport; 1103 union sctp_addr to; 1104 enum sctp_scope scope; 1105 long timeo; 1106 int err = 0; 1107 int addrcnt = 0; 1108 int walk_size = 0; 1109 union sctp_addr *sa_addr = NULL; 1110 void *addr_buf; 1111 unsigned short port; 1112 unsigned int f_flags = 0; 1113 1114 sp = sctp_sk(sk); 1115 ep = sp->ep; 1116 1117 /* connect() cannot be done on a socket that is already in ESTABLISHED 1118 * state - UDP-style peeled off socket or a TCP-style socket that 1119 * is already connected. 1120 * It cannot be done even on a TCP-style listening socket. 1121 */ 1122 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1123 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1124 err = -EISCONN; 1125 goto out_free; 1126 } 1127 1128 /* Walk through the addrs buffer and count the number of addresses. */ 1129 addr_buf = kaddrs; 1130 while (walk_size < addrs_size) { 1131 struct sctp_af *af; 1132 1133 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1134 err = -EINVAL; 1135 goto out_free; 1136 } 1137 1138 sa_addr = addr_buf; 1139 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1140 1141 /* If the address family is not supported or if this address 1142 * causes the address buffer to overflow return EINVAL. 1143 */ 1144 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1145 err = -EINVAL; 1146 goto out_free; 1147 } 1148 1149 port = ntohs(sa_addr->v4.sin_port); 1150 1151 /* Save current address so we can work with it */ 1152 memcpy(&to, sa_addr, af->sockaddr_len); 1153 1154 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1155 if (err) 1156 goto out_free; 1157 1158 /* Make sure the destination port is correctly set 1159 * in all addresses. 1160 */ 1161 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1162 err = -EINVAL; 1163 goto out_free; 1164 } 1165 1166 /* Check if there already is a matching association on the 1167 * endpoint (other than the one created here). 1168 */ 1169 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1170 if (asoc2 && asoc2 != asoc) { 1171 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1172 err = -EISCONN; 1173 else 1174 err = -EALREADY; 1175 goto out_free; 1176 } 1177 1178 /* If we could not find a matching association on the endpoint, 1179 * make sure that there is no peeled-off association matching 1180 * the peer address even on another socket. 1181 */ 1182 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1183 err = -EADDRNOTAVAIL; 1184 goto out_free; 1185 } 1186 1187 if (!asoc) { 1188 /* If a bind() or sctp_bindx() is not called prior to 1189 * an sctp_connectx() call, the system picks an 1190 * ephemeral port and will choose an address set 1191 * equivalent to binding with a wildcard address. 1192 */ 1193 if (!ep->base.bind_addr.port) { 1194 if (sctp_autobind(sk)) { 1195 err = -EAGAIN; 1196 goto out_free; 1197 } 1198 } else { 1199 /* 1200 * If an unprivileged user inherits a 1-many 1201 * style socket with open associations on a 1202 * privileged port, it MAY be permitted to 1203 * accept new associations, but it SHOULD NOT 1204 * be permitted to open new associations. 1205 */ 1206 if (ep->base.bind_addr.port < 1207 inet_prot_sock(net) && 1208 !ns_capable(net->user_ns, 1209 CAP_NET_BIND_SERVICE)) { 1210 err = -EACCES; 1211 goto out_free; 1212 } 1213 } 1214 1215 scope = sctp_scope(&to); 1216 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1217 if (!asoc) { 1218 err = -ENOMEM; 1219 goto out_free; 1220 } 1221 1222 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1223 GFP_KERNEL); 1224 if (err < 0) { 1225 goto out_free; 1226 } 1227 1228 } 1229 1230 /* Prime the peer's transport structures. */ 1231 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1232 SCTP_UNKNOWN); 1233 if (!transport) { 1234 err = -ENOMEM; 1235 goto out_free; 1236 } 1237 1238 addrcnt++; 1239 addr_buf += af->sockaddr_len; 1240 walk_size += af->sockaddr_len; 1241 } 1242 1243 /* In case the user of sctp_connectx() wants an association 1244 * id back, assign one now. 1245 */ 1246 if (assoc_id) { 1247 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1248 if (err < 0) 1249 goto out_free; 1250 } 1251 1252 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1253 if (err < 0) { 1254 goto out_free; 1255 } 1256 1257 /* Initialize sk's dport and daddr for getpeername() */ 1258 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1259 sp->pf->to_sk_daddr(sa_addr, sk); 1260 sk->sk_err = 0; 1261 1262 /* in-kernel sockets don't generally have a file allocated to them 1263 * if all they do is call sock_create_kern(). 1264 */ 1265 if (sk->sk_socket->file) 1266 f_flags = sk->sk_socket->file->f_flags; 1267 1268 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1269 1270 if (assoc_id) 1271 *assoc_id = asoc->assoc_id; 1272 err = sctp_wait_for_connect(asoc, &timeo); 1273 /* Note: the asoc may be freed after the return of 1274 * sctp_wait_for_connect. 1275 */ 1276 1277 /* Don't free association on exit. */ 1278 asoc = NULL; 1279 1280 out_free: 1281 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1282 __func__, asoc, kaddrs, err); 1283 1284 if (asoc) { 1285 /* sctp_primitive_ASSOCIATE may have added this association 1286 * To the hash table, try to unhash it, just in case, its a noop 1287 * if it wasn't hashed so we're safe 1288 */ 1289 sctp_association_free(asoc); 1290 } 1291 return err; 1292 } 1293 1294 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1295 * 1296 * API 8.9 1297 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1298 * sctp_assoc_t *asoc); 1299 * 1300 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1301 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1302 * or IPv6 addresses. 1303 * 1304 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1305 * Section 3.1.2 for this usage. 1306 * 1307 * addrs is a pointer to an array of one or more socket addresses. Each 1308 * address is contained in its appropriate structure (i.e. struct 1309 * sockaddr_in or struct sockaddr_in6) the family of the address type 1310 * must be used to distengish the address length (note that this 1311 * representation is termed a "packed array" of addresses). The caller 1312 * specifies the number of addresses in the array with addrcnt. 1313 * 1314 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1315 * the association id of the new association. On failure, sctp_connectx() 1316 * returns -1, and sets errno to the appropriate error code. The assoc_id 1317 * is not touched by the kernel. 1318 * 1319 * For SCTP, the port given in each socket address must be the same, or 1320 * sctp_connectx() will fail, setting errno to EINVAL. 1321 * 1322 * An application can use sctp_connectx to initiate an association with 1323 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1324 * allows a caller to specify multiple addresses at which a peer can be 1325 * reached. The way the SCTP stack uses the list of addresses to set up 1326 * the association is implementation dependent. This function only 1327 * specifies that the stack will try to make use of all the addresses in 1328 * the list when needed. 1329 * 1330 * Note that the list of addresses passed in is only used for setting up 1331 * the association. It does not necessarily equal the set of addresses 1332 * the peer uses for the resulting association. If the caller wants to 1333 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1334 * retrieve them after the association has been set up. 1335 * 1336 * Basically do nothing but copying the addresses from user to kernel 1337 * land and invoking either sctp_connectx(). This is used for tunneling 1338 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1339 * 1340 * We don't use copy_from_user() for optimization: we first do the 1341 * sanity checks (buffer size -fast- and access check-healthy 1342 * pointer); if all of those succeed, then we can alloc the memory 1343 * (expensive operation) needed to copy the data to kernel. Then we do 1344 * the copying without checking the user space area 1345 * (__copy_from_user()). 1346 * 1347 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1348 * it. 1349 * 1350 * sk The sk of the socket 1351 * addrs The pointer to the addresses in user land 1352 * addrssize Size of the addrs buffer 1353 * 1354 * Returns >=0 if ok, <0 errno code on error. 1355 */ 1356 static int __sctp_setsockopt_connectx(struct sock *sk, 1357 struct sockaddr __user *addrs, 1358 int addrs_size, 1359 sctp_assoc_t *assoc_id) 1360 { 1361 struct sockaddr *kaddrs; 1362 gfp_t gfp = GFP_KERNEL; 1363 int err = 0; 1364 1365 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1366 __func__, sk, addrs, addrs_size); 1367 1368 if (unlikely(addrs_size <= 0)) 1369 return -EINVAL; 1370 1371 /* Check the user passed a healthy pointer. */ 1372 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1373 return -EFAULT; 1374 1375 /* Alloc space for the address array in kernel memory. */ 1376 if (sk->sk_socket->file) 1377 gfp = GFP_USER | __GFP_NOWARN; 1378 kaddrs = kmalloc(addrs_size, gfp); 1379 if (unlikely(!kaddrs)) 1380 return -ENOMEM; 1381 1382 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1383 err = -EFAULT; 1384 } else { 1385 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1386 } 1387 1388 kfree(kaddrs); 1389 1390 return err; 1391 } 1392 1393 /* 1394 * This is an older interface. It's kept for backward compatibility 1395 * to the option that doesn't provide association id. 1396 */ 1397 static int sctp_setsockopt_connectx_old(struct sock *sk, 1398 struct sockaddr __user *addrs, 1399 int addrs_size) 1400 { 1401 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1402 } 1403 1404 /* 1405 * New interface for the API. The since the API is done with a socket 1406 * option, to make it simple we feed back the association id is as a return 1407 * indication to the call. Error is always negative and association id is 1408 * always positive. 1409 */ 1410 static int sctp_setsockopt_connectx(struct sock *sk, 1411 struct sockaddr __user *addrs, 1412 int addrs_size) 1413 { 1414 sctp_assoc_t assoc_id = 0; 1415 int err = 0; 1416 1417 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1418 1419 if (err) 1420 return err; 1421 else 1422 return assoc_id; 1423 } 1424 1425 /* 1426 * New (hopefully final) interface for the API. 1427 * We use the sctp_getaddrs_old structure so that use-space library 1428 * can avoid any unnecessary allocations. The only different part 1429 * is that we store the actual length of the address buffer into the 1430 * addrs_num structure member. That way we can re-use the existing 1431 * code. 1432 */ 1433 #ifdef CONFIG_COMPAT 1434 struct compat_sctp_getaddrs_old { 1435 sctp_assoc_t assoc_id; 1436 s32 addr_num; 1437 compat_uptr_t addrs; /* struct sockaddr * */ 1438 }; 1439 #endif 1440 1441 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1442 char __user *optval, 1443 int __user *optlen) 1444 { 1445 struct sctp_getaddrs_old param; 1446 sctp_assoc_t assoc_id = 0; 1447 int err = 0; 1448 1449 #ifdef CONFIG_COMPAT 1450 if (in_compat_syscall()) { 1451 struct compat_sctp_getaddrs_old param32; 1452 1453 if (len < sizeof(param32)) 1454 return -EINVAL; 1455 if (copy_from_user(¶m32, optval, sizeof(param32))) 1456 return -EFAULT; 1457 1458 param.assoc_id = param32.assoc_id; 1459 param.addr_num = param32.addr_num; 1460 param.addrs = compat_ptr(param32.addrs); 1461 } else 1462 #endif 1463 { 1464 if (len < sizeof(param)) 1465 return -EINVAL; 1466 if (copy_from_user(¶m, optval, sizeof(param))) 1467 return -EFAULT; 1468 } 1469 1470 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1471 param.addrs, param.addr_num, 1472 &assoc_id); 1473 if (err == 0 || err == -EINPROGRESS) { 1474 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1475 return -EFAULT; 1476 if (put_user(sizeof(assoc_id), optlen)) 1477 return -EFAULT; 1478 } 1479 1480 return err; 1481 } 1482 1483 /* API 3.1.4 close() - UDP Style Syntax 1484 * Applications use close() to perform graceful shutdown (as described in 1485 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1486 * by a UDP-style socket. 1487 * 1488 * The syntax is 1489 * 1490 * ret = close(int sd); 1491 * 1492 * sd - the socket descriptor of the associations to be closed. 1493 * 1494 * To gracefully shutdown a specific association represented by the 1495 * UDP-style socket, an application should use the sendmsg() call, 1496 * passing no user data, but including the appropriate flag in the 1497 * ancillary data (see Section xxxx). 1498 * 1499 * If sd in the close() call is a branched-off socket representing only 1500 * one association, the shutdown is performed on that association only. 1501 * 1502 * 4.1.6 close() - TCP Style Syntax 1503 * 1504 * Applications use close() to gracefully close down an association. 1505 * 1506 * The syntax is: 1507 * 1508 * int close(int sd); 1509 * 1510 * sd - the socket descriptor of the association to be closed. 1511 * 1512 * After an application calls close() on a socket descriptor, no further 1513 * socket operations will succeed on that descriptor. 1514 * 1515 * API 7.1.4 SO_LINGER 1516 * 1517 * An application using the TCP-style socket can use this option to 1518 * perform the SCTP ABORT primitive. The linger option structure is: 1519 * 1520 * struct linger { 1521 * int l_onoff; // option on/off 1522 * int l_linger; // linger time 1523 * }; 1524 * 1525 * To enable the option, set l_onoff to 1. If the l_linger value is set 1526 * to 0, calling close() is the same as the ABORT primitive. If the 1527 * value is set to a negative value, the setsockopt() call will return 1528 * an error. If the value is set to a positive value linger_time, the 1529 * close() can be blocked for at most linger_time ms. If the graceful 1530 * shutdown phase does not finish during this period, close() will 1531 * return but the graceful shutdown phase continues in the system. 1532 */ 1533 static void sctp_close(struct sock *sk, long timeout) 1534 { 1535 struct net *net = sock_net(sk); 1536 struct sctp_endpoint *ep; 1537 struct sctp_association *asoc; 1538 struct list_head *pos, *temp; 1539 unsigned int data_was_unread; 1540 1541 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1542 1543 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1544 sk->sk_shutdown = SHUTDOWN_MASK; 1545 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1546 1547 ep = sctp_sk(sk)->ep; 1548 1549 /* Clean up any skbs sitting on the receive queue. */ 1550 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1551 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1552 1553 /* Walk all associations on an endpoint. */ 1554 list_for_each_safe(pos, temp, &ep->asocs) { 1555 asoc = list_entry(pos, struct sctp_association, asocs); 1556 1557 if (sctp_style(sk, TCP)) { 1558 /* A closed association can still be in the list if 1559 * it belongs to a TCP-style listening socket that is 1560 * not yet accepted. If so, free it. If not, send an 1561 * ABORT or SHUTDOWN based on the linger options. 1562 */ 1563 if (sctp_state(asoc, CLOSED)) { 1564 sctp_association_free(asoc); 1565 continue; 1566 } 1567 } 1568 1569 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1570 !skb_queue_empty(&asoc->ulpq.reasm) || 1571 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1572 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1573 struct sctp_chunk *chunk; 1574 1575 chunk = sctp_make_abort_user(asoc, NULL, 0); 1576 sctp_primitive_ABORT(net, asoc, chunk); 1577 } else 1578 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1579 } 1580 1581 /* On a TCP-style socket, block for at most linger_time if set. */ 1582 if (sctp_style(sk, TCP) && timeout) 1583 sctp_wait_for_close(sk, timeout); 1584 1585 /* This will run the backlog queue. */ 1586 release_sock(sk); 1587 1588 /* Supposedly, no process has access to the socket, but 1589 * the net layers still may. 1590 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1591 * held and that should be grabbed before socket lock. 1592 */ 1593 spin_lock_bh(&net->sctp.addr_wq_lock); 1594 bh_lock_sock_nested(sk); 1595 1596 /* Hold the sock, since sk_common_release() will put sock_put() 1597 * and we have just a little more cleanup. 1598 */ 1599 sock_hold(sk); 1600 sk_common_release(sk); 1601 1602 bh_unlock_sock(sk); 1603 spin_unlock_bh(&net->sctp.addr_wq_lock); 1604 1605 sock_put(sk); 1606 1607 SCTP_DBG_OBJCNT_DEC(sock); 1608 } 1609 1610 /* Handle EPIPE error. */ 1611 static int sctp_error(struct sock *sk, int flags, int err) 1612 { 1613 if (err == -EPIPE) 1614 err = sock_error(sk) ? : -EPIPE; 1615 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1616 send_sig(SIGPIPE, current, 0); 1617 return err; 1618 } 1619 1620 /* API 3.1.3 sendmsg() - UDP Style Syntax 1621 * 1622 * An application uses sendmsg() and recvmsg() calls to transmit data to 1623 * and receive data from its peer. 1624 * 1625 * ssize_t sendmsg(int socket, const struct msghdr *message, 1626 * int flags); 1627 * 1628 * socket - the socket descriptor of the endpoint. 1629 * message - pointer to the msghdr structure which contains a single 1630 * user message and possibly some ancillary data. 1631 * 1632 * See Section 5 for complete description of the data 1633 * structures. 1634 * 1635 * flags - flags sent or received with the user message, see Section 1636 * 5 for complete description of the flags. 1637 * 1638 * Note: This function could use a rewrite especially when explicit 1639 * connect support comes in. 1640 */ 1641 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1642 1643 static int sctp_msghdr_parse(const struct msghdr *msg, 1644 struct sctp_cmsgs *cmsgs); 1645 1646 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1647 { 1648 struct net *net = sock_net(sk); 1649 struct sctp_sock *sp; 1650 struct sctp_endpoint *ep; 1651 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1652 struct sctp_transport *transport, *chunk_tp; 1653 struct sctp_chunk *chunk; 1654 union sctp_addr to; 1655 struct sockaddr *msg_name = NULL; 1656 struct sctp_sndrcvinfo default_sinfo; 1657 struct sctp_sndrcvinfo *sinfo; 1658 struct sctp_initmsg *sinit; 1659 sctp_assoc_t associd = 0; 1660 struct sctp_cmsgs cmsgs = { NULL }; 1661 enum sctp_scope scope; 1662 bool fill_sinfo_ttl = false, wait_connect = false; 1663 struct sctp_datamsg *datamsg; 1664 int msg_flags = msg->msg_flags; 1665 __u16 sinfo_flags = 0; 1666 long timeo; 1667 int err; 1668 1669 err = 0; 1670 sp = sctp_sk(sk); 1671 ep = sp->ep; 1672 1673 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1674 msg, msg_len, ep); 1675 1676 /* We cannot send a message over a TCP-style listening socket. */ 1677 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1678 err = -EPIPE; 1679 goto out_nounlock; 1680 } 1681 1682 /* Parse out the SCTP CMSGs. */ 1683 err = sctp_msghdr_parse(msg, &cmsgs); 1684 if (err) { 1685 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1686 goto out_nounlock; 1687 } 1688 1689 /* Fetch the destination address for this packet. This 1690 * address only selects the association--it is not necessarily 1691 * the address we will send to. 1692 * For a peeled-off socket, msg_name is ignored. 1693 */ 1694 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1695 int msg_namelen = msg->msg_namelen; 1696 1697 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1698 msg_namelen); 1699 if (err) 1700 return err; 1701 1702 if (msg_namelen > sizeof(to)) 1703 msg_namelen = sizeof(to); 1704 memcpy(&to, msg->msg_name, msg_namelen); 1705 msg_name = msg->msg_name; 1706 } 1707 1708 sinit = cmsgs.init; 1709 if (cmsgs.sinfo != NULL) { 1710 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1711 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1712 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1713 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1714 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1715 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1716 1717 sinfo = &default_sinfo; 1718 fill_sinfo_ttl = true; 1719 } else { 1720 sinfo = cmsgs.srinfo; 1721 } 1722 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1723 if (sinfo) { 1724 sinfo_flags = sinfo->sinfo_flags; 1725 associd = sinfo->sinfo_assoc_id; 1726 } 1727 1728 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1729 msg_len, sinfo_flags); 1730 1731 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1732 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1733 err = -EINVAL; 1734 goto out_nounlock; 1735 } 1736 1737 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1738 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1739 * If SCTP_ABORT is set, the message length could be non zero with 1740 * the msg_iov set to the user abort reason. 1741 */ 1742 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1743 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1744 err = -EINVAL; 1745 goto out_nounlock; 1746 } 1747 1748 /* If SCTP_ADDR_OVER is set, there must be an address 1749 * specified in msg_name. 1750 */ 1751 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1752 err = -EINVAL; 1753 goto out_nounlock; 1754 } 1755 1756 transport = NULL; 1757 1758 pr_debug("%s: about to look up association\n", __func__); 1759 1760 lock_sock(sk); 1761 1762 /* If a msg_name has been specified, assume this is to be used. */ 1763 if (msg_name) { 1764 /* Look for a matching association on the endpoint. */ 1765 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1766 1767 /* If we could not find a matching association on the 1768 * endpoint, make sure that it is not a TCP-style 1769 * socket that already has an association or there is 1770 * no peeled-off association on another socket. 1771 */ 1772 if (!asoc && 1773 ((sctp_style(sk, TCP) && 1774 (sctp_sstate(sk, ESTABLISHED) || 1775 sctp_sstate(sk, CLOSING))) || 1776 sctp_endpoint_is_peeled_off(ep, &to))) { 1777 err = -EADDRNOTAVAIL; 1778 goto out_unlock; 1779 } 1780 } else { 1781 asoc = sctp_id2assoc(sk, associd); 1782 if (!asoc) { 1783 err = -EPIPE; 1784 goto out_unlock; 1785 } 1786 } 1787 1788 if (asoc) { 1789 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1790 1791 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1792 * socket that has an association in CLOSED state. This can 1793 * happen when an accepted socket has an association that is 1794 * already CLOSED. 1795 */ 1796 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1797 err = -EPIPE; 1798 goto out_unlock; 1799 } 1800 1801 if (sinfo_flags & SCTP_EOF) { 1802 pr_debug("%s: shutting down association:%p\n", 1803 __func__, asoc); 1804 1805 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1806 err = 0; 1807 goto out_unlock; 1808 } 1809 if (sinfo_flags & SCTP_ABORT) { 1810 1811 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1812 if (!chunk) { 1813 err = -ENOMEM; 1814 goto out_unlock; 1815 } 1816 1817 pr_debug("%s: aborting association:%p\n", 1818 __func__, asoc); 1819 1820 sctp_primitive_ABORT(net, asoc, chunk); 1821 err = 0; 1822 goto out_unlock; 1823 } 1824 } 1825 1826 /* Do we need to create the association? */ 1827 if (!asoc) { 1828 pr_debug("%s: there is no association yet\n", __func__); 1829 1830 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1831 err = -EINVAL; 1832 goto out_unlock; 1833 } 1834 1835 /* Check for invalid stream against the stream counts, 1836 * either the default or the user specified stream counts. 1837 */ 1838 if (sinfo) { 1839 if (!sinit || !sinit->sinit_num_ostreams) { 1840 /* Check against the defaults. */ 1841 if (sinfo->sinfo_stream >= 1842 sp->initmsg.sinit_num_ostreams) { 1843 err = -EINVAL; 1844 goto out_unlock; 1845 } 1846 } else { 1847 /* Check against the requested. */ 1848 if (sinfo->sinfo_stream >= 1849 sinit->sinit_num_ostreams) { 1850 err = -EINVAL; 1851 goto out_unlock; 1852 } 1853 } 1854 } 1855 1856 /* 1857 * API 3.1.2 bind() - UDP Style Syntax 1858 * If a bind() or sctp_bindx() is not called prior to a 1859 * sendmsg() call that initiates a new association, the 1860 * system picks an ephemeral port and will choose an address 1861 * set equivalent to binding with a wildcard address. 1862 */ 1863 if (!ep->base.bind_addr.port) { 1864 if (sctp_autobind(sk)) { 1865 err = -EAGAIN; 1866 goto out_unlock; 1867 } 1868 } else { 1869 /* 1870 * If an unprivileged user inherits a one-to-many 1871 * style socket with open associations on a privileged 1872 * port, it MAY be permitted to accept new associations, 1873 * but it SHOULD NOT be permitted to open new 1874 * associations. 1875 */ 1876 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1877 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1878 err = -EACCES; 1879 goto out_unlock; 1880 } 1881 } 1882 1883 scope = sctp_scope(&to); 1884 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1885 if (!new_asoc) { 1886 err = -ENOMEM; 1887 goto out_unlock; 1888 } 1889 asoc = new_asoc; 1890 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1891 if (err < 0) { 1892 err = -ENOMEM; 1893 goto out_free; 1894 } 1895 1896 /* If the SCTP_INIT ancillary data is specified, set all 1897 * the association init values accordingly. 1898 */ 1899 if (sinit) { 1900 if (sinit->sinit_num_ostreams) { 1901 __u16 outcnt = sinit->sinit_num_ostreams; 1902 1903 asoc->c.sinit_num_ostreams = outcnt; 1904 /* outcnt has been changed, so re-init stream */ 1905 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1906 GFP_KERNEL); 1907 if (err) 1908 goto out_free; 1909 } 1910 if (sinit->sinit_max_instreams) { 1911 asoc->c.sinit_max_instreams = 1912 sinit->sinit_max_instreams; 1913 } 1914 if (sinit->sinit_max_attempts) { 1915 asoc->max_init_attempts 1916 = sinit->sinit_max_attempts; 1917 } 1918 if (sinit->sinit_max_init_timeo) { 1919 asoc->max_init_timeo = 1920 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1921 } 1922 } 1923 1924 /* Prime the peer's transport structures. */ 1925 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1926 if (!transport) { 1927 err = -ENOMEM; 1928 goto out_free; 1929 } 1930 } 1931 1932 /* ASSERT: we have a valid association at this point. */ 1933 pr_debug("%s: we have a valid association\n", __func__); 1934 1935 if (!sinfo) { 1936 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1937 * one with some defaults. 1938 */ 1939 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1940 default_sinfo.sinfo_stream = asoc->default_stream; 1941 default_sinfo.sinfo_flags = asoc->default_flags; 1942 default_sinfo.sinfo_ppid = asoc->default_ppid; 1943 default_sinfo.sinfo_context = asoc->default_context; 1944 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1945 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1946 1947 sinfo = &default_sinfo; 1948 } else if (fill_sinfo_ttl) { 1949 /* In case SNDINFO was specified, we still need to fill 1950 * it with a default ttl from the assoc here. 1951 */ 1952 sinfo->sinfo_timetolive = asoc->default_timetolive; 1953 } 1954 1955 /* API 7.1.7, the sndbuf size per association bounds the 1956 * maximum size of data that can be sent in a single send call. 1957 */ 1958 if (msg_len > sk->sk_sndbuf) { 1959 err = -EMSGSIZE; 1960 goto out_free; 1961 } 1962 1963 if (asoc->pmtu_pending) 1964 sctp_assoc_pending_pmtu(asoc); 1965 1966 /* If fragmentation is disabled and the message length exceeds the 1967 * association fragmentation point, return EMSGSIZE. The I-D 1968 * does not specify what this error is, but this looks like 1969 * a great fit. 1970 */ 1971 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1972 err = -EMSGSIZE; 1973 goto out_free; 1974 } 1975 1976 /* Check for invalid stream. */ 1977 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1978 err = -EINVAL; 1979 goto out_free; 1980 } 1981 1982 /* Allocate sctp_stream_out_ext if not already done */ 1983 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1984 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1985 if (err) 1986 goto out_free; 1987 } 1988 1989 if (sctp_wspace(asoc) < msg_len) 1990 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1991 1992 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1993 if (!sctp_wspace(asoc)) { 1994 /* sk can be changed by peel off when waiting for buf. */ 1995 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1996 if (err) { 1997 if (err == -ESRCH) { 1998 /* asoc is already dead. */ 1999 new_asoc = NULL; 2000 err = -EPIPE; 2001 } 2002 goto out_free; 2003 } 2004 } 2005 2006 /* If an address is passed with the sendto/sendmsg call, it is used 2007 * to override the primary destination address in the TCP model, or 2008 * when SCTP_ADDR_OVER flag is set in the UDP model. 2009 */ 2010 if ((sctp_style(sk, TCP) && msg_name) || 2011 (sinfo_flags & SCTP_ADDR_OVER)) { 2012 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 2013 if (!chunk_tp) { 2014 err = -EINVAL; 2015 goto out_free; 2016 } 2017 } else 2018 chunk_tp = NULL; 2019 2020 /* Auto-connect, if we aren't connected already. */ 2021 if (sctp_state(asoc, CLOSED)) { 2022 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 2023 if (err < 0) 2024 goto out_free; 2025 2026 /* If stream interleave is enabled, wait_connect has to be 2027 * done earlier than data enqueue, as it needs to make data 2028 * or idata according to asoc->intl_enable which is set 2029 * after connection is done. 2030 */ 2031 if (sctp_sk(asoc->base.sk)->strm_interleave) { 2032 timeo = sock_sndtimeo(sk, 0); 2033 err = sctp_wait_for_connect(asoc, &timeo); 2034 if (err) 2035 goto out_unlock; 2036 } else { 2037 wait_connect = true; 2038 } 2039 2040 pr_debug("%s: we associated primitively\n", __func__); 2041 } 2042 2043 /* Break the message into multiple chunks of maximum size. */ 2044 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 2045 if (IS_ERR(datamsg)) { 2046 err = PTR_ERR(datamsg); 2047 goto out_free; 2048 } 2049 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 2050 2051 /* Now send the (possibly) fragmented message. */ 2052 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 2053 sctp_chunk_hold(chunk); 2054 2055 /* Do accounting for the write space. */ 2056 sctp_set_owner_w(chunk); 2057 2058 chunk->transport = chunk_tp; 2059 } 2060 2061 /* Send it to the lower layers. Note: all chunks 2062 * must either fail or succeed. The lower layer 2063 * works that way today. Keep it that way or this 2064 * breaks. 2065 */ 2066 err = sctp_primitive_SEND(net, asoc, datamsg); 2067 /* Did the lower layer accept the chunk? */ 2068 if (err) { 2069 sctp_datamsg_free(datamsg); 2070 goto out_free; 2071 } 2072 2073 pr_debug("%s: we sent primitively\n", __func__); 2074 2075 sctp_datamsg_put(datamsg); 2076 err = msg_len; 2077 2078 if (unlikely(wait_connect)) { 2079 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2080 sctp_wait_for_connect(asoc, &timeo); 2081 } 2082 2083 /* If we are already past ASSOCIATE, the lower 2084 * layers are responsible for association cleanup. 2085 */ 2086 goto out_unlock; 2087 2088 out_free: 2089 if (new_asoc) 2090 sctp_association_free(asoc); 2091 out_unlock: 2092 release_sock(sk); 2093 2094 out_nounlock: 2095 return sctp_error(sk, msg_flags, err); 2096 2097 #if 0 2098 do_sock_err: 2099 if (msg_len) 2100 err = msg_len; 2101 else 2102 err = sock_error(sk); 2103 goto out; 2104 2105 do_interrupted: 2106 if (msg_len) 2107 err = msg_len; 2108 goto out; 2109 #endif /* 0 */ 2110 } 2111 2112 /* This is an extended version of skb_pull() that removes the data from the 2113 * start of a skb even when data is spread across the list of skb's in the 2114 * frag_list. len specifies the total amount of data that needs to be removed. 2115 * when 'len' bytes could be removed from the skb, it returns 0. 2116 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2117 * could not be removed. 2118 */ 2119 static int sctp_skb_pull(struct sk_buff *skb, int len) 2120 { 2121 struct sk_buff *list; 2122 int skb_len = skb_headlen(skb); 2123 int rlen; 2124 2125 if (len <= skb_len) { 2126 __skb_pull(skb, len); 2127 return 0; 2128 } 2129 len -= skb_len; 2130 __skb_pull(skb, skb_len); 2131 2132 skb_walk_frags(skb, list) { 2133 rlen = sctp_skb_pull(list, len); 2134 skb->len -= (len-rlen); 2135 skb->data_len -= (len-rlen); 2136 2137 if (!rlen) 2138 return 0; 2139 2140 len = rlen; 2141 } 2142 2143 return len; 2144 } 2145 2146 /* API 3.1.3 recvmsg() - UDP Style Syntax 2147 * 2148 * ssize_t recvmsg(int socket, struct msghdr *message, 2149 * int flags); 2150 * 2151 * socket - the socket descriptor of the endpoint. 2152 * message - pointer to the msghdr structure which contains a single 2153 * user message and possibly some ancillary data. 2154 * 2155 * See Section 5 for complete description of the data 2156 * structures. 2157 * 2158 * flags - flags sent or received with the user message, see Section 2159 * 5 for complete description of the flags. 2160 */ 2161 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2162 int noblock, int flags, int *addr_len) 2163 { 2164 struct sctp_ulpevent *event = NULL; 2165 struct sctp_sock *sp = sctp_sk(sk); 2166 struct sk_buff *skb, *head_skb; 2167 int copied; 2168 int err = 0; 2169 int skb_len; 2170 2171 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2172 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2173 addr_len); 2174 2175 lock_sock(sk); 2176 2177 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2178 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2179 err = -ENOTCONN; 2180 goto out; 2181 } 2182 2183 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2184 if (!skb) 2185 goto out; 2186 2187 /* Get the total length of the skb including any skb's in the 2188 * frag_list. 2189 */ 2190 skb_len = skb->len; 2191 2192 copied = skb_len; 2193 if (copied > len) 2194 copied = len; 2195 2196 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2197 2198 event = sctp_skb2event(skb); 2199 2200 if (err) 2201 goto out_free; 2202 2203 if (event->chunk && event->chunk->head_skb) 2204 head_skb = event->chunk->head_skb; 2205 else 2206 head_skb = skb; 2207 sock_recv_ts_and_drops(msg, sk, head_skb); 2208 if (sctp_ulpevent_is_notification(event)) { 2209 msg->msg_flags |= MSG_NOTIFICATION; 2210 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2211 } else { 2212 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2213 } 2214 2215 /* Check if we allow SCTP_NXTINFO. */ 2216 if (sp->recvnxtinfo) 2217 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2218 /* Check if we allow SCTP_RCVINFO. */ 2219 if (sp->recvrcvinfo) 2220 sctp_ulpevent_read_rcvinfo(event, msg); 2221 /* Check if we allow SCTP_SNDRCVINFO. */ 2222 if (sp->subscribe.sctp_data_io_event) 2223 sctp_ulpevent_read_sndrcvinfo(event, msg); 2224 2225 err = copied; 2226 2227 /* If skb's length exceeds the user's buffer, update the skb and 2228 * push it back to the receive_queue so that the next call to 2229 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2230 */ 2231 if (skb_len > copied) { 2232 msg->msg_flags &= ~MSG_EOR; 2233 if (flags & MSG_PEEK) 2234 goto out_free; 2235 sctp_skb_pull(skb, copied); 2236 skb_queue_head(&sk->sk_receive_queue, skb); 2237 2238 /* When only partial message is copied to the user, increase 2239 * rwnd by that amount. If all the data in the skb is read, 2240 * rwnd is updated when the event is freed. 2241 */ 2242 if (!sctp_ulpevent_is_notification(event)) 2243 sctp_assoc_rwnd_increase(event->asoc, copied); 2244 goto out; 2245 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2246 (event->msg_flags & MSG_EOR)) 2247 msg->msg_flags |= MSG_EOR; 2248 else 2249 msg->msg_flags &= ~MSG_EOR; 2250 2251 out_free: 2252 if (flags & MSG_PEEK) { 2253 /* Release the skb reference acquired after peeking the skb in 2254 * sctp_skb_recv_datagram(). 2255 */ 2256 kfree_skb(skb); 2257 } else { 2258 /* Free the event which includes releasing the reference to 2259 * the owner of the skb, freeing the skb and updating the 2260 * rwnd. 2261 */ 2262 sctp_ulpevent_free(event); 2263 } 2264 out: 2265 release_sock(sk); 2266 return err; 2267 } 2268 2269 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2270 * 2271 * This option is a on/off flag. If enabled no SCTP message 2272 * fragmentation will be performed. Instead if a message being sent 2273 * exceeds the current PMTU size, the message will NOT be sent and 2274 * instead a error will be indicated to the user. 2275 */ 2276 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2277 char __user *optval, 2278 unsigned int optlen) 2279 { 2280 int val; 2281 2282 if (optlen < sizeof(int)) 2283 return -EINVAL; 2284 2285 if (get_user(val, (int __user *)optval)) 2286 return -EFAULT; 2287 2288 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2289 2290 return 0; 2291 } 2292 2293 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2294 unsigned int optlen) 2295 { 2296 struct sctp_association *asoc; 2297 struct sctp_ulpevent *event; 2298 2299 if (optlen > sizeof(struct sctp_event_subscribe)) 2300 return -EINVAL; 2301 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2302 return -EFAULT; 2303 2304 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2305 * if there is no data to be sent or retransmit, the stack will 2306 * immediately send up this notification. 2307 */ 2308 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2309 &sctp_sk(sk)->subscribe)) { 2310 asoc = sctp_id2assoc(sk, 0); 2311 2312 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2313 event = sctp_ulpevent_make_sender_dry_event(asoc, 2314 GFP_USER | __GFP_NOWARN); 2315 if (!event) 2316 return -ENOMEM; 2317 2318 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2319 } 2320 } 2321 2322 return 0; 2323 } 2324 2325 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2326 * 2327 * This socket option is applicable to the UDP-style socket only. When 2328 * set it will cause associations that are idle for more than the 2329 * specified number of seconds to automatically close. An association 2330 * being idle is defined an association that has NOT sent or received 2331 * user data. The special value of '0' indicates that no automatic 2332 * close of any associations should be performed. The option expects an 2333 * integer defining the number of seconds of idle time before an 2334 * association is closed. 2335 */ 2336 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2337 unsigned int optlen) 2338 { 2339 struct sctp_sock *sp = sctp_sk(sk); 2340 struct net *net = sock_net(sk); 2341 2342 /* Applicable to UDP-style socket only */ 2343 if (sctp_style(sk, TCP)) 2344 return -EOPNOTSUPP; 2345 if (optlen != sizeof(int)) 2346 return -EINVAL; 2347 if (copy_from_user(&sp->autoclose, optval, optlen)) 2348 return -EFAULT; 2349 2350 if (sp->autoclose > net->sctp.max_autoclose) 2351 sp->autoclose = net->sctp.max_autoclose; 2352 2353 return 0; 2354 } 2355 2356 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2357 * 2358 * Applications can enable or disable heartbeats for any peer address of 2359 * an association, modify an address's heartbeat interval, force a 2360 * heartbeat to be sent immediately, and adjust the address's maximum 2361 * number of retransmissions sent before an address is considered 2362 * unreachable. The following structure is used to access and modify an 2363 * address's parameters: 2364 * 2365 * struct sctp_paddrparams { 2366 * sctp_assoc_t spp_assoc_id; 2367 * struct sockaddr_storage spp_address; 2368 * uint32_t spp_hbinterval; 2369 * uint16_t spp_pathmaxrxt; 2370 * uint32_t spp_pathmtu; 2371 * uint32_t spp_sackdelay; 2372 * uint32_t spp_flags; 2373 * }; 2374 * 2375 * spp_assoc_id - (one-to-many style socket) This is filled in the 2376 * application, and identifies the association for 2377 * this query. 2378 * spp_address - This specifies which address is of interest. 2379 * spp_hbinterval - This contains the value of the heartbeat interval, 2380 * in milliseconds. If a value of zero 2381 * is present in this field then no changes are to 2382 * be made to this parameter. 2383 * spp_pathmaxrxt - This contains the maximum number of 2384 * retransmissions before this address shall be 2385 * considered unreachable. If a value of zero 2386 * is present in this field then no changes are to 2387 * be made to this parameter. 2388 * spp_pathmtu - When Path MTU discovery is disabled the value 2389 * specified here will be the "fixed" path mtu. 2390 * Note that if the spp_address field is empty 2391 * then all associations on this address will 2392 * have this fixed path mtu set upon them. 2393 * 2394 * spp_sackdelay - When delayed sack is enabled, this value specifies 2395 * the number of milliseconds that sacks will be delayed 2396 * for. This value will apply to all addresses of an 2397 * association if the spp_address field is empty. Note 2398 * also, that if delayed sack is enabled and this 2399 * value is set to 0, no change is made to the last 2400 * recorded delayed sack timer value. 2401 * 2402 * spp_flags - These flags are used to control various features 2403 * on an association. The flag field may contain 2404 * zero or more of the following options. 2405 * 2406 * SPP_HB_ENABLE - Enable heartbeats on the 2407 * specified address. Note that if the address 2408 * field is empty all addresses for the association 2409 * have heartbeats enabled upon them. 2410 * 2411 * SPP_HB_DISABLE - Disable heartbeats on the 2412 * speicifed address. Note that if the address 2413 * field is empty all addresses for the association 2414 * will have their heartbeats disabled. Note also 2415 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2416 * mutually exclusive, only one of these two should 2417 * be specified. Enabling both fields will have 2418 * undetermined results. 2419 * 2420 * SPP_HB_DEMAND - Request a user initiated heartbeat 2421 * to be made immediately. 2422 * 2423 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2424 * heartbeat delayis to be set to the value of 0 2425 * milliseconds. 2426 * 2427 * SPP_PMTUD_ENABLE - This field will enable PMTU 2428 * discovery upon the specified address. Note that 2429 * if the address feild is empty then all addresses 2430 * on the association are effected. 2431 * 2432 * SPP_PMTUD_DISABLE - This field will disable PMTU 2433 * discovery upon the specified address. Note that 2434 * if the address feild is empty then all addresses 2435 * on the association are effected. Not also that 2436 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2437 * exclusive. Enabling both will have undetermined 2438 * results. 2439 * 2440 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2441 * on delayed sack. The time specified in spp_sackdelay 2442 * is used to specify the sack delay for this address. Note 2443 * that if spp_address is empty then all addresses will 2444 * enable delayed sack and take on the sack delay 2445 * value specified in spp_sackdelay. 2446 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2447 * off delayed sack. If the spp_address field is blank then 2448 * delayed sack is disabled for the entire association. Note 2449 * also that this field is mutually exclusive to 2450 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2451 * results. 2452 */ 2453 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2454 struct sctp_transport *trans, 2455 struct sctp_association *asoc, 2456 struct sctp_sock *sp, 2457 int hb_change, 2458 int pmtud_change, 2459 int sackdelay_change) 2460 { 2461 int error; 2462 2463 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2464 struct net *net = sock_net(trans->asoc->base.sk); 2465 2466 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2467 if (error) 2468 return error; 2469 } 2470 2471 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2472 * this field is ignored. Note also that a value of zero indicates 2473 * the current setting should be left unchanged. 2474 */ 2475 if (params->spp_flags & SPP_HB_ENABLE) { 2476 2477 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2478 * set. This lets us use 0 value when this flag 2479 * is set. 2480 */ 2481 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2482 params->spp_hbinterval = 0; 2483 2484 if (params->spp_hbinterval || 2485 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2486 if (trans) { 2487 trans->hbinterval = 2488 msecs_to_jiffies(params->spp_hbinterval); 2489 } else if (asoc) { 2490 asoc->hbinterval = 2491 msecs_to_jiffies(params->spp_hbinterval); 2492 } else { 2493 sp->hbinterval = params->spp_hbinterval; 2494 } 2495 } 2496 } 2497 2498 if (hb_change) { 2499 if (trans) { 2500 trans->param_flags = 2501 (trans->param_flags & ~SPP_HB) | hb_change; 2502 } else if (asoc) { 2503 asoc->param_flags = 2504 (asoc->param_flags & ~SPP_HB) | hb_change; 2505 } else { 2506 sp->param_flags = 2507 (sp->param_flags & ~SPP_HB) | hb_change; 2508 } 2509 } 2510 2511 /* When Path MTU discovery is disabled the value specified here will 2512 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2513 * include the flag SPP_PMTUD_DISABLE for this field to have any 2514 * effect). 2515 */ 2516 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2517 if (trans) { 2518 trans->pathmtu = params->spp_pathmtu; 2519 sctp_assoc_sync_pmtu(asoc); 2520 } else if (asoc) { 2521 asoc->pathmtu = params->spp_pathmtu; 2522 } else { 2523 sp->pathmtu = params->spp_pathmtu; 2524 } 2525 } 2526 2527 if (pmtud_change) { 2528 if (trans) { 2529 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2530 (params->spp_flags & SPP_PMTUD_ENABLE); 2531 trans->param_flags = 2532 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2533 if (update) { 2534 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2535 sctp_assoc_sync_pmtu(asoc); 2536 } 2537 } else if (asoc) { 2538 asoc->param_flags = 2539 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2540 } else { 2541 sp->param_flags = 2542 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2543 } 2544 } 2545 2546 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2547 * value of this field is ignored. Note also that a value of zero 2548 * indicates the current setting should be left unchanged. 2549 */ 2550 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2551 if (trans) { 2552 trans->sackdelay = 2553 msecs_to_jiffies(params->spp_sackdelay); 2554 } else if (asoc) { 2555 asoc->sackdelay = 2556 msecs_to_jiffies(params->spp_sackdelay); 2557 } else { 2558 sp->sackdelay = params->spp_sackdelay; 2559 } 2560 } 2561 2562 if (sackdelay_change) { 2563 if (trans) { 2564 trans->param_flags = 2565 (trans->param_flags & ~SPP_SACKDELAY) | 2566 sackdelay_change; 2567 } else if (asoc) { 2568 asoc->param_flags = 2569 (asoc->param_flags & ~SPP_SACKDELAY) | 2570 sackdelay_change; 2571 } else { 2572 sp->param_flags = 2573 (sp->param_flags & ~SPP_SACKDELAY) | 2574 sackdelay_change; 2575 } 2576 } 2577 2578 /* Note that a value of zero indicates the current setting should be 2579 left unchanged. 2580 */ 2581 if (params->spp_pathmaxrxt) { 2582 if (trans) { 2583 trans->pathmaxrxt = params->spp_pathmaxrxt; 2584 } else if (asoc) { 2585 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2586 } else { 2587 sp->pathmaxrxt = params->spp_pathmaxrxt; 2588 } 2589 } 2590 2591 return 0; 2592 } 2593 2594 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2595 char __user *optval, 2596 unsigned int optlen) 2597 { 2598 struct sctp_paddrparams params; 2599 struct sctp_transport *trans = NULL; 2600 struct sctp_association *asoc = NULL; 2601 struct sctp_sock *sp = sctp_sk(sk); 2602 int error; 2603 int hb_change, pmtud_change, sackdelay_change; 2604 2605 if (optlen != sizeof(struct sctp_paddrparams)) 2606 return -EINVAL; 2607 2608 if (copy_from_user(¶ms, optval, optlen)) 2609 return -EFAULT; 2610 2611 /* Validate flags and value parameters. */ 2612 hb_change = params.spp_flags & SPP_HB; 2613 pmtud_change = params.spp_flags & SPP_PMTUD; 2614 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2615 2616 if (hb_change == SPP_HB || 2617 pmtud_change == SPP_PMTUD || 2618 sackdelay_change == SPP_SACKDELAY || 2619 params.spp_sackdelay > 500 || 2620 (params.spp_pathmtu && 2621 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2622 return -EINVAL; 2623 2624 /* If an address other than INADDR_ANY is specified, and 2625 * no transport is found, then the request is invalid. 2626 */ 2627 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2628 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2629 params.spp_assoc_id); 2630 if (!trans) 2631 return -EINVAL; 2632 } 2633 2634 /* Get association, if assoc_id != 0 and the socket is a one 2635 * to many style socket, and an association was not found, then 2636 * the id was invalid. 2637 */ 2638 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2639 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2640 return -EINVAL; 2641 2642 /* Heartbeat demand can only be sent on a transport or 2643 * association, but not a socket. 2644 */ 2645 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2646 return -EINVAL; 2647 2648 /* Process parameters. */ 2649 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2650 hb_change, pmtud_change, 2651 sackdelay_change); 2652 2653 if (error) 2654 return error; 2655 2656 /* If changes are for association, also apply parameters to each 2657 * transport. 2658 */ 2659 if (!trans && asoc) { 2660 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2661 transports) { 2662 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2663 hb_change, pmtud_change, 2664 sackdelay_change); 2665 } 2666 } 2667 2668 return 0; 2669 } 2670 2671 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2672 { 2673 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2674 } 2675 2676 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2677 { 2678 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2679 } 2680 2681 /* 2682 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2683 * 2684 * This option will effect the way delayed acks are performed. This 2685 * option allows you to get or set the delayed ack time, in 2686 * milliseconds. It also allows changing the delayed ack frequency. 2687 * Changing the frequency to 1 disables the delayed sack algorithm. If 2688 * the assoc_id is 0, then this sets or gets the endpoints default 2689 * values. If the assoc_id field is non-zero, then the set or get 2690 * effects the specified association for the one to many model (the 2691 * assoc_id field is ignored by the one to one model). Note that if 2692 * sack_delay or sack_freq are 0 when setting this option, then the 2693 * current values will remain unchanged. 2694 * 2695 * struct sctp_sack_info { 2696 * sctp_assoc_t sack_assoc_id; 2697 * uint32_t sack_delay; 2698 * uint32_t sack_freq; 2699 * }; 2700 * 2701 * sack_assoc_id - This parameter, indicates which association the user 2702 * is performing an action upon. Note that if this field's value is 2703 * zero then the endpoints default value is changed (effecting future 2704 * associations only). 2705 * 2706 * sack_delay - This parameter contains the number of milliseconds that 2707 * the user is requesting the delayed ACK timer be set to. Note that 2708 * this value is defined in the standard to be between 200 and 500 2709 * milliseconds. 2710 * 2711 * sack_freq - This parameter contains the number of packets that must 2712 * be received before a sack is sent without waiting for the delay 2713 * timer to expire. The default value for this is 2, setting this 2714 * value to 1 will disable the delayed sack algorithm. 2715 */ 2716 2717 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2718 char __user *optval, unsigned int optlen) 2719 { 2720 struct sctp_sack_info params; 2721 struct sctp_transport *trans = NULL; 2722 struct sctp_association *asoc = NULL; 2723 struct sctp_sock *sp = sctp_sk(sk); 2724 2725 if (optlen == sizeof(struct sctp_sack_info)) { 2726 if (copy_from_user(¶ms, optval, optlen)) 2727 return -EFAULT; 2728 2729 if (params.sack_delay == 0 && params.sack_freq == 0) 2730 return 0; 2731 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2732 pr_warn_ratelimited(DEPRECATED 2733 "%s (pid %d) " 2734 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2735 "Use struct sctp_sack_info instead\n", 2736 current->comm, task_pid_nr(current)); 2737 if (copy_from_user(¶ms, optval, optlen)) 2738 return -EFAULT; 2739 2740 if (params.sack_delay == 0) 2741 params.sack_freq = 1; 2742 else 2743 params.sack_freq = 0; 2744 } else 2745 return -EINVAL; 2746 2747 /* Validate value parameter. */ 2748 if (params.sack_delay > 500) 2749 return -EINVAL; 2750 2751 /* Get association, if sack_assoc_id != 0 and the socket is a one 2752 * to many style socket, and an association was not found, then 2753 * the id was invalid. 2754 */ 2755 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2756 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2757 return -EINVAL; 2758 2759 if (params.sack_delay) { 2760 if (asoc) { 2761 asoc->sackdelay = 2762 msecs_to_jiffies(params.sack_delay); 2763 asoc->param_flags = 2764 sctp_spp_sackdelay_enable(asoc->param_flags); 2765 } else { 2766 sp->sackdelay = params.sack_delay; 2767 sp->param_flags = 2768 sctp_spp_sackdelay_enable(sp->param_flags); 2769 } 2770 } 2771 2772 if (params.sack_freq == 1) { 2773 if (asoc) { 2774 asoc->param_flags = 2775 sctp_spp_sackdelay_disable(asoc->param_flags); 2776 } else { 2777 sp->param_flags = 2778 sctp_spp_sackdelay_disable(sp->param_flags); 2779 } 2780 } else if (params.sack_freq > 1) { 2781 if (asoc) { 2782 asoc->sackfreq = params.sack_freq; 2783 asoc->param_flags = 2784 sctp_spp_sackdelay_enable(asoc->param_flags); 2785 } else { 2786 sp->sackfreq = params.sack_freq; 2787 sp->param_flags = 2788 sctp_spp_sackdelay_enable(sp->param_flags); 2789 } 2790 } 2791 2792 /* If change is for association, also apply to each transport. */ 2793 if (asoc) { 2794 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2795 transports) { 2796 if (params.sack_delay) { 2797 trans->sackdelay = 2798 msecs_to_jiffies(params.sack_delay); 2799 trans->param_flags = 2800 sctp_spp_sackdelay_enable(trans->param_flags); 2801 } 2802 if (params.sack_freq == 1) { 2803 trans->param_flags = 2804 sctp_spp_sackdelay_disable(trans->param_flags); 2805 } else if (params.sack_freq > 1) { 2806 trans->sackfreq = params.sack_freq; 2807 trans->param_flags = 2808 sctp_spp_sackdelay_enable(trans->param_flags); 2809 } 2810 } 2811 } 2812 2813 return 0; 2814 } 2815 2816 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2817 * 2818 * Applications can specify protocol parameters for the default association 2819 * initialization. The option name argument to setsockopt() and getsockopt() 2820 * is SCTP_INITMSG. 2821 * 2822 * Setting initialization parameters is effective only on an unconnected 2823 * socket (for UDP-style sockets only future associations are effected 2824 * by the change). With TCP-style sockets, this option is inherited by 2825 * sockets derived from a listener socket. 2826 */ 2827 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2828 { 2829 struct sctp_initmsg sinit; 2830 struct sctp_sock *sp = sctp_sk(sk); 2831 2832 if (optlen != sizeof(struct sctp_initmsg)) 2833 return -EINVAL; 2834 if (copy_from_user(&sinit, optval, optlen)) 2835 return -EFAULT; 2836 2837 if (sinit.sinit_num_ostreams) 2838 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2839 if (sinit.sinit_max_instreams) 2840 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2841 if (sinit.sinit_max_attempts) 2842 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2843 if (sinit.sinit_max_init_timeo) 2844 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2845 2846 return 0; 2847 } 2848 2849 /* 2850 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2851 * 2852 * Applications that wish to use the sendto() system call may wish to 2853 * specify a default set of parameters that would normally be supplied 2854 * through the inclusion of ancillary data. This socket option allows 2855 * such an application to set the default sctp_sndrcvinfo structure. 2856 * The application that wishes to use this socket option simply passes 2857 * in to this call the sctp_sndrcvinfo structure defined in Section 2858 * 5.2.2) The input parameters accepted by this call include 2859 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2860 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2861 * to this call if the caller is using the UDP model. 2862 */ 2863 static int sctp_setsockopt_default_send_param(struct sock *sk, 2864 char __user *optval, 2865 unsigned int optlen) 2866 { 2867 struct sctp_sock *sp = sctp_sk(sk); 2868 struct sctp_association *asoc; 2869 struct sctp_sndrcvinfo info; 2870 2871 if (optlen != sizeof(info)) 2872 return -EINVAL; 2873 if (copy_from_user(&info, optval, optlen)) 2874 return -EFAULT; 2875 if (info.sinfo_flags & 2876 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2877 SCTP_ABORT | SCTP_EOF)) 2878 return -EINVAL; 2879 2880 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2881 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2882 return -EINVAL; 2883 if (asoc) { 2884 asoc->default_stream = info.sinfo_stream; 2885 asoc->default_flags = info.sinfo_flags; 2886 asoc->default_ppid = info.sinfo_ppid; 2887 asoc->default_context = info.sinfo_context; 2888 asoc->default_timetolive = info.sinfo_timetolive; 2889 } else { 2890 sp->default_stream = info.sinfo_stream; 2891 sp->default_flags = info.sinfo_flags; 2892 sp->default_ppid = info.sinfo_ppid; 2893 sp->default_context = info.sinfo_context; 2894 sp->default_timetolive = info.sinfo_timetolive; 2895 } 2896 2897 return 0; 2898 } 2899 2900 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2901 * (SCTP_DEFAULT_SNDINFO) 2902 */ 2903 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2904 char __user *optval, 2905 unsigned int optlen) 2906 { 2907 struct sctp_sock *sp = sctp_sk(sk); 2908 struct sctp_association *asoc; 2909 struct sctp_sndinfo info; 2910 2911 if (optlen != sizeof(info)) 2912 return -EINVAL; 2913 if (copy_from_user(&info, optval, optlen)) 2914 return -EFAULT; 2915 if (info.snd_flags & 2916 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2917 SCTP_ABORT | SCTP_EOF)) 2918 return -EINVAL; 2919 2920 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2921 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2922 return -EINVAL; 2923 if (asoc) { 2924 asoc->default_stream = info.snd_sid; 2925 asoc->default_flags = info.snd_flags; 2926 asoc->default_ppid = info.snd_ppid; 2927 asoc->default_context = info.snd_context; 2928 } else { 2929 sp->default_stream = info.snd_sid; 2930 sp->default_flags = info.snd_flags; 2931 sp->default_ppid = info.snd_ppid; 2932 sp->default_context = info.snd_context; 2933 } 2934 2935 return 0; 2936 } 2937 2938 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2939 * 2940 * Requests that the local SCTP stack use the enclosed peer address as 2941 * the association primary. The enclosed address must be one of the 2942 * association peer's addresses. 2943 */ 2944 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2945 unsigned int optlen) 2946 { 2947 struct sctp_prim prim; 2948 struct sctp_transport *trans; 2949 2950 if (optlen != sizeof(struct sctp_prim)) 2951 return -EINVAL; 2952 2953 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2954 return -EFAULT; 2955 2956 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2957 if (!trans) 2958 return -EINVAL; 2959 2960 sctp_assoc_set_primary(trans->asoc, trans); 2961 2962 return 0; 2963 } 2964 2965 /* 2966 * 7.1.5 SCTP_NODELAY 2967 * 2968 * Turn on/off any Nagle-like algorithm. This means that packets are 2969 * generally sent as soon as possible and no unnecessary delays are 2970 * introduced, at the cost of more packets in the network. Expects an 2971 * integer boolean flag. 2972 */ 2973 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2974 unsigned int optlen) 2975 { 2976 int val; 2977 2978 if (optlen < sizeof(int)) 2979 return -EINVAL; 2980 if (get_user(val, (int __user *)optval)) 2981 return -EFAULT; 2982 2983 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2984 return 0; 2985 } 2986 2987 /* 2988 * 2989 * 7.1.1 SCTP_RTOINFO 2990 * 2991 * The protocol parameters used to initialize and bound retransmission 2992 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2993 * and modify these parameters. 2994 * All parameters are time values, in milliseconds. A value of 0, when 2995 * modifying the parameters, indicates that the current value should not 2996 * be changed. 2997 * 2998 */ 2999 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3000 { 3001 struct sctp_rtoinfo rtoinfo; 3002 struct sctp_association *asoc; 3003 unsigned long rto_min, rto_max; 3004 struct sctp_sock *sp = sctp_sk(sk); 3005 3006 if (optlen != sizeof (struct sctp_rtoinfo)) 3007 return -EINVAL; 3008 3009 if (copy_from_user(&rtoinfo, optval, optlen)) 3010 return -EFAULT; 3011 3012 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3013 3014 /* Set the values to the specific association */ 3015 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3016 return -EINVAL; 3017 3018 rto_max = rtoinfo.srto_max; 3019 rto_min = rtoinfo.srto_min; 3020 3021 if (rto_max) 3022 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3023 else 3024 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3025 3026 if (rto_min) 3027 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3028 else 3029 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3030 3031 if (rto_min > rto_max) 3032 return -EINVAL; 3033 3034 if (asoc) { 3035 if (rtoinfo.srto_initial != 0) 3036 asoc->rto_initial = 3037 msecs_to_jiffies(rtoinfo.srto_initial); 3038 asoc->rto_max = rto_max; 3039 asoc->rto_min = rto_min; 3040 } else { 3041 /* If there is no association or the association-id = 0 3042 * set the values to the endpoint. 3043 */ 3044 if (rtoinfo.srto_initial != 0) 3045 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3046 sp->rtoinfo.srto_max = rto_max; 3047 sp->rtoinfo.srto_min = rto_min; 3048 } 3049 3050 return 0; 3051 } 3052 3053 /* 3054 * 3055 * 7.1.2 SCTP_ASSOCINFO 3056 * 3057 * This option is used to tune the maximum retransmission attempts 3058 * of the association. 3059 * Returns an error if the new association retransmission value is 3060 * greater than the sum of the retransmission value of the peer. 3061 * See [SCTP] for more information. 3062 * 3063 */ 3064 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3065 { 3066 3067 struct sctp_assocparams assocparams; 3068 struct sctp_association *asoc; 3069 3070 if (optlen != sizeof(struct sctp_assocparams)) 3071 return -EINVAL; 3072 if (copy_from_user(&assocparams, optval, optlen)) 3073 return -EFAULT; 3074 3075 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3076 3077 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3078 return -EINVAL; 3079 3080 /* Set the values to the specific association */ 3081 if (asoc) { 3082 if (assocparams.sasoc_asocmaxrxt != 0) { 3083 __u32 path_sum = 0; 3084 int paths = 0; 3085 struct sctp_transport *peer_addr; 3086 3087 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3088 transports) { 3089 path_sum += peer_addr->pathmaxrxt; 3090 paths++; 3091 } 3092 3093 /* Only validate asocmaxrxt if we have more than 3094 * one path/transport. We do this because path 3095 * retransmissions are only counted when we have more 3096 * then one path. 3097 */ 3098 if (paths > 1 && 3099 assocparams.sasoc_asocmaxrxt > path_sum) 3100 return -EINVAL; 3101 3102 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3103 } 3104 3105 if (assocparams.sasoc_cookie_life != 0) 3106 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3107 } else { 3108 /* Set the values to the endpoint */ 3109 struct sctp_sock *sp = sctp_sk(sk); 3110 3111 if (assocparams.sasoc_asocmaxrxt != 0) 3112 sp->assocparams.sasoc_asocmaxrxt = 3113 assocparams.sasoc_asocmaxrxt; 3114 if (assocparams.sasoc_cookie_life != 0) 3115 sp->assocparams.sasoc_cookie_life = 3116 assocparams.sasoc_cookie_life; 3117 } 3118 return 0; 3119 } 3120 3121 /* 3122 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3123 * 3124 * This socket option is a boolean flag which turns on or off mapped V4 3125 * addresses. If this option is turned on and the socket is type 3126 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3127 * If this option is turned off, then no mapping will be done of V4 3128 * addresses and a user will receive both PF_INET6 and PF_INET type 3129 * addresses on the socket. 3130 */ 3131 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3132 { 3133 int val; 3134 struct sctp_sock *sp = sctp_sk(sk); 3135 3136 if (optlen < sizeof(int)) 3137 return -EINVAL; 3138 if (get_user(val, (int __user *)optval)) 3139 return -EFAULT; 3140 if (val) 3141 sp->v4mapped = 1; 3142 else 3143 sp->v4mapped = 0; 3144 3145 return 0; 3146 } 3147 3148 /* 3149 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3150 * This option will get or set the maximum size to put in any outgoing 3151 * SCTP DATA chunk. If a message is larger than this size it will be 3152 * fragmented by SCTP into the specified size. Note that the underlying 3153 * SCTP implementation may fragment into smaller sized chunks when the 3154 * PMTU of the underlying association is smaller than the value set by 3155 * the user. The default value for this option is '0' which indicates 3156 * the user is NOT limiting fragmentation and only the PMTU will effect 3157 * SCTP's choice of DATA chunk size. Note also that values set larger 3158 * than the maximum size of an IP datagram will effectively let SCTP 3159 * control fragmentation (i.e. the same as setting this option to 0). 3160 * 3161 * The following structure is used to access and modify this parameter: 3162 * 3163 * struct sctp_assoc_value { 3164 * sctp_assoc_t assoc_id; 3165 * uint32_t assoc_value; 3166 * }; 3167 * 3168 * assoc_id: This parameter is ignored for one-to-one style sockets. 3169 * For one-to-many style sockets this parameter indicates which 3170 * association the user is performing an action upon. Note that if 3171 * this field's value is zero then the endpoints default value is 3172 * changed (effecting future associations only). 3173 * assoc_value: This parameter specifies the maximum size in bytes. 3174 */ 3175 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3176 { 3177 struct sctp_sock *sp = sctp_sk(sk); 3178 struct sctp_assoc_value params; 3179 struct sctp_association *asoc; 3180 int val; 3181 3182 if (optlen == sizeof(int)) { 3183 pr_warn_ratelimited(DEPRECATED 3184 "%s (pid %d) " 3185 "Use of int in maxseg socket option.\n" 3186 "Use struct sctp_assoc_value instead\n", 3187 current->comm, task_pid_nr(current)); 3188 if (copy_from_user(&val, optval, optlen)) 3189 return -EFAULT; 3190 params.assoc_id = 0; 3191 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3192 if (copy_from_user(¶ms, optval, optlen)) 3193 return -EFAULT; 3194 val = params.assoc_value; 3195 } else { 3196 return -EINVAL; 3197 } 3198 3199 if (val) { 3200 int min_len, max_len; 3201 3202 min_len = SCTP_DEFAULT_MINSEGMENT - sp->pf->af->net_header_len; 3203 min_len -= sizeof(struct sctphdr) + 3204 sizeof(struct sctp_data_chunk); 3205 3206 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk); 3207 3208 if (val < min_len || val > max_len) 3209 return -EINVAL; 3210 } 3211 3212 asoc = sctp_id2assoc(sk, params.assoc_id); 3213 if (asoc) { 3214 if (val == 0) { 3215 val = asoc->pathmtu - sp->pf->af->net_header_len; 3216 val -= sizeof(struct sctphdr) + 3217 sctp_datachk_len(&asoc->stream); 3218 } 3219 asoc->user_frag = val; 3220 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3221 } else { 3222 if (params.assoc_id && sctp_style(sk, UDP)) 3223 return -EINVAL; 3224 sp->user_frag = val; 3225 } 3226 3227 return 0; 3228 } 3229 3230 3231 /* 3232 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3233 * 3234 * Requests that the peer mark the enclosed address as the association 3235 * primary. The enclosed address must be one of the association's 3236 * locally bound addresses. The following structure is used to make a 3237 * set primary request: 3238 */ 3239 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3240 unsigned int optlen) 3241 { 3242 struct net *net = sock_net(sk); 3243 struct sctp_sock *sp; 3244 struct sctp_association *asoc = NULL; 3245 struct sctp_setpeerprim prim; 3246 struct sctp_chunk *chunk; 3247 struct sctp_af *af; 3248 int err; 3249 3250 sp = sctp_sk(sk); 3251 3252 if (!net->sctp.addip_enable) 3253 return -EPERM; 3254 3255 if (optlen != sizeof(struct sctp_setpeerprim)) 3256 return -EINVAL; 3257 3258 if (copy_from_user(&prim, optval, optlen)) 3259 return -EFAULT; 3260 3261 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3262 if (!asoc) 3263 return -EINVAL; 3264 3265 if (!asoc->peer.asconf_capable) 3266 return -EPERM; 3267 3268 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3269 return -EPERM; 3270 3271 if (!sctp_state(asoc, ESTABLISHED)) 3272 return -ENOTCONN; 3273 3274 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3275 if (!af) 3276 return -EINVAL; 3277 3278 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3279 return -EADDRNOTAVAIL; 3280 3281 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3282 return -EADDRNOTAVAIL; 3283 3284 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3285 chunk = sctp_make_asconf_set_prim(asoc, 3286 (union sctp_addr *)&prim.sspp_addr); 3287 if (!chunk) 3288 return -ENOMEM; 3289 3290 err = sctp_send_asconf(asoc, chunk); 3291 3292 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3293 3294 return err; 3295 } 3296 3297 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3298 unsigned int optlen) 3299 { 3300 struct sctp_setadaptation adaptation; 3301 3302 if (optlen != sizeof(struct sctp_setadaptation)) 3303 return -EINVAL; 3304 if (copy_from_user(&adaptation, optval, optlen)) 3305 return -EFAULT; 3306 3307 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3308 3309 return 0; 3310 } 3311 3312 /* 3313 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3314 * 3315 * The context field in the sctp_sndrcvinfo structure is normally only 3316 * used when a failed message is retrieved holding the value that was 3317 * sent down on the actual send call. This option allows the setting of 3318 * a default context on an association basis that will be received on 3319 * reading messages from the peer. This is especially helpful in the 3320 * one-2-many model for an application to keep some reference to an 3321 * internal state machine that is processing messages on the 3322 * association. Note that the setting of this value only effects 3323 * received messages from the peer and does not effect the value that is 3324 * saved with outbound messages. 3325 */ 3326 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3327 unsigned int optlen) 3328 { 3329 struct sctp_assoc_value params; 3330 struct sctp_sock *sp; 3331 struct sctp_association *asoc; 3332 3333 if (optlen != sizeof(struct sctp_assoc_value)) 3334 return -EINVAL; 3335 if (copy_from_user(¶ms, optval, optlen)) 3336 return -EFAULT; 3337 3338 sp = sctp_sk(sk); 3339 3340 if (params.assoc_id != 0) { 3341 asoc = sctp_id2assoc(sk, params.assoc_id); 3342 if (!asoc) 3343 return -EINVAL; 3344 asoc->default_rcv_context = params.assoc_value; 3345 } else { 3346 sp->default_rcv_context = params.assoc_value; 3347 } 3348 3349 return 0; 3350 } 3351 3352 /* 3353 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3354 * 3355 * This options will at a minimum specify if the implementation is doing 3356 * fragmented interleave. Fragmented interleave, for a one to many 3357 * socket, is when subsequent calls to receive a message may return 3358 * parts of messages from different associations. Some implementations 3359 * may allow you to turn this value on or off. If so, when turned off, 3360 * no fragment interleave will occur (which will cause a head of line 3361 * blocking amongst multiple associations sharing the same one to many 3362 * socket). When this option is turned on, then each receive call may 3363 * come from a different association (thus the user must receive data 3364 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3365 * association each receive belongs to. 3366 * 3367 * This option takes a boolean value. A non-zero value indicates that 3368 * fragmented interleave is on. A value of zero indicates that 3369 * fragmented interleave is off. 3370 * 3371 * Note that it is important that an implementation that allows this 3372 * option to be turned on, have it off by default. Otherwise an unaware 3373 * application using the one to many model may become confused and act 3374 * incorrectly. 3375 */ 3376 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3377 char __user *optval, 3378 unsigned int optlen) 3379 { 3380 int val; 3381 3382 if (optlen != sizeof(int)) 3383 return -EINVAL; 3384 if (get_user(val, (int __user *)optval)) 3385 return -EFAULT; 3386 3387 sctp_sk(sk)->frag_interleave = !!val; 3388 3389 if (!sctp_sk(sk)->frag_interleave) 3390 sctp_sk(sk)->strm_interleave = 0; 3391 3392 return 0; 3393 } 3394 3395 /* 3396 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3397 * (SCTP_PARTIAL_DELIVERY_POINT) 3398 * 3399 * This option will set or get the SCTP partial delivery point. This 3400 * point is the size of a message where the partial delivery API will be 3401 * invoked to help free up rwnd space for the peer. Setting this to a 3402 * lower value will cause partial deliveries to happen more often. The 3403 * calls argument is an integer that sets or gets the partial delivery 3404 * point. Note also that the call will fail if the user attempts to set 3405 * this value larger than the socket receive buffer size. 3406 * 3407 * Note that any single message having a length smaller than or equal to 3408 * the SCTP partial delivery point will be delivered in one single read 3409 * call as long as the user provided buffer is large enough to hold the 3410 * message. 3411 */ 3412 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3413 char __user *optval, 3414 unsigned int optlen) 3415 { 3416 u32 val; 3417 3418 if (optlen != sizeof(u32)) 3419 return -EINVAL; 3420 if (get_user(val, (int __user *)optval)) 3421 return -EFAULT; 3422 3423 /* Note: We double the receive buffer from what the user sets 3424 * it to be, also initial rwnd is based on rcvbuf/2. 3425 */ 3426 if (val > (sk->sk_rcvbuf >> 1)) 3427 return -EINVAL; 3428 3429 sctp_sk(sk)->pd_point = val; 3430 3431 return 0; /* is this the right error code? */ 3432 } 3433 3434 /* 3435 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3436 * 3437 * This option will allow a user to change the maximum burst of packets 3438 * that can be emitted by this association. Note that the default value 3439 * is 4, and some implementations may restrict this setting so that it 3440 * can only be lowered. 3441 * 3442 * NOTE: This text doesn't seem right. Do this on a socket basis with 3443 * future associations inheriting the socket value. 3444 */ 3445 static int sctp_setsockopt_maxburst(struct sock *sk, 3446 char __user *optval, 3447 unsigned int optlen) 3448 { 3449 struct sctp_assoc_value params; 3450 struct sctp_sock *sp; 3451 struct sctp_association *asoc; 3452 int val; 3453 int assoc_id = 0; 3454 3455 if (optlen == sizeof(int)) { 3456 pr_warn_ratelimited(DEPRECATED 3457 "%s (pid %d) " 3458 "Use of int in max_burst socket option deprecated.\n" 3459 "Use struct sctp_assoc_value instead\n", 3460 current->comm, task_pid_nr(current)); 3461 if (copy_from_user(&val, optval, optlen)) 3462 return -EFAULT; 3463 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3464 if (copy_from_user(¶ms, optval, optlen)) 3465 return -EFAULT; 3466 val = params.assoc_value; 3467 assoc_id = params.assoc_id; 3468 } else 3469 return -EINVAL; 3470 3471 sp = sctp_sk(sk); 3472 3473 if (assoc_id != 0) { 3474 asoc = sctp_id2assoc(sk, assoc_id); 3475 if (!asoc) 3476 return -EINVAL; 3477 asoc->max_burst = val; 3478 } else 3479 sp->max_burst = val; 3480 3481 return 0; 3482 } 3483 3484 /* 3485 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3486 * 3487 * This set option adds a chunk type that the user is requesting to be 3488 * received only in an authenticated way. Changes to the list of chunks 3489 * will only effect future associations on the socket. 3490 */ 3491 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3492 char __user *optval, 3493 unsigned int optlen) 3494 { 3495 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3496 struct sctp_authchunk val; 3497 3498 if (!ep->auth_enable) 3499 return -EACCES; 3500 3501 if (optlen != sizeof(struct sctp_authchunk)) 3502 return -EINVAL; 3503 if (copy_from_user(&val, optval, optlen)) 3504 return -EFAULT; 3505 3506 switch (val.sauth_chunk) { 3507 case SCTP_CID_INIT: 3508 case SCTP_CID_INIT_ACK: 3509 case SCTP_CID_SHUTDOWN_COMPLETE: 3510 case SCTP_CID_AUTH: 3511 return -EINVAL; 3512 } 3513 3514 /* add this chunk id to the endpoint */ 3515 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3516 } 3517 3518 /* 3519 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3520 * 3521 * This option gets or sets the list of HMAC algorithms that the local 3522 * endpoint requires the peer to use. 3523 */ 3524 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3525 char __user *optval, 3526 unsigned int optlen) 3527 { 3528 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3529 struct sctp_hmacalgo *hmacs; 3530 u32 idents; 3531 int err; 3532 3533 if (!ep->auth_enable) 3534 return -EACCES; 3535 3536 if (optlen < sizeof(struct sctp_hmacalgo)) 3537 return -EINVAL; 3538 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3539 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3540 3541 hmacs = memdup_user(optval, optlen); 3542 if (IS_ERR(hmacs)) 3543 return PTR_ERR(hmacs); 3544 3545 idents = hmacs->shmac_num_idents; 3546 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3547 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3548 err = -EINVAL; 3549 goto out; 3550 } 3551 3552 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3553 out: 3554 kfree(hmacs); 3555 return err; 3556 } 3557 3558 /* 3559 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3560 * 3561 * This option will set a shared secret key which is used to build an 3562 * association shared key. 3563 */ 3564 static int sctp_setsockopt_auth_key(struct sock *sk, 3565 char __user *optval, 3566 unsigned int optlen) 3567 { 3568 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3569 struct sctp_authkey *authkey; 3570 struct sctp_association *asoc; 3571 int ret; 3572 3573 if (!ep->auth_enable) 3574 return -EACCES; 3575 3576 if (optlen <= sizeof(struct sctp_authkey)) 3577 return -EINVAL; 3578 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3579 * this. 3580 */ 3581 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3582 sizeof(struct sctp_authkey)); 3583 3584 authkey = memdup_user(optval, optlen); 3585 if (IS_ERR(authkey)) 3586 return PTR_ERR(authkey); 3587 3588 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3589 ret = -EINVAL; 3590 goto out; 3591 } 3592 3593 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3594 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3595 ret = -EINVAL; 3596 goto out; 3597 } 3598 3599 ret = sctp_auth_set_key(ep, asoc, authkey); 3600 out: 3601 kzfree(authkey); 3602 return ret; 3603 } 3604 3605 /* 3606 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3607 * 3608 * This option will get or set the active shared key to be used to build 3609 * the association shared key. 3610 */ 3611 static int sctp_setsockopt_active_key(struct sock *sk, 3612 char __user *optval, 3613 unsigned int optlen) 3614 { 3615 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3616 struct sctp_authkeyid val; 3617 struct sctp_association *asoc; 3618 3619 if (!ep->auth_enable) 3620 return -EACCES; 3621 3622 if (optlen != sizeof(struct sctp_authkeyid)) 3623 return -EINVAL; 3624 if (copy_from_user(&val, optval, optlen)) 3625 return -EFAULT; 3626 3627 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3628 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3629 return -EINVAL; 3630 3631 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3632 } 3633 3634 /* 3635 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3636 * 3637 * This set option will delete a shared secret key from use. 3638 */ 3639 static int sctp_setsockopt_del_key(struct sock *sk, 3640 char __user *optval, 3641 unsigned int optlen) 3642 { 3643 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3644 struct sctp_authkeyid val; 3645 struct sctp_association *asoc; 3646 3647 if (!ep->auth_enable) 3648 return -EACCES; 3649 3650 if (optlen != sizeof(struct sctp_authkeyid)) 3651 return -EINVAL; 3652 if (copy_from_user(&val, optval, optlen)) 3653 return -EFAULT; 3654 3655 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3656 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3657 return -EINVAL; 3658 3659 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3660 3661 } 3662 3663 /* 3664 * 8.1.23 SCTP_AUTO_ASCONF 3665 * 3666 * This option will enable or disable the use of the automatic generation of 3667 * ASCONF chunks to add and delete addresses to an existing association. Note 3668 * that this option has two caveats namely: a) it only affects sockets that 3669 * are bound to all addresses available to the SCTP stack, and b) the system 3670 * administrator may have an overriding control that turns the ASCONF feature 3671 * off no matter what setting the socket option may have. 3672 * This option expects an integer boolean flag, where a non-zero value turns on 3673 * the option, and a zero value turns off the option. 3674 * Note. In this implementation, socket operation overrides default parameter 3675 * being set by sysctl as well as FreeBSD implementation 3676 */ 3677 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3678 unsigned int optlen) 3679 { 3680 int val; 3681 struct sctp_sock *sp = sctp_sk(sk); 3682 3683 if (optlen < sizeof(int)) 3684 return -EINVAL; 3685 if (get_user(val, (int __user *)optval)) 3686 return -EFAULT; 3687 if (!sctp_is_ep_boundall(sk) && val) 3688 return -EINVAL; 3689 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3690 return 0; 3691 3692 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3693 if (val == 0 && sp->do_auto_asconf) { 3694 list_del(&sp->auto_asconf_list); 3695 sp->do_auto_asconf = 0; 3696 } else if (val && !sp->do_auto_asconf) { 3697 list_add_tail(&sp->auto_asconf_list, 3698 &sock_net(sk)->sctp.auto_asconf_splist); 3699 sp->do_auto_asconf = 1; 3700 } 3701 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3702 return 0; 3703 } 3704 3705 /* 3706 * SCTP_PEER_ADDR_THLDS 3707 * 3708 * This option allows us to alter the partially failed threshold for one or all 3709 * transports in an association. See Section 6.1 of: 3710 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3711 */ 3712 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3713 char __user *optval, 3714 unsigned int optlen) 3715 { 3716 struct sctp_paddrthlds val; 3717 struct sctp_transport *trans; 3718 struct sctp_association *asoc; 3719 3720 if (optlen < sizeof(struct sctp_paddrthlds)) 3721 return -EINVAL; 3722 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3723 sizeof(struct sctp_paddrthlds))) 3724 return -EFAULT; 3725 3726 3727 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3728 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3729 if (!asoc) 3730 return -ENOENT; 3731 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3732 transports) { 3733 if (val.spt_pathmaxrxt) 3734 trans->pathmaxrxt = val.spt_pathmaxrxt; 3735 trans->pf_retrans = val.spt_pathpfthld; 3736 } 3737 3738 if (val.spt_pathmaxrxt) 3739 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3740 asoc->pf_retrans = val.spt_pathpfthld; 3741 } else { 3742 trans = sctp_addr_id2transport(sk, &val.spt_address, 3743 val.spt_assoc_id); 3744 if (!trans) 3745 return -ENOENT; 3746 3747 if (val.spt_pathmaxrxt) 3748 trans->pathmaxrxt = val.spt_pathmaxrxt; 3749 trans->pf_retrans = val.spt_pathpfthld; 3750 } 3751 3752 return 0; 3753 } 3754 3755 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3756 char __user *optval, 3757 unsigned int optlen) 3758 { 3759 int val; 3760 3761 if (optlen < sizeof(int)) 3762 return -EINVAL; 3763 if (get_user(val, (int __user *) optval)) 3764 return -EFAULT; 3765 3766 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3767 3768 return 0; 3769 } 3770 3771 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3772 char __user *optval, 3773 unsigned int optlen) 3774 { 3775 int val; 3776 3777 if (optlen < sizeof(int)) 3778 return -EINVAL; 3779 if (get_user(val, (int __user *) optval)) 3780 return -EFAULT; 3781 3782 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3783 3784 return 0; 3785 } 3786 3787 static int sctp_setsockopt_pr_supported(struct sock *sk, 3788 char __user *optval, 3789 unsigned int optlen) 3790 { 3791 struct sctp_assoc_value params; 3792 struct sctp_association *asoc; 3793 int retval = -EINVAL; 3794 3795 if (optlen != sizeof(params)) 3796 goto out; 3797 3798 if (copy_from_user(¶ms, optval, optlen)) { 3799 retval = -EFAULT; 3800 goto out; 3801 } 3802 3803 asoc = sctp_id2assoc(sk, params.assoc_id); 3804 if (asoc) { 3805 asoc->prsctp_enable = !!params.assoc_value; 3806 } else if (!params.assoc_id) { 3807 struct sctp_sock *sp = sctp_sk(sk); 3808 3809 sp->ep->prsctp_enable = !!params.assoc_value; 3810 } else { 3811 goto out; 3812 } 3813 3814 retval = 0; 3815 3816 out: 3817 return retval; 3818 } 3819 3820 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3821 char __user *optval, 3822 unsigned int optlen) 3823 { 3824 struct sctp_default_prinfo info; 3825 struct sctp_association *asoc; 3826 int retval = -EINVAL; 3827 3828 if (optlen != sizeof(info)) 3829 goto out; 3830 3831 if (copy_from_user(&info, optval, sizeof(info))) { 3832 retval = -EFAULT; 3833 goto out; 3834 } 3835 3836 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3837 goto out; 3838 3839 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3840 info.pr_value = 0; 3841 3842 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3843 if (asoc) { 3844 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3845 asoc->default_timetolive = info.pr_value; 3846 } else if (!info.pr_assoc_id) { 3847 struct sctp_sock *sp = sctp_sk(sk); 3848 3849 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3850 sp->default_timetolive = info.pr_value; 3851 } else { 3852 goto out; 3853 } 3854 3855 retval = 0; 3856 3857 out: 3858 return retval; 3859 } 3860 3861 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3862 char __user *optval, 3863 unsigned int optlen) 3864 { 3865 struct sctp_assoc_value params; 3866 struct sctp_association *asoc; 3867 int retval = -EINVAL; 3868 3869 if (optlen != sizeof(params)) 3870 goto out; 3871 3872 if (copy_from_user(¶ms, optval, optlen)) { 3873 retval = -EFAULT; 3874 goto out; 3875 } 3876 3877 asoc = sctp_id2assoc(sk, params.assoc_id); 3878 if (asoc) { 3879 asoc->reconf_enable = !!params.assoc_value; 3880 } else if (!params.assoc_id) { 3881 struct sctp_sock *sp = sctp_sk(sk); 3882 3883 sp->ep->reconf_enable = !!params.assoc_value; 3884 } else { 3885 goto out; 3886 } 3887 3888 retval = 0; 3889 3890 out: 3891 return retval; 3892 } 3893 3894 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3895 char __user *optval, 3896 unsigned int optlen) 3897 { 3898 struct sctp_assoc_value params; 3899 struct sctp_association *asoc; 3900 int retval = -EINVAL; 3901 3902 if (optlen != sizeof(params)) 3903 goto out; 3904 3905 if (copy_from_user(¶ms, optval, optlen)) { 3906 retval = -EFAULT; 3907 goto out; 3908 } 3909 3910 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3911 goto out; 3912 3913 asoc = sctp_id2assoc(sk, params.assoc_id); 3914 if (asoc) { 3915 asoc->strreset_enable = params.assoc_value; 3916 } else if (!params.assoc_id) { 3917 struct sctp_sock *sp = sctp_sk(sk); 3918 3919 sp->ep->strreset_enable = params.assoc_value; 3920 } else { 3921 goto out; 3922 } 3923 3924 retval = 0; 3925 3926 out: 3927 return retval; 3928 } 3929 3930 static int sctp_setsockopt_reset_streams(struct sock *sk, 3931 char __user *optval, 3932 unsigned int optlen) 3933 { 3934 struct sctp_reset_streams *params; 3935 struct sctp_association *asoc; 3936 int retval = -EINVAL; 3937 3938 if (optlen < sizeof(*params)) 3939 return -EINVAL; 3940 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 3941 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3942 sizeof(__u16) * sizeof(*params)); 3943 3944 params = memdup_user(optval, optlen); 3945 if (IS_ERR(params)) 3946 return PTR_ERR(params); 3947 3948 if (params->srs_number_streams * sizeof(__u16) > 3949 optlen - sizeof(*params)) 3950 goto out; 3951 3952 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3953 if (!asoc) 3954 goto out; 3955 3956 retval = sctp_send_reset_streams(asoc, params); 3957 3958 out: 3959 kfree(params); 3960 return retval; 3961 } 3962 3963 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3964 char __user *optval, 3965 unsigned int optlen) 3966 { 3967 struct sctp_association *asoc; 3968 sctp_assoc_t associd; 3969 int retval = -EINVAL; 3970 3971 if (optlen != sizeof(associd)) 3972 goto out; 3973 3974 if (copy_from_user(&associd, optval, optlen)) { 3975 retval = -EFAULT; 3976 goto out; 3977 } 3978 3979 asoc = sctp_id2assoc(sk, associd); 3980 if (!asoc) 3981 goto out; 3982 3983 retval = sctp_send_reset_assoc(asoc); 3984 3985 out: 3986 return retval; 3987 } 3988 3989 static int sctp_setsockopt_add_streams(struct sock *sk, 3990 char __user *optval, 3991 unsigned int optlen) 3992 { 3993 struct sctp_association *asoc; 3994 struct sctp_add_streams params; 3995 int retval = -EINVAL; 3996 3997 if (optlen != sizeof(params)) 3998 goto out; 3999 4000 if (copy_from_user(¶ms, optval, optlen)) { 4001 retval = -EFAULT; 4002 goto out; 4003 } 4004 4005 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4006 if (!asoc) 4007 goto out; 4008 4009 retval = sctp_send_add_streams(asoc, ¶ms); 4010 4011 out: 4012 return retval; 4013 } 4014 4015 static int sctp_setsockopt_scheduler(struct sock *sk, 4016 char __user *optval, 4017 unsigned int optlen) 4018 { 4019 struct sctp_association *asoc; 4020 struct sctp_assoc_value params; 4021 int retval = -EINVAL; 4022 4023 if (optlen < sizeof(params)) 4024 goto out; 4025 4026 optlen = sizeof(params); 4027 if (copy_from_user(¶ms, optval, optlen)) { 4028 retval = -EFAULT; 4029 goto out; 4030 } 4031 4032 if (params.assoc_value > SCTP_SS_MAX) 4033 goto out; 4034 4035 asoc = sctp_id2assoc(sk, params.assoc_id); 4036 if (!asoc) 4037 goto out; 4038 4039 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4040 4041 out: 4042 return retval; 4043 } 4044 4045 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4046 char __user *optval, 4047 unsigned int optlen) 4048 { 4049 struct sctp_association *asoc; 4050 struct sctp_stream_value params; 4051 int retval = -EINVAL; 4052 4053 if (optlen < sizeof(params)) 4054 goto out; 4055 4056 optlen = sizeof(params); 4057 if (copy_from_user(¶ms, optval, optlen)) { 4058 retval = -EFAULT; 4059 goto out; 4060 } 4061 4062 asoc = sctp_id2assoc(sk, params.assoc_id); 4063 if (!asoc) 4064 goto out; 4065 4066 retval = sctp_sched_set_value(asoc, params.stream_id, 4067 params.stream_value, GFP_KERNEL); 4068 4069 out: 4070 return retval; 4071 } 4072 4073 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4074 char __user *optval, 4075 unsigned int optlen) 4076 { 4077 struct sctp_sock *sp = sctp_sk(sk); 4078 struct net *net = sock_net(sk); 4079 struct sctp_assoc_value params; 4080 int retval = -EINVAL; 4081 4082 if (optlen < sizeof(params)) 4083 goto out; 4084 4085 optlen = sizeof(params); 4086 if (copy_from_user(¶ms, optval, optlen)) { 4087 retval = -EFAULT; 4088 goto out; 4089 } 4090 4091 if (params.assoc_id) 4092 goto out; 4093 4094 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4095 retval = -EPERM; 4096 goto out; 4097 } 4098 4099 sp->strm_interleave = !!params.assoc_value; 4100 4101 retval = 0; 4102 4103 out: 4104 return retval; 4105 } 4106 4107 /* API 6.2 setsockopt(), getsockopt() 4108 * 4109 * Applications use setsockopt() and getsockopt() to set or retrieve 4110 * socket options. Socket options are used to change the default 4111 * behavior of sockets calls. They are described in Section 7. 4112 * 4113 * The syntax is: 4114 * 4115 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4116 * int __user *optlen); 4117 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4118 * int optlen); 4119 * 4120 * sd - the socket descript. 4121 * level - set to IPPROTO_SCTP for all SCTP options. 4122 * optname - the option name. 4123 * optval - the buffer to store the value of the option. 4124 * optlen - the size of the buffer. 4125 */ 4126 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4127 char __user *optval, unsigned int optlen) 4128 { 4129 int retval = 0; 4130 4131 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4132 4133 /* I can hardly begin to describe how wrong this is. This is 4134 * so broken as to be worse than useless. The API draft 4135 * REALLY is NOT helpful here... I am not convinced that the 4136 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4137 * are at all well-founded. 4138 */ 4139 if (level != SOL_SCTP) { 4140 struct sctp_af *af = sctp_sk(sk)->pf->af; 4141 retval = af->setsockopt(sk, level, optname, optval, optlen); 4142 goto out_nounlock; 4143 } 4144 4145 lock_sock(sk); 4146 4147 switch (optname) { 4148 case SCTP_SOCKOPT_BINDX_ADD: 4149 /* 'optlen' is the size of the addresses buffer. */ 4150 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4151 optlen, SCTP_BINDX_ADD_ADDR); 4152 break; 4153 4154 case SCTP_SOCKOPT_BINDX_REM: 4155 /* 'optlen' is the size of the addresses buffer. */ 4156 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4157 optlen, SCTP_BINDX_REM_ADDR); 4158 break; 4159 4160 case SCTP_SOCKOPT_CONNECTX_OLD: 4161 /* 'optlen' is the size of the addresses buffer. */ 4162 retval = sctp_setsockopt_connectx_old(sk, 4163 (struct sockaddr __user *)optval, 4164 optlen); 4165 break; 4166 4167 case SCTP_SOCKOPT_CONNECTX: 4168 /* 'optlen' is the size of the addresses buffer. */ 4169 retval = sctp_setsockopt_connectx(sk, 4170 (struct sockaddr __user *)optval, 4171 optlen); 4172 break; 4173 4174 case SCTP_DISABLE_FRAGMENTS: 4175 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4176 break; 4177 4178 case SCTP_EVENTS: 4179 retval = sctp_setsockopt_events(sk, optval, optlen); 4180 break; 4181 4182 case SCTP_AUTOCLOSE: 4183 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4184 break; 4185 4186 case SCTP_PEER_ADDR_PARAMS: 4187 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4188 break; 4189 4190 case SCTP_DELAYED_SACK: 4191 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4192 break; 4193 case SCTP_PARTIAL_DELIVERY_POINT: 4194 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4195 break; 4196 4197 case SCTP_INITMSG: 4198 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4199 break; 4200 case SCTP_DEFAULT_SEND_PARAM: 4201 retval = sctp_setsockopt_default_send_param(sk, optval, 4202 optlen); 4203 break; 4204 case SCTP_DEFAULT_SNDINFO: 4205 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4206 break; 4207 case SCTP_PRIMARY_ADDR: 4208 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4209 break; 4210 case SCTP_SET_PEER_PRIMARY_ADDR: 4211 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4212 break; 4213 case SCTP_NODELAY: 4214 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4215 break; 4216 case SCTP_RTOINFO: 4217 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4218 break; 4219 case SCTP_ASSOCINFO: 4220 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4221 break; 4222 case SCTP_I_WANT_MAPPED_V4_ADDR: 4223 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4224 break; 4225 case SCTP_MAXSEG: 4226 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4227 break; 4228 case SCTP_ADAPTATION_LAYER: 4229 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4230 break; 4231 case SCTP_CONTEXT: 4232 retval = sctp_setsockopt_context(sk, optval, optlen); 4233 break; 4234 case SCTP_FRAGMENT_INTERLEAVE: 4235 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4236 break; 4237 case SCTP_MAX_BURST: 4238 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4239 break; 4240 case SCTP_AUTH_CHUNK: 4241 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4242 break; 4243 case SCTP_HMAC_IDENT: 4244 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4245 break; 4246 case SCTP_AUTH_KEY: 4247 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4248 break; 4249 case SCTP_AUTH_ACTIVE_KEY: 4250 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4251 break; 4252 case SCTP_AUTH_DELETE_KEY: 4253 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4254 break; 4255 case SCTP_AUTO_ASCONF: 4256 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4257 break; 4258 case SCTP_PEER_ADDR_THLDS: 4259 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4260 break; 4261 case SCTP_RECVRCVINFO: 4262 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4263 break; 4264 case SCTP_RECVNXTINFO: 4265 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4266 break; 4267 case SCTP_PR_SUPPORTED: 4268 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4269 break; 4270 case SCTP_DEFAULT_PRINFO: 4271 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4272 break; 4273 case SCTP_RECONFIG_SUPPORTED: 4274 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4275 break; 4276 case SCTP_ENABLE_STREAM_RESET: 4277 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4278 break; 4279 case SCTP_RESET_STREAMS: 4280 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4281 break; 4282 case SCTP_RESET_ASSOC: 4283 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4284 break; 4285 case SCTP_ADD_STREAMS: 4286 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4287 break; 4288 case SCTP_STREAM_SCHEDULER: 4289 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4290 break; 4291 case SCTP_STREAM_SCHEDULER_VALUE: 4292 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4293 break; 4294 case SCTP_INTERLEAVING_SUPPORTED: 4295 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4296 optlen); 4297 break; 4298 default: 4299 retval = -ENOPROTOOPT; 4300 break; 4301 } 4302 4303 release_sock(sk); 4304 4305 out_nounlock: 4306 return retval; 4307 } 4308 4309 /* API 3.1.6 connect() - UDP Style Syntax 4310 * 4311 * An application may use the connect() call in the UDP model to initiate an 4312 * association without sending data. 4313 * 4314 * The syntax is: 4315 * 4316 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4317 * 4318 * sd: the socket descriptor to have a new association added to. 4319 * 4320 * nam: the address structure (either struct sockaddr_in or struct 4321 * sockaddr_in6 defined in RFC2553 [7]). 4322 * 4323 * len: the size of the address. 4324 */ 4325 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4326 int addr_len) 4327 { 4328 int err = 0; 4329 struct sctp_af *af; 4330 4331 lock_sock(sk); 4332 4333 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4334 addr, addr_len); 4335 4336 /* Validate addr_len before calling common connect/connectx routine. */ 4337 af = sctp_get_af_specific(addr->sa_family); 4338 if (!af || addr_len < af->sockaddr_len) { 4339 err = -EINVAL; 4340 } else { 4341 /* Pass correct addr len to common routine (so it knows there 4342 * is only one address being passed. 4343 */ 4344 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4345 } 4346 4347 release_sock(sk); 4348 return err; 4349 } 4350 4351 /* FIXME: Write comments. */ 4352 static int sctp_disconnect(struct sock *sk, int flags) 4353 { 4354 return -EOPNOTSUPP; /* STUB */ 4355 } 4356 4357 /* 4.1.4 accept() - TCP Style Syntax 4358 * 4359 * Applications use accept() call to remove an established SCTP 4360 * association from the accept queue of the endpoint. A new socket 4361 * descriptor will be returned from accept() to represent the newly 4362 * formed association. 4363 */ 4364 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4365 { 4366 struct sctp_sock *sp; 4367 struct sctp_endpoint *ep; 4368 struct sock *newsk = NULL; 4369 struct sctp_association *asoc; 4370 long timeo; 4371 int error = 0; 4372 4373 lock_sock(sk); 4374 4375 sp = sctp_sk(sk); 4376 ep = sp->ep; 4377 4378 if (!sctp_style(sk, TCP)) { 4379 error = -EOPNOTSUPP; 4380 goto out; 4381 } 4382 4383 if (!sctp_sstate(sk, LISTENING)) { 4384 error = -EINVAL; 4385 goto out; 4386 } 4387 4388 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4389 4390 error = sctp_wait_for_accept(sk, timeo); 4391 if (error) 4392 goto out; 4393 4394 /* We treat the list of associations on the endpoint as the accept 4395 * queue and pick the first association on the list. 4396 */ 4397 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4398 4399 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4400 if (!newsk) { 4401 error = -ENOMEM; 4402 goto out; 4403 } 4404 4405 /* Populate the fields of the newsk from the oldsk and migrate the 4406 * asoc to the newsk. 4407 */ 4408 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4409 4410 out: 4411 release_sock(sk); 4412 *err = error; 4413 return newsk; 4414 } 4415 4416 /* The SCTP ioctl handler. */ 4417 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4418 { 4419 int rc = -ENOTCONN; 4420 4421 lock_sock(sk); 4422 4423 /* 4424 * SEQPACKET-style sockets in LISTENING state are valid, for 4425 * SCTP, so only discard TCP-style sockets in LISTENING state. 4426 */ 4427 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4428 goto out; 4429 4430 switch (cmd) { 4431 case SIOCINQ: { 4432 struct sk_buff *skb; 4433 unsigned int amount = 0; 4434 4435 skb = skb_peek(&sk->sk_receive_queue); 4436 if (skb != NULL) { 4437 /* 4438 * We will only return the amount of this packet since 4439 * that is all that will be read. 4440 */ 4441 amount = skb->len; 4442 } 4443 rc = put_user(amount, (int __user *)arg); 4444 break; 4445 } 4446 default: 4447 rc = -ENOIOCTLCMD; 4448 break; 4449 } 4450 out: 4451 release_sock(sk); 4452 return rc; 4453 } 4454 4455 /* This is the function which gets called during socket creation to 4456 * initialized the SCTP-specific portion of the sock. 4457 * The sock structure should already be zero-filled memory. 4458 */ 4459 static int sctp_init_sock(struct sock *sk) 4460 { 4461 struct net *net = sock_net(sk); 4462 struct sctp_sock *sp; 4463 4464 pr_debug("%s: sk:%p\n", __func__, sk); 4465 4466 sp = sctp_sk(sk); 4467 4468 /* Initialize the SCTP per socket area. */ 4469 switch (sk->sk_type) { 4470 case SOCK_SEQPACKET: 4471 sp->type = SCTP_SOCKET_UDP; 4472 break; 4473 case SOCK_STREAM: 4474 sp->type = SCTP_SOCKET_TCP; 4475 break; 4476 default: 4477 return -ESOCKTNOSUPPORT; 4478 } 4479 4480 sk->sk_gso_type = SKB_GSO_SCTP; 4481 4482 /* Initialize default send parameters. These parameters can be 4483 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4484 */ 4485 sp->default_stream = 0; 4486 sp->default_ppid = 0; 4487 sp->default_flags = 0; 4488 sp->default_context = 0; 4489 sp->default_timetolive = 0; 4490 4491 sp->default_rcv_context = 0; 4492 sp->max_burst = net->sctp.max_burst; 4493 4494 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4495 4496 /* Initialize default setup parameters. These parameters 4497 * can be modified with the SCTP_INITMSG socket option or 4498 * overridden by the SCTP_INIT CMSG. 4499 */ 4500 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4501 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4502 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4503 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4504 4505 /* Initialize default RTO related parameters. These parameters can 4506 * be modified for with the SCTP_RTOINFO socket option. 4507 */ 4508 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4509 sp->rtoinfo.srto_max = net->sctp.rto_max; 4510 sp->rtoinfo.srto_min = net->sctp.rto_min; 4511 4512 /* Initialize default association related parameters. These parameters 4513 * can be modified with the SCTP_ASSOCINFO socket option. 4514 */ 4515 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4516 sp->assocparams.sasoc_number_peer_destinations = 0; 4517 sp->assocparams.sasoc_peer_rwnd = 0; 4518 sp->assocparams.sasoc_local_rwnd = 0; 4519 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4520 4521 /* Initialize default event subscriptions. By default, all the 4522 * options are off. 4523 */ 4524 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4525 4526 /* Default Peer Address Parameters. These defaults can 4527 * be modified via SCTP_PEER_ADDR_PARAMS 4528 */ 4529 sp->hbinterval = net->sctp.hb_interval; 4530 sp->pathmaxrxt = net->sctp.max_retrans_path; 4531 sp->pathmtu = 0; /* allow default discovery */ 4532 sp->sackdelay = net->sctp.sack_timeout; 4533 sp->sackfreq = 2; 4534 sp->param_flags = SPP_HB_ENABLE | 4535 SPP_PMTUD_ENABLE | 4536 SPP_SACKDELAY_ENABLE; 4537 4538 /* If enabled no SCTP message fragmentation will be performed. 4539 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4540 */ 4541 sp->disable_fragments = 0; 4542 4543 /* Enable Nagle algorithm by default. */ 4544 sp->nodelay = 0; 4545 4546 sp->recvrcvinfo = 0; 4547 sp->recvnxtinfo = 0; 4548 4549 /* Enable by default. */ 4550 sp->v4mapped = 1; 4551 4552 /* Auto-close idle associations after the configured 4553 * number of seconds. A value of 0 disables this 4554 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4555 * for UDP-style sockets only. 4556 */ 4557 sp->autoclose = 0; 4558 4559 /* User specified fragmentation limit. */ 4560 sp->user_frag = 0; 4561 4562 sp->adaptation_ind = 0; 4563 4564 sp->pf = sctp_get_pf_specific(sk->sk_family); 4565 4566 /* Control variables for partial data delivery. */ 4567 atomic_set(&sp->pd_mode, 0); 4568 skb_queue_head_init(&sp->pd_lobby); 4569 sp->frag_interleave = 0; 4570 4571 /* Create a per socket endpoint structure. Even if we 4572 * change the data structure relationships, this may still 4573 * be useful for storing pre-connect address information. 4574 */ 4575 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4576 if (!sp->ep) 4577 return -ENOMEM; 4578 4579 sp->hmac = NULL; 4580 4581 sk->sk_destruct = sctp_destruct_sock; 4582 4583 SCTP_DBG_OBJCNT_INC(sock); 4584 4585 local_bh_disable(); 4586 sk_sockets_allocated_inc(sk); 4587 sock_prot_inuse_add(net, sk->sk_prot, 1); 4588 4589 /* Nothing can fail after this block, otherwise 4590 * sctp_destroy_sock() will be called without addr_wq_lock held 4591 */ 4592 if (net->sctp.default_auto_asconf) { 4593 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4594 list_add_tail(&sp->auto_asconf_list, 4595 &net->sctp.auto_asconf_splist); 4596 sp->do_auto_asconf = 1; 4597 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4598 } else { 4599 sp->do_auto_asconf = 0; 4600 } 4601 4602 local_bh_enable(); 4603 4604 return 0; 4605 } 4606 4607 /* Cleanup any SCTP per socket resources. Must be called with 4608 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4609 */ 4610 static void sctp_destroy_sock(struct sock *sk) 4611 { 4612 struct sctp_sock *sp; 4613 4614 pr_debug("%s: sk:%p\n", __func__, sk); 4615 4616 /* Release our hold on the endpoint. */ 4617 sp = sctp_sk(sk); 4618 /* This could happen during socket init, thus we bail out 4619 * early, since the rest of the below is not setup either. 4620 */ 4621 if (sp->ep == NULL) 4622 return; 4623 4624 if (sp->do_auto_asconf) { 4625 sp->do_auto_asconf = 0; 4626 list_del(&sp->auto_asconf_list); 4627 } 4628 sctp_endpoint_free(sp->ep); 4629 local_bh_disable(); 4630 sk_sockets_allocated_dec(sk); 4631 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4632 local_bh_enable(); 4633 } 4634 4635 /* Triggered when there are no references on the socket anymore */ 4636 static void sctp_destruct_sock(struct sock *sk) 4637 { 4638 struct sctp_sock *sp = sctp_sk(sk); 4639 4640 /* Free up the HMAC transform. */ 4641 crypto_free_shash(sp->hmac); 4642 4643 inet_sock_destruct(sk); 4644 } 4645 4646 /* API 4.1.7 shutdown() - TCP Style Syntax 4647 * int shutdown(int socket, int how); 4648 * 4649 * sd - the socket descriptor of the association to be closed. 4650 * how - Specifies the type of shutdown. The values are 4651 * as follows: 4652 * SHUT_RD 4653 * Disables further receive operations. No SCTP 4654 * protocol action is taken. 4655 * SHUT_WR 4656 * Disables further send operations, and initiates 4657 * the SCTP shutdown sequence. 4658 * SHUT_RDWR 4659 * Disables further send and receive operations 4660 * and initiates the SCTP shutdown sequence. 4661 */ 4662 static void sctp_shutdown(struct sock *sk, int how) 4663 { 4664 struct net *net = sock_net(sk); 4665 struct sctp_endpoint *ep; 4666 4667 if (!sctp_style(sk, TCP)) 4668 return; 4669 4670 ep = sctp_sk(sk)->ep; 4671 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4672 struct sctp_association *asoc; 4673 4674 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4675 asoc = list_entry(ep->asocs.next, 4676 struct sctp_association, asocs); 4677 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4678 } 4679 } 4680 4681 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4682 struct sctp_info *info) 4683 { 4684 struct sctp_transport *prim; 4685 struct list_head *pos; 4686 int mask; 4687 4688 memset(info, 0, sizeof(*info)); 4689 if (!asoc) { 4690 struct sctp_sock *sp = sctp_sk(sk); 4691 4692 info->sctpi_s_autoclose = sp->autoclose; 4693 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4694 info->sctpi_s_pd_point = sp->pd_point; 4695 info->sctpi_s_nodelay = sp->nodelay; 4696 info->sctpi_s_disable_fragments = sp->disable_fragments; 4697 info->sctpi_s_v4mapped = sp->v4mapped; 4698 info->sctpi_s_frag_interleave = sp->frag_interleave; 4699 info->sctpi_s_type = sp->type; 4700 4701 return 0; 4702 } 4703 4704 info->sctpi_tag = asoc->c.my_vtag; 4705 info->sctpi_state = asoc->state; 4706 info->sctpi_rwnd = asoc->a_rwnd; 4707 info->sctpi_unackdata = asoc->unack_data; 4708 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4709 info->sctpi_instrms = asoc->stream.incnt; 4710 info->sctpi_outstrms = asoc->stream.outcnt; 4711 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4712 info->sctpi_inqueue++; 4713 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4714 info->sctpi_outqueue++; 4715 info->sctpi_overall_error = asoc->overall_error_count; 4716 info->sctpi_max_burst = asoc->max_burst; 4717 info->sctpi_maxseg = asoc->frag_point; 4718 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4719 info->sctpi_peer_tag = asoc->c.peer_vtag; 4720 4721 mask = asoc->peer.ecn_capable << 1; 4722 mask = (mask | asoc->peer.ipv4_address) << 1; 4723 mask = (mask | asoc->peer.ipv6_address) << 1; 4724 mask = (mask | asoc->peer.hostname_address) << 1; 4725 mask = (mask | asoc->peer.asconf_capable) << 1; 4726 mask = (mask | asoc->peer.prsctp_capable) << 1; 4727 mask = (mask | asoc->peer.auth_capable); 4728 info->sctpi_peer_capable = mask; 4729 mask = asoc->peer.sack_needed << 1; 4730 mask = (mask | asoc->peer.sack_generation) << 1; 4731 mask = (mask | asoc->peer.zero_window_announced); 4732 info->sctpi_peer_sack = mask; 4733 4734 info->sctpi_isacks = asoc->stats.isacks; 4735 info->sctpi_osacks = asoc->stats.osacks; 4736 info->sctpi_opackets = asoc->stats.opackets; 4737 info->sctpi_ipackets = asoc->stats.ipackets; 4738 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4739 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4740 info->sctpi_idupchunks = asoc->stats.idupchunks; 4741 info->sctpi_gapcnt = asoc->stats.gapcnt; 4742 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4743 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4744 info->sctpi_oodchunks = asoc->stats.oodchunks; 4745 info->sctpi_iodchunks = asoc->stats.iodchunks; 4746 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4747 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4748 4749 prim = asoc->peer.primary_path; 4750 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4751 info->sctpi_p_state = prim->state; 4752 info->sctpi_p_cwnd = prim->cwnd; 4753 info->sctpi_p_srtt = prim->srtt; 4754 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4755 info->sctpi_p_hbinterval = prim->hbinterval; 4756 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4757 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4758 info->sctpi_p_ssthresh = prim->ssthresh; 4759 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4760 info->sctpi_p_flight_size = prim->flight_size; 4761 info->sctpi_p_error = prim->error_count; 4762 4763 return 0; 4764 } 4765 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4766 4767 /* use callback to avoid exporting the core structure */ 4768 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4769 { 4770 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4771 4772 rhashtable_walk_start(iter); 4773 } 4774 4775 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4776 { 4777 rhashtable_walk_stop(iter); 4778 rhashtable_walk_exit(iter); 4779 } 4780 4781 struct sctp_transport *sctp_transport_get_next(struct net *net, 4782 struct rhashtable_iter *iter) 4783 { 4784 struct sctp_transport *t; 4785 4786 t = rhashtable_walk_next(iter); 4787 for (; t; t = rhashtable_walk_next(iter)) { 4788 if (IS_ERR(t)) { 4789 if (PTR_ERR(t) == -EAGAIN) 4790 continue; 4791 break; 4792 } 4793 4794 if (net_eq(sock_net(t->asoc->base.sk), net) && 4795 t->asoc->peer.primary_path == t) 4796 break; 4797 } 4798 4799 return t; 4800 } 4801 4802 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4803 struct rhashtable_iter *iter, 4804 int pos) 4805 { 4806 void *obj = SEQ_START_TOKEN; 4807 4808 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4809 !IS_ERR(obj)) 4810 pos--; 4811 4812 return obj; 4813 } 4814 4815 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4816 void *p) { 4817 int err = 0; 4818 int hash = 0; 4819 struct sctp_ep_common *epb; 4820 struct sctp_hashbucket *head; 4821 4822 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4823 hash++, head++) { 4824 read_lock_bh(&head->lock); 4825 sctp_for_each_hentry(epb, &head->chain) { 4826 err = cb(sctp_ep(epb), p); 4827 if (err) 4828 break; 4829 } 4830 read_unlock_bh(&head->lock); 4831 } 4832 4833 return err; 4834 } 4835 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4836 4837 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4838 struct net *net, 4839 const union sctp_addr *laddr, 4840 const union sctp_addr *paddr, void *p) 4841 { 4842 struct sctp_transport *transport; 4843 int err; 4844 4845 rcu_read_lock(); 4846 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4847 rcu_read_unlock(); 4848 if (!transport) 4849 return -ENOENT; 4850 4851 err = cb(transport, p); 4852 sctp_transport_put(transport); 4853 4854 return err; 4855 } 4856 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4857 4858 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4859 int (*cb_done)(struct sctp_transport *, void *), 4860 struct net *net, int *pos, void *p) { 4861 struct rhashtable_iter hti; 4862 struct sctp_transport *tsp; 4863 int ret; 4864 4865 again: 4866 ret = 0; 4867 sctp_transport_walk_start(&hti); 4868 4869 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4870 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4871 if (!sctp_transport_hold(tsp)) 4872 continue; 4873 ret = cb(tsp, p); 4874 if (ret) 4875 break; 4876 (*pos)++; 4877 sctp_transport_put(tsp); 4878 } 4879 sctp_transport_walk_stop(&hti); 4880 4881 if (ret) { 4882 if (cb_done && !cb_done(tsp, p)) { 4883 (*pos)++; 4884 sctp_transport_put(tsp); 4885 goto again; 4886 } 4887 sctp_transport_put(tsp); 4888 } 4889 4890 return ret; 4891 } 4892 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4893 4894 /* 7.2.1 Association Status (SCTP_STATUS) 4895 4896 * Applications can retrieve current status information about an 4897 * association, including association state, peer receiver window size, 4898 * number of unacked data chunks, and number of data chunks pending 4899 * receipt. This information is read-only. 4900 */ 4901 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4902 char __user *optval, 4903 int __user *optlen) 4904 { 4905 struct sctp_status status; 4906 struct sctp_association *asoc = NULL; 4907 struct sctp_transport *transport; 4908 sctp_assoc_t associd; 4909 int retval = 0; 4910 4911 if (len < sizeof(status)) { 4912 retval = -EINVAL; 4913 goto out; 4914 } 4915 4916 len = sizeof(status); 4917 if (copy_from_user(&status, optval, len)) { 4918 retval = -EFAULT; 4919 goto out; 4920 } 4921 4922 associd = status.sstat_assoc_id; 4923 asoc = sctp_id2assoc(sk, associd); 4924 if (!asoc) { 4925 retval = -EINVAL; 4926 goto out; 4927 } 4928 4929 transport = asoc->peer.primary_path; 4930 4931 status.sstat_assoc_id = sctp_assoc2id(asoc); 4932 status.sstat_state = sctp_assoc_to_state(asoc); 4933 status.sstat_rwnd = asoc->peer.rwnd; 4934 status.sstat_unackdata = asoc->unack_data; 4935 4936 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4937 status.sstat_instrms = asoc->stream.incnt; 4938 status.sstat_outstrms = asoc->stream.outcnt; 4939 status.sstat_fragmentation_point = asoc->frag_point; 4940 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4941 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4942 transport->af_specific->sockaddr_len); 4943 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4944 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4945 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4946 status.sstat_primary.spinfo_state = transport->state; 4947 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4948 status.sstat_primary.spinfo_srtt = transport->srtt; 4949 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4950 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4951 4952 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4953 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4954 4955 if (put_user(len, optlen)) { 4956 retval = -EFAULT; 4957 goto out; 4958 } 4959 4960 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4961 __func__, len, status.sstat_state, status.sstat_rwnd, 4962 status.sstat_assoc_id); 4963 4964 if (copy_to_user(optval, &status, len)) { 4965 retval = -EFAULT; 4966 goto out; 4967 } 4968 4969 out: 4970 return retval; 4971 } 4972 4973 4974 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4975 * 4976 * Applications can retrieve information about a specific peer address 4977 * of an association, including its reachability state, congestion 4978 * window, and retransmission timer values. This information is 4979 * read-only. 4980 */ 4981 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4982 char __user *optval, 4983 int __user *optlen) 4984 { 4985 struct sctp_paddrinfo pinfo; 4986 struct sctp_transport *transport; 4987 int retval = 0; 4988 4989 if (len < sizeof(pinfo)) { 4990 retval = -EINVAL; 4991 goto out; 4992 } 4993 4994 len = sizeof(pinfo); 4995 if (copy_from_user(&pinfo, optval, len)) { 4996 retval = -EFAULT; 4997 goto out; 4998 } 4999 5000 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5001 pinfo.spinfo_assoc_id); 5002 if (!transport) 5003 return -EINVAL; 5004 5005 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5006 pinfo.spinfo_state = transport->state; 5007 pinfo.spinfo_cwnd = transport->cwnd; 5008 pinfo.spinfo_srtt = transport->srtt; 5009 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5010 pinfo.spinfo_mtu = transport->pathmtu; 5011 5012 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5013 pinfo.spinfo_state = SCTP_ACTIVE; 5014 5015 if (put_user(len, optlen)) { 5016 retval = -EFAULT; 5017 goto out; 5018 } 5019 5020 if (copy_to_user(optval, &pinfo, len)) { 5021 retval = -EFAULT; 5022 goto out; 5023 } 5024 5025 out: 5026 return retval; 5027 } 5028 5029 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5030 * 5031 * This option is a on/off flag. If enabled no SCTP message 5032 * fragmentation will be performed. Instead if a message being sent 5033 * exceeds the current PMTU size, the message will NOT be sent and 5034 * instead a error will be indicated to the user. 5035 */ 5036 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5037 char __user *optval, int __user *optlen) 5038 { 5039 int val; 5040 5041 if (len < sizeof(int)) 5042 return -EINVAL; 5043 5044 len = sizeof(int); 5045 val = (sctp_sk(sk)->disable_fragments == 1); 5046 if (put_user(len, optlen)) 5047 return -EFAULT; 5048 if (copy_to_user(optval, &val, len)) 5049 return -EFAULT; 5050 return 0; 5051 } 5052 5053 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5054 * 5055 * This socket option is used to specify various notifications and 5056 * ancillary data the user wishes to receive. 5057 */ 5058 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5059 int __user *optlen) 5060 { 5061 if (len == 0) 5062 return -EINVAL; 5063 if (len > sizeof(struct sctp_event_subscribe)) 5064 len = sizeof(struct sctp_event_subscribe); 5065 if (put_user(len, optlen)) 5066 return -EFAULT; 5067 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5068 return -EFAULT; 5069 return 0; 5070 } 5071 5072 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5073 * 5074 * This socket option is applicable to the UDP-style socket only. When 5075 * set it will cause associations that are idle for more than the 5076 * specified number of seconds to automatically close. An association 5077 * being idle is defined an association that has NOT sent or received 5078 * user data. The special value of '0' indicates that no automatic 5079 * close of any associations should be performed. The option expects an 5080 * integer defining the number of seconds of idle time before an 5081 * association is closed. 5082 */ 5083 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5084 { 5085 /* Applicable to UDP-style socket only */ 5086 if (sctp_style(sk, TCP)) 5087 return -EOPNOTSUPP; 5088 if (len < sizeof(int)) 5089 return -EINVAL; 5090 len = sizeof(int); 5091 if (put_user(len, optlen)) 5092 return -EFAULT; 5093 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 5094 return -EFAULT; 5095 return 0; 5096 } 5097 5098 /* Helper routine to branch off an association to a new socket. */ 5099 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5100 { 5101 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5102 struct sctp_sock *sp = sctp_sk(sk); 5103 struct socket *sock; 5104 int err = 0; 5105 5106 /* Do not peel off from one netns to another one. */ 5107 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5108 return -EINVAL; 5109 5110 if (!asoc) 5111 return -EINVAL; 5112 5113 /* An association cannot be branched off from an already peeled-off 5114 * socket, nor is this supported for tcp style sockets. 5115 */ 5116 if (!sctp_style(sk, UDP)) 5117 return -EINVAL; 5118 5119 /* Create a new socket. */ 5120 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5121 if (err < 0) 5122 return err; 5123 5124 sctp_copy_sock(sock->sk, sk, asoc); 5125 5126 /* Make peeled-off sockets more like 1-1 accepted sockets. 5127 * Set the daddr and initialize id to something more random 5128 */ 5129 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5130 5131 /* Populate the fields of the newsk from the oldsk and migrate the 5132 * asoc to the newsk. 5133 */ 5134 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5135 5136 *sockp = sock; 5137 5138 return err; 5139 } 5140 EXPORT_SYMBOL(sctp_do_peeloff); 5141 5142 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5143 struct file **newfile, unsigned flags) 5144 { 5145 struct socket *newsock; 5146 int retval; 5147 5148 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5149 if (retval < 0) 5150 goto out; 5151 5152 /* Map the socket to an unused fd that can be returned to the user. */ 5153 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5154 if (retval < 0) { 5155 sock_release(newsock); 5156 goto out; 5157 } 5158 5159 *newfile = sock_alloc_file(newsock, 0, NULL); 5160 if (IS_ERR(*newfile)) { 5161 put_unused_fd(retval); 5162 retval = PTR_ERR(*newfile); 5163 *newfile = NULL; 5164 return retval; 5165 } 5166 5167 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5168 retval); 5169 5170 peeloff->sd = retval; 5171 5172 if (flags & SOCK_NONBLOCK) 5173 (*newfile)->f_flags |= O_NONBLOCK; 5174 out: 5175 return retval; 5176 } 5177 5178 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5179 { 5180 sctp_peeloff_arg_t peeloff; 5181 struct file *newfile = NULL; 5182 int retval = 0; 5183 5184 if (len < sizeof(sctp_peeloff_arg_t)) 5185 return -EINVAL; 5186 len = sizeof(sctp_peeloff_arg_t); 5187 if (copy_from_user(&peeloff, optval, len)) 5188 return -EFAULT; 5189 5190 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5191 if (retval < 0) 5192 goto out; 5193 5194 /* Return the fd mapped to the new socket. */ 5195 if (put_user(len, optlen)) { 5196 fput(newfile); 5197 put_unused_fd(retval); 5198 return -EFAULT; 5199 } 5200 5201 if (copy_to_user(optval, &peeloff, len)) { 5202 fput(newfile); 5203 put_unused_fd(retval); 5204 return -EFAULT; 5205 } 5206 fd_install(retval, newfile); 5207 out: 5208 return retval; 5209 } 5210 5211 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5212 char __user *optval, int __user *optlen) 5213 { 5214 sctp_peeloff_flags_arg_t peeloff; 5215 struct file *newfile = NULL; 5216 int retval = 0; 5217 5218 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5219 return -EINVAL; 5220 len = sizeof(sctp_peeloff_flags_arg_t); 5221 if (copy_from_user(&peeloff, optval, len)) 5222 return -EFAULT; 5223 5224 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5225 &newfile, peeloff.flags); 5226 if (retval < 0) 5227 goto out; 5228 5229 /* Return the fd mapped to the new socket. */ 5230 if (put_user(len, optlen)) { 5231 fput(newfile); 5232 put_unused_fd(retval); 5233 return -EFAULT; 5234 } 5235 5236 if (copy_to_user(optval, &peeloff, len)) { 5237 fput(newfile); 5238 put_unused_fd(retval); 5239 return -EFAULT; 5240 } 5241 fd_install(retval, newfile); 5242 out: 5243 return retval; 5244 } 5245 5246 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5247 * 5248 * Applications can enable or disable heartbeats for any peer address of 5249 * an association, modify an address's heartbeat interval, force a 5250 * heartbeat to be sent immediately, and adjust the address's maximum 5251 * number of retransmissions sent before an address is considered 5252 * unreachable. The following structure is used to access and modify an 5253 * address's parameters: 5254 * 5255 * struct sctp_paddrparams { 5256 * sctp_assoc_t spp_assoc_id; 5257 * struct sockaddr_storage spp_address; 5258 * uint32_t spp_hbinterval; 5259 * uint16_t spp_pathmaxrxt; 5260 * uint32_t spp_pathmtu; 5261 * uint32_t spp_sackdelay; 5262 * uint32_t spp_flags; 5263 * }; 5264 * 5265 * spp_assoc_id - (one-to-many style socket) This is filled in the 5266 * application, and identifies the association for 5267 * this query. 5268 * spp_address - This specifies which address is of interest. 5269 * spp_hbinterval - This contains the value of the heartbeat interval, 5270 * in milliseconds. If a value of zero 5271 * is present in this field then no changes are to 5272 * be made to this parameter. 5273 * spp_pathmaxrxt - This contains the maximum number of 5274 * retransmissions before this address shall be 5275 * considered unreachable. If a value of zero 5276 * is present in this field then no changes are to 5277 * be made to this parameter. 5278 * spp_pathmtu - When Path MTU discovery is disabled the value 5279 * specified here will be the "fixed" path mtu. 5280 * Note that if the spp_address field is empty 5281 * then all associations on this address will 5282 * have this fixed path mtu set upon them. 5283 * 5284 * spp_sackdelay - When delayed sack is enabled, this value specifies 5285 * the number of milliseconds that sacks will be delayed 5286 * for. This value will apply to all addresses of an 5287 * association if the spp_address field is empty. Note 5288 * also, that if delayed sack is enabled and this 5289 * value is set to 0, no change is made to the last 5290 * recorded delayed sack timer value. 5291 * 5292 * spp_flags - These flags are used to control various features 5293 * on an association. The flag field may contain 5294 * zero or more of the following options. 5295 * 5296 * SPP_HB_ENABLE - Enable heartbeats on the 5297 * specified address. Note that if the address 5298 * field is empty all addresses for the association 5299 * have heartbeats enabled upon them. 5300 * 5301 * SPP_HB_DISABLE - Disable heartbeats on the 5302 * speicifed address. Note that if the address 5303 * field is empty all addresses for the association 5304 * will have their heartbeats disabled. Note also 5305 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5306 * mutually exclusive, only one of these two should 5307 * be specified. Enabling both fields will have 5308 * undetermined results. 5309 * 5310 * SPP_HB_DEMAND - Request a user initiated heartbeat 5311 * to be made immediately. 5312 * 5313 * SPP_PMTUD_ENABLE - This field will enable PMTU 5314 * discovery upon the specified address. Note that 5315 * if the address feild is empty then all addresses 5316 * on the association are effected. 5317 * 5318 * SPP_PMTUD_DISABLE - This field will disable PMTU 5319 * discovery upon the specified address. Note that 5320 * if the address feild is empty then all addresses 5321 * on the association are effected. Not also that 5322 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5323 * exclusive. Enabling both will have undetermined 5324 * results. 5325 * 5326 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5327 * on delayed sack. The time specified in spp_sackdelay 5328 * is used to specify the sack delay for this address. Note 5329 * that if spp_address is empty then all addresses will 5330 * enable delayed sack and take on the sack delay 5331 * value specified in spp_sackdelay. 5332 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5333 * off delayed sack. If the spp_address field is blank then 5334 * delayed sack is disabled for the entire association. Note 5335 * also that this field is mutually exclusive to 5336 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5337 * results. 5338 */ 5339 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5340 char __user *optval, int __user *optlen) 5341 { 5342 struct sctp_paddrparams params; 5343 struct sctp_transport *trans = NULL; 5344 struct sctp_association *asoc = NULL; 5345 struct sctp_sock *sp = sctp_sk(sk); 5346 5347 if (len < sizeof(struct sctp_paddrparams)) 5348 return -EINVAL; 5349 len = sizeof(struct sctp_paddrparams); 5350 if (copy_from_user(¶ms, optval, len)) 5351 return -EFAULT; 5352 5353 /* If an address other than INADDR_ANY is specified, and 5354 * no transport is found, then the request is invalid. 5355 */ 5356 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5357 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5358 params.spp_assoc_id); 5359 if (!trans) { 5360 pr_debug("%s: failed no transport\n", __func__); 5361 return -EINVAL; 5362 } 5363 } 5364 5365 /* Get association, if assoc_id != 0 and the socket is a one 5366 * to many style socket, and an association was not found, then 5367 * the id was invalid. 5368 */ 5369 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5370 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5371 pr_debug("%s: failed no association\n", __func__); 5372 return -EINVAL; 5373 } 5374 5375 if (trans) { 5376 /* Fetch transport values. */ 5377 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5378 params.spp_pathmtu = trans->pathmtu; 5379 params.spp_pathmaxrxt = trans->pathmaxrxt; 5380 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5381 5382 /*draft-11 doesn't say what to return in spp_flags*/ 5383 params.spp_flags = trans->param_flags; 5384 } else if (asoc) { 5385 /* Fetch association values. */ 5386 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5387 params.spp_pathmtu = asoc->pathmtu; 5388 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5389 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5390 5391 /*draft-11 doesn't say what to return in spp_flags*/ 5392 params.spp_flags = asoc->param_flags; 5393 } else { 5394 /* Fetch socket values. */ 5395 params.spp_hbinterval = sp->hbinterval; 5396 params.spp_pathmtu = sp->pathmtu; 5397 params.spp_sackdelay = sp->sackdelay; 5398 params.spp_pathmaxrxt = sp->pathmaxrxt; 5399 5400 /*draft-11 doesn't say what to return in spp_flags*/ 5401 params.spp_flags = sp->param_flags; 5402 } 5403 5404 if (copy_to_user(optval, ¶ms, len)) 5405 return -EFAULT; 5406 5407 if (put_user(len, optlen)) 5408 return -EFAULT; 5409 5410 return 0; 5411 } 5412 5413 /* 5414 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5415 * 5416 * This option will effect the way delayed acks are performed. This 5417 * option allows you to get or set the delayed ack time, in 5418 * milliseconds. It also allows changing the delayed ack frequency. 5419 * Changing the frequency to 1 disables the delayed sack algorithm. If 5420 * the assoc_id is 0, then this sets or gets the endpoints default 5421 * values. If the assoc_id field is non-zero, then the set or get 5422 * effects the specified association for the one to many model (the 5423 * assoc_id field is ignored by the one to one model). Note that if 5424 * sack_delay or sack_freq are 0 when setting this option, then the 5425 * current values will remain unchanged. 5426 * 5427 * struct sctp_sack_info { 5428 * sctp_assoc_t sack_assoc_id; 5429 * uint32_t sack_delay; 5430 * uint32_t sack_freq; 5431 * }; 5432 * 5433 * sack_assoc_id - This parameter, indicates which association the user 5434 * is performing an action upon. Note that if this field's value is 5435 * zero then the endpoints default value is changed (effecting future 5436 * associations only). 5437 * 5438 * sack_delay - This parameter contains the number of milliseconds that 5439 * the user is requesting the delayed ACK timer be set to. Note that 5440 * this value is defined in the standard to be between 200 and 500 5441 * milliseconds. 5442 * 5443 * sack_freq - This parameter contains the number of packets that must 5444 * be received before a sack is sent without waiting for the delay 5445 * timer to expire. The default value for this is 2, setting this 5446 * value to 1 will disable the delayed sack algorithm. 5447 */ 5448 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5449 char __user *optval, 5450 int __user *optlen) 5451 { 5452 struct sctp_sack_info params; 5453 struct sctp_association *asoc = NULL; 5454 struct sctp_sock *sp = sctp_sk(sk); 5455 5456 if (len >= sizeof(struct sctp_sack_info)) { 5457 len = sizeof(struct sctp_sack_info); 5458 5459 if (copy_from_user(¶ms, optval, len)) 5460 return -EFAULT; 5461 } else if (len == sizeof(struct sctp_assoc_value)) { 5462 pr_warn_ratelimited(DEPRECATED 5463 "%s (pid %d) " 5464 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5465 "Use struct sctp_sack_info instead\n", 5466 current->comm, task_pid_nr(current)); 5467 if (copy_from_user(¶ms, optval, len)) 5468 return -EFAULT; 5469 } else 5470 return -EINVAL; 5471 5472 /* Get association, if sack_assoc_id != 0 and the socket is a one 5473 * to many style socket, and an association was not found, then 5474 * the id was invalid. 5475 */ 5476 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5477 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5478 return -EINVAL; 5479 5480 if (asoc) { 5481 /* Fetch association values. */ 5482 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5483 params.sack_delay = jiffies_to_msecs( 5484 asoc->sackdelay); 5485 params.sack_freq = asoc->sackfreq; 5486 5487 } else { 5488 params.sack_delay = 0; 5489 params.sack_freq = 1; 5490 } 5491 } else { 5492 /* Fetch socket values. */ 5493 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5494 params.sack_delay = sp->sackdelay; 5495 params.sack_freq = sp->sackfreq; 5496 } else { 5497 params.sack_delay = 0; 5498 params.sack_freq = 1; 5499 } 5500 } 5501 5502 if (copy_to_user(optval, ¶ms, len)) 5503 return -EFAULT; 5504 5505 if (put_user(len, optlen)) 5506 return -EFAULT; 5507 5508 return 0; 5509 } 5510 5511 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5512 * 5513 * Applications can specify protocol parameters for the default association 5514 * initialization. The option name argument to setsockopt() and getsockopt() 5515 * is SCTP_INITMSG. 5516 * 5517 * Setting initialization parameters is effective only on an unconnected 5518 * socket (for UDP-style sockets only future associations are effected 5519 * by the change). With TCP-style sockets, this option is inherited by 5520 * sockets derived from a listener socket. 5521 */ 5522 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5523 { 5524 if (len < sizeof(struct sctp_initmsg)) 5525 return -EINVAL; 5526 len = sizeof(struct sctp_initmsg); 5527 if (put_user(len, optlen)) 5528 return -EFAULT; 5529 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5530 return -EFAULT; 5531 return 0; 5532 } 5533 5534 5535 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5536 char __user *optval, int __user *optlen) 5537 { 5538 struct sctp_association *asoc; 5539 int cnt = 0; 5540 struct sctp_getaddrs getaddrs; 5541 struct sctp_transport *from; 5542 void __user *to; 5543 union sctp_addr temp; 5544 struct sctp_sock *sp = sctp_sk(sk); 5545 int addrlen; 5546 size_t space_left; 5547 int bytes_copied; 5548 5549 if (len < sizeof(struct sctp_getaddrs)) 5550 return -EINVAL; 5551 5552 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5553 return -EFAULT; 5554 5555 /* For UDP-style sockets, id specifies the association to query. */ 5556 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5557 if (!asoc) 5558 return -EINVAL; 5559 5560 to = optval + offsetof(struct sctp_getaddrs, addrs); 5561 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5562 5563 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5564 transports) { 5565 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5566 addrlen = sctp_get_pf_specific(sk->sk_family) 5567 ->addr_to_user(sp, &temp); 5568 if (space_left < addrlen) 5569 return -ENOMEM; 5570 if (copy_to_user(to, &temp, addrlen)) 5571 return -EFAULT; 5572 to += addrlen; 5573 cnt++; 5574 space_left -= addrlen; 5575 } 5576 5577 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5578 return -EFAULT; 5579 bytes_copied = ((char __user *)to) - optval; 5580 if (put_user(bytes_copied, optlen)) 5581 return -EFAULT; 5582 5583 return 0; 5584 } 5585 5586 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5587 size_t space_left, int *bytes_copied) 5588 { 5589 struct sctp_sockaddr_entry *addr; 5590 union sctp_addr temp; 5591 int cnt = 0; 5592 int addrlen; 5593 struct net *net = sock_net(sk); 5594 5595 rcu_read_lock(); 5596 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5597 if (!addr->valid) 5598 continue; 5599 5600 if ((PF_INET == sk->sk_family) && 5601 (AF_INET6 == addr->a.sa.sa_family)) 5602 continue; 5603 if ((PF_INET6 == sk->sk_family) && 5604 inet_v6_ipv6only(sk) && 5605 (AF_INET == addr->a.sa.sa_family)) 5606 continue; 5607 memcpy(&temp, &addr->a, sizeof(temp)); 5608 if (!temp.v4.sin_port) 5609 temp.v4.sin_port = htons(port); 5610 5611 addrlen = sctp_get_pf_specific(sk->sk_family) 5612 ->addr_to_user(sctp_sk(sk), &temp); 5613 5614 if (space_left < addrlen) { 5615 cnt = -ENOMEM; 5616 break; 5617 } 5618 memcpy(to, &temp, addrlen); 5619 5620 to += addrlen; 5621 cnt++; 5622 space_left -= addrlen; 5623 *bytes_copied += addrlen; 5624 } 5625 rcu_read_unlock(); 5626 5627 return cnt; 5628 } 5629 5630 5631 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5632 char __user *optval, int __user *optlen) 5633 { 5634 struct sctp_bind_addr *bp; 5635 struct sctp_association *asoc; 5636 int cnt = 0; 5637 struct sctp_getaddrs getaddrs; 5638 struct sctp_sockaddr_entry *addr; 5639 void __user *to; 5640 union sctp_addr temp; 5641 struct sctp_sock *sp = sctp_sk(sk); 5642 int addrlen; 5643 int err = 0; 5644 size_t space_left; 5645 int bytes_copied = 0; 5646 void *addrs; 5647 void *buf; 5648 5649 if (len < sizeof(struct sctp_getaddrs)) 5650 return -EINVAL; 5651 5652 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5653 return -EFAULT; 5654 5655 /* 5656 * For UDP-style sockets, id specifies the association to query. 5657 * If the id field is set to the value '0' then the locally bound 5658 * addresses are returned without regard to any particular 5659 * association. 5660 */ 5661 if (0 == getaddrs.assoc_id) { 5662 bp = &sctp_sk(sk)->ep->base.bind_addr; 5663 } else { 5664 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5665 if (!asoc) 5666 return -EINVAL; 5667 bp = &asoc->base.bind_addr; 5668 } 5669 5670 to = optval + offsetof(struct sctp_getaddrs, addrs); 5671 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5672 5673 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5674 if (!addrs) 5675 return -ENOMEM; 5676 5677 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5678 * addresses from the global local address list. 5679 */ 5680 if (sctp_list_single_entry(&bp->address_list)) { 5681 addr = list_entry(bp->address_list.next, 5682 struct sctp_sockaddr_entry, list); 5683 if (sctp_is_any(sk, &addr->a)) { 5684 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5685 space_left, &bytes_copied); 5686 if (cnt < 0) { 5687 err = cnt; 5688 goto out; 5689 } 5690 goto copy_getaddrs; 5691 } 5692 } 5693 5694 buf = addrs; 5695 /* Protection on the bound address list is not needed since 5696 * in the socket option context we hold a socket lock and 5697 * thus the bound address list can't change. 5698 */ 5699 list_for_each_entry(addr, &bp->address_list, list) { 5700 memcpy(&temp, &addr->a, sizeof(temp)); 5701 addrlen = sctp_get_pf_specific(sk->sk_family) 5702 ->addr_to_user(sp, &temp); 5703 if (space_left < addrlen) { 5704 err = -ENOMEM; /*fixme: right error?*/ 5705 goto out; 5706 } 5707 memcpy(buf, &temp, addrlen); 5708 buf += addrlen; 5709 bytes_copied += addrlen; 5710 cnt++; 5711 space_left -= addrlen; 5712 } 5713 5714 copy_getaddrs: 5715 if (copy_to_user(to, addrs, bytes_copied)) { 5716 err = -EFAULT; 5717 goto out; 5718 } 5719 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5720 err = -EFAULT; 5721 goto out; 5722 } 5723 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5724 * but we can't change it anymore. 5725 */ 5726 if (put_user(bytes_copied, optlen)) 5727 err = -EFAULT; 5728 out: 5729 kfree(addrs); 5730 return err; 5731 } 5732 5733 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5734 * 5735 * Requests that the local SCTP stack use the enclosed peer address as 5736 * the association primary. The enclosed address must be one of the 5737 * association peer's addresses. 5738 */ 5739 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5740 char __user *optval, int __user *optlen) 5741 { 5742 struct sctp_prim prim; 5743 struct sctp_association *asoc; 5744 struct sctp_sock *sp = sctp_sk(sk); 5745 5746 if (len < sizeof(struct sctp_prim)) 5747 return -EINVAL; 5748 5749 len = sizeof(struct sctp_prim); 5750 5751 if (copy_from_user(&prim, optval, len)) 5752 return -EFAULT; 5753 5754 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5755 if (!asoc) 5756 return -EINVAL; 5757 5758 if (!asoc->peer.primary_path) 5759 return -ENOTCONN; 5760 5761 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5762 asoc->peer.primary_path->af_specific->sockaddr_len); 5763 5764 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5765 (union sctp_addr *)&prim.ssp_addr); 5766 5767 if (put_user(len, optlen)) 5768 return -EFAULT; 5769 if (copy_to_user(optval, &prim, len)) 5770 return -EFAULT; 5771 5772 return 0; 5773 } 5774 5775 /* 5776 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5777 * 5778 * Requests that the local endpoint set the specified Adaptation Layer 5779 * Indication parameter for all future INIT and INIT-ACK exchanges. 5780 */ 5781 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5782 char __user *optval, int __user *optlen) 5783 { 5784 struct sctp_setadaptation adaptation; 5785 5786 if (len < sizeof(struct sctp_setadaptation)) 5787 return -EINVAL; 5788 5789 len = sizeof(struct sctp_setadaptation); 5790 5791 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5792 5793 if (put_user(len, optlen)) 5794 return -EFAULT; 5795 if (copy_to_user(optval, &adaptation, len)) 5796 return -EFAULT; 5797 5798 return 0; 5799 } 5800 5801 /* 5802 * 5803 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5804 * 5805 * Applications that wish to use the sendto() system call may wish to 5806 * specify a default set of parameters that would normally be supplied 5807 * through the inclusion of ancillary data. This socket option allows 5808 * such an application to set the default sctp_sndrcvinfo structure. 5809 5810 5811 * The application that wishes to use this socket option simply passes 5812 * in to this call the sctp_sndrcvinfo structure defined in Section 5813 * 5.2.2) The input parameters accepted by this call include 5814 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5815 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5816 * to this call if the caller is using the UDP model. 5817 * 5818 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5819 */ 5820 static int sctp_getsockopt_default_send_param(struct sock *sk, 5821 int len, char __user *optval, 5822 int __user *optlen) 5823 { 5824 struct sctp_sock *sp = sctp_sk(sk); 5825 struct sctp_association *asoc; 5826 struct sctp_sndrcvinfo info; 5827 5828 if (len < sizeof(info)) 5829 return -EINVAL; 5830 5831 len = sizeof(info); 5832 5833 if (copy_from_user(&info, optval, len)) 5834 return -EFAULT; 5835 5836 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5837 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5838 return -EINVAL; 5839 if (asoc) { 5840 info.sinfo_stream = asoc->default_stream; 5841 info.sinfo_flags = asoc->default_flags; 5842 info.sinfo_ppid = asoc->default_ppid; 5843 info.sinfo_context = asoc->default_context; 5844 info.sinfo_timetolive = asoc->default_timetolive; 5845 } else { 5846 info.sinfo_stream = sp->default_stream; 5847 info.sinfo_flags = sp->default_flags; 5848 info.sinfo_ppid = sp->default_ppid; 5849 info.sinfo_context = sp->default_context; 5850 info.sinfo_timetolive = sp->default_timetolive; 5851 } 5852 5853 if (put_user(len, optlen)) 5854 return -EFAULT; 5855 if (copy_to_user(optval, &info, len)) 5856 return -EFAULT; 5857 5858 return 0; 5859 } 5860 5861 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5862 * (SCTP_DEFAULT_SNDINFO) 5863 */ 5864 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5865 char __user *optval, 5866 int __user *optlen) 5867 { 5868 struct sctp_sock *sp = sctp_sk(sk); 5869 struct sctp_association *asoc; 5870 struct sctp_sndinfo info; 5871 5872 if (len < sizeof(info)) 5873 return -EINVAL; 5874 5875 len = sizeof(info); 5876 5877 if (copy_from_user(&info, optval, len)) 5878 return -EFAULT; 5879 5880 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5881 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5882 return -EINVAL; 5883 if (asoc) { 5884 info.snd_sid = asoc->default_stream; 5885 info.snd_flags = asoc->default_flags; 5886 info.snd_ppid = asoc->default_ppid; 5887 info.snd_context = asoc->default_context; 5888 } else { 5889 info.snd_sid = sp->default_stream; 5890 info.snd_flags = sp->default_flags; 5891 info.snd_ppid = sp->default_ppid; 5892 info.snd_context = sp->default_context; 5893 } 5894 5895 if (put_user(len, optlen)) 5896 return -EFAULT; 5897 if (copy_to_user(optval, &info, len)) 5898 return -EFAULT; 5899 5900 return 0; 5901 } 5902 5903 /* 5904 * 5905 * 7.1.5 SCTP_NODELAY 5906 * 5907 * Turn on/off any Nagle-like algorithm. This means that packets are 5908 * generally sent as soon as possible and no unnecessary delays are 5909 * introduced, at the cost of more packets in the network. Expects an 5910 * integer boolean flag. 5911 */ 5912 5913 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5914 char __user *optval, int __user *optlen) 5915 { 5916 int val; 5917 5918 if (len < sizeof(int)) 5919 return -EINVAL; 5920 5921 len = sizeof(int); 5922 val = (sctp_sk(sk)->nodelay == 1); 5923 if (put_user(len, optlen)) 5924 return -EFAULT; 5925 if (copy_to_user(optval, &val, len)) 5926 return -EFAULT; 5927 return 0; 5928 } 5929 5930 /* 5931 * 5932 * 7.1.1 SCTP_RTOINFO 5933 * 5934 * The protocol parameters used to initialize and bound retransmission 5935 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5936 * and modify these parameters. 5937 * All parameters are time values, in milliseconds. A value of 0, when 5938 * modifying the parameters, indicates that the current value should not 5939 * be changed. 5940 * 5941 */ 5942 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5943 char __user *optval, 5944 int __user *optlen) { 5945 struct sctp_rtoinfo rtoinfo; 5946 struct sctp_association *asoc; 5947 5948 if (len < sizeof (struct sctp_rtoinfo)) 5949 return -EINVAL; 5950 5951 len = sizeof(struct sctp_rtoinfo); 5952 5953 if (copy_from_user(&rtoinfo, optval, len)) 5954 return -EFAULT; 5955 5956 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5957 5958 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5959 return -EINVAL; 5960 5961 /* Values corresponding to the specific association. */ 5962 if (asoc) { 5963 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5964 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5965 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5966 } else { 5967 /* Values corresponding to the endpoint. */ 5968 struct sctp_sock *sp = sctp_sk(sk); 5969 5970 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5971 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5972 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5973 } 5974 5975 if (put_user(len, optlen)) 5976 return -EFAULT; 5977 5978 if (copy_to_user(optval, &rtoinfo, len)) 5979 return -EFAULT; 5980 5981 return 0; 5982 } 5983 5984 /* 5985 * 5986 * 7.1.2 SCTP_ASSOCINFO 5987 * 5988 * This option is used to tune the maximum retransmission attempts 5989 * of the association. 5990 * Returns an error if the new association retransmission value is 5991 * greater than the sum of the retransmission value of the peer. 5992 * See [SCTP] for more information. 5993 * 5994 */ 5995 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5996 char __user *optval, 5997 int __user *optlen) 5998 { 5999 6000 struct sctp_assocparams assocparams; 6001 struct sctp_association *asoc; 6002 struct list_head *pos; 6003 int cnt = 0; 6004 6005 if (len < sizeof (struct sctp_assocparams)) 6006 return -EINVAL; 6007 6008 len = sizeof(struct sctp_assocparams); 6009 6010 if (copy_from_user(&assocparams, optval, len)) 6011 return -EFAULT; 6012 6013 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6014 6015 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6016 return -EINVAL; 6017 6018 /* Values correspoinding to the specific association */ 6019 if (asoc) { 6020 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6021 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6022 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6023 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6024 6025 list_for_each(pos, &asoc->peer.transport_addr_list) { 6026 cnt++; 6027 } 6028 6029 assocparams.sasoc_number_peer_destinations = cnt; 6030 } else { 6031 /* Values corresponding to the endpoint */ 6032 struct sctp_sock *sp = sctp_sk(sk); 6033 6034 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6035 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6036 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6037 assocparams.sasoc_cookie_life = 6038 sp->assocparams.sasoc_cookie_life; 6039 assocparams.sasoc_number_peer_destinations = 6040 sp->assocparams. 6041 sasoc_number_peer_destinations; 6042 } 6043 6044 if (put_user(len, optlen)) 6045 return -EFAULT; 6046 6047 if (copy_to_user(optval, &assocparams, len)) 6048 return -EFAULT; 6049 6050 return 0; 6051 } 6052 6053 /* 6054 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6055 * 6056 * This socket option is a boolean flag which turns on or off mapped V4 6057 * addresses. If this option is turned on and the socket is type 6058 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6059 * If this option is turned off, then no mapping will be done of V4 6060 * addresses and a user will receive both PF_INET6 and PF_INET type 6061 * addresses on the socket. 6062 */ 6063 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6064 char __user *optval, int __user *optlen) 6065 { 6066 int val; 6067 struct sctp_sock *sp = sctp_sk(sk); 6068 6069 if (len < sizeof(int)) 6070 return -EINVAL; 6071 6072 len = sizeof(int); 6073 val = sp->v4mapped; 6074 if (put_user(len, optlen)) 6075 return -EFAULT; 6076 if (copy_to_user(optval, &val, len)) 6077 return -EFAULT; 6078 6079 return 0; 6080 } 6081 6082 /* 6083 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6084 * (chapter and verse is quoted at sctp_setsockopt_context()) 6085 */ 6086 static int sctp_getsockopt_context(struct sock *sk, int len, 6087 char __user *optval, int __user *optlen) 6088 { 6089 struct sctp_assoc_value params; 6090 struct sctp_sock *sp; 6091 struct sctp_association *asoc; 6092 6093 if (len < sizeof(struct sctp_assoc_value)) 6094 return -EINVAL; 6095 6096 len = sizeof(struct sctp_assoc_value); 6097 6098 if (copy_from_user(¶ms, optval, len)) 6099 return -EFAULT; 6100 6101 sp = sctp_sk(sk); 6102 6103 if (params.assoc_id != 0) { 6104 asoc = sctp_id2assoc(sk, params.assoc_id); 6105 if (!asoc) 6106 return -EINVAL; 6107 params.assoc_value = asoc->default_rcv_context; 6108 } else { 6109 params.assoc_value = sp->default_rcv_context; 6110 } 6111 6112 if (put_user(len, optlen)) 6113 return -EFAULT; 6114 if (copy_to_user(optval, ¶ms, len)) 6115 return -EFAULT; 6116 6117 return 0; 6118 } 6119 6120 /* 6121 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6122 * This option will get or set the maximum size to put in any outgoing 6123 * SCTP DATA chunk. If a message is larger than this size it will be 6124 * fragmented by SCTP into the specified size. Note that the underlying 6125 * SCTP implementation may fragment into smaller sized chunks when the 6126 * PMTU of the underlying association is smaller than the value set by 6127 * the user. The default value for this option is '0' which indicates 6128 * the user is NOT limiting fragmentation and only the PMTU will effect 6129 * SCTP's choice of DATA chunk size. Note also that values set larger 6130 * than the maximum size of an IP datagram will effectively let SCTP 6131 * control fragmentation (i.e. the same as setting this option to 0). 6132 * 6133 * The following structure is used to access and modify this parameter: 6134 * 6135 * struct sctp_assoc_value { 6136 * sctp_assoc_t assoc_id; 6137 * uint32_t assoc_value; 6138 * }; 6139 * 6140 * assoc_id: This parameter is ignored for one-to-one style sockets. 6141 * For one-to-many style sockets this parameter indicates which 6142 * association the user is performing an action upon. Note that if 6143 * this field's value is zero then the endpoints default value is 6144 * changed (effecting future associations only). 6145 * assoc_value: This parameter specifies the maximum size in bytes. 6146 */ 6147 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6148 char __user *optval, int __user *optlen) 6149 { 6150 struct sctp_assoc_value params; 6151 struct sctp_association *asoc; 6152 6153 if (len == sizeof(int)) { 6154 pr_warn_ratelimited(DEPRECATED 6155 "%s (pid %d) " 6156 "Use of int in maxseg socket option.\n" 6157 "Use struct sctp_assoc_value instead\n", 6158 current->comm, task_pid_nr(current)); 6159 params.assoc_id = 0; 6160 } else if (len >= sizeof(struct sctp_assoc_value)) { 6161 len = sizeof(struct sctp_assoc_value); 6162 if (copy_from_user(¶ms, optval, len)) 6163 return -EFAULT; 6164 } else 6165 return -EINVAL; 6166 6167 asoc = sctp_id2assoc(sk, params.assoc_id); 6168 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6169 return -EINVAL; 6170 6171 if (asoc) 6172 params.assoc_value = asoc->frag_point; 6173 else 6174 params.assoc_value = sctp_sk(sk)->user_frag; 6175 6176 if (put_user(len, optlen)) 6177 return -EFAULT; 6178 if (len == sizeof(int)) { 6179 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6180 return -EFAULT; 6181 } else { 6182 if (copy_to_user(optval, ¶ms, len)) 6183 return -EFAULT; 6184 } 6185 6186 return 0; 6187 } 6188 6189 /* 6190 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6191 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6192 */ 6193 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6194 char __user *optval, int __user *optlen) 6195 { 6196 int val; 6197 6198 if (len < sizeof(int)) 6199 return -EINVAL; 6200 6201 len = sizeof(int); 6202 6203 val = sctp_sk(sk)->frag_interleave; 6204 if (put_user(len, optlen)) 6205 return -EFAULT; 6206 if (copy_to_user(optval, &val, len)) 6207 return -EFAULT; 6208 6209 return 0; 6210 } 6211 6212 /* 6213 * 7.1.25. Set or Get the sctp partial delivery point 6214 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6215 */ 6216 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6217 char __user *optval, 6218 int __user *optlen) 6219 { 6220 u32 val; 6221 6222 if (len < sizeof(u32)) 6223 return -EINVAL; 6224 6225 len = sizeof(u32); 6226 6227 val = sctp_sk(sk)->pd_point; 6228 if (put_user(len, optlen)) 6229 return -EFAULT; 6230 if (copy_to_user(optval, &val, len)) 6231 return -EFAULT; 6232 6233 return 0; 6234 } 6235 6236 /* 6237 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6238 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6239 */ 6240 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6241 char __user *optval, 6242 int __user *optlen) 6243 { 6244 struct sctp_assoc_value params; 6245 struct sctp_sock *sp; 6246 struct sctp_association *asoc; 6247 6248 if (len == sizeof(int)) { 6249 pr_warn_ratelimited(DEPRECATED 6250 "%s (pid %d) " 6251 "Use of int in max_burst socket option.\n" 6252 "Use struct sctp_assoc_value instead\n", 6253 current->comm, task_pid_nr(current)); 6254 params.assoc_id = 0; 6255 } else if (len >= sizeof(struct sctp_assoc_value)) { 6256 len = sizeof(struct sctp_assoc_value); 6257 if (copy_from_user(¶ms, optval, len)) 6258 return -EFAULT; 6259 } else 6260 return -EINVAL; 6261 6262 sp = sctp_sk(sk); 6263 6264 if (params.assoc_id != 0) { 6265 asoc = sctp_id2assoc(sk, params.assoc_id); 6266 if (!asoc) 6267 return -EINVAL; 6268 params.assoc_value = asoc->max_burst; 6269 } else 6270 params.assoc_value = sp->max_burst; 6271 6272 if (len == sizeof(int)) { 6273 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6274 return -EFAULT; 6275 } else { 6276 if (copy_to_user(optval, ¶ms, len)) 6277 return -EFAULT; 6278 } 6279 6280 return 0; 6281 6282 } 6283 6284 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6285 char __user *optval, int __user *optlen) 6286 { 6287 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6288 struct sctp_hmacalgo __user *p = (void __user *)optval; 6289 struct sctp_hmac_algo_param *hmacs; 6290 __u16 data_len = 0; 6291 u32 num_idents; 6292 int i; 6293 6294 if (!ep->auth_enable) 6295 return -EACCES; 6296 6297 hmacs = ep->auth_hmacs_list; 6298 data_len = ntohs(hmacs->param_hdr.length) - 6299 sizeof(struct sctp_paramhdr); 6300 6301 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6302 return -EINVAL; 6303 6304 len = sizeof(struct sctp_hmacalgo) + data_len; 6305 num_idents = data_len / sizeof(u16); 6306 6307 if (put_user(len, optlen)) 6308 return -EFAULT; 6309 if (put_user(num_idents, &p->shmac_num_idents)) 6310 return -EFAULT; 6311 for (i = 0; i < num_idents; i++) { 6312 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6313 6314 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6315 return -EFAULT; 6316 } 6317 return 0; 6318 } 6319 6320 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6321 char __user *optval, int __user *optlen) 6322 { 6323 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6324 struct sctp_authkeyid val; 6325 struct sctp_association *asoc; 6326 6327 if (!ep->auth_enable) 6328 return -EACCES; 6329 6330 if (len < sizeof(struct sctp_authkeyid)) 6331 return -EINVAL; 6332 6333 len = sizeof(struct sctp_authkeyid); 6334 if (copy_from_user(&val, optval, len)) 6335 return -EFAULT; 6336 6337 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6338 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6339 return -EINVAL; 6340 6341 if (asoc) 6342 val.scact_keynumber = asoc->active_key_id; 6343 else 6344 val.scact_keynumber = ep->active_key_id; 6345 6346 if (put_user(len, optlen)) 6347 return -EFAULT; 6348 if (copy_to_user(optval, &val, len)) 6349 return -EFAULT; 6350 6351 return 0; 6352 } 6353 6354 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6355 char __user *optval, int __user *optlen) 6356 { 6357 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6358 struct sctp_authchunks __user *p = (void __user *)optval; 6359 struct sctp_authchunks val; 6360 struct sctp_association *asoc; 6361 struct sctp_chunks_param *ch; 6362 u32 num_chunks = 0; 6363 char __user *to; 6364 6365 if (!ep->auth_enable) 6366 return -EACCES; 6367 6368 if (len < sizeof(struct sctp_authchunks)) 6369 return -EINVAL; 6370 6371 if (copy_from_user(&val, optval, sizeof(val))) 6372 return -EFAULT; 6373 6374 to = p->gauth_chunks; 6375 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6376 if (!asoc) 6377 return -EINVAL; 6378 6379 ch = asoc->peer.peer_chunks; 6380 if (!ch) 6381 goto num; 6382 6383 /* See if the user provided enough room for all the data */ 6384 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6385 if (len < num_chunks) 6386 return -EINVAL; 6387 6388 if (copy_to_user(to, ch->chunks, num_chunks)) 6389 return -EFAULT; 6390 num: 6391 len = sizeof(struct sctp_authchunks) + num_chunks; 6392 if (put_user(len, optlen)) 6393 return -EFAULT; 6394 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6395 return -EFAULT; 6396 return 0; 6397 } 6398 6399 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6400 char __user *optval, int __user *optlen) 6401 { 6402 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6403 struct sctp_authchunks __user *p = (void __user *)optval; 6404 struct sctp_authchunks val; 6405 struct sctp_association *asoc; 6406 struct sctp_chunks_param *ch; 6407 u32 num_chunks = 0; 6408 char __user *to; 6409 6410 if (!ep->auth_enable) 6411 return -EACCES; 6412 6413 if (len < sizeof(struct sctp_authchunks)) 6414 return -EINVAL; 6415 6416 if (copy_from_user(&val, optval, sizeof(val))) 6417 return -EFAULT; 6418 6419 to = p->gauth_chunks; 6420 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6421 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6422 return -EINVAL; 6423 6424 if (asoc) 6425 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6426 else 6427 ch = ep->auth_chunk_list; 6428 6429 if (!ch) 6430 goto num; 6431 6432 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6433 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6434 return -EINVAL; 6435 6436 if (copy_to_user(to, ch->chunks, num_chunks)) 6437 return -EFAULT; 6438 num: 6439 len = sizeof(struct sctp_authchunks) + num_chunks; 6440 if (put_user(len, optlen)) 6441 return -EFAULT; 6442 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6443 return -EFAULT; 6444 6445 return 0; 6446 } 6447 6448 /* 6449 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6450 * This option gets the current number of associations that are attached 6451 * to a one-to-many style socket. The option value is an uint32_t. 6452 */ 6453 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6454 char __user *optval, int __user *optlen) 6455 { 6456 struct sctp_sock *sp = sctp_sk(sk); 6457 struct sctp_association *asoc; 6458 u32 val = 0; 6459 6460 if (sctp_style(sk, TCP)) 6461 return -EOPNOTSUPP; 6462 6463 if (len < sizeof(u32)) 6464 return -EINVAL; 6465 6466 len = sizeof(u32); 6467 6468 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6469 val++; 6470 } 6471 6472 if (put_user(len, optlen)) 6473 return -EFAULT; 6474 if (copy_to_user(optval, &val, len)) 6475 return -EFAULT; 6476 6477 return 0; 6478 } 6479 6480 /* 6481 * 8.1.23 SCTP_AUTO_ASCONF 6482 * See the corresponding setsockopt entry as description 6483 */ 6484 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6485 char __user *optval, int __user *optlen) 6486 { 6487 int val = 0; 6488 6489 if (len < sizeof(int)) 6490 return -EINVAL; 6491 6492 len = sizeof(int); 6493 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6494 val = 1; 6495 if (put_user(len, optlen)) 6496 return -EFAULT; 6497 if (copy_to_user(optval, &val, len)) 6498 return -EFAULT; 6499 return 0; 6500 } 6501 6502 /* 6503 * 8.2.6. Get the Current Identifiers of Associations 6504 * (SCTP_GET_ASSOC_ID_LIST) 6505 * 6506 * This option gets the current list of SCTP association identifiers of 6507 * the SCTP associations handled by a one-to-many style socket. 6508 */ 6509 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6510 char __user *optval, int __user *optlen) 6511 { 6512 struct sctp_sock *sp = sctp_sk(sk); 6513 struct sctp_association *asoc; 6514 struct sctp_assoc_ids *ids; 6515 u32 num = 0; 6516 6517 if (sctp_style(sk, TCP)) 6518 return -EOPNOTSUPP; 6519 6520 if (len < sizeof(struct sctp_assoc_ids)) 6521 return -EINVAL; 6522 6523 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6524 num++; 6525 } 6526 6527 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6528 return -EINVAL; 6529 6530 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6531 6532 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6533 if (unlikely(!ids)) 6534 return -ENOMEM; 6535 6536 ids->gaids_number_of_ids = num; 6537 num = 0; 6538 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6539 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6540 } 6541 6542 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6543 kfree(ids); 6544 return -EFAULT; 6545 } 6546 6547 kfree(ids); 6548 return 0; 6549 } 6550 6551 /* 6552 * SCTP_PEER_ADDR_THLDS 6553 * 6554 * This option allows us to fetch the partially failed threshold for one or all 6555 * transports in an association. See Section 6.1 of: 6556 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6557 */ 6558 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6559 char __user *optval, 6560 int len, 6561 int __user *optlen) 6562 { 6563 struct sctp_paddrthlds val; 6564 struct sctp_transport *trans; 6565 struct sctp_association *asoc; 6566 6567 if (len < sizeof(struct sctp_paddrthlds)) 6568 return -EINVAL; 6569 len = sizeof(struct sctp_paddrthlds); 6570 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6571 return -EFAULT; 6572 6573 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6574 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6575 if (!asoc) 6576 return -ENOENT; 6577 6578 val.spt_pathpfthld = asoc->pf_retrans; 6579 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6580 } else { 6581 trans = sctp_addr_id2transport(sk, &val.spt_address, 6582 val.spt_assoc_id); 6583 if (!trans) 6584 return -ENOENT; 6585 6586 val.spt_pathmaxrxt = trans->pathmaxrxt; 6587 val.spt_pathpfthld = trans->pf_retrans; 6588 } 6589 6590 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6591 return -EFAULT; 6592 6593 return 0; 6594 } 6595 6596 /* 6597 * SCTP_GET_ASSOC_STATS 6598 * 6599 * This option retrieves local per endpoint statistics. It is modeled 6600 * after OpenSolaris' implementation 6601 */ 6602 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6603 char __user *optval, 6604 int __user *optlen) 6605 { 6606 struct sctp_assoc_stats sas; 6607 struct sctp_association *asoc = NULL; 6608 6609 /* User must provide at least the assoc id */ 6610 if (len < sizeof(sctp_assoc_t)) 6611 return -EINVAL; 6612 6613 /* Allow the struct to grow and fill in as much as possible */ 6614 len = min_t(size_t, len, sizeof(sas)); 6615 6616 if (copy_from_user(&sas, optval, len)) 6617 return -EFAULT; 6618 6619 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6620 if (!asoc) 6621 return -EINVAL; 6622 6623 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6624 sas.sas_gapcnt = asoc->stats.gapcnt; 6625 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6626 sas.sas_osacks = asoc->stats.osacks; 6627 sas.sas_isacks = asoc->stats.isacks; 6628 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6629 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6630 sas.sas_oodchunks = asoc->stats.oodchunks; 6631 sas.sas_iodchunks = asoc->stats.iodchunks; 6632 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6633 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6634 sas.sas_idupchunks = asoc->stats.idupchunks; 6635 sas.sas_opackets = asoc->stats.opackets; 6636 sas.sas_ipackets = asoc->stats.ipackets; 6637 6638 /* New high max rto observed, will return 0 if not a single 6639 * RTO update took place. obs_rto_ipaddr will be bogus 6640 * in such a case 6641 */ 6642 sas.sas_maxrto = asoc->stats.max_obs_rto; 6643 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6644 sizeof(struct sockaddr_storage)); 6645 6646 /* Mark beginning of a new observation period */ 6647 asoc->stats.max_obs_rto = asoc->rto_min; 6648 6649 if (put_user(len, optlen)) 6650 return -EFAULT; 6651 6652 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6653 6654 if (copy_to_user(optval, &sas, len)) 6655 return -EFAULT; 6656 6657 return 0; 6658 } 6659 6660 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6661 char __user *optval, 6662 int __user *optlen) 6663 { 6664 int val = 0; 6665 6666 if (len < sizeof(int)) 6667 return -EINVAL; 6668 6669 len = sizeof(int); 6670 if (sctp_sk(sk)->recvrcvinfo) 6671 val = 1; 6672 if (put_user(len, optlen)) 6673 return -EFAULT; 6674 if (copy_to_user(optval, &val, len)) 6675 return -EFAULT; 6676 6677 return 0; 6678 } 6679 6680 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6681 char __user *optval, 6682 int __user *optlen) 6683 { 6684 int val = 0; 6685 6686 if (len < sizeof(int)) 6687 return -EINVAL; 6688 6689 len = sizeof(int); 6690 if (sctp_sk(sk)->recvnxtinfo) 6691 val = 1; 6692 if (put_user(len, optlen)) 6693 return -EFAULT; 6694 if (copy_to_user(optval, &val, len)) 6695 return -EFAULT; 6696 6697 return 0; 6698 } 6699 6700 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6701 char __user *optval, 6702 int __user *optlen) 6703 { 6704 struct sctp_assoc_value params; 6705 struct sctp_association *asoc; 6706 int retval = -EFAULT; 6707 6708 if (len < sizeof(params)) { 6709 retval = -EINVAL; 6710 goto out; 6711 } 6712 6713 len = sizeof(params); 6714 if (copy_from_user(¶ms, optval, len)) 6715 goto out; 6716 6717 asoc = sctp_id2assoc(sk, params.assoc_id); 6718 if (asoc) { 6719 params.assoc_value = asoc->prsctp_enable; 6720 } else if (!params.assoc_id) { 6721 struct sctp_sock *sp = sctp_sk(sk); 6722 6723 params.assoc_value = sp->ep->prsctp_enable; 6724 } else { 6725 retval = -EINVAL; 6726 goto out; 6727 } 6728 6729 if (put_user(len, optlen)) 6730 goto out; 6731 6732 if (copy_to_user(optval, ¶ms, len)) 6733 goto out; 6734 6735 retval = 0; 6736 6737 out: 6738 return retval; 6739 } 6740 6741 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6742 char __user *optval, 6743 int __user *optlen) 6744 { 6745 struct sctp_default_prinfo info; 6746 struct sctp_association *asoc; 6747 int retval = -EFAULT; 6748 6749 if (len < sizeof(info)) { 6750 retval = -EINVAL; 6751 goto out; 6752 } 6753 6754 len = sizeof(info); 6755 if (copy_from_user(&info, optval, len)) 6756 goto out; 6757 6758 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6759 if (asoc) { 6760 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6761 info.pr_value = asoc->default_timetolive; 6762 } else if (!info.pr_assoc_id) { 6763 struct sctp_sock *sp = sctp_sk(sk); 6764 6765 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6766 info.pr_value = sp->default_timetolive; 6767 } else { 6768 retval = -EINVAL; 6769 goto out; 6770 } 6771 6772 if (put_user(len, optlen)) 6773 goto out; 6774 6775 if (copy_to_user(optval, &info, len)) 6776 goto out; 6777 6778 retval = 0; 6779 6780 out: 6781 return retval; 6782 } 6783 6784 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6785 char __user *optval, 6786 int __user *optlen) 6787 { 6788 struct sctp_prstatus params; 6789 struct sctp_association *asoc; 6790 int policy; 6791 int retval = -EINVAL; 6792 6793 if (len < sizeof(params)) 6794 goto out; 6795 6796 len = sizeof(params); 6797 if (copy_from_user(¶ms, optval, len)) { 6798 retval = -EFAULT; 6799 goto out; 6800 } 6801 6802 policy = params.sprstat_policy; 6803 if (policy & ~SCTP_PR_SCTP_MASK) 6804 goto out; 6805 6806 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6807 if (!asoc) 6808 goto out; 6809 6810 if (policy == SCTP_PR_SCTP_NONE) { 6811 params.sprstat_abandoned_unsent = 0; 6812 params.sprstat_abandoned_sent = 0; 6813 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6814 params.sprstat_abandoned_unsent += 6815 asoc->abandoned_unsent[policy]; 6816 params.sprstat_abandoned_sent += 6817 asoc->abandoned_sent[policy]; 6818 } 6819 } else { 6820 params.sprstat_abandoned_unsent = 6821 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6822 params.sprstat_abandoned_sent = 6823 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6824 } 6825 6826 if (put_user(len, optlen)) { 6827 retval = -EFAULT; 6828 goto out; 6829 } 6830 6831 if (copy_to_user(optval, ¶ms, len)) { 6832 retval = -EFAULT; 6833 goto out; 6834 } 6835 6836 retval = 0; 6837 6838 out: 6839 return retval; 6840 } 6841 6842 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6843 char __user *optval, 6844 int __user *optlen) 6845 { 6846 struct sctp_stream_out_ext *streamoute; 6847 struct sctp_association *asoc; 6848 struct sctp_prstatus params; 6849 int retval = -EINVAL; 6850 int policy; 6851 6852 if (len < sizeof(params)) 6853 goto out; 6854 6855 len = sizeof(params); 6856 if (copy_from_user(¶ms, optval, len)) { 6857 retval = -EFAULT; 6858 goto out; 6859 } 6860 6861 policy = params.sprstat_policy; 6862 if (policy & ~SCTP_PR_SCTP_MASK) 6863 goto out; 6864 6865 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6866 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6867 goto out; 6868 6869 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6870 if (!streamoute) { 6871 /* Not allocated yet, means all stats are 0 */ 6872 params.sprstat_abandoned_unsent = 0; 6873 params.sprstat_abandoned_sent = 0; 6874 retval = 0; 6875 goto out; 6876 } 6877 6878 if (policy == SCTP_PR_SCTP_NONE) { 6879 params.sprstat_abandoned_unsent = 0; 6880 params.sprstat_abandoned_sent = 0; 6881 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6882 params.sprstat_abandoned_unsent += 6883 streamoute->abandoned_unsent[policy]; 6884 params.sprstat_abandoned_sent += 6885 streamoute->abandoned_sent[policy]; 6886 } 6887 } else { 6888 params.sprstat_abandoned_unsent = 6889 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6890 params.sprstat_abandoned_sent = 6891 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6892 } 6893 6894 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6895 retval = -EFAULT; 6896 goto out; 6897 } 6898 6899 retval = 0; 6900 6901 out: 6902 return retval; 6903 } 6904 6905 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6906 char __user *optval, 6907 int __user *optlen) 6908 { 6909 struct sctp_assoc_value params; 6910 struct sctp_association *asoc; 6911 int retval = -EFAULT; 6912 6913 if (len < sizeof(params)) { 6914 retval = -EINVAL; 6915 goto out; 6916 } 6917 6918 len = sizeof(params); 6919 if (copy_from_user(¶ms, optval, len)) 6920 goto out; 6921 6922 asoc = sctp_id2assoc(sk, params.assoc_id); 6923 if (asoc) { 6924 params.assoc_value = asoc->reconf_enable; 6925 } else if (!params.assoc_id) { 6926 struct sctp_sock *sp = sctp_sk(sk); 6927 6928 params.assoc_value = sp->ep->reconf_enable; 6929 } else { 6930 retval = -EINVAL; 6931 goto out; 6932 } 6933 6934 if (put_user(len, optlen)) 6935 goto out; 6936 6937 if (copy_to_user(optval, ¶ms, len)) 6938 goto out; 6939 6940 retval = 0; 6941 6942 out: 6943 return retval; 6944 } 6945 6946 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6947 char __user *optval, 6948 int __user *optlen) 6949 { 6950 struct sctp_assoc_value params; 6951 struct sctp_association *asoc; 6952 int retval = -EFAULT; 6953 6954 if (len < sizeof(params)) { 6955 retval = -EINVAL; 6956 goto out; 6957 } 6958 6959 len = sizeof(params); 6960 if (copy_from_user(¶ms, optval, len)) 6961 goto out; 6962 6963 asoc = sctp_id2assoc(sk, params.assoc_id); 6964 if (asoc) { 6965 params.assoc_value = asoc->strreset_enable; 6966 } else if (!params.assoc_id) { 6967 struct sctp_sock *sp = sctp_sk(sk); 6968 6969 params.assoc_value = sp->ep->strreset_enable; 6970 } else { 6971 retval = -EINVAL; 6972 goto out; 6973 } 6974 6975 if (put_user(len, optlen)) 6976 goto out; 6977 6978 if (copy_to_user(optval, ¶ms, len)) 6979 goto out; 6980 6981 retval = 0; 6982 6983 out: 6984 return retval; 6985 } 6986 6987 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 6988 char __user *optval, 6989 int __user *optlen) 6990 { 6991 struct sctp_assoc_value params; 6992 struct sctp_association *asoc; 6993 int retval = -EFAULT; 6994 6995 if (len < sizeof(params)) { 6996 retval = -EINVAL; 6997 goto out; 6998 } 6999 7000 len = sizeof(params); 7001 if (copy_from_user(¶ms, optval, len)) 7002 goto out; 7003 7004 asoc = sctp_id2assoc(sk, params.assoc_id); 7005 if (!asoc) { 7006 retval = -EINVAL; 7007 goto out; 7008 } 7009 7010 params.assoc_value = sctp_sched_get_sched(asoc); 7011 7012 if (put_user(len, optlen)) 7013 goto out; 7014 7015 if (copy_to_user(optval, ¶ms, len)) 7016 goto out; 7017 7018 retval = 0; 7019 7020 out: 7021 return retval; 7022 } 7023 7024 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7025 char __user *optval, 7026 int __user *optlen) 7027 { 7028 struct sctp_stream_value params; 7029 struct sctp_association *asoc; 7030 int retval = -EFAULT; 7031 7032 if (len < sizeof(params)) { 7033 retval = -EINVAL; 7034 goto out; 7035 } 7036 7037 len = sizeof(params); 7038 if (copy_from_user(¶ms, optval, len)) 7039 goto out; 7040 7041 asoc = sctp_id2assoc(sk, params.assoc_id); 7042 if (!asoc) { 7043 retval = -EINVAL; 7044 goto out; 7045 } 7046 7047 retval = sctp_sched_get_value(asoc, params.stream_id, 7048 ¶ms.stream_value); 7049 if (retval) 7050 goto out; 7051 7052 if (put_user(len, optlen)) { 7053 retval = -EFAULT; 7054 goto out; 7055 } 7056 7057 if (copy_to_user(optval, ¶ms, len)) { 7058 retval = -EFAULT; 7059 goto out; 7060 } 7061 7062 out: 7063 return retval; 7064 } 7065 7066 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7067 char __user *optval, 7068 int __user *optlen) 7069 { 7070 struct sctp_assoc_value params; 7071 struct sctp_association *asoc; 7072 int retval = -EFAULT; 7073 7074 if (len < sizeof(params)) { 7075 retval = -EINVAL; 7076 goto out; 7077 } 7078 7079 len = sizeof(params); 7080 if (copy_from_user(¶ms, optval, len)) 7081 goto out; 7082 7083 asoc = sctp_id2assoc(sk, params.assoc_id); 7084 if (asoc) { 7085 params.assoc_value = asoc->intl_enable; 7086 } else if (!params.assoc_id) { 7087 struct sctp_sock *sp = sctp_sk(sk); 7088 7089 params.assoc_value = sp->strm_interleave; 7090 } else { 7091 retval = -EINVAL; 7092 goto out; 7093 } 7094 7095 if (put_user(len, optlen)) 7096 goto out; 7097 7098 if (copy_to_user(optval, ¶ms, len)) 7099 goto out; 7100 7101 retval = 0; 7102 7103 out: 7104 return retval; 7105 } 7106 7107 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7108 char __user *optval, int __user *optlen) 7109 { 7110 int retval = 0; 7111 int len; 7112 7113 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7114 7115 /* I can hardly begin to describe how wrong this is. This is 7116 * so broken as to be worse than useless. The API draft 7117 * REALLY is NOT helpful here... I am not convinced that the 7118 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7119 * are at all well-founded. 7120 */ 7121 if (level != SOL_SCTP) { 7122 struct sctp_af *af = sctp_sk(sk)->pf->af; 7123 7124 retval = af->getsockopt(sk, level, optname, optval, optlen); 7125 return retval; 7126 } 7127 7128 if (get_user(len, optlen)) 7129 return -EFAULT; 7130 7131 if (len < 0) 7132 return -EINVAL; 7133 7134 lock_sock(sk); 7135 7136 switch (optname) { 7137 case SCTP_STATUS: 7138 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7139 break; 7140 case SCTP_DISABLE_FRAGMENTS: 7141 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7142 optlen); 7143 break; 7144 case SCTP_EVENTS: 7145 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7146 break; 7147 case SCTP_AUTOCLOSE: 7148 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7149 break; 7150 case SCTP_SOCKOPT_PEELOFF: 7151 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7152 break; 7153 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7154 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7155 break; 7156 case SCTP_PEER_ADDR_PARAMS: 7157 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7158 optlen); 7159 break; 7160 case SCTP_DELAYED_SACK: 7161 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7162 optlen); 7163 break; 7164 case SCTP_INITMSG: 7165 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7166 break; 7167 case SCTP_GET_PEER_ADDRS: 7168 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7169 optlen); 7170 break; 7171 case SCTP_GET_LOCAL_ADDRS: 7172 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7173 optlen); 7174 break; 7175 case SCTP_SOCKOPT_CONNECTX3: 7176 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7177 break; 7178 case SCTP_DEFAULT_SEND_PARAM: 7179 retval = sctp_getsockopt_default_send_param(sk, len, 7180 optval, optlen); 7181 break; 7182 case SCTP_DEFAULT_SNDINFO: 7183 retval = sctp_getsockopt_default_sndinfo(sk, len, 7184 optval, optlen); 7185 break; 7186 case SCTP_PRIMARY_ADDR: 7187 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7188 break; 7189 case SCTP_NODELAY: 7190 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7191 break; 7192 case SCTP_RTOINFO: 7193 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7194 break; 7195 case SCTP_ASSOCINFO: 7196 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7197 break; 7198 case SCTP_I_WANT_MAPPED_V4_ADDR: 7199 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7200 break; 7201 case SCTP_MAXSEG: 7202 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7203 break; 7204 case SCTP_GET_PEER_ADDR_INFO: 7205 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7206 optlen); 7207 break; 7208 case SCTP_ADAPTATION_LAYER: 7209 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7210 optlen); 7211 break; 7212 case SCTP_CONTEXT: 7213 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7214 break; 7215 case SCTP_FRAGMENT_INTERLEAVE: 7216 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7217 optlen); 7218 break; 7219 case SCTP_PARTIAL_DELIVERY_POINT: 7220 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7221 optlen); 7222 break; 7223 case SCTP_MAX_BURST: 7224 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7225 break; 7226 case SCTP_AUTH_KEY: 7227 case SCTP_AUTH_CHUNK: 7228 case SCTP_AUTH_DELETE_KEY: 7229 retval = -EOPNOTSUPP; 7230 break; 7231 case SCTP_HMAC_IDENT: 7232 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7233 break; 7234 case SCTP_AUTH_ACTIVE_KEY: 7235 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7236 break; 7237 case SCTP_PEER_AUTH_CHUNKS: 7238 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7239 optlen); 7240 break; 7241 case SCTP_LOCAL_AUTH_CHUNKS: 7242 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7243 optlen); 7244 break; 7245 case SCTP_GET_ASSOC_NUMBER: 7246 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7247 break; 7248 case SCTP_GET_ASSOC_ID_LIST: 7249 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7250 break; 7251 case SCTP_AUTO_ASCONF: 7252 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7253 break; 7254 case SCTP_PEER_ADDR_THLDS: 7255 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7256 break; 7257 case SCTP_GET_ASSOC_STATS: 7258 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7259 break; 7260 case SCTP_RECVRCVINFO: 7261 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7262 break; 7263 case SCTP_RECVNXTINFO: 7264 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7265 break; 7266 case SCTP_PR_SUPPORTED: 7267 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7268 break; 7269 case SCTP_DEFAULT_PRINFO: 7270 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7271 optlen); 7272 break; 7273 case SCTP_PR_ASSOC_STATUS: 7274 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7275 optlen); 7276 break; 7277 case SCTP_PR_STREAM_STATUS: 7278 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7279 optlen); 7280 break; 7281 case SCTP_RECONFIG_SUPPORTED: 7282 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7283 optlen); 7284 break; 7285 case SCTP_ENABLE_STREAM_RESET: 7286 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7287 optlen); 7288 break; 7289 case SCTP_STREAM_SCHEDULER: 7290 retval = sctp_getsockopt_scheduler(sk, len, optval, 7291 optlen); 7292 break; 7293 case SCTP_STREAM_SCHEDULER_VALUE: 7294 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7295 optlen); 7296 break; 7297 case SCTP_INTERLEAVING_SUPPORTED: 7298 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7299 optlen); 7300 break; 7301 default: 7302 retval = -ENOPROTOOPT; 7303 break; 7304 } 7305 7306 release_sock(sk); 7307 return retval; 7308 } 7309 7310 static int sctp_hash(struct sock *sk) 7311 { 7312 /* STUB */ 7313 return 0; 7314 } 7315 7316 static void sctp_unhash(struct sock *sk) 7317 { 7318 /* STUB */ 7319 } 7320 7321 /* Check if port is acceptable. Possibly find first available port. 7322 * 7323 * The port hash table (contained in the 'global' SCTP protocol storage 7324 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7325 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7326 * list (the list number is the port number hashed out, so as you 7327 * would expect from a hash function, all the ports in a given list have 7328 * such a number that hashes out to the same list number; you were 7329 * expecting that, right?); so each list has a set of ports, with a 7330 * link to the socket (struct sock) that uses it, the port number and 7331 * a fastreuse flag (FIXME: NPI ipg). 7332 */ 7333 static struct sctp_bind_bucket *sctp_bucket_create( 7334 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7335 7336 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7337 { 7338 struct sctp_bind_hashbucket *head; /* hash list */ 7339 struct sctp_bind_bucket *pp; 7340 unsigned short snum; 7341 int ret; 7342 7343 snum = ntohs(addr->v4.sin_port); 7344 7345 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7346 7347 local_bh_disable(); 7348 7349 if (snum == 0) { 7350 /* Search for an available port. */ 7351 int low, high, remaining, index; 7352 unsigned int rover; 7353 struct net *net = sock_net(sk); 7354 7355 inet_get_local_port_range(net, &low, &high); 7356 remaining = (high - low) + 1; 7357 rover = prandom_u32() % remaining + low; 7358 7359 do { 7360 rover++; 7361 if ((rover < low) || (rover > high)) 7362 rover = low; 7363 if (inet_is_local_reserved_port(net, rover)) 7364 continue; 7365 index = sctp_phashfn(sock_net(sk), rover); 7366 head = &sctp_port_hashtable[index]; 7367 spin_lock(&head->lock); 7368 sctp_for_each_hentry(pp, &head->chain) 7369 if ((pp->port == rover) && 7370 net_eq(sock_net(sk), pp->net)) 7371 goto next; 7372 break; 7373 next: 7374 spin_unlock(&head->lock); 7375 } while (--remaining > 0); 7376 7377 /* Exhausted local port range during search? */ 7378 ret = 1; 7379 if (remaining <= 0) 7380 goto fail; 7381 7382 /* OK, here is the one we will use. HEAD (the port 7383 * hash table list entry) is non-NULL and we hold it's 7384 * mutex. 7385 */ 7386 snum = rover; 7387 } else { 7388 /* We are given an specific port number; we verify 7389 * that it is not being used. If it is used, we will 7390 * exahust the search in the hash list corresponding 7391 * to the port number (snum) - we detect that with the 7392 * port iterator, pp being NULL. 7393 */ 7394 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7395 spin_lock(&head->lock); 7396 sctp_for_each_hentry(pp, &head->chain) { 7397 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7398 goto pp_found; 7399 } 7400 } 7401 pp = NULL; 7402 goto pp_not_found; 7403 pp_found: 7404 if (!hlist_empty(&pp->owner)) { 7405 /* We had a port hash table hit - there is an 7406 * available port (pp != NULL) and it is being 7407 * used by other socket (pp->owner not empty); that other 7408 * socket is going to be sk2. 7409 */ 7410 int reuse = sk->sk_reuse; 7411 struct sock *sk2; 7412 7413 pr_debug("%s: found a possible match\n", __func__); 7414 7415 if (pp->fastreuse && sk->sk_reuse && 7416 sk->sk_state != SCTP_SS_LISTENING) 7417 goto success; 7418 7419 /* Run through the list of sockets bound to the port 7420 * (pp->port) [via the pointers bind_next and 7421 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7422 * we get the endpoint they describe and run through 7423 * the endpoint's list of IP (v4 or v6) addresses, 7424 * comparing each of the addresses with the address of 7425 * the socket sk. If we find a match, then that means 7426 * that this port/socket (sk) combination are already 7427 * in an endpoint. 7428 */ 7429 sk_for_each_bound(sk2, &pp->owner) { 7430 struct sctp_endpoint *ep2; 7431 ep2 = sctp_sk(sk2)->ep; 7432 7433 if (sk == sk2 || 7434 (reuse && sk2->sk_reuse && 7435 sk2->sk_state != SCTP_SS_LISTENING)) 7436 continue; 7437 7438 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7439 sctp_sk(sk2), sctp_sk(sk))) { 7440 ret = (long)sk2; 7441 goto fail_unlock; 7442 } 7443 } 7444 7445 pr_debug("%s: found a match\n", __func__); 7446 } 7447 pp_not_found: 7448 /* If there was a hash table miss, create a new port. */ 7449 ret = 1; 7450 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7451 goto fail_unlock; 7452 7453 /* In either case (hit or miss), make sure fastreuse is 1 only 7454 * if sk->sk_reuse is too (that is, if the caller requested 7455 * SO_REUSEADDR on this socket -sk-). 7456 */ 7457 if (hlist_empty(&pp->owner)) { 7458 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7459 pp->fastreuse = 1; 7460 else 7461 pp->fastreuse = 0; 7462 } else if (pp->fastreuse && 7463 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7464 pp->fastreuse = 0; 7465 7466 /* We are set, so fill up all the data in the hash table 7467 * entry, tie the socket list information with the rest of the 7468 * sockets FIXME: Blurry, NPI (ipg). 7469 */ 7470 success: 7471 if (!sctp_sk(sk)->bind_hash) { 7472 inet_sk(sk)->inet_num = snum; 7473 sk_add_bind_node(sk, &pp->owner); 7474 sctp_sk(sk)->bind_hash = pp; 7475 } 7476 ret = 0; 7477 7478 fail_unlock: 7479 spin_unlock(&head->lock); 7480 7481 fail: 7482 local_bh_enable(); 7483 return ret; 7484 } 7485 7486 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7487 * port is requested. 7488 */ 7489 static int sctp_get_port(struct sock *sk, unsigned short snum) 7490 { 7491 union sctp_addr addr; 7492 struct sctp_af *af = sctp_sk(sk)->pf->af; 7493 7494 /* Set up a dummy address struct from the sk. */ 7495 af->from_sk(&addr, sk); 7496 addr.v4.sin_port = htons(snum); 7497 7498 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7499 return !!sctp_get_port_local(sk, &addr); 7500 } 7501 7502 /* 7503 * Move a socket to LISTENING state. 7504 */ 7505 static int sctp_listen_start(struct sock *sk, int backlog) 7506 { 7507 struct sctp_sock *sp = sctp_sk(sk); 7508 struct sctp_endpoint *ep = sp->ep; 7509 struct crypto_shash *tfm = NULL; 7510 char alg[32]; 7511 7512 /* Allocate HMAC for generating cookie. */ 7513 if (!sp->hmac && sp->sctp_hmac_alg) { 7514 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7515 tfm = crypto_alloc_shash(alg, 0, 0); 7516 if (IS_ERR(tfm)) { 7517 net_info_ratelimited("failed to load transform for %s: %ld\n", 7518 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7519 return -ENOSYS; 7520 } 7521 sctp_sk(sk)->hmac = tfm; 7522 } 7523 7524 /* 7525 * If a bind() or sctp_bindx() is not called prior to a listen() 7526 * call that allows new associations to be accepted, the system 7527 * picks an ephemeral port and will choose an address set equivalent 7528 * to binding with a wildcard address. 7529 * 7530 * This is not currently spelled out in the SCTP sockets 7531 * extensions draft, but follows the practice as seen in TCP 7532 * sockets. 7533 * 7534 */ 7535 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7536 if (!ep->base.bind_addr.port) { 7537 if (sctp_autobind(sk)) 7538 return -EAGAIN; 7539 } else { 7540 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7541 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7542 return -EADDRINUSE; 7543 } 7544 } 7545 7546 sk->sk_max_ack_backlog = backlog; 7547 sctp_hash_endpoint(ep); 7548 return 0; 7549 } 7550 7551 /* 7552 * 4.1.3 / 5.1.3 listen() 7553 * 7554 * By default, new associations are not accepted for UDP style sockets. 7555 * An application uses listen() to mark a socket as being able to 7556 * accept new associations. 7557 * 7558 * On TCP style sockets, applications use listen() to ready the SCTP 7559 * endpoint for accepting inbound associations. 7560 * 7561 * On both types of endpoints a backlog of '0' disables listening. 7562 * 7563 * Move a socket to LISTENING state. 7564 */ 7565 int sctp_inet_listen(struct socket *sock, int backlog) 7566 { 7567 struct sock *sk = sock->sk; 7568 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7569 int err = -EINVAL; 7570 7571 if (unlikely(backlog < 0)) 7572 return err; 7573 7574 lock_sock(sk); 7575 7576 /* Peeled-off sockets are not allowed to listen(). */ 7577 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7578 goto out; 7579 7580 if (sock->state != SS_UNCONNECTED) 7581 goto out; 7582 7583 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7584 goto out; 7585 7586 /* If backlog is zero, disable listening. */ 7587 if (!backlog) { 7588 if (sctp_sstate(sk, CLOSED)) 7589 goto out; 7590 7591 err = 0; 7592 sctp_unhash_endpoint(ep); 7593 sk->sk_state = SCTP_SS_CLOSED; 7594 if (sk->sk_reuse) 7595 sctp_sk(sk)->bind_hash->fastreuse = 1; 7596 goto out; 7597 } 7598 7599 /* If we are already listening, just update the backlog */ 7600 if (sctp_sstate(sk, LISTENING)) 7601 sk->sk_max_ack_backlog = backlog; 7602 else { 7603 err = sctp_listen_start(sk, backlog); 7604 if (err) 7605 goto out; 7606 } 7607 7608 err = 0; 7609 out: 7610 release_sock(sk); 7611 return err; 7612 } 7613 7614 /* 7615 * This function is done by modeling the current datagram_poll() and the 7616 * tcp_poll(). Note that, based on these implementations, we don't 7617 * lock the socket in this function, even though it seems that, 7618 * ideally, locking or some other mechanisms can be used to ensure 7619 * the integrity of the counters (sndbuf and wmem_alloc) used 7620 * in this place. We assume that we don't need locks either until proven 7621 * otherwise. 7622 * 7623 * Another thing to note is that we include the Async I/O support 7624 * here, again, by modeling the current TCP/UDP code. We don't have 7625 * a good way to test with it yet. 7626 */ 7627 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7628 { 7629 struct sock *sk = sock->sk; 7630 struct sctp_sock *sp = sctp_sk(sk); 7631 unsigned int mask; 7632 7633 poll_wait(file, sk_sleep(sk), wait); 7634 7635 sock_rps_record_flow(sk); 7636 7637 /* A TCP-style listening socket becomes readable when the accept queue 7638 * is not empty. 7639 */ 7640 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7641 return (!list_empty(&sp->ep->asocs)) ? 7642 (POLLIN | POLLRDNORM) : 0; 7643 7644 mask = 0; 7645 7646 /* Is there any exceptional events? */ 7647 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7648 mask |= POLLERR | 7649 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7650 if (sk->sk_shutdown & RCV_SHUTDOWN) 7651 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7652 if (sk->sk_shutdown == SHUTDOWN_MASK) 7653 mask |= POLLHUP; 7654 7655 /* Is it readable? Reconsider this code with TCP-style support. */ 7656 if (!skb_queue_empty(&sk->sk_receive_queue)) 7657 mask |= POLLIN | POLLRDNORM; 7658 7659 /* The association is either gone or not ready. */ 7660 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7661 return mask; 7662 7663 /* Is it writable? */ 7664 if (sctp_writeable(sk)) { 7665 mask |= POLLOUT | POLLWRNORM; 7666 } else { 7667 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7668 /* 7669 * Since the socket is not locked, the buffer 7670 * might be made available after the writeable check and 7671 * before the bit is set. This could cause a lost I/O 7672 * signal. tcp_poll() has a race breaker for this race 7673 * condition. Based on their implementation, we put 7674 * in the following code to cover it as well. 7675 */ 7676 if (sctp_writeable(sk)) 7677 mask |= POLLOUT | POLLWRNORM; 7678 } 7679 return mask; 7680 } 7681 7682 /******************************************************************** 7683 * 2nd Level Abstractions 7684 ********************************************************************/ 7685 7686 static struct sctp_bind_bucket *sctp_bucket_create( 7687 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7688 { 7689 struct sctp_bind_bucket *pp; 7690 7691 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7692 if (pp) { 7693 SCTP_DBG_OBJCNT_INC(bind_bucket); 7694 pp->port = snum; 7695 pp->fastreuse = 0; 7696 INIT_HLIST_HEAD(&pp->owner); 7697 pp->net = net; 7698 hlist_add_head(&pp->node, &head->chain); 7699 } 7700 return pp; 7701 } 7702 7703 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7704 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7705 { 7706 if (pp && hlist_empty(&pp->owner)) { 7707 __hlist_del(&pp->node); 7708 kmem_cache_free(sctp_bucket_cachep, pp); 7709 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7710 } 7711 } 7712 7713 /* Release this socket's reference to a local port. */ 7714 static inline void __sctp_put_port(struct sock *sk) 7715 { 7716 struct sctp_bind_hashbucket *head = 7717 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7718 inet_sk(sk)->inet_num)]; 7719 struct sctp_bind_bucket *pp; 7720 7721 spin_lock(&head->lock); 7722 pp = sctp_sk(sk)->bind_hash; 7723 __sk_del_bind_node(sk); 7724 sctp_sk(sk)->bind_hash = NULL; 7725 inet_sk(sk)->inet_num = 0; 7726 sctp_bucket_destroy(pp); 7727 spin_unlock(&head->lock); 7728 } 7729 7730 void sctp_put_port(struct sock *sk) 7731 { 7732 local_bh_disable(); 7733 __sctp_put_port(sk); 7734 local_bh_enable(); 7735 } 7736 7737 /* 7738 * The system picks an ephemeral port and choose an address set equivalent 7739 * to binding with a wildcard address. 7740 * One of those addresses will be the primary address for the association. 7741 * This automatically enables the multihoming capability of SCTP. 7742 */ 7743 static int sctp_autobind(struct sock *sk) 7744 { 7745 union sctp_addr autoaddr; 7746 struct sctp_af *af; 7747 __be16 port; 7748 7749 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7750 af = sctp_sk(sk)->pf->af; 7751 7752 port = htons(inet_sk(sk)->inet_num); 7753 af->inaddr_any(&autoaddr, port); 7754 7755 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7756 } 7757 7758 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7759 * 7760 * From RFC 2292 7761 * 4.2 The cmsghdr Structure * 7762 * 7763 * When ancillary data is sent or received, any number of ancillary data 7764 * objects can be specified by the msg_control and msg_controllen members of 7765 * the msghdr structure, because each object is preceded by 7766 * a cmsghdr structure defining the object's length (the cmsg_len member). 7767 * Historically Berkeley-derived implementations have passed only one object 7768 * at a time, but this API allows multiple objects to be 7769 * passed in a single call to sendmsg() or recvmsg(). The following example 7770 * shows two ancillary data objects in a control buffer. 7771 * 7772 * |<--------------------------- msg_controllen -------------------------->| 7773 * | | 7774 * 7775 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7776 * 7777 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7778 * | | | 7779 * 7780 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7781 * 7782 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7783 * | | | | | 7784 * 7785 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7786 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7787 * 7788 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7789 * 7790 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7791 * ^ 7792 * | 7793 * 7794 * msg_control 7795 * points here 7796 */ 7797 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7798 { 7799 struct msghdr *my_msg = (struct msghdr *)msg; 7800 struct cmsghdr *cmsg; 7801 7802 for_each_cmsghdr(cmsg, my_msg) { 7803 if (!CMSG_OK(my_msg, cmsg)) 7804 return -EINVAL; 7805 7806 /* Should we parse this header or ignore? */ 7807 if (cmsg->cmsg_level != IPPROTO_SCTP) 7808 continue; 7809 7810 /* Strictly check lengths following example in SCM code. */ 7811 switch (cmsg->cmsg_type) { 7812 case SCTP_INIT: 7813 /* SCTP Socket API Extension 7814 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7815 * 7816 * This cmsghdr structure provides information for 7817 * initializing new SCTP associations with sendmsg(). 7818 * The SCTP_INITMSG socket option uses this same data 7819 * structure. This structure is not used for 7820 * recvmsg(). 7821 * 7822 * cmsg_level cmsg_type cmsg_data[] 7823 * ------------ ------------ ---------------------- 7824 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7825 */ 7826 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7827 return -EINVAL; 7828 7829 cmsgs->init = CMSG_DATA(cmsg); 7830 break; 7831 7832 case SCTP_SNDRCV: 7833 /* SCTP Socket API Extension 7834 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7835 * 7836 * This cmsghdr structure specifies SCTP options for 7837 * sendmsg() and describes SCTP header information 7838 * about a received message through recvmsg(). 7839 * 7840 * cmsg_level cmsg_type cmsg_data[] 7841 * ------------ ------------ ---------------------- 7842 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7843 */ 7844 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7845 return -EINVAL; 7846 7847 cmsgs->srinfo = CMSG_DATA(cmsg); 7848 7849 if (cmsgs->srinfo->sinfo_flags & 7850 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7851 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7852 SCTP_ABORT | SCTP_EOF)) 7853 return -EINVAL; 7854 break; 7855 7856 case SCTP_SNDINFO: 7857 /* SCTP Socket API Extension 7858 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7859 * 7860 * This cmsghdr structure specifies SCTP options for 7861 * sendmsg(). This structure and SCTP_RCVINFO replaces 7862 * SCTP_SNDRCV which has been deprecated. 7863 * 7864 * cmsg_level cmsg_type cmsg_data[] 7865 * ------------ ------------ --------------------- 7866 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7867 */ 7868 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7869 return -EINVAL; 7870 7871 cmsgs->sinfo = CMSG_DATA(cmsg); 7872 7873 if (cmsgs->sinfo->snd_flags & 7874 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7875 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7876 SCTP_ABORT | SCTP_EOF)) 7877 return -EINVAL; 7878 break; 7879 default: 7880 return -EINVAL; 7881 } 7882 } 7883 7884 return 0; 7885 } 7886 7887 /* 7888 * Wait for a packet.. 7889 * Note: This function is the same function as in core/datagram.c 7890 * with a few modifications to make lksctp work. 7891 */ 7892 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7893 { 7894 int error; 7895 DEFINE_WAIT(wait); 7896 7897 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7898 7899 /* Socket errors? */ 7900 error = sock_error(sk); 7901 if (error) 7902 goto out; 7903 7904 if (!skb_queue_empty(&sk->sk_receive_queue)) 7905 goto ready; 7906 7907 /* Socket shut down? */ 7908 if (sk->sk_shutdown & RCV_SHUTDOWN) 7909 goto out; 7910 7911 /* Sequenced packets can come disconnected. If so we report the 7912 * problem. 7913 */ 7914 error = -ENOTCONN; 7915 7916 /* Is there a good reason to think that we may receive some data? */ 7917 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7918 goto out; 7919 7920 /* Handle signals. */ 7921 if (signal_pending(current)) 7922 goto interrupted; 7923 7924 /* Let another process have a go. Since we are going to sleep 7925 * anyway. Note: This may cause odd behaviors if the message 7926 * does not fit in the user's buffer, but this seems to be the 7927 * only way to honor MSG_DONTWAIT realistically. 7928 */ 7929 release_sock(sk); 7930 *timeo_p = schedule_timeout(*timeo_p); 7931 lock_sock(sk); 7932 7933 ready: 7934 finish_wait(sk_sleep(sk), &wait); 7935 return 0; 7936 7937 interrupted: 7938 error = sock_intr_errno(*timeo_p); 7939 7940 out: 7941 finish_wait(sk_sleep(sk), &wait); 7942 *err = error; 7943 return error; 7944 } 7945 7946 /* Receive a datagram. 7947 * Note: This is pretty much the same routine as in core/datagram.c 7948 * with a few changes to make lksctp work. 7949 */ 7950 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7951 int noblock, int *err) 7952 { 7953 int error; 7954 struct sk_buff *skb; 7955 long timeo; 7956 7957 timeo = sock_rcvtimeo(sk, noblock); 7958 7959 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7960 MAX_SCHEDULE_TIMEOUT); 7961 7962 do { 7963 /* Again only user level code calls this function, 7964 * so nothing interrupt level 7965 * will suddenly eat the receive_queue. 7966 * 7967 * Look at current nfs client by the way... 7968 * However, this function was correct in any case. 8) 7969 */ 7970 if (flags & MSG_PEEK) { 7971 skb = skb_peek(&sk->sk_receive_queue); 7972 if (skb) 7973 refcount_inc(&skb->users); 7974 } else { 7975 skb = __skb_dequeue(&sk->sk_receive_queue); 7976 } 7977 7978 if (skb) 7979 return skb; 7980 7981 /* Caller is allowed not to check sk->sk_err before calling. */ 7982 error = sock_error(sk); 7983 if (error) 7984 goto no_packet; 7985 7986 if (sk->sk_shutdown & RCV_SHUTDOWN) 7987 break; 7988 7989 if (sk_can_busy_loop(sk)) { 7990 sk_busy_loop(sk, noblock); 7991 7992 if (!skb_queue_empty(&sk->sk_receive_queue)) 7993 continue; 7994 } 7995 7996 /* User doesn't want to wait. */ 7997 error = -EAGAIN; 7998 if (!timeo) 7999 goto no_packet; 8000 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8001 8002 return NULL; 8003 8004 no_packet: 8005 *err = error; 8006 return NULL; 8007 } 8008 8009 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8010 static void __sctp_write_space(struct sctp_association *asoc) 8011 { 8012 struct sock *sk = asoc->base.sk; 8013 8014 if (sctp_wspace(asoc) <= 0) 8015 return; 8016 8017 if (waitqueue_active(&asoc->wait)) 8018 wake_up_interruptible(&asoc->wait); 8019 8020 if (sctp_writeable(sk)) { 8021 struct socket_wq *wq; 8022 8023 rcu_read_lock(); 8024 wq = rcu_dereference(sk->sk_wq); 8025 if (wq) { 8026 if (waitqueue_active(&wq->wait)) 8027 wake_up_interruptible(&wq->wait); 8028 8029 /* Note that we try to include the Async I/O support 8030 * here by modeling from the current TCP/UDP code. 8031 * We have not tested with it yet. 8032 */ 8033 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8034 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8035 } 8036 rcu_read_unlock(); 8037 } 8038 } 8039 8040 static void sctp_wake_up_waiters(struct sock *sk, 8041 struct sctp_association *asoc) 8042 { 8043 struct sctp_association *tmp = asoc; 8044 8045 /* We do accounting for the sndbuf space per association, 8046 * so we only need to wake our own association. 8047 */ 8048 if (asoc->ep->sndbuf_policy) 8049 return __sctp_write_space(asoc); 8050 8051 /* If association goes down and is just flushing its 8052 * outq, then just normally notify others. 8053 */ 8054 if (asoc->base.dead) 8055 return sctp_write_space(sk); 8056 8057 /* Accounting for the sndbuf space is per socket, so we 8058 * need to wake up others, try to be fair and in case of 8059 * other associations, let them have a go first instead 8060 * of just doing a sctp_write_space() call. 8061 * 8062 * Note that we reach sctp_wake_up_waiters() only when 8063 * associations free up queued chunks, thus we are under 8064 * lock and the list of associations on a socket is 8065 * guaranteed not to change. 8066 */ 8067 for (tmp = list_next_entry(tmp, asocs); 1; 8068 tmp = list_next_entry(tmp, asocs)) { 8069 /* Manually skip the head element. */ 8070 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8071 continue; 8072 /* Wake up association. */ 8073 __sctp_write_space(tmp); 8074 /* We've reached the end. */ 8075 if (tmp == asoc) 8076 break; 8077 } 8078 } 8079 8080 /* Do accounting for the sndbuf space. 8081 * Decrement the used sndbuf space of the corresponding association by the 8082 * data size which was just transmitted(freed). 8083 */ 8084 static void sctp_wfree(struct sk_buff *skb) 8085 { 8086 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8087 struct sctp_association *asoc = chunk->asoc; 8088 struct sock *sk = asoc->base.sk; 8089 8090 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8091 sizeof(struct sk_buff) + 8092 sizeof(struct sctp_chunk); 8093 8094 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8095 8096 /* 8097 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8098 */ 8099 sk->sk_wmem_queued -= skb->truesize; 8100 sk_mem_uncharge(sk, skb->truesize); 8101 8102 sock_wfree(skb); 8103 sctp_wake_up_waiters(sk, asoc); 8104 8105 sctp_association_put(asoc); 8106 } 8107 8108 /* Do accounting for the receive space on the socket. 8109 * Accounting for the association is done in ulpevent.c 8110 * We set this as a destructor for the cloned data skbs so that 8111 * accounting is done at the correct time. 8112 */ 8113 void sctp_sock_rfree(struct sk_buff *skb) 8114 { 8115 struct sock *sk = skb->sk; 8116 struct sctp_ulpevent *event = sctp_skb2event(skb); 8117 8118 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8119 8120 /* 8121 * Mimic the behavior of sock_rfree 8122 */ 8123 sk_mem_uncharge(sk, event->rmem_len); 8124 } 8125 8126 8127 /* Helper function to wait for space in the sndbuf. */ 8128 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8129 size_t msg_len) 8130 { 8131 struct sock *sk = asoc->base.sk; 8132 long current_timeo = *timeo_p; 8133 DEFINE_WAIT(wait); 8134 int err = 0; 8135 8136 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8137 *timeo_p, msg_len); 8138 8139 /* Increment the association's refcnt. */ 8140 sctp_association_hold(asoc); 8141 8142 /* Wait on the association specific sndbuf space. */ 8143 for (;;) { 8144 prepare_to_wait_exclusive(&asoc->wait, &wait, 8145 TASK_INTERRUPTIBLE); 8146 if (asoc->base.dead) 8147 goto do_dead; 8148 if (!*timeo_p) 8149 goto do_nonblock; 8150 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8151 goto do_error; 8152 if (signal_pending(current)) 8153 goto do_interrupted; 8154 if (msg_len <= sctp_wspace(asoc)) 8155 break; 8156 8157 /* Let another process have a go. Since we are going 8158 * to sleep anyway. 8159 */ 8160 release_sock(sk); 8161 current_timeo = schedule_timeout(current_timeo); 8162 lock_sock(sk); 8163 if (sk != asoc->base.sk) 8164 goto do_error; 8165 8166 *timeo_p = current_timeo; 8167 } 8168 8169 out: 8170 finish_wait(&asoc->wait, &wait); 8171 8172 /* Release the association's refcnt. */ 8173 sctp_association_put(asoc); 8174 8175 return err; 8176 8177 do_dead: 8178 err = -ESRCH; 8179 goto out; 8180 8181 do_error: 8182 err = -EPIPE; 8183 goto out; 8184 8185 do_interrupted: 8186 err = sock_intr_errno(*timeo_p); 8187 goto out; 8188 8189 do_nonblock: 8190 err = -EAGAIN; 8191 goto out; 8192 } 8193 8194 void sctp_data_ready(struct sock *sk) 8195 { 8196 struct socket_wq *wq; 8197 8198 rcu_read_lock(); 8199 wq = rcu_dereference(sk->sk_wq); 8200 if (skwq_has_sleeper(wq)) 8201 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 8202 POLLRDNORM | POLLRDBAND); 8203 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8204 rcu_read_unlock(); 8205 } 8206 8207 /* If socket sndbuf has changed, wake up all per association waiters. */ 8208 void sctp_write_space(struct sock *sk) 8209 { 8210 struct sctp_association *asoc; 8211 8212 /* Wake up the tasks in each wait queue. */ 8213 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8214 __sctp_write_space(asoc); 8215 } 8216 } 8217 8218 /* Is there any sndbuf space available on the socket? 8219 * 8220 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8221 * associations on the same socket. For a UDP-style socket with 8222 * multiple associations, it is possible for it to be "unwriteable" 8223 * prematurely. I assume that this is acceptable because 8224 * a premature "unwriteable" is better than an accidental "writeable" which 8225 * would cause an unwanted block under certain circumstances. For the 1-1 8226 * UDP-style sockets or TCP-style sockets, this code should work. 8227 * - Daisy 8228 */ 8229 static int sctp_writeable(struct sock *sk) 8230 { 8231 int amt = 0; 8232 8233 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8234 if (amt < 0) 8235 amt = 0; 8236 return amt; 8237 } 8238 8239 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8240 * returns immediately with EINPROGRESS. 8241 */ 8242 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8243 { 8244 struct sock *sk = asoc->base.sk; 8245 int err = 0; 8246 long current_timeo = *timeo_p; 8247 DEFINE_WAIT(wait); 8248 8249 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8250 8251 /* Increment the association's refcnt. */ 8252 sctp_association_hold(asoc); 8253 8254 for (;;) { 8255 prepare_to_wait_exclusive(&asoc->wait, &wait, 8256 TASK_INTERRUPTIBLE); 8257 if (!*timeo_p) 8258 goto do_nonblock; 8259 if (sk->sk_shutdown & RCV_SHUTDOWN) 8260 break; 8261 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8262 asoc->base.dead) 8263 goto do_error; 8264 if (signal_pending(current)) 8265 goto do_interrupted; 8266 8267 if (sctp_state(asoc, ESTABLISHED)) 8268 break; 8269 8270 /* Let another process have a go. Since we are going 8271 * to sleep anyway. 8272 */ 8273 release_sock(sk); 8274 current_timeo = schedule_timeout(current_timeo); 8275 lock_sock(sk); 8276 8277 *timeo_p = current_timeo; 8278 } 8279 8280 out: 8281 finish_wait(&asoc->wait, &wait); 8282 8283 /* Release the association's refcnt. */ 8284 sctp_association_put(asoc); 8285 8286 return err; 8287 8288 do_error: 8289 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8290 err = -ETIMEDOUT; 8291 else 8292 err = -ECONNREFUSED; 8293 goto out; 8294 8295 do_interrupted: 8296 err = sock_intr_errno(*timeo_p); 8297 goto out; 8298 8299 do_nonblock: 8300 err = -EINPROGRESS; 8301 goto out; 8302 } 8303 8304 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8305 { 8306 struct sctp_endpoint *ep; 8307 int err = 0; 8308 DEFINE_WAIT(wait); 8309 8310 ep = sctp_sk(sk)->ep; 8311 8312 8313 for (;;) { 8314 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8315 TASK_INTERRUPTIBLE); 8316 8317 if (list_empty(&ep->asocs)) { 8318 release_sock(sk); 8319 timeo = schedule_timeout(timeo); 8320 lock_sock(sk); 8321 } 8322 8323 err = -EINVAL; 8324 if (!sctp_sstate(sk, LISTENING)) 8325 break; 8326 8327 err = 0; 8328 if (!list_empty(&ep->asocs)) 8329 break; 8330 8331 err = sock_intr_errno(timeo); 8332 if (signal_pending(current)) 8333 break; 8334 8335 err = -EAGAIN; 8336 if (!timeo) 8337 break; 8338 } 8339 8340 finish_wait(sk_sleep(sk), &wait); 8341 8342 return err; 8343 } 8344 8345 static void sctp_wait_for_close(struct sock *sk, long timeout) 8346 { 8347 DEFINE_WAIT(wait); 8348 8349 do { 8350 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8351 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8352 break; 8353 release_sock(sk); 8354 timeout = schedule_timeout(timeout); 8355 lock_sock(sk); 8356 } while (!signal_pending(current) && timeout); 8357 8358 finish_wait(sk_sleep(sk), &wait); 8359 } 8360 8361 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8362 { 8363 struct sk_buff *frag; 8364 8365 if (!skb->data_len) 8366 goto done; 8367 8368 /* Don't forget the fragments. */ 8369 skb_walk_frags(skb, frag) 8370 sctp_skb_set_owner_r_frag(frag, sk); 8371 8372 done: 8373 sctp_skb_set_owner_r(skb, sk); 8374 } 8375 8376 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8377 struct sctp_association *asoc) 8378 { 8379 struct inet_sock *inet = inet_sk(sk); 8380 struct inet_sock *newinet; 8381 8382 newsk->sk_type = sk->sk_type; 8383 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8384 newsk->sk_flags = sk->sk_flags; 8385 newsk->sk_tsflags = sk->sk_tsflags; 8386 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8387 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8388 newsk->sk_reuse = sk->sk_reuse; 8389 8390 newsk->sk_shutdown = sk->sk_shutdown; 8391 newsk->sk_destruct = sctp_destruct_sock; 8392 newsk->sk_family = sk->sk_family; 8393 newsk->sk_protocol = IPPROTO_SCTP; 8394 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8395 newsk->sk_sndbuf = sk->sk_sndbuf; 8396 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8397 newsk->sk_lingertime = sk->sk_lingertime; 8398 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8399 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8400 newsk->sk_rxhash = sk->sk_rxhash; 8401 8402 newinet = inet_sk(newsk); 8403 8404 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8405 * getsockname() and getpeername() 8406 */ 8407 newinet->inet_sport = inet->inet_sport; 8408 newinet->inet_saddr = inet->inet_saddr; 8409 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8410 newinet->inet_dport = htons(asoc->peer.port); 8411 newinet->pmtudisc = inet->pmtudisc; 8412 newinet->inet_id = asoc->next_tsn ^ jiffies; 8413 8414 newinet->uc_ttl = inet->uc_ttl; 8415 newinet->mc_loop = 1; 8416 newinet->mc_ttl = 1; 8417 newinet->mc_index = 0; 8418 newinet->mc_list = NULL; 8419 8420 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8421 net_enable_timestamp(); 8422 8423 security_sk_clone(sk, newsk); 8424 } 8425 8426 static inline void sctp_copy_descendant(struct sock *sk_to, 8427 const struct sock *sk_from) 8428 { 8429 int ancestor_size = sizeof(struct inet_sock) + 8430 sizeof(struct sctp_sock) - 8431 offsetof(struct sctp_sock, auto_asconf_list); 8432 8433 if (sk_from->sk_family == PF_INET6) 8434 ancestor_size += sizeof(struct ipv6_pinfo); 8435 8436 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8437 } 8438 8439 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8440 * and its messages to the newsk. 8441 */ 8442 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8443 struct sctp_association *assoc, 8444 enum sctp_socket_type type) 8445 { 8446 struct sctp_sock *oldsp = sctp_sk(oldsk); 8447 struct sctp_sock *newsp = sctp_sk(newsk); 8448 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8449 struct sctp_endpoint *newep = newsp->ep; 8450 struct sk_buff *skb, *tmp; 8451 struct sctp_ulpevent *event; 8452 struct sctp_bind_hashbucket *head; 8453 8454 /* Migrate socket buffer sizes and all the socket level options to the 8455 * new socket. 8456 */ 8457 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8458 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8459 /* Brute force copy old sctp opt. */ 8460 sctp_copy_descendant(newsk, oldsk); 8461 8462 /* Restore the ep value that was overwritten with the above structure 8463 * copy. 8464 */ 8465 newsp->ep = newep; 8466 newsp->hmac = NULL; 8467 8468 /* Hook this new socket in to the bind_hash list. */ 8469 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8470 inet_sk(oldsk)->inet_num)]; 8471 spin_lock_bh(&head->lock); 8472 pp = sctp_sk(oldsk)->bind_hash; 8473 sk_add_bind_node(newsk, &pp->owner); 8474 sctp_sk(newsk)->bind_hash = pp; 8475 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8476 spin_unlock_bh(&head->lock); 8477 8478 /* Copy the bind_addr list from the original endpoint to the new 8479 * endpoint so that we can handle restarts properly 8480 */ 8481 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8482 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8483 8484 /* Move any messages in the old socket's receive queue that are for the 8485 * peeled off association to the new socket's receive queue. 8486 */ 8487 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8488 event = sctp_skb2event(skb); 8489 if (event->asoc == assoc) { 8490 __skb_unlink(skb, &oldsk->sk_receive_queue); 8491 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8492 sctp_skb_set_owner_r_frag(skb, newsk); 8493 } 8494 } 8495 8496 /* Clean up any messages pending delivery due to partial 8497 * delivery. Three cases: 8498 * 1) No partial deliver; no work. 8499 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8500 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8501 */ 8502 skb_queue_head_init(&newsp->pd_lobby); 8503 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8504 8505 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8506 struct sk_buff_head *queue; 8507 8508 /* Decide which queue to move pd_lobby skbs to. */ 8509 if (assoc->ulpq.pd_mode) { 8510 queue = &newsp->pd_lobby; 8511 } else 8512 queue = &newsk->sk_receive_queue; 8513 8514 /* Walk through the pd_lobby, looking for skbs that 8515 * need moved to the new socket. 8516 */ 8517 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8518 event = sctp_skb2event(skb); 8519 if (event->asoc == assoc) { 8520 __skb_unlink(skb, &oldsp->pd_lobby); 8521 __skb_queue_tail(queue, skb); 8522 sctp_skb_set_owner_r_frag(skb, newsk); 8523 } 8524 } 8525 8526 /* Clear up any skbs waiting for the partial 8527 * delivery to finish. 8528 */ 8529 if (assoc->ulpq.pd_mode) 8530 sctp_clear_pd(oldsk, NULL); 8531 8532 } 8533 8534 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8535 8536 /* Set the type of socket to indicate that it is peeled off from the 8537 * original UDP-style socket or created with the accept() call on a 8538 * TCP-style socket.. 8539 */ 8540 newsp->type = type; 8541 8542 /* Mark the new socket "in-use" by the user so that any packets 8543 * that may arrive on the association after we've moved it are 8544 * queued to the backlog. This prevents a potential race between 8545 * backlog processing on the old socket and new-packet processing 8546 * on the new socket. 8547 * 8548 * The caller has just allocated newsk so we can guarantee that other 8549 * paths won't try to lock it and then oldsk. 8550 */ 8551 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8552 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8553 sctp_assoc_migrate(assoc, newsk); 8554 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8555 8556 /* If the association on the newsk is already closed before accept() 8557 * is called, set RCV_SHUTDOWN flag. 8558 */ 8559 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8560 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8561 newsk->sk_shutdown |= RCV_SHUTDOWN; 8562 } else { 8563 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8564 } 8565 8566 release_sock(newsk); 8567 } 8568 8569 8570 /* This proto struct describes the ULP interface for SCTP. */ 8571 struct proto sctp_prot = { 8572 .name = "SCTP", 8573 .owner = THIS_MODULE, 8574 .close = sctp_close, 8575 .connect = sctp_connect, 8576 .disconnect = sctp_disconnect, 8577 .accept = sctp_accept, 8578 .ioctl = sctp_ioctl, 8579 .init = sctp_init_sock, 8580 .destroy = sctp_destroy_sock, 8581 .shutdown = sctp_shutdown, 8582 .setsockopt = sctp_setsockopt, 8583 .getsockopt = sctp_getsockopt, 8584 .sendmsg = sctp_sendmsg, 8585 .recvmsg = sctp_recvmsg, 8586 .bind = sctp_bind, 8587 .backlog_rcv = sctp_backlog_rcv, 8588 .hash = sctp_hash, 8589 .unhash = sctp_unhash, 8590 .get_port = sctp_get_port, 8591 .obj_size = sizeof(struct sctp_sock), 8592 .sysctl_mem = sysctl_sctp_mem, 8593 .sysctl_rmem = sysctl_sctp_rmem, 8594 .sysctl_wmem = sysctl_sctp_wmem, 8595 .memory_pressure = &sctp_memory_pressure, 8596 .enter_memory_pressure = sctp_enter_memory_pressure, 8597 .memory_allocated = &sctp_memory_allocated, 8598 .sockets_allocated = &sctp_sockets_allocated, 8599 }; 8600 8601 #if IS_ENABLED(CONFIG_IPV6) 8602 8603 #include <net/transp_v6.h> 8604 static void sctp_v6_destroy_sock(struct sock *sk) 8605 { 8606 sctp_destroy_sock(sk); 8607 inet6_destroy_sock(sk); 8608 } 8609 8610 struct proto sctpv6_prot = { 8611 .name = "SCTPv6", 8612 .owner = THIS_MODULE, 8613 .close = sctp_close, 8614 .connect = sctp_connect, 8615 .disconnect = sctp_disconnect, 8616 .accept = sctp_accept, 8617 .ioctl = sctp_ioctl, 8618 .init = sctp_init_sock, 8619 .destroy = sctp_v6_destroy_sock, 8620 .shutdown = sctp_shutdown, 8621 .setsockopt = sctp_setsockopt, 8622 .getsockopt = sctp_getsockopt, 8623 .sendmsg = sctp_sendmsg, 8624 .recvmsg = sctp_recvmsg, 8625 .bind = sctp_bind, 8626 .backlog_rcv = sctp_backlog_rcv, 8627 .hash = sctp_hash, 8628 .unhash = sctp_unhash, 8629 .get_port = sctp_get_port, 8630 .obj_size = sizeof(struct sctp6_sock), 8631 .sysctl_mem = sysctl_sctp_mem, 8632 .sysctl_rmem = sysctl_sctp_rmem, 8633 .sysctl_wmem = sysctl_sctp_wmem, 8634 .memory_pressure = &sctp_memory_pressure, 8635 .enter_memory_pressure = sctp_enter_memory_pressure, 8636 .memory_allocated = &sctp_memory_allocated, 8637 .sockets_allocated = &sctp_sockets_allocated, 8638 }; 8639 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8640