1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static long sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && snum < inet_prot_sock(net) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if ((ret = sctp_get_port_local(sk, addr))) { 403 return -EADDRINUSE; 404 } 405 406 /* Refresh ephemeral port. */ 407 if (!bp->port) 408 bp->port = inet_sk(sk)->inet_num; 409 410 /* Add the address to the bind address list. 411 * Use GFP_ATOMIC since BHs will be disabled. 412 */ 413 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 414 SCTP_ADDR_SRC, GFP_ATOMIC); 415 416 /* Copy back into socket for getsockname() use. */ 417 if (!ret) { 418 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 419 sp->pf->to_sk_saddr(addr, sk); 420 } 421 422 return ret; 423 } 424 425 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 426 * 427 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 428 * at any one time. If a sender, after sending an ASCONF chunk, decides 429 * it needs to transfer another ASCONF Chunk, it MUST wait until the 430 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 431 * subsequent ASCONF. Note this restriction binds each side, so at any 432 * time two ASCONF may be in-transit on any given association (one sent 433 * from each endpoint). 434 */ 435 static int sctp_send_asconf(struct sctp_association *asoc, 436 struct sctp_chunk *chunk) 437 { 438 struct net *net = sock_net(asoc->base.sk); 439 int retval = 0; 440 441 /* If there is an outstanding ASCONF chunk, queue it for later 442 * transmission. 443 */ 444 if (asoc->addip_last_asconf) { 445 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 446 goto out; 447 } 448 449 /* Hold the chunk until an ASCONF_ACK is received. */ 450 sctp_chunk_hold(chunk); 451 retval = sctp_primitive_ASCONF(net, asoc, chunk); 452 if (retval) 453 sctp_chunk_free(chunk); 454 else 455 asoc->addip_last_asconf = chunk; 456 457 out: 458 return retval; 459 } 460 461 /* Add a list of addresses as bind addresses to local endpoint or 462 * association. 463 * 464 * Basically run through each address specified in the addrs/addrcnt 465 * array/length pair, determine if it is IPv6 or IPv4 and call 466 * sctp_do_bind() on it. 467 * 468 * If any of them fails, then the operation will be reversed and the 469 * ones that were added will be removed. 470 * 471 * Only sctp_setsockopt_bindx() is supposed to call this function. 472 */ 473 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 474 { 475 int cnt; 476 int retval = 0; 477 void *addr_buf; 478 struct sockaddr *sa_addr; 479 struct sctp_af *af; 480 481 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 482 addrs, addrcnt); 483 484 addr_buf = addrs; 485 for (cnt = 0; cnt < addrcnt; cnt++) { 486 /* The list may contain either IPv4 or IPv6 address; 487 * determine the address length for walking thru the list. 488 */ 489 sa_addr = addr_buf; 490 af = sctp_get_af_specific(sa_addr->sa_family); 491 if (!af) { 492 retval = -EINVAL; 493 goto err_bindx_add; 494 } 495 496 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 497 af->sockaddr_len); 498 499 addr_buf += af->sockaddr_len; 500 501 err_bindx_add: 502 if (retval < 0) { 503 /* Failed. Cleanup the ones that have been added */ 504 if (cnt > 0) 505 sctp_bindx_rem(sk, addrs, cnt); 506 return retval; 507 } 508 } 509 510 return retval; 511 } 512 513 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 514 * associations that are part of the endpoint indicating that a list of local 515 * addresses are added to the endpoint. 516 * 517 * If any of the addresses is already in the bind address list of the 518 * association, we do not send the chunk for that association. But it will not 519 * affect other associations. 520 * 521 * Only sctp_setsockopt_bindx() is supposed to call this function. 522 */ 523 static int sctp_send_asconf_add_ip(struct sock *sk, 524 struct sockaddr *addrs, 525 int addrcnt) 526 { 527 struct net *net = sock_net(sk); 528 struct sctp_sock *sp; 529 struct sctp_endpoint *ep; 530 struct sctp_association *asoc; 531 struct sctp_bind_addr *bp; 532 struct sctp_chunk *chunk; 533 struct sctp_sockaddr_entry *laddr; 534 union sctp_addr *addr; 535 union sctp_addr saveaddr; 536 void *addr_buf; 537 struct sctp_af *af; 538 struct list_head *p; 539 int i; 540 int retval = 0; 541 542 if (!net->sctp.addip_enable) 543 return retval; 544 545 sp = sctp_sk(sk); 546 ep = sp->ep; 547 548 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 549 __func__, sk, addrs, addrcnt); 550 551 list_for_each_entry(asoc, &ep->asocs, asocs) { 552 if (!asoc->peer.asconf_capable) 553 continue; 554 555 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 556 continue; 557 558 if (!sctp_state(asoc, ESTABLISHED)) 559 continue; 560 561 /* Check if any address in the packed array of addresses is 562 * in the bind address list of the association. If so, 563 * do not send the asconf chunk to its peer, but continue with 564 * other associations. 565 */ 566 addr_buf = addrs; 567 for (i = 0; i < addrcnt; i++) { 568 addr = addr_buf; 569 af = sctp_get_af_specific(addr->v4.sin_family); 570 if (!af) { 571 retval = -EINVAL; 572 goto out; 573 } 574 575 if (sctp_assoc_lookup_laddr(asoc, addr)) 576 break; 577 578 addr_buf += af->sockaddr_len; 579 } 580 if (i < addrcnt) 581 continue; 582 583 /* Use the first valid address in bind addr list of 584 * association as Address Parameter of ASCONF CHUNK. 585 */ 586 bp = &asoc->base.bind_addr; 587 p = bp->address_list.next; 588 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 589 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 590 addrcnt, SCTP_PARAM_ADD_IP); 591 if (!chunk) { 592 retval = -ENOMEM; 593 goto out; 594 } 595 596 /* Add the new addresses to the bind address list with 597 * use_as_src set to 0. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 memcpy(&saveaddr, addr, af->sockaddr_len); 604 retval = sctp_add_bind_addr(bp, &saveaddr, 605 sizeof(saveaddr), 606 SCTP_ADDR_NEW, GFP_ATOMIC); 607 addr_buf += af->sockaddr_len; 608 } 609 if (asoc->src_out_of_asoc_ok) { 610 struct sctp_transport *trans; 611 612 list_for_each_entry(trans, 613 &asoc->peer.transport_addr_list, transports) { 614 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 615 2*asoc->pathmtu, 4380)); 616 trans->ssthresh = asoc->peer.i.a_rwnd; 617 trans->rto = asoc->rto_initial; 618 sctp_max_rto(asoc, trans); 619 trans->rtt = trans->srtt = trans->rttvar = 0; 620 /* Clear the source and route cache */ 621 sctp_transport_route(trans, NULL, 622 sctp_sk(asoc->base.sk)); 623 } 624 } 625 retval = sctp_send_asconf(asoc, chunk); 626 } 627 628 out: 629 return retval; 630 } 631 632 /* Remove a list of addresses from bind addresses list. Do not remove the 633 * last address. 634 * 635 * Basically run through each address specified in the addrs/addrcnt 636 * array/length pair, determine if it is IPv6 or IPv4 and call 637 * sctp_del_bind() on it. 638 * 639 * If any of them fails, then the operation will be reversed and the 640 * ones that were removed will be added back. 641 * 642 * At least one address has to be left; if only one address is 643 * available, the operation will return -EBUSY. 644 * 645 * Only sctp_setsockopt_bindx() is supposed to call this function. 646 */ 647 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 648 { 649 struct sctp_sock *sp = sctp_sk(sk); 650 struct sctp_endpoint *ep = sp->ep; 651 int cnt; 652 struct sctp_bind_addr *bp = &ep->base.bind_addr; 653 int retval = 0; 654 void *addr_buf; 655 union sctp_addr *sa_addr; 656 struct sctp_af *af; 657 658 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 659 __func__, sk, addrs, addrcnt); 660 661 addr_buf = addrs; 662 for (cnt = 0; cnt < addrcnt; cnt++) { 663 /* If the bind address list is empty or if there is only one 664 * bind address, there is nothing more to be removed (we need 665 * at least one address here). 666 */ 667 if (list_empty(&bp->address_list) || 668 (sctp_list_single_entry(&bp->address_list))) { 669 retval = -EBUSY; 670 goto err_bindx_rem; 671 } 672 673 sa_addr = addr_buf; 674 af = sctp_get_af_specific(sa_addr->sa.sa_family); 675 if (!af) { 676 retval = -EINVAL; 677 goto err_bindx_rem; 678 } 679 680 if (!af->addr_valid(sa_addr, sp, NULL)) { 681 retval = -EADDRNOTAVAIL; 682 goto err_bindx_rem; 683 } 684 685 if (sa_addr->v4.sin_port && 686 sa_addr->v4.sin_port != htons(bp->port)) { 687 retval = -EINVAL; 688 goto err_bindx_rem; 689 } 690 691 if (!sa_addr->v4.sin_port) 692 sa_addr->v4.sin_port = htons(bp->port); 693 694 /* FIXME - There is probably a need to check if sk->sk_saddr and 695 * sk->sk_rcv_addr are currently set to one of the addresses to 696 * be removed. This is something which needs to be looked into 697 * when we are fixing the outstanding issues with multi-homing 698 * socket routing and failover schemes. Refer to comments in 699 * sctp_do_bind(). -daisy 700 */ 701 retval = sctp_del_bind_addr(bp, sa_addr); 702 703 addr_buf += af->sockaddr_len; 704 err_bindx_rem: 705 if (retval < 0) { 706 /* Failed. Add the ones that has been removed back */ 707 if (cnt > 0) 708 sctp_bindx_add(sk, addrs, cnt); 709 return retval; 710 } 711 } 712 713 return retval; 714 } 715 716 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 717 * the associations that are part of the endpoint indicating that a list of 718 * local addresses are removed from the endpoint. 719 * 720 * If any of the addresses is already in the bind address list of the 721 * association, we do not send the chunk for that association. But it will not 722 * affect other associations. 723 * 724 * Only sctp_setsockopt_bindx() is supposed to call this function. 725 */ 726 static int sctp_send_asconf_del_ip(struct sock *sk, 727 struct sockaddr *addrs, 728 int addrcnt) 729 { 730 struct net *net = sock_net(sk); 731 struct sctp_sock *sp; 732 struct sctp_endpoint *ep; 733 struct sctp_association *asoc; 734 struct sctp_transport *transport; 735 struct sctp_bind_addr *bp; 736 struct sctp_chunk *chunk; 737 union sctp_addr *laddr; 738 void *addr_buf; 739 struct sctp_af *af; 740 struct sctp_sockaddr_entry *saddr; 741 int i; 742 int retval = 0; 743 int stored = 0; 744 745 chunk = NULL; 746 if (!net->sctp.addip_enable) 747 return retval; 748 749 sp = sctp_sk(sk); 750 ep = sp->ep; 751 752 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 753 __func__, sk, addrs, addrcnt); 754 755 list_for_each_entry(asoc, &ep->asocs, asocs) { 756 757 if (!asoc->peer.asconf_capable) 758 continue; 759 760 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 761 continue; 762 763 if (!sctp_state(asoc, ESTABLISHED)) 764 continue; 765 766 /* Check if any address in the packed array of addresses is 767 * not present in the bind address list of the association. 768 * If so, do not send the asconf chunk to its peer, but 769 * continue with other associations. 770 */ 771 addr_buf = addrs; 772 for (i = 0; i < addrcnt; i++) { 773 laddr = addr_buf; 774 af = sctp_get_af_specific(laddr->v4.sin_family); 775 if (!af) { 776 retval = -EINVAL; 777 goto out; 778 } 779 780 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 781 break; 782 783 addr_buf += af->sockaddr_len; 784 } 785 if (i < addrcnt) 786 continue; 787 788 /* Find one address in the association's bind address list 789 * that is not in the packed array of addresses. This is to 790 * make sure that we do not delete all the addresses in the 791 * association. 792 */ 793 bp = &asoc->base.bind_addr; 794 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 795 addrcnt, sp); 796 if ((laddr == NULL) && (addrcnt == 1)) { 797 if (asoc->asconf_addr_del_pending) 798 continue; 799 asoc->asconf_addr_del_pending = 800 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 801 if (asoc->asconf_addr_del_pending == NULL) { 802 retval = -ENOMEM; 803 goto out; 804 } 805 asoc->asconf_addr_del_pending->sa.sa_family = 806 addrs->sa_family; 807 asoc->asconf_addr_del_pending->v4.sin_port = 808 htons(bp->port); 809 if (addrs->sa_family == AF_INET) { 810 struct sockaddr_in *sin; 811 812 sin = (struct sockaddr_in *)addrs; 813 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 814 } else if (addrs->sa_family == AF_INET6) { 815 struct sockaddr_in6 *sin6; 816 817 sin6 = (struct sockaddr_in6 *)addrs; 818 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 819 } 820 821 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 822 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 823 asoc->asconf_addr_del_pending); 824 825 asoc->src_out_of_asoc_ok = 1; 826 stored = 1; 827 goto skip_mkasconf; 828 } 829 830 if (laddr == NULL) 831 return -EINVAL; 832 833 /* We do not need RCU protection throughout this loop 834 * because this is done under a socket lock from the 835 * setsockopt call. 836 */ 837 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 838 SCTP_PARAM_DEL_IP); 839 if (!chunk) { 840 retval = -ENOMEM; 841 goto out; 842 } 843 844 skip_mkasconf: 845 /* Reset use_as_src flag for the addresses in the bind address 846 * list that are to be deleted. 847 */ 848 addr_buf = addrs; 849 for (i = 0; i < addrcnt; i++) { 850 laddr = addr_buf; 851 af = sctp_get_af_specific(laddr->v4.sin_family); 852 list_for_each_entry(saddr, &bp->address_list, list) { 853 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 854 saddr->state = SCTP_ADDR_DEL; 855 } 856 addr_buf += af->sockaddr_len; 857 } 858 859 /* Update the route and saddr entries for all the transports 860 * as some of the addresses in the bind address list are 861 * about to be deleted and cannot be used as source addresses. 862 */ 863 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 864 transports) { 865 sctp_transport_route(transport, NULL, 866 sctp_sk(asoc->base.sk)); 867 } 868 869 if (stored) 870 /* We don't need to transmit ASCONF */ 871 continue; 872 retval = sctp_send_asconf(asoc, chunk); 873 } 874 out: 875 return retval; 876 } 877 878 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 879 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 880 { 881 struct sock *sk = sctp_opt2sk(sp); 882 union sctp_addr *addr; 883 struct sctp_af *af; 884 885 /* It is safe to write port space in caller. */ 886 addr = &addrw->a; 887 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 888 af = sctp_get_af_specific(addr->sa.sa_family); 889 if (!af) 890 return -EINVAL; 891 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 892 return -EINVAL; 893 894 if (addrw->state == SCTP_ADDR_NEW) 895 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 896 else 897 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 898 } 899 900 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 901 * 902 * API 8.1 903 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 904 * int flags); 905 * 906 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 907 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 908 * or IPv6 addresses. 909 * 910 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 911 * Section 3.1.2 for this usage. 912 * 913 * addrs is a pointer to an array of one or more socket addresses. Each 914 * address is contained in its appropriate structure (i.e. struct 915 * sockaddr_in or struct sockaddr_in6) the family of the address type 916 * must be used to distinguish the address length (note that this 917 * representation is termed a "packed array" of addresses). The caller 918 * specifies the number of addresses in the array with addrcnt. 919 * 920 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 921 * -1, and sets errno to the appropriate error code. 922 * 923 * For SCTP, the port given in each socket address must be the same, or 924 * sctp_bindx() will fail, setting errno to EINVAL. 925 * 926 * The flags parameter is formed from the bitwise OR of zero or more of 927 * the following currently defined flags: 928 * 929 * SCTP_BINDX_ADD_ADDR 930 * 931 * SCTP_BINDX_REM_ADDR 932 * 933 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 934 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 935 * addresses from the association. The two flags are mutually exclusive; 936 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 937 * not remove all addresses from an association; sctp_bindx() will 938 * reject such an attempt with EINVAL. 939 * 940 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 941 * additional addresses with an endpoint after calling bind(). Or use 942 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 943 * socket is associated with so that no new association accepted will be 944 * associated with those addresses. If the endpoint supports dynamic 945 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 946 * endpoint to send the appropriate message to the peer to change the 947 * peers address lists. 948 * 949 * Adding and removing addresses from a connected association is 950 * optional functionality. Implementations that do not support this 951 * functionality should return EOPNOTSUPP. 952 * 953 * Basically do nothing but copying the addresses from user to kernel 954 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 955 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 956 * from userspace. 957 * 958 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 959 * it. 960 * 961 * sk The sk of the socket 962 * addrs The pointer to the addresses in user land 963 * addrssize Size of the addrs buffer 964 * op Operation to perform (add or remove, see the flags of 965 * sctp_bindx) 966 * 967 * Returns 0 if ok, <0 errno code on error. 968 */ 969 static int sctp_setsockopt_bindx(struct sock *sk, 970 struct sockaddr __user *addrs, 971 int addrs_size, int op) 972 { 973 struct sockaddr *kaddrs; 974 int err; 975 int addrcnt = 0; 976 int walk_size = 0; 977 struct sockaddr *sa_addr; 978 void *addr_buf; 979 struct sctp_af *af; 980 981 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 982 __func__, sk, addrs, addrs_size, op); 983 984 if (unlikely(addrs_size <= 0)) 985 return -EINVAL; 986 987 kaddrs = memdup_user(addrs, addrs_size); 988 if (unlikely(IS_ERR(kaddrs))) 989 return PTR_ERR(kaddrs); 990 991 /* Walk through the addrs buffer and count the number of addresses. */ 992 addr_buf = kaddrs; 993 while (walk_size < addrs_size) { 994 if (walk_size + sizeof(sa_family_t) > addrs_size) { 995 kfree(kaddrs); 996 return -EINVAL; 997 } 998 999 sa_addr = addr_buf; 1000 af = sctp_get_af_specific(sa_addr->sa_family); 1001 1002 /* If the address family is not supported or if this address 1003 * causes the address buffer to overflow return EINVAL. 1004 */ 1005 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1006 kfree(kaddrs); 1007 return -EINVAL; 1008 } 1009 addrcnt++; 1010 addr_buf += af->sockaddr_len; 1011 walk_size += af->sockaddr_len; 1012 } 1013 1014 /* Do the work. */ 1015 switch (op) { 1016 case SCTP_BINDX_ADD_ADDR: 1017 /* Allow security module to validate bindx addresses. */ 1018 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1019 (struct sockaddr *)kaddrs, 1020 addrs_size); 1021 if (err) 1022 goto out; 1023 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1024 if (err) 1025 goto out; 1026 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1027 break; 1028 1029 case SCTP_BINDX_REM_ADDR: 1030 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1031 if (err) 1032 goto out; 1033 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1034 break; 1035 1036 default: 1037 err = -EINVAL; 1038 break; 1039 } 1040 1041 out: 1042 kfree(kaddrs); 1043 1044 return err; 1045 } 1046 1047 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1048 * 1049 * Common routine for handling connect() and sctp_connectx(). 1050 * Connect will come in with just a single address. 1051 */ 1052 static int __sctp_connect(struct sock *sk, 1053 struct sockaddr *kaddrs, 1054 int addrs_size, int flags, 1055 sctp_assoc_t *assoc_id) 1056 { 1057 struct net *net = sock_net(sk); 1058 struct sctp_sock *sp; 1059 struct sctp_endpoint *ep; 1060 struct sctp_association *asoc = NULL; 1061 struct sctp_association *asoc2; 1062 struct sctp_transport *transport; 1063 union sctp_addr to; 1064 enum sctp_scope scope; 1065 long timeo; 1066 int err = 0; 1067 int addrcnt = 0; 1068 int walk_size = 0; 1069 union sctp_addr *sa_addr = NULL; 1070 void *addr_buf; 1071 unsigned short port; 1072 1073 sp = sctp_sk(sk); 1074 ep = sp->ep; 1075 1076 /* connect() cannot be done on a socket that is already in ESTABLISHED 1077 * state - UDP-style peeled off socket or a TCP-style socket that 1078 * is already connected. 1079 * It cannot be done even on a TCP-style listening socket. 1080 */ 1081 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1082 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1083 err = -EISCONN; 1084 goto out_free; 1085 } 1086 1087 /* Walk through the addrs buffer and count the number of addresses. */ 1088 addr_buf = kaddrs; 1089 while (walk_size < addrs_size) { 1090 struct sctp_af *af; 1091 1092 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1093 err = -EINVAL; 1094 goto out_free; 1095 } 1096 1097 sa_addr = addr_buf; 1098 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1099 1100 /* If the address family is not supported or if this address 1101 * causes the address buffer to overflow return EINVAL. 1102 */ 1103 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1104 err = -EINVAL; 1105 goto out_free; 1106 } 1107 1108 port = ntohs(sa_addr->v4.sin_port); 1109 1110 /* Save current address so we can work with it */ 1111 memcpy(&to, sa_addr, af->sockaddr_len); 1112 1113 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1114 if (err) 1115 goto out_free; 1116 1117 /* Make sure the destination port is correctly set 1118 * in all addresses. 1119 */ 1120 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1121 err = -EINVAL; 1122 goto out_free; 1123 } 1124 1125 /* Check if there already is a matching association on the 1126 * endpoint (other than the one created here). 1127 */ 1128 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1129 if (asoc2 && asoc2 != asoc) { 1130 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1131 err = -EISCONN; 1132 else 1133 err = -EALREADY; 1134 goto out_free; 1135 } 1136 1137 /* If we could not find a matching association on the endpoint, 1138 * make sure that there is no peeled-off association matching 1139 * the peer address even on another socket. 1140 */ 1141 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1142 err = -EADDRNOTAVAIL; 1143 goto out_free; 1144 } 1145 1146 if (!asoc) { 1147 /* If a bind() or sctp_bindx() is not called prior to 1148 * an sctp_connectx() call, the system picks an 1149 * ephemeral port and will choose an address set 1150 * equivalent to binding with a wildcard address. 1151 */ 1152 if (!ep->base.bind_addr.port) { 1153 if (sctp_autobind(sk)) { 1154 err = -EAGAIN; 1155 goto out_free; 1156 } 1157 } else { 1158 /* 1159 * If an unprivileged user inherits a 1-many 1160 * style socket with open associations on a 1161 * privileged port, it MAY be permitted to 1162 * accept new associations, but it SHOULD NOT 1163 * be permitted to open new associations. 1164 */ 1165 if (ep->base.bind_addr.port < 1166 inet_prot_sock(net) && 1167 !ns_capable(net->user_ns, 1168 CAP_NET_BIND_SERVICE)) { 1169 err = -EACCES; 1170 goto out_free; 1171 } 1172 } 1173 1174 scope = sctp_scope(&to); 1175 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1176 if (!asoc) { 1177 err = -ENOMEM; 1178 goto out_free; 1179 } 1180 1181 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1182 GFP_KERNEL); 1183 if (err < 0) { 1184 goto out_free; 1185 } 1186 1187 } 1188 1189 /* Prime the peer's transport structures. */ 1190 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1191 SCTP_UNKNOWN); 1192 if (!transport) { 1193 err = -ENOMEM; 1194 goto out_free; 1195 } 1196 1197 addrcnt++; 1198 addr_buf += af->sockaddr_len; 1199 walk_size += af->sockaddr_len; 1200 } 1201 1202 /* In case the user of sctp_connectx() wants an association 1203 * id back, assign one now. 1204 */ 1205 if (assoc_id) { 1206 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1207 if (err < 0) 1208 goto out_free; 1209 } 1210 1211 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1212 if (err < 0) { 1213 goto out_free; 1214 } 1215 1216 /* Initialize sk's dport and daddr for getpeername() */ 1217 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1218 sp->pf->to_sk_daddr(sa_addr, sk); 1219 sk->sk_err = 0; 1220 1221 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1222 1223 if (assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 1226 err = sctp_wait_for_connect(asoc, &timeo); 1227 /* Note: the asoc may be freed after the return of 1228 * sctp_wait_for_connect. 1229 */ 1230 1231 /* Don't free association on exit. */ 1232 asoc = NULL; 1233 1234 out_free: 1235 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1236 __func__, asoc, kaddrs, err); 1237 1238 if (asoc) { 1239 /* sctp_primitive_ASSOCIATE may have added this association 1240 * To the hash table, try to unhash it, just in case, its a noop 1241 * if it wasn't hashed so we're safe 1242 */ 1243 sctp_association_free(asoc); 1244 } 1245 return err; 1246 } 1247 1248 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1249 * 1250 * API 8.9 1251 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1252 * sctp_assoc_t *asoc); 1253 * 1254 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1255 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1256 * or IPv6 addresses. 1257 * 1258 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1259 * Section 3.1.2 for this usage. 1260 * 1261 * addrs is a pointer to an array of one or more socket addresses. Each 1262 * address is contained in its appropriate structure (i.e. struct 1263 * sockaddr_in or struct sockaddr_in6) the family of the address type 1264 * must be used to distengish the address length (note that this 1265 * representation is termed a "packed array" of addresses). The caller 1266 * specifies the number of addresses in the array with addrcnt. 1267 * 1268 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1269 * the association id of the new association. On failure, sctp_connectx() 1270 * returns -1, and sets errno to the appropriate error code. The assoc_id 1271 * is not touched by the kernel. 1272 * 1273 * For SCTP, the port given in each socket address must be the same, or 1274 * sctp_connectx() will fail, setting errno to EINVAL. 1275 * 1276 * An application can use sctp_connectx to initiate an association with 1277 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1278 * allows a caller to specify multiple addresses at which a peer can be 1279 * reached. The way the SCTP stack uses the list of addresses to set up 1280 * the association is implementation dependent. This function only 1281 * specifies that the stack will try to make use of all the addresses in 1282 * the list when needed. 1283 * 1284 * Note that the list of addresses passed in is only used for setting up 1285 * the association. It does not necessarily equal the set of addresses 1286 * the peer uses for the resulting association. If the caller wants to 1287 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1288 * retrieve them after the association has been set up. 1289 * 1290 * Basically do nothing but copying the addresses from user to kernel 1291 * land and invoking either sctp_connectx(). This is used for tunneling 1292 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1293 * 1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1295 * it. 1296 * 1297 * sk The sk of the socket 1298 * addrs The pointer to the addresses in user land 1299 * addrssize Size of the addrs buffer 1300 * 1301 * Returns >=0 if ok, <0 errno code on error. 1302 */ 1303 static int __sctp_setsockopt_connectx(struct sock *sk, 1304 struct sockaddr __user *addrs, 1305 int addrs_size, 1306 sctp_assoc_t *assoc_id) 1307 { 1308 struct sockaddr *kaddrs; 1309 int err = 0, flags = 0; 1310 1311 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1312 __func__, sk, addrs, addrs_size); 1313 1314 if (unlikely(addrs_size <= 0)) 1315 return -EINVAL; 1316 1317 kaddrs = memdup_user(addrs, addrs_size); 1318 if (unlikely(IS_ERR(kaddrs))) 1319 return PTR_ERR(kaddrs); 1320 1321 /* Allow security module to validate connectx addresses. */ 1322 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1323 (struct sockaddr *)kaddrs, 1324 addrs_size); 1325 if (err) 1326 goto out_free; 1327 1328 /* in-kernel sockets don't generally have a file allocated to them 1329 * if all they do is call sock_create_kern(). 1330 */ 1331 if (sk->sk_socket->file) 1332 flags = sk->sk_socket->file->f_flags; 1333 1334 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1335 1336 out_free: 1337 kfree(kaddrs); 1338 1339 return err; 1340 } 1341 1342 /* 1343 * This is an older interface. It's kept for backward compatibility 1344 * to the option that doesn't provide association id. 1345 */ 1346 static int sctp_setsockopt_connectx_old(struct sock *sk, 1347 struct sockaddr __user *addrs, 1348 int addrs_size) 1349 { 1350 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1351 } 1352 1353 /* 1354 * New interface for the API. The since the API is done with a socket 1355 * option, to make it simple we feed back the association id is as a return 1356 * indication to the call. Error is always negative and association id is 1357 * always positive. 1358 */ 1359 static int sctp_setsockopt_connectx(struct sock *sk, 1360 struct sockaddr __user *addrs, 1361 int addrs_size) 1362 { 1363 sctp_assoc_t assoc_id = 0; 1364 int err = 0; 1365 1366 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1367 1368 if (err) 1369 return err; 1370 else 1371 return assoc_id; 1372 } 1373 1374 /* 1375 * New (hopefully final) interface for the API. 1376 * We use the sctp_getaddrs_old structure so that use-space library 1377 * can avoid any unnecessary allocations. The only different part 1378 * is that we store the actual length of the address buffer into the 1379 * addrs_num structure member. That way we can re-use the existing 1380 * code. 1381 */ 1382 #ifdef CONFIG_COMPAT 1383 struct compat_sctp_getaddrs_old { 1384 sctp_assoc_t assoc_id; 1385 s32 addr_num; 1386 compat_uptr_t addrs; /* struct sockaddr * */ 1387 }; 1388 #endif 1389 1390 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1391 char __user *optval, 1392 int __user *optlen) 1393 { 1394 struct sctp_getaddrs_old param; 1395 sctp_assoc_t assoc_id = 0; 1396 int err = 0; 1397 1398 #ifdef CONFIG_COMPAT 1399 if (in_compat_syscall()) { 1400 struct compat_sctp_getaddrs_old param32; 1401 1402 if (len < sizeof(param32)) 1403 return -EINVAL; 1404 if (copy_from_user(¶m32, optval, sizeof(param32))) 1405 return -EFAULT; 1406 1407 param.assoc_id = param32.assoc_id; 1408 param.addr_num = param32.addr_num; 1409 param.addrs = compat_ptr(param32.addrs); 1410 } else 1411 #endif 1412 { 1413 if (len < sizeof(param)) 1414 return -EINVAL; 1415 if (copy_from_user(¶m, optval, sizeof(param))) 1416 return -EFAULT; 1417 } 1418 1419 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1420 param.addrs, param.addr_num, 1421 &assoc_id); 1422 if (err == 0 || err == -EINPROGRESS) { 1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1424 return -EFAULT; 1425 if (put_user(sizeof(assoc_id), optlen)) 1426 return -EFAULT; 1427 } 1428 1429 return err; 1430 } 1431 1432 /* API 3.1.4 close() - UDP Style Syntax 1433 * Applications use close() to perform graceful shutdown (as described in 1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1435 * by a UDP-style socket. 1436 * 1437 * The syntax is 1438 * 1439 * ret = close(int sd); 1440 * 1441 * sd - the socket descriptor of the associations to be closed. 1442 * 1443 * To gracefully shutdown a specific association represented by the 1444 * UDP-style socket, an application should use the sendmsg() call, 1445 * passing no user data, but including the appropriate flag in the 1446 * ancillary data (see Section xxxx). 1447 * 1448 * If sd in the close() call is a branched-off socket representing only 1449 * one association, the shutdown is performed on that association only. 1450 * 1451 * 4.1.6 close() - TCP Style Syntax 1452 * 1453 * Applications use close() to gracefully close down an association. 1454 * 1455 * The syntax is: 1456 * 1457 * int close(int sd); 1458 * 1459 * sd - the socket descriptor of the association to be closed. 1460 * 1461 * After an application calls close() on a socket descriptor, no further 1462 * socket operations will succeed on that descriptor. 1463 * 1464 * API 7.1.4 SO_LINGER 1465 * 1466 * An application using the TCP-style socket can use this option to 1467 * perform the SCTP ABORT primitive. The linger option structure is: 1468 * 1469 * struct linger { 1470 * int l_onoff; // option on/off 1471 * int l_linger; // linger time 1472 * }; 1473 * 1474 * To enable the option, set l_onoff to 1. If the l_linger value is set 1475 * to 0, calling close() is the same as the ABORT primitive. If the 1476 * value is set to a negative value, the setsockopt() call will return 1477 * an error. If the value is set to a positive value linger_time, the 1478 * close() can be blocked for at most linger_time ms. If the graceful 1479 * shutdown phase does not finish during this period, close() will 1480 * return but the graceful shutdown phase continues in the system. 1481 */ 1482 static void sctp_close(struct sock *sk, long timeout) 1483 { 1484 struct net *net = sock_net(sk); 1485 struct sctp_endpoint *ep; 1486 struct sctp_association *asoc; 1487 struct list_head *pos, *temp; 1488 unsigned int data_was_unread; 1489 1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1491 1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1493 sk->sk_shutdown = SHUTDOWN_MASK; 1494 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1495 1496 ep = sctp_sk(sk)->ep; 1497 1498 /* Clean up any skbs sitting on the receive queue. */ 1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1501 1502 /* Walk all associations on an endpoint. */ 1503 list_for_each_safe(pos, temp, &ep->asocs) { 1504 asoc = list_entry(pos, struct sctp_association, asocs); 1505 1506 if (sctp_style(sk, TCP)) { 1507 /* A closed association can still be in the list if 1508 * it belongs to a TCP-style listening socket that is 1509 * not yet accepted. If so, free it. If not, send an 1510 * ABORT or SHUTDOWN based on the linger options. 1511 */ 1512 if (sctp_state(asoc, CLOSED)) { 1513 sctp_association_free(asoc); 1514 continue; 1515 } 1516 } 1517 1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1519 !skb_queue_empty(&asoc->ulpq.reasm) || 1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1522 struct sctp_chunk *chunk; 1523 1524 chunk = sctp_make_abort_user(asoc, NULL, 0); 1525 sctp_primitive_ABORT(net, asoc, chunk); 1526 } else 1527 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1528 } 1529 1530 /* On a TCP-style socket, block for at most linger_time if set. */ 1531 if (sctp_style(sk, TCP) && timeout) 1532 sctp_wait_for_close(sk, timeout); 1533 1534 /* This will run the backlog queue. */ 1535 release_sock(sk); 1536 1537 /* Supposedly, no process has access to the socket, but 1538 * the net layers still may. 1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1540 * held and that should be grabbed before socket lock. 1541 */ 1542 spin_lock_bh(&net->sctp.addr_wq_lock); 1543 bh_lock_sock_nested(sk); 1544 1545 /* Hold the sock, since sk_common_release() will put sock_put() 1546 * and we have just a little more cleanup. 1547 */ 1548 sock_hold(sk); 1549 sk_common_release(sk); 1550 1551 bh_unlock_sock(sk); 1552 spin_unlock_bh(&net->sctp.addr_wq_lock); 1553 1554 sock_put(sk); 1555 1556 SCTP_DBG_OBJCNT_DEC(sock); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct net *net = sock_net(sk); 1663 struct sctp_association *asoc; 1664 enum sctp_scope scope; 1665 struct cmsghdr *cmsg; 1666 __be32 flowinfo = 0; 1667 struct sctp_af *af; 1668 int err; 1669 1670 *tp = NULL; 1671 1672 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1673 return -EINVAL; 1674 1675 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1676 sctp_sstate(sk, CLOSING))) 1677 return -EADDRNOTAVAIL; 1678 1679 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1680 return -EADDRNOTAVAIL; 1681 1682 if (!ep->base.bind_addr.port) { 1683 if (sctp_autobind(sk)) 1684 return -EAGAIN; 1685 } else { 1686 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1687 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1688 return -EACCES; 1689 } 1690 1691 scope = sctp_scope(daddr); 1692 1693 /* Label connection socket for first association 1-to-many 1694 * style for client sequence socket()->sendmsg(). This 1695 * needs to be done before sctp_assoc_add_peer() as that will 1696 * set up the initial packet that needs to account for any 1697 * security ip options (CIPSO/CALIPSO) added to the packet. 1698 */ 1699 af = sctp_get_af_specific(daddr->sa.sa_family); 1700 if (!af) 1701 return -EINVAL; 1702 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1703 (struct sockaddr *)daddr, 1704 af->sockaddr_len); 1705 if (err < 0) 1706 return err; 1707 1708 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1709 if (!asoc) 1710 return -ENOMEM; 1711 1712 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1713 err = -ENOMEM; 1714 goto free; 1715 } 1716 1717 if (cmsgs->init) { 1718 struct sctp_initmsg *init = cmsgs->init; 1719 1720 if (init->sinit_num_ostreams) { 1721 __u16 outcnt = init->sinit_num_ostreams; 1722 1723 asoc->c.sinit_num_ostreams = outcnt; 1724 /* outcnt has been changed, need to re-init stream */ 1725 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1726 GFP_KERNEL); 1727 if (err) 1728 goto free; 1729 } 1730 1731 if (init->sinit_max_instreams) 1732 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1733 1734 if (init->sinit_max_attempts) 1735 asoc->max_init_attempts = init->sinit_max_attempts; 1736 1737 if (init->sinit_max_init_timeo) 1738 asoc->max_init_timeo = 1739 msecs_to_jiffies(init->sinit_max_init_timeo); 1740 } 1741 1742 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1743 if (!*tp) { 1744 err = -ENOMEM; 1745 goto free; 1746 } 1747 1748 if (!cmsgs->addrs_msg) 1749 return 0; 1750 1751 if (daddr->sa.sa_family == AF_INET6) 1752 flowinfo = daddr->v6.sin6_flowinfo; 1753 1754 /* sendv addr list parse */ 1755 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1756 struct sctp_transport *transport; 1757 struct sctp_association *old; 1758 union sctp_addr _daddr; 1759 int dlen; 1760 1761 if (cmsg->cmsg_level != IPPROTO_SCTP || 1762 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1763 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1764 continue; 1765 1766 daddr = &_daddr; 1767 memset(daddr, 0, sizeof(*daddr)); 1768 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1769 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1770 if (dlen < sizeof(struct in_addr)) { 1771 err = -EINVAL; 1772 goto free; 1773 } 1774 1775 dlen = sizeof(struct in_addr); 1776 daddr->v4.sin_family = AF_INET; 1777 daddr->v4.sin_port = htons(asoc->peer.port); 1778 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1779 } else { 1780 if (dlen < sizeof(struct in6_addr)) { 1781 err = -EINVAL; 1782 goto free; 1783 } 1784 1785 dlen = sizeof(struct in6_addr); 1786 daddr->v6.sin6_flowinfo = flowinfo; 1787 daddr->v6.sin6_family = AF_INET6; 1788 daddr->v6.sin6_port = htons(asoc->peer.port); 1789 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1790 } 1791 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1792 if (err) 1793 goto free; 1794 1795 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1796 if (old && old != asoc) { 1797 if (old->state >= SCTP_STATE_ESTABLISHED) 1798 err = -EISCONN; 1799 else 1800 err = -EALREADY; 1801 goto free; 1802 } 1803 1804 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1805 err = -EADDRNOTAVAIL; 1806 goto free; 1807 } 1808 1809 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1810 SCTP_UNKNOWN); 1811 if (!transport) { 1812 err = -ENOMEM; 1813 goto free; 1814 } 1815 } 1816 1817 return 0; 1818 1819 free: 1820 sctp_association_free(asoc); 1821 return err; 1822 } 1823 1824 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1825 __u16 sflags, struct msghdr *msg, 1826 size_t msg_len) 1827 { 1828 struct sock *sk = asoc->base.sk; 1829 struct net *net = sock_net(sk); 1830 1831 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1832 return -EPIPE; 1833 1834 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1835 !sctp_state(asoc, ESTABLISHED)) 1836 return 0; 1837 1838 if (sflags & SCTP_EOF) { 1839 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1840 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1841 1842 return 0; 1843 } 1844 1845 if (sflags & SCTP_ABORT) { 1846 struct sctp_chunk *chunk; 1847 1848 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1849 if (!chunk) 1850 return -ENOMEM; 1851 1852 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1853 sctp_primitive_ABORT(net, asoc, chunk); 1854 iov_iter_revert(&msg->msg_iter, msg_len); 1855 1856 return 0; 1857 } 1858 1859 return 1; 1860 } 1861 1862 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1863 struct msghdr *msg, size_t msg_len, 1864 struct sctp_transport *transport, 1865 struct sctp_sndrcvinfo *sinfo) 1866 { 1867 struct sock *sk = asoc->base.sk; 1868 struct sctp_sock *sp = sctp_sk(sk); 1869 struct net *net = sock_net(sk); 1870 struct sctp_datamsg *datamsg; 1871 bool wait_connect = false; 1872 struct sctp_chunk *chunk; 1873 long timeo; 1874 int err; 1875 1876 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1877 err = -EINVAL; 1878 goto err; 1879 } 1880 1881 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1882 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1883 if (err) 1884 goto err; 1885 } 1886 1887 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1888 err = -EMSGSIZE; 1889 goto err; 1890 } 1891 1892 if (asoc->pmtu_pending) { 1893 if (sp->param_flags & SPP_PMTUD_ENABLE) 1894 sctp_assoc_sync_pmtu(asoc); 1895 asoc->pmtu_pending = 0; 1896 } 1897 1898 if (sctp_wspace(asoc) < (int)msg_len) 1899 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1900 1901 if (sk_under_memory_pressure(sk)) 1902 sk_mem_reclaim(sk); 1903 1904 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1905 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1906 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1907 if (err) 1908 goto err; 1909 } 1910 1911 if (sctp_state(asoc, CLOSED)) { 1912 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1913 if (err) 1914 goto err; 1915 1916 if (asoc->ep->intl_enable) { 1917 timeo = sock_sndtimeo(sk, 0); 1918 err = sctp_wait_for_connect(asoc, &timeo); 1919 if (err) { 1920 err = -ESRCH; 1921 goto err; 1922 } 1923 } else { 1924 wait_connect = true; 1925 } 1926 1927 pr_debug("%s: we associated primitively\n", __func__); 1928 } 1929 1930 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1931 if (IS_ERR(datamsg)) { 1932 err = PTR_ERR(datamsg); 1933 goto err; 1934 } 1935 1936 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1937 1938 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1939 sctp_chunk_hold(chunk); 1940 sctp_set_owner_w(chunk); 1941 chunk->transport = transport; 1942 } 1943 1944 err = sctp_primitive_SEND(net, asoc, datamsg); 1945 if (err) { 1946 sctp_datamsg_free(datamsg); 1947 goto err; 1948 } 1949 1950 pr_debug("%s: we sent primitively\n", __func__); 1951 1952 sctp_datamsg_put(datamsg); 1953 1954 if (unlikely(wait_connect)) { 1955 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1956 sctp_wait_for_connect(asoc, &timeo); 1957 } 1958 1959 err = msg_len; 1960 1961 err: 1962 return err; 1963 } 1964 1965 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1966 const struct msghdr *msg, 1967 struct sctp_cmsgs *cmsgs) 1968 { 1969 union sctp_addr *daddr = NULL; 1970 int err; 1971 1972 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1973 int len = msg->msg_namelen; 1974 1975 if (len > sizeof(*daddr)) 1976 len = sizeof(*daddr); 1977 1978 daddr = (union sctp_addr *)msg->msg_name; 1979 1980 err = sctp_verify_addr(sk, daddr, len); 1981 if (err) 1982 return ERR_PTR(err); 1983 } 1984 1985 return daddr; 1986 } 1987 1988 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1989 struct sctp_sndrcvinfo *sinfo, 1990 struct sctp_cmsgs *cmsgs) 1991 { 1992 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1993 sinfo->sinfo_stream = asoc->default_stream; 1994 sinfo->sinfo_ppid = asoc->default_ppid; 1995 sinfo->sinfo_context = asoc->default_context; 1996 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1997 1998 if (!cmsgs->prinfo) 1999 sinfo->sinfo_flags = asoc->default_flags; 2000 } 2001 2002 if (!cmsgs->srinfo && !cmsgs->prinfo) 2003 sinfo->sinfo_timetolive = asoc->default_timetolive; 2004 2005 if (cmsgs->authinfo) { 2006 /* Reuse sinfo_tsn to indicate that authinfo was set and 2007 * sinfo_ssn to save the keyid on tx path. 2008 */ 2009 sinfo->sinfo_tsn = 1; 2010 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2011 } 2012 } 2013 2014 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2015 { 2016 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2017 struct sctp_transport *transport = NULL; 2018 struct sctp_sndrcvinfo _sinfo, *sinfo; 2019 struct sctp_association *asoc, *tmp; 2020 struct sctp_cmsgs cmsgs; 2021 union sctp_addr *daddr; 2022 bool new = false; 2023 __u16 sflags; 2024 int err; 2025 2026 /* Parse and get snd_info */ 2027 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2028 if (err) 2029 goto out; 2030 2031 sinfo = &_sinfo; 2032 sflags = sinfo->sinfo_flags; 2033 2034 /* Get daddr from msg */ 2035 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2036 if (IS_ERR(daddr)) { 2037 err = PTR_ERR(daddr); 2038 goto out; 2039 } 2040 2041 lock_sock(sk); 2042 2043 /* SCTP_SENDALL process */ 2044 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2045 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2046 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2047 msg_len); 2048 if (err == 0) 2049 continue; 2050 if (err < 0) 2051 goto out_unlock; 2052 2053 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2054 2055 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2056 NULL, sinfo); 2057 if (err < 0) 2058 goto out_unlock; 2059 2060 iov_iter_revert(&msg->msg_iter, err); 2061 } 2062 2063 goto out_unlock; 2064 } 2065 2066 /* Get and check or create asoc */ 2067 if (daddr) { 2068 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2069 if (asoc) { 2070 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2071 msg_len); 2072 if (err <= 0) 2073 goto out_unlock; 2074 } else { 2075 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2076 &transport); 2077 if (err) 2078 goto out_unlock; 2079 2080 asoc = transport->asoc; 2081 new = true; 2082 } 2083 2084 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2085 transport = NULL; 2086 } else { 2087 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2088 if (!asoc) { 2089 err = -EPIPE; 2090 goto out_unlock; 2091 } 2092 2093 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2094 if (err <= 0) 2095 goto out_unlock; 2096 } 2097 2098 /* Update snd_info with the asoc */ 2099 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2100 2101 /* Send msg to the asoc */ 2102 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2103 if (err < 0 && err != -ESRCH && new) 2104 sctp_association_free(asoc); 2105 2106 out_unlock: 2107 release_sock(sk); 2108 out: 2109 return sctp_error(sk, msg->msg_flags, err); 2110 } 2111 2112 /* This is an extended version of skb_pull() that removes the data from the 2113 * start of a skb even when data is spread across the list of skb's in the 2114 * frag_list. len specifies the total amount of data that needs to be removed. 2115 * when 'len' bytes could be removed from the skb, it returns 0. 2116 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2117 * could not be removed. 2118 */ 2119 static int sctp_skb_pull(struct sk_buff *skb, int len) 2120 { 2121 struct sk_buff *list; 2122 int skb_len = skb_headlen(skb); 2123 int rlen; 2124 2125 if (len <= skb_len) { 2126 __skb_pull(skb, len); 2127 return 0; 2128 } 2129 len -= skb_len; 2130 __skb_pull(skb, skb_len); 2131 2132 skb_walk_frags(skb, list) { 2133 rlen = sctp_skb_pull(list, len); 2134 skb->len -= (len-rlen); 2135 skb->data_len -= (len-rlen); 2136 2137 if (!rlen) 2138 return 0; 2139 2140 len = rlen; 2141 } 2142 2143 return len; 2144 } 2145 2146 /* API 3.1.3 recvmsg() - UDP Style Syntax 2147 * 2148 * ssize_t recvmsg(int socket, struct msghdr *message, 2149 * int flags); 2150 * 2151 * socket - the socket descriptor of the endpoint. 2152 * message - pointer to the msghdr structure which contains a single 2153 * user message and possibly some ancillary data. 2154 * 2155 * See Section 5 for complete description of the data 2156 * structures. 2157 * 2158 * flags - flags sent or received with the user message, see Section 2159 * 5 for complete description of the flags. 2160 */ 2161 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2162 int noblock, int flags, int *addr_len) 2163 { 2164 struct sctp_ulpevent *event = NULL; 2165 struct sctp_sock *sp = sctp_sk(sk); 2166 struct sk_buff *skb, *head_skb; 2167 int copied; 2168 int err = 0; 2169 int skb_len; 2170 2171 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2172 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2173 addr_len); 2174 2175 lock_sock(sk); 2176 2177 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2178 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2179 err = -ENOTCONN; 2180 goto out; 2181 } 2182 2183 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2184 if (!skb) 2185 goto out; 2186 2187 /* Get the total length of the skb including any skb's in the 2188 * frag_list. 2189 */ 2190 skb_len = skb->len; 2191 2192 copied = skb_len; 2193 if (copied > len) 2194 copied = len; 2195 2196 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2197 2198 event = sctp_skb2event(skb); 2199 2200 if (err) 2201 goto out_free; 2202 2203 if (event->chunk && event->chunk->head_skb) 2204 head_skb = event->chunk->head_skb; 2205 else 2206 head_skb = skb; 2207 sock_recv_ts_and_drops(msg, sk, head_skb); 2208 if (sctp_ulpevent_is_notification(event)) { 2209 msg->msg_flags |= MSG_NOTIFICATION; 2210 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2211 } else { 2212 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2213 } 2214 2215 /* Check if we allow SCTP_NXTINFO. */ 2216 if (sp->recvnxtinfo) 2217 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2218 /* Check if we allow SCTP_RCVINFO. */ 2219 if (sp->recvrcvinfo) 2220 sctp_ulpevent_read_rcvinfo(event, msg); 2221 /* Check if we allow SCTP_SNDRCVINFO. */ 2222 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2223 sctp_ulpevent_read_sndrcvinfo(event, msg); 2224 2225 err = copied; 2226 2227 /* If skb's length exceeds the user's buffer, update the skb and 2228 * push it back to the receive_queue so that the next call to 2229 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2230 */ 2231 if (skb_len > copied) { 2232 msg->msg_flags &= ~MSG_EOR; 2233 if (flags & MSG_PEEK) 2234 goto out_free; 2235 sctp_skb_pull(skb, copied); 2236 skb_queue_head(&sk->sk_receive_queue, skb); 2237 2238 /* When only partial message is copied to the user, increase 2239 * rwnd by that amount. If all the data in the skb is read, 2240 * rwnd is updated when the event is freed. 2241 */ 2242 if (!sctp_ulpevent_is_notification(event)) 2243 sctp_assoc_rwnd_increase(event->asoc, copied); 2244 goto out; 2245 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2246 (event->msg_flags & MSG_EOR)) 2247 msg->msg_flags |= MSG_EOR; 2248 else 2249 msg->msg_flags &= ~MSG_EOR; 2250 2251 out_free: 2252 if (flags & MSG_PEEK) { 2253 /* Release the skb reference acquired after peeking the skb in 2254 * sctp_skb_recv_datagram(). 2255 */ 2256 kfree_skb(skb); 2257 } else { 2258 /* Free the event which includes releasing the reference to 2259 * the owner of the skb, freeing the skb and updating the 2260 * rwnd. 2261 */ 2262 sctp_ulpevent_free(event); 2263 } 2264 out: 2265 release_sock(sk); 2266 return err; 2267 } 2268 2269 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2270 * 2271 * This option is a on/off flag. If enabled no SCTP message 2272 * fragmentation will be performed. Instead if a message being sent 2273 * exceeds the current PMTU size, the message will NOT be sent and 2274 * instead a error will be indicated to the user. 2275 */ 2276 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2277 char __user *optval, 2278 unsigned int optlen) 2279 { 2280 int val; 2281 2282 if (optlen < sizeof(int)) 2283 return -EINVAL; 2284 2285 if (get_user(val, (int __user *)optval)) 2286 return -EFAULT; 2287 2288 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2289 2290 return 0; 2291 } 2292 2293 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2294 unsigned int optlen) 2295 { 2296 struct sctp_event_subscribe subscribe; 2297 __u8 *sn_type = (__u8 *)&subscribe; 2298 struct sctp_sock *sp = sctp_sk(sk); 2299 struct sctp_association *asoc; 2300 int i; 2301 2302 if (optlen > sizeof(struct sctp_event_subscribe)) 2303 return -EINVAL; 2304 2305 if (copy_from_user(&subscribe, optval, optlen)) 2306 return -EFAULT; 2307 2308 for (i = 0; i < optlen; i++) 2309 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2310 sn_type[i]); 2311 2312 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2313 asoc->subscribe = sctp_sk(sk)->subscribe; 2314 2315 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2316 * if there is no data to be sent or retransmit, the stack will 2317 * immediately send up this notification. 2318 */ 2319 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2320 struct sctp_ulpevent *event; 2321 2322 asoc = sctp_id2assoc(sk, 0); 2323 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2324 event = sctp_ulpevent_make_sender_dry_event(asoc, 2325 GFP_USER | __GFP_NOWARN); 2326 if (!event) 2327 return -ENOMEM; 2328 2329 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2337 * 2338 * This socket option is applicable to the UDP-style socket only. When 2339 * set it will cause associations that are idle for more than the 2340 * specified number of seconds to automatically close. An association 2341 * being idle is defined an association that has NOT sent or received 2342 * user data. The special value of '0' indicates that no automatic 2343 * close of any associations should be performed. The option expects an 2344 * integer defining the number of seconds of idle time before an 2345 * association is closed. 2346 */ 2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2348 unsigned int optlen) 2349 { 2350 struct sctp_sock *sp = sctp_sk(sk); 2351 struct net *net = sock_net(sk); 2352 2353 /* Applicable to UDP-style socket only */ 2354 if (sctp_style(sk, TCP)) 2355 return -EOPNOTSUPP; 2356 if (optlen != sizeof(int)) 2357 return -EINVAL; 2358 if (copy_from_user(&sp->autoclose, optval, optlen)) 2359 return -EFAULT; 2360 2361 if (sp->autoclose > net->sctp.max_autoclose) 2362 sp->autoclose = net->sctp.max_autoclose; 2363 2364 return 0; 2365 } 2366 2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2368 * 2369 * Applications can enable or disable heartbeats for any peer address of 2370 * an association, modify an address's heartbeat interval, force a 2371 * heartbeat to be sent immediately, and adjust the address's maximum 2372 * number of retransmissions sent before an address is considered 2373 * unreachable. The following structure is used to access and modify an 2374 * address's parameters: 2375 * 2376 * struct sctp_paddrparams { 2377 * sctp_assoc_t spp_assoc_id; 2378 * struct sockaddr_storage spp_address; 2379 * uint32_t spp_hbinterval; 2380 * uint16_t spp_pathmaxrxt; 2381 * uint32_t spp_pathmtu; 2382 * uint32_t spp_sackdelay; 2383 * uint32_t spp_flags; 2384 * uint32_t spp_ipv6_flowlabel; 2385 * uint8_t spp_dscp; 2386 * }; 2387 * 2388 * spp_assoc_id - (one-to-many style socket) This is filled in the 2389 * application, and identifies the association for 2390 * this query. 2391 * spp_address - This specifies which address is of interest. 2392 * spp_hbinterval - This contains the value of the heartbeat interval, 2393 * in milliseconds. If a value of zero 2394 * is present in this field then no changes are to 2395 * be made to this parameter. 2396 * spp_pathmaxrxt - This contains the maximum number of 2397 * retransmissions before this address shall be 2398 * considered unreachable. If a value of zero 2399 * is present in this field then no changes are to 2400 * be made to this parameter. 2401 * spp_pathmtu - When Path MTU discovery is disabled the value 2402 * specified here will be the "fixed" path mtu. 2403 * Note that if the spp_address field is empty 2404 * then all associations on this address will 2405 * have this fixed path mtu set upon them. 2406 * 2407 * spp_sackdelay - When delayed sack is enabled, this value specifies 2408 * the number of milliseconds that sacks will be delayed 2409 * for. This value will apply to all addresses of an 2410 * association if the spp_address field is empty. Note 2411 * also, that if delayed sack is enabled and this 2412 * value is set to 0, no change is made to the last 2413 * recorded delayed sack timer value. 2414 * 2415 * spp_flags - These flags are used to control various features 2416 * on an association. The flag field may contain 2417 * zero or more of the following options. 2418 * 2419 * SPP_HB_ENABLE - Enable heartbeats on the 2420 * specified address. Note that if the address 2421 * field is empty all addresses for the association 2422 * have heartbeats enabled upon them. 2423 * 2424 * SPP_HB_DISABLE - Disable heartbeats on the 2425 * speicifed address. Note that if the address 2426 * field is empty all addresses for the association 2427 * will have their heartbeats disabled. Note also 2428 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2429 * mutually exclusive, only one of these two should 2430 * be specified. Enabling both fields will have 2431 * undetermined results. 2432 * 2433 * SPP_HB_DEMAND - Request a user initiated heartbeat 2434 * to be made immediately. 2435 * 2436 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2437 * heartbeat delayis to be set to the value of 0 2438 * milliseconds. 2439 * 2440 * SPP_PMTUD_ENABLE - This field will enable PMTU 2441 * discovery upon the specified address. Note that 2442 * if the address feild is empty then all addresses 2443 * on the association are effected. 2444 * 2445 * SPP_PMTUD_DISABLE - This field will disable PMTU 2446 * discovery upon the specified address. Note that 2447 * if the address feild is empty then all addresses 2448 * on the association are effected. Not also that 2449 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2450 * exclusive. Enabling both will have undetermined 2451 * results. 2452 * 2453 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2454 * on delayed sack. The time specified in spp_sackdelay 2455 * is used to specify the sack delay for this address. Note 2456 * that if spp_address is empty then all addresses will 2457 * enable delayed sack and take on the sack delay 2458 * value specified in spp_sackdelay. 2459 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2460 * off delayed sack. If the spp_address field is blank then 2461 * delayed sack is disabled for the entire association. Note 2462 * also that this field is mutually exclusive to 2463 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2464 * results. 2465 * 2466 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2467 * setting of the IPV6 flow label value. The value is 2468 * contained in the spp_ipv6_flowlabel field. 2469 * Upon retrieval, this flag will be set to indicate that 2470 * the spp_ipv6_flowlabel field has a valid value returned. 2471 * If a specific destination address is set (in the 2472 * spp_address field), then the value returned is that of 2473 * the address. If just an association is specified (and 2474 * no address), then the association's default flow label 2475 * is returned. If neither an association nor a destination 2476 * is specified, then the socket's default flow label is 2477 * returned. For non-IPv6 sockets, this flag will be left 2478 * cleared. 2479 * 2480 * SPP_DSCP: Setting this flag enables the setting of the 2481 * Differentiated Services Code Point (DSCP) value 2482 * associated with either the association or a specific 2483 * address. The value is obtained in the spp_dscp field. 2484 * Upon retrieval, this flag will be set to indicate that 2485 * the spp_dscp field has a valid value returned. If a 2486 * specific destination address is set when called (in the 2487 * spp_address field), then that specific destination 2488 * address's DSCP value is returned. If just an association 2489 * is specified, then the association's default DSCP is 2490 * returned. If neither an association nor a destination is 2491 * specified, then the socket's default DSCP is returned. 2492 * 2493 * spp_ipv6_flowlabel 2494 * - This field is used in conjunction with the 2495 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2496 * The 20 least significant bits are used for the flow 2497 * label. This setting has precedence over any IPv6-layer 2498 * setting. 2499 * 2500 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2501 * and contains the DSCP. The 6 most significant bits are 2502 * used for the DSCP. This setting has precedence over any 2503 * IPv4- or IPv6- layer setting. 2504 */ 2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2506 struct sctp_transport *trans, 2507 struct sctp_association *asoc, 2508 struct sctp_sock *sp, 2509 int hb_change, 2510 int pmtud_change, 2511 int sackdelay_change) 2512 { 2513 int error; 2514 2515 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2516 struct net *net = sock_net(trans->asoc->base.sk); 2517 2518 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2519 if (error) 2520 return error; 2521 } 2522 2523 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2524 * this field is ignored. Note also that a value of zero indicates 2525 * the current setting should be left unchanged. 2526 */ 2527 if (params->spp_flags & SPP_HB_ENABLE) { 2528 2529 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2530 * set. This lets us use 0 value when this flag 2531 * is set. 2532 */ 2533 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2534 params->spp_hbinterval = 0; 2535 2536 if (params->spp_hbinterval || 2537 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2538 if (trans) { 2539 trans->hbinterval = 2540 msecs_to_jiffies(params->spp_hbinterval); 2541 } else if (asoc) { 2542 asoc->hbinterval = 2543 msecs_to_jiffies(params->spp_hbinterval); 2544 } else { 2545 sp->hbinterval = params->spp_hbinterval; 2546 } 2547 } 2548 } 2549 2550 if (hb_change) { 2551 if (trans) { 2552 trans->param_flags = 2553 (trans->param_flags & ~SPP_HB) | hb_change; 2554 } else if (asoc) { 2555 asoc->param_flags = 2556 (asoc->param_flags & ~SPP_HB) | hb_change; 2557 } else { 2558 sp->param_flags = 2559 (sp->param_flags & ~SPP_HB) | hb_change; 2560 } 2561 } 2562 2563 /* When Path MTU discovery is disabled the value specified here will 2564 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2565 * include the flag SPP_PMTUD_DISABLE for this field to have any 2566 * effect). 2567 */ 2568 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2569 if (trans) { 2570 trans->pathmtu = params->spp_pathmtu; 2571 sctp_assoc_sync_pmtu(asoc); 2572 } else if (asoc) { 2573 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2574 } else { 2575 sp->pathmtu = params->spp_pathmtu; 2576 } 2577 } 2578 2579 if (pmtud_change) { 2580 if (trans) { 2581 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2582 (params->spp_flags & SPP_PMTUD_ENABLE); 2583 trans->param_flags = 2584 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2585 if (update) { 2586 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2587 sctp_assoc_sync_pmtu(asoc); 2588 } 2589 } else if (asoc) { 2590 asoc->param_flags = 2591 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2592 } else { 2593 sp->param_flags = 2594 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2595 } 2596 } 2597 2598 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2599 * value of this field is ignored. Note also that a value of zero 2600 * indicates the current setting should be left unchanged. 2601 */ 2602 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2603 if (trans) { 2604 trans->sackdelay = 2605 msecs_to_jiffies(params->spp_sackdelay); 2606 } else if (asoc) { 2607 asoc->sackdelay = 2608 msecs_to_jiffies(params->spp_sackdelay); 2609 } else { 2610 sp->sackdelay = params->spp_sackdelay; 2611 } 2612 } 2613 2614 if (sackdelay_change) { 2615 if (trans) { 2616 trans->param_flags = 2617 (trans->param_flags & ~SPP_SACKDELAY) | 2618 sackdelay_change; 2619 } else if (asoc) { 2620 asoc->param_flags = 2621 (asoc->param_flags & ~SPP_SACKDELAY) | 2622 sackdelay_change; 2623 } else { 2624 sp->param_flags = 2625 (sp->param_flags & ~SPP_SACKDELAY) | 2626 sackdelay_change; 2627 } 2628 } 2629 2630 /* Note that a value of zero indicates the current setting should be 2631 left unchanged. 2632 */ 2633 if (params->spp_pathmaxrxt) { 2634 if (trans) { 2635 trans->pathmaxrxt = params->spp_pathmaxrxt; 2636 } else if (asoc) { 2637 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2638 } else { 2639 sp->pathmaxrxt = params->spp_pathmaxrxt; 2640 } 2641 } 2642 2643 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2644 if (trans) { 2645 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2646 trans->flowlabel = params->spp_ipv6_flowlabel & 2647 SCTP_FLOWLABEL_VAL_MASK; 2648 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2649 } 2650 } else if (asoc) { 2651 struct sctp_transport *t; 2652 2653 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2654 transports) { 2655 if (t->ipaddr.sa.sa_family != AF_INET6) 2656 continue; 2657 t->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 asoc->flowlabel = params->spp_ipv6_flowlabel & 2662 SCTP_FLOWLABEL_VAL_MASK; 2663 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2664 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2665 sp->flowlabel = params->spp_ipv6_flowlabel & 2666 SCTP_FLOWLABEL_VAL_MASK; 2667 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2668 } 2669 } 2670 2671 if (params->spp_flags & SPP_DSCP) { 2672 if (trans) { 2673 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2674 trans->dscp |= SCTP_DSCP_SET_MASK; 2675 } else if (asoc) { 2676 struct sctp_transport *t; 2677 2678 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2679 transports) { 2680 t->dscp = params->spp_dscp & 2681 SCTP_DSCP_VAL_MASK; 2682 t->dscp |= SCTP_DSCP_SET_MASK; 2683 } 2684 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 asoc->dscp |= SCTP_DSCP_SET_MASK; 2686 } else { 2687 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2688 sp->dscp |= SCTP_DSCP_SET_MASK; 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2696 char __user *optval, 2697 unsigned int optlen) 2698 { 2699 struct sctp_paddrparams params; 2700 struct sctp_transport *trans = NULL; 2701 struct sctp_association *asoc = NULL; 2702 struct sctp_sock *sp = sctp_sk(sk); 2703 int error; 2704 int hb_change, pmtud_change, sackdelay_change; 2705 2706 if (optlen == sizeof(params)) { 2707 if (copy_from_user(¶ms, optval, optlen)) 2708 return -EFAULT; 2709 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2710 spp_ipv6_flowlabel), 4)) { 2711 if (copy_from_user(¶ms, optval, optlen)) 2712 return -EFAULT; 2713 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2714 return -EINVAL; 2715 } else { 2716 return -EINVAL; 2717 } 2718 2719 /* Validate flags and value parameters. */ 2720 hb_change = params.spp_flags & SPP_HB; 2721 pmtud_change = params.spp_flags & SPP_PMTUD; 2722 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2723 2724 if (hb_change == SPP_HB || 2725 pmtud_change == SPP_PMTUD || 2726 sackdelay_change == SPP_SACKDELAY || 2727 params.spp_sackdelay > 500 || 2728 (params.spp_pathmtu && 2729 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2730 return -EINVAL; 2731 2732 /* If an address other than INADDR_ANY is specified, and 2733 * no transport is found, then the request is invalid. 2734 */ 2735 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2736 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2737 params.spp_assoc_id); 2738 if (!trans) 2739 return -EINVAL; 2740 } 2741 2742 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2743 * socket is a one to many style socket, and an association 2744 * was not found, then the id was invalid. 2745 */ 2746 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2747 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2748 sctp_style(sk, UDP)) 2749 return -EINVAL; 2750 2751 /* Heartbeat demand can only be sent on a transport or 2752 * association, but not a socket. 2753 */ 2754 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2755 return -EINVAL; 2756 2757 /* Process parameters. */ 2758 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2759 hb_change, pmtud_change, 2760 sackdelay_change); 2761 2762 if (error) 2763 return error; 2764 2765 /* If changes are for association, also apply parameters to each 2766 * transport. 2767 */ 2768 if (!trans && asoc) { 2769 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2770 transports) { 2771 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2772 hb_change, pmtud_change, 2773 sackdelay_change); 2774 } 2775 } 2776 2777 return 0; 2778 } 2779 2780 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2781 { 2782 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2783 } 2784 2785 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2786 { 2787 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2788 } 2789 2790 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2791 struct sctp_association *asoc) 2792 { 2793 struct sctp_transport *trans; 2794 2795 if (params->sack_delay) { 2796 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2797 asoc->param_flags = 2798 sctp_spp_sackdelay_enable(asoc->param_flags); 2799 } 2800 if (params->sack_freq == 1) { 2801 asoc->param_flags = 2802 sctp_spp_sackdelay_disable(asoc->param_flags); 2803 } else if (params->sack_freq > 1) { 2804 asoc->sackfreq = params->sack_freq; 2805 asoc->param_flags = 2806 sctp_spp_sackdelay_enable(asoc->param_flags); 2807 } 2808 2809 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2810 transports) { 2811 if (params->sack_delay) { 2812 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2813 trans->param_flags = 2814 sctp_spp_sackdelay_enable(trans->param_flags); 2815 } 2816 if (params->sack_freq == 1) { 2817 trans->param_flags = 2818 sctp_spp_sackdelay_disable(trans->param_flags); 2819 } else if (params->sack_freq > 1) { 2820 trans->sackfreq = params->sack_freq; 2821 trans->param_flags = 2822 sctp_spp_sackdelay_enable(trans->param_flags); 2823 } 2824 } 2825 } 2826 2827 /* 2828 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2829 * 2830 * This option will effect the way delayed acks are performed. This 2831 * option allows you to get or set the delayed ack time, in 2832 * milliseconds. It also allows changing the delayed ack frequency. 2833 * Changing the frequency to 1 disables the delayed sack algorithm. If 2834 * the assoc_id is 0, then this sets or gets the endpoints default 2835 * values. If the assoc_id field is non-zero, then the set or get 2836 * effects the specified association for the one to many model (the 2837 * assoc_id field is ignored by the one to one model). Note that if 2838 * sack_delay or sack_freq are 0 when setting this option, then the 2839 * current values will remain unchanged. 2840 * 2841 * struct sctp_sack_info { 2842 * sctp_assoc_t sack_assoc_id; 2843 * uint32_t sack_delay; 2844 * uint32_t sack_freq; 2845 * }; 2846 * 2847 * sack_assoc_id - This parameter, indicates which association the user 2848 * is performing an action upon. Note that if this field's value is 2849 * zero then the endpoints default value is changed (effecting future 2850 * associations only). 2851 * 2852 * sack_delay - This parameter contains the number of milliseconds that 2853 * the user is requesting the delayed ACK timer be set to. Note that 2854 * this value is defined in the standard to be between 200 and 500 2855 * milliseconds. 2856 * 2857 * sack_freq - This parameter contains the number of packets that must 2858 * be received before a sack is sent without waiting for the delay 2859 * timer to expire. The default value for this is 2, setting this 2860 * value to 1 will disable the delayed sack algorithm. 2861 */ 2862 2863 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2864 char __user *optval, unsigned int optlen) 2865 { 2866 struct sctp_sock *sp = sctp_sk(sk); 2867 struct sctp_association *asoc; 2868 struct sctp_sack_info params; 2869 2870 if (optlen == sizeof(struct sctp_sack_info)) { 2871 if (copy_from_user(¶ms, optval, optlen)) 2872 return -EFAULT; 2873 2874 if (params.sack_delay == 0 && params.sack_freq == 0) 2875 return 0; 2876 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2877 pr_warn_ratelimited(DEPRECATED 2878 "%s (pid %d) " 2879 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2880 "Use struct sctp_sack_info instead\n", 2881 current->comm, task_pid_nr(current)); 2882 if (copy_from_user(¶ms, optval, optlen)) 2883 return -EFAULT; 2884 2885 if (params.sack_delay == 0) 2886 params.sack_freq = 1; 2887 else 2888 params.sack_freq = 0; 2889 } else 2890 return -EINVAL; 2891 2892 /* Validate value parameter. */ 2893 if (params.sack_delay > 500) 2894 return -EINVAL; 2895 2896 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2897 * socket is a one to many style socket, and an association 2898 * was not found, then the id was invalid. 2899 */ 2900 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2901 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2902 sctp_style(sk, UDP)) 2903 return -EINVAL; 2904 2905 if (asoc) { 2906 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2907 2908 return 0; 2909 } 2910 2911 if (sctp_style(sk, TCP)) 2912 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2913 2914 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2915 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2916 if (params.sack_delay) { 2917 sp->sackdelay = params.sack_delay; 2918 sp->param_flags = 2919 sctp_spp_sackdelay_enable(sp->param_flags); 2920 } 2921 if (params.sack_freq == 1) { 2922 sp->param_flags = 2923 sctp_spp_sackdelay_disable(sp->param_flags); 2924 } else if (params.sack_freq > 1) { 2925 sp->sackfreq = params.sack_freq; 2926 sp->param_flags = 2927 sctp_spp_sackdelay_enable(sp->param_flags); 2928 } 2929 } 2930 2931 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2932 params.sack_assoc_id == SCTP_ALL_ASSOC) 2933 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2934 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2935 2936 return 0; 2937 } 2938 2939 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2940 * 2941 * Applications can specify protocol parameters for the default association 2942 * initialization. The option name argument to setsockopt() and getsockopt() 2943 * is SCTP_INITMSG. 2944 * 2945 * Setting initialization parameters is effective only on an unconnected 2946 * socket (for UDP-style sockets only future associations are effected 2947 * by the change). With TCP-style sockets, this option is inherited by 2948 * sockets derived from a listener socket. 2949 */ 2950 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2951 { 2952 struct sctp_initmsg sinit; 2953 struct sctp_sock *sp = sctp_sk(sk); 2954 2955 if (optlen != sizeof(struct sctp_initmsg)) 2956 return -EINVAL; 2957 if (copy_from_user(&sinit, optval, optlen)) 2958 return -EFAULT; 2959 2960 if (sinit.sinit_num_ostreams) 2961 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2962 if (sinit.sinit_max_instreams) 2963 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2964 if (sinit.sinit_max_attempts) 2965 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2966 if (sinit.sinit_max_init_timeo) 2967 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2974 * 2975 * Applications that wish to use the sendto() system call may wish to 2976 * specify a default set of parameters that would normally be supplied 2977 * through the inclusion of ancillary data. This socket option allows 2978 * such an application to set the default sctp_sndrcvinfo structure. 2979 * The application that wishes to use this socket option simply passes 2980 * in to this call the sctp_sndrcvinfo structure defined in Section 2981 * 5.2.2) The input parameters accepted by this call include 2982 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2983 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2984 * to this call if the caller is using the UDP model. 2985 */ 2986 static int sctp_setsockopt_default_send_param(struct sock *sk, 2987 char __user *optval, 2988 unsigned int optlen) 2989 { 2990 struct sctp_sock *sp = sctp_sk(sk); 2991 struct sctp_association *asoc; 2992 struct sctp_sndrcvinfo info; 2993 2994 if (optlen != sizeof(info)) 2995 return -EINVAL; 2996 if (copy_from_user(&info, optval, optlen)) 2997 return -EFAULT; 2998 if (info.sinfo_flags & 2999 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3000 SCTP_ABORT | SCTP_EOF)) 3001 return -EINVAL; 3002 3003 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3004 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3005 sctp_style(sk, UDP)) 3006 return -EINVAL; 3007 3008 if (asoc) { 3009 asoc->default_stream = info.sinfo_stream; 3010 asoc->default_flags = info.sinfo_flags; 3011 asoc->default_ppid = info.sinfo_ppid; 3012 asoc->default_context = info.sinfo_context; 3013 asoc->default_timetolive = info.sinfo_timetolive; 3014 3015 return 0; 3016 } 3017 3018 if (sctp_style(sk, TCP)) 3019 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3020 3021 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3022 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3023 sp->default_stream = info.sinfo_stream; 3024 sp->default_flags = info.sinfo_flags; 3025 sp->default_ppid = info.sinfo_ppid; 3026 sp->default_context = info.sinfo_context; 3027 sp->default_timetolive = info.sinfo_timetolive; 3028 } 3029 3030 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3031 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3032 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3033 asoc->default_stream = info.sinfo_stream; 3034 asoc->default_flags = info.sinfo_flags; 3035 asoc->default_ppid = info.sinfo_ppid; 3036 asoc->default_context = info.sinfo_context; 3037 asoc->default_timetolive = info.sinfo_timetolive; 3038 } 3039 } 3040 3041 return 0; 3042 } 3043 3044 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3045 * (SCTP_DEFAULT_SNDINFO) 3046 */ 3047 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3048 char __user *optval, 3049 unsigned int optlen) 3050 { 3051 struct sctp_sock *sp = sctp_sk(sk); 3052 struct sctp_association *asoc; 3053 struct sctp_sndinfo info; 3054 3055 if (optlen != sizeof(info)) 3056 return -EINVAL; 3057 if (copy_from_user(&info, optval, optlen)) 3058 return -EFAULT; 3059 if (info.snd_flags & 3060 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3061 SCTP_ABORT | SCTP_EOF)) 3062 return -EINVAL; 3063 3064 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3065 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3066 sctp_style(sk, UDP)) 3067 return -EINVAL; 3068 3069 if (asoc) { 3070 asoc->default_stream = info.snd_sid; 3071 asoc->default_flags = info.snd_flags; 3072 asoc->default_ppid = info.snd_ppid; 3073 asoc->default_context = info.snd_context; 3074 3075 return 0; 3076 } 3077 3078 if (sctp_style(sk, TCP)) 3079 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3080 3081 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3082 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3083 sp->default_stream = info.snd_sid; 3084 sp->default_flags = info.snd_flags; 3085 sp->default_ppid = info.snd_ppid; 3086 sp->default_context = info.snd_context; 3087 } 3088 3089 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3090 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3091 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3092 asoc->default_stream = info.snd_sid; 3093 asoc->default_flags = info.snd_flags; 3094 asoc->default_ppid = info.snd_ppid; 3095 asoc->default_context = info.snd_context; 3096 } 3097 } 3098 3099 return 0; 3100 } 3101 3102 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3103 * 3104 * Requests that the local SCTP stack use the enclosed peer address as 3105 * the association primary. The enclosed address must be one of the 3106 * association peer's addresses. 3107 */ 3108 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3109 unsigned int optlen) 3110 { 3111 struct sctp_prim prim; 3112 struct sctp_transport *trans; 3113 struct sctp_af *af; 3114 int err; 3115 3116 if (optlen != sizeof(struct sctp_prim)) 3117 return -EINVAL; 3118 3119 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3120 return -EFAULT; 3121 3122 /* Allow security module to validate address but need address len. */ 3123 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3124 if (!af) 3125 return -EINVAL; 3126 3127 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3128 (struct sockaddr *)&prim.ssp_addr, 3129 af->sockaddr_len); 3130 if (err) 3131 return err; 3132 3133 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3134 if (!trans) 3135 return -EINVAL; 3136 3137 sctp_assoc_set_primary(trans->asoc, trans); 3138 3139 return 0; 3140 } 3141 3142 /* 3143 * 7.1.5 SCTP_NODELAY 3144 * 3145 * Turn on/off any Nagle-like algorithm. This means that packets are 3146 * generally sent as soon as possible and no unnecessary delays are 3147 * introduced, at the cost of more packets in the network. Expects an 3148 * integer boolean flag. 3149 */ 3150 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3151 unsigned int optlen) 3152 { 3153 int val; 3154 3155 if (optlen < sizeof(int)) 3156 return -EINVAL; 3157 if (get_user(val, (int __user *)optval)) 3158 return -EFAULT; 3159 3160 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3161 return 0; 3162 } 3163 3164 /* 3165 * 3166 * 7.1.1 SCTP_RTOINFO 3167 * 3168 * The protocol parameters used to initialize and bound retransmission 3169 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3170 * and modify these parameters. 3171 * All parameters are time values, in milliseconds. A value of 0, when 3172 * modifying the parameters, indicates that the current value should not 3173 * be changed. 3174 * 3175 */ 3176 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3177 { 3178 struct sctp_rtoinfo rtoinfo; 3179 struct sctp_association *asoc; 3180 unsigned long rto_min, rto_max; 3181 struct sctp_sock *sp = sctp_sk(sk); 3182 3183 if (optlen != sizeof (struct sctp_rtoinfo)) 3184 return -EINVAL; 3185 3186 if (copy_from_user(&rtoinfo, optval, optlen)) 3187 return -EFAULT; 3188 3189 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3190 3191 /* Set the values to the specific association */ 3192 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3193 sctp_style(sk, UDP)) 3194 return -EINVAL; 3195 3196 rto_max = rtoinfo.srto_max; 3197 rto_min = rtoinfo.srto_min; 3198 3199 if (rto_max) 3200 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3201 else 3202 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3203 3204 if (rto_min) 3205 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3206 else 3207 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3208 3209 if (rto_min > rto_max) 3210 return -EINVAL; 3211 3212 if (asoc) { 3213 if (rtoinfo.srto_initial != 0) 3214 asoc->rto_initial = 3215 msecs_to_jiffies(rtoinfo.srto_initial); 3216 asoc->rto_max = rto_max; 3217 asoc->rto_min = rto_min; 3218 } else { 3219 /* If there is no association or the association-id = 0 3220 * set the values to the endpoint. 3221 */ 3222 if (rtoinfo.srto_initial != 0) 3223 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3224 sp->rtoinfo.srto_max = rto_max; 3225 sp->rtoinfo.srto_min = rto_min; 3226 } 3227 3228 return 0; 3229 } 3230 3231 /* 3232 * 3233 * 7.1.2 SCTP_ASSOCINFO 3234 * 3235 * This option is used to tune the maximum retransmission attempts 3236 * of the association. 3237 * Returns an error if the new association retransmission value is 3238 * greater than the sum of the retransmission value of the peer. 3239 * See [SCTP] for more information. 3240 * 3241 */ 3242 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3243 { 3244 3245 struct sctp_assocparams assocparams; 3246 struct sctp_association *asoc; 3247 3248 if (optlen != sizeof(struct sctp_assocparams)) 3249 return -EINVAL; 3250 if (copy_from_user(&assocparams, optval, optlen)) 3251 return -EFAULT; 3252 3253 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3254 3255 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3256 sctp_style(sk, UDP)) 3257 return -EINVAL; 3258 3259 /* Set the values to the specific association */ 3260 if (asoc) { 3261 if (assocparams.sasoc_asocmaxrxt != 0) { 3262 __u32 path_sum = 0; 3263 int paths = 0; 3264 struct sctp_transport *peer_addr; 3265 3266 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3267 transports) { 3268 path_sum += peer_addr->pathmaxrxt; 3269 paths++; 3270 } 3271 3272 /* Only validate asocmaxrxt if we have more than 3273 * one path/transport. We do this because path 3274 * retransmissions are only counted when we have more 3275 * then one path. 3276 */ 3277 if (paths > 1 && 3278 assocparams.sasoc_asocmaxrxt > path_sum) 3279 return -EINVAL; 3280 3281 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3282 } 3283 3284 if (assocparams.sasoc_cookie_life != 0) 3285 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3286 } else { 3287 /* Set the values to the endpoint */ 3288 struct sctp_sock *sp = sctp_sk(sk); 3289 3290 if (assocparams.sasoc_asocmaxrxt != 0) 3291 sp->assocparams.sasoc_asocmaxrxt = 3292 assocparams.sasoc_asocmaxrxt; 3293 if (assocparams.sasoc_cookie_life != 0) 3294 sp->assocparams.sasoc_cookie_life = 3295 assocparams.sasoc_cookie_life; 3296 } 3297 return 0; 3298 } 3299 3300 /* 3301 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3302 * 3303 * This socket option is a boolean flag which turns on or off mapped V4 3304 * addresses. If this option is turned on and the socket is type 3305 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3306 * If this option is turned off, then no mapping will be done of V4 3307 * addresses and a user will receive both PF_INET6 and PF_INET type 3308 * addresses on the socket. 3309 */ 3310 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3311 { 3312 int val; 3313 struct sctp_sock *sp = sctp_sk(sk); 3314 3315 if (optlen < sizeof(int)) 3316 return -EINVAL; 3317 if (get_user(val, (int __user *)optval)) 3318 return -EFAULT; 3319 if (val) 3320 sp->v4mapped = 1; 3321 else 3322 sp->v4mapped = 0; 3323 3324 return 0; 3325 } 3326 3327 /* 3328 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3329 * This option will get or set the maximum size to put in any outgoing 3330 * SCTP DATA chunk. If a message is larger than this size it will be 3331 * fragmented by SCTP into the specified size. Note that the underlying 3332 * SCTP implementation may fragment into smaller sized chunks when the 3333 * PMTU of the underlying association is smaller than the value set by 3334 * the user. The default value for this option is '0' which indicates 3335 * the user is NOT limiting fragmentation and only the PMTU will effect 3336 * SCTP's choice of DATA chunk size. Note also that values set larger 3337 * than the maximum size of an IP datagram will effectively let SCTP 3338 * control fragmentation (i.e. the same as setting this option to 0). 3339 * 3340 * The following structure is used to access and modify this parameter: 3341 * 3342 * struct sctp_assoc_value { 3343 * sctp_assoc_t assoc_id; 3344 * uint32_t assoc_value; 3345 * }; 3346 * 3347 * assoc_id: This parameter is ignored for one-to-one style sockets. 3348 * For one-to-many style sockets this parameter indicates which 3349 * association the user is performing an action upon. Note that if 3350 * this field's value is zero then the endpoints default value is 3351 * changed (effecting future associations only). 3352 * assoc_value: This parameter specifies the maximum size in bytes. 3353 */ 3354 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3355 { 3356 struct sctp_sock *sp = sctp_sk(sk); 3357 struct sctp_assoc_value params; 3358 struct sctp_association *asoc; 3359 int val; 3360 3361 if (optlen == sizeof(int)) { 3362 pr_warn_ratelimited(DEPRECATED 3363 "%s (pid %d) " 3364 "Use of int in maxseg socket option.\n" 3365 "Use struct sctp_assoc_value instead\n", 3366 current->comm, task_pid_nr(current)); 3367 if (copy_from_user(&val, optval, optlen)) 3368 return -EFAULT; 3369 params.assoc_id = SCTP_FUTURE_ASSOC; 3370 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3371 if (copy_from_user(¶ms, optval, optlen)) 3372 return -EFAULT; 3373 val = params.assoc_value; 3374 } else { 3375 return -EINVAL; 3376 } 3377 3378 asoc = sctp_id2assoc(sk, params.assoc_id); 3379 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3380 sctp_style(sk, UDP)) 3381 return -EINVAL; 3382 3383 if (val) { 3384 int min_len, max_len; 3385 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3386 sizeof(struct sctp_data_chunk); 3387 3388 min_len = sctp_min_frag_point(sp, datasize); 3389 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3390 3391 if (val < min_len || val > max_len) 3392 return -EINVAL; 3393 } 3394 3395 if (asoc) { 3396 asoc->user_frag = val; 3397 sctp_assoc_update_frag_point(asoc); 3398 } else { 3399 sp->user_frag = val; 3400 } 3401 3402 return 0; 3403 } 3404 3405 3406 /* 3407 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3408 * 3409 * Requests that the peer mark the enclosed address as the association 3410 * primary. The enclosed address must be one of the association's 3411 * locally bound addresses. The following structure is used to make a 3412 * set primary request: 3413 */ 3414 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3415 unsigned int optlen) 3416 { 3417 struct net *net = sock_net(sk); 3418 struct sctp_sock *sp; 3419 struct sctp_association *asoc = NULL; 3420 struct sctp_setpeerprim prim; 3421 struct sctp_chunk *chunk; 3422 struct sctp_af *af; 3423 int err; 3424 3425 sp = sctp_sk(sk); 3426 3427 if (!net->sctp.addip_enable) 3428 return -EPERM; 3429 3430 if (optlen != sizeof(struct sctp_setpeerprim)) 3431 return -EINVAL; 3432 3433 if (copy_from_user(&prim, optval, optlen)) 3434 return -EFAULT; 3435 3436 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3437 if (!asoc) 3438 return -EINVAL; 3439 3440 if (!asoc->peer.asconf_capable) 3441 return -EPERM; 3442 3443 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3444 return -EPERM; 3445 3446 if (!sctp_state(asoc, ESTABLISHED)) 3447 return -ENOTCONN; 3448 3449 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3450 if (!af) 3451 return -EINVAL; 3452 3453 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3454 return -EADDRNOTAVAIL; 3455 3456 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3457 return -EADDRNOTAVAIL; 3458 3459 /* Allow security module to validate address. */ 3460 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3461 (struct sockaddr *)&prim.sspp_addr, 3462 af->sockaddr_len); 3463 if (err) 3464 return err; 3465 3466 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3467 chunk = sctp_make_asconf_set_prim(asoc, 3468 (union sctp_addr *)&prim.sspp_addr); 3469 if (!chunk) 3470 return -ENOMEM; 3471 3472 err = sctp_send_asconf(asoc, chunk); 3473 3474 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3475 3476 return err; 3477 } 3478 3479 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3480 unsigned int optlen) 3481 { 3482 struct sctp_setadaptation adaptation; 3483 3484 if (optlen != sizeof(struct sctp_setadaptation)) 3485 return -EINVAL; 3486 if (copy_from_user(&adaptation, optval, optlen)) 3487 return -EFAULT; 3488 3489 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3490 3491 return 0; 3492 } 3493 3494 /* 3495 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3496 * 3497 * The context field in the sctp_sndrcvinfo structure is normally only 3498 * used when a failed message is retrieved holding the value that was 3499 * sent down on the actual send call. This option allows the setting of 3500 * a default context on an association basis that will be received on 3501 * reading messages from the peer. This is especially helpful in the 3502 * one-2-many model for an application to keep some reference to an 3503 * internal state machine that is processing messages on the 3504 * association. Note that the setting of this value only effects 3505 * received messages from the peer and does not effect the value that is 3506 * saved with outbound messages. 3507 */ 3508 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3509 unsigned int optlen) 3510 { 3511 struct sctp_sock *sp = sctp_sk(sk); 3512 struct sctp_assoc_value params; 3513 struct sctp_association *asoc; 3514 3515 if (optlen != sizeof(struct sctp_assoc_value)) 3516 return -EINVAL; 3517 if (copy_from_user(¶ms, optval, optlen)) 3518 return -EFAULT; 3519 3520 asoc = sctp_id2assoc(sk, params.assoc_id); 3521 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3522 sctp_style(sk, UDP)) 3523 return -EINVAL; 3524 3525 if (asoc) { 3526 asoc->default_rcv_context = params.assoc_value; 3527 3528 return 0; 3529 } 3530 3531 if (sctp_style(sk, TCP)) 3532 params.assoc_id = SCTP_FUTURE_ASSOC; 3533 3534 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3535 params.assoc_id == SCTP_ALL_ASSOC) 3536 sp->default_rcv_context = params.assoc_value; 3537 3538 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3539 params.assoc_id == SCTP_ALL_ASSOC) 3540 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3541 asoc->default_rcv_context = params.assoc_value; 3542 3543 return 0; 3544 } 3545 3546 /* 3547 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3548 * 3549 * This options will at a minimum specify if the implementation is doing 3550 * fragmented interleave. Fragmented interleave, for a one to many 3551 * socket, is when subsequent calls to receive a message may return 3552 * parts of messages from different associations. Some implementations 3553 * may allow you to turn this value on or off. If so, when turned off, 3554 * no fragment interleave will occur (which will cause a head of line 3555 * blocking amongst multiple associations sharing the same one to many 3556 * socket). When this option is turned on, then each receive call may 3557 * come from a different association (thus the user must receive data 3558 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3559 * association each receive belongs to. 3560 * 3561 * This option takes a boolean value. A non-zero value indicates that 3562 * fragmented interleave is on. A value of zero indicates that 3563 * fragmented interleave is off. 3564 * 3565 * Note that it is important that an implementation that allows this 3566 * option to be turned on, have it off by default. Otherwise an unaware 3567 * application using the one to many model may become confused and act 3568 * incorrectly. 3569 */ 3570 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3571 char __user *optval, 3572 unsigned int optlen) 3573 { 3574 int val; 3575 3576 if (optlen != sizeof(int)) 3577 return -EINVAL; 3578 if (get_user(val, (int __user *)optval)) 3579 return -EFAULT; 3580 3581 sctp_sk(sk)->frag_interleave = !!val; 3582 3583 if (!sctp_sk(sk)->frag_interleave) 3584 sctp_sk(sk)->ep->intl_enable = 0; 3585 3586 return 0; 3587 } 3588 3589 /* 3590 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3591 * (SCTP_PARTIAL_DELIVERY_POINT) 3592 * 3593 * This option will set or get the SCTP partial delivery point. This 3594 * point is the size of a message where the partial delivery API will be 3595 * invoked to help free up rwnd space for the peer. Setting this to a 3596 * lower value will cause partial deliveries to happen more often. The 3597 * calls argument is an integer that sets or gets the partial delivery 3598 * point. Note also that the call will fail if the user attempts to set 3599 * this value larger than the socket receive buffer size. 3600 * 3601 * Note that any single message having a length smaller than or equal to 3602 * the SCTP partial delivery point will be delivered in one single read 3603 * call as long as the user provided buffer is large enough to hold the 3604 * message. 3605 */ 3606 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3607 char __user *optval, 3608 unsigned int optlen) 3609 { 3610 u32 val; 3611 3612 if (optlen != sizeof(u32)) 3613 return -EINVAL; 3614 if (get_user(val, (int __user *)optval)) 3615 return -EFAULT; 3616 3617 /* Note: We double the receive buffer from what the user sets 3618 * it to be, also initial rwnd is based on rcvbuf/2. 3619 */ 3620 if (val > (sk->sk_rcvbuf >> 1)) 3621 return -EINVAL; 3622 3623 sctp_sk(sk)->pd_point = val; 3624 3625 return 0; /* is this the right error code? */ 3626 } 3627 3628 /* 3629 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3630 * 3631 * This option will allow a user to change the maximum burst of packets 3632 * that can be emitted by this association. Note that the default value 3633 * is 4, and some implementations may restrict this setting so that it 3634 * can only be lowered. 3635 * 3636 * NOTE: This text doesn't seem right. Do this on a socket basis with 3637 * future associations inheriting the socket value. 3638 */ 3639 static int sctp_setsockopt_maxburst(struct sock *sk, 3640 char __user *optval, 3641 unsigned int optlen) 3642 { 3643 struct sctp_sock *sp = sctp_sk(sk); 3644 struct sctp_assoc_value params; 3645 struct sctp_association *asoc; 3646 3647 if (optlen == sizeof(int)) { 3648 pr_warn_ratelimited(DEPRECATED 3649 "%s (pid %d) " 3650 "Use of int in max_burst socket option deprecated.\n" 3651 "Use struct sctp_assoc_value instead\n", 3652 current->comm, task_pid_nr(current)); 3653 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3654 return -EFAULT; 3655 params.assoc_id = SCTP_FUTURE_ASSOC; 3656 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3657 if (copy_from_user(¶ms, optval, optlen)) 3658 return -EFAULT; 3659 } else 3660 return -EINVAL; 3661 3662 asoc = sctp_id2assoc(sk, params.assoc_id); 3663 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3664 sctp_style(sk, UDP)) 3665 return -EINVAL; 3666 3667 if (asoc) { 3668 asoc->max_burst = params.assoc_value; 3669 3670 return 0; 3671 } 3672 3673 if (sctp_style(sk, TCP)) 3674 params.assoc_id = SCTP_FUTURE_ASSOC; 3675 3676 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3677 params.assoc_id == SCTP_ALL_ASSOC) 3678 sp->max_burst = params.assoc_value; 3679 3680 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3681 params.assoc_id == SCTP_ALL_ASSOC) 3682 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3683 asoc->max_burst = params.assoc_value; 3684 3685 return 0; 3686 } 3687 3688 /* 3689 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3690 * 3691 * This set option adds a chunk type that the user is requesting to be 3692 * received only in an authenticated way. Changes to the list of chunks 3693 * will only effect future associations on the socket. 3694 */ 3695 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3696 char __user *optval, 3697 unsigned int optlen) 3698 { 3699 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3700 struct sctp_authchunk val; 3701 3702 if (!ep->auth_enable) 3703 return -EACCES; 3704 3705 if (optlen != sizeof(struct sctp_authchunk)) 3706 return -EINVAL; 3707 if (copy_from_user(&val, optval, optlen)) 3708 return -EFAULT; 3709 3710 switch (val.sauth_chunk) { 3711 case SCTP_CID_INIT: 3712 case SCTP_CID_INIT_ACK: 3713 case SCTP_CID_SHUTDOWN_COMPLETE: 3714 case SCTP_CID_AUTH: 3715 return -EINVAL; 3716 } 3717 3718 /* add this chunk id to the endpoint */ 3719 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3720 } 3721 3722 /* 3723 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3724 * 3725 * This option gets or sets the list of HMAC algorithms that the local 3726 * endpoint requires the peer to use. 3727 */ 3728 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3729 char __user *optval, 3730 unsigned int optlen) 3731 { 3732 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3733 struct sctp_hmacalgo *hmacs; 3734 u32 idents; 3735 int err; 3736 3737 if (!ep->auth_enable) 3738 return -EACCES; 3739 3740 if (optlen < sizeof(struct sctp_hmacalgo)) 3741 return -EINVAL; 3742 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3743 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3744 3745 hmacs = memdup_user(optval, optlen); 3746 if (IS_ERR(hmacs)) 3747 return PTR_ERR(hmacs); 3748 3749 idents = hmacs->shmac_num_idents; 3750 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3751 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3752 err = -EINVAL; 3753 goto out; 3754 } 3755 3756 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3757 out: 3758 kfree(hmacs); 3759 return err; 3760 } 3761 3762 /* 3763 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3764 * 3765 * This option will set a shared secret key which is used to build an 3766 * association shared key. 3767 */ 3768 static int sctp_setsockopt_auth_key(struct sock *sk, 3769 char __user *optval, 3770 unsigned int optlen) 3771 { 3772 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3773 struct sctp_authkey *authkey; 3774 struct sctp_association *asoc; 3775 int ret = -EINVAL; 3776 3777 if (!ep->auth_enable) 3778 return -EACCES; 3779 3780 if (optlen <= sizeof(struct sctp_authkey)) 3781 return -EINVAL; 3782 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3783 * this. 3784 */ 3785 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3786 3787 authkey = memdup_user(optval, optlen); 3788 if (IS_ERR(authkey)) 3789 return PTR_ERR(authkey); 3790 3791 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3792 goto out; 3793 3794 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3795 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3796 sctp_style(sk, UDP)) 3797 goto out; 3798 3799 if (asoc) { 3800 ret = sctp_auth_set_key(ep, asoc, authkey); 3801 goto out; 3802 } 3803 3804 if (sctp_style(sk, TCP)) 3805 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3806 3807 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3808 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3809 ret = sctp_auth_set_key(ep, asoc, authkey); 3810 if (ret) 3811 goto out; 3812 } 3813 3814 ret = 0; 3815 3816 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3817 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3818 list_for_each_entry(asoc, &ep->asocs, asocs) { 3819 int res = sctp_auth_set_key(ep, asoc, authkey); 3820 3821 if (res && !ret) 3822 ret = res; 3823 } 3824 } 3825 3826 out: 3827 kzfree(authkey); 3828 return ret; 3829 } 3830 3831 /* 3832 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3833 * 3834 * This option will get or set the active shared key to be used to build 3835 * the association shared key. 3836 */ 3837 static int sctp_setsockopt_active_key(struct sock *sk, 3838 char __user *optval, 3839 unsigned int optlen) 3840 { 3841 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3842 struct sctp_association *asoc; 3843 struct sctp_authkeyid val; 3844 int ret = 0; 3845 3846 if (!ep->auth_enable) 3847 return -EACCES; 3848 3849 if (optlen != sizeof(struct sctp_authkeyid)) 3850 return -EINVAL; 3851 if (copy_from_user(&val, optval, optlen)) 3852 return -EFAULT; 3853 3854 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3855 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3856 sctp_style(sk, UDP)) 3857 return -EINVAL; 3858 3859 if (asoc) 3860 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3861 3862 if (sctp_style(sk, TCP)) 3863 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3864 3865 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3866 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3867 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3868 if (ret) 3869 return ret; 3870 } 3871 3872 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3873 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3874 list_for_each_entry(asoc, &ep->asocs, asocs) { 3875 int res = sctp_auth_set_active_key(ep, asoc, 3876 val.scact_keynumber); 3877 3878 if (res && !ret) 3879 ret = res; 3880 } 3881 } 3882 3883 return ret; 3884 } 3885 3886 /* 3887 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3888 * 3889 * This set option will delete a shared secret key from use. 3890 */ 3891 static int sctp_setsockopt_del_key(struct sock *sk, 3892 char __user *optval, 3893 unsigned int optlen) 3894 { 3895 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3896 struct sctp_association *asoc; 3897 struct sctp_authkeyid val; 3898 int ret = 0; 3899 3900 if (!ep->auth_enable) 3901 return -EACCES; 3902 3903 if (optlen != sizeof(struct sctp_authkeyid)) 3904 return -EINVAL; 3905 if (copy_from_user(&val, optval, optlen)) 3906 return -EFAULT; 3907 3908 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3909 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3910 sctp_style(sk, UDP)) 3911 return -EINVAL; 3912 3913 if (asoc) 3914 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3915 3916 if (sctp_style(sk, TCP)) 3917 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3918 3919 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3920 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3921 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3922 if (ret) 3923 return ret; 3924 } 3925 3926 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3927 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3928 list_for_each_entry(asoc, &ep->asocs, asocs) { 3929 int res = sctp_auth_del_key_id(ep, asoc, 3930 val.scact_keynumber); 3931 3932 if (res && !ret) 3933 ret = res; 3934 } 3935 } 3936 3937 return ret; 3938 } 3939 3940 /* 3941 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3942 * 3943 * This set option will deactivate a shared secret key. 3944 */ 3945 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3946 unsigned int optlen) 3947 { 3948 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3949 struct sctp_association *asoc; 3950 struct sctp_authkeyid val; 3951 int ret = 0; 3952 3953 if (!ep->auth_enable) 3954 return -EACCES; 3955 3956 if (optlen != sizeof(struct sctp_authkeyid)) 3957 return -EINVAL; 3958 if (copy_from_user(&val, optval, optlen)) 3959 return -EFAULT; 3960 3961 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3962 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3963 sctp_style(sk, UDP)) 3964 return -EINVAL; 3965 3966 if (asoc) 3967 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3968 3969 if (sctp_style(sk, TCP)) 3970 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3971 3972 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3973 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3974 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3975 if (ret) 3976 return ret; 3977 } 3978 3979 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3980 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3981 list_for_each_entry(asoc, &ep->asocs, asocs) { 3982 int res = sctp_auth_deact_key_id(ep, asoc, 3983 val.scact_keynumber); 3984 3985 if (res && !ret) 3986 ret = res; 3987 } 3988 } 3989 3990 return ret; 3991 } 3992 3993 /* 3994 * 8.1.23 SCTP_AUTO_ASCONF 3995 * 3996 * This option will enable or disable the use of the automatic generation of 3997 * ASCONF chunks to add and delete addresses to an existing association. Note 3998 * that this option has two caveats namely: a) it only affects sockets that 3999 * are bound to all addresses available to the SCTP stack, and b) the system 4000 * administrator may have an overriding control that turns the ASCONF feature 4001 * off no matter what setting the socket option may have. 4002 * This option expects an integer boolean flag, where a non-zero value turns on 4003 * the option, and a zero value turns off the option. 4004 * Note. In this implementation, socket operation overrides default parameter 4005 * being set by sysctl as well as FreeBSD implementation 4006 */ 4007 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4008 unsigned int optlen) 4009 { 4010 int val; 4011 struct sctp_sock *sp = sctp_sk(sk); 4012 4013 if (optlen < sizeof(int)) 4014 return -EINVAL; 4015 if (get_user(val, (int __user *)optval)) 4016 return -EFAULT; 4017 if (!sctp_is_ep_boundall(sk) && val) 4018 return -EINVAL; 4019 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4020 return 0; 4021 4022 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4023 if (val == 0 && sp->do_auto_asconf) { 4024 list_del(&sp->auto_asconf_list); 4025 sp->do_auto_asconf = 0; 4026 } else if (val && !sp->do_auto_asconf) { 4027 list_add_tail(&sp->auto_asconf_list, 4028 &sock_net(sk)->sctp.auto_asconf_splist); 4029 sp->do_auto_asconf = 1; 4030 } 4031 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4032 return 0; 4033 } 4034 4035 /* 4036 * SCTP_PEER_ADDR_THLDS 4037 * 4038 * This option allows us to alter the partially failed threshold for one or all 4039 * transports in an association. See Section 6.1 of: 4040 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4041 */ 4042 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4043 char __user *optval, 4044 unsigned int optlen) 4045 { 4046 struct sctp_paddrthlds val; 4047 struct sctp_transport *trans; 4048 struct sctp_association *asoc; 4049 4050 if (optlen < sizeof(struct sctp_paddrthlds)) 4051 return -EINVAL; 4052 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4053 sizeof(struct sctp_paddrthlds))) 4054 return -EFAULT; 4055 4056 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4057 trans = sctp_addr_id2transport(sk, &val.spt_address, 4058 val.spt_assoc_id); 4059 if (!trans) 4060 return -ENOENT; 4061 4062 if (val.spt_pathmaxrxt) 4063 trans->pathmaxrxt = val.spt_pathmaxrxt; 4064 trans->pf_retrans = val.spt_pathpfthld; 4065 4066 return 0; 4067 } 4068 4069 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4070 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4071 sctp_style(sk, UDP)) 4072 return -EINVAL; 4073 4074 if (asoc) { 4075 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4076 transports) { 4077 if (val.spt_pathmaxrxt) 4078 trans->pathmaxrxt = val.spt_pathmaxrxt; 4079 trans->pf_retrans = val.spt_pathpfthld; 4080 } 4081 4082 if (val.spt_pathmaxrxt) 4083 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4084 asoc->pf_retrans = val.spt_pathpfthld; 4085 } else { 4086 struct sctp_sock *sp = sctp_sk(sk); 4087 4088 if (val.spt_pathmaxrxt) 4089 sp->pathmaxrxt = val.spt_pathmaxrxt; 4090 sp->pf_retrans = val.spt_pathpfthld; 4091 } 4092 4093 return 0; 4094 } 4095 4096 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4097 char __user *optval, 4098 unsigned int optlen) 4099 { 4100 int val; 4101 4102 if (optlen < sizeof(int)) 4103 return -EINVAL; 4104 if (get_user(val, (int __user *) optval)) 4105 return -EFAULT; 4106 4107 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4108 4109 return 0; 4110 } 4111 4112 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4113 char __user *optval, 4114 unsigned int optlen) 4115 { 4116 int val; 4117 4118 if (optlen < sizeof(int)) 4119 return -EINVAL; 4120 if (get_user(val, (int __user *) optval)) 4121 return -EFAULT; 4122 4123 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4124 4125 return 0; 4126 } 4127 4128 static int sctp_setsockopt_pr_supported(struct sock *sk, 4129 char __user *optval, 4130 unsigned int optlen) 4131 { 4132 struct sctp_assoc_value params; 4133 struct sctp_association *asoc; 4134 4135 if (optlen != sizeof(params)) 4136 return -EINVAL; 4137 4138 if (copy_from_user(¶ms, optval, optlen)) 4139 return -EFAULT; 4140 4141 asoc = sctp_id2assoc(sk, params.assoc_id); 4142 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4143 sctp_style(sk, UDP)) 4144 return -EINVAL; 4145 4146 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4147 4148 return 0; 4149 } 4150 4151 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4152 char __user *optval, 4153 unsigned int optlen) 4154 { 4155 struct sctp_sock *sp = sctp_sk(sk); 4156 struct sctp_default_prinfo info; 4157 struct sctp_association *asoc; 4158 int retval = -EINVAL; 4159 4160 if (optlen != sizeof(info)) 4161 goto out; 4162 4163 if (copy_from_user(&info, optval, sizeof(info))) { 4164 retval = -EFAULT; 4165 goto out; 4166 } 4167 4168 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4169 goto out; 4170 4171 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4172 info.pr_value = 0; 4173 4174 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4175 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4176 sctp_style(sk, UDP)) 4177 goto out; 4178 4179 retval = 0; 4180 4181 if (asoc) { 4182 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4183 asoc->default_timetolive = info.pr_value; 4184 goto out; 4185 } 4186 4187 if (sctp_style(sk, TCP)) 4188 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4189 4190 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4191 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4192 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4193 sp->default_timetolive = info.pr_value; 4194 } 4195 4196 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4197 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4198 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4199 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4200 asoc->default_timetolive = info.pr_value; 4201 } 4202 } 4203 4204 out: 4205 return retval; 4206 } 4207 4208 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4209 char __user *optval, 4210 unsigned int optlen) 4211 { 4212 struct sctp_assoc_value params; 4213 struct sctp_association *asoc; 4214 int retval = -EINVAL; 4215 4216 if (optlen != sizeof(params)) 4217 goto out; 4218 4219 if (copy_from_user(¶ms, optval, optlen)) { 4220 retval = -EFAULT; 4221 goto out; 4222 } 4223 4224 asoc = sctp_id2assoc(sk, params.assoc_id); 4225 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4226 sctp_style(sk, UDP)) 4227 goto out; 4228 4229 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4230 4231 retval = 0; 4232 4233 out: 4234 return retval; 4235 } 4236 4237 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4238 char __user *optval, 4239 unsigned int optlen) 4240 { 4241 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4242 struct sctp_assoc_value params; 4243 struct sctp_association *asoc; 4244 int retval = -EINVAL; 4245 4246 if (optlen != sizeof(params)) 4247 goto out; 4248 4249 if (copy_from_user(¶ms, optval, optlen)) { 4250 retval = -EFAULT; 4251 goto out; 4252 } 4253 4254 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4255 goto out; 4256 4257 asoc = sctp_id2assoc(sk, params.assoc_id); 4258 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4259 sctp_style(sk, UDP)) 4260 goto out; 4261 4262 retval = 0; 4263 4264 if (asoc) { 4265 asoc->strreset_enable = params.assoc_value; 4266 goto out; 4267 } 4268 4269 if (sctp_style(sk, TCP)) 4270 params.assoc_id = SCTP_FUTURE_ASSOC; 4271 4272 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4273 params.assoc_id == SCTP_ALL_ASSOC) 4274 ep->strreset_enable = params.assoc_value; 4275 4276 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4277 params.assoc_id == SCTP_ALL_ASSOC) 4278 list_for_each_entry(asoc, &ep->asocs, asocs) 4279 asoc->strreset_enable = params.assoc_value; 4280 4281 out: 4282 return retval; 4283 } 4284 4285 static int sctp_setsockopt_reset_streams(struct sock *sk, 4286 char __user *optval, 4287 unsigned int optlen) 4288 { 4289 struct sctp_reset_streams *params; 4290 struct sctp_association *asoc; 4291 int retval = -EINVAL; 4292 4293 if (optlen < sizeof(*params)) 4294 return -EINVAL; 4295 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4296 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4297 sizeof(__u16) * sizeof(*params)); 4298 4299 params = memdup_user(optval, optlen); 4300 if (IS_ERR(params)) 4301 return PTR_ERR(params); 4302 4303 if (params->srs_number_streams * sizeof(__u16) > 4304 optlen - sizeof(*params)) 4305 goto out; 4306 4307 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4308 if (!asoc) 4309 goto out; 4310 4311 retval = sctp_send_reset_streams(asoc, params); 4312 4313 out: 4314 kfree(params); 4315 return retval; 4316 } 4317 4318 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4319 char __user *optval, 4320 unsigned int optlen) 4321 { 4322 struct sctp_association *asoc; 4323 sctp_assoc_t associd; 4324 int retval = -EINVAL; 4325 4326 if (optlen != sizeof(associd)) 4327 goto out; 4328 4329 if (copy_from_user(&associd, optval, optlen)) { 4330 retval = -EFAULT; 4331 goto out; 4332 } 4333 4334 asoc = sctp_id2assoc(sk, associd); 4335 if (!asoc) 4336 goto out; 4337 4338 retval = sctp_send_reset_assoc(asoc); 4339 4340 out: 4341 return retval; 4342 } 4343 4344 static int sctp_setsockopt_add_streams(struct sock *sk, 4345 char __user *optval, 4346 unsigned int optlen) 4347 { 4348 struct sctp_association *asoc; 4349 struct sctp_add_streams params; 4350 int retval = -EINVAL; 4351 4352 if (optlen != sizeof(params)) 4353 goto out; 4354 4355 if (copy_from_user(¶ms, optval, optlen)) { 4356 retval = -EFAULT; 4357 goto out; 4358 } 4359 4360 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4361 if (!asoc) 4362 goto out; 4363 4364 retval = sctp_send_add_streams(asoc, ¶ms); 4365 4366 out: 4367 return retval; 4368 } 4369 4370 static int sctp_setsockopt_scheduler(struct sock *sk, 4371 char __user *optval, 4372 unsigned int optlen) 4373 { 4374 struct sctp_sock *sp = sctp_sk(sk); 4375 struct sctp_association *asoc; 4376 struct sctp_assoc_value params; 4377 int retval = 0; 4378 4379 if (optlen < sizeof(params)) 4380 return -EINVAL; 4381 4382 optlen = sizeof(params); 4383 if (copy_from_user(¶ms, optval, optlen)) 4384 return -EFAULT; 4385 4386 if (params.assoc_value > SCTP_SS_MAX) 4387 return -EINVAL; 4388 4389 asoc = sctp_id2assoc(sk, params.assoc_id); 4390 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4391 sctp_style(sk, UDP)) 4392 return -EINVAL; 4393 4394 if (asoc) 4395 return sctp_sched_set_sched(asoc, params.assoc_value); 4396 4397 if (sctp_style(sk, TCP)) 4398 params.assoc_id = SCTP_FUTURE_ASSOC; 4399 4400 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4401 params.assoc_id == SCTP_ALL_ASSOC) 4402 sp->default_ss = params.assoc_value; 4403 4404 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4405 params.assoc_id == SCTP_ALL_ASSOC) { 4406 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4407 int ret = sctp_sched_set_sched(asoc, 4408 params.assoc_value); 4409 4410 if (ret && !retval) 4411 retval = ret; 4412 } 4413 } 4414 4415 return retval; 4416 } 4417 4418 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4419 char __user *optval, 4420 unsigned int optlen) 4421 { 4422 struct sctp_stream_value params; 4423 struct sctp_association *asoc; 4424 int retval = -EINVAL; 4425 4426 if (optlen < sizeof(params)) 4427 goto out; 4428 4429 optlen = sizeof(params); 4430 if (copy_from_user(¶ms, optval, optlen)) { 4431 retval = -EFAULT; 4432 goto out; 4433 } 4434 4435 asoc = sctp_id2assoc(sk, params.assoc_id); 4436 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4437 sctp_style(sk, UDP)) 4438 goto out; 4439 4440 if (asoc) { 4441 retval = sctp_sched_set_value(asoc, params.stream_id, 4442 params.stream_value, GFP_KERNEL); 4443 goto out; 4444 } 4445 4446 retval = 0; 4447 4448 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4449 int ret = sctp_sched_set_value(asoc, params.stream_id, 4450 params.stream_value, GFP_KERNEL); 4451 if (ret && !retval) /* try to return the 1st error. */ 4452 retval = ret; 4453 } 4454 4455 out: 4456 return retval; 4457 } 4458 4459 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4460 char __user *optval, 4461 unsigned int optlen) 4462 { 4463 struct sctp_sock *sp = sctp_sk(sk); 4464 struct sctp_assoc_value params; 4465 struct sctp_association *asoc; 4466 int retval = -EINVAL; 4467 4468 if (optlen < sizeof(params)) 4469 goto out; 4470 4471 optlen = sizeof(params); 4472 if (copy_from_user(¶ms, optval, optlen)) { 4473 retval = -EFAULT; 4474 goto out; 4475 } 4476 4477 asoc = sctp_id2assoc(sk, params.assoc_id); 4478 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4479 sctp_style(sk, UDP)) 4480 goto out; 4481 4482 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4483 retval = -EPERM; 4484 goto out; 4485 } 4486 4487 sp->ep->intl_enable = !!params.assoc_value; 4488 4489 retval = 0; 4490 4491 out: 4492 return retval; 4493 } 4494 4495 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4496 unsigned int optlen) 4497 { 4498 int val; 4499 4500 if (!sctp_style(sk, TCP)) 4501 return -EOPNOTSUPP; 4502 4503 if (sctp_sk(sk)->ep->base.bind_addr.port) 4504 return -EFAULT; 4505 4506 if (optlen < sizeof(int)) 4507 return -EINVAL; 4508 4509 if (get_user(val, (int __user *)optval)) 4510 return -EFAULT; 4511 4512 sctp_sk(sk)->reuse = !!val; 4513 4514 return 0; 4515 } 4516 4517 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4518 struct sctp_association *asoc) 4519 { 4520 struct sctp_ulpevent *event; 4521 4522 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4523 4524 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4525 if (sctp_outq_is_empty(&asoc->outqueue)) { 4526 event = sctp_ulpevent_make_sender_dry_event(asoc, 4527 GFP_USER | __GFP_NOWARN); 4528 if (!event) 4529 return -ENOMEM; 4530 4531 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4532 } 4533 } 4534 4535 return 0; 4536 } 4537 4538 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4539 unsigned int optlen) 4540 { 4541 struct sctp_sock *sp = sctp_sk(sk); 4542 struct sctp_association *asoc; 4543 struct sctp_event param; 4544 int retval = 0; 4545 4546 if (optlen < sizeof(param)) 4547 return -EINVAL; 4548 4549 optlen = sizeof(param); 4550 if (copy_from_user(¶m, optval, optlen)) 4551 return -EFAULT; 4552 4553 if (param.se_type < SCTP_SN_TYPE_BASE || 4554 param.se_type > SCTP_SN_TYPE_MAX) 4555 return -EINVAL; 4556 4557 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4558 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4559 sctp_style(sk, UDP)) 4560 return -EINVAL; 4561 4562 if (asoc) 4563 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4564 4565 if (sctp_style(sk, TCP)) 4566 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4567 4568 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4569 param.se_assoc_id == SCTP_ALL_ASSOC) 4570 sctp_ulpevent_type_set(&sp->subscribe, 4571 param.se_type, param.se_on); 4572 4573 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4574 param.se_assoc_id == SCTP_ALL_ASSOC) { 4575 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4576 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4577 4578 if (ret && !retval) 4579 retval = ret; 4580 } 4581 } 4582 4583 return retval; 4584 } 4585 4586 /* API 6.2 setsockopt(), getsockopt() 4587 * 4588 * Applications use setsockopt() and getsockopt() to set or retrieve 4589 * socket options. Socket options are used to change the default 4590 * behavior of sockets calls. They are described in Section 7. 4591 * 4592 * The syntax is: 4593 * 4594 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4595 * int __user *optlen); 4596 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4597 * int optlen); 4598 * 4599 * sd - the socket descript. 4600 * level - set to IPPROTO_SCTP for all SCTP options. 4601 * optname - the option name. 4602 * optval - the buffer to store the value of the option. 4603 * optlen - the size of the buffer. 4604 */ 4605 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4606 char __user *optval, unsigned int optlen) 4607 { 4608 int retval = 0; 4609 4610 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4611 4612 /* I can hardly begin to describe how wrong this is. This is 4613 * so broken as to be worse than useless. The API draft 4614 * REALLY is NOT helpful here... I am not convinced that the 4615 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4616 * are at all well-founded. 4617 */ 4618 if (level != SOL_SCTP) { 4619 struct sctp_af *af = sctp_sk(sk)->pf->af; 4620 retval = af->setsockopt(sk, level, optname, optval, optlen); 4621 goto out_nounlock; 4622 } 4623 4624 lock_sock(sk); 4625 4626 switch (optname) { 4627 case SCTP_SOCKOPT_BINDX_ADD: 4628 /* 'optlen' is the size of the addresses buffer. */ 4629 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4630 optlen, SCTP_BINDX_ADD_ADDR); 4631 break; 4632 4633 case SCTP_SOCKOPT_BINDX_REM: 4634 /* 'optlen' is the size of the addresses buffer. */ 4635 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4636 optlen, SCTP_BINDX_REM_ADDR); 4637 break; 4638 4639 case SCTP_SOCKOPT_CONNECTX_OLD: 4640 /* 'optlen' is the size of the addresses buffer. */ 4641 retval = sctp_setsockopt_connectx_old(sk, 4642 (struct sockaddr __user *)optval, 4643 optlen); 4644 break; 4645 4646 case SCTP_SOCKOPT_CONNECTX: 4647 /* 'optlen' is the size of the addresses buffer. */ 4648 retval = sctp_setsockopt_connectx(sk, 4649 (struct sockaddr __user *)optval, 4650 optlen); 4651 break; 4652 4653 case SCTP_DISABLE_FRAGMENTS: 4654 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4655 break; 4656 4657 case SCTP_EVENTS: 4658 retval = sctp_setsockopt_events(sk, optval, optlen); 4659 break; 4660 4661 case SCTP_AUTOCLOSE: 4662 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4663 break; 4664 4665 case SCTP_PEER_ADDR_PARAMS: 4666 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4667 break; 4668 4669 case SCTP_DELAYED_SACK: 4670 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4671 break; 4672 case SCTP_PARTIAL_DELIVERY_POINT: 4673 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4674 break; 4675 4676 case SCTP_INITMSG: 4677 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4678 break; 4679 case SCTP_DEFAULT_SEND_PARAM: 4680 retval = sctp_setsockopt_default_send_param(sk, optval, 4681 optlen); 4682 break; 4683 case SCTP_DEFAULT_SNDINFO: 4684 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4685 break; 4686 case SCTP_PRIMARY_ADDR: 4687 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4688 break; 4689 case SCTP_SET_PEER_PRIMARY_ADDR: 4690 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4691 break; 4692 case SCTP_NODELAY: 4693 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4694 break; 4695 case SCTP_RTOINFO: 4696 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4697 break; 4698 case SCTP_ASSOCINFO: 4699 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4700 break; 4701 case SCTP_I_WANT_MAPPED_V4_ADDR: 4702 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4703 break; 4704 case SCTP_MAXSEG: 4705 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4706 break; 4707 case SCTP_ADAPTATION_LAYER: 4708 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4709 break; 4710 case SCTP_CONTEXT: 4711 retval = sctp_setsockopt_context(sk, optval, optlen); 4712 break; 4713 case SCTP_FRAGMENT_INTERLEAVE: 4714 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4715 break; 4716 case SCTP_MAX_BURST: 4717 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4718 break; 4719 case SCTP_AUTH_CHUNK: 4720 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4721 break; 4722 case SCTP_HMAC_IDENT: 4723 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4724 break; 4725 case SCTP_AUTH_KEY: 4726 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4727 break; 4728 case SCTP_AUTH_ACTIVE_KEY: 4729 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4730 break; 4731 case SCTP_AUTH_DELETE_KEY: 4732 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4733 break; 4734 case SCTP_AUTH_DEACTIVATE_KEY: 4735 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4736 break; 4737 case SCTP_AUTO_ASCONF: 4738 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4739 break; 4740 case SCTP_PEER_ADDR_THLDS: 4741 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4742 break; 4743 case SCTP_RECVRCVINFO: 4744 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4745 break; 4746 case SCTP_RECVNXTINFO: 4747 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4748 break; 4749 case SCTP_PR_SUPPORTED: 4750 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4751 break; 4752 case SCTP_DEFAULT_PRINFO: 4753 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4754 break; 4755 case SCTP_RECONFIG_SUPPORTED: 4756 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4757 break; 4758 case SCTP_ENABLE_STREAM_RESET: 4759 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4760 break; 4761 case SCTP_RESET_STREAMS: 4762 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4763 break; 4764 case SCTP_RESET_ASSOC: 4765 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4766 break; 4767 case SCTP_ADD_STREAMS: 4768 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4769 break; 4770 case SCTP_STREAM_SCHEDULER: 4771 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4772 break; 4773 case SCTP_STREAM_SCHEDULER_VALUE: 4774 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4775 break; 4776 case SCTP_INTERLEAVING_SUPPORTED: 4777 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4778 optlen); 4779 break; 4780 case SCTP_REUSE_PORT: 4781 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4782 break; 4783 case SCTP_EVENT: 4784 retval = sctp_setsockopt_event(sk, optval, optlen); 4785 break; 4786 default: 4787 retval = -ENOPROTOOPT; 4788 break; 4789 } 4790 4791 release_sock(sk); 4792 4793 out_nounlock: 4794 return retval; 4795 } 4796 4797 /* API 3.1.6 connect() - UDP Style Syntax 4798 * 4799 * An application may use the connect() call in the UDP model to initiate an 4800 * association without sending data. 4801 * 4802 * The syntax is: 4803 * 4804 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4805 * 4806 * sd: the socket descriptor to have a new association added to. 4807 * 4808 * nam: the address structure (either struct sockaddr_in or struct 4809 * sockaddr_in6 defined in RFC2553 [7]). 4810 * 4811 * len: the size of the address. 4812 */ 4813 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4814 int addr_len, int flags) 4815 { 4816 struct sctp_af *af; 4817 int err = -EINVAL; 4818 4819 lock_sock(sk); 4820 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4821 addr, addr_len); 4822 4823 /* Validate addr_len before calling common connect/connectx routine. */ 4824 af = sctp_get_af_specific(addr->sa_family); 4825 if (af && addr_len >= af->sockaddr_len) 4826 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4827 4828 release_sock(sk); 4829 return err; 4830 } 4831 4832 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4833 int addr_len, int flags) 4834 { 4835 if (addr_len < sizeof(uaddr->sa_family)) 4836 return -EINVAL; 4837 4838 if (uaddr->sa_family == AF_UNSPEC) 4839 return -EOPNOTSUPP; 4840 4841 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4842 } 4843 4844 /* FIXME: Write comments. */ 4845 static int sctp_disconnect(struct sock *sk, int flags) 4846 { 4847 return -EOPNOTSUPP; /* STUB */ 4848 } 4849 4850 /* 4.1.4 accept() - TCP Style Syntax 4851 * 4852 * Applications use accept() call to remove an established SCTP 4853 * association from the accept queue of the endpoint. A new socket 4854 * descriptor will be returned from accept() to represent the newly 4855 * formed association. 4856 */ 4857 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4858 { 4859 struct sctp_sock *sp; 4860 struct sctp_endpoint *ep; 4861 struct sock *newsk = NULL; 4862 struct sctp_association *asoc; 4863 long timeo; 4864 int error = 0; 4865 4866 lock_sock(sk); 4867 4868 sp = sctp_sk(sk); 4869 ep = sp->ep; 4870 4871 if (!sctp_style(sk, TCP)) { 4872 error = -EOPNOTSUPP; 4873 goto out; 4874 } 4875 4876 if (!sctp_sstate(sk, LISTENING)) { 4877 error = -EINVAL; 4878 goto out; 4879 } 4880 4881 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4882 4883 error = sctp_wait_for_accept(sk, timeo); 4884 if (error) 4885 goto out; 4886 4887 /* We treat the list of associations on the endpoint as the accept 4888 * queue and pick the first association on the list. 4889 */ 4890 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4891 4892 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4893 if (!newsk) { 4894 error = -ENOMEM; 4895 goto out; 4896 } 4897 4898 /* Populate the fields of the newsk from the oldsk and migrate the 4899 * asoc to the newsk. 4900 */ 4901 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4902 if (error) { 4903 sk_common_release(newsk); 4904 newsk = NULL; 4905 } 4906 4907 out: 4908 release_sock(sk); 4909 *err = error; 4910 return newsk; 4911 } 4912 4913 /* The SCTP ioctl handler. */ 4914 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4915 { 4916 int rc = -ENOTCONN; 4917 4918 lock_sock(sk); 4919 4920 /* 4921 * SEQPACKET-style sockets in LISTENING state are valid, for 4922 * SCTP, so only discard TCP-style sockets in LISTENING state. 4923 */ 4924 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4925 goto out; 4926 4927 switch (cmd) { 4928 case SIOCINQ: { 4929 struct sk_buff *skb; 4930 unsigned int amount = 0; 4931 4932 skb = skb_peek(&sk->sk_receive_queue); 4933 if (skb != NULL) { 4934 /* 4935 * We will only return the amount of this packet since 4936 * that is all that will be read. 4937 */ 4938 amount = skb->len; 4939 } 4940 rc = put_user(amount, (int __user *)arg); 4941 break; 4942 } 4943 default: 4944 rc = -ENOIOCTLCMD; 4945 break; 4946 } 4947 out: 4948 release_sock(sk); 4949 return rc; 4950 } 4951 4952 /* This is the function which gets called during socket creation to 4953 * initialized the SCTP-specific portion of the sock. 4954 * The sock structure should already be zero-filled memory. 4955 */ 4956 static int sctp_init_sock(struct sock *sk) 4957 { 4958 struct net *net = sock_net(sk); 4959 struct sctp_sock *sp; 4960 4961 pr_debug("%s: sk:%p\n", __func__, sk); 4962 4963 sp = sctp_sk(sk); 4964 4965 /* Initialize the SCTP per socket area. */ 4966 switch (sk->sk_type) { 4967 case SOCK_SEQPACKET: 4968 sp->type = SCTP_SOCKET_UDP; 4969 break; 4970 case SOCK_STREAM: 4971 sp->type = SCTP_SOCKET_TCP; 4972 break; 4973 default: 4974 return -ESOCKTNOSUPPORT; 4975 } 4976 4977 sk->sk_gso_type = SKB_GSO_SCTP; 4978 4979 /* Initialize default send parameters. These parameters can be 4980 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4981 */ 4982 sp->default_stream = 0; 4983 sp->default_ppid = 0; 4984 sp->default_flags = 0; 4985 sp->default_context = 0; 4986 sp->default_timetolive = 0; 4987 4988 sp->default_rcv_context = 0; 4989 sp->max_burst = net->sctp.max_burst; 4990 4991 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4992 4993 /* Initialize default setup parameters. These parameters 4994 * can be modified with the SCTP_INITMSG socket option or 4995 * overridden by the SCTP_INIT CMSG. 4996 */ 4997 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4998 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4999 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5000 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5001 5002 /* Initialize default RTO related parameters. These parameters can 5003 * be modified for with the SCTP_RTOINFO socket option. 5004 */ 5005 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5006 sp->rtoinfo.srto_max = net->sctp.rto_max; 5007 sp->rtoinfo.srto_min = net->sctp.rto_min; 5008 5009 /* Initialize default association related parameters. These parameters 5010 * can be modified with the SCTP_ASSOCINFO socket option. 5011 */ 5012 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5013 sp->assocparams.sasoc_number_peer_destinations = 0; 5014 sp->assocparams.sasoc_peer_rwnd = 0; 5015 sp->assocparams.sasoc_local_rwnd = 0; 5016 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5017 5018 /* Initialize default event subscriptions. By default, all the 5019 * options are off. 5020 */ 5021 sp->subscribe = 0; 5022 5023 /* Default Peer Address Parameters. These defaults can 5024 * be modified via SCTP_PEER_ADDR_PARAMS 5025 */ 5026 sp->hbinterval = net->sctp.hb_interval; 5027 sp->pathmaxrxt = net->sctp.max_retrans_path; 5028 sp->pf_retrans = net->sctp.pf_retrans; 5029 sp->pathmtu = 0; /* allow default discovery */ 5030 sp->sackdelay = net->sctp.sack_timeout; 5031 sp->sackfreq = 2; 5032 sp->param_flags = SPP_HB_ENABLE | 5033 SPP_PMTUD_ENABLE | 5034 SPP_SACKDELAY_ENABLE; 5035 sp->default_ss = SCTP_SS_DEFAULT; 5036 5037 /* If enabled no SCTP message fragmentation will be performed. 5038 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5039 */ 5040 sp->disable_fragments = 0; 5041 5042 /* Enable Nagle algorithm by default. */ 5043 sp->nodelay = 0; 5044 5045 sp->recvrcvinfo = 0; 5046 sp->recvnxtinfo = 0; 5047 5048 /* Enable by default. */ 5049 sp->v4mapped = 1; 5050 5051 /* Auto-close idle associations after the configured 5052 * number of seconds. A value of 0 disables this 5053 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5054 * for UDP-style sockets only. 5055 */ 5056 sp->autoclose = 0; 5057 5058 /* User specified fragmentation limit. */ 5059 sp->user_frag = 0; 5060 5061 sp->adaptation_ind = 0; 5062 5063 sp->pf = sctp_get_pf_specific(sk->sk_family); 5064 5065 /* Control variables for partial data delivery. */ 5066 atomic_set(&sp->pd_mode, 0); 5067 skb_queue_head_init(&sp->pd_lobby); 5068 sp->frag_interleave = 0; 5069 5070 /* Create a per socket endpoint structure. Even if we 5071 * change the data structure relationships, this may still 5072 * be useful for storing pre-connect address information. 5073 */ 5074 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5075 if (!sp->ep) 5076 return -ENOMEM; 5077 5078 sp->hmac = NULL; 5079 5080 sk->sk_destruct = sctp_destruct_sock; 5081 5082 SCTP_DBG_OBJCNT_INC(sock); 5083 5084 local_bh_disable(); 5085 sk_sockets_allocated_inc(sk); 5086 sock_prot_inuse_add(net, sk->sk_prot, 1); 5087 5088 /* Nothing can fail after this block, otherwise 5089 * sctp_destroy_sock() will be called without addr_wq_lock held 5090 */ 5091 if (net->sctp.default_auto_asconf) { 5092 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5093 list_add_tail(&sp->auto_asconf_list, 5094 &net->sctp.auto_asconf_splist); 5095 sp->do_auto_asconf = 1; 5096 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5097 } else { 5098 sp->do_auto_asconf = 0; 5099 } 5100 5101 local_bh_enable(); 5102 5103 return 0; 5104 } 5105 5106 /* Cleanup any SCTP per socket resources. Must be called with 5107 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5108 */ 5109 static void sctp_destroy_sock(struct sock *sk) 5110 { 5111 struct sctp_sock *sp; 5112 5113 pr_debug("%s: sk:%p\n", __func__, sk); 5114 5115 /* Release our hold on the endpoint. */ 5116 sp = sctp_sk(sk); 5117 /* This could happen during socket init, thus we bail out 5118 * early, since the rest of the below is not setup either. 5119 */ 5120 if (sp->ep == NULL) 5121 return; 5122 5123 if (sp->do_auto_asconf) { 5124 sp->do_auto_asconf = 0; 5125 list_del(&sp->auto_asconf_list); 5126 } 5127 sctp_endpoint_free(sp->ep); 5128 local_bh_disable(); 5129 sk_sockets_allocated_dec(sk); 5130 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5131 local_bh_enable(); 5132 } 5133 5134 /* Triggered when there are no references on the socket anymore */ 5135 static void sctp_destruct_sock(struct sock *sk) 5136 { 5137 struct sctp_sock *sp = sctp_sk(sk); 5138 5139 /* Free up the HMAC transform. */ 5140 crypto_free_shash(sp->hmac); 5141 5142 inet_sock_destruct(sk); 5143 } 5144 5145 /* API 4.1.7 shutdown() - TCP Style Syntax 5146 * int shutdown(int socket, int how); 5147 * 5148 * sd - the socket descriptor of the association to be closed. 5149 * how - Specifies the type of shutdown. The values are 5150 * as follows: 5151 * SHUT_RD 5152 * Disables further receive operations. No SCTP 5153 * protocol action is taken. 5154 * SHUT_WR 5155 * Disables further send operations, and initiates 5156 * the SCTP shutdown sequence. 5157 * SHUT_RDWR 5158 * Disables further send and receive operations 5159 * and initiates the SCTP shutdown sequence. 5160 */ 5161 static void sctp_shutdown(struct sock *sk, int how) 5162 { 5163 struct net *net = sock_net(sk); 5164 struct sctp_endpoint *ep; 5165 5166 if (!sctp_style(sk, TCP)) 5167 return; 5168 5169 ep = sctp_sk(sk)->ep; 5170 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5171 struct sctp_association *asoc; 5172 5173 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5174 asoc = list_entry(ep->asocs.next, 5175 struct sctp_association, asocs); 5176 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5177 } 5178 } 5179 5180 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5181 struct sctp_info *info) 5182 { 5183 struct sctp_transport *prim; 5184 struct list_head *pos; 5185 int mask; 5186 5187 memset(info, 0, sizeof(*info)); 5188 if (!asoc) { 5189 struct sctp_sock *sp = sctp_sk(sk); 5190 5191 info->sctpi_s_autoclose = sp->autoclose; 5192 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5193 info->sctpi_s_pd_point = sp->pd_point; 5194 info->sctpi_s_nodelay = sp->nodelay; 5195 info->sctpi_s_disable_fragments = sp->disable_fragments; 5196 info->sctpi_s_v4mapped = sp->v4mapped; 5197 info->sctpi_s_frag_interleave = sp->frag_interleave; 5198 info->sctpi_s_type = sp->type; 5199 5200 return 0; 5201 } 5202 5203 info->sctpi_tag = asoc->c.my_vtag; 5204 info->sctpi_state = asoc->state; 5205 info->sctpi_rwnd = asoc->a_rwnd; 5206 info->sctpi_unackdata = asoc->unack_data; 5207 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5208 info->sctpi_instrms = asoc->stream.incnt; 5209 info->sctpi_outstrms = asoc->stream.outcnt; 5210 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5211 info->sctpi_inqueue++; 5212 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5213 info->sctpi_outqueue++; 5214 info->sctpi_overall_error = asoc->overall_error_count; 5215 info->sctpi_max_burst = asoc->max_burst; 5216 info->sctpi_maxseg = asoc->frag_point; 5217 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5218 info->sctpi_peer_tag = asoc->c.peer_vtag; 5219 5220 mask = asoc->peer.ecn_capable << 1; 5221 mask = (mask | asoc->peer.ipv4_address) << 1; 5222 mask = (mask | asoc->peer.ipv6_address) << 1; 5223 mask = (mask | asoc->peer.hostname_address) << 1; 5224 mask = (mask | asoc->peer.asconf_capable) << 1; 5225 mask = (mask | asoc->peer.prsctp_capable) << 1; 5226 mask = (mask | asoc->peer.auth_capable); 5227 info->sctpi_peer_capable = mask; 5228 mask = asoc->peer.sack_needed << 1; 5229 mask = (mask | asoc->peer.sack_generation) << 1; 5230 mask = (mask | asoc->peer.zero_window_announced); 5231 info->sctpi_peer_sack = mask; 5232 5233 info->sctpi_isacks = asoc->stats.isacks; 5234 info->sctpi_osacks = asoc->stats.osacks; 5235 info->sctpi_opackets = asoc->stats.opackets; 5236 info->sctpi_ipackets = asoc->stats.ipackets; 5237 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5238 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5239 info->sctpi_idupchunks = asoc->stats.idupchunks; 5240 info->sctpi_gapcnt = asoc->stats.gapcnt; 5241 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5242 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5243 info->sctpi_oodchunks = asoc->stats.oodchunks; 5244 info->sctpi_iodchunks = asoc->stats.iodchunks; 5245 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5246 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5247 5248 prim = asoc->peer.primary_path; 5249 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5250 info->sctpi_p_state = prim->state; 5251 info->sctpi_p_cwnd = prim->cwnd; 5252 info->sctpi_p_srtt = prim->srtt; 5253 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5254 info->sctpi_p_hbinterval = prim->hbinterval; 5255 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5256 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5257 info->sctpi_p_ssthresh = prim->ssthresh; 5258 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5259 info->sctpi_p_flight_size = prim->flight_size; 5260 info->sctpi_p_error = prim->error_count; 5261 5262 return 0; 5263 } 5264 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5265 5266 /* use callback to avoid exporting the core structure */ 5267 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5268 { 5269 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5270 5271 rhashtable_walk_start(iter); 5272 } 5273 5274 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5275 { 5276 rhashtable_walk_stop(iter); 5277 rhashtable_walk_exit(iter); 5278 } 5279 5280 struct sctp_transport *sctp_transport_get_next(struct net *net, 5281 struct rhashtable_iter *iter) 5282 { 5283 struct sctp_transport *t; 5284 5285 t = rhashtable_walk_next(iter); 5286 for (; t; t = rhashtable_walk_next(iter)) { 5287 if (IS_ERR(t)) { 5288 if (PTR_ERR(t) == -EAGAIN) 5289 continue; 5290 break; 5291 } 5292 5293 if (!sctp_transport_hold(t)) 5294 continue; 5295 5296 if (net_eq(sock_net(t->asoc->base.sk), net) && 5297 t->asoc->peer.primary_path == t) 5298 break; 5299 5300 sctp_transport_put(t); 5301 } 5302 5303 return t; 5304 } 5305 5306 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5307 struct rhashtable_iter *iter, 5308 int pos) 5309 { 5310 struct sctp_transport *t; 5311 5312 if (!pos) 5313 return SEQ_START_TOKEN; 5314 5315 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5316 if (!--pos) 5317 break; 5318 sctp_transport_put(t); 5319 } 5320 5321 return t; 5322 } 5323 5324 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5325 void *p) { 5326 int err = 0; 5327 int hash = 0; 5328 struct sctp_ep_common *epb; 5329 struct sctp_hashbucket *head; 5330 5331 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5332 hash++, head++) { 5333 read_lock_bh(&head->lock); 5334 sctp_for_each_hentry(epb, &head->chain) { 5335 err = cb(sctp_ep(epb), p); 5336 if (err) 5337 break; 5338 } 5339 read_unlock_bh(&head->lock); 5340 } 5341 5342 return err; 5343 } 5344 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5345 5346 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5347 struct net *net, 5348 const union sctp_addr *laddr, 5349 const union sctp_addr *paddr, void *p) 5350 { 5351 struct sctp_transport *transport; 5352 int err; 5353 5354 rcu_read_lock(); 5355 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5356 rcu_read_unlock(); 5357 if (!transport) 5358 return -ENOENT; 5359 5360 err = cb(transport, p); 5361 sctp_transport_put(transport); 5362 5363 return err; 5364 } 5365 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5366 5367 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5368 int (*cb_done)(struct sctp_transport *, void *), 5369 struct net *net, int *pos, void *p) { 5370 struct rhashtable_iter hti; 5371 struct sctp_transport *tsp; 5372 int ret; 5373 5374 again: 5375 ret = 0; 5376 sctp_transport_walk_start(&hti); 5377 5378 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5379 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5380 ret = cb(tsp, p); 5381 if (ret) 5382 break; 5383 (*pos)++; 5384 sctp_transport_put(tsp); 5385 } 5386 sctp_transport_walk_stop(&hti); 5387 5388 if (ret) { 5389 if (cb_done && !cb_done(tsp, p)) { 5390 (*pos)++; 5391 sctp_transport_put(tsp); 5392 goto again; 5393 } 5394 sctp_transport_put(tsp); 5395 } 5396 5397 return ret; 5398 } 5399 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5400 5401 /* 7.2.1 Association Status (SCTP_STATUS) 5402 5403 * Applications can retrieve current status information about an 5404 * association, including association state, peer receiver window size, 5405 * number of unacked data chunks, and number of data chunks pending 5406 * receipt. This information is read-only. 5407 */ 5408 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5409 char __user *optval, 5410 int __user *optlen) 5411 { 5412 struct sctp_status status; 5413 struct sctp_association *asoc = NULL; 5414 struct sctp_transport *transport; 5415 sctp_assoc_t associd; 5416 int retval = 0; 5417 5418 if (len < sizeof(status)) { 5419 retval = -EINVAL; 5420 goto out; 5421 } 5422 5423 len = sizeof(status); 5424 if (copy_from_user(&status, optval, len)) { 5425 retval = -EFAULT; 5426 goto out; 5427 } 5428 5429 associd = status.sstat_assoc_id; 5430 asoc = sctp_id2assoc(sk, associd); 5431 if (!asoc) { 5432 retval = -EINVAL; 5433 goto out; 5434 } 5435 5436 transport = asoc->peer.primary_path; 5437 5438 status.sstat_assoc_id = sctp_assoc2id(asoc); 5439 status.sstat_state = sctp_assoc_to_state(asoc); 5440 status.sstat_rwnd = asoc->peer.rwnd; 5441 status.sstat_unackdata = asoc->unack_data; 5442 5443 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5444 status.sstat_instrms = asoc->stream.incnt; 5445 status.sstat_outstrms = asoc->stream.outcnt; 5446 status.sstat_fragmentation_point = asoc->frag_point; 5447 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5448 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5449 transport->af_specific->sockaddr_len); 5450 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5451 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5452 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5453 status.sstat_primary.spinfo_state = transport->state; 5454 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5455 status.sstat_primary.spinfo_srtt = transport->srtt; 5456 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5457 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5458 5459 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5460 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5461 5462 if (put_user(len, optlen)) { 5463 retval = -EFAULT; 5464 goto out; 5465 } 5466 5467 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5468 __func__, len, status.sstat_state, status.sstat_rwnd, 5469 status.sstat_assoc_id); 5470 5471 if (copy_to_user(optval, &status, len)) { 5472 retval = -EFAULT; 5473 goto out; 5474 } 5475 5476 out: 5477 return retval; 5478 } 5479 5480 5481 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5482 * 5483 * Applications can retrieve information about a specific peer address 5484 * of an association, including its reachability state, congestion 5485 * window, and retransmission timer values. This information is 5486 * read-only. 5487 */ 5488 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5489 char __user *optval, 5490 int __user *optlen) 5491 { 5492 struct sctp_paddrinfo pinfo; 5493 struct sctp_transport *transport; 5494 int retval = 0; 5495 5496 if (len < sizeof(pinfo)) { 5497 retval = -EINVAL; 5498 goto out; 5499 } 5500 5501 len = sizeof(pinfo); 5502 if (copy_from_user(&pinfo, optval, len)) { 5503 retval = -EFAULT; 5504 goto out; 5505 } 5506 5507 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5508 pinfo.spinfo_assoc_id); 5509 if (!transport) 5510 return -EINVAL; 5511 5512 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5513 pinfo.spinfo_state = transport->state; 5514 pinfo.spinfo_cwnd = transport->cwnd; 5515 pinfo.spinfo_srtt = transport->srtt; 5516 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5517 pinfo.spinfo_mtu = transport->pathmtu; 5518 5519 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5520 pinfo.spinfo_state = SCTP_ACTIVE; 5521 5522 if (put_user(len, optlen)) { 5523 retval = -EFAULT; 5524 goto out; 5525 } 5526 5527 if (copy_to_user(optval, &pinfo, len)) { 5528 retval = -EFAULT; 5529 goto out; 5530 } 5531 5532 out: 5533 return retval; 5534 } 5535 5536 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5537 * 5538 * This option is a on/off flag. If enabled no SCTP message 5539 * fragmentation will be performed. Instead if a message being sent 5540 * exceeds the current PMTU size, the message will NOT be sent and 5541 * instead a error will be indicated to the user. 5542 */ 5543 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5544 char __user *optval, int __user *optlen) 5545 { 5546 int val; 5547 5548 if (len < sizeof(int)) 5549 return -EINVAL; 5550 5551 len = sizeof(int); 5552 val = (sctp_sk(sk)->disable_fragments == 1); 5553 if (put_user(len, optlen)) 5554 return -EFAULT; 5555 if (copy_to_user(optval, &val, len)) 5556 return -EFAULT; 5557 return 0; 5558 } 5559 5560 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5561 * 5562 * This socket option is used to specify various notifications and 5563 * ancillary data the user wishes to receive. 5564 */ 5565 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5566 int __user *optlen) 5567 { 5568 struct sctp_event_subscribe subscribe; 5569 __u8 *sn_type = (__u8 *)&subscribe; 5570 int i; 5571 5572 if (len == 0) 5573 return -EINVAL; 5574 if (len > sizeof(struct sctp_event_subscribe)) 5575 len = sizeof(struct sctp_event_subscribe); 5576 if (put_user(len, optlen)) 5577 return -EFAULT; 5578 5579 for (i = 0; i < len; i++) 5580 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5581 SCTP_SN_TYPE_BASE + i); 5582 5583 if (copy_to_user(optval, &subscribe, len)) 5584 return -EFAULT; 5585 5586 return 0; 5587 } 5588 5589 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5590 * 5591 * This socket option is applicable to the UDP-style socket only. When 5592 * set it will cause associations that are idle for more than the 5593 * specified number of seconds to automatically close. An association 5594 * being idle is defined an association that has NOT sent or received 5595 * user data. The special value of '0' indicates that no automatic 5596 * close of any associations should be performed. The option expects an 5597 * integer defining the number of seconds of idle time before an 5598 * association is closed. 5599 */ 5600 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5601 { 5602 /* Applicable to UDP-style socket only */ 5603 if (sctp_style(sk, TCP)) 5604 return -EOPNOTSUPP; 5605 if (len < sizeof(int)) 5606 return -EINVAL; 5607 len = sizeof(int); 5608 if (put_user(len, optlen)) 5609 return -EFAULT; 5610 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5611 return -EFAULT; 5612 return 0; 5613 } 5614 5615 /* Helper routine to branch off an association to a new socket. */ 5616 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5617 { 5618 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5619 struct sctp_sock *sp = sctp_sk(sk); 5620 struct socket *sock; 5621 int err = 0; 5622 5623 /* Do not peel off from one netns to another one. */ 5624 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5625 return -EINVAL; 5626 5627 if (!asoc) 5628 return -EINVAL; 5629 5630 /* An association cannot be branched off from an already peeled-off 5631 * socket, nor is this supported for tcp style sockets. 5632 */ 5633 if (!sctp_style(sk, UDP)) 5634 return -EINVAL; 5635 5636 /* Create a new socket. */ 5637 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5638 if (err < 0) 5639 return err; 5640 5641 sctp_copy_sock(sock->sk, sk, asoc); 5642 5643 /* Make peeled-off sockets more like 1-1 accepted sockets. 5644 * Set the daddr and initialize id to something more random and also 5645 * copy over any ip options. 5646 */ 5647 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5648 sp->pf->copy_ip_options(sk, sock->sk); 5649 5650 /* Populate the fields of the newsk from the oldsk and migrate the 5651 * asoc to the newsk. 5652 */ 5653 err = sctp_sock_migrate(sk, sock->sk, asoc, 5654 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5655 if (err) { 5656 sock_release(sock); 5657 sock = NULL; 5658 } 5659 5660 *sockp = sock; 5661 5662 return err; 5663 } 5664 EXPORT_SYMBOL(sctp_do_peeloff); 5665 5666 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5667 struct file **newfile, unsigned flags) 5668 { 5669 struct socket *newsock; 5670 int retval; 5671 5672 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5673 if (retval < 0) 5674 goto out; 5675 5676 /* Map the socket to an unused fd that can be returned to the user. */ 5677 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5678 if (retval < 0) { 5679 sock_release(newsock); 5680 goto out; 5681 } 5682 5683 *newfile = sock_alloc_file(newsock, 0, NULL); 5684 if (IS_ERR(*newfile)) { 5685 put_unused_fd(retval); 5686 retval = PTR_ERR(*newfile); 5687 *newfile = NULL; 5688 return retval; 5689 } 5690 5691 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5692 retval); 5693 5694 peeloff->sd = retval; 5695 5696 if (flags & SOCK_NONBLOCK) 5697 (*newfile)->f_flags |= O_NONBLOCK; 5698 out: 5699 return retval; 5700 } 5701 5702 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5703 { 5704 sctp_peeloff_arg_t peeloff; 5705 struct file *newfile = NULL; 5706 int retval = 0; 5707 5708 if (len < sizeof(sctp_peeloff_arg_t)) 5709 return -EINVAL; 5710 len = sizeof(sctp_peeloff_arg_t); 5711 if (copy_from_user(&peeloff, optval, len)) 5712 return -EFAULT; 5713 5714 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5715 if (retval < 0) 5716 goto out; 5717 5718 /* Return the fd mapped to the new socket. */ 5719 if (put_user(len, optlen)) { 5720 fput(newfile); 5721 put_unused_fd(retval); 5722 return -EFAULT; 5723 } 5724 5725 if (copy_to_user(optval, &peeloff, len)) { 5726 fput(newfile); 5727 put_unused_fd(retval); 5728 return -EFAULT; 5729 } 5730 fd_install(retval, newfile); 5731 out: 5732 return retval; 5733 } 5734 5735 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5736 char __user *optval, int __user *optlen) 5737 { 5738 sctp_peeloff_flags_arg_t peeloff; 5739 struct file *newfile = NULL; 5740 int retval = 0; 5741 5742 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5743 return -EINVAL; 5744 len = sizeof(sctp_peeloff_flags_arg_t); 5745 if (copy_from_user(&peeloff, optval, len)) 5746 return -EFAULT; 5747 5748 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5749 &newfile, peeloff.flags); 5750 if (retval < 0) 5751 goto out; 5752 5753 /* Return the fd mapped to the new socket. */ 5754 if (put_user(len, optlen)) { 5755 fput(newfile); 5756 put_unused_fd(retval); 5757 return -EFAULT; 5758 } 5759 5760 if (copy_to_user(optval, &peeloff, len)) { 5761 fput(newfile); 5762 put_unused_fd(retval); 5763 return -EFAULT; 5764 } 5765 fd_install(retval, newfile); 5766 out: 5767 return retval; 5768 } 5769 5770 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5771 * 5772 * Applications can enable or disable heartbeats for any peer address of 5773 * an association, modify an address's heartbeat interval, force a 5774 * heartbeat to be sent immediately, and adjust the address's maximum 5775 * number of retransmissions sent before an address is considered 5776 * unreachable. The following structure is used to access and modify an 5777 * address's parameters: 5778 * 5779 * struct sctp_paddrparams { 5780 * sctp_assoc_t spp_assoc_id; 5781 * struct sockaddr_storage spp_address; 5782 * uint32_t spp_hbinterval; 5783 * uint16_t spp_pathmaxrxt; 5784 * uint32_t spp_pathmtu; 5785 * uint32_t spp_sackdelay; 5786 * uint32_t spp_flags; 5787 * }; 5788 * 5789 * spp_assoc_id - (one-to-many style socket) This is filled in the 5790 * application, and identifies the association for 5791 * this query. 5792 * spp_address - This specifies which address is of interest. 5793 * spp_hbinterval - This contains the value of the heartbeat interval, 5794 * in milliseconds. If a value of zero 5795 * is present in this field then no changes are to 5796 * be made to this parameter. 5797 * spp_pathmaxrxt - This contains the maximum number of 5798 * retransmissions before this address shall be 5799 * considered unreachable. If a value of zero 5800 * is present in this field then no changes are to 5801 * be made to this parameter. 5802 * spp_pathmtu - When Path MTU discovery is disabled the value 5803 * specified here will be the "fixed" path mtu. 5804 * Note that if the spp_address field is empty 5805 * then all associations on this address will 5806 * have this fixed path mtu set upon them. 5807 * 5808 * spp_sackdelay - When delayed sack is enabled, this value specifies 5809 * the number of milliseconds that sacks will be delayed 5810 * for. This value will apply to all addresses of an 5811 * association if the spp_address field is empty. Note 5812 * also, that if delayed sack is enabled and this 5813 * value is set to 0, no change is made to the last 5814 * recorded delayed sack timer value. 5815 * 5816 * spp_flags - These flags are used to control various features 5817 * on an association. The flag field may contain 5818 * zero or more of the following options. 5819 * 5820 * SPP_HB_ENABLE - Enable heartbeats on the 5821 * specified address. Note that if the address 5822 * field is empty all addresses for the association 5823 * have heartbeats enabled upon them. 5824 * 5825 * SPP_HB_DISABLE - Disable heartbeats on the 5826 * speicifed address. Note that if the address 5827 * field is empty all addresses for the association 5828 * will have their heartbeats disabled. Note also 5829 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5830 * mutually exclusive, only one of these two should 5831 * be specified. Enabling both fields will have 5832 * undetermined results. 5833 * 5834 * SPP_HB_DEMAND - Request a user initiated heartbeat 5835 * to be made immediately. 5836 * 5837 * SPP_PMTUD_ENABLE - This field will enable PMTU 5838 * discovery upon the specified address. Note that 5839 * if the address feild is empty then all addresses 5840 * on the association are effected. 5841 * 5842 * SPP_PMTUD_DISABLE - This field will disable PMTU 5843 * discovery upon the specified address. Note that 5844 * if the address feild is empty then all addresses 5845 * on the association are effected. Not also that 5846 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5847 * exclusive. Enabling both will have undetermined 5848 * results. 5849 * 5850 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5851 * on delayed sack. The time specified in spp_sackdelay 5852 * is used to specify the sack delay for this address. Note 5853 * that if spp_address is empty then all addresses will 5854 * enable delayed sack and take on the sack delay 5855 * value specified in spp_sackdelay. 5856 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5857 * off delayed sack. If the spp_address field is blank then 5858 * delayed sack is disabled for the entire association. Note 5859 * also that this field is mutually exclusive to 5860 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5861 * results. 5862 * 5863 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5864 * setting of the IPV6 flow label value. The value is 5865 * contained in the spp_ipv6_flowlabel field. 5866 * Upon retrieval, this flag will be set to indicate that 5867 * the spp_ipv6_flowlabel field has a valid value returned. 5868 * If a specific destination address is set (in the 5869 * spp_address field), then the value returned is that of 5870 * the address. If just an association is specified (and 5871 * no address), then the association's default flow label 5872 * is returned. If neither an association nor a destination 5873 * is specified, then the socket's default flow label is 5874 * returned. For non-IPv6 sockets, this flag will be left 5875 * cleared. 5876 * 5877 * SPP_DSCP: Setting this flag enables the setting of the 5878 * Differentiated Services Code Point (DSCP) value 5879 * associated with either the association or a specific 5880 * address. The value is obtained in the spp_dscp field. 5881 * Upon retrieval, this flag will be set to indicate that 5882 * the spp_dscp field has a valid value returned. If a 5883 * specific destination address is set when called (in the 5884 * spp_address field), then that specific destination 5885 * address's DSCP value is returned. If just an association 5886 * is specified, then the association's default DSCP is 5887 * returned. If neither an association nor a destination is 5888 * specified, then the socket's default DSCP is returned. 5889 * 5890 * spp_ipv6_flowlabel 5891 * - This field is used in conjunction with the 5892 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5893 * The 20 least significant bits are used for the flow 5894 * label. This setting has precedence over any IPv6-layer 5895 * setting. 5896 * 5897 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5898 * and contains the DSCP. The 6 most significant bits are 5899 * used for the DSCP. This setting has precedence over any 5900 * IPv4- or IPv6- layer setting. 5901 */ 5902 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5903 char __user *optval, int __user *optlen) 5904 { 5905 struct sctp_paddrparams params; 5906 struct sctp_transport *trans = NULL; 5907 struct sctp_association *asoc = NULL; 5908 struct sctp_sock *sp = sctp_sk(sk); 5909 5910 if (len >= sizeof(params)) 5911 len = sizeof(params); 5912 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5913 spp_ipv6_flowlabel), 4)) 5914 len = ALIGN(offsetof(struct sctp_paddrparams, 5915 spp_ipv6_flowlabel), 4); 5916 else 5917 return -EINVAL; 5918 5919 if (copy_from_user(¶ms, optval, len)) 5920 return -EFAULT; 5921 5922 /* If an address other than INADDR_ANY is specified, and 5923 * no transport is found, then the request is invalid. 5924 */ 5925 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5926 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5927 params.spp_assoc_id); 5928 if (!trans) { 5929 pr_debug("%s: failed no transport\n", __func__); 5930 return -EINVAL; 5931 } 5932 } 5933 5934 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5935 * socket is a one to many style socket, and an association 5936 * was not found, then the id was invalid. 5937 */ 5938 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5939 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5940 sctp_style(sk, UDP)) { 5941 pr_debug("%s: failed no association\n", __func__); 5942 return -EINVAL; 5943 } 5944 5945 if (trans) { 5946 /* Fetch transport values. */ 5947 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5948 params.spp_pathmtu = trans->pathmtu; 5949 params.spp_pathmaxrxt = trans->pathmaxrxt; 5950 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5951 5952 /*draft-11 doesn't say what to return in spp_flags*/ 5953 params.spp_flags = trans->param_flags; 5954 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5955 params.spp_ipv6_flowlabel = trans->flowlabel & 5956 SCTP_FLOWLABEL_VAL_MASK; 5957 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5958 } 5959 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5960 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5961 params.spp_flags |= SPP_DSCP; 5962 } 5963 } else if (asoc) { 5964 /* Fetch association values. */ 5965 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5966 params.spp_pathmtu = asoc->pathmtu; 5967 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5968 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5969 5970 /*draft-11 doesn't say what to return in spp_flags*/ 5971 params.spp_flags = asoc->param_flags; 5972 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5973 params.spp_ipv6_flowlabel = asoc->flowlabel & 5974 SCTP_FLOWLABEL_VAL_MASK; 5975 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5976 } 5977 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5978 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5979 params.spp_flags |= SPP_DSCP; 5980 } 5981 } else { 5982 /* Fetch socket values. */ 5983 params.spp_hbinterval = sp->hbinterval; 5984 params.spp_pathmtu = sp->pathmtu; 5985 params.spp_sackdelay = sp->sackdelay; 5986 params.spp_pathmaxrxt = sp->pathmaxrxt; 5987 5988 /*draft-11 doesn't say what to return in spp_flags*/ 5989 params.spp_flags = sp->param_flags; 5990 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5991 params.spp_ipv6_flowlabel = sp->flowlabel & 5992 SCTP_FLOWLABEL_VAL_MASK; 5993 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5994 } 5995 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5996 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5997 params.spp_flags |= SPP_DSCP; 5998 } 5999 } 6000 6001 if (copy_to_user(optval, ¶ms, len)) 6002 return -EFAULT; 6003 6004 if (put_user(len, optlen)) 6005 return -EFAULT; 6006 6007 return 0; 6008 } 6009 6010 /* 6011 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6012 * 6013 * This option will effect the way delayed acks are performed. This 6014 * option allows you to get or set the delayed ack time, in 6015 * milliseconds. It also allows changing the delayed ack frequency. 6016 * Changing the frequency to 1 disables the delayed sack algorithm. If 6017 * the assoc_id is 0, then this sets or gets the endpoints default 6018 * values. If the assoc_id field is non-zero, then the set or get 6019 * effects the specified association for the one to many model (the 6020 * assoc_id field is ignored by the one to one model). Note that if 6021 * sack_delay or sack_freq are 0 when setting this option, then the 6022 * current values will remain unchanged. 6023 * 6024 * struct sctp_sack_info { 6025 * sctp_assoc_t sack_assoc_id; 6026 * uint32_t sack_delay; 6027 * uint32_t sack_freq; 6028 * }; 6029 * 6030 * sack_assoc_id - This parameter, indicates which association the user 6031 * is performing an action upon. Note that if this field's value is 6032 * zero then the endpoints default value is changed (effecting future 6033 * associations only). 6034 * 6035 * sack_delay - This parameter contains the number of milliseconds that 6036 * the user is requesting the delayed ACK timer be set to. Note that 6037 * this value is defined in the standard to be between 200 and 500 6038 * milliseconds. 6039 * 6040 * sack_freq - This parameter contains the number of packets that must 6041 * be received before a sack is sent without waiting for the delay 6042 * timer to expire. The default value for this is 2, setting this 6043 * value to 1 will disable the delayed sack algorithm. 6044 */ 6045 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6046 char __user *optval, 6047 int __user *optlen) 6048 { 6049 struct sctp_sack_info params; 6050 struct sctp_association *asoc = NULL; 6051 struct sctp_sock *sp = sctp_sk(sk); 6052 6053 if (len >= sizeof(struct sctp_sack_info)) { 6054 len = sizeof(struct sctp_sack_info); 6055 6056 if (copy_from_user(¶ms, optval, len)) 6057 return -EFAULT; 6058 } else if (len == sizeof(struct sctp_assoc_value)) { 6059 pr_warn_ratelimited(DEPRECATED 6060 "%s (pid %d) " 6061 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6062 "Use struct sctp_sack_info instead\n", 6063 current->comm, task_pid_nr(current)); 6064 if (copy_from_user(¶ms, optval, len)) 6065 return -EFAULT; 6066 } else 6067 return -EINVAL; 6068 6069 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6070 * socket is a one to many style socket, and an association 6071 * was not found, then the id was invalid. 6072 */ 6073 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6074 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6075 sctp_style(sk, UDP)) 6076 return -EINVAL; 6077 6078 if (asoc) { 6079 /* Fetch association values. */ 6080 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6081 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6082 params.sack_freq = asoc->sackfreq; 6083 6084 } else { 6085 params.sack_delay = 0; 6086 params.sack_freq = 1; 6087 } 6088 } else { 6089 /* Fetch socket values. */ 6090 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6091 params.sack_delay = sp->sackdelay; 6092 params.sack_freq = sp->sackfreq; 6093 } else { 6094 params.sack_delay = 0; 6095 params.sack_freq = 1; 6096 } 6097 } 6098 6099 if (copy_to_user(optval, ¶ms, len)) 6100 return -EFAULT; 6101 6102 if (put_user(len, optlen)) 6103 return -EFAULT; 6104 6105 return 0; 6106 } 6107 6108 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6109 * 6110 * Applications can specify protocol parameters for the default association 6111 * initialization. The option name argument to setsockopt() and getsockopt() 6112 * is SCTP_INITMSG. 6113 * 6114 * Setting initialization parameters is effective only on an unconnected 6115 * socket (for UDP-style sockets only future associations are effected 6116 * by the change). With TCP-style sockets, this option is inherited by 6117 * sockets derived from a listener socket. 6118 */ 6119 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6120 { 6121 if (len < sizeof(struct sctp_initmsg)) 6122 return -EINVAL; 6123 len = sizeof(struct sctp_initmsg); 6124 if (put_user(len, optlen)) 6125 return -EFAULT; 6126 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6127 return -EFAULT; 6128 return 0; 6129 } 6130 6131 6132 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6133 char __user *optval, int __user *optlen) 6134 { 6135 struct sctp_association *asoc; 6136 int cnt = 0; 6137 struct sctp_getaddrs getaddrs; 6138 struct sctp_transport *from; 6139 void __user *to; 6140 union sctp_addr temp; 6141 struct sctp_sock *sp = sctp_sk(sk); 6142 int addrlen; 6143 size_t space_left; 6144 int bytes_copied; 6145 6146 if (len < sizeof(struct sctp_getaddrs)) 6147 return -EINVAL; 6148 6149 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6150 return -EFAULT; 6151 6152 /* For UDP-style sockets, id specifies the association to query. */ 6153 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6154 if (!asoc) 6155 return -EINVAL; 6156 6157 to = optval + offsetof(struct sctp_getaddrs, addrs); 6158 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6159 6160 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6161 transports) { 6162 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6163 addrlen = sctp_get_pf_specific(sk->sk_family) 6164 ->addr_to_user(sp, &temp); 6165 if (space_left < addrlen) 6166 return -ENOMEM; 6167 if (copy_to_user(to, &temp, addrlen)) 6168 return -EFAULT; 6169 to += addrlen; 6170 cnt++; 6171 space_left -= addrlen; 6172 } 6173 6174 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6175 return -EFAULT; 6176 bytes_copied = ((char __user *)to) - optval; 6177 if (put_user(bytes_copied, optlen)) 6178 return -EFAULT; 6179 6180 return 0; 6181 } 6182 6183 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6184 size_t space_left, int *bytes_copied) 6185 { 6186 struct sctp_sockaddr_entry *addr; 6187 union sctp_addr temp; 6188 int cnt = 0; 6189 int addrlen; 6190 struct net *net = sock_net(sk); 6191 6192 rcu_read_lock(); 6193 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6194 if (!addr->valid) 6195 continue; 6196 6197 if ((PF_INET == sk->sk_family) && 6198 (AF_INET6 == addr->a.sa.sa_family)) 6199 continue; 6200 if ((PF_INET6 == sk->sk_family) && 6201 inet_v6_ipv6only(sk) && 6202 (AF_INET == addr->a.sa.sa_family)) 6203 continue; 6204 memcpy(&temp, &addr->a, sizeof(temp)); 6205 if (!temp.v4.sin_port) 6206 temp.v4.sin_port = htons(port); 6207 6208 addrlen = sctp_get_pf_specific(sk->sk_family) 6209 ->addr_to_user(sctp_sk(sk), &temp); 6210 6211 if (space_left < addrlen) { 6212 cnt = -ENOMEM; 6213 break; 6214 } 6215 memcpy(to, &temp, addrlen); 6216 6217 to += addrlen; 6218 cnt++; 6219 space_left -= addrlen; 6220 *bytes_copied += addrlen; 6221 } 6222 rcu_read_unlock(); 6223 6224 return cnt; 6225 } 6226 6227 6228 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6229 char __user *optval, int __user *optlen) 6230 { 6231 struct sctp_bind_addr *bp; 6232 struct sctp_association *asoc; 6233 int cnt = 0; 6234 struct sctp_getaddrs getaddrs; 6235 struct sctp_sockaddr_entry *addr; 6236 void __user *to; 6237 union sctp_addr temp; 6238 struct sctp_sock *sp = sctp_sk(sk); 6239 int addrlen; 6240 int err = 0; 6241 size_t space_left; 6242 int bytes_copied = 0; 6243 void *addrs; 6244 void *buf; 6245 6246 if (len < sizeof(struct sctp_getaddrs)) 6247 return -EINVAL; 6248 6249 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6250 return -EFAULT; 6251 6252 /* 6253 * For UDP-style sockets, id specifies the association to query. 6254 * If the id field is set to the value '0' then the locally bound 6255 * addresses are returned without regard to any particular 6256 * association. 6257 */ 6258 if (0 == getaddrs.assoc_id) { 6259 bp = &sctp_sk(sk)->ep->base.bind_addr; 6260 } else { 6261 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6262 if (!asoc) 6263 return -EINVAL; 6264 bp = &asoc->base.bind_addr; 6265 } 6266 6267 to = optval + offsetof(struct sctp_getaddrs, addrs); 6268 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6269 6270 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6271 if (!addrs) 6272 return -ENOMEM; 6273 6274 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6275 * addresses from the global local address list. 6276 */ 6277 if (sctp_list_single_entry(&bp->address_list)) { 6278 addr = list_entry(bp->address_list.next, 6279 struct sctp_sockaddr_entry, list); 6280 if (sctp_is_any(sk, &addr->a)) { 6281 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6282 space_left, &bytes_copied); 6283 if (cnt < 0) { 6284 err = cnt; 6285 goto out; 6286 } 6287 goto copy_getaddrs; 6288 } 6289 } 6290 6291 buf = addrs; 6292 /* Protection on the bound address list is not needed since 6293 * in the socket option context we hold a socket lock and 6294 * thus the bound address list can't change. 6295 */ 6296 list_for_each_entry(addr, &bp->address_list, list) { 6297 memcpy(&temp, &addr->a, sizeof(temp)); 6298 addrlen = sctp_get_pf_specific(sk->sk_family) 6299 ->addr_to_user(sp, &temp); 6300 if (space_left < addrlen) { 6301 err = -ENOMEM; /*fixme: right error?*/ 6302 goto out; 6303 } 6304 memcpy(buf, &temp, addrlen); 6305 buf += addrlen; 6306 bytes_copied += addrlen; 6307 cnt++; 6308 space_left -= addrlen; 6309 } 6310 6311 copy_getaddrs: 6312 if (copy_to_user(to, addrs, bytes_copied)) { 6313 err = -EFAULT; 6314 goto out; 6315 } 6316 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6317 err = -EFAULT; 6318 goto out; 6319 } 6320 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6321 * but we can't change it anymore. 6322 */ 6323 if (put_user(bytes_copied, optlen)) 6324 err = -EFAULT; 6325 out: 6326 kfree(addrs); 6327 return err; 6328 } 6329 6330 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6331 * 6332 * Requests that the local SCTP stack use the enclosed peer address as 6333 * the association primary. The enclosed address must be one of the 6334 * association peer's addresses. 6335 */ 6336 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6337 char __user *optval, int __user *optlen) 6338 { 6339 struct sctp_prim prim; 6340 struct sctp_association *asoc; 6341 struct sctp_sock *sp = sctp_sk(sk); 6342 6343 if (len < sizeof(struct sctp_prim)) 6344 return -EINVAL; 6345 6346 len = sizeof(struct sctp_prim); 6347 6348 if (copy_from_user(&prim, optval, len)) 6349 return -EFAULT; 6350 6351 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6352 if (!asoc) 6353 return -EINVAL; 6354 6355 if (!asoc->peer.primary_path) 6356 return -ENOTCONN; 6357 6358 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6359 asoc->peer.primary_path->af_specific->sockaddr_len); 6360 6361 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6362 (union sctp_addr *)&prim.ssp_addr); 6363 6364 if (put_user(len, optlen)) 6365 return -EFAULT; 6366 if (copy_to_user(optval, &prim, len)) 6367 return -EFAULT; 6368 6369 return 0; 6370 } 6371 6372 /* 6373 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6374 * 6375 * Requests that the local endpoint set the specified Adaptation Layer 6376 * Indication parameter for all future INIT and INIT-ACK exchanges. 6377 */ 6378 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6379 char __user *optval, int __user *optlen) 6380 { 6381 struct sctp_setadaptation adaptation; 6382 6383 if (len < sizeof(struct sctp_setadaptation)) 6384 return -EINVAL; 6385 6386 len = sizeof(struct sctp_setadaptation); 6387 6388 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6389 6390 if (put_user(len, optlen)) 6391 return -EFAULT; 6392 if (copy_to_user(optval, &adaptation, len)) 6393 return -EFAULT; 6394 6395 return 0; 6396 } 6397 6398 /* 6399 * 6400 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6401 * 6402 * Applications that wish to use the sendto() system call may wish to 6403 * specify a default set of parameters that would normally be supplied 6404 * through the inclusion of ancillary data. This socket option allows 6405 * such an application to set the default sctp_sndrcvinfo structure. 6406 6407 6408 * The application that wishes to use this socket option simply passes 6409 * in to this call the sctp_sndrcvinfo structure defined in Section 6410 * 5.2.2) The input parameters accepted by this call include 6411 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6412 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6413 * to this call if the caller is using the UDP model. 6414 * 6415 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6416 */ 6417 static int sctp_getsockopt_default_send_param(struct sock *sk, 6418 int len, char __user *optval, 6419 int __user *optlen) 6420 { 6421 struct sctp_sock *sp = sctp_sk(sk); 6422 struct sctp_association *asoc; 6423 struct sctp_sndrcvinfo info; 6424 6425 if (len < sizeof(info)) 6426 return -EINVAL; 6427 6428 len = sizeof(info); 6429 6430 if (copy_from_user(&info, optval, len)) 6431 return -EFAULT; 6432 6433 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6434 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6435 sctp_style(sk, UDP)) 6436 return -EINVAL; 6437 6438 if (asoc) { 6439 info.sinfo_stream = asoc->default_stream; 6440 info.sinfo_flags = asoc->default_flags; 6441 info.sinfo_ppid = asoc->default_ppid; 6442 info.sinfo_context = asoc->default_context; 6443 info.sinfo_timetolive = asoc->default_timetolive; 6444 } else { 6445 info.sinfo_stream = sp->default_stream; 6446 info.sinfo_flags = sp->default_flags; 6447 info.sinfo_ppid = sp->default_ppid; 6448 info.sinfo_context = sp->default_context; 6449 info.sinfo_timetolive = sp->default_timetolive; 6450 } 6451 6452 if (put_user(len, optlen)) 6453 return -EFAULT; 6454 if (copy_to_user(optval, &info, len)) 6455 return -EFAULT; 6456 6457 return 0; 6458 } 6459 6460 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6461 * (SCTP_DEFAULT_SNDINFO) 6462 */ 6463 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6464 char __user *optval, 6465 int __user *optlen) 6466 { 6467 struct sctp_sock *sp = sctp_sk(sk); 6468 struct sctp_association *asoc; 6469 struct sctp_sndinfo info; 6470 6471 if (len < sizeof(info)) 6472 return -EINVAL; 6473 6474 len = sizeof(info); 6475 6476 if (copy_from_user(&info, optval, len)) 6477 return -EFAULT; 6478 6479 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6480 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6481 sctp_style(sk, UDP)) 6482 return -EINVAL; 6483 6484 if (asoc) { 6485 info.snd_sid = asoc->default_stream; 6486 info.snd_flags = asoc->default_flags; 6487 info.snd_ppid = asoc->default_ppid; 6488 info.snd_context = asoc->default_context; 6489 } else { 6490 info.snd_sid = sp->default_stream; 6491 info.snd_flags = sp->default_flags; 6492 info.snd_ppid = sp->default_ppid; 6493 info.snd_context = sp->default_context; 6494 } 6495 6496 if (put_user(len, optlen)) 6497 return -EFAULT; 6498 if (copy_to_user(optval, &info, len)) 6499 return -EFAULT; 6500 6501 return 0; 6502 } 6503 6504 /* 6505 * 6506 * 7.1.5 SCTP_NODELAY 6507 * 6508 * Turn on/off any Nagle-like algorithm. This means that packets are 6509 * generally sent as soon as possible and no unnecessary delays are 6510 * introduced, at the cost of more packets in the network. Expects an 6511 * integer boolean flag. 6512 */ 6513 6514 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6515 char __user *optval, int __user *optlen) 6516 { 6517 int val; 6518 6519 if (len < sizeof(int)) 6520 return -EINVAL; 6521 6522 len = sizeof(int); 6523 val = (sctp_sk(sk)->nodelay == 1); 6524 if (put_user(len, optlen)) 6525 return -EFAULT; 6526 if (copy_to_user(optval, &val, len)) 6527 return -EFAULT; 6528 return 0; 6529 } 6530 6531 /* 6532 * 6533 * 7.1.1 SCTP_RTOINFO 6534 * 6535 * The protocol parameters used to initialize and bound retransmission 6536 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6537 * and modify these parameters. 6538 * All parameters are time values, in milliseconds. A value of 0, when 6539 * modifying the parameters, indicates that the current value should not 6540 * be changed. 6541 * 6542 */ 6543 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6544 char __user *optval, 6545 int __user *optlen) { 6546 struct sctp_rtoinfo rtoinfo; 6547 struct sctp_association *asoc; 6548 6549 if (len < sizeof (struct sctp_rtoinfo)) 6550 return -EINVAL; 6551 6552 len = sizeof(struct sctp_rtoinfo); 6553 6554 if (copy_from_user(&rtoinfo, optval, len)) 6555 return -EFAULT; 6556 6557 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6558 6559 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6560 sctp_style(sk, UDP)) 6561 return -EINVAL; 6562 6563 /* Values corresponding to the specific association. */ 6564 if (asoc) { 6565 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6566 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6567 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6568 } else { 6569 /* Values corresponding to the endpoint. */ 6570 struct sctp_sock *sp = sctp_sk(sk); 6571 6572 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6573 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6574 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6575 } 6576 6577 if (put_user(len, optlen)) 6578 return -EFAULT; 6579 6580 if (copy_to_user(optval, &rtoinfo, len)) 6581 return -EFAULT; 6582 6583 return 0; 6584 } 6585 6586 /* 6587 * 6588 * 7.1.2 SCTP_ASSOCINFO 6589 * 6590 * This option is used to tune the maximum retransmission attempts 6591 * of the association. 6592 * Returns an error if the new association retransmission value is 6593 * greater than the sum of the retransmission value of the peer. 6594 * See [SCTP] for more information. 6595 * 6596 */ 6597 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6598 char __user *optval, 6599 int __user *optlen) 6600 { 6601 6602 struct sctp_assocparams assocparams; 6603 struct sctp_association *asoc; 6604 struct list_head *pos; 6605 int cnt = 0; 6606 6607 if (len < sizeof (struct sctp_assocparams)) 6608 return -EINVAL; 6609 6610 len = sizeof(struct sctp_assocparams); 6611 6612 if (copy_from_user(&assocparams, optval, len)) 6613 return -EFAULT; 6614 6615 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6616 6617 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6618 sctp_style(sk, UDP)) 6619 return -EINVAL; 6620 6621 /* Values correspoinding to the specific association */ 6622 if (asoc) { 6623 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6624 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6625 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6626 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6627 6628 list_for_each(pos, &asoc->peer.transport_addr_list) { 6629 cnt++; 6630 } 6631 6632 assocparams.sasoc_number_peer_destinations = cnt; 6633 } else { 6634 /* Values corresponding to the endpoint */ 6635 struct sctp_sock *sp = sctp_sk(sk); 6636 6637 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6638 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6639 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6640 assocparams.sasoc_cookie_life = 6641 sp->assocparams.sasoc_cookie_life; 6642 assocparams.sasoc_number_peer_destinations = 6643 sp->assocparams. 6644 sasoc_number_peer_destinations; 6645 } 6646 6647 if (put_user(len, optlen)) 6648 return -EFAULT; 6649 6650 if (copy_to_user(optval, &assocparams, len)) 6651 return -EFAULT; 6652 6653 return 0; 6654 } 6655 6656 /* 6657 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6658 * 6659 * This socket option is a boolean flag which turns on or off mapped V4 6660 * addresses. If this option is turned on and the socket is type 6661 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6662 * If this option is turned off, then no mapping will be done of V4 6663 * addresses and a user will receive both PF_INET6 and PF_INET type 6664 * addresses on the socket. 6665 */ 6666 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6667 char __user *optval, int __user *optlen) 6668 { 6669 int val; 6670 struct sctp_sock *sp = sctp_sk(sk); 6671 6672 if (len < sizeof(int)) 6673 return -EINVAL; 6674 6675 len = sizeof(int); 6676 val = sp->v4mapped; 6677 if (put_user(len, optlen)) 6678 return -EFAULT; 6679 if (copy_to_user(optval, &val, len)) 6680 return -EFAULT; 6681 6682 return 0; 6683 } 6684 6685 /* 6686 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6687 * (chapter and verse is quoted at sctp_setsockopt_context()) 6688 */ 6689 static int sctp_getsockopt_context(struct sock *sk, int len, 6690 char __user *optval, int __user *optlen) 6691 { 6692 struct sctp_assoc_value params; 6693 struct sctp_association *asoc; 6694 6695 if (len < sizeof(struct sctp_assoc_value)) 6696 return -EINVAL; 6697 6698 len = sizeof(struct sctp_assoc_value); 6699 6700 if (copy_from_user(¶ms, optval, len)) 6701 return -EFAULT; 6702 6703 asoc = sctp_id2assoc(sk, params.assoc_id); 6704 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6705 sctp_style(sk, UDP)) 6706 return -EINVAL; 6707 6708 params.assoc_value = asoc ? asoc->default_rcv_context 6709 : sctp_sk(sk)->default_rcv_context; 6710 6711 if (put_user(len, optlen)) 6712 return -EFAULT; 6713 if (copy_to_user(optval, ¶ms, len)) 6714 return -EFAULT; 6715 6716 return 0; 6717 } 6718 6719 /* 6720 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6721 * This option will get or set the maximum size to put in any outgoing 6722 * SCTP DATA chunk. If a message is larger than this size it will be 6723 * fragmented by SCTP into the specified size. Note that the underlying 6724 * SCTP implementation may fragment into smaller sized chunks when the 6725 * PMTU of the underlying association is smaller than the value set by 6726 * the user. The default value for this option is '0' which indicates 6727 * the user is NOT limiting fragmentation and only the PMTU will effect 6728 * SCTP's choice of DATA chunk size. Note also that values set larger 6729 * than the maximum size of an IP datagram will effectively let SCTP 6730 * control fragmentation (i.e. the same as setting this option to 0). 6731 * 6732 * The following structure is used to access and modify this parameter: 6733 * 6734 * struct sctp_assoc_value { 6735 * sctp_assoc_t assoc_id; 6736 * uint32_t assoc_value; 6737 * }; 6738 * 6739 * assoc_id: This parameter is ignored for one-to-one style sockets. 6740 * For one-to-many style sockets this parameter indicates which 6741 * association the user is performing an action upon. Note that if 6742 * this field's value is zero then the endpoints default value is 6743 * changed (effecting future associations only). 6744 * assoc_value: This parameter specifies the maximum size in bytes. 6745 */ 6746 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6747 char __user *optval, int __user *optlen) 6748 { 6749 struct sctp_assoc_value params; 6750 struct sctp_association *asoc; 6751 6752 if (len == sizeof(int)) { 6753 pr_warn_ratelimited(DEPRECATED 6754 "%s (pid %d) " 6755 "Use of int in maxseg socket option.\n" 6756 "Use struct sctp_assoc_value instead\n", 6757 current->comm, task_pid_nr(current)); 6758 params.assoc_id = SCTP_FUTURE_ASSOC; 6759 } else if (len >= sizeof(struct sctp_assoc_value)) { 6760 len = sizeof(struct sctp_assoc_value); 6761 if (copy_from_user(¶ms, optval, len)) 6762 return -EFAULT; 6763 } else 6764 return -EINVAL; 6765 6766 asoc = sctp_id2assoc(sk, params.assoc_id); 6767 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6768 sctp_style(sk, UDP)) 6769 return -EINVAL; 6770 6771 if (asoc) 6772 params.assoc_value = asoc->frag_point; 6773 else 6774 params.assoc_value = sctp_sk(sk)->user_frag; 6775 6776 if (put_user(len, optlen)) 6777 return -EFAULT; 6778 if (len == sizeof(int)) { 6779 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6780 return -EFAULT; 6781 } else { 6782 if (copy_to_user(optval, ¶ms, len)) 6783 return -EFAULT; 6784 } 6785 6786 return 0; 6787 } 6788 6789 /* 6790 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6791 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6792 */ 6793 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6794 char __user *optval, int __user *optlen) 6795 { 6796 int val; 6797 6798 if (len < sizeof(int)) 6799 return -EINVAL; 6800 6801 len = sizeof(int); 6802 6803 val = sctp_sk(sk)->frag_interleave; 6804 if (put_user(len, optlen)) 6805 return -EFAULT; 6806 if (copy_to_user(optval, &val, len)) 6807 return -EFAULT; 6808 6809 return 0; 6810 } 6811 6812 /* 6813 * 7.1.25. Set or Get the sctp partial delivery point 6814 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6815 */ 6816 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6817 char __user *optval, 6818 int __user *optlen) 6819 { 6820 u32 val; 6821 6822 if (len < sizeof(u32)) 6823 return -EINVAL; 6824 6825 len = sizeof(u32); 6826 6827 val = sctp_sk(sk)->pd_point; 6828 if (put_user(len, optlen)) 6829 return -EFAULT; 6830 if (copy_to_user(optval, &val, len)) 6831 return -EFAULT; 6832 6833 return 0; 6834 } 6835 6836 /* 6837 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6838 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6839 */ 6840 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6841 char __user *optval, 6842 int __user *optlen) 6843 { 6844 struct sctp_assoc_value params; 6845 struct sctp_association *asoc; 6846 6847 if (len == sizeof(int)) { 6848 pr_warn_ratelimited(DEPRECATED 6849 "%s (pid %d) " 6850 "Use of int in max_burst socket option.\n" 6851 "Use struct sctp_assoc_value instead\n", 6852 current->comm, task_pid_nr(current)); 6853 params.assoc_id = SCTP_FUTURE_ASSOC; 6854 } else if (len >= sizeof(struct sctp_assoc_value)) { 6855 len = sizeof(struct sctp_assoc_value); 6856 if (copy_from_user(¶ms, optval, len)) 6857 return -EFAULT; 6858 } else 6859 return -EINVAL; 6860 6861 asoc = sctp_id2assoc(sk, params.assoc_id); 6862 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6863 sctp_style(sk, UDP)) 6864 return -EINVAL; 6865 6866 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6867 6868 if (len == sizeof(int)) { 6869 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6870 return -EFAULT; 6871 } else { 6872 if (copy_to_user(optval, ¶ms, len)) 6873 return -EFAULT; 6874 } 6875 6876 return 0; 6877 6878 } 6879 6880 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6881 char __user *optval, int __user *optlen) 6882 { 6883 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6884 struct sctp_hmacalgo __user *p = (void __user *)optval; 6885 struct sctp_hmac_algo_param *hmacs; 6886 __u16 data_len = 0; 6887 u32 num_idents; 6888 int i; 6889 6890 if (!ep->auth_enable) 6891 return -EACCES; 6892 6893 hmacs = ep->auth_hmacs_list; 6894 data_len = ntohs(hmacs->param_hdr.length) - 6895 sizeof(struct sctp_paramhdr); 6896 6897 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6898 return -EINVAL; 6899 6900 len = sizeof(struct sctp_hmacalgo) + data_len; 6901 num_idents = data_len / sizeof(u16); 6902 6903 if (put_user(len, optlen)) 6904 return -EFAULT; 6905 if (put_user(num_idents, &p->shmac_num_idents)) 6906 return -EFAULT; 6907 for (i = 0; i < num_idents; i++) { 6908 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6909 6910 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6911 return -EFAULT; 6912 } 6913 return 0; 6914 } 6915 6916 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6917 char __user *optval, int __user *optlen) 6918 { 6919 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6920 struct sctp_authkeyid val; 6921 struct sctp_association *asoc; 6922 6923 if (!ep->auth_enable) 6924 return -EACCES; 6925 6926 if (len < sizeof(struct sctp_authkeyid)) 6927 return -EINVAL; 6928 6929 len = sizeof(struct sctp_authkeyid); 6930 if (copy_from_user(&val, optval, len)) 6931 return -EFAULT; 6932 6933 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6934 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6935 return -EINVAL; 6936 6937 if (asoc) 6938 val.scact_keynumber = asoc->active_key_id; 6939 else 6940 val.scact_keynumber = ep->active_key_id; 6941 6942 if (put_user(len, optlen)) 6943 return -EFAULT; 6944 if (copy_to_user(optval, &val, len)) 6945 return -EFAULT; 6946 6947 return 0; 6948 } 6949 6950 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6951 char __user *optval, int __user *optlen) 6952 { 6953 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6954 struct sctp_authchunks __user *p = (void __user *)optval; 6955 struct sctp_authchunks val; 6956 struct sctp_association *asoc; 6957 struct sctp_chunks_param *ch; 6958 u32 num_chunks = 0; 6959 char __user *to; 6960 6961 if (!ep->auth_enable) 6962 return -EACCES; 6963 6964 if (len < sizeof(struct sctp_authchunks)) 6965 return -EINVAL; 6966 6967 if (copy_from_user(&val, optval, sizeof(val))) 6968 return -EFAULT; 6969 6970 to = p->gauth_chunks; 6971 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6972 if (!asoc) 6973 return -EINVAL; 6974 6975 ch = asoc->peer.peer_chunks; 6976 if (!ch) 6977 goto num; 6978 6979 /* See if the user provided enough room for all the data */ 6980 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6981 if (len < num_chunks) 6982 return -EINVAL; 6983 6984 if (copy_to_user(to, ch->chunks, num_chunks)) 6985 return -EFAULT; 6986 num: 6987 len = sizeof(struct sctp_authchunks) + num_chunks; 6988 if (put_user(len, optlen)) 6989 return -EFAULT; 6990 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6991 return -EFAULT; 6992 return 0; 6993 } 6994 6995 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6996 char __user *optval, int __user *optlen) 6997 { 6998 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6999 struct sctp_authchunks __user *p = (void __user *)optval; 7000 struct sctp_authchunks val; 7001 struct sctp_association *asoc; 7002 struct sctp_chunks_param *ch; 7003 u32 num_chunks = 0; 7004 char __user *to; 7005 7006 if (!ep->auth_enable) 7007 return -EACCES; 7008 7009 if (len < sizeof(struct sctp_authchunks)) 7010 return -EINVAL; 7011 7012 if (copy_from_user(&val, optval, sizeof(val))) 7013 return -EFAULT; 7014 7015 to = p->gauth_chunks; 7016 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7017 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7018 sctp_style(sk, UDP)) 7019 return -EINVAL; 7020 7021 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7022 : ep->auth_chunk_list; 7023 if (!ch) 7024 goto num; 7025 7026 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7027 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7028 return -EINVAL; 7029 7030 if (copy_to_user(to, ch->chunks, num_chunks)) 7031 return -EFAULT; 7032 num: 7033 len = sizeof(struct sctp_authchunks) + num_chunks; 7034 if (put_user(len, optlen)) 7035 return -EFAULT; 7036 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7037 return -EFAULT; 7038 7039 return 0; 7040 } 7041 7042 /* 7043 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7044 * This option gets the current number of associations that are attached 7045 * to a one-to-many style socket. The option value is an uint32_t. 7046 */ 7047 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7048 char __user *optval, int __user *optlen) 7049 { 7050 struct sctp_sock *sp = sctp_sk(sk); 7051 struct sctp_association *asoc; 7052 u32 val = 0; 7053 7054 if (sctp_style(sk, TCP)) 7055 return -EOPNOTSUPP; 7056 7057 if (len < sizeof(u32)) 7058 return -EINVAL; 7059 7060 len = sizeof(u32); 7061 7062 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7063 val++; 7064 } 7065 7066 if (put_user(len, optlen)) 7067 return -EFAULT; 7068 if (copy_to_user(optval, &val, len)) 7069 return -EFAULT; 7070 7071 return 0; 7072 } 7073 7074 /* 7075 * 8.1.23 SCTP_AUTO_ASCONF 7076 * See the corresponding setsockopt entry as description 7077 */ 7078 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7079 char __user *optval, int __user *optlen) 7080 { 7081 int val = 0; 7082 7083 if (len < sizeof(int)) 7084 return -EINVAL; 7085 7086 len = sizeof(int); 7087 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7088 val = 1; 7089 if (put_user(len, optlen)) 7090 return -EFAULT; 7091 if (copy_to_user(optval, &val, len)) 7092 return -EFAULT; 7093 return 0; 7094 } 7095 7096 /* 7097 * 8.2.6. Get the Current Identifiers of Associations 7098 * (SCTP_GET_ASSOC_ID_LIST) 7099 * 7100 * This option gets the current list of SCTP association identifiers of 7101 * the SCTP associations handled by a one-to-many style socket. 7102 */ 7103 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7104 char __user *optval, int __user *optlen) 7105 { 7106 struct sctp_sock *sp = sctp_sk(sk); 7107 struct sctp_association *asoc; 7108 struct sctp_assoc_ids *ids; 7109 u32 num = 0; 7110 7111 if (sctp_style(sk, TCP)) 7112 return -EOPNOTSUPP; 7113 7114 if (len < sizeof(struct sctp_assoc_ids)) 7115 return -EINVAL; 7116 7117 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7118 num++; 7119 } 7120 7121 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7122 return -EINVAL; 7123 7124 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7125 7126 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7127 if (unlikely(!ids)) 7128 return -ENOMEM; 7129 7130 ids->gaids_number_of_ids = num; 7131 num = 0; 7132 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7133 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7134 } 7135 7136 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7137 kfree(ids); 7138 return -EFAULT; 7139 } 7140 7141 kfree(ids); 7142 return 0; 7143 } 7144 7145 /* 7146 * SCTP_PEER_ADDR_THLDS 7147 * 7148 * This option allows us to fetch the partially failed threshold for one or all 7149 * transports in an association. See Section 6.1 of: 7150 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7151 */ 7152 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7153 char __user *optval, 7154 int len, 7155 int __user *optlen) 7156 { 7157 struct sctp_paddrthlds val; 7158 struct sctp_transport *trans; 7159 struct sctp_association *asoc; 7160 7161 if (len < sizeof(struct sctp_paddrthlds)) 7162 return -EINVAL; 7163 len = sizeof(struct sctp_paddrthlds); 7164 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7165 return -EFAULT; 7166 7167 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7168 trans = sctp_addr_id2transport(sk, &val.spt_address, 7169 val.spt_assoc_id); 7170 if (!trans) 7171 return -ENOENT; 7172 7173 val.spt_pathmaxrxt = trans->pathmaxrxt; 7174 val.spt_pathpfthld = trans->pf_retrans; 7175 7176 return 0; 7177 } 7178 7179 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7180 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7181 sctp_style(sk, UDP)) 7182 return -EINVAL; 7183 7184 if (asoc) { 7185 val.spt_pathpfthld = asoc->pf_retrans; 7186 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7187 } else { 7188 struct sctp_sock *sp = sctp_sk(sk); 7189 7190 val.spt_pathpfthld = sp->pf_retrans; 7191 val.spt_pathmaxrxt = sp->pathmaxrxt; 7192 } 7193 7194 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7195 return -EFAULT; 7196 7197 return 0; 7198 } 7199 7200 /* 7201 * SCTP_GET_ASSOC_STATS 7202 * 7203 * This option retrieves local per endpoint statistics. It is modeled 7204 * after OpenSolaris' implementation 7205 */ 7206 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7207 char __user *optval, 7208 int __user *optlen) 7209 { 7210 struct sctp_assoc_stats sas; 7211 struct sctp_association *asoc = NULL; 7212 7213 /* User must provide at least the assoc id */ 7214 if (len < sizeof(sctp_assoc_t)) 7215 return -EINVAL; 7216 7217 /* Allow the struct to grow and fill in as much as possible */ 7218 len = min_t(size_t, len, sizeof(sas)); 7219 7220 if (copy_from_user(&sas, optval, len)) 7221 return -EFAULT; 7222 7223 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7224 if (!asoc) 7225 return -EINVAL; 7226 7227 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7228 sas.sas_gapcnt = asoc->stats.gapcnt; 7229 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7230 sas.sas_osacks = asoc->stats.osacks; 7231 sas.sas_isacks = asoc->stats.isacks; 7232 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7233 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7234 sas.sas_oodchunks = asoc->stats.oodchunks; 7235 sas.sas_iodchunks = asoc->stats.iodchunks; 7236 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7237 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7238 sas.sas_idupchunks = asoc->stats.idupchunks; 7239 sas.sas_opackets = asoc->stats.opackets; 7240 sas.sas_ipackets = asoc->stats.ipackets; 7241 7242 /* New high max rto observed, will return 0 if not a single 7243 * RTO update took place. obs_rto_ipaddr will be bogus 7244 * in such a case 7245 */ 7246 sas.sas_maxrto = asoc->stats.max_obs_rto; 7247 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7248 sizeof(struct sockaddr_storage)); 7249 7250 /* Mark beginning of a new observation period */ 7251 asoc->stats.max_obs_rto = asoc->rto_min; 7252 7253 if (put_user(len, optlen)) 7254 return -EFAULT; 7255 7256 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7257 7258 if (copy_to_user(optval, &sas, len)) 7259 return -EFAULT; 7260 7261 return 0; 7262 } 7263 7264 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7265 char __user *optval, 7266 int __user *optlen) 7267 { 7268 int val = 0; 7269 7270 if (len < sizeof(int)) 7271 return -EINVAL; 7272 7273 len = sizeof(int); 7274 if (sctp_sk(sk)->recvrcvinfo) 7275 val = 1; 7276 if (put_user(len, optlen)) 7277 return -EFAULT; 7278 if (copy_to_user(optval, &val, len)) 7279 return -EFAULT; 7280 7281 return 0; 7282 } 7283 7284 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7285 char __user *optval, 7286 int __user *optlen) 7287 { 7288 int val = 0; 7289 7290 if (len < sizeof(int)) 7291 return -EINVAL; 7292 7293 len = sizeof(int); 7294 if (sctp_sk(sk)->recvnxtinfo) 7295 val = 1; 7296 if (put_user(len, optlen)) 7297 return -EFAULT; 7298 if (copy_to_user(optval, &val, len)) 7299 return -EFAULT; 7300 7301 return 0; 7302 } 7303 7304 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7305 char __user *optval, 7306 int __user *optlen) 7307 { 7308 struct sctp_assoc_value params; 7309 struct sctp_association *asoc; 7310 int retval = -EFAULT; 7311 7312 if (len < sizeof(params)) { 7313 retval = -EINVAL; 7314 goto out; 7315 } 7316 7317 len = sizeof(params); 7318 if (copy_from_user(¶ms, optval, len)) 7319 goto out; 7320 7321 asoc = sctp_id2assoc(sk, params.assoc_id); 7322 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7323 sctp_style(sk, UDP)) { 7324 retval = -EINVAL; 7325 goto out; 7326 } 7327 7328 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7329 : sctp_sk(sk)->ep->prsctp_enable; 7330 7331 if (put_user(len, optlen)) 7332 goto out; 7333 7334 if (copy_to_user(optval, ¶ms, len)) 7335 goto out; 7336 7337 retval = 0; 7338 7339 out: 7340 return retval; 7341 } 7342 7343 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7344 char __user *optval, 7345 int __user *optlen) 7346 { 7347 struct sctp_default_prinfo info; 7348 struct sctp_association *asoc; 7349 int retval = -EFAULT; 7350 7351 if (len < sizeof(info)) { 7352 retval = -EINVAL; 7353 goto out; 7354 } 7355 7356 len = sizeof(info); 7357 if (copy_from_user(&info, optval, len)) 7358 goto out; 7359 7360 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7361 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7362 sctp_style(sk, UDP)) { 7363 retval = -EINVAL; 7364 goto out; 7365 } 7366 7367 if (asoc) { 7368 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7369 info.pr_value = asoc->default_timetolive; 7370 } else { 7371 struct sctp_sock *sp = sctp_sk(sk); 7372 7373 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7374 info.pr_value = sp->default_timetolive; 7375 } 7376 7377 if (put_user(len, optlen)) 7378 goto out; 7379 7380 if (copy_to_user(optval, &info, len)) 7381 goto out; 7382 7383 retval = 0; 7384 7385 out: 7386 return retval; 7387 } 7388 7389 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7390 char __user *optval, 7391 int __user *optlen) 7392 { 7393 struct sctp_prstatus params; 7394 struct sctp_association *asoc; 7395 int policy; 7396 int retval = -EINVAL; 7397 7398 if (len < sizeof(params)) 7399 goto out; 7400 7401 len = sizeof(params); 7402 if (copy_from_user(¶ms, optval, len)) { 7403 retval = -EFAULT; 7404 goto out; 7405 } 7406 7407 policy = params.sprstat_policy; 7408 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7409 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7410 goto out; 7411 7412 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7413 if (!asoc) 7414 goto out; 7415 7416 if (policy == SCTP_PR_SCTP_ALL) { 7417 params.sprstat_abandoned_unsent = 0; 7418 params.sprstat_abandoned_sent = 0; 7419 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7420 params.sprstat_abandoned_unsent += 7421 asoc->abandoned_unsent[policy]; 7422 params.sprstat_abandoned_sent += 7423 asoc->abandoned_sent[policy]; 7424 } 7425 } else { 7426 params.sprstat_abandoned_unsent = 7427 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7428 params.sprstat_abandoned_sent = 7429 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7430 } 7431 7432 if (put_user(len, optlen)) { 7433 retval = -EFAULT; 7434 goto out; 7435 } 7436 7437 if (copy_to_user(optval, ¶ms, len)) { 7438 retval = -EFAULT; 7439 goto out; 7440 } 7441 7442 retval = 0; 7443 7444 out: 7445 return retval; 7446 } 7447 7448 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7449 char __user *optval, 7450 int __user *optlen) 7451 { 7452 struct sctp_stream_out_ext *streamoute; 7453 struct sctp_association *asoc; 7454 struct sctp_prstatus params; 7455 int retval = -EINVAL; 7456 int policy; 7457 7458 if (len < sizeof(params)) 7459 goto out; 7460 7461 len = sizeof(params); 7462 if (copy_from_user(¶ms, optval, len)) { 7463 retval = -EFAULT; 7464 goto out; 7465 } 7466 7467 policy = params.sprstat_policy; 7468 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7469 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7470 goto out; 7471 7472 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7473 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7474 goto out; 7475 7476 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7477 if (!streamoute) { 7478 /* Not allocated yet, means all stats are 0 */ 7479 params.sprstat_abandoned_unsent = 0; 7480 params.sprstat_abandoned_sent = 0; 7481 retval = 0; 7482 goto out; 7483 } 7484 7485 if (policy == SCTP_PR_SCTP_ALL) { 7486 params.sprstat_abandoned_unsent = 0; 7487 params.sprstat_abandoned_sent = 0; 7488 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7489 params.sprstat_abandoned_unsent += 7490 streamoute->abandoned_unsent[policy]; 7491 params.sprstat_abandoned_sent += 7492 streamoute->abandoned_sent[policy]; 7493 } 7494 } else { 7495 params.sprstat_abandoned_unsent = 7496 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7497 params.sprstat_abandoned_sent = 7498 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7499 } 7500 7501 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7502 retval = -EFAULT; 7503 goto out; 7504 } 7505 7506 retval = 0; 7507 7508 out: 7509 return retval; 7510 } 7511 7512 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7513 char __user *optval, 7514 int __user *optlen) 7515 { 7516 struct sctp_assoc_value params; 7517 struct sctp_association *asoc; 7518 int retval = -EFAULT; 7519 7520 if (len < sizeof(params)) { 7521 retval = -EINVAL; 7522 goto out; 7523 } 7524 7525 len = sizeof(params); 7526 if (copy_from_user(¶ms, optval, len)) 7527 goto out; 7528 7529 asoc = sctp_id2assoc(sk, params.assoc_id); 7530 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7531 sctp_style(sk, UDP)) { 7532 retval = -EINVAL; 7533 goto out; 7534 } 7535 7536 params.assoc_value = asoc ? asoc->peer.reconf_capable 7537 : sctp_sk(sk)->ep->reconf_enable; 7538 7539 if (put_user(len, optlen)) 7540 goto out; 7541 7542 if (copy_to_user(optval, ¶ms, len)) 7543 goto out; 7544 7545 retval = 0; 7546 7547 out: 7548 return retval; 7549 } 7550 7551 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7552 char __user *optval, 7553 int __user *optlen) 7554 { 7555 struct sctp_assoc_value params; 7556 struct sctp_association *asoc; 7557 int retval = -EFAULT; 7558 7559 if (len < sizeof(params)) { 7560 retval = -EINVAL; 7561 goto out; 7562 } 7563 7564 len = sizeof(params); 7565 if (copy_from_user(¶ms, optval, len)) 7566 goto out; 7567 7568 asoc = sctp_id2assoc(sk, params.assoc_id); 7569 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7570 sctp_style(sk, UDP)) { 7571 retval = -EINVAL; 7572 goto out; 7573 } 7574 7575 params.assoc_value = asoc ? asoc->strreset_enable 7576 : sctp_sk(sk)->ep->strreset_enable; 7577 7578 if (put_user(len, optlen)) 7579 goto out; 7580 7581 if (copy_to_user(optval, ¶ms, len)) 7582 goto out; 7583 7584 retval = 0; 7585 7586 out: 7587 return retval; 7588 } 7589 7590 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7591 char __user *optval, 7592 int __user *optlen) 7593 { 7594 struct sctp_assoc_value params; 7595 struct sctp_association *asoc; 7596 int retval = -EFAULT; 7597 7598 if (len < sizeof(params)) { 7599 retval = -EINVAL; 7600 goto out; 7601 } 7602 7603 len = sizeof(params); 7604 if (copy_from_user(¶ms, optval, len)) 7605 goto out; 7606 7607 asoc = sctp_id2assoc(sk, params.assoc_id); 7608 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7609 sctp_style(sk, UDP)) { 7610 retval = -EINVAL; 7611 goto out; 7612 } 7613 7614 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7615 : sctp_sk(sk)->default_ss; 7616 7617 if (put_user(len, optlen)) 7618 goto out; 7619 7620 if (copy_to_user(optval, ¶ms, len)) 7621 goto out; 7622 7623 retval = 0; 7624 7625 out: 7626 return retval; 7627 } 7628 7629 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7630 char __user *optval, 7631 int __user *optlen) 7632 { 7633 struct sctp_stream_value params; 7634 struct sctp_association *asoc; 7635 int retval = -EFAULT; 7636 7637 if (len < sizeof(params)) { 7638 retval = -EINVAL; 7639 goto out; 7640 } 7641 7642 len = sizeof(params); 7643 if (copy_from_user(¶ms, optval, len)) 7644 goto out; 7645 7646 asoc = sctp_id2assoc(sk, params.assoc_id); 7647 if (!asoc) { 7648 retval = -EINVAL; 7649 goto out; 7650 } 7651 7652 retval = sctp_sched_get_value(asoc, params.stream_id, 7653 ¶ms.stream_value); 7654 if (retval) 7655 goto out; 7656 7657 if (put_user(len, optlen)) { 7658 retval = -EFAULT; 7659 goto out; 7660 } 7661 7662 if (copy_to_user(optval, ¶ms, len)) { 7663 retval = -EFAULT; 7664 goto out; 7665 } 7666 7667 out: 7668 return retval; 7669 } 7670 7671 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7672 char __user *optval, 7673 int __user *optlen) 7674 { 7675 struct sctp_assoc_value params; 7676 struct sctp_association *asoc; 7677 int retval = -EFAULT; 7678 7679 if (len < sizeof(params)) { 7680 retval = -EINVAL; 7681 goto out; 7682 } 7683 7684 len = sizeof(params); 7685 if (copy_from_user(¶ms, optval, len)) 7686 goto out; 7687 7688 asoc = sctp_id2assoc(sk, params.assoc_id); 7689 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7690 sctp_style(sk, UDP)) { 7691 retval = -EINVAL; 7692 goto out; 7693 } 7694 7695 params.assoc_value = asoc ? asoc->peer.intl_capable 7696 : sctp_sk(sk)->ep->intl_enable; 7697 7698 if (put_user(len, optlen)) 7699 goto out; 7700 7701 if (copy_to_user(optval, ¶ms, len)) 7702 goto out; 7703 7704 retval = 0; 7705 7706 out: 7707 return retval; 7708 } 7709 7710 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7711 char __user *optval, 7712 int __user *optlen) 7713 { 7714 int val; 7715 7716 if (len < sizeof(int)) 7717 return -EINVAL; 7718 7719 len = sizeof(int); 7720 val = sctp_sk(sk)->reuse; 7721 if (put_user(len, optlen)) 7722 return -EFAULT; 7723 7724 if (copy_to_user(optval, &val, len)) 7725 return -EFAULT; 7726 7727 return 0; 7728 } 7729 7730 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7731 int __user *optlen) 7732 { 7733 struct sctp_association *asoc; 7734 struct sctp_event param; 7735 __u16 subscribe; 7736 7737 if (len < sizeof(param)) 7738 return -EINVAL; 7739 7740 len = sizeof(param); 7741 if (copy_from_user(¶m, optval, len)) 7742 return -EFAULT; 7743 7744 if (param.se_type < SCTP_SN_TYPE_BASE || 7745 param.se_type > SCTP_SN_TYPE_MAX) 7746 return -EINVAL; 7747 7748 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7749 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7750 sctp_style(sk, UDP)) 7751 return -EINVAL; 7752 7753 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7754 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7755 7756 if (put_user(len, optlen)) 7757 return -EFAULT; 7758 7759 if (copy_to_user(optval, ¶m, len)) 7760 return -EFAULT; 7761 7762 return 0; 7763 } 7764 7765 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7766 char __user *optval, int __user *optlen) 7767 { 7768 int retval = 0; 7769 int len; 7770 7771 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7772 7773 /* I can hardly begin to describe how wrong this is. This is 7774 * so broken as to be worse than useless. The API draft 7775 * REALLY is NOT helpful here... I am not convinced that the 7776 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7777 * are at all well-founded. 7778 */ 7779 if (level != SOL_SCTP) { 7780 struct sctp_af *af = sctp_sk(sk)->pf->af; 7781 7782 retval = af->getsockopt(sk, level, optname, optval, optlen); 7783 return retval; 7784 } 7785 7786 if (get_user(len, optlen)) 7787 return -EFAULT; 7788 7789 if (len < 0) 7790 return -EINVAL; 7791 7792 lock_sock(sk); 7793 7794 switch (optname) { 7795 case SCTP_STATUS: 7796 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7797 break; 7798 case SCTP_DISABLE_FRAGMENTS: 7799 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7800 optlen); 7801 break; 7802 case SCTP_EVENTS: 7803 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7804 break; 7805 case SCTP_AUTOCLOSE: 7806 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7807 break; 7808 case SCTP_SOCKOPT_PEELOFF: 7809 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7810 break; 7811 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7812 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7813 break; 7814 case SCTP_PEER_ADDR_PARAMS: 7815 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7816 optlen); 7817 break; 7818 case SCTP_DELAYED_SACK: 7819 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7820 optlen); 7821 break; 7822 case SCTP_INITMSG: 7823 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7824 break; 7825 case SCTP_GET_PEER_ADDRS: 7826 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7827 optlen); 7828 break; 7829 case SCTP_GET_LOCAL_ADDRS: 7830 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7831 optlen); 7832 break; 7833 case SCTP_SOCKOPT_CONNECTX3: 7834 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7835 break; 7836 case SCTP_DEFAULT_SEND_PARAM: 7837 retval = sctp_getsockopt_default_send_param(sk, len, 7838 optval, optlen); 7839 break; 7840 case SCTP_DEFAULT_SNDINFO: 7841 retval = sctp_getsockopt_default_sndinfo(sk, len, 7842 optval, optlen); 7843 break; 7844 case SCTP_PRIMARY_ADDR: 7845 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7846 break; 7847 case SCTP_NODELAY: 7848 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7849 break; 7850 case SCTP_RTOINFO: 7851 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7852 break; 7853 case SCTP_ASSOCINFO: 7854 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7855 break; 7856 case SCTP_I_WANT_MAPPED_V4_ADDR: 7857 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7858 break; 7859 case SCTP_MAXSEG: 7860 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7861 break; 7862 case SCTP_GET_PEER_ADDR_INFO: 7863 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7864 optlen); 7865 break; 7866 case SCTP_ADAPTATION_LAYER: 7867 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7868 optlen); 7869 break; 7870 case SCTP_CONTEXT: 7871 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7872 break; 7873 case SCTP_FRAGMENT_INTERLEAVE: 7874 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7875 optlen); 7876 break; 7877 case SCTP_PARTIAL_DELIVERY_POINT: 7878 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7879 optlen); 7880 break; 7881 case SCTP_MAX_BURST: 7882 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7883 break; 7884 case SCTP_AUTH_KEY: 7885 case SCTP_AUTH_CHUNK: 7886 case SCTP_AUTH_DELETE_KEY: 7887 case SCTP_AUTH_DEACTIVATE_KEY: 7888 retval = -EOPNOTSUPP; 7889 break; 7890 case SCTP_HMAC_IDENT: 7891 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7892 break; 7893 case SCTP_AUTH_ACTIVE_KEY: 7894 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7895 break; 7896 case SCTP_PEER_AUTH_CHUNKS: 7897 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7898 optlen); 7899 break; 7900 case SCTP_LOCAL_AUTH_CHUNKS: 7901 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7902 optlen); 7903 break; 7904 case SCTP_GET_ASSOC_NUMBER: 7905 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7906 break; 7907 case SCTP_GET_ASSOC_ID_LIST: 7908 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7909 break; 7910 case SCTP_AUTO_ASCONF: 7911 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7912 break; 7913 case SCTP_PEER_ADDR_THLDS: 7914 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7915 break; 7916 case SCTP_GET_ASSOC_STATS: 7917 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7918 break; 7919 case SCTP_RECVRCVINFO: 7920 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7921 break; 7922 case SCTP_RECVNXTINFO: 7923 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7924 break; 7925 case SCTP_PR_SUPPORTED: 7926 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7927 break; 7928 case SCTP_DEFAULT_PRINFO: 7929 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7930 optlen); 7931 break; 7932 case SCTP_PR_ASSOC_STATUS: 7933 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7934 optlen); 7935 break; 7936 case SCTP_PR_STREAM_STATUS: 7937 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7938 optlen); 7939 break; 7940 case SCTP_RECONFIG_SUPPORTED: 7941 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7942 optlen); 7943 break; 7944 case SCTP_ENABLE_STREAM_RESET: 7945 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7946 optlen); 7947 break; 7948 case SCTP_STREAM_SCHEDULER: 7949 retval = sctp_getsockopt_scheduler(sk, len, optval, 7950 optlen); 7951 break; 7952 case SCTP_STREAM_SCHEDULER_VALUE: 7953 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7954 optlen); 7955 break; 7956 case SCTP_INTERLEAVING_SUPPORTED: 7957 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7958 optlen); 7959 break; 7960 case SCTP_REUSE_PORT: 7961 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7962 break; 7963 case SCTP_EVENT: 7964 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7965 break; 7966 default: 7967 retval = -ENOPROTOOPT; 7968 break; 7969 } 7970 7971 release_sock(sk); 7972 return retval; 7973 } 7974 7975 static int sctp_hash(struct sock *sk) 7976 { 7977 /* STUB */ 7978 return 0; 7979 } 7980 7981 static void sctp_unhash(struct sock *sk) 7982 { 7983 /* STUB */ 7984 } 7985 7986 /* Check if port is acceptable. Possibly find first available port. 7987 * 7988 * The port hash table (contained in the 'global' SCTP protocol storage 7989 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7990 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7991 * list (the list number is the port number hashed out, so as you 7992 * would expect from a hash function, all the ports in a given list have 7993 * such a number that hashes out to the same list number; you were 7994 * expecting that, right?); so each list has a set of ports, with a 7995 * link to the socket (struct sock) that uses it, the port number and 7996 * a fastreuse flag (FIXME: NPI ipg). 7997 */ 7998 static struct sctp_bind_bucket *sctp_bucket_create( 7999 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8000 8001 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8002 { 8003 struct sctp_sock *sp = sctp_sk(sk); 8004 bool reuse = (sk->sk_reuse || sp->reuse); 8005 struct sctp_bind_hashbucket *head; /* hash list */ 8006 kuid_t uid = sock_i_uid(sk); 8007 struct sctp_bind_bucket *pp; 8008 unsigned short snum; 8009 int ret; 8010 8011 snum = ntohs(addr->v4.sin_port); 8012 8013 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8014 8015 local_bh_disable(); 8016 8017 if (snum == 0) { 8018 /* Search for an available port. */ 8019 int low, high, remaining, index; 8020 unsigned int rover; 8021 struct net *net = sock_net(sk); 8022 8023 inet_get_local_port_range(net, &low, &high); 8024 remaining = (high - low) + 1; 8025 rover = prandom_u32() % remaining + low; 8026 8027 do { 8028 rover++; 8029 if ((rover < low) || (rover > high)) 8030 rover = low; 8031 if (inet_is_local_reserved_port(net, rover)) 8032 continue; 8033 index = sctp_phashfn(sock_net(sk), rover); 8034 head = &sctp_port_hashtable[index]; 8035 spin_lock(&head->lock); 8036 sctp_for_each_hentry(pp, &head->chain) 8037 if ((pp->port == rover) && 8038 net_eq(sock_net(sk), pp->net)) 8039 goto next; 8040 break; 8041 next: 8042 spin_unlock(&head->lock); 8043 } while (--remaining > 0); 8044 8045 /* Exhausted local port range during search? */ 8046 ret = 1; 8047 if (remaining <= 0) 8048 goto fail; 8049 8050 /* OK, here is the one we will use. HEAD (the port 8051 * hash table list entry) is non-NULL and we hold it's 8052 * mutex. 8053 */ 8054 snum = rover; 8055 } else { 8056 /* We are given an specific port number; we verify 8057 * that it is not being used. If it is used, we will 8058 * exahust the search in the hash list corresponding 8059 * to the port number (snum) - we detect that with the 8060 * port iterator, pp being NULL. 8061 */ 8062 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8063 spin_lock(&head->lock); 8064 sctp_for_each_hentry(pp, &head->chain) { 8065 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8066 goto pp_found; 8067 } 8068 } 8069 pp = NULL; 8070 goto pp_not_found; 8071 pp_found: 8072 if (!hlist_empty(&pp->owner)) { 8073 /* We had a port hash table hit - there is an 8074 * available port (pp != NULL) and it is being 8075 * used by other socket (pp->owner not empty); that other 8076 * socket is going to be sk2. 8077 */ 8078 struct sock *sk2; 8079 8080 pr_debug("%s: found a possible match\n", __func__); 8081 8082 if ((pp->fastreuse && reuse && 8083 sk->sk_state != SCTP_SS_LISTENING) || 8084 (pp->fastreuseport && sk->sk_reuseport && 8085 uid_eq(pp->fastuid, uid))) 8086 goto success; 8087 8088 /* Run through the list of sockets bound to the port 8089 * (pp->port) [via the pointers bind_next and 8090 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8091 * we get the endpoint they describe and run through 8092 * the endpoint's list of IP (v4 or v6) addresses, 8093 * comparing each of the addresses with the address of 8094 * the socket sk. If we find a match, then that means 8095 * that this port/socket (sk) combination are already 8096 * in an endpoint. 8097 */ 8098 sk_for_each_bound(sk2, &pp->owner) { 8099 struct sctp_sock *sp2 = sctp_sk(sk2); 8100 struct sctp_endpoint *ep2 = sp2->ep; 8101 8102 if (sk == sk2 || 8103 (reuse && (sk2->sk_reuse || sp2->reuse) && 8104 sk2->sk_state != SCTP_SS_LISTENING) || 8105 (sk->sk_reuseport && sk2->sk_reuseport && 8106 uid_eq(uid, sock_i_uid(sk2)))) 8107 continue; 8108 8109 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8110 addr, sp2, sp)) { 8111 ret = (long)sk2; 8112 goto fail_unlock; 8113 } 8114 } 8115 8116 pr_debug("%s: found a match\n", __func__); 8117 } 8118 pp_not_found: 8119 /* If there was a hash table miss, create a new port. */ 8120 ret = 1; 8121 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8122 goto fail_unlock; 8123 8124 /* In either case (hit or miss), make sure fastreuse is 1 only 8125 * if sk->sk_reuse is too (that is, if the caller requested 8126 * SO_REUSEADDR on this socket -sk-). 8127 */ 8128 if (hlist_empty(&pp->owner)) { 8129 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8130 pp->fastreuse = 1; 8131 else 8132 pp->fastreuse = 0; 8133 8134 if (sk->sk_reuseport) { 8135 pp->fastreuseport = 1; 8136 pp->fastuid = uid; 8137 } else { 8138 pp->fastreuseport = 0; 8139 } 8140 } else { 8141 if (pp->fastreuse && 8142 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8143 pp->fastreuse = 0; 8144 8145 if (pp->fastreuseport && 8146 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8147 pp->fastreuseport = 0; 8148 } 8149 8150 /* We are set, so fill up all the data in the hash table 8151 * entry, tie the socket list information with the rest of the 8152 * sockets FIXME: Blurry, NPI (ipg). 8153 */ 8154 success: 8155 if (!sp->bind_hash) { 8156 inet_sk(sk)->inet_num = snum; 8157 sk_add_bind_node(sk, &pp->owner); 8158 sp->bind_hash = pp; 8159 } 8160 ret = 0; 8161 8162 fail_unlock: 8163 spin_unlock(&head->lock); 8164 8165 fail: 8166 local_bh_enable(); 8167 return ret; 8168 } 8169 8170 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8171 * port is requested. 8172 */ 8173 static int sctp_get_port(struct sock *sk, unsigned short snum) 8174 { 8175 union sctp_addr addr; 8176 struct sctp_af *af = sctp_sk(sk)->pf->af; 8177 8178 /* Set up a dummy address struct from the sk. */ 8179 af->from_sk(&addr, sk); 8180 addr.v4.sin_port = htons(snum); 8181 8182 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8183 return !!sctp_get_port_local(sk, &addr); 8184 } 8185 8186 /* 8187 * Move a socket to LISTENING state. 8188 */ 8189 static int sctp_listen_start(struct sock *sk, int backlog) 8190 { 8191 struct sctp_sock *sp = sctp_sk(sk); 8192 struct sctp_endpoint *ep = sp->ep; 8193 struct crypto_shash *tfm = NULL; 8194 char alg[32]; 8195 8196 /* Allocate HMAC for generating cookie. */ 8197 if (!sp->hmac && sp->sctp_hmac_alg) { 8198 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8199 tfm = crypto_alloc_shash(alg, 0, 0); 8200 if (IS_ERR(tfm)) { 8201 net_info_ratelimited("failed to load transform for %s: %ld\n", 8202 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8203 return -ENOSYS; 8204 } 8205 sctp_sk(sk)->hmac = tfm; 8206 } 8207 8208 /* 8209 * If a bind() or sctp_bindx() is not called prior to a listen() 8210 * call that allows new associations to be accepted, the system 8211 * picks an ephemeral port and will choose an address set equivalent 8212 * to binding with a wildcard address. 8213 * 8214 * This is not currently spelled out in the SCTP sockets 8215 * extensions draft, but follows the practice as seen in TCP 8216 * sockets. 8217 * 8218 */ 8219 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8220 if (!ep->base.bind_addr.port) { 8221 if (sctp_autobind(sk)) 8222 return -EAGAIN; 8223 } else { 8224 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8225 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8226 return -EADDRINUSE; 8227 } 8228 } 8229 8230 sk->sk_max_ack_backlog = backlog; 8231 return sctp_hash_endpoint(ep); 8232 } 8233 8234 /* 8235 * 4.1.3 / 5.1.3 listen() 8236 * 8237 * By default, new associations are not accepted for UDP style sockets. 8238 * An application uses listen() to mark a socket as being able to 8239 * accept new associations. 8240 * 8241 * On TCP style sockets, applications use listen() to ready the SCTP 8242 * endpoint for accepting inbound associations. 8243 * 8244 * On both types of endpoints a backlog of '0' disables listening. 8245 * 8246 * Move a socket to LISTENING state. 8247 */ 8248 int sctp_inet_listen(struct socket *sock, int backlog) 8249 { 8250 struct sock *sk = sock->sk; 8251 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8252 int err = -EINVAL; 8253 8254 if (unlikely(backlog < 0)) 8255 return err; 8256 8257 lock_sock(sk); 8258 8259 /* Peeled-off sockets are not allowed to listen(). */ 8260 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8261 goto out; 8262 8263 if (sock->state != SS_UNCONNECTED) 8264 goto out; 8265 8266 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8267 goto out; 8268 8269 /* If backlog is zero, disable listening. */ 8270 if (!backlog) { 8271 if (sctp_sstate(sk, CLOSED)) 8272 goto out; 8273 8274 err = 0; 8275 sctp_unhash_endpoint(ep); 8276 sk->sk_state = SCTP_SS_CLOSED; 8277 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8278 sctp_sk(sk)->bind_hash->fastreuse = 1; 8279 goto out; 8280 } 8281 8282 /* If we are already listening, just update the backlog */ 8283 if (sctp_sstate(sk, LISTENING)) 8284 sk->sk_max_ack_backlog = backlog; 8285 else { 8286 err = sctp_listen_start(sk, backlog); 8287 if (err) 8288 goto out; 8289 } 8290 8291 err = 0; 8292 out: 8293 release_sock(sk); 8294 return err; 8295 } 8296 8297 /* 8298 * This function is done by modeling the current datagram_poll() and the 8299 * tcp_poll(). Note that, based on these implementations, we don't 8300 * lock the socket in this function, even though it seems that, 8301 * ideally, locking or some other mechanisms can be used to ensure 8302 * the integrity of the counters (sndbuf and wmem_alloc) used 8303 * in this place. We assume that we don't need locks either until proven 8304 * otherwise. 8305 * 8306 * Another thing to note is that we include the Async I/O support 8307 * here, again, by modeling the current TCP/UDP code. We don't have 8308 * a good way to test with it yet. 8309 */ 8310 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8311 { 8312 struct sock *sk = sock->sk; 8313 struct sctp_sock *sp = sctp_sk(sk); 8314 __poll_t mask; 8315 8316 poll_wait(file, sk_sleep(sk), wait); 8317 8318 sock_rps_record_flow(sk); 8319 8320 /* A TCP-style listening socket becomes readable when the accept queue 8321 * is not empty. 8322 */ 8323 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8324 return (!list_empty(&sp->ep->asocs)) ? 8325 (EPOLLIN | EPOLLRDNORM) : 0; 8326 8327 mask = 0; 8328 8329 /* Is there any exceptional events? */ 8330 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8331 mask |= EPOLLERR | 8332 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8333 if (sk->sk_shutdown & RCV_SHUTDOWN) 8334 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8335 if (sk->sk_shutdown == SHUTDOWN_MASK) 8336 mask |= EPOLLHUP; 8337 8338 /* Is it readable? Reconsider this code with TCP-style support. */ 8339 if (!skb_queue_empty(&sk->sk_receive_queue)) 8340 mask |= EPOLLIN | EPOLLRDNORM; 8341 8342 /* The association is either gone or not ready. */ 8343 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8344 return mask; 8345 8346 /* Is it writable? */ 8347 if (sctp_writeable(sk)) { 8348 mask |= EPOLLOUT | EPOLLWRNORM; 8349 } else { 8350 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8351 /* 8352 * Since the socket is not locked, the buffer 8353 * might be made available after the writeable check and 8354 * before the bit is set. This could cause a lost I/O 8355 * signal. tcp_poll() has a race breaker for this race 8356 * condition. Based on their implementation, we put 8357 * in the following code to cover it as well. 8358 */ 8359 if (sctp_writeable(sk)) 8360 mask |= EPOLLOUT | EPOLLWRNORM; 8361 } 8362 return mask; 8363 } 8364 8365 /******************************************************************** 8366 * 2nd Level Abstractions 8367 ********************************************************************/ 8368 8369 static struct sctp_bind_bucket *sctp_bucket_create( 8370 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8371 { 8372 struct sctp_bind_bucket *pp; 8373 8374 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8375 if (pp) { 8376 SCTP_DBG_OBJCNT_INC(bind_bucket); 8377 pp->port = snum; 8378 pp->fastreuse = 0; 8379 INIT_HLIST_HEAD(&pp->owner); 8380 pp->net = net; 8381 hlist_add_head(&pp->node, &head->chain); 8382 } 8383 return pp; 8384 } 8385 8386 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8387 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8388 { 8389 if (pp && hlist_empty(&pp->owner)) { 8390 __hlist_del(&pp->node); 8391 kmem_cache_free(sctp_bucket_cachep, pp); 8392 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8393 } 8394 } 8395 8396 /* Release this socket's reference to a local port. */ 8397 static inline void __sctp_put_port(struct sock *sk) 8398 { 8399 struct sctp_bind_hashbucket *head = 8400 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8401 inet_sk(sk)->inet_num)]; 8402 struct sctp_bind_bucket *pp; 8403 8404 spin_lock(&head->lock); 8405 pp = sctp_sk(sk)->bind_hash; 8406 __sk_del_bind_node(sk); 8407 sctp_sk(sk)->bind_hash = NULL; 8408 inet_sk(sk)->inet_num = 0; 8409 sctp_bucket_destroy(pp); 8410 spin_unlock(&head->lock); 8411 } 8412 8413 void sctp_put_port(struct sock *sk) 8414 { 8415 local_bh_disable(); 8416 __sctp_put_port(sk); 8417 local_bh_enable(); 8418 } 8419 8420 /* 8421 * The system picks an ephemeral port and choose an address set equivalent 8422 * to binding with a wildcard address. 8423 * One of those addresses will be the primary address for the association. 8424 * This automatically enables the multihoming capability of SCTP. 8425 */ 8426 static int sctp_autobind(struct sock *sk) 8427 { 8428 union sctp_addr autoaddr; 8429 struct sctp_af *af; 8430 __be16 port; 8431 8432 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8433 af = sctp_sk(sk)->pf->af; 8434 8435 port = htons(inet_sk(sk)->inet_num); 8436 af->inaddr_any(&autoaddr, port); 8437 8438 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8439 } 8440 8441 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8442 * 8443 * From RFC 2292 8444 * 4.2 The cmsghdr Structure * 8445 * 8446 * When ancillary data is sent or received, any number of ancillary data 8447 * objects can be specified by the msg_control and msg_controllen members of 8448 * the msghdr structure, because each object is preceded by 8449 * a cmsghdr structure defining the object's length (the cmsg_len member). 8450 * Historically Berkeley-derived implementations have passed only one object 8451 * at a time, but this API allows multiple objects to be 8452 * passed in a single call to sendmsg() or recvmsg(). The following example 8453 * shows two ancillary data objects in a control buffer. 8454 * 8455 * |<--------------------------- msg_controllen -------------------------->| 8456 * | | 8457 * 8458 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8459 * 8460 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8461 * | | | 8462 * 8463 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8464 * 8465 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8466 * | | | | | 8467 * 8468 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8469 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8470 * 8471 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8472 * 8473 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8474 * ^ 8475 * | 8476 * 8477 * msg_control 8478 * points here 8479 */ 8480 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8481 { 8482 struct msghdr *my_msg = (struct msghdr *)msg; 8483 struct cmsghdr *cmsg; 8484 8485 for_each_cmsghdr(cmsg, my_msg) { 8486 if (!CMSG_OK(my_msg, cmsg)) 8487 return -EINVAL; 8488 8489 /* Should we parse this header or ignore? */ 8490 if (cmsg->cmsg_level != IPPROTO_SCTP) 8491 continue; 8492 8493 /* Strictly check lengths following example in SCM code. */ 8494 switch (cmsg->cmsg_type) { 8495 case SCTP_INIT: 8496 /* SCTP Socket API Extension 8497 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8498 * 8499 * This cmsghdr structure provides information for 8500 * initializing new SCTP associations with sendmsg(). 8501 * The SCTP_INITMSG socket option uses this same data 8502 * structure. This structure is not used for 8503 * recvmsg(). 8504 * 8505 * cmsg_level cmsg_type cmsg_data[] 8506 * ------------ ------------ ---------------------- 8507 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8508 */ 8509 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8510 return -EINVAL; 8511 8512 cmsgs->init = CMSG_DATA(cmsg); 8513 break; 8514 8515 case SCTP_SNDRCV: 8516 /* SCTP Socket API Extension 8517 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8518 * 8519 * This cmsghdr structure specifies SCTP options for 8520 * sendmsg() and describes SCTP header information 8521 * about a received message through recvmsg(). 8522 * 8523 * cmsg_level cmsg_type cmsg_data[] 8524 * ------------ ------------ ---------------------- 8525 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8526 */ 8527 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8528 return -EINVAL; 8529 8530 cmsgs->srinfo = CMSG_DATA(cmsg); 8531 8532 if (cmsgs->srinfo->sinfo_flags & 8533 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8534 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8535 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8536 return -EINVAL; 8537 break; 8538 8539 case SCTP_SNDINFO: 8540 /* SCTP Socket API Extension 8541 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8542 * 8543 * This cmsghdr structure specifies SCTP options for 8544 * sendmsg(). This structure and SCTP_RCVINFO replaces 8545 * SCTP_SNDRCV which has been deprecated. 8546 * 8547 * cmsg_level cmsg_type cmsg_data[] 8548 * ------------ ------------ --------------------- 8549 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8550 */ 8551 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8552 return -EINVAL; 8553 8554 cmsgs->sinfo = CMSG_DATA(cmsg); 8555 8556 if (cmsgs->sinfo->snd_flags & 8557 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8558 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8559 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8560 return -EINVAL; 8561 break; 8562 case SCTP_PRINFO: 8563 /* SCTP Socket API Extension 8564 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8565 * 8566 * This cmsghdr structure specifies SCTP options for sendmsg(). 8567 * 8568 * cmsg_level cmsg_type cmsg_data[] 8569 * ------------ ------------ --------------------- 8570 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8571 */ 8572 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8573 return -EINVAL; 8574 8575 cmsgs->prinfo = CMSG_DATA(cmsg); 8576 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8577 return -EINVAL; 8578 8579 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8580 cmsgs->prinfo->pr_value = 0; 8581 break; 8582 case SCTP_AUTHINFO: 8583 /* SCTP Socket API Extension 8584 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8585 * 8586 * This cmsghdr structure specifies SCTP options for sendmsg(). 8587 * 8588 * cmsg_level cmsg_type cmsg_data[] 8589 * ------------ ------------ --------------------- 8590 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8591 */ 8592 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8593 return -EINVAL; 8594 8595 cmsgs->authinfo = CMSG_DATA(cmsg); 8596 break; 8597 case SCTP_DSTADDRV4: 8598 case SCTP_DSTADDRV6: 8599 /* SCTP Socket API Extension 8600 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8601 * 8602 * This cmsghdr structure specifies SCTP options for sendmsg(). 8603 * 8604 * cmsg_level cmsg_type cmsg_data[] 8605 * ------------ ------------ --------------------- 8606 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8607 * ------------ ------------ --------------------- 8608 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8609 */ 8610 cmsgs->addrs_msg = my_msg; 8611 break; 8612 default: 8613 return -EINVAL; 8614 } 8615 } 8616 8617 return 0; 8618 } 8619 8620 /* 8621 * Wait for a packet.. 8622 * Note: This function is the same function as in core/datagram.c 8623 * with a few modifications to make lksctp work. 8624 */ 8625 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8626 { 8627 int error; 8628 DEFINE_WAIT(wait); 8629 8630 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8631 8632 /* Socket errors? */ 8633 error = sock_error(sk); 8634 if (error) 8635 goto out; 8636 8637 if (!skb_queue_empty(&sk->sk_receive_queue)) 8638 goto ready; 8639 8640 /* Socket shut down? */ 8641 if (sk->sk_shutdown & RCV_SHUTDOWN) 8642 goto out; 8643 8644 /* Sequenced packets can come disconnected. If so we report the 8645 * problem. 8646 */ 8647 error = -ENOTCONN; 8648 8649 /* Is there a good reason to think that we may receive some data? */ 8650 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8651 goto out; 8652 8653 /* Handle signals. */ 8654 if (signal_pending(current)) 8655 goto interrupted; 8656 8657 /* Let another process have a go. Since we are going to sleep 8658 * anyway. Note: This may cause odd behaviors if the message 8659 * does not fit in the user's buffer, but this seems to be the 8660 * only way to honor MSG_DONTWAIT realistically. 8661 */ 8662 release_sock(sk); 8663 *timeo_p = schedule_timeout(*timeo_p); 8664 lock_sock(sk); 8665 8666 ready: 8667 finish_wait(sk_sleep(sk), &wait); 8668 return 0; 8669 8670 interrupted: 8671 error = sock_intr_errno(*timeo_p); 8672 8673 out: 8674 finish_wait(sk_sleep(sk), &wait); 8675 *err = error; 8676 return error; 8677 } 8678 8679 /* Receive a datagram. 8680 * Note: This is pretty much the same routine as in core/datagram.c 8681 * with a few changes to make lksctp work. 8682 */ 8683 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8684 int noblock, int *err) 8685 { 8686 int error; 8687 struct sk_buff *skb; 8688 long timeo; 8689 8690 timeo = sock_rcvtimeo(sk, noblock); 8691 8692 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8693 MAX_SCHEDULE_TIMEOUT); 8694 8695 do { 8696 /* Again only user level code calls this function, 8697 * so nothing interrupt level 8698 * will suddenly eat the receive_queue. 8699 * 8700 * Look at current nfs client by the way... 8701 * However, this function was correct in any case. 8) 8702 */ 8703 if (flags & MSG_PEEK) { 8704 skb = skb_peek(&sk->sk_receive_queue); 8705 if (skb) 8706 refcount_inc(&skb->users); 8707 } else { 8708 skb = __skb_dequeue(&sk->sk_receive_queue); 8709 } 8710 8711 if (skb) 8712 return skb; 8713 8714 /* Caller is allowed not to check sk->sk_err before calling. */ 8715 error = sock_error(sk); 8716 if (error) 8717 goto no_packet; 8718 8719 if (sk->sk_shutdown & RCV_SHUTDOWN) 8720 break; 8721 8722 if (sk_can_busy_loop(sk)) { 8723 sk_busy_loop(sk, noblock); 8724 8725 if (!skb_queue_empty(&sk->sk_receive_queue)) 8726 continue; 8727 } 8728 8729 /* User doesn't want to wait. */ 8730 error = -EAGAIN; 8731 if (!timeo) 8732 goto no_packet; 8733 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8734 8735 return NULL; 8736 8737 no_packet: 8738 *err = error; 8739 return NULL; 8740 } 8741 8742 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8743 static void __sctp_write_space(struct sctp_association *asoc) 8744 { 8745 struct sock *sk = asoc->base.sk; 8746 8747 if (sctp_wspace(asoc) <= 0) 8748 return; 8749 8750 if (waitqueue_active(&asoc->wait)) 8751 wake_up_interruptible(&asoc->wait); 8752 8753 if (sctp_writeable(sk)) { 8754 struct socket_wq *wq; 8755 8756 rcu_read_lock(); 8757 wq = rcu_dereference(sk->sk_wq); 8758 if (wq) { 8759 if (waitqueue_active(&wq->wait)) 8760 wake_up_interruptible(&wq->wait); 8761 8762 /* Note that we try to include the Async I/O support 8763 * here by modeling from the current TCP/UDP code. 8764 * We have not tested with it yet. 8765 */ 8766 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8767 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8768 } 8769 rcu_read_unlock(); 8770 } 8771 } 8772 8773 static void sctp_wake_up_waiters(struct sock *sk, 8774 struct sctp_association *asoc) 8775 { 8776 struct sctp_association *tmp = asoc; 8777 8778 /* We do accounting for the sndbuf space per association, 8779 * so we only need to wake our own association. 8780 */ 8781 if (asoc->ep->sndbuf_policy) 8782 return __sctp_write_space(asoc); 8783 8784 /* If association goes down and is just flushing its 8785 * outq, then just normally notify others. 8786 */ 8787 if (asoc->base.dead) 8788 return sctp_write_space(sk); 8789 8790 /* Accounting for the sndbuf space is per socket, so we 8791 * need to wake up others, try to be fair and in case of 8792 * other associations, let them have a go first instead 8793 * of just doing a sctp_write_space() call. 8794 * 8795 * Note that we reach sctp_wake_up_waiters() only when 8796 * associations free up queued chunks, thus we are under 8797 * lock and the list of associations on a socket is 8798 * guaranteed not to change. 8799 */ 8800 for (tmp = list_next_entry(tmp, asocs); 1; 8801 tmp = list_next_entry(tmp, asocs)) { 8802 /* Manually skip the head element. */ 8803 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8804 continue; 8805 /* Wake up association. */ 8806 __sctp_write_space(tmp); 8807 /* We've reached the end. */ 8808 if (tmp == asoc) 8809 break; 8810 } 8811 } 8812 8813 /* Do accounting for the sndbuf space. 8814 * Decrement the used sndbuf space of the corresponding association by the 8815 * data size which was just transmitted(freed). 8816 */ 8817 static void sctp_wfree(struct sk_buff *skb) 8818 { 8819 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8820 struct sctp_association *asoc = chunk->asoc; 8821 struct sock *sk = asoc->base.sk; 8822 8823 sk_mem_uncharge(sk, skb->truesize); 8824 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8825 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8826 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8827 &sk->sk_wmem_alloc)); 8828 8829 if (chunk->shkey) { 8830 struct sctp_shared_key *shkey = chunk->shkey; 8831 8832 /* refcnt == 2 and !list_empty mean after this release, it's 8833 * not being used anywhere, and it's time to notify userland 8834 * that this shkey can be freed if it's been deactivated. 8835 */ 8836 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8837 refcount_read(&shkey->refcnt) == 2) { 8838 struct sctp_ulpevent *ev; 8839 8840 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8841 SCTP_AUTH_FREE_KEY, 8842 GFP_KERNEL); 8843 if (ev) 8844 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8845 } 8846 sctp_auth_shkey_release(chunk->shkey); 8847 } 8848 8849 sock_wfree(skb); 8850 sctp_wake_up_waiters(sk, asoc); 8851 8852 sctp_association_put(asoc); 8853 } 8854 8855 /* Do accounting for the receive space on the socket. 8856 * Accounting for the association is done in ulpevent.c 8857 * We set this as a destructor for the cloned data skbs so that 8858 * accounting is done at the correct time. 8859 */ 8860 void sctp_sock_rfree(struct sk_buff *skb) 8861 { 8862 struct sock *sk = skb->sk; 8863 struct sctp_ulpevent *event = sctp_skb2event(skb); 8864 8865 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8866 8867 /* 8868 * Mimic the behavior of sock_rfree 8869 */ 8870 sk_mem_uncharge(sk, event->rmem_len); 8871 } 8872 8873 8874 /* Helper function to wait for space in the sndbuf. */ 8875 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8876 size_t msg_len) 8877 { 8878 struct sock *sk = asoc->base.sk; 8879 long current_timeo = *timeo_p; 8880 DEFINE_WAIT(wait); 8881 int err = 0; 8882 8883 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8884 *timeo_p, msg_len); 8885 8886 /* Increment the association's refcnt. */ 8887 sctp_association_hold(asoc); 8888 8889 /* Wait on the association specific sndbuf space. */ 8890 for (;;) { 8891 prepare_to_wait_exclusive(&asoc->wait, &wait, 8892 TASK_INTERRUPTIBLE); 8893 if (asoc->base.dead) 8894 goto do_dead; 8895 if (!*timeo_p) 8896 goto do_nonblock; 8897 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8898 goto do_error; 8899 if (signal_pending(current)) 8900 goto do_interrupted; 8901 if (sk_under_memory_pressure(sk)) 8902 sk_mem_reclaim(sk); 8903 if ((int)msg_len <= sctp_wspace(asoc) && 8904 sk_wmem_schedule(sk, msg_len)) 8905 break; 8906 8907 /* Let another process have a go. Since we are going 8908 * to sleep anyway. 8909 */ 8910 release_sock(sk); 8911 current_timeo = schedule_timeout(current_timeo); 8912 lock_sock(sk); 8913 if (sk != asoc->base.sk) 8914 goto do_error; 8915 8916 *timeo_p = current_timeo; 8917 } 8918 8919 out: 8920 finish_wait(&asoc->wait, &wait); 8921 8922 /* Release the association's refcnt. */ 8923 sctp_association_put(asoc); 8924 8925 return err; 8926 8927 do_dead: 8928 err = -ESRCH; 8929 goto out; 8930 8931 do_error: 8932 err = -EPIPE; 8933 goto out; 8934 8935 do_interrupted: 8936 err = sock_intr_errno(*timeo_p); 8937 goto out; 8938 8939 do_nonblock: 8940 err = -EAGAIN; 8941 goto out; 8942 } 8943 8944 void sctp_data_ready(struct sock *sk) 8945 { 8946 struct socket_wq *wq; 8947 8948 rcu_read_lock(); 8949 wq = rcu_dereference(sk->sk_wq); 8950 if (skwq_has_sleeper(wq)) 8951 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8952 EPOLLRDNORM | EPOLLRDBAND); 8953 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8954 rcu_read_unlock(); 8955 } 8956 8957 /* If socket sndbuf has changed, wake up all per association waiters. */ 8958 void sctp_write_space(struct sock *sk) 8959 { 8960 struct sctp_association *asoc; 8961 8962 /* Wake up the tasks in each wait queue. */ 8963 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8964 __sctp_write_space(asoc); 8965 } 8966 } 8967 8968 /* Is there any sndbuf space available on the socket? 8969 * 8970 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8971 * associations on the same socket. For a UDP-style socket with 8972 * multiple associations, it is possible for it to be "unwriteable" 8973 * prematurely. I assume that this is acceptable because 8974 * a premature "unwriteable" is better than an accidental "writeable" which 8975 * would cause an unwanted block under certain circumstances. For the 1-1 8976 * UDP-style sockets or TCP-style sockets, this code should work. 8977 * - Daisy 8978 */ 8979 static bool sctp_writeable(struct sock *sk) 8980 { 8981 return sk->sk_sndbuf > sk->sk_wmem_queued; 8982 } 8983 8984 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8985 * returns immediately with EINPROGRESS. 8986 */ 8987 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8988 { 8989 struct sock *sk = asoc->base.sk; 8990 int err = 0; 8991 long current_timeo = *timeo_p; 8992 DEFINE_WAIT(wait); 8993 8994 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8995 8996 /* Increment the association's refcnt. */ 8997 sctp_association_hold(asoc); 8998 8999 for (;;) { 9000 prepare_to_wait_exclusive(&asoc->wait, &wait, 9001 TASK_INTERRUPTIBLE); 9002 if (!*timeo_p) 9003 goto do_nonblock; 9004 if (sk->sk_shutdown & RCV_SHUTDOWN) 9005 break; 9006 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9007 asoc->base.dead) 9008 goto do_error; 9009 if (signal_pending(current)) 9010 goto do_interrupted; 9011 9012 if (sctp_state(asoc, ESTABLISHED)) 9013 break; 9014 9015 /* Let another process have a go. Since we are going 9016 * to sleep anyway. 9017 */ 9018 release_sock(sk); 9019 current_timeo = schedule_timeout(current_timeo); 9020 lock_sock(sk); 9021 9022 *timeo_p = current_timeo; 9023 } 9024 9025 out: 9026 finish_wait(&asoc->wait, &wait); 9027 9028 /* Release the association's refcnt. */ 9029 sctp_association_put(asoc); 9030 9031 return err; 9032 9033 do_error: 9034 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9035 err = -ETIMEDOUT; 9036 else 9037 err = -ECONNREFUSED; 9038 goto out; 9039 9040 do_interrupted: 9041 err = sock_intr_errno(*timeo_p); 9042 goto out; 9043 9044 do_nonblock: 9045 err = -EINPROGRESS; 9046 goto out; 9047 } 9048 9049 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9050 { 9051 struct sctp_endpoint *ep; 9052 int err = 0; 9053 DEFINE_WAIT(wait); 9054 9055 ep = sctp_sk(sk)->ep; 9056 9057 9058 for (;;) { 9059 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9060 TASK_INTERRUPTIBLE); 9061 9062 if (list_empty(&ep->asocs)) { 9063 release_sock(sk); 9064 timeo = schedule_timeout(timeo); 9065 lock_sock(sk); 9066 } 9067 9068 err = -EINVAL; 9069 if (!sctp_sstate(sk, LISTENING)) 9070 break; 9071 9072 err = 0; 9073 if (!list_empty(&ep->asocs)) 9074 break; 9075 9076 err = sock_intr_errno(timeo); 9077 if (signal_pending(current)) 9078 break; 9079 9080 err = -EAGAIN; 9081 if (!timeo) 9082 break; 9083 } 9084 9085 finish_wait(sk_sleep(sk), &wait); 9086 9087 return err; 9088 } 9089 9090 static void sctp_wait_for_close(struct sock *sk, long timeout) 9091 { 9092 DEFINE_WAIT(wait); 9093 9094 do { 9095 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9096 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9097 break; 9098 release_sock(sk); 9099 timeout = schedule_timeout(timeout); 9100 lock_sock(sk); 9101 } while (!signal_pending(current) && timeout); 9102 9103 finish_wait(sk_sleep(sk), &wait); 9104 } 9105 9106 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9107 { 9108 struct sk_buff *frag; 9109 9110 if (!skb->data_len) 9111 goto done; 9112 9113 /* Don't forget the fragments. */ 9114 skb_walk_frags(skb, frag) 9115 sctp_skb_set_owner_r_frag(frag, sk); 9116 9117 done: 9118 sctp_skb_set_owner_r(skb, sk); 9119 } 9120 9121 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9122 struct sctp_association *asoc) 9123 { 9124 struct inet_sock *inet = inet_sk(sk); 9125 struct inet_sock *newinet; 9126 struct sctp_sock *sp = sctp_sk(sk); 9127 struct sctp_endpoint *ep = sp->ep; 9128 9129 newsk->sk_type = sk->sk_type; 9130 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9131 newsk->sk_flags = sk->sk_flags; 9132 newsk->sk_tsflags = sk->sk_tsflags; 9133 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9134 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9135 newsk->sk_reuse = sk->sk_reuse; 9136 sctp_sk(newsk)->reuse = sp->reuse; 9137 9138 newsk->sk_shutdown = sk->sk_shutdown; 9139 newsk->sk_destruct = sctp_destruct_sock; 9140 newsk->sk_family = sk->sk_family; 9141 newsk->sk_protocol = IPPROTO_SCTP; 9142 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9143 newsk->sk_sndbuf = sk->sk_sndbuf; 9144 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9145 newsk->sk_lingertime = sk->sk_lingertime; 9146 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9147 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9148 newsk->sk_rxhash = sk->sk_rxhash; 9149 9150 newinet = inet_sk(newsk); 9151 9152 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9153 * getsockname() and getpeername() 9154 */ 9155 newinet->inet_sport = inet->inet_sport; 9156 newinet->inet_saddr = inet->inet_saddr; 9157 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9158 newinet->inet_dport = htons(asoc->peer.port); 9159 newinet->pmtudisc = inet->pmtudisc; 9160 newinet->inet_id = asoc->next_tsn ^ jiffies; 9161 9162 newinet->uc_ttl = inet->uc_ttl; 9163 newinet->mc_loop = 1; 9164 newinet->mc_ttl = 1; 9165 newinet->mc_index = 0; 9166 newinet->mc_list = NULL; 9167 9168 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9169 net_enable_timestamp(); 9170 9171 /* Set newsk security attributes from orginal sk and connection 9172 * security attribute from ep. 9173 */ 9174 security_sctp_sk_clone(ep, sk, newsk); 9175 } 9176 9177 static inline void sctp_copy_descendant(struct sock *sk_to, 9178 const struct sock *sk_from) 9179 { 9180 int ancestor_size = sizeof(struct inet_sock) + 9181 sizeof(struct sctp_sock) - 9182 offsetof(struct sctp_sock, pd_lobby); 9183 9184 if (sk_from->sk_family == PF_INET6) 9185 ancestor_size += sizeof(struct ipv6_pinfo); 9186 9187 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9188 } 9189 9190 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9191 * and its messages to the newsk. 9192 */ 9193 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9194 struct sctp_association *assoc, 9195 enum sctp_socket_type type) 9196 { 9197 struct sctp_sock *oldsp = sctp_sk(oldsk); 9198 struct sctp_sock *newsp = sctp_sk(newsk); 9199 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9200 struct sctp_endpoint *newep = newsp->ep; 9201 struct sk_buff *skb, *tmp; 9202 struct sctp_ulpevent *event; 9203 struct sctp_bind_hashbucket *head; 9204 int err; 9205 9206 /* Migrate socket buffer sizes and all the socket level options to the 9207 * new socket. 9208 */ 9209 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9210 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9211 /* Brute force copy old sctp opt. */ 9212 sctp_copy_descendant(newsk, oldsk); 9213 9214 /* Restore the ep value that was overwritten with the above structure 9215 * copy. 9216 */ 9217 newsp->ep = newep; 9218 newsp->hmac = NULL; 9219 9220 /* Hook this new socket in to the bind_hash list. */ 9221 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9222 inet_sk(oldsk)->inet_num)]; 9223 spin_lock_bh(&head->lock); 9224 pp = sctp_sk(oldsk)->bind_hash; 9225 sk_add_bind_node(newsk, &pp->owner); 9226 sctp_sk(newsk)->bind_hash = pp; 9227 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9228 spin_unlock_bh(&head->lock); 9229 9230 /* Copy the bind_addr list from the original endpoint to the new 9231 * endpoint so that we can handle restarts properly 9232 */ 9233 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9234 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9235 if (err) 9236 return err; 9237 9238 /* New ep's auth_hmacs should be set if old ep's is set, in case 9239 * that net->sctp.auth_enable has been changed to 0 by users and 9240 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9241 */ 9242 if (oldsp->ep->auth_hmacs) { 9243 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9244 if (err) 9245 return err; 9246 } 9247 9248 /* Move any messages in the old socket's receive queue that are for the 9249 * peeled off association to the new socket's receive queue. 9250 */ 9251 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9252 event = sctp_skb2event(skb); 9253 if (event->asoc == assoc) { 9254 __skb_unlink(skb, &oldsk->sk_receive_queue); 9255 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9256 sctp_skb_set_owner_r_frag(skb, newsk); 9257 } 9258 } 9259 9260 /* Clean up any messages pending delivery due to partial 9261 * delivery. Three cases: 9262 * 1) No partial deliver; no work. 9263 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9264 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9265 */ 9266 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9267 9268 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9269 struct sk_buff_head *queue; 9270 9271 /* Decide which queue to move pd_lobby skbs to. */ 9272 if (assoc->ulpq.pd_mode) { 9273 queue = &newsp->pd_lobby; 9274 } else 9275 queue = &newsk->sk_receive_queue; 9276 9277 /* Walk through the pd_lobby, looking for skbs that 9278 * need moved to the new socket. 9279 */ 9280 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9281 event = sctp_skb2event(skb); 9282 if (event->asoc == assoc) { 9283 __skb_unlink(skb, &oldsp->pd_lobby); 9284 __skb_queue_tail(queue, skb); 9285 sctp_skb_set_owner_r_frag(skb, newsk); 9286 } 9287 } 9288 9289 /* Clear up any skbs waiting for the partial 9290 * delivery to finish. 9291 */ 9292 if (assoc->ulpq.pd_mode) 9293 sctp_clear_pd(oldsk, NULL); 9294 9295 } 9296 9297 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9298 9299 /* Set the type of socket to indicate that it is peeled off from the 9300 * original UDP-style socket or created with the accept() call on a 9301 * TCP-style socket.. 9302 */ 9303 newsp->type = type; 9304 9305 /* Mark the new socket "in-use" by the user so that any packets 9306 * that may arrive on the association after we've moved it are 9307 * queued to the backlog. This prevents a potential race between 9308 * backlog processing on the old socket and new-packet processing 9309 * on the new socket. 9310 * 9311 * The caller has just allocated newsk so we can guarantee that other 9312 * paths won't try to lock it and then oldsk. 9313 */ 9314 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9315 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9316 sctp_assoc_migrate(assoc, newsk); 9317 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9318 9319 /* If the association on the newsk is already closed before accept() 9320 * is called, set RCV_SHUTDOWN flag. 9321 */ 9322 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9323 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9324 newsk->sk_shutdown |= RCV_SHUTDOWN; 9325 } else { 9326 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9327 } 9328 9329 release_sock(newsk); 9330 9331 return 0; 9332 } 9333 9334 9335 /* This proto struct describes the ULP interface for SCTP. */ 9336 struct proto sctp_prot = { 9337 .name = "SCTP", 9338 .owner = THIS_MODULE, 9339 .close = sctp_close, 9340 .disconnect = sctp_disconnect, 9341 .accept = sctp_accept, 9342 .ioctl = sctp_ioctl, 9343 .init = sctp_init_sock, 9344 .destroy = sctp_destroy_sock, 9345 .shutdown = sctp_shutdown, 9346 .setsockopt = sctp_setsockopt, 9347 .getsockopt = sctp_getsockopt, 9348 .sendmsg = sctp_sendmsg, 9349 .recvmsg = sctp_recvmsg, 9350 .bind = sctp_bind, 9351 .backlog_rcv = sctp_backlog_rcv, 9352 .hash = sctp_hash, 9353 .unhash = sctp_unhash, 9354 .get_port = sctp_get_port, 9355 .obj_size = sizeof(struct sctp_sock), 9356 .useroffset = offsetof(struct sctp_sock, subscribe), 9357 .usersize = offsetof(struct sctp_sock, initmsg) - 9358 offsetof(struct sctp_sock, subscribe) + 9359 sizeof_field(struct sctp_sock, initmsg), 9360 .sysctl_mem = sysctl_sctp_mem, 9361 .sysctl_rmem = sysctl_sctp_rmem, 9362 .sysctl_wmem = sysctl_sctp_wmem, 9363 .memory_pressure = &sctp_memory_pressure, 9364 .enter_memory_pressure = sctp_enter_memory_pressure, 9365 .memory_allocated = &sctp_memory_allocated, 9366 .sockets_allocated = &sctp_sockets_allocated, 9367 }; 9368 9369 #if IS_ENABLED(CONFIG_IPV6) 9370 9371 #include <net/transp_v6.h> 9372 static void sctp_v6_destroy_sock(struct sock *sk) 9373 { 9374 sctp_destroy_sock(sk); 9375 inet6_destroy_sock(sk); 9376 } 9377 9378 struct proto sctpv6_prot = { 9379 .name = "SCTPv6", 9380 .owner = THIS_MODULE, 9381 .close = sctp_close, 9382 .disconnect = sctp_disconnect, 9383 .accept = sctp_accept, 9384 .ioctl = sctp_ioctl, 9385 .init = sctp_init_sock, 9386 .destroy = sctp_v6_destroy_sock, 9387 .shutdown = sctp_shutdown, 9388 .setsockopt = sctp_setsockopt, 9389 .getsockopt = sctp_getsockopt, 9390 .sendmsg = sctp_sendmsg, 9391 .recvmsg = sctp_recvmsg, 9392 .bind = sctp_bind, 9393 .backlog_rcv = sctp_backlog_rcv, 9394 .hash = sctp_hash, 9395 .unhash = sctp_unhash, 9396 .get_port = sctp_get_port, 9397 .obj_size = sizeof(struct sctp6_sock), 9398 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9399 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9400 offsetof(struct sctp6_sock, sctp.subscribe) + 9401 sizeof_field(struct sctp6_sock, sctp.initmsg), 9402 .sysctl_mem = sysctl_sctp_mem, 9403 .sysctl_rmem = sysctl_sctp_rmem, 9404 .sysctl_wmem = sysctl_sctp_wmem, 9405 .memory_pressure = &sctp_memory_pressure, 9406 .enter_memory_pressure = sctp_enter_memory_pressure, 9407 .memory_allocated = &sctp_memory_allocated, 9408 .sockets_allocated = &sctp_sockets_allocated, 9409 }; 9410 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9411