xref: /linux/net/sctp/socket.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79 
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <net/sock.h>
82 #include <net/sctp/sctp.h>
83 #include <net/sctp/sm.h>
84 
85 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
86  * any of the functions below as they are used to export functions
87  * used by a project regression testsuite.
88  */
89 
90 /* Forward declarations for internal helper functions. */
91 static int sctp_writeable(struct sock *sk);
92 static void sctp_wfree(struct sk_buff *skb);
93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 				size_t msg_len);
95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97 static int sctp_wait_for_accept(struct sock *sk, long timeo);
98 static void sctp_wait_for_close(struct sock *sk, long timeo);
99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 					union sctp_addr *addr, int len);
101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf(struct sctp_association *asoc,
106 			    struct sctp_chunk *chunk);
107 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108 static int sctp_autobind(struct sock *sk);
109 static void sctp_sock_migrate(struct sock *, struct sock *,
110 			      struct sctp_association *, sctp_socket_type_t);
111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112 
113 extern struct kmem_cache *sctp_bucket_cachep;
114 extern long sysctl_sctp_mem[3];
115 extern int sysctl_sctp_rmem[3];
116 extern int sysctl_sctp_wmem[3];
117 
118 static int sctp_memory_pressure;
119 static atomic_long_t sctp_memory_allocated;
120 struct percpu_counter sctp_sockets_allocated;
121 
122 static void sctp_enter_memory_pressure(struct sock *sk)
123 {
124 	sctp_memory_pressure = 1;
125 }
126 
127 
128 /* Get the sndbuf space available at the time on the association.  */
129 static inline int sctp_wspace(struct sctp_association *asoc)
130 {
131 	int amt;
132 
133 	if (asoc->ep->sndbuf_policy)
134 		amt = asoc->sndbuf_used;
135 	else
136 		amt = sk_wmem_alloc_get(asoc->base.sk);
137 
138 	if (amt >= asoc->base.sk->sk_sndbuf) {
139 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 			amt = 0;
141 		else {
142 			amt = sk_stream_wspace(asoc->base.sk);
143 			if (amt < 0)
144 				amt = 0;
145 		}
146 	} else {
147 		amt = asoc->base.sk->sk_sndbuf - amt;
148 	}
149 	return amt;
150 }
151 
152 /* Increment the used sndbuf space count of the corresponding association by
153  * the size of the outgoing data chunk.
154  * Also, set the skb destructor for sndbuf accounting later.
155  *
156  * Since it is always 1-1 between chunk and skb, and also a new skb is always
157  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158  * destructor in the data chunk skb for the purpose of the sndbuf space
159  * tracking.
160  */
161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162 {
163 	struct sctp_association *asoc = chunk->asoc;
164 	struct sock *sk = asoc->base.sk;
165 
166 	/* The sndbuf space is tracked per association.  */
167 	sctp_association_hold(asoc);
168 
169 	skb_set_owner_w(chunk->skb, sk);
170 
171 	chunk->skb->destructor = sctp_wfree;
172 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
173 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174 
175 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 				sizeof(struct sk_buff) +
177 				sizeof(struct sctp_chunk);
178 
179 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 	sk->sk_wmem_queued += chunk->skb->truesize;
181 	sk_mem_charge(sk, chunk->skb->truesize);
182 }
183 
184 /* Verify that this is a valid address. */
185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 				   int len)
187 {
188 	struct sctp_af *af;
189 
190 	/* Verify basic sockaddr. */
191 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 	if (!af)
193 		return -EINVAL;
194 
195 	/* Is this a valid SCTP address?  */
196 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 		return -EINVAL;
198 
199 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 		return -EINVAL;
201 
202 	return 0;
203 }
204 
205 /* Look up the association by its id.  If this is not a UDP-style
206  * socket, the ID field is always ignored.
207  */
208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209 {
210 	struct sctp_association *asoc = NULL;
211 
212 	/* If this is not a UDP-style socket, assoc id should be ignored. */
213 	if (!sctp_style(sk, UDP)) {
214 		/* Return NULL if the socket state is not ESTABLISHED. It
215 		 * could be a TCP-style listening socket or a socket which
216 		 * hasn't yet called connect() to establish an association.
217 		 */
218 		if (!sctp_sstate(sk, ESTABLISHED))
219 			return NULL;
220 
221 		/* Get the first and the only association from the list. */
222 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 					  struct sctp_association, asocs);
225 		return asoc;
226 	}
227 
228 	/* Otherwise this is a UDP-style socket. */
229 	if (!id || (id == (sctp_assoc_t)-1))
230 		return NULL;
231 
232 	spin_lock_bh(&sctp_assocs_id_lock);
233 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 	spin_unlock_bh(&sctp_assocs_id_lock);
235 
236 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 		return NULL;
238 
239 	return asoc;
240 }
241 
242 /* Look up the transport from an address and an assoc id. If both address and
243  * id are specified, the associations matching the address and the id should be
244  * the same.
245  */
246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 					      struct sockaddr_storage *addr,
248 					      sctp_assoc_t id)
249 {
250 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 	struct sctp_transport *transport;
252 	union sctp_addr *laddr = (union sctp_addr *)addr;
253 
254 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 					       laddr,
256 					       &transport);
257 
258 	if (!addr_asoc)
259 		return NULL;
260 
261 	id_asoc = sctp_id2assoc(sk, id);
262 	if (id_asoc && (id_asoc != addr_asoc))
263 		return NULL;
264 
265 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 						(union sctp_addr *)addr);
267 
268 	return transport;
269 }
270 
271 /* API 3.1.2 bind() - UDP Style Syntax
272  * The syntax of bind() is,
273  *
274  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
275  *
276  *   sd      - the socket descriptor returned by socket().
277  *   addr    - the address structure (struct sockaddr_in or struct
278  *             sockaddr_in6 [RFC 2553]),
279  *   addr_len - the size of the address structure.
280  */
281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282 {
283 	int retval = 0;
284 
285 	sctp_lock_sock(sk);
286 
287 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 			  sk, addr, addr_len);
289 
290 	/* Disallow binding twice. */
291 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 				      addr_len);
294 	else
295 		retval = -EINVAL;
296 
297 	sctp_release_sock(sk);
298 
299 	return retval;
300 }
301 
302 static long sctp_get_port_local(struct sock *, union sctp_addr *);
303 
304 /* Verify this is a valid sockaddr. */
305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 					union sctp_addr *addr, int len)
307 {
308 	struct sctp_af *af;
309 
310 	/* Check minimum size.  */
311 	if (len < sizeof (struct sockaddr))
312 		return NULL;
313 
314 	/* V4 mapped address are really of AF_INET family */
315 	if (addr->sa.sa_family == AF_INET6 &&
316 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 		if (!opt->pf->af_supported(AF_INET, opt))
318 			return NULL;
319 	} else {
320 		/* Does this PF support this AF? */
321 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 			return NULL;
323 	}
324 
325 	/* If we get this far, af is valid. */
326 	af = sctp_get_af_specific(addr->sa.sa_family);
327 
328 	if (len < af->sockaddr_len)
329 		return NULL;
330 
331 	return af;
332 }
333 
334 /* Bind a local address either to an endpoint or to an association.  */
335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336 {
337 	struct sctp_sock *sp = sctp_sk(sk);
338 	struct sctp_endpoint *ep = sp->ep;
339 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 	struct sctp_af *af;
341 	unsigned short snum;
342 	int ret = 0;
343 
344 	/* Common sockaddr verification. */
345 	af = sctp_sockaddr_af(sp, addr, len);
346 	if (!af) {
347 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 				  sk, addr, len);
349 		return -EINVAL;
350 	}
351 
352 	snum = ntohs(addr->v4.sin_port);
353 
354 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 				 ", port: %d, new port: %d, len: %d)\n",
356 				 sk,
357 				 addr,
358 				 bp->port, snum,
359 				 len);
360 
361 	/* PF specific bind() address verification. */
362 	if (!sp->pf->bind_verify(sp, addr))
363 		return -EADDRNOTAVAIL;
364 
365 	/* We must either be unbound, or bind to the same port.
366 	 * It's OK to allow 0 ports if we are already bound.
367 	 * We'll just inhert an already bound port in this case
368 	 */
369 	if (bp->port) {
370 		if (!snum)
371 			snum = bp->port;
372 		else if (snum != bp->port) {
373 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 				  " New port %d does not match existing port "
375 				  "%d.\n", snum, bp->port);
376 			return -EINVAL;
377 		}
378 	}
379 
380 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 		return -EACCES;
382 
383 	/* See if the address matches any of the addresses we may have
384 	 * already bound before checking against other endpoints.
385 	 */
386 	if (sctp_bind_addr_match(bp, addr, sp))
387 		return -EINVAL;
388 
389 	/* Make sure we are allowed to bind here.
390 	 * The function sctp_get_port_local() does duplicate address
391 	 * detection.
392 	 */
393 	addr->v4.sin_port = htons(snum);
394 	if ((ret = sctp_get_port_local(sk, addr))) {
395 		return -EADDRINUSE;
396 	}
397 
398 	/* Refresh ephemeral port.  */
399 	if (!bp->port)
400 		bp->port = inet_sk(sk)->inet_num;
401 
402 	/* Add the address to the bind address list.
403 	 * Use GFP_ATOMIC since BHs will be disabled.
404 	 */
405 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406 
407 	/* Copy back into socket for getsockname() use. */
408 	if (!ret) {
409 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 		af->to_sk_saddr(addr, sk);
411 	}
412 
413 	return ret;
414 }
415 
416  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417  *
418  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419  * at any one time.  If a sender, after sending an ASCONF chunk, decides
420  * it needs to transfer another ASCONF Chunk, it MUST wait until the
421  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422  * subsequent ASCONF. Note this restriction binds each side, so at any
423  * time two ASCONF may be in-transit on any given association (one sent
424  * from each endpoint).
425  */
426 static int sctp_send_asconf(struct sctp_association *asoc,
427 			    struct sctp_chunk *chunk)
428 {
429 	int		retval = 0;
430 
431 	/* If there is an outstanding ASCONF chunk, queue it for later
432 	 * transmission.
433 	 */
434 	if (asoc->addip_last_asconf) {
435 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 		goto out;
437 	}
438 
439 	/* Hold the chunk until an ASCONF_ACK is received. */
440 	sctp_chunk_hold(chunk);
441 	retval = sctp_primitive_ASCONF(asoc, chunk);
442 	if (retval)
443 		sctp_chunk_free(chunk);
444 	else
445 		asoc->addip_last_asconf = chunk;
446 
447 out:
448 	return retval;
449 }
450 
451 /* Add a list of addresses as bind addresses to local endpoint or
452  * association.
453  *
454  * Basically run through each address specified in the addrs/addrcnt
455  * array/length pair, determine if it is IPv6 or IPv4 and call
456  * sctp_do_bind() on it.
457  *
458  * If any of them fails, then the operation will be reversed and the
459  * ones that were added will be removed.
460  *
461  * Only sctp_setsockopt_bindx() is supposed to call this function.
462  */
463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464 {
465 	int cnt;
466 	int retval = 0;
467 	void *addr_buf;
468 	struct sockaddr *sa_addr;
469 	struct sctp_af *af;
470 
471 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 			  sk, addrs, addrcnt);
473 
474 	addr_buf = addrs;
475 	for (cnt = 0; cnt < addrcnt; cnt++) {
476 		/* The list may contain either IPv4 or IPv6 address;
477 		 * determine the address length for walking thru the list.
478 		 */
479 		sa_addr = addr_buf;
480 		af = sctp_get_af_specific(sa_addr->sa_family);
481 		if (!af) {
482 			retval = -EINVAL;
483 			goto err_bindx_add;
484 		}
485 
486 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 				      af->sockaddr_len);
488 
489 		addr_buf += af->sockaddr_len;
490 
491 err_bindx_add:
492 		if (retval < 0) {
493 			/* Failed. Cleanup the ones that have been added */
494 			if (cnt > 0)
495 				sctp_bindx_rem(sk, addrs, cnt);
496 			return retval;
497 		}
498 	}
499 
500 	return retval;
501 }
502 
503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504  * associations that are part of the endpoint indicating that a list of local
505  * addresses are added to the endpoint.
506  *
507  * If any of the addresses is already in the bind address list of the
508  * association, we do not send the chunk for that association.  But it will not
509  * affect other associations.
510  *
511  * Only sctp_setsockopt_bindx() is supposed to call this function.
512  */
513 static int sctp_send_asconf_add_ip(struct sock		*sk,
514 				   struct sockaddr	*addrs,
515 				   int 			addrcnt)
516 {
517 	struct sctp_sock		*sp;
518 	struct sctp_endpoint		*ep;
519 	struct sctp_association		*asoc;
520 	struct sctp_bind_addr		*bp;
521 	struct sctp_chunk		*chunk;
522 	struct sctp_sockaddr_entry	*laddr;
523 	union sctp_addr			*addr;
524 	union sctp_addr			saveaddr;
525 	void				*addr_buf;
526 	struct sctp_af			*af;
527 	struct list_head		*p;
528 	int 				i;
529 	int 				retval = 0;
530 
531 	if (!sctp_addip_enable)
532 		return retval;
533 
534 	sp = sctp_sk(sk);
535 	ep = sp->ep;
536 
537 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 			  __func__, sk, addrs, addrcnt);
539 
540 	list_for_each_entry(asoc, &ep->asocs, asocs) {
541 
542 		if (!asoc->peer.asconf_capable)
543 			continue;
544 
545 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 			continue;
547 
548 		if (!sctp_state(asoc, ESTABLISHED))
549 			continue;
550 
551 		/* Check if any address in the packed array of addresses is
552 		 * in the bind address list of the association. If so,
553 		 * do not send the asconf chunk to its peer, but continue with
554 		 * other associations.
555 		 */
556 		addr_buf = addrs;
557 		for (i = 0; i < addrcnt; i++) {
558 			addr = addr_buf;
559 			af = sctp_get_af_specific(addr->v4.sin_family);
560 			if (!af) {
561 				retval = -EINVAL;
562 				goto out;
563 			}
564 
565 			if (sctp_assoc_lookup_laddr(asoc, addr))
566 				break;
567 
568 			addr_buf += af->sockaddr_len;
569 		}
570 		if (i < addrcnt)
571 			continue;
572 
573 		/* Use the first valid address in bind addr list of
574 		 * association as Address Parameter of ASCONF CHUNK.
575 		 */
576 		bp = &asoc->base.bind_addr;
577 		p = bp->address_list.next;
578 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 						   addrcnt, SCTP_PARAM_ADD_IP);
581 		if (!chunk) {
582 			retval = -ENOMEM;
583 			goto out;
584 		}
585 
586 		/* Add the new addresses to the bind address list with
587 		 * use_as_src set to 0.
588 		 */
589 		addr_buf = addrs;
590 		for (i = 0; i < addrcnt; i++) {
591 			addr = addr_buf;
592 			af = sctp_get_af_specific(addr->v4.sin_family);
593 			memcpy(&saveaddr, addr, af->sockaddr_len);
594 			retval = sctp_add_bind_addr(bp, &saveaddr,
595 						    SCTP_ADDR_NEW, GFP_ATOMIC);
596 			addr_buf += af->sockaddr_len;
597 		}
598 		if (asoc->src_out_of_asoc_ok) {
599 			struct sctp_transport *trans;
600 
601 			list_for_each_entry(trans,
602 			    &asoc->peer.transport_addr_list, transports) {
603 				/* Clear the source and route cache */
604 				dst_release(trans->dst);
605 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
606 				    2*asoc->pathmtu, 4380));
607 				trans->ssthresh = asoc->peer.i.a_rwnd;
608 				trans->rto = asoc->rto_initial;
609 				trans->rtt = trans->srtt = trans->rttvar = 0;
610 				sctp_transport_route(trans, NULL,
611 				    sctp_sk(asoc->base.sk));
612 			}
613 		}
614 		retval = sctp_send_asconf(asoc, chunk);
615 	}
616 
617 out:
618 	return retval;
619 }
620 
621 /* Remove a list of addresses from bind addresses list.  Do not remove the
622  * last address.
623  *
624  * Basically run through each address specified in the addrs/addrcnt
625  * array/length pair, determine if it is IPv6 or IPv4 and call
626  * sctp_del_bind() on it.
627  *
628  * If any of them fails, then the operation will be reversed and the
629  * ones that were removed will be added back.
630  *
631  * At least one address has to be left; if only one address is
632  * available, the operation will return -EBUSY.
633  *
634  * Only sctp_setsockopt_bindx() is supposed to call this function.
635  */
636 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
637 {
638 	struct sctp_sock *sp = sctp_sk(sk);
639 	struct sctp_endpoint *ep = sp->ep;
640 	int cnt;
641 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
642 	int retval = 0;
643 	void *addr_buf;
644 	union sctp_addr *sa_addr;
645 	struct sctp_af *af;
646 
647 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
648 			  sk, addrs, addrcnt);
649 
650 	addr_buf = addrs;
651 	for (cnt = 0; cnt < addrcnt; cnt++) {
652 		/* If the bind address list is empty or if there is only one
653 		 * bind address, there is nothing more to be removed (we need
654 		 * at least one address here).
655 		 */
656 		if (list_empty(&bp->address_list) ||
657 		    (sctp_list_single_entry(&bp->address_list))) {
658 			retval = -EBUSY;
659 			goto err_bindx_rem;
660 		}
661 
662 		sa_addr = addr_buf;
663 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
664 		if (!af) {
665 			retval = -EINVAL;
666 			goto err_bindx_rem;
667 		}
668 
669 		if (!af->addr_valid(sa_addr, sp, NULL)) {
670 			retval = -EADDRNOTAVAIL;
671 			goto err_bindx_rem;
672 		}
673 
674 		if (sa_addr->v4.sin_port &&
675 		    sa_addr->v4.sin_port != htons(bp->port)) {
676 			retval = -EINVAL;
677 			goto err_bindx_rem;
678 		}
679 
680 		if (!sa_addr->v4.sin_port)
681 			sa_addr->v4.sin_port = htons(bp->port);
682 
683 		/* FIXME - There is probably a need to check if sk->sk_saddr and
684 		 * sk->sk_rcv_addr are currently set to one of the addresses to
685 		 * be removed. This is something which needs to be looked into
686 		 * when we are fixing the outstanding issues with multi-homing
687 		 * socket routing and failover schemes. Refer to comments in
688 		 * sctp_do_bind(). -daisy
689 		 */
690 		retval = sctp_del_bind_addr(bp, sa_addr);
691 
692 		addr_buf += af->sockaddr_len;
693 err_bindx_rem:
694 		if (retval < 0) {
695 			/* Failed. Add the ones that has been removed back */
696 			if (cnt > 0)
697 				sctp_bindx_add(sk, addrs, cnt);
698 			return retval;
699 		}
700 	}
701 
702 	return retval;
703 }
704 
705 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
706  * the associations that are part of the endpoint indicating that a list of
707  * local addresses are removed from the endpoint.
708  *
709  * If any of the addresses is already in the bind address list of the
710  * association, we do not send the chunk for that association.  But it will not
711  * affect other associations.
712  *
713  * Only sctp_setsockopt_bindx() is supposed to call this function.
714  */
715 static int sctp_send_asconf_del_ip(struct sock		*sk,
716 				   struct sockaddr	*addrs,
717 				   int			addrcnt)
718 {
719 	struct sctp_sock	*sp;
720 	struct sctp_endpoint	*ep;
721 	struct sctp_association	*asoc;
722 	struct sctp_transport	*transport;
723 	struct sctp_bind_addr	*bp;
724 	struct sctp_chunk	*chunk;
725 	union sctp_addr		*laddr;
726 	void			*addr_buf;
727 	struct sctp_af		*af;
728 	struct sctp_sockaddr_entry *saddr;
729 	int 			i;
730 	int 			retval = 0;
731 	int			stored = 0;
732 
733 	chunk = NULL;
734 	if (!sctp_addip_enable)
735 		return retval;
736 
737 	sp = sctp_sk(sk);
738 	ep = sp->ep;
739 
740 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
741 			  __func__, sk, addrs, addrcnt);
742 
743 	list_for_each_entry(asoc, &ep->asocs, asocs) {
744 
745 		if (!asoc->peer.asconf_capable)
746 			continue;
747 
748 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
749 			continue;
750 
751 		if (!sctp_state(asoc, ESTABLISHED))
752 			continue;
753 
754 		/* Check if any address in the packed array of addresses is
755 		 * not present in the bind address list of the association.
756 		 * If so, do not send the asconf chunk to its peer, but
757 		 * continue with other associations.
758 		 */
759 		addr_buf = addrs;
760 		for (i = 0; i < addrcnt; i++) {
761 			laddr = addr_buf;
762 			af = sctp_get_af_specific(laddr->v4.sin_family);
763 			if (!af) {
764 				retval = -EINVAL;
765 				goto out;
766 			}
767 
768 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
769 				break;
770 
771 			addr_buf += af->sockaddr_len;
772 		}
773 		if (i < addrcnt)
774 			continue;
775 
776 		/* Find one address in the association's bind address list
777 		 * that is not in the packed array of addresses. This is to
778 		 * make sure that we do not delete all the addresses in the
779 		 * association.
780 		 */
781 		bp = &asoc->base.bind_addr;
782 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
783 					       addrcnt, sp);
784 		if ((laddr == NULL) && (addrcnt == 1)) {
785 			if (asoc->asconf_addr_del_pending)
786 				continue;
787 			asoc->asconf_addr_del_pending =
788 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
789 			if (asoc->asconf_addr_del_pending == NULL) {
790 				retval = -ENOMEM;
791 				goto out;
792 			}
793 			asoc->asconf_addr_del_pending->sa.sa_family =
794 				    addrs->sa_family;
795 			asoc->asconf_addr_del_pending->v4.sin_port =
796 				    htons(bp->port);
797 			if (addrs->sa_family == AF_INET) {
798 				struct sockaddr_in *sin;
799 
800 				sin = (struct sockaddr_in *)addrs;
801 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
802 			} else if (addrs->sa_family == AF_INET6) {
803 				struct sockaddr_in6 *sin6;
804 
805 				sin6 = (struct sockaddr_in6 *)addrs;
806 				ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr);
807 			}
808 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
809 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
810 			    asoc->asconf_addr_del_pending);
811 			asoc->src_out_of_asoc_ok = 1;
812 			stored = 1;
813 			goto skip_mkasconf;
814 		}
815 
816 		/* We do not need RCU protection throughout this loop
817 		 * because this is done under a socket lock from the
818 		 * setsockopt call.
819 		 */
820 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
821 						   SCTP_PARAM_DEL_IP);
822 		if (!chunk) {
823 			retval = -ENOMEM;
824 			goto out;
825 		}
826 
827 skip_mkasconf:
828 		/* Reset use_as_src flag for the addresses in the bind address
829 		 * list that are to be deleted.
830 		 */
831 		addr_buf = addrs;
832 		for (i = 0; i < addrcnt; i++) {
833 			laddr = addr_buf;
834 			af = sctp_get_af_specific(laddr->v4.sin_family);
835 			list_for_each_entry(saddr, &bp->address_list, list) {
836 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
837 					saddr->state = SCTP_ADDR_DEL;
838 			}
839 			addr_buf += af->sockaddr_len;
840 		}
841 
842 		/* Update the route and saddr entries for all the transports
843 		 * as some of the addresses in the bind address list are
844 		 * about to be deleted and cannot be used as source addresses.
845 		 */
846 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
847 					transports) {
848 			dst_release(transport->dst);
849 			sctp_transport_route(transport, NULL,
850 					     sctp_sk(asoc->base.sk));
851 		}
852 
853 		if (stored)
854 			/* We don't need to transmit ASCONF */
855 			continue;
856 		retval = sctp_send_asconf(asoc, chunk);
857 	}
858 out:
859 	return retval;
860 }
861 
862 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
863 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
864 {
865 	struct sock *sk = sctp_opt2sk(sp);
866 	union sctp_addr *addr;
867 	struct sctp_af *af;
868 
869 	/* It is safe to write port space in caller. */
870 	addr = &addrw->a;
871 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
872 	af = sctp_get_af_specific(addr->sa.sa_family);
873 	if (!af)
874 		return -EINVAL;
875 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
876 		return -EINVAL;
877 
878 	if (addrw->state == SCTP_ADDR_NEW)
879 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
880 	else
881 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
882 }
883 
884 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
885  *
886  * API 8.1
887  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
888  *                int flags);
889  *
890  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
891  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
892  * or IPv6 addresses.
893  *
894  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
895  * Section 3.1.2 for this usage.
896  *
897  * addrs is a pointer to an array of one or more socket addresses. Each
898  * address is contained in its appropriate structure (i.e. struct
899  * sockaddr_in or struct sockaddr_in6) the family of the address type
900  * must be used to distinguish the address length (note that this
901  * representation is termed a "packed array" of addresses). The caller
902  * specifies the number of addresses in the array with addrcnt.
903  *
904  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
905  * -1, and sets errno to the appropriate error code.
906  *
907  * For SCTP, the port given in each socket address must be the same, or
908  * sctp_bindx() will fail, setting errno to EINVAL.
909  *
910  * The flags parameter is formed from the bitwise OR of zero or more of
911  * the following currently defined flags:
912  *
913  * SCTP_BINDX_ADD_ADDR
914  *
915  * SCTP_BINDX_REM_ADDR
916  *
917  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
918  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
919  * addresses from the association. The two flags are mutually exclusive;
920  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
921  * not remove all addresses from an association; sctp_bindx() will
922  * reject such an attempt with EINVAL.
923  *
924  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
925  * additional addresses with an endpoint after calling bind().  Or use
926  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
927  * socket is associated with so that no new association accepted will be
928  * associated with those addresses. If the endpoint supports dynamic
929  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
930  * endpoint to send the appropriate message to the peer to change the
931  * peers address lists.
932  *
933  * Adding and removing addresses from a connected association is
934  * optional functionality. Implementations that do not support this
935  * functionality should return EOPNOTSUPP.
936  *
937  * Basically do nothing but copying the addresses from user to kernel
938  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
939  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
940  * from userspace.
941  *
942  * We don't use copy_from_user() for optimization: we first do the
943  * sanity checks (buffer size -fast- and access check-healthy
944  * pointer); if all of those succeed, then we can alloc the memory
945  * (expensive operation) needed to copy the data to kernel. Then we do
946  * the copying without checking the user space area
947  * (__copy_from_user()).
948  *
949  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
950  * it.
951  *
952  * sk        The sk of the socket
953  * addrs     The pointer to the addresses in user land
954  * addrssize Size of the addrs buffer
955  * op        Operation to perform (add or remove, see the flags of
956  *           sctp_bindx)
957  *
958  * Returns 0 if ok, <0 errno code on error.
959  */
960 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
961 				      struct sockaddr __user *addrs,
962 				      int addrs_size, int op)
963 {
964 	struct sockaddr *kaddrs;
965 	int err;
966 	int addrcnt = 0;
967 	int walk_size = 0;
968 	struct sockaddr *sa_addr;
969 	void *addr_buf;
970 	struct sctp_af *af;
971 
972 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
973 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
974 
975 	if (unlikely(addrs_size <= 0))
976 		return -EINVAL;
977 
978 	/* Check the user passed a healthy pointer.  */
979 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
980 		return -EFAULT;
981 
982 	/* Alloc space for the address array in kernel memory.  */
983 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
984 	if (unlikely(!kaddrs))
985 		return -ENOMEM;
986 
987 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
988 		kfree(kaddrs);
989 		return -EFAULT;
990 	}
991 
992 	/* Walk through the addrs buffer and count the number of addresses. */
993 	addr_buf = kaddrs;
994 	while (walk_size < addrs_size) {
995 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
996 			kfree(kaddrs);
997 			return -EINVAL;
998 		}
999 
1000 		sa_addr = addr_buf;
1001 		af = sctp_get_af_specific(sa_addr->sa_family);
1002 
1003 		/* If the address family is not supported or if this address
1004 		 * causes the address buffer to overflow return EINVAL.
1005 		 */
1006 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1007 			kfree(kaddrs);
1008 			return -EINVAL;
1009 		}
1010 		addrcnt++;
1011 		addr_buf += af->sockaddr_len;
1012 		walk_size += af->sockaddr_len;
1013 	}
1014 
1015 	/* Do the work. */
1016 	switch (op) {
1017 	case SCTP_BINDX_ADD_ADDR:
1018 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1019 		if (err)
1020 			goto out;
1021 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1022 		break;
1023 
1024 	case SCTP_BINDX_REM_ADDR:
1025 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1026 		if (err)
1027 			goto out;
1028 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1029 		break;
1030 
1031 	default:
1032 		err = -EINVAL;
1033 		break;
1034 	}
1035 
1036 out:
1037 	kfree(kaddrs);
1038 
1039 	return err;
1040 }
1041 
1042 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1043  *
1044  * Common routine for handling connect() and sctp_connectx().
1045  * Connect will come in with just a single address.
1046  */
1047 static int __sctp_connect(struct sock* sk,
1048 			  struct sockaddr *kaddrs,
1049 			  int addrs_size,
1050 			  sctp_assoc_t *assoc_id)
1051 {
1052 	struct sctp_sock *sp;
1053 	struct sctp_endpoint *ep;
1054 	struct sctp_association *asoc = NULL;
1055 	struct sctp_association *asoc2;
1056 	struct sctp_transport *transport;
1057 	union sctp_addr to;
1058 	struct sctp_af *af;
1059 	sctp_scope_t scope;
1060 	long timeo;
1061 	int err = 0;
1062 	int addrcnt = 0;
1063 	int walk_size = 0;
1064 	union sctp_addr *sa_addr = NULL;
1065 	void *addr_buf;
1066 	unsigned short port;
1067 	unsigned int f_flags = 0;
1068 
1069 	sp = sctp_sk(sk);
1070 	ep = sp->ep;
1071 
1072 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1073 	 * state - UDP-style peeled off socket or a TCP-style socket that
1074 	 * is already connected.
1075 	 * It cannot be done even on a TCP-style listening socket.
1076 	 */
1077 	if (sctp_sstate(sk, ESTABLISHED) ||
1078 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1079 		err = -EISCONN;
1080 		goto out_free;
1081 	}
1082 
1083 	/* Walk through the addrs buffer and count the number of addresses. */
1084 	addr_buf = kaddrs;
1085 	while (walk_size < addrs_size) {
1086 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 			err = -EINVAL;
1088 			goto out_free;
1089 		}
1090 
1091 		sa_addr = addr_buf;
1092 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093 
1094 		/* If the address family is not supported or if this address
1095 		 * causes the address buffer to overflow return EINVAL.
1096 		 */
1097 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 			err = -EINVAL;
1099 			goto out_free;
1100 		}
1101 
1102 		port = ntohs(sa_addr->v4.sin_port);
1103 
1104 		/* Save current address so we can work with it */
1105 		memcpy(&to, sa_addr, af->sockaddr_len);
1106 
1107 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 		if (err)
1109 			goto out_free;
1110 
1111 		/* Make sure the destination port is correctly set
1112 		 * in all addresses.
1113 		 */
1114 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1115 			goto out_free;
1116 
1117 
1118 		/* Check if there already is a matching association on the
1119 		 * endpoint (other than the one created here).
1120 		 */
1121 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1122 		if (asoc2 && asoc2 != asoc) {
1123 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1124 				err = -EISCONN;
1125 			else
1126 				err = -EALREADY;
1127 			goto out_free;
1128 		}
1129 
1130 		/* If we could not find a matching association on the endpoint,
1131 		 * make sure that there is no peeled-off association matching
1132 		 * the peer address even on another socket.
1133 		 */
1134 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1135 			err = -EADDRNOTAVAIL;
1136 			goto out_free;
1137 		}
1138 
1139 		if (!asoc) {
1140 			/* If a bind() or sctp_bindx() is not called prior to
1141 			 * an sctp_connectx() call, the system picks an
1142 			 * ephemeral port and will choose an address set
1143 			 * equivalent to binding with a wildcard address.
1144 			 */
1145 			if (!ep->base.bind_addr.port) {
1146 				if (sctp_autobind(sk)) {
1147 					err = -EAGAIN;
1148 					goto out_free;
1149 				}
1150 			} else {
1151 				/*
1152 				 * If an unprivileged user inherits a 1-many
1153 				 * style socket with open associations on a
1154 				 * privileged port, it MAY be permitted to
1155 				 * accept new associations, but it SHOULD NOT
1156 				 * be permitted to open new associations.
1157 				 */
1158 				if (ep->base.bind_addr.port < PROT_SOCK &&
1159 				    !capable(CAP_NET_BIND_SERVICE)) {
1160 					err = -EACCES;
1161 					goto out_free;
1162 				}
1163 			}
1164 
1165 			scope = sctp_scope(&to);
1166 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1167 			if (!asoc) {
1168 				err = -ENOMEM;
1169 				goto out_free;
1170 			}
1171 
1172 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1173 							      GFP_KERNEL);
1174 			if (err < 0) {
1175 				goto out_free;
1176 			}
1177 
1178 		}
1179 
1180 		/* Prime the peer's transport structures.  */
1181 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1182 						SCTP_UNKNOWN);
1183 		if (!transport) {
1184 			err = -ENOMEM;
1185 			goto out_free;
1186 		}
1187 
1188 		addrcnt++;
1189 		addr_buf += af->sockaddr_len;
1190 		walk_size += af->sockaddr_len;
1191 	}
1192 
1193 	/* In case the user of sctp_connectx() wants an association
1194 	 * id back, assign one now.
1195 	 */
1196 	if (assoc_id) {
1197 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1198 		if (err < 0)
1199 			goto out_free;
1200 	}
1201 
1202 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1203 	if (err < 0) {
1204 		goto out_free;
1205 	}
1206 
1207 	/* Initialize sk's dport and daddr for getpeername() */
1208 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1209 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1210 	af->to_sk_daddr(sa_addr, sk);
1211 	sk->sk_err = 0;
1212 
1213 	/* in-kernel sockets don't generally have a file allocated to them
1214 	 * if all they do is call sock_create_kern().
1215 	 */
1216 	if (sk->sk_socket->file)
1217 		f_flags = sk->sk_socket->file->f_flags;
1218 
1219 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220 
1221 	err = sctp_wait_for_connect(asoc, &timeo);
1222 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1223 		*assoc_id = asoc->assoc_id;
1224 
1225 	/* Don't free association on exit. */
1226 	asoc = NULL;
1227 
1228 out_free:
1229 
1230 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1231 			  " kaddrs: %p err: %d\n",
1232 			  asoc, kaddrs, err);
1233 	if (asoc)
1234 		sctp_association_free(asoc);
1235 	return err;
1236 }
1237 
1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239  *
1240  * API 8.9
1241  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242  * 			sctp_assoc_t *asoc);
1243  *
1244  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246  * or IPv6 addresses.
1247  *
1248  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249  * Section 3.1.2 for this usage.
1250  *
1251  * addrs is a pointer to an array of one or more socket addresses. Each
1252  * address is contained in its appropriate structure (i.e. struct
1253  * sockaddr_in or struct sockaddr_in6) the family of the address type
1254  * must be used to distengish the address length (note that this
1255  * representation is termed a "packed array" of addresses). The caller
1256  * specifies the number of addresses in the array with addrcnt.
1257  *
1258  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259  * the association id of the new association.  On failure, sctp_connectx()
1260  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1261  * is not touched by the kernel.
1262  *
1263  * For SCTP, the port given in each socket address must be the same, or
1264  * sctp_connectx() will fail, setting errno to EINVAL.
1265  *
1266  * An application can use sctp_connectx to initiate an association with
1267  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1268  * allows a caller to specify multiple addresses at which a peer can be
1269  * reached.  The way the SCTP stack uses the list of addresses to set up
1270  * the association is implementation dependent.  This function only
1271  * specifies that the stack will try to make use of all the addresses in
1272  * the list when needed.
1273  *
1274  * Note that the list of addresses passed in is only used for setting up
1275  * the association.  It does not necessarily equal the set of addresses
1276  * the peer uses for the resulting association.  If the caller wants to
1277  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278  * retrieve them after the association has been set up.
1279  *
1280  * Basically do nothing but copying the addresses from user to kernel
1281  * land and invoking either sctp_connectx(). This is used for tunneling
1282  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283  *
1284  * We don't use copy_from_user() for optimization: we first do the
1285  * sanity checks (buffer size -fast- and access check-healthy
1286  * pointer); if all of those succeed, then we can alloc the memory
1287  * (expensive operation) needed to copy the data to kernel. Then we do
1288  * the copying without checking the user space area
1289  * (__copy_from_user()).
1290  *
1291  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292  * it.
1293  *
1294  * sk        The sk of the socket
1295  * addrs     The pointer to the addresses in user land
1296  * addrssize Size of the addrs buffer
1297  *
1298  * Returns >=0 if ok, <0 errno code on error.
1299  */
1300 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1301 				      struct sockaddr __user *addrs,
1302 				      int addrs_size,
1303 				      sctp_assoc_t *assoc_id)
1304 {
1305 	int err = 0;
1306 	struct sockaddr *kaddrs;
1307 
1308 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1309 			  __func__, sk, addrs, addrs_size);
1310 
1311 	if (unlikely(addrs_size <= 0))
1312 		return -EINVAL;
1313 
1314 	/* Check the user passed a healthy pointer.  */
1315 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1316 		return -EFAULT;
1317 
1318 	/* Alloc space for the address array in kernel memory.  */
1319 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1320 	if (unlikely(!kaddrs))
1321 		return -ENOMEM;
1322 
1323 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1324 		err = -EFAULT;
1325 	} else {
1326 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1327 	}
1328 
1329 	kfree(kaddrs);
1330 
1331 	return err;
1332 }
1333 
1334 /*
1335  * This is an older interface.  It's kept for backward compatibility
1336  * to the option that doesn't provide association id.
1337  */
1338 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1339 				      struct sockaddr __user *addrs,
1340 				      int addrs_size)
1341 {
1342 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1343 }
1344 
1345 /*
1346  * New interface for the API.  The since the API is done with a socket
1347  * option, to make it simple we feed back the association id is as a return
1348  * indication to the call.  Error is always negative and association id is
1349  * always positive.
1350  */
1351 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1352 				      struct sockaddr __user *addrs,
1353 				      int addrs_size)
1354 {
1355 	sctp_assoc_t assoc_id = 0;
1356 	int err = 0;
1357 
1358 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1359 
1360 	if (err)
1361 		return err;
1362 	else
1363 		return assoc_id;
1364 }
1365 
1366 /*
1367  * New (hopefully final) interface for the API.
1368  * We use the sctp_getaddrs_old structure so that use-space library
1369  * can avoid any unnecessary allocations.   The only defferent part
1370  * is that we store the actual length of the address buffer into the
1371  * addrs_num structure member.  That way we can re-use the existing
1372  * code.
1373  */
1374 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1375 					char __user *optval,
1376 					int __user *optlen)
1377 {
1378 	struct sctp_getaddrs_old param;
1379 	sctp_assoc_t assoc_id = 0;
1380 	int err = 0;
1381 
1382 	if (len < sizeof(param))
1383 		return -EINVAL;
1384 
1385 	if (copy_from_user(&param, optval, sizeof(param)))
1386 		return -EFAULT;
1387 
1388 	err = __sctp_setsockopt_connectx(sk,
1389 			(struct sockaddr __user *)param.addrs,
1390 			param.addr_num, &assoc_id);
1391 
1392 	if (err == 0 || err == -EINPROGRESS) {
1393 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1394 			return -EFAULT;
1395 		if (put_user(sizeof(assoc_id), optlen))
1396 			return -EFAULT;
1397 	}
1398 
1399 	return err;
1400 }
1401 
1402 /* API 3.1.4 close() - UDP Style Syntax
1403  * Applications use close() to perform graceful shutdown (as described in
1404  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1405  * by a UDP-style socket.
1406  *
1407  * The syntax is
1408  *
1409  *   ret = close(int sd);
1410  *
1411  *   sd      - the socket descriptor of the associations to be closed.
1412  *
1413  * To gracefully shutdown a specific association represented by the
1414  * UDP-style socket, an application should use the sendmsg() call,
1415  * passing no user data, but including the appropriate flag in the
1416  * ancillary data (see Section xxxx).
1417  *
1418  * If sd in the close() call is a branched-off socket representing only
1419  * one association, the shutdown is performed on that association only.
1420  *
1421  * 4.1.6 close() - TCP Style Syntax
1422  *
1423  * Applications use close() to gracefully close down an association.
1424  *
1425  * The syntax is:
1426  *
1427  *    int close(int sd);
1428  *
1429  *      sd      - the socket descriptor of the association to be closed.
1430  *
1431  * After an application calls close() on a socket descriptor, no further
1432  * socket operations will succeed on that descriptor.
1433  *
1434  * API 7.1.4 SO_LINGER
1435  *
1436  * An application using the TCP-style socket can use this option to
1437  * perform the SCTP ABORT primitive.  The linger option structure is:
1438  *
1439  *  struct  linger {
1440  *     int     l_onoff;                // option on/off
1441  *     int     l_linger;               // linger time
1442  * };
1443  *
1444  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1445  * to 0, calling close() is the same as the ABORT primitive.  If the
1446  * value is set to a negative value, the setsockopt() call will return
1447  * an error.  If the value is set to a positive value linger_time, the
1448  * close() can be blocked for at most linger_time ms.  If the graceful
1449  * shutdown phase does not finish during this period, close() will
1450  * return but the graceful shutdown phase continues in the system.
1451  */
1452 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1453 {
1454 	struct sctp_endpoint *ep;
1455 	struct sctp_association *asoc;
1456 	struct list_head *pos, *temp;
1457 	unsigned int data_was_unread;
1458 
1459 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1460 
1461 	sctp_lock_sock(sk);
1462 	sk->sk_shutdown = SHUTDOWN_MASK;
1463 	sk->sk_state = SCTP_SS_CLOSING;
1464 
1465 	ep = sctp_sk(sk)->ep;
1466 
1467 	/* Clean up any skbs sitting on the receive queue.  */
1468 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1469 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1470 
1471 	/* Walk all associations on an endpoint.  */
1472 	list_for_each_safe(pos, temp, &ep->asocs) {
1473 		asoc = list_entry(pos, struct sctp_association, asocs);
1474 
1475 		if (sctp_style(sk, TCP)) {
1476 			/* A closed association can still be in the list if
1477 			 * it belongs to a TCP-style listening socket that is
1478 			 * not yet accepted. If so, free it. If not, send an
1479 			 * ABORT or SHUTDOWN based on the linger options.
1480 			 */
1481 			if (sctp_state(asoc, CLOSED)) {
1482 				sctp_unhash_established(asoc);
1483 				sctp_association_free(asoc);
1484 				continue;
1485 			}
1486 		}
1487 
1488 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1489 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1490 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1491 			struct sctp_chunk *chunk;
1492 
1493 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1494 			if (chunk)
1495 				sctp_primitive_ABORT(asoc, chunk);
1496 		} else
1497 			sctp_primitive_SHUTDOWN(asoc, NULL);
1498 	}
1499 
1500 	/* On a TCP-style socket, block for at most linger_time if set. */
1501 	if (sctp_style(sk, TCP) && timeout)
1502 		sctp_wait_for_close(sk, timeout);
1503 
1504 	/* This will run the backlog queue.  */
1505 	sctp_release_sock(sk);
1506 
1507 	/* Supposedly, no process has access to the socket, but
1508 	 * the net layers still may.
1509 	 */
1510 	sctp_local_bh_disable();
1511 	sctp_bh_lock_sock(sk);
1512 
1513 	/* Hold the sock, since sk_common_release() will put sock_put()
1514 	 * and we have just a little more cleanup.
1515 	 */
1516 	sock_hold(sk);
1517 	sk_common_release(sk);
1518 
1519 	sctp_bh_unlock_sock(sk);
1520 	sctp_local_bh_enable();
1521 
1522 	sock_put(sk);
1523 
1524 	SCTP_DBG_OBJCNT_DEC(sock);
1525 }
1526 
1527 /* Handle EPIPE error. */
1528 static int sctp_error(struct sock *sk, int flags, int err)
1529 {
1530 	if (err == -EPIPE)
1531 		err = sock_error(sk) ? : -EPIPE;
1532 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1533 		send_sig(SIGPIPE, current, 0);
1534 	return err;
1535 }
1536 
1537 /* API 3.1.3 sendmsg() - UDP Style Syntax
1538  *
1539  * An application uses sendmsg() and recvmsg() calls to transmit data to
1540  * and receive data from its peer.
1541  *
1542  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1543  *                  int flags);
1544  *
1545  *  socket  - the socket descriptor of the endpoint.
1546  *  message - pointer to the msghdr structure which contains a single
1547  *            user message and possibly some ancillary data.
1548  *
1549  *            See Section 5 for complete description of the data
1550  *            structures.
1551  *
1552  *  flags   - flags sent or received with the user message, see Section
1553  *            5 for complete description of the flags.
1554  *
1555  * Note:  This function could use a rewrite especially when explicit
1556  * connect support comes in.
1557  */
1558 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1559 
1560 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1561 
1562 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1563 			     struct msghdr *msg, size_t msg_len)
1564 {
1565 	struct sctp_sock *sp;
1566 	struct sctp_endpoint *ep;
1567 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1568 	struct sctp_transport *transport, *chunk_tp;
1569 	struct sctp_chunk *chunk;
1570 	union sctp_addr to;
1571 	struct sockaddr *msg_name = NULL;
1572 	struct sctp_sndrcvinfo default_sinfo;
1573 	struct sctp_sndrcvinfo *sinfo;
1574 	struct sctp_initmsg *sinit;
1575 	sctp_assoc_t associd = 0;
1576 	sctp_cmsgs_t cmsgs = { NULL };
1577 	int err;
1578 	sctp_scope_t scope;
1579 	long timeo;
1580 	__u16 sinfo_flags = 0;
1581 	struct sctp_datamsg *datamsg;
1582 	int msg_flags = msg->msg_flags;
1583 
1584 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1585 			  sk, msg, msg_len);
1586 
1587 	err = 0;
1588 	sp = sctp_sk(sk);
1589 	ep = sp->ep;
1590 
1591 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1592 
1593 	/* We cannot send a message over a TCP-style listening socket. */
1594 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1595 		err = -EPIPE;
1596 		goto out_nounlock;
1597 	}
1598 
1599 	/* Parse out the SCTP CMSGs.  */
1600 	err = sctp_msghdr_parse(msg, &cmsgs);
1601 
1602 	if (err) {
1603 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1604 		goto out_nounlock;
1605 	}
1606 
1607 	/* Fetch the destination address for this packet.  This
1608 	 * address only selects the association--it is not necessarily
1609 	 * the address we will send to.
1610 	 * For a peeled-off socket, msg_name is ignored.
1611 	 */
1612 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1613 		int msg_namelen = msg->msg_namelen;
1614 
1615 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1616 				       msg_namelen);
1617 		if (err)
1618 			return err;
1619 
1620 		if (msg_namelen > sizeof(to))
1621 			msg_namelen = sizeof(to);
1622 		memcpy(&to, msg->msg_name, msg_namelen);
1623 		msg_name = msg->msg_name;
1624 	}
1625 
1626 	sinfo = cmsgs.info;
1627 	sinit = cmsgs.init;
1628 
1629 	/* Did the user specify SNDRCVINFO?  */
1630 	if (sinfo) {
1631 		sinfo_flags = sinfo->sinfo_flags;
1632 		associd = sinfo->sinfo_assoc_id;
1633 	}
1634 
1635 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1636 			  msg_len, sinfo_flags);
1637 
1638 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1639 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1640 		err = -EINVAL;
1641 		goto out_nounlock;
1642 	}
1643 
1644 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1645 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1646 	 * If SCTP_ABORT is set, the message length could be non zero with
1647 	 * the msg_iov set to the user abort reason.
1648 	 */
1649 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1650 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1651 		err = -EINVAL;
1652 		goto out_nounlock;
1653 	}
1654 
1655 	/* If SCTP_ADDR_OVER is set, there must be an address
1656 	 * specified in msg_name.
1657 	 */
1658 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1659 		err = -EINVAL;
1660 		goto out_nounlock;
1661 	}
1662 
1663 	transport = NULL;
1664 
1665 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1666 
1667 	sctp_lock_sock(sk);
1668 
1669 	/* If a msg_name has been specified, assume this is to be used.  */
1670 	if (msg_name) {
1671 		/* Look for a matching association on the endpoint. */
1672 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1673 		if (!asoc) {
1674 			/* If we could not find a matching association on the
1675 			 * endpoint, make sure that it is not a TCP-style
1676 			 * socket that already has an association or there is
1677 			 * no peeled-off association on another socket.
1678 			 */
1679 			if ((sctp_style(sk, TCP) &&
1680 			     sctp_sstate(sk, ESTABLISHED)) ||
1681 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1682 				err = -EADDRNOTAVAIL;
1683 				goto out_unlock;
1684 			}
1685 		}
1686 	} else {
1687 		asoc = sctp_id2assoc(sk, associd);
1688 		if (!asoc) {
1689 			err = -EPIPE;
1690 			goto out_unlock;
1691 		}
1692 	}
1693 
1694 	if (asoc) {
1695 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1696 
1697 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1698 		 * socket that has an association in CLOSED state. This can
1699 		 * happen when an accepted socket has an association that is
1700 		 * already CLOSED.
1701 		 */
1702 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1703 			err = -EPIPE;
1704 			goto out_unlock;
1705 		}
1706 
1707 		if (sinfo_flags & SCTP_EOF) {
1708 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1709 					  asoc);
1710 			sctp_primitive_SHUTDOWN(asoc, NULL);
1711 			err = 0;
1712 			goto out_unlock;
1713 		}
1714 		if (sinfo_flags & SCTP_ABORT) {
1715 
1716 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1717 			if (!chunk) {
1718 				err = -ENOMEM;
1719 				goto out_unlock;
1720 			}
1721 
1722 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1723 			sctp_primitive_ABORT(asoc, chunk);
1724 			err = 0;
1725 			goto out_unlock;
1726 		}
1727 	}
1728 
1729 	/* Do we need to create the association?  */
1730 	if (!asoc) {
1731 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1732 
1733 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1734 			err = -EINVAL;
1735 			goto out_unlock;
1736 		}
1737 
1738 		/* Check for invalid stream against the stream counts,
1739 		 * either the default or the user specified stream counts.
1740 		 */
1741 		if (sinfo) {
1742 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1743 				/* Check against the defaults. */
1744 				if (sinfo->sinfo_stream >=
1745 				    sp->initmsg.sinit_num_ostreams) {
1746 					err = -EINVAL;
1747 					goto out_unlock;
1748 				}
1749 			} else {
1750 				/* Check against the requested.  */
1751 				if (sinfo->sinfo_stream >=
1752 				    sinit->sinit_num_ostreams) {
1753 					err = -EINVAL;
1754 					goto out_unlock;
1755 				}
1756 			}
1757 		}
1758 
1759 		/*
1760 		 * API 3.1.2 bind() - UDP Style Syntax
1761 		 * If a bind() or sctp_bindx() is not called prior to a
1762 		 * sendmsg() call that initiates a new association, the
1763 		 * system picks an ephemeral port and will choose an address
1764 		 * set equivalent to binding with a wildcard address.
1765 		 */
1766 		if (!ep->base.bind_addr.port) {
1767 			if (sctp_autobind(sk)) {
1768 				err = -EAGAIN;
1769 				goto out_unlock;
1770 			}
1771 		} else {
1772 			/*
1773 			 * If an unprivileged user inherits a one-to-many
1774 			 * style socket with open associations on a privileged
1775 			 * port, it MAY be permitted to accept new associations,
1776 			 * but it SHOULD NOT be permitted to open new
1777 			 * associations.
1778 			 */
1779 			if (ep->base.bind_addr.port < PROT_SOCK &&
1780 			    !capable(CAP_NET_BIND_SERVICE)) {
1781 				err = -EACCES;
1782 				goto out_unlock;
1783 			}
1784 		}
1785 
1786 		scope = sctp_scope(&to);
1787 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1788 		if (!new_asoc) {
1789 			err = -ENOMEM;
1790 			goto out_unlock;
1791 		}
1792 		asoc = new_asoc;
1793 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1794 		if (err < 0) {
1795 			err = -ENOMEM;
1796 			goto out_free;
1797 		}
1798 
1799 		/* If the SCTP_INIT ancillary data is specified, set all
1800 		 * the association init values accordingly.
1801 		 */
1802 		if (sinit) {
1803 			if (sinit->sinit_num_ostreams) {
1804 				asoc->c.sinit_num_ostreams =
1805 					sinit->sinit_num_ostreams;
1806 			}
1807 			if (sinit->sinit_max_instreams) {
1808 				asoc->c.sinit_max_instreams =
1809 					sinit->sinit_max_instreams;
1810 			}
1811 			if (sinit->sinit_max_attempts) {
1812 				asoc->max_init_attempts
1813 					= sinit->sinit_max_attempts;
1814 			}
1815 			if (sinit->sinit_max_init_timeo) {
1816 				asoc->max_init_timeo =
1817 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1818 			}
1819 		}
1820 
1821 		/* Prime the peer's transport structures.  */
1822 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1823 		if (!transport) {
1824 			err = -ENOMEM;
1825 			goto out_free;
1826 		}
1827 	}
1828 
1829 	/* ASSERT: we have a valid association at this point.  */
1830 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1831 
1832 	if (!sinfo) {
1833 		/* If the user didn't specify SNDRCVINFO, make up one with
1834 		 * some defaults.
1835 		 */
1836 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1837 		default_sinfo.sinfo_stream = asoc->default_stream;
1838 		default_sinfo.sinfo_flags = asoc->default_flags;
1839 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1840 		default_sinfo.sinfo_context = asoc->default_context;
1841 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1842 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1843 		sinfo = &default_sinfo;
1844 	}
1845 
1846 	/* API 7.1.7, the sndbuf size per association bounds the
1847 	 * maximum size of data that can be sent in a single send call.
1848 	 */
1849 	if (msg_len > sk->sk_sndbuf) {
1850 		err = -EMSGSIZE;
1851 		goto out_free;
1852 	}
1853 
1854 	if (asoc->pmtu_pending)
1855 		sctp_assoc_pending_pmtu(asoc);
1856 
1857 	/* If fragmentation is disabled and the message length exceeds the
1858 	 * association fragmentation point, return EMSGSIZE.  The I-D
1859 	 * does not specify what this error is, but this looks like
1860 	 * a great fit.
1861 	 */
1862 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1863 		err = -EMSGSIZE;
1864 		goto out_free;
1865 	}
1866 
1867 	/* Check for invalid stream. */
1868 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1869 		err = -EINVAL;
1870 		goto out_free;
1871 	}
1872 
1873 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1874 	if (!sctp_wspace(asoc)) {
1875 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1876 		if (err)
1877 			goto out_free;
1878 	}
1879 
1880 	/* If an address is passed with the sendto/sendmsg call, it is used
1881 	 * to override the primary destination address in the TCP model, or
1882 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1883 	 */
1884 	if ((sctp_style(sk, TCP) && msg_name) ||
1885 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1886 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1887 		if (!chunk_tp) {
1888 			err = -EINVAL;
1889 			goto out_free;
1890 		}
1891 	} else
1892 		chunk_tp = NULL;
1893 
1894 	/* Auto-connect, if we aren't connected already. */
1895 	if (sctp_state(asoc, CLOSED)) {
1896 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1897 		if (err < 0)
1898 			goto out_free;
1899 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1900 	}
1901 
1902 	/* Break the message into multiple chunks of maximum size. */
1903 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1904 	if (!datamsg) {
1905 		err = -ENOMEM;
1906 		goto out_free;
1907 	}
1908 
1909 	/* Now send the (possibly) fragmented message. */
1910 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1911 		sctp_chunk_hold(chunk);
1912 
1913 		/* Do accounting for the write space.  */
1914 		sctp_set_owner_w(chunk);
1915 
1916 		chunk->transport = chunk_tp;
1917 	}
1918 
1919 	/* Send it to the lower layers.  Note:  all chunks
1920 	 * must either fail or succeed.   The lower layer
1921 	 * works that way today.  Keep it that way or this
1922 	 * breaks.
1923 	 */
1924 	err = sctp_primitive_SEND(asoc, datamsg);
1925 	/* Did the lower layer accept the chunk? */
1926 	if (err)
1927 		sctp_datamsg_free(datamsg);
1928 	else
1929 		sctp_datamsg_put(datamsg);
1930 
1931 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1932 
1933 	if (err)
1934 		goto out_free;
1935 	else
1936 		err = msg_len;
1937 
1938 	/* If we are already past ASSOCIATE, the lower
1939 	 * layers are responsible for association cleanup.
1940 	 */
1941 	goto out_unlock;
1942 
1943 out_free:
1944 	if (new_asoc)
1945 		sctp_association_free(asoc);
1946 out_unlock:
1947 	sctp_release_sock(sk);
1948 
1949 out_nounlock:
1950 	return sctp_error(sk, msg_flags, err);
1951 
1952 #if 0
1953 do_sock_err:
1954 	if (msg_len)
1955 		err = msg_len;
1956 	else
1957 		err = sock_error(sk);
1958 	goto out;
1959 
1960 do_interrupted:
1961 	if (msg_len)
1962 		err = msg_len;
1963 	goto out;
1964 #endif /* 0 */
1965 }
1966 
1967 /* This is an extended version of skb_pull() that removes the data from the
1968  * start of a skb even when data is spread across the list of skb's in the
1969  * frag_list. len specifies the total amount of data that needs to be removed.
1970  * when 'len' bytes could be removed from the skb, it returns 0.
1971  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1972  * could not be removed.
1973  */
1974 static int sctp_skb_pull(struct sk_buff *skb, int len)
1975 {
1976 	struct sk_buff *list;
1977 	int skb_len = skb_headlen(skb);
1978 	int rlen;
1979 
1980 	if (len <= skb_len) {
1981 		__skb_pull(skb, len);
1982 		return 0;
1983 	}
1984 	len -= skb_len;
1985 	__skb_pull(skb, skb_len);
1986 
1987 	skb_walk_frags(skb, list) {
1988 		rlen = sctp_skb_pull(list, len);
1989 		skb->len -= (len-rlen);
1990 		skb->data_len -= (len-rlen);
1991 
1992 		if (!rlen)
1993 			return 0;
1994 
1995 		len = rlen;
1996 	}
1997 
1998 	return len;
1999 }
2000 
2001 /* API 3.1.3  recvmsg() - UDP Style Syntax
2002  *
2003  *  ssize_t recvmsg(int socket, struct msghdr *message,
2004  *                    int flags);
2005  *
2006  *  socket  - the socket descriptor of the endpoint.
2007  *  message - pointer to the msghdr structure which contains a single
2008  *            user message and possibly some ancillary data.
2009  *
2010  *            See Section 5 for complete description of the data
2011  *            structures.
2012  *
2013  *  flags   - flags sent or received with the user message, see Section
2014  *            5 for complete description of the flags.
2015  */
2016 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2017 
2018 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2019 			     struct msghdr *msg, size_t len, int noblock,
2020 			     int flags, int *addr_len)
2021 {
2022 	struct sctp_ulpevent *event = NULL;
2023 	struct sctp_sock *sp = sctp_sk(sk);
2024 	struct sk_buff *skb;
2025 	int copied;
2026 	int err = 0;
2027 	int skb_len;
2028 
2029 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2030 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2031 			  "len", len, "knoblauch", noblock,
2032 			  "flags", flags, "addr_len", addr_len);
2033 
2034 	sctp_lock_sock(sk);
2035 
2036 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2037 		err = -ENOTCONN;
2038 		goto out;
2039 	}
2040 
2041 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2042 	if (!skb)
2043 		goto out;
2044 
2045 	/* Get the total length of the skb including any skb's in the
2046 	 * frag_list.
2047 	 */
2048 	skb_len = skb->len;
2049 
2050 	copied = skb_len;
2051 	if (copied > len)
2052 		copied = len;
2053 
2054 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2055 
2056 	event = sctp_skb2event(skb);
2057 
2058 	if (err)
2059 		goto out_free;
2060 
2061 	sock_recv_ts_and_drops(msg, sk, skb);
2062 	if (sctp_ulpevent_is_notification(event)) {
2063 		msg->msg_flags |= MSG_NOTIFICATION;
2064 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2065 	} else {
2066 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2067 	}
2068 
2069 	/* Check if we allow SCTP_SNDRCVINFO. */
2070 	if (sp->subscribe.sctp_data_io_event)
2071 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2072 #if 0
2073 	/* FIXME: we should be calling IP/IPv6 layers.  */
2074 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2075 		ip_cmsg_recv(msg, skb);
2076 #endif
2077 
2078 	err = copied;
2079 
2080 	/* If skb's length exceeds the user's buffer, update the skb and
2081 	 * push it back to the receive_queue so that the next call to
2082 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2083 	 */
2084 	if (skb_len > copied) {
2085 		msg->msg_flags &= ~MSG_EOR;
2086 		if (flags & MSG_PEEK)
2087 			goto out_free;
2088 		sctp_skb_pull(skb, copied);
2089 		skb_queue_head(&sk->sk_receive_queue, skb);
2090 
2091 		/* When only partial message is copied to the user, increase
2092 		 * rwnd by that amount. If all the data in the skb is read,
2093 		 * rwnd is updated when the event is freed.
2094 		 */
2095 		if (!sctp_ulpevent_is_notification(event))
2096 			sctp_assoc_rwnd_increase(event->asoc, copied);
2097 		goto out;
2098 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2099 		   (event->msg_flags & MSG_EOR))
2100 		msg->msg_flags |= MSG_EOR;
2101 	else
2102 		msg->msg_flags &= ~MSG_EOR;
2103 
2104 out_free:
2105 	if (flags & MSG_PEEK) {
2106 		/* Release the skb reference acquired after peeking the skb in
2107 		 * sctp_skb_recv_datagram().
2108 		 */
2109 		kfree_skb(skb);
2110 	} else {
2111 		/* Free the event which includes releasing the reference to
2112 		 * the owner of the skb, freeing the skb and updating the
2113 		 * rwnd.
2114 		 */
2115 		sctp_ulpevent_free(event);
2116 	}
2117 out:
2118 	sctp_release_sock(sk);
2119 	return err;
2120 }
2121 
2122 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2123  *
2124  * This option is a on/off flag.  If enabled no SCTP message
2125  * fragmentation will be performed.  Instead if a message being sent
2126  * exceeds the current PMTU size, the message will NOT be sent and
2127  * instead a error will be indicated to the user.
2128  */
2129 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2130 					     char __user *optval,
2131 					     unsigned int optlen)
2132 {
2133 	int val;
2134 
2135 	if (optlen < sizeof(int))
2136 		return -EINVAL;
2137 
2138 	if (get_user(val, (int __user *)optval))
2139 		return -EFAULT;
2140 
2141 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2142 
2143 	return 0;
2144 }
2145 
2146 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2147 				  unsigned int optlen)
2148 {
2149 	struct sctp_association *asoc;
2150 	struct sctp_ulpevent *event;
2151 
2152 	if (optlen > sizeof(struct sctp_event_subscribe))
2153 		return -EINVAL;
2154 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2155 		return -EFAULT;
2156 
2157 	/*
2158 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2159 	 * if there is no data to be sent or retransmit, the stack will
2160 	 * immediately send up this notification.
2161 	 */
2162 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2163 				       &sctp_sk(sk)->subscribe)) {
2164 		asoc = sctp_id2assoc(sk, 0);
2165 
2166 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2167 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2168 					GFP_ATOMIC);
2169 			if (!event)
2170 				return -ENOMEM;
2171 
2172 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2173 		}
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2180  *
2181  * This socket option is applicable to the UDP-style socket only.  When
2182  * set it will cause associations that are idle for more than the
2183  * specified number of seconds to automatically close.  An association
2184  * being idle is defined an association that has NOT sent or received
2185  * user data.  The special value of '0' indicates that no automatic
2186  * close of any associations should be performed.  The option expects an
2187  * integer defining the number of seconds of idle time before an
2188  * association is closed.
2189  */
2190 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2191 				     unsigned int optlen)
2192 {
2193 	struct sctp_sock *sp = sctp_sk(sk);
2194 
2195 	/* Applicable to UDP-style socket only */
2196 	if (sctp_style(sk, TCP))
2197 		return -EOPNOTSUPP;
2198 	if (optlen != sizeof(int))
2199 		return -EINVAL;
2200 	if (copy_from_user(&sp->autoclose, optval, optlen))
2201 		return -EFAULT;
2202 	/* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2203 	sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2204 
2205 	return 0;
2206 }
2207 
2208 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2209  *
2210  * Applications can enable or disable heartbeats for any peer address of
2211  * an association, modify an address's heartbeat interval, force a
2212  * heartbeat to be sent immediately, and adjust the address's maximum
2213  * number of retransmissions sent before an address is considered
2214  * unreachable.  The following structure is used to access and modify an
2215  * address's parameters:
2216  *
2217  *  struct sctp_paddrparams {
2218  *     sctp_assoc_t            spp_assoc_id;
2219  *     struct sockaddr_storage spp_address;
2220  *     uint32_t                spp_hbinterval;
2221  *     uint16_t                spp_pathmaxrxt;
2222  *     uint32_t                spp_pathmtu;
2223  *     uint32_t                spp_sackdelay;
2224  *     uint32_t                spp_flags;
2225  * };
2226  *
2227  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2228  *                     application, and identifies the association for
2229  *                     this query.
2230  *   spp_address     - This specifies which address is of interest.
2231  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2232  *                     in milliseconds.  If a  value of zero
2233  *                     is present in this field then no changes are to
2234  *                     be made to this parameter.
2235  *   spp_pathmaxrxt  - This contains the maximum number of
2236  *                     retransmissions before this address shall be
2237  *                     considered unreachable. If a  value of zero
2238  *                     is present in this field then no changes are to
2239  *                     be made to this parameter.
2240  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2241  *                     specified here will be the "fixed" path mtu.
2242  *                     Note that if the spp_address field is empty
2243  *                     then all associations on this address will
2244  *                     have this fixed path mtu set upon them.
2245  *
2246  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2247  *                     the number of milliseconds that sacks will be delayed
2248  *                     for. This value will apply to all addresses of an
2249  *                     association if the spp_address field is empty. Note
2250  *                     also, that if delayed sack is enabled and this
2251  *                     value is set to 0, no change is made to the last
2252  *                     recorded delayed sack timer value.
2253  *
2254  *   spp_flags       - These flags are used to control various features
2255  *                     on an association. The flag field may contain
2256  *                     zero or more of the following options.
2257  *
2258  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2259  *                     specified address. Note that if the address
2260  *                     field is empty all addresses for the association
2261  *                     have heartbeats enabled upon them.
2262  *
2263  *                     SPP_HB_DISABLE - Disable heartbeats on the
2264  *                     speicifed address. Note that if the address
2265  *                     field is empty all addresses for the association
2266  *                     will have their heartbeats disabled. Note also
2267  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2268  *                     mutually exclusive, only one of these two should
2269  *                     be specified. Enabling both fields will have
2270  *                     undetermined results.
2271  *
2272  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2273  *                     to be made immediately.
2274  *
2275  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2276  *                     heartbeat delayis to be set to the value of 0
2277  *                     milliseconds.
2278  *
2279  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2280  *                     discovery upon the specified address. Note that
2281  *                     if the address feild is empty then all addresses
2282  *                     on the association are effected.
2283  *
2284  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2285  *                     discovery upon the specified address. Note that
2286  *                     if the address feild is empty then all addresses
2287  *                     on the association are effected. Not also that
2288  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2289  *                     exclusive. Enabling both will have undetermined
2290  *                     results.
2291  *
2292  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2293  *                     on delayed sack. The time specified in spp_sackdelay
2294  *                     is used to specify the sack delay for this address. Note
2295  *                     that if spp_address is empty then all addresses will
2296  *                     enable delayed sack and take on the sack delay
2297  *                     value specified in spp_sackdelay.
2298  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2299  *                     off delayed sack. If the spp_address field is blank then
2300  *                     delayed sack is disabled for the entire association. Note
2301  *                     also that this field is mutually exclusive to
2302  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2303  *                     results.
2304  */
2305 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2306 				       struct sctp_transport   *trans,
2307 				       struct sctp_association *asoc,
2308 				       struct sctp_sock        *sp,
2309 				       int                      hb_change,
2310 				       int                      pmtud_change,
2311 				       int                      sackdelay_change)
2312 {
2313 	int error;
2314 
2315 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2316 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2317 		if (error)
2318 			return error;
2319 	}
2320 
2321 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2322 	 * this field is ignored.  Note also that a value of zero indicates
2323 	 * the current setting should be left unchanged.
2324 	 */
2325 	if (params->spp_flags & SPP_HB_ENABLE) {
2326 
2327 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2328 		 * set.  This lets us use 0 value when this flag
2329 		 * is set.
2330 		 */
2331 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2332 			params->spp_hbinterval = 0;
2333 
2334 		if (params->spp_hbinterval ||
2335 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2336 			if (trans) {
2337 				trans->hbinterval =
2338 				    msecs_to_jiffies(params->spp_hbinterval);
2339 			} else if (asoc) {
2340 				asoc->hbinterval =
2341 				    msecs_to_jiffies(params->spp_hbinterval);
2342 			} else {
2343 				sp->hbinterval = params->spp_hbinterval;
2344 			}
2345 		}
2346 	}
2347 
2348 	if (hb_change) {
2349 		if (trans) {
2350 			trans->param_flags =
2351 				(trans->param_flags & ~SPP_HB) | hb_change;
2352 		} else if (asoc) {
2353 			asoc->param_flags =
2354 				(asoc->param_flags & ~SPP_HB) | hb_change;
2355 		} else {
2356 			sp->param_flags =
2357 				(sp->param_flags & ~SPP_HB) | hb_change;
2358 		}
2359 	}
2360 
2361 	/* When Path MTU discovery is disabled the value specified here will
2362 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2363 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2364 	 * effect).
2365 	 */
2366 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2367 		if (trans) {
2368 			trans->pathmtu = params->spp_pathmtu;
2369 			sctp_assoc_sync_pmtu(asoc);
2370 		} else if (asoc) {
2371 			asoc->pathmtu = params->spp_pathmtu;
2372 			sctp_frag_point(asoc, params->spp_pathmtu);
2373 		} else {
2374 			sp->pathmtu = params->spp_pathmtu;
2375 		}
2376 	}
2377 
2378 	if (pmtud_change) {
2379 		if (trans) {
2380 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2381 				(params->spp_flags & SPP_PMTUD_ENABLE);
2382 			trans->param_flags =
2383 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2384 			if (update) {
2385 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2386 				sctp_assoc_sync_pmtu(asoc);
2387 			}
2388 		} else if (asoc) {
2389 			asoc->param_flags =
2390 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2391 		} else {
2392 			sp->param_flags =
2393 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2394 		}
2395 	}
2396 
2397 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2398 	 * value of this field is ignored.  Note also that a value of zero
2399 	 * indicates the current setting should be left unchanged.
2400 	 */
2401 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2402 		if (trans) {
2403 			trans->sackdelay =
2404 				msecs_to_jiffies(params->spp_sackdelay);
2405 		} else if (asoc) {
2406 			asoc->sackdelay =
2407 				msecs_to_jiffies(params->spp_sackdelay);
2408 		} else {
2409 			sp->sackdelay = params->spp_sackdelay;
2410 		}
2411 	}
2412 
2413 	if (sackdelay_change) {
2414 		if (trans) {
2415 			trans->param_flags =
2416 				(trans->param_flags & ~SPP_SACKDELAY) |
2417 				sackdelay_change;
2418 		} else if (asoc) {
2419 			asoc->param_flags =
2420 				(asoc->param_flags & ~SPP_SACKDELAY) |
2421 				sackdelay_change;
2422 		} else {
2423 			sp->param_flags =
2424 				(sp->param_flags & ~SPP_SACKDELAY) |
2425 				sackdelay_change;
2426 		}
2427 	}
2428 
2429 	/* Note that a value of zero indicates the current setting should be
2430 	   left unchanged.
2431 	 */
2432 	if (params->spp_pathmaxrxt) {
2433 		if (trans) {
2434 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2435 		} else if (asoc) {
2436 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2437 		} else {
2438 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2439 		}
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2446 					    char __user *optval,
2447 					    unsigned int optlen)
2448 {
2449 	struct sctp_paddrparams  params;
2450 	struct sctp_transport   *trans = NULL;
2451 	struct sctp_association *asoc = NULL;
2452 	struct sctp_sock        *sp = sctp_sk(sk);
2453 	int error;
2454 	int hb_change, pmtud_change, sackdelay_change;
2455 
2456 	if (optlen != sizeof(struct sctp_paddrparams))
2457 		return - EINVAL;
2458 
2459 	if (copy_from_user(&params, optval, optlen))
2460 		return -EFAULT;
2461 
2462 	/* Validate flags and value parameters. */
2463 	hb_change        = params.spp_flags & SPP_HB;
2464 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2465 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2466 
2467 	if (hb_change        == SPP_HB ||
2468 	    pmtud_change     == SPP_PMTUD ||
2469 	    sackdelay_change == SPP_SACKDELAY ||
2470 	    params.spp_sackdelay > 500 ||
2471 	    (params.spp_pathmtu &&
2472 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2473 		return -EINVAL;
2474 
2475 	/* If an address other than INADDR_ANY is specified, and
2476 	 * no transport is found, then the request is invalid.
2477 	 */
2478 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2479 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2480 					       params.spp_assoc_id);
2481 		if (!trans)
2482 			return -EINVAL;
2483 	}
2484 
2485 	/* Get association, if assoc_id != 0 and the socket is a one
2486 	 * to many style socket, and an association was not found, then
2487 	 * the id was invalid.
2488 	 */
2489 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2490 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2491 		return -EINVAL;
2492 
2493 	/* Heartbeat demand can only be sent on a transport or
2494 	 * association, but not a socket.
2495 	 */
2496 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2497 		return -EINVAL;
2498 
2499 	/* Process parameters. */
2500 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2501 					    hb_change, pmtud_change,
2502 					    sackdelay_change);
2503 
2504 	if (error)
2505 		return error;
2506 
2507 	/* If changes are for association, also apply parameters to each
2508 	 * transport.
2509 	 */
2510 	if (!trans && asoc) {
2511 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2512 				transports) {
2513 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2514 						    hb_change, pmtud_change,
2515 						    sackdelay_change);
2516 		}
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 /*
2523  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2524  *
2525  * This option will effect the way delayed acks are performed.  This
2526  * option allows you to get or set the delayed ack time, in
2527  * milliseconds.  It also allows changing the delayed ack frequency.
2528  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2529  * the assoc_id is 0, then this sets or gets the endpoints default
2530  * values.  If the assoc_id field is non-zero, then the set or get
2531  * effects the specified association for the one to many model (the
2532  * assoc_id field is ignored by the one to one model).  Note that if
2533  * sack_delay or sack_freq are 0 when setting this option, then the
2534  * current values will remain unchanged.
2535  *
2536  * struct sctp_sack_info {
2537  *     sctp_assoc_t            sack_assoc_id;
2538  *     uint32_t                sack_delay;
2539  *     uint32_t                sack_freq;
2540  * };
2541  *
2542  * sack_assoc_id -  This parameter, indicates which association the user
2543  *    is performing an action upon.  Note that if this field's value is
2544  *    zero then the endpoints default value is changed (effecting future
2545  *    associations only).
2546  *
2547  * sack_delay -  This parameter contains the number of milliseconds that
2548  *    the user is requesting the delayed ACK timer be set to.  Note that
2549  *    this value is defined in the standard to be between 200 and 500
2550  *    milliseconds.
2551  *
2552  * sack_freq -  This parameter contains the number of packets that must
2553  *    be received before a sack is sent without waiting for the delay
2554  *    timer to expire.  The default value for this is 2, setting this
2555  *    value to 1 will disable the delayed sack algorithm.
2556  */
2557 
2558 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2559 				       char __user *optval, unsigned int optlen)
2560 {
2561 	struct sctp_sack_info    params;
2562 	struct sctp_transport   *trans = NULL;
2563 	struct sctp_association *asoc = NULL;
2564 	struct sctp_sock        *sp = sctp_sk(sk);
2565 
2566 	if (optlen == sizeof(struct sctp_sack_info)) {
2567 		if (copy_from_user(&params, optval, optlen))
2568 			return -EFAULT;
2569 
2570 		if (params.sack_delay == 0 && params.sack_freq == 0)
2571 			return 0;
2572 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2573 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2574 		pr_warn("Use struct sctp_sack_info instead\n");
2575 		if (copy_from_user(&params, optval, optlen))
2576 			return -EFAULT;
2577 
2578 		if (params.sack_delay == 0)
2579 			params.sack_freq = 1;
2580 		else
2581 			params.sack_freq = 0;
2582 	} else
2583 		return - EINVAL;
2584 
2585 	/* Validate value parameter. */
2586 	if (params.sack_delay > 500)
2587 		return -EINVAL;
2588 
2589 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2590 	 * to many style socket, and an association was not found, then
2591 	 * the id was invalid.
2592 	 */
2593 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2594 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2595 		return -EINVAL;
2596 
2597 	if (params.sack_delay) {
2598 		if (asoc) {
2599 			asoc->sackdelay =
2600 				msecs_to_jiffies(params.sack_delay);
2601 			asoc->param_flags =
2602 				(asoc->param_flags & ~SPP_SACKDELAY) |
2603 				SPP_SACKDELAY_ENABLE;
2604 		} else {
2605 			sp->sackdelay = params.sack_delay;
2606 			sp->param_flags =
2607 				(sp->param_flags & ~SPP_SACKDELAY) |
2608 				SPP_SACKDELAY_ENABLE;
2609 		}
2610 	}
2611 
2612 	if (params.sack_freq == 1) {
2613 		if (asoc) {
2614 			asoc->param_flags =
2615 				(asoc->param_flags & ~SPP_SACKDELAY) |
2616 				SPP_SACKDELAY_DISABLE;
2617 		} else {
2618 			sp->param_flags =
2619 				(sp->param_flags & ~SPP_SACKDELAY) |
2620 				SPP_SACKDELAY_DISABLE;
2621 		}
2622 	} else if (params.sack_freq > 1) {
2623 		if (asoc) {
2624 			asoc->sackfreq = params.sack_freq;
2625 			asoc->param_flags =
2626 				(asoc->param_flags & ~SPP_SACKDELAY) |
2627 				SPP_SACKDELAY_ENABLE;
2628 		} else {
2629 			sp->sackfreq = params.sack_freq;
2630 			sp->param_flags =
2631 				(sp->param_flags & ~SPP_SACKDELAY) |
2632 				SPP_SACKDELAY_ENABLE;
2633 		}
2634 	}
2635 
2636 	/* If change is for association, also apply to each transport. */
2637 	if (asoc) {
2638 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2639 				transports) {
2640 			if (params.sack_delay) {
2641 				trans->sackdelay =
2642 					msecs_to_jiffies(params.sack_delay);
2643 				trans->param_flags =
2644 					(trans->param_flags & ~SPP_SACKDELAY) |
2645 					SPP_SACKDELAY_ENABLE;
2646 			}
2647 			if (params.sack_freq == 1) {
2648 				trans->param_flags =
2649 					(trans->param_flags & ~SPP_SACKDELAY) |
2650 					SPP_SACKDELAY_DISABLE;
2651 			} else if (params.sack_freq > 1) {
2652 				trans->sackfreq = params.sack_freq;
2653 				trans->param_flags =
2654 					(trans->param_flags & ~SPP_SACKDELAY) |
2655 					SPP_SACKDELAY_ENABLE;
2656 			}
2657 		}
2658 	}
2659 
2660 	return 0;
2661 }
2662 
2663 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2664  *
2665  * Applications can specify protocol parameters for the default association
2666  * initialization.  The option name argument to setsockopt() and getsockopt()
2667  * is SCTP_INITMSG.
2668  *
2669  * Setting initialization parameters is effective only on an unconnected
2670  * socket (for UDP-style sockets only future associations are effected
2671  * by the change).  With TCP-style sockets, this option is inherited by
2672  * sockets derived from a listener socket.
2673  */
2674 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2675 {
2676 	struct sctp_initmsg sinit;
2677 	struct sctp_sock *sp = sctp_sk(sk);
2678 
2679 	if (optlen != sizeof(struct sctp_initmsg))
2680 		return -EINVAL;
2681 	if (copy_from_user(&sinit, optval, optlen))
2682 		return -EFAULT;
2683 
2684 	if (sinit.sinit_num_ostreams)
2685 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2686 	if (sinit.sinit_max_instreams)
2687 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2688 	if (sinit.sinit_max_attempts)
2689 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2690 	if (sinit.sinit_max_init_timeo)
2691 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2692 
2693 	return 0;
2694 }
2695 
2696 /*
2697  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2698  *
2699  *   Applications that wish to use the sendto() system call may wish to
2700  *   specify a default set of parameters that would normally be supplied
2701  *   through the inclusion of ancillary data.  This socket option allows
2702  *   such an application to set the default sctp_sndrcvinfo structure.
2703  *   The application that wishes to use this socket option simply passes
2704  *   in to this call the sctp_sndrcvinfo structure defined in Section
2705  *   5.2.2) The input parameters accepted by this call include
2706  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2707  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2708  *   to this call if the caller is using the UDP model.
2709  */
2710 static int sctp_setsockopt_default_send_param(struct sock *sk,
2711 					      char __user *optval,
2712 					      unsigned int optlen)
2713 {
2714 	struct sctp_sndrcvinfo info;
2715 	struct sctp_association *asoc;
2716 	struct sctp_sock *sp = sctp_sk(sk);
2717 
2718 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2719 		return -EINVAL;
2720 	if (copy_from_user(&info, optval, optlen))
2721 		return -EFAULT;
2722 
2723 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2724 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2725 		return -EINVAL;
2726 
2727 	if (asoc) {
2728 		asoc->default_stream = info.sinfo_stream;
2729 		asoc->default_flags = info.sinfo_flags;
2730 		asoc->default_ppid = info.sinfo_ppid;
2731 		asoc->default_context = info.sinfo_context;
2732 		asoc->default_timetolive = info.sinfo_timetolive;
2733 	} else {
2734 		sp->default_stream = info.sinfo_stream;
2735 		sp->default_flags = info.sinfo_flags;
2736 		sp->default_ppid = info.sinfo_ppid;
2737 		sp->default_context = info.sinfo_context;
2738 		sp->default_timetolive = info.sinfo_timetolive;
2739 	}
2740 
2741 	return 0;
2742 }
2743 
2744 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2745  *
2746  * Requests that the local SCTP stack use the enclosed peer address as
2747  * the association primary.  The enclosed address must be one of the
2748  * association peer's addresses.
2749  */
2750 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2751 					unsigned int optlen)
2752 {
2753 	struct sctp_prim prim;
2754 	struct sctp_transport *trans;
2755 
2756 	if (optlen != sizeof(struct sctp_prim))
2757 		return -EINVAL;
2758 
2759 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2760 		return -EFAULT;
2761 
2762 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2763 	if (!trans)
2764 		return -EINVAL;
2765 
2766 	sctp_assoc_set_primary(trans->asoc, trans);
2767 
2768 	return 0;
2769 }
2770 
2771 /*
2772  * 7.1.5 SCTP_NODELAY
2773  *
2774  * Turn on/off any Nagle-like algorithm.  This means that packets are
2775  * generally sent as soon as possible and no unnecessary delays are
2776  * introduced, at the cost of more packets in the network.  Expects an
2777  *  integer boolean flag.
2778  */
2779 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2780 				   unsigned int optlen)
2781 {
2782 	int val;
2783 
2784 	if (optlen < sizeof(int))
2785 		return -EINVAL;
2786 	if (get_user(val, (int __user *)optval))
2787 		return -EFAULT;
2788 
2789 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2790 	return 0;
2791 }
2792 
2793 /*
2794  *
2795  * 7.1.1 SCTP_RTOINFO
2796  *
2797  * The protocol parameters used to initialize and bound retransmission
2798  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2799  * and modify these parameters.
2800  * All parameters are time values, in milliseconds.  A value of 0, when
2801  * modifying the parameters, indicates that the current value should not
2802  * be changed.
2803  *
2804  */
2805 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2806 {
2807 	struct sctp_rtoinfo rtoinfo;
2808 	struct sctp_association *asoc;
2809 
2810 	if (optlen != sizeof (struct sctp_rtoinfo))
2811 		return -EINVAL;
2812 
2813 	if (copy_from_user(&rtoinfo, optval, optlen))
2814 		return -EFAULT;
2815 
2816 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2817 
2818 	/* Set the values to the specific association */
2819 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2820 		return -EINVAL;
2821 
2822 	if (asoc) {
2823 		if (rtoinfo.srto_initial != 0)
2824 			asoc->rto_initial =
2825 				msecs_to_jiffies(rtoinfo.srto_initial);
2826 		if (rtoinfo.srto_max != 0)
2827 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2828 		if (rtoinfo.srto_min != 0)
2829 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2830 	} else {
2831 		/* If there is no association or the association-id = 0
2832 		 * set the values to the endpoint.
2833 		 */
2834 		struct sctp_sock *sp = sctp_sk(sk);
2835 
2836 		if (rtoinfo.srto_initial != 0)
2837 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2838 		if (rtoinfo.srto_max != 0)
2839 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2840 		if (rtoinfo.srto_min != 0)
2841 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 /*
2848  *
2849  * 7.1.2 SCTP_ASSOCINFO
2850  *
2851  * This option is used to tune the maximum retransmission attempts
2852  * of the association.
2853  * Returns an error if the new association retransmission value is
2854  * greater than the sum of the retransmission value  of the peer.
2855  * See [SCTP] for more information.
2856  *
2857  */
2858 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2859 {
2860 
2861 	struct sctp_assocparams assocparams;
2862 	struct sctp_association *asoc;
2863 
2864 	if (optlen != sizeof(struct sctp_assocparams))
2865 		return -EINVAL;
2866 	if (copy_from_user(&assocparams, optval, optlen))
2867 		return -EFAULT;
2868 
2869 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2870 
2871 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2872 		return -EINVAL;
2873 
2874 	/* Set the values to the specific association */
2875 	if (asoc) {
2876 		if (assocparams.sasoc_asocmaxrxt != 0) {
2877 			__u32 path_sum = 0;
2878 			int   paths = 0;
2879 			struct sctp_transport *peer_addr;
2880 
2881 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2882 					transports) {
2883 				path_sum += peer_addr->pathmaxrxt;
2884 				paths++;
2885 			}
2886 
2887 			/* Only validate asocmaxrxt if we have more than
2888 			 * one path/transport.  We do this because path
2889 			 * retransmissions are only counted when we have more
2890 			 * then one path.
2891 			 */
2892 			if (paths > 1 &&
2893 			    assocparams.sasoc_asocmaxrxt > path_sum)
2894 				return -EINVAL;
2895 
2896 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2897 		}
2898 
2899 		if (assocparams.sasoc_cookie_life != 0) {
2900 			asoc->cookie_life.tv_sec =
2901 					assocparams.sasoc_cookie_life / 1000;
2902 			asoc->cookie_life.tv_usec =
2903 					(assocparams.sasoc_cookie_life % 1000)
2904 					* 1000;
2905 		}
2906 	} else {
2907 		/* Set the values to the endpoint */
2908 		struct sctp_sock *sp = sctp_sk(sk);
2909 
2910 		if (assocparams.sasoc_asocmaxrxt != 0)
2911 			sp->assocparams.sasoc_asocmaxrxt =
2912 						assocparams.sasoc_asocmaxrxt;
2913 		if (assocparams.sasoc_cookie_life != 0)
2914 			sp->assocparams.sasoc_cookie_life =
2915 						assocparams.sasoc_cookie_life;
2916 	}
2917 	return 0;
2918 }
2919 
2920 /*
2921  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2922  *
2923  * This socket option is a boolean flag which turns on or off mapped V4
2924  * addresses.  If this option is turned on and the socket is type
2925  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2926  * If this option is turned off, then no mapping will be done of V4
2927  * addresses and a user will receive both PF_INET6 and PF_INET type
2928  * addresses on the socket.
2929  */
2930 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2931 {
2932 	int val;
2933 	struct sctp_sock *sp = sctp_sk(sk);
2934 
2935 	if (optlen < sizeof(int))
2936 		return -EINVAL;
2937 	if (get_user(val, (int __user *)optval))
2938 		return -EFAULT;
2939 	if (val)
2940 		sp->v4mapped = 1;
2941 	else
2942 		sp->v4mapped = 0;
2943 
2944 	return 0;
2945 }
2946 
2947 /*
2948  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2949  * This option will get or set the maximum size to put in any outgoing
2950  * SCTP DATA chunk.  If a message is larger than this size it will be
2951  * fragmented by SCTP into the specified size.  Note that the underlying
2952  * SCTP implementation may fragment into smaller sized chunks when the
2953  * PMTU of the underlying association is smaller than the value set by
2954  * the user.  The default value for this option is '0' which indicates
2955  * the user is NOT limiting fragmentation and only the PMTU will effect
2956  * SCTP's choice of DATA chunk size.  Note also that values set larger
2957  * than the maximum size of an IP datagram will effectively let SCTP
2958  * control fragmentation (i.e. the same as setting this option to 0).
2959  *
2960  * The following structure is used to access and modify this parameter:
2961  *
2962  * struct sctp_assoc_value {
2963  *   sctp_assoc_t assoc_id;
2964  *   uint32_t assoc_value;
2965  * };
2966  *
2967  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2968  *    For one-to-many style sockets this parameter indicates which
2969  *    association the user is performing an action upon.  Note that if
2970  *    this field's value is zero then the endpoints default value is
2971  *    changed (effecting future associations only).
2972  * assoc_value:  This parameter specifies the maximum size in bytes.
2973  */
2974 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2975 {
2976 	struct sctp_assoc_value params;
2977 	struct sctp_association *asoc;
2978 	struct sctp_sock *sp = sctp_sk(sk);
2979 	int val;
2980 
2981 	if (optlen == sizeof(int)) {
2982 		pr_warn("Use of int in maxseg socket option deprecated\n");
2983 		pr_warn("Use struct sctp_assoc_value instead\n");
2984 		if (copy_from_user(&val, optval, optlen))
2985 			return -EFAULT;
2986 		params.assoc_id = 0;
2987 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2988 		if (copy_from_user(&params, optval, optlen))
2989 			return -EFAULT;
2990 		val = params.assoc_value;
2991 	} else
2992 		return -EINVAL;
2993 
2994 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2995 		return -EINVAL;
2996 
2997 	asoc = sctp_id2assoc(sk, params.assoc_id);
2998 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2999 		return -EINVAL;
3000 
3001 	if (asoc) {
3002 		if (val == 0) {
3003 			val = asoc->pathmtu;
3004 			val -= sp->pf->af->net_header_len;
3005 			val -= sizeof(struct sctphdr) +
3006 					sizeof(struct sctp_data_chunk);
3007 		}
3008 		asoc->user_frag = val;
3009 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3010 	} else {
3011 		sp->user_frag = val;
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 
3018 /*
3019  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3020  *
3021  *   Requests that the peer mark the enclosed address as the association
3022  *   primary. The enclosed address must be one of the association's
3023  *   locally bound addresses. The following structure is used to make a
3024  *   set primary request:
3025  */
3026 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3027 					     unsigned int optlen)
3028 {
3029 	struct sctp_sock	*sp;
3030 	struct sctp_association	*asoc = NULL;
3031 	struct sctp_setpeerprim	prim;
3032 	struct sctp_chunk	*chunk;
3033 	struct sctp_af		*af;
3034 	int 			err;
3035 
3036 	sp = sctp_sk(sk);
3037 
3038 	if (!sctp_addip_enable)
3039 		return -EPERM;
3040 
3041 	if (optlen != sizeof(struct sctp_setpeerprim))
3042 		return -EINVAL;
3043 
3044 	if (copy_from_user(&prim, optval, optlen))
3045 		return -EFAULT;
3046 
3047 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3048 	if (!asoc)
3049 		return -EINVAL;
3050 
3051 	if (!asoc->peer.asconf_capable)
3052 		return -EPERM;
3053 
3054 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3055 		return -EPERM;
3056 
3057 	if (!sctp_state(asoc, ESTABLISHED))
3058 		return -ENOTCONN;
3059 
3060 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3061 	if (!af)
3062 		return -EINVAL;
3063 
3064 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3065 		return -EADDRNOTAVAIL;
3066 
3067 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3068 		return -EADDRNOTAVAIL;
3069 
3070 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3071 	chunk = sctp_make_asconf_set_prim(asoc,
3072 					  (union sctp_addr *)&prim.sspp_addr);
3073 	if (!chunk)
3074 		return -ENOMEM;
3075 
3076 	err = sctp_send_asconf(asoc, chunk);
3077 
3078 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3079 
3080 	return err;
3081 }
3082 
3083 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3084 					    unsigned int optlen)
3085 {
3086 	struct sctp_setadaptation adaptation;
3087 
3088 	if (optlen != sizeof(struct sctp_setadaptation))
3089 		return -EINVAL;
3090 	if (copy_from_user(&adaptation, optval, optlen))
3091 		return -EFAULT;
3092 
3093 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3100  *
3101  * The context field in the sctp_sndrcvinfo structure is normally only
3102  * used when a failed message is retrieved holding the value that was
3103  * sent down on the actual send call.  This option allows the setting of
3104  * a default context on an association basis that will be received on
3105  * reading messages from the peer.  This is especially helpful in the
3106  * one-2-many model for an application to keep some reference to an
3107  * internal state machine that is processing messages on the
3108  * association.  Note that the setting of this value only effects
3109  * received messages from the peer and does not effect the value that is
3110  * saved with outbound messages.
3111  */
3112 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3113 				   unsigned int optlen)
3114 {
3115 	struct sctp_assoc_value params;
3116 	struct sctp_sock *sp;
3117 	struct sctp_association *asoc;
3118 
3119 	if (optlen != sizeof(struct sctp_assoc_value))
3120 		return -EINVAL;
3121 	if (copy_from_user(&params, optval, optlen))
3122 		return -EFAULT;
3123 
3124 	sp = sctp_sk(sk);
3125 
3126 	if (params.assoc_id != 0) {
3127 		asoc = sctp_id2assoc(sk, params.assoc_id);
3128 		if (!asoc)
3129 			return -EINVAL;
3130 		asoc->default_rcv_context = params.assoc_value;
3131 	} else {
3132 		sp->default_rcv_context = params.assoc_value;
3133 	}
3134 
3135 	return 0;
3136 }
3137 
3138 /*
3139  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3140  *
3141  * This options will at a minimum specify if the implementation is doing
3142  * fragmented interleave.  Fragmented interleave, for a one to many
3143  * socket, is when subsequent calls to receive a message may return
3144  * parts of messages from different associations.  Some implementations
3145  * may allow you to turn this value on or off.  If so, when turned off,
3146  * no fragment interleave will occur (which will cause a head of line
3147  * blocking amongst multiple associations sharing the same one to many
3148  * socket).  When this option is turned on, then each receive call may
3149  * come from a different association (thus the user must receive data
3150  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3151  * association each receive belongs to.
3152  *
3153  * This option takes a boolean value.  A non-zero value indicates that
3154  * fragmented interleave is on.  A value of zero indicates that
3155  * fragmented interleave is off.
3156  *
3157  * Note that it is important that an implementation that allows this
3158  * option to be turned on, have it off by default.  Otherwise an unaware
3159  * application using the one to many model may become confused and act
3160  * incorrectly.
3161  */
3162 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3163 					       char __user *optval,
3164 					       unsigned int optlen)
3165 {
3166 	int val;
3167 
3168 	if (optlen != sizeof(int))
3169 		return -EINVAL;
3170 	if (get_user(val, (int __user *)optval))
3171 		return -EFAULT;
3172 
3173 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3174 
3175 	return 0;
3176 }
3177 
3178 /*
3179  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3180  *       (SCTP_PARTIAL_DELIVERY_POINT)
3181  *
3182  * This option will set or get the SCTP partial delivery point.  This
3183  * point is the size of a message where the partial delivery API will be
3184  * invoked to help free up rwnd space for the peer.  Setting this to a
3185  * lower value will cause partial deliveries to happen more often.  The
3186  * calls argument is an integer that sets or gets the partial delivery
3187  * point.  Note also that the call will fail if the user attempts to set
3188  * this value larger than the socket receive buffer size.
3189  *
3190  * Note that any single message having a length smaller than or equal to
3191  * the SCTP partial delivery point will be delivered in one single read
3192  * call as long as the user provided buffer is large enough to hold the
3193  * message.
3194  */
3195 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3196 						  char __user *optval,
3197 						  unsigned int optlen)
3198 {
3199 	u32 val;
3200 
3201 	if (optlen != sizeof(u32))
3202 		return -EINVAL;
3203 	if (get_user(val, (int __user *)optval))
3204 		return -EFAULT;
3205 
3206 	/* Note: We double the receive buffer from what the user sets
3207 	 * it to be, also initial rwnd is based on rcvbuf/2.
3208 	 */
3209 	if (val > (sk->sk_rcvbuf >> 1))
3210 		return -EINVAL;
3211 
3212 	sctp_sk(sk)->pd_point = val;
3213 
3214 	return 0; /* is this the right error code? */
3215 }
3216 
3217 /*
3218  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3219  *
3220  * This option will allow a user to change the maximum burst of packets
3221  * that can be emitted by this association.  Note that the default value
3222  * is 4, and some implementations may restrict this setting so that it
3223  * can only be lowered.
3224  *
3225  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3226  * future associations inheriting the socket value.
3227  */
3228 static int sctp_setsockopt_maxburst(struct sock *sk,
3229 				    char __user *optval,
3230 				    unsigned int optlen)
3231 {
3232 	struct sctp_assoc_value params;
3233 	struct sctp_sock *sp;
3234 	struct sctp_association *asoc;
3235 	int val;
3236 	int assoc_id = 0;
3237 
3238 	if (optlen == sizeof(int)) {
3239 		pr_warn("Use of int in max_burst socket option deprecated\n");
3240 		pr_warn("Use struct sctp_assoc_value instead\n");
3241 		if (copy_from_user(&val, optval, optlen))
3242 			return -EFAULT;
3243 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3244 		if (copy_from_user(&params, optval, optlen))
3245 			return -EFAULT;
3246 		val = params.assoc_value;
3247 		assoc_id = params.assoc_id;
3248 	} else
3249 		return -EINVAL;
3250 
3251 	sp = sctp_sk(sk);
3252 
3253 	if (assoc_id != 0) {
3254 		asoc = sctp_id2assoc(sk, assoc_id);
3255 		if (!asoc)
3256 			return -EINVAL;
3257 		asoc->max_burst = val;
3258 	} else
3259 		sp->max_burst = val;
3260 
3261 	return 0;
3262 }
3263 
3264 /*
3265  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3266  *
3267  * This set option adds a chunk type that the user is requesting to be
3268  * received only in an authenticated way.  Changes to the list of chunks
3269  * will only effect future associations on the socket.
3270  */
3271 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3272 				      char __user *optval,
3273 				      unsigned int optlen)
3274 {
3275 	struct sctp_authchunk val;
3276 
3277 	if (!sctp_auth_enable)
3278 		return -EACCES;
3279 
3280 	if (optlen != sizeof(struct sctp_authchunk))
3281 		return -EINVAL;
3282 	if (copy_from_user(&val, optval, optlen))
3283 		return -EFAULT;
3284 
3285 	switch (val.sauth_chunk) {
3286 	case SCTP_CID_INIT:
3287 	case SCTP_CID_INIT_ACK:
3288 	case SCTP_CID_SHUTDOWN_COMPLETE:
3289 	case SCTP_CID_AUTH:
3290 		return -EINVAL;
3291 	}
3292 
3293 	/* add this chunk id to the endpoint */
3294 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3295 }
3296 
3297 /*
3298  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3299  *
3300  * This option gets or sets the list of HMAC algorithms that the local
3301  * endpoint requires the peer to use.
3302  */
3303 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3304 				      char __user *optval,
3305 				      unsigned int optlen)
3306 {
3307 	struct sctp_hmacalgo *hmacs;
3308 	u32 idents;
3309 	int err;
3310 
3311 	if (!sctp_auth_enable)
3312 		return -EACCES;
3313 
3314 	if (optlen < sizeof(struct sctp_hmacalgo))
3315 		return -EINVAL;
3316 
3317 	hmacs= memdup_user(optval, optlen);
3318 	if (IS_ERR(hmacs))
3319 		return PTR_ERR(hmacs);
3320 
3321 	idents = hmacs->shmac_num_idents;
3322 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3323 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3324 		err = -EINVAL;
3325 		goto out;
3326 	}
3327 
3328 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3329 out:
3330 	kfree(hmacs);
3331 	return err;
3332 }
3333 
3334 /*
3335  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3336  *
3337  * This option will set a shared secret key which is used to build an
3338  * association shared key.
3339  */
3340 static int sctp_setsockopt_auth_key(struct sock *sk,
3341 				    char __user *optval,
3342 				    unsigned int optlen)
3343 {
3344 	struct sctp_authkey *authkey;
3345 	struct sctp_association *asoc;
3346 	int ret;
3347 
3348 	if (!sctp_auth_enable)
3349 		return -EACCES;
3350 
3351 	if (optlen <= sizeof(struct sctp_authkey))
3352 		return -EINVAL;
3353 
3354 	authkey= memdup_user(optval, optlen);
3355 	if (IS_ERR(authkey))
3356 		return PTR_ERR(authkey);
3357 
3358 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3359 		ret = -EINVAL;
3360 		goto out;
3361 	}
3362 
3363 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3364 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3365 		ret = -EINVAL;
3366 		goto out;
3367 	}
3368 
3369 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3370 out:
3371 	kfree(authkey);
3372 	return ret;
3373 }
3374 
3375 /*
3376  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3377  *
3378  * This option will get or set the active shared key to be used to build
3379  * the association shared key.
3380  */
3381 static int sctp_setsockopt_active_key(struct sock *sk,
3382 				      char __user *optval,
3383 				      unsigned int optlen)
3384 {
3385 	struct sctp_authkeyid val;
3386 	struct sctp_association *asoc;
3387 
3388 	if (!sctp_auth_enable)
3389 		return -EACCES;
3390 
3391 	if (optlen != sizeof(struct sctp_authkeyid))
3392 		return -EINVAL;
3393 	if (copy_from_user(&val, optval, optlen))
3394 		return -EFAULT;
3395 
3396 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3397 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3398 		return -EINVAL;
3399 
3400 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3401 					val.scact_keynumber);
3402 }
3403 
3404 /*
3405  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3406  *
3407  * This set option will delete a shared secret key from use.
3408  */
3409 static int sctp_setsockopt_del_key(struct sock *sk,
3410 				   char __user *optval,
3411 				   unsigned int optlen)
3412 {
3413 	struct sctp_authkeyid val;
3414 	struct sctp_association *asoc;
3415 
3416 	if (!sctp_auth_enable)
3417 		return -EACCES;
3418 
3419 	if (optlen != sizeof(struct sctp_authkeyid))
3420 		return -EINVAL;
3421 	if (copy_from_user(&val, optval, optlen))
3422 		return -EFAULT;
3423 
3424 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3425 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3426 		return -EINVAL;
3427 
3428 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3429 				    val.scact_keynumber);
3430 
3431 }
3432 
3433 /*
3434  * 8.1.23 SCTP_AUTO_ASCONF
3435  *
3436  * This option will enable or disable the use of the automatic generation of
3437  * ASCONF chunks to add and delete addresses to an existing association.  Note
3438  * that this option has two caveats namely: a) it only affects sockets that
3439  * are bound to all addresses available to the SCTP stack, and b) the system
3440  * administrator may have an overriding control that turns the ASCONF feature
3441  * off no matter what setting the socket option may have.
3442  * This option expects an integer boolean flag, where a non-zero value turns on
3443  * the option, and a zero value turns off the option.
3444  * Note. In this implementation, socket operation overrides default parameter
3445  * being set by sysctl as well as FreeBSD implementation
3446  */
3447 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3448 					unsigned int optlen)
3449 {
3450 	int val;
3451 	struct sctp_sock *sp = sctp_sk(sk);
3452 
3453 	if (optlen < sizeof(int))
3454 		return -EINVAL;
3455 	if (get_user(val, (int __user *)optval))
3456 		return -EFAULT;
3457 	if (!sctp_is_ep_boundall(sk) && val)
3458 		return -EINVAL;
3459 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3460 		return 0;
3461 
3462 	if (val == 0 && sp->do_auto_asconf) {
3463 		list_del(&sp->auto_asconf_list);
3464 		sp->do_auto_asconf = 0;
3465 	} else if (val && !sp->do_auto_asconf) {
3466 		list_add_tail(&sp->auto_asconf_list,
3467 		    &sctp_auto_asconf_splist);
3468 		sp->do_auto_asconf = 1;
3469 	}
3470 	return 0;
3471 }
3472 
3473 
3474 /* API 6.2 setsockopt(), getsockopt()
3475  *
3476  * Applications use setsockopt() and getsockopt() to set or retrieve
3477  * socket options.  Socket options are used to change the default
3478  * behavior of sockets calls.  They are described in Section 7.
3479  *
3480  * The syntax is:
3481  *
3482  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3483  *                    int __user *optlen);
3484  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3485  *                    int optlen);
3486  *
3487  *   sd      - the socket descript.
3488  *   level   - set to IPPROTO_SCTP for all SCTP options.
3489  *   optname - the option name.
3490  *   optval  - the buffer to store the value of the option.
3491  *   optlen  - the size of the buffer.
3492  */
3493 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3494 				char __user *optval, unsigned int optlen)
3495 {
3496 	int retval = 0;
3497 
3498 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3499 			  sk, optname);
3500 
3501 	/* I can hardly begin to describe how wrong this is.  This is
3502 	 * so broken as to be worse than useless.  The API draft
3503 	 * REALLY is NOT helpful here...  I am not convinced that the
3504 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3505 	 * are at all well-founded.
3506 	 */
3507 	if (level != SOL_SCTP) {
3508 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3509 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3510 		goto out_nounlock;
3511 	}
3512 
3513 	sctp_lock_sock(sk);
3514 
3515 	switch (optname) {
3516 	case SCTP_SOCKOPT_BINDX_ADD:
3517 		/* 'optlen' is the size of the addresses buffer. */
3518 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3519 					       optlen, SCTP_BINDX_ADD_ADDR);
3520 		break;
3521 
3522 	case SCTP_SOCKOPT_BINDX_REM:
3523 		/* 'optlen' is the size of the addresses buffer. */
3524 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3525 					       optlen, SCTP_BINDX_REM_ADDR);
3526 		break;
3527 
3528 	case SCTP_SOCKOPT_CONNECTX_OLD:
3529 		/* 'optlen' is the size of the addresses buffer. */
3530 		retval = sctp_setsockopt_connectx_old(sk,
3531 					    (struct sockaddr __user *)optval,
3532 					    optlen);
3533 		break;
3534 
3535 	case SCTP_SOCKOPT_CONNECTX:
3536 		/* 'optlen' is the size of the addresses buffer. */
3537 		retval = sctp_setsockopt_connectx(sk,
3538 					    (struct sockaddr __user *)optval,
3539 					    optlen);
3540 		break;
3541 
3542 	case SCTP_DISABLE_FRAGMENTS:
3543 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3544 		break;
3545 
3546 	case SCTP_EVENTS:
3547 		retval = sctp_setsockopt_events(sk, optval, optlen);
3548 		break;
3549 
3550 	case SCTP_AUTOCLOSE:
3551 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3552 		break;
3553 
3554 	case SCTP_PEER_ADDR_PARAMS:
3555 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3556 		break;
3557 
3558 	case SCTP_DELAYED_SACK:
3559 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3560 		break;
3561 	case SCTP_PARTIAL_DELIVERY_POINT:
3562 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3563 		break;
3564 
3565 	case SCTP_INITMSG:
3566 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3567 		break;
3568 	case SCTP_DEFAULT_SEND_PARAM:
3569 		retval = sctp_setsockopt_default_send_param(sk, optval,
3570 							    optlen);
3571 		break;
3572 	case SCTP_PRIMARY_ADDR:
3573 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3574 		break;
3575 	case SCTP_SET_PEER_PRIMARY_ADDR:
3576 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3577 		break;
3578 	case SCTP_NODELAY:
3579 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3580 		break;
3581 	case SCTP_RTOINFO:
3582 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3583 		break;
3584 	case SCTP_ASSOCINFO:
3585 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3586 		break;
3587 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3588 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3589 		break;
3590 	case SCTP_MAXSEG:
3591 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3592 		break;
3593 	case SCTP_ADAPTATION_LAYER:
3594 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3595 		break;
3596 	case SCTP_CONTEXT:
3597 		retval = sctp_setsockopt_context(sk, optval, optlen);
3598 		break;
3599 	case SCTP_FRAGMENT_INTERLEAVE:
3600 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3601 		break;
3602 	case SCTP_MAX_BURST:
3603 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3604 		break;
3605 	case SCTP_AUTH_CHUNK:
3606 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3607 		break;
3608 	case SCTP_HMAC_IDENT:
3609 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3610 		break;
3611 	case SCTP_AUTH_KEY:
3612 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3613 		break;
3614 	case SCTP_AUTH_ACTIVE_KEY:
3615 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3616 		break;
3617 	case SCTP_AUTH_DELETE_KEY:
3618 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3619 		break;
3620 	case SCTP_AUTO_ASCONF:
3621 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3622 		break;
3623 	default:
3624 		retval = -ENOPROTOOPT;
3625 		break;
3626 	}
3627 
3628 	sctp_release_sock(sk);
3629 
3630 out_nounlock:
3631 	return retval;
3632 }
3633 
3634 /* API 3.1.6 connect() - UDP Style Syntax
3635  *
3636  * An application may use the connect() call in the UDP model to initiate an
3637  * association without sending data.
3638  *
3639  * The syntax is:
3640  *
3641  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3642  *
3643  * sd: the socket descriptor to have a new association added to.
3644  *
3645  * nam: the address structure (either struct sockaddr_in or struct
3646  *    sockaddr_in6 defined in RFC2553 [7]).
3647  *
3648  * len: the size of the address.
3649  */
3650 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3651 			     int addr_len)
3652 {
3653 	int err = 0;
3654 	struct sctp_af *af;
3655 
3656 	sctp_lock_sock(sk);
3657 
3658 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3659 			  __func__, sk, addr, addr_len);
3660 
3661 	/* Validate addr_len before calling common connect/connectx routine. */
3662 	af = sctp_get_af_specific(addr->sa_family);
3663 	if (!af || addr_len < af->sockaddr_len) {
3664 		err = -EINVAL;
3665 	} else {
3666 		/* Pass correct addr len to common routine (so it knows there
3667 		 * is only one address being passed.
3668 		 */
3669 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3670 	}
3671 
3672 	sctp_release_sock(sk);
3673 	return err;
3674 }
3675 
3676 /* FIXME: Write comments. */
3677 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3678 {
3679 	return -EOPNOTSUPP; /* STUB */
3680 }
3681 
3682 /* 4.1.4 accept() - TCP Style Syntax
3683  *
3684  * Applications use accept() call to remove an established SCTP
3685  * association from the accept queue of the endpoint.  A new socket
3686  * descriptor will be returned from accept() to represent the newly
3687  * formed association.
3688  */
3689 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3690 {
3691 	struct sctp_sock *sp;
3692 	struct sctp_endpoint *ep;
3693 	struct sock *newsk = NULL;
3694 	struct sctp_association *asoc;
3695 	long timeo;
3696 	int error = 0;
3697 
3698 	sctp_lock_sock(sk);
3699 
3700 	sp = sctp_sk(sk);
3701 	ep = sp->ep;
3702 
3703 	if (!sctp_style(sk, TCP)) {
3704 		error = -EOPNOTSUPP;
3705 		goto out;
3706 	}
3707 
3708 	if (!sctp_sstate(sk, LISTENING)) {
3709 		error = -EINVAL;
3710 		goto out;
3711 	}
3712 
3713 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3714 
3715 	error = sctp_wait_for_accept(sk, timeo);
3716 	if (error)
3717 		goto out;
3718 
3719 	/* We treat the list of associations on the endpoint as the accept
3720 	 * queue and pick the first association on the list.
3721 	 */
3722 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3723 
3724 	newsk = sp->pf->create_accept_sk(sk, asoc);
3725 	if (!newsk) {
3726 		error = -ENOMEM;
3727 		goto out;
3728 	}
3729 
3730 	/* Populate the fields of the newsk from the oldsk and migrate the
3731 	 * asoc to the newsk.
3732 	 */
3733 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3734 
3735 out:
3736 	sctp_release_sock(sk);
3737 	*err = error;
3738 	return newsk;
3739 }
3740 
3741 /* The SCTP ioctl handler. */
3742 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3743 {
3744 	int rc = -ENOTCONN;
3745 
3746 	sctp_lock_sock(sk);
3747 
3748 	/*
3749 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3750 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3751 	 */
3752 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3753 		goto out;
3754 
3755 	switch (cmd) {
3756 	case SIOCINQ: {
3757 		struct sk_buff *skb;
3758 		unsigned int amount = 0;
3759 
3760 		skb = skb_peek(&sk->sk_receive_queue);
3761 		if (skb != NULL) {
3762 			/*
3763 			 * We will only return the amount of this packet since
3764 			 * that is all that will be read.
3765 			 */
3766 			amount = skb->len;
3767 		}
3768 		rc = put_user(amount, (int __user *)arg);
3769 		break;
3770 	}
3771 	default:
3772 		rc = -ENOIOCTLCMD;
3773 		break;
3774 	}
3775 out:
3776 	sctp_release_sock(sk);
3777 	return rc;
3778 }
3779 
3780 /* This is the function which gets called during socket creation to
3781  * initialized the SCTP-specific portion of the sock.
3782  * The sock structure should already be zero-filled memory.
3783  */
3784 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3785 {
3786 	struct sctp_endpoint *ep;
3787 	struct sctp_sock *sp;
3788 
3789 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3790 
3791 	sp = sctp_sk(sk);
3792 
3793 	/* Initialize the SCTP per socket area.  */
3794 	switch (sk->sk_type) {
3795 	case SOCK_SEQPACKET:
3796 		sp->type = SCTP_SOCKET_UDP;
3797 		break;
3798 	case SOCK_STREAM:
3799 		sp->type = SCTP_SOCKET_TCP;
3800 		break;
3801 	default:
3802 		return -ESOCKTNOSUPPORT;
3803 	}
3804 
3805 	/* Initialize default send parameters. These parameters can be
3806 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3807 	 */
3808 	sp->default_stream = 0;
3809 	sp->default_ppid = 0;
3810 	sp->default_flags = 0;
3811 	sp->default_context = 0;
3812 	sp->default_timetolive = 0;
3813 
3814 	sp->default_rcv_context = 0;
3815 	sp->max_burst = sctp_max_burst;
3816 
3817 	/* Initialize default setup parameters. These parameters
3818 	 * can be modified with the SCTP_INITMSG socket option or
3819 	 * overridden by the SCTP_INIT CMSG.
3820 	 */
3821 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3822 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3823 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3824 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3825 
3826 	/* Initialize default RTO related parameters.  These parameters can
3827 	 * be modified for with the SCTP_RTOINFO socket option.
3828 	 */
3829 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3830 	sp->rtoinfo.srto_max     = sctp_rto_max;
3831 	sp->rtoinfo.srto_min     = sctp_rto_min;
3832 
3833 	/* Initialize default association related parameters. These parameters
3834 	 * can be modified with the SCTP_ASSOCINFO socket option.
3835 	 */
3836 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3837 	sp->assocparams.sasoc_number_peer_destinations = 0;
3838 	sp->assocparams.sasoc_peer_rwnd = 0;
3839 	sp->assocparams.sasoc_local_rwnd = 0;
3840 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3841 
3842 	/* Initialize default event subscriptions. By default, all the
3843 	 * options are off.
3844 	 */
3845 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3846 
3847 	/* Default Peer Address Parameters.  These defaults can
3848 	 * be modified via SCTP_PEER_ADDR_PARAMS
3849 	 */
3850 	sp->hbinterval  = sctp_hb_interval;
3851 	sp->pathmaxrxt  = sctp_max_retrans_path;
3852 	sp->pathmtu     = 0; // allow default discovery
3853 	sp->sackdelay   = sctp_sack_timeout;
3854 	sp->sackfreq	= 2;
3855 	sp->param_flags = SPP_HB_ENABLE |
3856 			  SPP_PMTUD_ENABLE |
3857 			  SPP_SACKDELAY_ENABLE;
3858 
3859 	/* If enabled no SCTP message fragmentation will be performed.
3860 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3861 	 */
3862 	sp->disable_fragments = 0;
3863 
3864 	/* Enable Nagle algorithm by default.  */
3865 	sp->nodelay           = 0;
3866 
3867 	/* Enable by default. */
3868 	sp->v4mapped          = 1;
3869 
3870 	/* Auto-close idle associations after the configured
3871 	 * number of seconds.  A value of 0 disables this
3872 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3873 	 * for UDP-style sockets only.
3874 	 */
3875 	sp->autoclose         = 0;
3876 
3877 	/* User specified fragmentation limit. */
3878 	sp->user_frag         = 0;
3879 
3880 	sp->adaptation_ind = 0;
3881 
3882 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3883 
3884 	/* Control variables for partial data delivery. */
3885 	atomic_set(&sp->pd_mode, 0);
3886 	skb_queue_head_init(&sp->pd_lobby);
3887 	sp->frag_interleave = 0;
3888 
3889 	/* Create a per socket endpoint structure.  Even if we
3890 	 * change the data structure relationships, this may still
3891 	 * be useful for storing pre-connect address information.
3892 	 */
3893 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3894 	if (!ep)
3895 		return -ENOMEM;
3896 
3897 	sp->ep = ep;
3898 	sp->hmac = NULL;
3899 
3900 	SCTP_DBG_OBJCNT_INC(sock);
3901 
3902 	local_bh_disable();
3903 	percpu_counter_inc(&sctp_sockets_allocated);
3904 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3905 	if (sctp_default_auto_asconf) {
3906 		list_add_tail(&sp->auto_asconf_list,
3907 		    &sctp_auto_asconf_splist);
3908 		sp->do_auto_asconf = 1;
3909 	} else
3910 		sp->do_auto_asconf = 0;
3911 	local_bh_enable();
3912 
3913 	return 0;
3914 }
3915 
3916 /* Cleanup any SCTP per socket resources.  */
3917 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3918 {
3919 	struct sctp_sock *sp;
3920 
3921 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3922 
3923 	/* Release our hold on the endpoint. */
3924 	sp = sctp_sk(sk);
3925 	if (sp->do_auto_asconf) {
3926 		sp->do_auto_asconf = 0;
3927 		list_del(&sp->auto_asconf_list);
3928 	}
3929 	sctp_endpoint_free(sp->ep);
3930 	local_bh_disable();
3931 	percpu_counter_dec(&sctp_sockets_allocated);
3932 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3933 	local_bh_enable();
3934 }
3935 
3936 /* API 4.1.7 shutdown() - TCP Style Syntax
3937  *     int shutdown(int socket, int how);
3938  *
3939  *     sd      - the socket descriptor of the association to be closed.
3940  *     how     - Specifies the type of shutdown.  The  values  are
3941  *               as follows:
3942  *               SHUT_RD
3943  *                     Disables further receive operations. No SCTP
3944  *                     protocol action is taken.
3945  *               SHUT_WR
3946  *                     Disables further send operations, and initiates
3947  *                     the SCTP shutdown sequence.
3948  *               SHUT_RDWR
3949  *                     Disables further send  and  receive  operations
3950  *                     and initiates the SCTP shutdown sequence.
3951  */
3952 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3953 {
3954 	struct sctp_endpoint *ep;
3955 	struct sctp_association *asoc;
3956 
3957 	if (!sctp_style(sk, TCP))
3958 		return;
3959 
3960 	if (how & SEND_SHUTDOWN) {
3961 		ep = sctp_sk(sk)->ep;
3962 		if (!list_empty(&ep->asocs)) {
3963 			asoc = list_entry(ep->asocs.next,
3964 					  struct sctp_association, asocs);
3965 			sctp_primitive_SHUTDOWN(asoc, NULL);
3966 		}
3967 	}
3968 }
3969 
3970 /* 7.2.1 Association Status (SCTP_STATUS)
3971 
3972  * Applications can retrieve current status information about an
3973  * association, including association state, peer receiver window size,
3974  * number of unacked data chunks, and number of data chunks pending
3975  * receipt.  This information is read-only.
3976  */
3977 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3978 				       char __user *optval,
3979 				       int __user *optlen)
3980 {
3981 	struct sctp_status status;
3982 	struct sctp_association *asoc = NULL;
3983 	struct sctp_transport *transport;
3984 	sctp_assoc_t associd;
3985 	int retval = 0;
3986 
3987 	if (len < sizeof(status)) {
3988 		retval = -EINVAL;
3989 		goto out;
3990 	}
3991 
3992 	len = sizeof(status);
3993 	if (copy_from_user(&status, optval, len)) {
3994 		retval = -EFAULT;
3995 		goto out;
3996 	}
3997 
3998 	associd = status.sstat_assoc_id;
3999 	asoc = sctp_id2assoc(sk, associd);
4000 	if (!asoc) {
4001 		retval = -EINVAL;
4002 		goto out;
4003 	}
4004 
4005 	transport = asoc->peer.primary_path;
4006 
4007 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4008 	status.sstat_state = asoc->state;
4009 	status.sstat_rwnd =  asoc->peer.rwnd;
4010 	status.sstat_unackdata = asoc->unack_data;
4011 
4012 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4013 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4014 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4015 	status.sstat_fragmentation_point = asoc->frag_point;
4016 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4017 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4018 			transport->af_specific->sockaddr_len);
4019 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4020 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4021 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4022 	status.sstat_primary.spinfo_state = transport->state;
4023 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4024 	status.sstat_primary.spinfo_srtt = transport->srtt;
4025 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4026 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4027 
4028 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4029 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4030 
4031 	if (put_user(len, optlen)) {
4032 		retval = -EFAULT;
4033 		goto out;
4034 	}
4035 
4036 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4037 			  len, status.sstat_state, status.sstat_rwnd,
4038 			  status.sstat_assoc_id);
4039 
4040 	if (copy_to_user(optval, &status, len)) {
4041 		retval = -EFAULT;
4042 		goto out;
4043 	}
4044 
4045 out:
4046 	return retval;
4047 }
4048 
4049 
4050 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4051  *
4052  * Applications can retrieve information about a specific peer address
4053  * of an association, including its reachability state, congestion
4054  * window, and retransmission timer values.  This information is
4055  * read-only.
4056  */
4057 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4058 					  char __user *optval,
4059 					  int __user *optlen)
4060 {
4061 	struct sctp_paddrinfo pinfo;
4062 	struct sctp_transport *transport;
4063 	int retval = 0;
4064 
4065 	if (len < sizeof(pinfo)) {
4066 		retval = -EINVAL;
4067 		goto out;
4068 	}
4069 
4070 	len = sizeof(pinfo);
4071 	if (copy_from_user(&pinfo, optval, len)) {
4072 		retval = -EFAULT;
4073 		goto out;
4074 	}
4075 
4076 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4077 					   pinfo.spinfo_assoc_id);
4078 	if (!transport)
4079 		return -EINVAL;
4080 
4081 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4082 	pinfo.spinfo_state = transport->state;
4083 	pinfo.spinfo_cwnd = transport->cwnd;
4084 	pinfo.spinfo_srtt = transport->srtt;
4085 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4086 	pinfo.spinfo_mtu = transport->pathmtu;
4087 
4088 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4089 		pinfo.spinfo_state = SCTP_ACTIVE;
4090 
4091 	if (put_user(len, optlen)) {
4092 		retval = -EFAULT;
4093 		goto out;
4094 	}
4095 
4096 	if (copy_to_user(optval, &pinfo, len)) {
4097 		retval = -EFAULT;
4098 		goto out;
4099 	}
4100 
4101 out:
4102 	return retval;
4103 }
4104 
4105 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4106  *
4107  * This option is a on/off flag.  If enabled no SCTP message
4108  * fragmentation will be performed.  Instead if a message being sent
4109  * exceeds the current PMTU size, the message will NOT be sent and
4110  * instead a error will be indicated to the user.
4111  */
4112 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4113 					char __user *optval, int __user *optlen)
4114 {
4115 	int val;
4116 
4117 	if (len < sizeof(int))
4118 		return -EINVAL;
4119 
4120 	len = sizeof(int);
4121 	val = (sctp_sk(sk)->disable_fragments == 1);
4122 	if (put_user(len, optlen))
4123 		return -EFAULT;
4124 	if (copy_to_user(optval, &val, len))
4125 		return -EFAULT;
4126 	return 0;
4127 }
4128 
4129 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4130  *
4131  * This socket option is used to specify various notifications and
4132  * ancillary data the user wishes to receive.
4133  */
4134 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4135 				  int __user *optlen)
4136 {
4137 	if (len < sizeof(struct sctp_event_subscribe))
4138 		return -EINVAL;
4139 	len = sizeof(struct sctp_event_subscribe);
4140 	if (put_user(len, optlen))
4141 		return -EFAULT;
4142 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4143 		return -EFAULT;
4144 	return 0;
4145 }
4146 
4147 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4148  *
4149  * This socket option is applicable to the UDP-style socket only.  When
4150  * set it will cause associations that are idle for more than the
4151  * specified number of seconds to automatically close.  An association
4152  * being idle is defined an association that has NOT sent or received
4153  * user data.  The special value of '0' indicates that no automatic
4154  * close of any associations should be performed.  The option expects an
4155  * integer defining the number of seconds of idle time before an
4156  * association is closed.
4157  */
4158 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4159 {
4160 	/* Applicable to UDP-style socket only */
4161 	if (sctp_style(sk, TCP))
4162 		return -EOPNOTSUPP;
4163 	if (len < sizeof(int))
4164 		return -EINVAL;
4165 	len = sizeof(int);
4166 	if (put_user(len, optlen))
4167 		return -EFAULT;
4168 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4169 		return -EFAULT;
4170 	return 0;
4171 }
4172 
4173 /* Helper routine to branch off an association to a new socket.  */
4174 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4175 				struct socket **sockp)
4176 {
4177 	struct sock *sk = asoc->base.sk;
4178 	struct socket *sock;
4179 	struct sctp_af *af;
4180 	int err = 0;
4181 
4182 	/* An association cannot be branched off from an already peeled-off
4183 	 * socket, nor is this supported for tcp style sockets.
4184 	 */
4185 	if (!sctp_style(sk, UDP))
4186 		return -EINVAL;
4187 
4188 	/* Create a new socket.  */
4189 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4190 	if (err < 0)
4191 		return err;
4192 
4193 	sctp_copy_sock(sock->sk, sk, asoc);
4194 
4195 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4196 	 * Set the daddr and initialize id to something more random
4197 	 */
4198 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4199 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4200 
4201 	/* Populate the fields of the newsk from the oldsk and migrate the
4202 	 * asoc to the newsk.
4203 	 */
4204 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4205 
4206 	*sockp = sock;
4207 
4208 	return err;
4209 }
4210 
4211 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4212 {
4213 	sctp_peeloff_arg_t peeloff;
4214 	struct socket *newsock;
4215 	int retval = 0;
4216 	struct sctp_association *asoc;
4217 
4218 	if (len < sizeof(sctp_peeloff_arg_t))
4219 		return -EINVAL;
4220 	len = sizeof(sctp_peeloff_arg_t);
4221 	if (copy_from_user(&peeloff, optval, len))
4222 		return -EFAULT;
4223 
4224 	asoc = sctp_id2assoc(sk, peeloff.associd);
4225 	if (!asoc) {
4226 		retval = -EINVAL;
4227 		goto out;
4228 	}
4229 
4230 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4231 
4232 	retval = sctp_do_peeloff(asoc, &newsock);
4233 	if (retval < 0)
4234 		goto out;
4235 
4236 	/* Map the socket to an unused fd that can be returned to the user.  */
4237 	retval = sock_map_fd(newsock, 0);
4238 	if (retval < 0) {
4239 		sock_release(newsock);
4240 		goto out;
4241 	}
4242 
4243 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4244 			  __func__, sk, asoc, newsock->sk, retval);
4245 
4246 	/* Return the fd mapped to the new socket.  */
4247 	peeloff.sd = retval;
4248 	if (put_user(len, optlen))
4249 		return -EFAULT;
4250 	if (copy_to_user(optval, &peeloff, len))
4251 		retval = -EFAULT;
4252 
4253 out:
4254 	return retval;
4255 }
4256 
4257 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4258  *
4259  * Applications can enable or disable heartbeats for any peer address of
4260  * an association, modify an address's heartbeat interval, force a
4261  * heartbeat to be sent immediately, and adjust the address's maximum
4262  * number of retransmissions sent before an address is considered
4263  * unreachable.  The following structure is used to access and modify an
4264  * address's parameters:
4265  *
4266  *  struct sctp_paddrparams {
4267  *     sctp_assoc_t            spp_assoc_id;
4268  *     struct sockaddr_storage spp_address;
4269  *     uint32_t                spp_hbinterval;
4270  *     uint16_t                spp_pathmaxrxt;
4271  *     uint32_t                spp_pathmtu;
4272  *     uint32_t                spp_sackdelay;
4273  *     uint32_t                spp_flags;
4274  * };
4275  *
4276  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4277  *                     application, and identifies the association for
4278  *                     this query.
4279  *   spp_address     - This specifies which address is of interest.
4280  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4281  *                     in milliseconds.  If a  value of zero
4282  *                     is present in this field then no changes are to
4283  *                     be made to this parameter.
4284  *   spp_pathmaxrxt  - This contains the maximum number of
4285  *                     retransmissions before this address shall be
4286  *                     considered unreachable. If a  value of zero
4287  *                     is present in this field then no changes are to
4288  *                     be made to this parameter.
4289  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4290  *                     specified here will be the "fixed" path mtu.
4291  *                     Note that if the spp_address field is empty
4292  *                     then all associations on this address will
4293  *                     have this fixed path mtu set upon them.
4294  *
4295  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4296  *                     the number of milliseconds that sacks will be delayed
4297  *                     for. This value will apply to all addresses of an
4298  *                     association if the spp_address field is empty. Note
4299  *                     also, that if delayed sack is enabled and this
4300  *                     value is set to 0, no change is made to the last
4301  *                     recorded delayed sack timer value.
4302  *
4303  *   spp_flags       - These flags are used to control various features
4304  *                     on an association. The flag field may contain
4305  *                     zero or more of the following options.
4306  *
4307  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4308  *                     specified address. Note that if the address
4309  *                     field is empty all addresses for the association
4310  *                     have heartbeats enabled upon them.
4311  *
4312  *                     SPP_HB_DISABLE - Disable heartbeats on the
4313  *                     speicifed address. Note that if the address
4314  *                     field is empty all addresses for the association
4315  *                     will have their heartbeats disabled. Note also
4316  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4317  *                     mutually exclusive, only one of these two should
4318  *                     be specified. Enabling both fields will have
4319  *                     undetermined results.
4320  *
4321  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4322  *                     to be made immediately.
4323  *
4324  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4325  *                     discovery upon the specified address. Note that
4326  *                     if the address feild is empty then all addresses
4327  *                     on the association are effected.
4328  *
4329  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4330  *                     discovery upon the specified address. Note that
4331  *                     if the address feild is empty then all addresses
4332  *                     on the association are effected. Not also that
4333  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4334  *                     exclusive. Enabling both will have undetermined
4335  *                     results.
4336  *
4337  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4338  *                     on delayed sack. The time specified in spp_sackdelay
4339  *                     is used to specify the sack delay for this address. Note
4340  *                     that if spp_address is empty then all addresses will
4341  *                     enable delayed sack and take on the sack delay
4342  *                     value specified in spp_sackdelay.
4343  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4344  *                     off delayed sack. If the spp_address field is blank then
4345  *                     delayed sack is disabled for the entire association. Note
4346  *                     also that this field is mutually exclusive to
4347  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4348  *                     results.
4349  */
4350 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4351 					    char __user *optval, int __user *optlen)
4352 {
4353 	struct sctp_paddrparams  params;
4354 	struct sctp_transport   *trans = NULL;
4355 	struct sctp_association *asoc = NULL;
4356 	struct sctp_sock        *sp = sctp_sk(sk);
4357 
4358 	if (len < sizeof(struct sctp_paddrparams))
4359 		return -EINVAL;
4360 	len = sizeof(struct sctp_paddrparams);
4361 	if (copy_from_user(&params, optval, len))
4362 		return -EFAULT;
4363 
4364 	/* If an address other than INADDR_ANY is specified, and
4365 	 * no transport is found, then the request is invalid.
4366 	 */
4367 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4368 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4369 					       params.spp_assoc_id);
4370 		if (!trans) {
4371 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4372 			return -EINVAL;
4373 		}
4374 	}
4375 
4376 	/* Get association, if assoc_id != 0 and the socket is a one
4377 	 * to many style socket, and an association was not found, then
4378 	 * the id was invalid.
4379 	 */
4380 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4381 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4382 		SCTP_DEBUG_PRINTK("Failed no association\n");
4383 		return -EINVAL;
4384 	}
4385 
4386 	if (trans) {
4387 		/* Fetch transport values. */
4388 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4389 		params.spp_pathmtu    = trans->pathmtu;
4390 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4391 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4392 
4393 		/*draft-11 doesn't say what to return in spp_flags*/
4394 		params.spp_flags      = trans->param_flags;
4395 	} else if (asoc) {
4396 		/* Fetch association values. */
4397 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4398 		params.spp_pathmtu    = asoc->pathmtu;
4399 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4400 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4401 
4402 		/*draft-11 doesn't say what to return in spp_flags*/
4403 		params.spp_flags      = asoc->param_flags;
4404 	} else {
4405 		/* Fetch socket values. */
4406 		params.spp_hbinterval = sp->hbinterval;
4407 		params.spp_pathmtu    = sp->pathmtu;
4408 		params.spp_sackdelay  = sp->sackdelay;
4409 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4410 
4411 		/*draft-11 doesn't say what to return in spp_flags*/
4412 		params.spp_flags      = sp->param_flags;
4413 	}
4414 
4415 	if (copy_to_user(optval, &params, len))
4416 		return -EFAULT;
4417 
4418 	if (put_user(len, optlen))
4419 		return -EFAULT;
4420 
4421 	return 0;
4422 }
4423 
4424 /*
4425  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4426  *
4427  * This option will effect the way delayed acks are performed.  This
4428  * option allows you to get or set the delayed ack time, in
4429  * milliseconds.  It also allows changing the delayed ack frequency.
4430  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4431  * the assoc_id is 0, then this sets or gets the endpoints default
4432  * values.  If the assoc_id field is non-zero, then the set or get
4433  * effects the specified association for the one to many model (the
4434  * assoc_id field is ignored by the one to one model).  Note that if
4435  * sack_delay or sack_freq are 0 when setting this option, then the
4436  * current values will remain unchanged.
4437  *
4438  * struct sctp_sack_info {
4439  *     sctp_assoc_t            sack_assoc_id;
4440  *     uint32_t                sack_delay;
4441  *     uint32_t                sack_freq;
4442  * };
4443  *
4444  * sack_assoc_id -  This parameter, indicates which association the user
4445  *    is performing an action upon.  Note that if this field's value is
4446  *    zero then the endpoints default value is changed (effecting future
4447  *    associations only).
4448  *
4449  * sack_delay -  This parameter contains the number of milliseconds that
4450  *    the user is requesting the delayed ACK timer be set to.  Note that
4451  *    this value is defined in the standard to be between 200 and 500
4452  *    milliseconds.
4453  *
4454  * sack_freq -  This parameter contains the number of packets that must
4455  *    be received before a sack is sent without waiting for the delay
4456  *    timer to expire.  The default value for this is 2, setting this
4457  *    value to 1 will disable the delayed sack algorithm.
4458  */
4459 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4460 					    char __user *optval,
4461 					    int __user *optlen)
4462 {
4463 	struct sctp_sack_info    params;
4464 	struct sctp_association *asoc = NULL;
4465 	struct sctp_sock        *sp = sctp_sk(sk);
4466 
4467 	if (len >= sizeof(struct sctp_sack_info)) {
4468 		len = sizeof(struct sctp_sack_info);
4469 
4470 		if (copy_from_user(&params, optval, len))
4471 			return -EFAULT;
4472 	} else if (len == sizeof(struct sctp_assoc_value)) {
4473 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4474 		pr_warn("Use struct sctp_sack_info instead\n");
4475 		if (copy_from_user(&params, optval, len))
4476 			return -EFAULT;
4477 	} else
4478 		return - EINVAL;
4479 
4480 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4481 	 * to many style socket, and an association was not found, then
4482 	 * the id was invalid.
4483 	 */
4484 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4485 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4486 		return -EINVAL;
4487 
4488 	if (asoc) {
4489 		/* Fetch association values. */
4490 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4491 			params.sack_delay = jiffies_to_msecs(
4492 				asoc->sackdelay);
4493 			params.sack_freq = asoc->sackfreq;
4494 
4495 		} else {
4496 			params.sack_delay = 0;
4497 			params.sack_freq = 1;
4498 		}
4499 	} else {
4500 		/* Fetch socket values. */
4501 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4502 			params.sack_delay  = sp->sackdelay;
4503 			params.sack_freq = sp->sackfreq;
4504 		} else {
4505 			params.sack_delay  = 0;
4506 			params.sack_freq = 1;
4507 		}
4508 	}
4509 
4510 	if (copy_to_user(optval, &params, len))
4511 		return -EFAULT;
4512 
4513 	if (put_user(len, optlen))
4514 		return -EFAULT;
4515 
4516 	return 0;
4517 }
4518 
4519 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4520  *
4521  * Applications can specify protocol parameters for the default association
4522  * initialization.  The option name argument to setsockopt() and getsockopt()
4523  * is SCTP_INITMSG.
4524  *
4525  * Setting initialization parameters is effective only on an unconnected
4526  * socket (for UDP-style sockets only future associations are effected
4527  * by the change).  With TCP-style sockets, this option is inherited by
4528  * sockets derived from a listener socket.
4529  */
4530 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4531 {
4532 	if (len < sizeof(struct sctp_initmsg))
4533 		return -EINVAL;
4534 	len = sizeof(struct sctp_initmsg);
4535 	if (put_user(len, optlen))
4536 		return -EFAULT;
4537 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4538 		return -EFAULT;
4539 	return 0;
4540 }
4541 
4542 
4543 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4544 				      char __user *optval, int __user *optlen)
4545 {
4546 	struct sctp_association *asoc;
4547 	int cnt = 0;
4548 	struct sctp_getaddrs getaddrs;
4549 	struct sctp_transport *from;
4550 	void __user *to;
4551 	union sctp_addr temp;
4552 	struct sctp_sock *sp = sctp_sk(sk);
4553 	int addrlen;
4554 	size_t space_left;
4555 	int bytes_copied;
4556 
4557 	if (len < sizeof(struct sctp_getaddrs))
4558 		return -EINVAL;
4559 
4560 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4561 		return -EFAULT;
4562 
4563 	/* For UDP-style sockets, id specifies the association to query.  */
4564 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4565 	if (!asoc)
4566 		return -EINVAL;
4567 
4568 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4569 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4570 
4571 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4572 				transports) {
4573 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4574 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4575 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4576 		if (space_left < addrlen)
4577 			return -ENOMEM;
4578 		if (copy_to_user(to, &temp, addrlen))
4579 			return -EFAULT;
4580 		to += addrlen;
4581 		cnt++;
4582 		space_left -= addrlen;
4583 	}
4584 
4585 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4586 		return -EFAULT;
4587 	bytes_copied = ((char __user *)to) - optval;
4588 	if (put_user(bytes_copied, optlen))
4589 		return -EFAULT;
4590 
4591 	return 0;
4592 }
4593 
4594 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4595 			    size_t space_left, int *bytes_copied)
4596 {
4597 	struct sctp_sockaddr_entry *addr;
4598 	union sctp_addr temp;
4599 	int cnt = 0;
4600 	int addrlen;
4601 
4602 	rcu_read_lock();
4603 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4604 		if (!addr->valid)
4605 			continue;
4606 
4607 		if ((PF_INET == sk->sk_family) &&
4608 		    (AF_INET6 == addr->a.sa.sa_family))
4609 			continue;
4610 		if ((PF_INET6 == sk->sk_family) &&
4611 		    inet_v6_ipv6only(sk) &&
4612 		    (AF_INET == addr->a.sa.sa_family))
4613 			continue;
4614 		memcpy(&temp, &addr->a, sizeof(temp));
4615 		if (!temp.v4.sin_port)
4616 			temp.v4.sin_port = htons(port);
4617 
4618 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4619 								&temp);
4620 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4621 		if (space_left < addrlen) {
4622 			cnt =  -ENOMEM;
4623 			break;
4624 		}
4625 		memcpy(to, &temp, addrlen);
4626 
4627 		to += addrlen;
4628 		cnt ++;
4629 		space_left -= addrlen;
4630 		*bytes_copied += addrlen;
4631 	}
4632 	rcu_read_unlock();
4633 
4634 	return cnt;
4635 }
4636 
4637 
4638 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4639 				       char __user *optval, int __user *optlen)
4640 {
4641 	struct sctp_bind_addr *bp;
4642 	struct sctp_association *asoc;
4643 	int cnt = 0;
4644 	struct sctp_getaddrs getaddrs;
4645 	struct sctp_sockaddr_entry *addr;
4646 	void __user *to;
4647 	union sctp_addr temp;
4648 	struct sctp_sock *sp = sctp_sk(sk);
4649 	int addrlen;
4650 	int err = 0;
4651 	size_t space_left;
4652 	int bytes_copied = 0;
4653 	void *addrs;
4654 	void *buf;
4655 
4656 	if (len < sizeof(struct sctp_getaddrs))
4657 		return -EINVAL;
4658 
4659 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4660 		return -EFAULT;
4661 
4662 	/*
4663 	 *  For UDP-style sockets, id specifies the association to query.
4664 	 *  If the id field is set to the value '0' then the locally bound
4665 	 *  addresses are returned without regard to any particular
4666 	 *  association.
4667 	 */
4668 	if (0 == getaddrs.assoc_id) {
4669 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4670 	} else {
4671 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4672 		if (!asoc)
4673 			return -EINVAL;
4674 		bp = &asoc->base.bind_addr;
4675 	}
4676 
4677 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4678 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4679 
4680 	addrs = kmalloc(space_left, GFP_KERNEL);
4681 	if (!addrs)
4682 		return -ENOMEM;
4683 
4684 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4685 	 * addresses from the global local address list.
4686 	 */
4687 	if (sctp_list_single_entry(&bp->address_list)) {
4688 		addr = list_entry(bp->address_list.next,
4689 				  struct sctp_sockaddr_entry, list);
4690 		if (sctp_is_any(sk, &addr->a)) {
4691 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4692 						space_left, &bytes_copied);
4693 			if (cnt < 0) {
4694 				err = cnt;
4695 				goto out;
4696 			}
4697 			goto copy_getaddrs;
4698 		}
4699 	}
4700 
4701 	buf = addrs;
4702 	/* Protection on the bound address list is not needed since
4703 	 * in the socket option context we hold a socket lock and
4704 	 * thus the bound address list can't change.
4705 	 */
4706 	list_for_each_entry(addr, &bp->address_list, list) {
4707 		memcpy(&temp, &addr->a, sizeof(temp));
4708 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4709 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4710 		if (space_left < addrlen) {
4711 			err =  -ENOMEM; /*fixme: right error?*/
4712 			goto out;
4713 		}
4714 		memcpy(buf, &temp, addrlen);
4715 		buf += addrlen;
4716 		bytes_copied += addrlen;
4717 		cnt ++;
4718 		space_left -= addrlen;
4719 	}
4720 
4721 copy_getaddrs:
4722 	if (copy_to_user(to, addrs, bytes_copied)) {
4723 		err = -EFAULT;
4724 		goto out;
4725 	}
4726 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4727 		err = -EFAULT;
4728 		goto out;
4729 	}
4730 	if (put_user(bytes_copied, optlen))
4731 		err = -EFAULT;
4732 out:
4733 	kfree(addrs);
4734 	return err;
4735 }
4736 
4737 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4738  *
4739  * Requests that the local SCTP stack use the enclosed peer address as
4740  * the association primary.  The enclosed address must be one of the
4741  * association peer's addresses.
4742  */
4743 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4744 					char __user *optval, int __user *optlen)
4745 {
4746 	struct sctp_prim prim;
4747 	struct sctp_association *asoc;
4748 	struct sctp_sock *sp = sctp_sk(sk);
4749 
4750 	if (len < sizeof(struct sctp_prim))
4751 		return -EINVAL;
4752 
4753 	len = sizeof(struct sctp_prim);
4754 
4755 	if (copy_from_user(&prim, optval, len))
4756 		return -EFAULT;
4757 
4758 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4759 	if (!asoc)
4760 		return -EINVAL;
4761 
4762 	if (!asoc->peer.primary_path)
4763 		return -ENOTCONN;
4764 
4765 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4766 		asoc->peer.primary_path->af_specific->sockaddr_len);
4767 
4768 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4769 			(union sctp_addr *)&prim.ssp_addr);
4770 
4771 	if (put_user(len, optlen))
4772 		return -EFAULT;
4773 	if (copy_to_user(optval, &prim, len))
4774 		return -EFAULT;
4775 
4776 	return 0;
4777 }
4778 
4779 /*
4780  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4781  *
4782  * Requests that the local endpoint set the specified Adaptation Layer
4783  * Indication parameter for all future INIT and INIT-ACK exchanges.
4784  */
4785 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4786 				  char __user *optval, int __user *optlen)
4787 {
4788 	struct sctp_setadaptation adaptation;
4789 
4790 	if (len < sizeof(struct sctp_setadaptation))
4791 		return -EINVAL;
4792 
4793 	len = sizeof(struct sctp_setadaptation);
4794 
4795 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4796 
4797 	if (put_user(len, optlen))
4798 		return -EFAULT;
4799 	if (copy_to_user(optval, &adaptation, len))
4800 		return -EFAULT;
4801 
4802 	return 0;
4803 }
4804 
4805 /*
4806  *
4807  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4808  *
4809  *   Applications that wish to use the sendto() system call may wish to
4810  *   specify a default set of parameters that would normally be supplied
4811  *   through the inclusion of ancillary data.  This socket option allows
4812  *   such an application to set the default sctp_sndrcvinfo structure.
4813 
4814 
4815  *   The application that wishes to use this socket option simply passes
4816  *   in to this call the sctp_sndrcvinfo structure defined in Section
4817  *   5.2.2) The input parameters accepted by this call include
4818  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4819  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4820  *   to this call if the caller is using the UDP model.
4821  *
4822  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4823  */
4824 static int sctp_getsockopt_default_send_param(struct sock *sk,
4825 					int len, char __user *optval,
4826 					int __user *optlen)
4827 {
4828 	struct sctp_sndrcvinfo info;
4829 	struct sctp_association *asoc;
4830 	struct sctp_sock *sp = sctp_sk(sk);
4831 
4832 	if (len < sizeof(struct sctp_sndrcvinfo))
4833 		return -EINVAL;
4834 
4835 	len = sizeof(struct sctp_sndrcvinfo);
4836 
4837 	if (copy_from_user(&info, optval, len))
4838 		return -EFAULT;
4839 
4840 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4841 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4842 		return -EINVAL;
4843 
4844 	if (asoc) {
4845 		info.sinfo_stream = asoc->default_stream;
4846 		info.sinfo_flags = asoc->default_flags;
4847 		info.sinfo_ppid = asoc->default_ppid;
4848 		info.sinfo_context = asoc->default_context;
4849 		info.sinfo_timetolive = asoc->default_timetolive;
4850 	} else {
4851 		info.sinfo_stream = sp->default_stream;
4852 		info.sinfo_flags = sp->default_flags;
4853 		info.sinfo_ppid = sp->default_ppid;
4854 		info.sinfo_context = sp->default_context;
4855 		info.sinfo_timetolive = sp->default_timetolive;
4856 	}
4857 
4858 	if (put_user(len, optlen))
4859 		return -EFAULT;
4860 	if (copy_to_user(optval, &info, len))
4861 		return -EFAULT;
4862 
4863 	return 0;
4864 }
4865 
4866 /*
4867  *
4868  * 7.1.5 SCTP_NODELAY
4869  *
4870  * Turn on/off any Nagle-like algorithm.  This means that packets are
4871  * generally sent as soon as possible and no unnecessary delays are
4872  * introduced, at the cost of more packets in the network.  Expects an
4873  * integer boolean flag.
4874  */
4875 
4876 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4877 				   char __user *optval, int __user *optlen)
4878 {
4879 	int val;
4880 
4881 	if (len < sizeof(int))
4882 		return -EINVAL;
4883 
4884 	len = sizeof(int);
4885 	val = (sctp_sk(sk)->nodelay == 1);
4886 	if (put_user(len, optlen))
4887 		return -EFAULT;
4888 	if (copy_to_user(optval, &val, len))
4889 		return -EFAULT;
4890 	return 0;
4891 }
4892 
4893 /*
4894  *
4895  * 7.1.1 SCTP_RTOINFO
4896  *
4897  * The protocol parameters used to initialize and bound retransmission
4898  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4899  * and modify these parameters.
4900  * All parameters are time values, in milliseconds.  A value of 0, when
4901  * modifying the parameters, indicates that the current value should not
4902  * be changed.
4903  *
4904  */
4905 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4906 				char __user *optval,
4907 				int __user *optlen) {
4908 	struct sctp_rtoinfo rtoinfo;
4909 	struct sctp_association *asoc;
4910 
4911 	if (len < sizeof (struct sctp_rtoinfo))
4912 		return -EINVAL;
4913 
4914 	len = sizeof(struct sctp_rtoinfo);
4915 
4916 	if (copy_from_user(&rtoinfo, optval, len))
4917 		return -EFAULT;
4918 
4919 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4920 
4921 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4922 		return -EINVAL;
4923 
4924 	/* Values corresponding to the specific association. */
4925 	if (asoc) {
4926 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4927 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4928 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4929 	} else {
4930 		/* Values corresponding to the endpoint. */
4931 		struct sctp_sock *sp = sctp_sk(sk);
4932 
4933 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4934 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4935 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4936 	}
4937 
4938 	if (put_user(len, optlen))
4939 		return -EFAULT;
4940 
4941 	if (copy_to_user(optval, &rtoinfo, len))
4942 		return -EFAULT;
4943 
4944 	return 0;
4945 }
4946 
4947 /*
4948  *
4949  * 7.1.2 SCTP_ASSOCINFO
4950  *
4951  * This option is used to tune the maximum retransmission attempts
4952  * of the association.
4953  * Returns an error if the new association retransmission value is
4954  * greater than the sum of the retransmission value  of the peer.
4955  * See [SCTP] for more information.
4956  *
4957  */
4958 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4959 				     char __user *optval,
4960 				     int __user *optlen)
4961 {
4962 
4963 	struct sctp_assocparams assocparams;
4964 	struct sctp_association *asoc;
4965 	struct list_head *pos;
4966 	int cnt = 0;
4967 
4968 	if (len < sizeof (struct sctp_assocparams))
4969 		return -EINVAL;
4970 
4971 	len = sizeof(struct sctp_assocparams);
4972 
4973 	if (copy_from_user(&assocparams, optval, len))
4974 		return -EFAULT;
4975 
4976 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4977 
4978 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4979 		return -EINVAL;
4980 
4981 	/* Values correspoinding to the specific association */
4982 	if (asoc) {
4983 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4984 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4985 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4986 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4987 						* 1000) +
4988 						(asoc->cookie_life.tv_usec
4989 						/ 1000);
4990 
4991 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4992 			cnt ++;
4993 		}
4994 
4995 		assocparams.sasoc_number_peer_destinations = cnt;
4996 	} else {
4997 		/* Values corresponding to the endpoint */
4998 		struct sctp_sock *sp = sctp_sk(sk);
4999 
5000 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5001 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5002 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5003 		assocparams.sasoc_cookie_life =
5004 					sp->assocparams.sasoc_cookie_life;
5005 		assocparams.sasoc_number_peer_destinations =
5006 					sp->assocparams.
5007 					sasoc_number_peer_destinations;
5008 	}
5009 
5010 	if (put_user(len, optlen))
5011 		return -EFAULT;
5012 
5013 	if (copy_to_user(optval, &assocparams, len))
5014 		return -EFAULT;
5015 
5016 	return 0;
5017 }
5018 
5019 /*
5020  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5021  *
5022  * This socket option is a boolean flag which turns on or off mapped V4
5023  * addresses.  If this option is turned on and the socket is type
5024  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5025  * If this option is turned off, then no mapping will be done of V4
5026  * addresses and a user will receive both PF_INET6 and PF_INET type
5027  * addresses on the socket.
5028  */
5029 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5030 				    char __user *optval, int __user *optlen)
5031 {
5032 	int val;
5033 	struct sctp_sock *sp = sctp_sk(sk);
5034 
5035 	if (len < sizeof(int))
5036 		return -EINVAL;
5037 
5038 	len = sizeof(int);
5039 	val = sp->v4mapped;
5040 	if (put_user(len, optlen))
5041 		return -EFAULT;
5042 	if (copy_to_user(optval, &val, len))
5043 		return -EFAULT;
5044 
5045 	return 0;
5046 }
5047 
5048 /*
5049  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5050  * (chapter and verse is quoted at sctp_setsockopt_context())
5051  */
5052 static int sctp_getsockopt_context(struct sock *sk, int len,
5053 				   char __user *optval, int __user *optlen)
5054 {
5055 	struct sctp_assoc_value params;
5056 	struct sctp_sock *sp;
5057 	struct sctp_association *asoc;
5058 
5059 	if (len < sizeof(struct sctp_assoc_value))
5060 		return -EINVAL;
5061 
5062 	len = sizeof(struct sctp_assoc_value);
5063 
5064 	if (copy_from_user(&params, optval, len))
5065 		return -EFAULT;
5066 
5067 	sp = sctp_sk(sk);
5068 
5069 	if (params.assoc_id != 0) {
5070 		asoc = sctp_id2assoc(sk, params.assoc_id);
5071 		if (!asoc)
5072 			return -EINVAL;
5073 		params.assoc_value = asoc->default_rcv_context;
5074 	} else {
5075 		params.assoc_value = sp->default_rcv_context;
5076 	}
5077 
5078 	if (put_user(len, optlen))
5079 		return -EFAULT;
5080 	if (copy_to_user(optval, &params, len))
5081 		return -EFAULT;
5082 
5083 	return 0;
5084 }
5085 
5086 /*
5087  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5088  * This option will get or set the maximum size to put in any outgoing
5089  * SCTP DATA chunk.  If a message is larger than this size it will be
5090  * fragmented by SCTP into the specified size.  Note that the underlying
5091  * SCTP implementation may fragment into smaller sized chunks when the
5092  * PMTU of the underlying association is smaller than the value set by
5093  * the user.  The default value for this option is '0' which indicates
5094  * the user is NOT limiting fragmentation and only the PMTU will effect
5095  * SCTP's choice of DATA chunk size.  Note also that values set larger
5096  * than the maximum size of an IP datagram will effectively let SCTP
5097  * control fragmentation (i.e. the same as setting this option to 0).
5098  *
5099  * The following structure is used to access and modify this parameter:
5100  *
5101  * struct sctp_assoc_value {
5102  *   sctp_assoc_t assoc_id;
5103  *   uint32_t assoc_value;
5104  * };
5105  *
5106  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5107  *    For one-to-many style sockets this parameter indicates which
5108  *    association the user is performing an action upon.  Note that if
5109  *    this field's value is zero then the endpoints default value is
5110  *    changed (effecting future associations only).
5111  * assoc_value:  This parameter specifies the maximum size in bytes.
5112  */
5113 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5114 				  char __user *optval, int __user *optlen)
5115 {
5116 	struct sctp_assoc_value params;
5117 	struct sctp_association *asoc;
5118 
5119 	if (len == sizeof(int)) {
5120 		pr_warn("Use of int in maxseg socket option deprecated\n");
5121 		pr_warn("Use struct sctp_assoc_value instead\n");
5122 		params.assoc_id = 0;
5123 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5124 		len = sizeof(struct sctp_assoc_value);
5125 		if (copy_from_user(&params, optval, sizeof(params)))
5126 			return -EFAULT;
5127 	} else
5128 		return -EINVAL;
5129 
5130 	asoc = sctp_id2assoc(sk, params.assoc_id);
5131 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5132 		return -EINVAL;
5133 
5134 	if (asoc)
5135 		params.assoc_value = asoc->frag_point;
5136 	else
5137 		params.assoc_value = sctp_sk(sk)->user_frag;
5138 
5139 	if (put_user(len, optlen))
5140 		return -EFAULT;
5141 	if (len == sizeof(int)) {
5142 		if (copy_to_user(optval, &params.assoc_value, len))
5143 			return -EFAULT;
5144 	} else {
5145 		if (copy_to_user(optval, &params, len))
5146 			return -EFAULT;
5147 	}
5148 
5149 	return 0;
5150 }
5151 
5152 /*
5153  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5154  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5155  */
5156 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5157 					       char __user *optval, int __user *optlen)
5158 {
5159 	int val;
5160 
5161 	if (len < sizeof(int))
5162 		return -EINVAL;
5163 
5164 	len = sizeof(int);
5165 
5166 	val = sctp_sk(sk)->frag_interleave;
5167 	if (put_user(len, optlen))
5168 		return -EFAULT;
5169 	if (copy_to_user(optval, &val, len))
5170 		return -EFAULT;
5171 
5172 	return 0;
5173 }
5174 
5175 /*
5176  * 7.1.25.  Set or Get the sctp partial delivery point
5177  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5178  */
5179 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5180 						  char __user *optval,
5181 						  int __user *optlen)
5182 {
5183 	u32 val;
5184 
5185 	if (len < sizeof(u32))
5186 		return -EINVAL;
5187 
5188 	len = sizeof(u32);
5189 
5190 	val = sctp_sk(sk)->pd_point;
5191 	if (put_user(len, optlen))
5192 		return -EFAULT;
5193 	if (copy_to_user(optval, &val, len))
5194 		return -EFAULT;
5195 
5196 	return 0;
5197 }
5198 
5199 /*
5200  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5201  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5202  */
5203 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5204 				    char __user *optval,
5205 				    int __user *optlen)
5206 {
5207 	struct sctp_assoc_value params;
5208 	struct sctp_sock *sp;
5209 	struct sctp_association *asoc;
5210 
5211 	if (len == sizeof(int)) {
5212 		pr_warn("Use of int in max_burst socket option deprecated\n");
5213 		pr_warn("Use struct sctp_assoc_value instead\n");
5214 		params.assoc_id = 0;
5215 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5216 		len = sizeof(struct sctp_assoc_value);
5217 		if (copy_from_user(&params, optval, len))
5218 			return -EFAULT;
5219 	} else
5220 		return -EINVAL;
5221 
5222 	sp = sctp_sk(sk);
5223 
5224 	if (params.assoc_id != 0) {
5225 		asoc = sctp_id2assoc(sk, params.assoc_id);
5226 		if (!asoc)
5227 			return -EINVAL;
5228 		params.assoc_value = asoc->max_burst;
5229 	} else
5230 		params.assoc_value = sp->max_burst;
5231 
5232 	if (len == sizeof(int)) {
5233 		if (copy_to_user(optval, &params.assoc_value, len))
5234 			return -EFAULT;
5235 	} else {
5236 		if (copy_to_user(optval, &params, len))
5237 			return -EFAULT;
5238 	}
5239 
5240 	return 0;
5241 
5242 }
5243 
5244 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5245 				    char __user *optval, int __user *optlen)
5246 {
5247 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5248 	struct sctp_hmac_algo_param *hmacs;
5249 	__u16 data_len = 0;
5250 	u32 num_idents;
5251 
5252 	if (!sctp_auth_enable)
5253 		return -EACCES;
5254 
5255 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5256 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5257 
5258 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5259 		return -EINVAL;
5260 
5261 	len = sizeof(struct sctp_hmacalgo) + data_len;
5262 	num_idents = data_len / sizeof(u16);
5263 
5264 	if (put_user(len, optlen))
5265 		return -EFAULT;
5266 	if (put_user(num_idents, &p->shmac_num_idents))
5267 		return -EFAULT;
5268 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5269 		return -EFAULT;
5270 	return 0;
5271 }
5272 
5273 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5274 				    char __user *optval, int __user *optlen)
5275 {
5276 	struct sctp_authkeyid val;
5277 	struct sctp_association *asoc;
5278 
5279 	if (!sctp_auth_enable)
5280 		return -EACCES;
5281 
5282 	if (len < sizeof(struct sctp_authkeyid))
5283 		return -EINVAL;
5284 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5285 		return -EFAULT;
5286 
5287 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5288 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5289 		return -EINVAL;
5290 
5291 	if (asoc)
5292 		val.scact_keynumber = asoc->active_key_id;
5293 	else
5294 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5295 
5296 	len = sizeof(struct sctp_authkeyid);
5297 	if (put_user(len, optlen))
5298 		return -EFAULT;
5299 	if (copy_to_user(optval, &val, len))
5300 		return -EFAULT;
5301 
5302 	return 0;
5303 }
5304 
5305 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5306 				    char __user *optval, int __user *optlen)
5307 {
5308 	struct sctp_authchunks __user *p = (void __user *)optval;
5309 	struct sctp_authchunks val;
5310 	struct sctp_association *asoc;
5311 	struct sctp_chunks_param *ch;
5312 	u32    num_chunks = 0;
5313 	char __user *to;
5314 
5315 	if (!sctp_auth_enable)
5316 		return -EACCES;
5317 
5318 	if (len < sizeof(struct sctp_authchunks))
5319 		return -EINVAL;
5320 
5321 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5322 		return -EFAULT;
5323 
5324 	to = p->gauth_chunks;
5325 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5326 	if (!asoc)
5327 		return -EINVAL;
5328 
5329 	ch = asoc->peer.peer_chunks;
5330 	if (!ch)
5331 		goto num;
5332 
5333 	/* See if the user provided enough room for all the data */
5334 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5335 	if (len < num_chunks)
5336 		return -EINVAL;
5337 
5338 	if (copy_to_user(to, ch->chunks, num_chunks))
5339 		return -EFAULT;
5340 num:
5341 	len = sizeof(struct sctp_authchunks) + num_chunks;
5342 	if (put_user(len, optlen)) return -EFAULT;
5343 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5344 		return -EFAULT;
5345 	return 0;
5346 }
5347 
5348 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5349 				    char __user *optval, int __user *optlen)
5350 {
5351 	struct sctp_authchunks __user *p = (void __user *)optval;
5352 	struct sctp_authchunks val;
5353 	struct sctp_association *asoc;
5354 	struct sctp_chunks_param *ch;
5355 	u32    num_chunks = 0;
5356 	char __user *to;
5357 
5358 	if (!sctp_auth_enable)
5359 		return -EACCES;
5360 
5361 	if (len < sizeof(struct sctp_authchunks))
5362 		return -EINVAL;
5363 
5364 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5365 		return -EFAULT;
5366 
5367 	to = p->gauth_chunks;
5368 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5369 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5370 		return -EINVAL;
5371 
5372 	if (asoc)
5373 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5374 	else
5375 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5376 
5377 	if (!ch)
5378 		goto num;
5379 
5380 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5381 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5382 		return -EINVAL;
5383 
5384 	if (copy_to_user(to, ch->chunks, num_chunks))
5385 		return -EFAULT;
5386 num:
5387 	len = sizeof(struct sctp_authchunks) + num_chunks;
5388 	if (put_user(len, optlen))
5389 		return -EFAULT;
5390 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5391 		return -EFAULT;
5392 
5393 	return 0;
5394 }
5395 
5396 /*
5397  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5398  * This option gets the current number of associations that are attached
5399  * to a one-to-many style socket.  The option value is an uint32_t.
5400  */
5401 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5402 				    char __user *optval, int __user *optlen)
5403 {
5404 	struct sctp_sock *sp = sctp_sk(sk);
5405 	struct sctp_association *asoc;
5406 	u32 val = 0;
5407 
5408 	if (sctp_style(sk, TCP))
5409 		return -EOPNOTSUPP;
5410 
5411 	if (len < sizeof(u32))
5412 		return -EINVAL;
5413 
5414 	len = sizeof(u32);
5415 
5416 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5417 		val++;
5418 	}
5419 
5420 	if (put_user(len, optlen))
5421 		return -EFAULT;
5422 	if (copy_to_user(optval, &val, len))
5423 		return -EFAULT;
5424 
5425 	return 0;
5426 }
5427 
5428 /*
5429  * 8.1.23 SCTP_AUTO_ASCONF
5430  * See the corresponding setsockopt entry as description
5431  */
5432 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5433 				   char __user *optval, int __user *optlen)
5434 {
5435 	int val = 0;
5436 
5437 	if (len < sizeof(int))
5438 		return -EINVAL;
5439 
5440 	len = sizeof(int);
5441 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5442 		val = 1;
5443 	if (put_user(len, optlen))
5444 		return -EFAULT;
5445 	if (copy_to_user(optval, &val, len))
5446 		return -EFAULT;
5447 	return 0;
5448 }
5449 
5450 /*
5451  * 8.2.6. Get the Current Identifiers of Associations
5452  *        (SCTP_GET_ASSOC_ID_LIST)
5453  *
5454  * This option gets the current list of SCTP association identifiers of
5455  * the SCTP associations handled by a one-to-many style socket.
5456  */
5457 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5458 				    char __user *optval, int __user *optlen)
5459 {
5460 	struct sctp_sock *sp = sctp_sk(sk);
5461 	struct sctp_association *asoc;
5462 	struct sctp_assoc_ids *ids;
5463 	u32 num = 0;
5464 
5465 	if (sctp_style(sk, TCP))
5466 		return -EOPNOTSUPP;
5467 
5468 	if (len < sizeof(struct sctp_assoc_ids))
5469 		return -EINVAL;
5470 
5471 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5472 		num++;
5473 	}
5474 
5475 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5476 		return -EINVAL;
5477 
5478 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5479 
5480 	ids = kmalloc(len, GFP_KERNEL);
5481 	if (unlikely(!ids))
5482 		return -ENOMEM;
5483 
5484 	ids->gaids_number_of_ids = num;
5485 	num = 0;
5486 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5487 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5488 	}
5489 
5490 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5491 		kfree(ids);
5492 		return -EFAULT;
5493 	}
5494 
5495 	kfree(ids);
5496 	return 0;
5497 }
5498 
5499 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5500 				char __user *optval, int __user *optlen)
5501 {
5502 	int retval = 0;
5503 	int len;
5504 
5505 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5506 			  sk, optname);
5507 
5508 	/* I can hardly begin to describe how wrong this is.  This is
5509 	 * so broken as to be worse than useless.  The API draft
5510 	 * REALLY is NOT helpful here...  I am not convinced that the
5511 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5512 	 * are at all well-founded.
5513 	 */
5514 	if (level != SOL_SCTP) {
5515 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5516 
5517 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5518 		return retval;
5519 	}
5520 
5521 	if (get_user(len, optlen))
5522 		return -EFAULT;
5523 
5524 	sctp_lock_sock(sk);
5525 
5526 	switch (optname) {
5527 	case SCTP_STATUS:
5528 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5529 		break;
5530 	case SCTP_DISABLE_FRAGMENTS:
5531 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5532 							   optlen);
5533 		break;
5534 	case SCTP_EVENTS:
5535 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5536 		break;
5537 	case SCTP_AUTOCLOSE:
5538 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5539 		break;
5540 	case SCTP_SOCKOPT_PEELOFF:
5541 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5542 		break;
5543 	case SCTP_PEER_ADDR_PARAMS:
5544 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5545 							  optlen);
5546 		break;
5547 	case SCTP_DELAYED_SACK:
5548 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5549 							  optlen);
5550 		break;
5551 	case SCTP_INITMSG:
5552 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5553 		break;
5554 	case SCTP_GET_PEER_ADDRS:
5555 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5556 						    optlen);
5557 		break;
5558 	case SCTP_GET_LOCAL_ADDRS:
5559 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5560 						     optlen);
5561 		break;
5562 	case SCTP_SOCKOPT_CONNECTX3:
5563 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5564 		break;
5565 	case SCTP_DEFAULT_SEND_PARAM:
5566 		retval = sctp_getsockopt_default_send_param(sk, len,
5567 							    optval, optlen);
5568 		break;
5569 	case SCTP_PRIMARY_ADDR:
5570 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5571 		break;
5572 	case SCTP_NODELAY:
5573 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5574 		break;
5575 	case SCTP_RTOINFO:
5576 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5577 		break;
5578 	case SCTP_ASSOCINFO:
5579 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5580 		break;
5581 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5582 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5583 		break;
5584 	case SCTP_MAXSEG:
5585 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5586 		break;
5587 	case SCTP_GET_PEER_ADDR_INFO:
5588 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5589 							optlen);
5590 		break;
5591 	case SCTP_ADAPTATION_LAYER:
5592 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5593 							optlen);
5594 		break;
5595 	case SCTP_CONTEXT:
5596 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5597 		break;
5598 	case SCTP_FRAGMENT_INTERLEAVE:
5599 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5600 							     optlen);
5601 		break;
5602 	case SCTP_PARTIAL_DELIVERY_POINT:
5603 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5604 								optlen);
5605 		break;
5606 	case SCTP_MAX_BURST:
5607 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5608 		break;
5609 	case SCTP_AUTH_KEY:
5610 	case SCTP_AUTH_CHUNK:
5611 	case SCTP_AUTH_DELETE_KEY:
5612 		retval = -EOPNOTSUPP;
5613 		break;
5614 	case SCTP_HMAC_IDENT:
5615 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5616 		break;
5617 	case SCTP_AUTH_ACTIVE_KEY:
5618 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5619 		break;
5620 	case SCTP_PEER_AUTH_CHUNKS:
5621 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5622 							optlen);
5623 		break;
5624 	case SCTP_LOCAL_AUTH_CHUNKS:
5625 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5626 							optlen);
5627 		break;
5628 	case SCTP_GET_ASSOC_NUMBER:
5629 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5630 		break;
5631 	case SCTP_GET_ASSOC_ID_LIST:
5632 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5633 		break;
5634 	case SCTP_AUTO_ASCONF:
5635 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5636 		break;
5637 	default:
5638 		retval = -ENOPROTOOPT;
5639 		break;
5640 	}
5641 
5642 	sctp_release_sock(sk);
5643 	return retval;
5644 }
5645 
5646 static void sctp_hash(struct sock *sk)
5647 {
5648 	/* STUB */
5649 }
5650 
5651 static void sctp_unhash(struct sock *sk)
5652 {
5653 	/* STUB */
5654 }
5655 
5656 /* Check if port is acceptable.  Possibly find first available port.
5657  *
5658  * The port hash table (contained in the 'global' SCTP protocol storage
5659  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5660  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5661  * list (the list number is the port number hashed out, so as you
5662  * would expect from a hash function, all the ports in a given list have
5663  * such a number that hashes out to the same list number; you were
5664  * expecting that, right?); so each list has a set of ports, with a
5665  * link to the socket (struct sock) that uses it, the port number and
5666  * a fastreuse flag (FIXME: NPI ipg).
5667  */
5668 static struct sctp_bind_bucket *sctp_bucket_create(
5669 	struct sctp_bind_hashbucket *head, unsigned short snum);
5670 
5671 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5672 {
5673 	struct sctp_bind_hashbucket *head; /* hash list */
5674 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5675 	struct hlist_node *node;
5676 	unsigned short snum;
5677 	int ret;
5678 
5679 	snum = ntohs(addr->v4.sin_port);
5680 
5681 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5682 	sctp_local_bh_disable();
5683 
5684 	if (snum == 0) {
5685 		/* Search for an available port. */
5686 		int low, high, remaining, index;
5687 		unsigned int rover;
5688 
5689 		inet_get_local_port_range(&low, &high);
5690 		remaining = (high - low) + 1;
5691 		rover = net_random() % remaining + low;
5692 
5693 		do {
5694 			rover++;
5695 			if ((rover < low) || (rover > high))
5696 				rover = low;
5697 			if (inet_is_reserved_local_port(rover))
5698 				continue;
5699 			index = sctp_phashfn(rover);
5700 			head = &sctp_port_hashtable[index];
5701 			sctp_spin_lock(&head->lock);
5702 			sctp_for_each_hentry(pp, node, &head->chain)
5703 				if (pp->port == rover)
5704 					goto next;
5705 			break;
5706 		next:
5707 			sctp_spin_unlock(&head->lock);
5708 		} while (--remaining > 0);
5709 
5710 		/* Exhausted local port range during search? */
5711 		ret = 1;
5712 		if (remaining <= 0)
5713 			goto fail;
5714 
5715 		/* OK, here is the one we will use.  HEAD (the port
5716 		 * hash table list entry) is non-NULL and we hold it's
5717 		 * mutex.
5718 		 */
5719 		snum = rover;
5720 	} else {
5721 		/* We are given an specific port number; we verify
5722 		 * that it is not being used. If it is used, we will
5723 		 * exahust the search in the hash list corresponding
5724 		 * to the port number (snum) - we detect that with the
5725 		 * port iterator, pp being NULL.
5726 		 */
5727 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5728 		sctp_spin_lock(&head->lock);
5729 		sctp_for_each_hentry(pp, node, &head->chain) {
5730 			if (pp->port == snum)
5731 				goto pp_found;
5732 		}
5733 	}
5734 	pp = NULL;
5735 	goto pp_not_found;
5736 pp_found:
5737 	if (!hlist_empty(&pp->owner)) {
5738 		/* We had a port hash table hit - there is an
5739 		 * available port (pp != NULL) and it is being
5740 		 * used by other socket (pp->owner not empty); that other
5741 		 * socket is going to be sk2.
5742 		 */
5743 		int reuse = sk->sk_reuse;
5744 		struct sock *sk2;
5745 
5746 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5747 		if (pp->fastreuse && sk->sk_reuse &&
5748 			sk->sk_state != SCTP_SS_LISTENING)
5749 			goto success;
5750 
5751 		/* Run through the list of sockets bound to the port
5752 		 * (pp->port) [via the pointers bind_next and
5753 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5754 		 * we get the endpoint they describe and run through
5755 		 * the endpoint's list of IP (v4 or v6) addresses,
5756 		 * comparing each of the addresses with the address of
5757 		 * the socket sk. If we find a match, then that means
5758 		 * that this port/socket (sk) combination are already
5759 		 * in an endpoint.
5760 		 */
5761 		sk_for_each_bound(sk2, node, &pp->owner) {
5762 			struct sctp_endpoint *ep2;
5763 			ep2 = sctp_sk(sk2)->ep;
5764 
5765 			if (sk == sk2 ||
5766 			    (reuse && sk2->sk_reuse &&
5767 			     sk2->sk_state != SCTP_SS_LISTENING))
5768 				continue;
5769 
5770 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5771 						 sctp_sk(sk2), sctp_sk(sk))) {
5772 				ret = (long)sk2;
5773 				goto fail_unlock;
5774 			}
5775 		}
5776 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5777 	}
5778 pp_not_found:
5779 	/* If there was a hash table miss, create a new port.  */
5780 	ret = 1;
5781 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5782 		goto fail_unlock;
5783 
5784 	/* In either case (hit or miss), make sure fastreuse is 1 only
5785 	 * if sk->sk_reuse is too (that is, if the caller requested
5786 	 * SO_REUSEADDR on this socket -sk-).
5787 	 */
5788 	if (hlist_empty(&pp->owner)) {
5789 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5790 			pp->fastreuse = 1;
5791 		else
5792 			pp->fastreuse = 0;
5793 	} else if (pp->fastreuse &&
5794 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5795 		pp->fastreuse = 0;
5796 
5797 	/* We are set, so fill up all the data in the hash table
5798 	 * entry, tie the socket list information with the rest of the
5799 	 * sockets FIXME: Blurry, NPI (ipg).
5800 	 */
5801 success:
5802 	if (!sctp_sk(sk)->bind_hash) {
5803 		inet_sk(sk)->inet_num = snum;
5804 		sk_add_bind_node(sk, &pp->owner);
5805 		sctp_sk(sk)->bind_hash = pp;
5806 	}
5807 	ret = 0;
5808 
5809 fail_unlock:
5810 	sctp_spin_unlock(&head->lock);
5811 
5812 fail:
5813 	sctp_local_bh_enable();
5814 	return ret;
5815 }
5816 
5817 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5818  * port is requested.
5819  */
5820 static int sctp_get_port(struct sock *sk, unsigned short snum)
5821 {
5822 	long ret;
5823 	union sctp_addr addr;
5824 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5825 
5826 	/* Set up a dummy address struct from the sk. */
5827 	af->from_sk(&addr, sk);
5828 	addr.v4.sin_port = htons(snum);
5829 
5830 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5831 	ret = sctp_get_port_local(sk, &addr);
5832 
5833 	return ret ? 1 : 0;
5834 }
5835 
5836 /*
5837  *  Move a socket to LISTENING state.
5838  */
5839 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5840 {
5841 	struct sctp_sock *sp = sctp_sk(sk);
5842 	struct sctp_endpoint *ep = sp->ep;
5843 	struct crypto_hash *tfm = NULL;
5844 
5845 	/* Allocate HMAC for generating cookie. */
5846 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5847 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5848 		if (IS_ERR(tfm)) {
5849 			if (net_ratelimit()) {
5850 				pr_info("failed to load transform for %s: %ld\n",
5851 					sctp_hmac_alg, PTR_ERR(tfm));
5852 			}
5853 			return -ENOSYS;
5854 		}
5855 		sctp_sk(sk)->hmac = tfm;
5856 	}
5857 
5858 	/*
5859 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5860 	 * call that allows new associations to be accepted, the system
5861 	 * picks an ephemeral port and will choose an address set equivalent
5862 	 * to binding with a wildcard address.
5863 	 *
5864 	 * This is not currently spelled out in the SCTP sockets
5865 	 * extensions draft, but follows the practice as seen in TCP
5866 	 * sockets.
5867 	 *
5868 	 */
5869 	sk->sk_state = SCTP_SS_LISTENING;
5870 	if (!ep->base.bind_addr.port) {
5871 		if (sctp_autobind(sk))
5872 			return -EAGAIN;
5873 	} else {
5874 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5875 			sk->sk_state = SCTP_SS_CLOSED;
5876 			return -EADDRINUSE;
5877 		}
5878 	}
5879 
5880 	sk->sk_max_ack_backlog = backlog;
5881 	sctp_hash_endpoint(ep);
5882 	return 0;
5883 }
5884 
5885 /*
5886  * 4.1.3 / 5.1.3 listen()
5887  *
5888  *   By default, new associations are not accepted for UDP style sockets.
5889  *   An application uses listen() to mark a socket as being able to
5890  *   accept new associations.
5891  *
5892  *   On TCP style sockets, applications use listen() to ready the SCTP
5893  *   endpoint for accepting inbound associations.
5894  *
5895  *   On both types of endpoints a backlog of '0' disables listening.
5896  *
5897  *  Move a socket to LISTENING state.
5898  */
5899 int sctp_inet_listen(struct socket *sock, int backlog)
5900 {
5901 	struct sock *sk = sock->sk;
5902 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5903 	int err = -EINVAL;
5904 
5905 	if (unlikely(backlog < 0))
5906 		return err;
5907 
5908 	sctp_lock_sock(sk);
5909 
5910 	/* Peeled-off sockets are not allowed to listen().  */
5911 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5912 		goto out;
5913 
5914 	if (sock->state != SS_UNCONNECTED)
5915 		goto out;
5916 
5917 	/* If backlog is zero, disable listening. */
5918 	if (!backlog) {
5919 		if (sctp_sstate(sk, CLOSED))
5920 			goto out;
5921 
5922 		err = 0;
5923 		sctp_unhash_endpoint(ep);
5924 		sk->sk_state = SCTP_SS_CLOSED;
5925 		if (sk->sk_reuse)
5926 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5927 		goto out;
5928 	}
5929 
5930 	/* If we are already listening, just update the backlog */
5931 	if (sctp_sstate(sk, LISTENING))
5932 		sk->sk_max_ack_backlog = backlog;
5933 	else {
5934 		err = sctp_listen_start(sk, backlog);
5935 		if (err)
5936 			goto out;
5937 	}
5938 
5939 	err = 0;
5940 out:
5941 	sctp_release_sock(sk);
5942 	return err;
5943 }
5944 
5945 /*
5946  * This function is done by modeling the current datagram_poll() and the
5947  * tcp_poll().  Note that, based on these implementations, we don't
5948  * lock the socket in this function, even though it seems that,
5949  * ideally, locking or some other mechanisms can be used to ensure
5950  * the integrity of the counters (sndbuf and wmem_alloc) used
5951  * in this place.  We assume that we don't need locks either until proven
5952  * otherwise.
5953  *
5954  * Another thing to note is that we include the Async I/O support
5955  * here, again, by modeling the current TCP/UDP code.  We don't have
5956  * a good way to test with it yet.
5957  */
5958 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5959 {
5960 	struct sock *sk = sock->sk;
5961 	struct sctp_sock *sp = sctp_sk(sk);
5962 	unsigned int mask;
5963 
5964 	poll_wait(file, sk_sleep(sk), wait);
5965 
5966 	/* A TCP-style listening socket becomes readable when the accept queue
5967 	 * is not empty.
5968 	 */
5969 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5970 		return (!list_empty(&sp->ep->asocs)) ?
5971 			(POLLIN | POLLRDNORM) : 0;
5972 
5973 	mask = 0;
5974 
5975 	/* Is there any exceptional events?  */
5976 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5977 		mask |= POLLERR;
5978 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5979 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5980 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5981 		mask |= POLLHUP;
5982 
5983 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5984 	if (!skb_queue_empty(&sk->sk_receive_queue))
5985 		mask |= POLLIN | POLLRDNORM;
5986 
5987 	/* The association is either gone or not ready.  */
5988 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5989 		return mask;
5990 
5991 	/* Is it writable?  */
5992 	if (sctp_writeable(sk)) {
5993 		mask |= POLLOUT | POLLWRNORM;
5994 	} else {
5995 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5996 		/*
5997 		 * Since the socket is not locked, the buffer
5998 		 * might be made available after the writeable check and
5999 		 * before the bit is set.  This could cause a lost I/O
6000 		 * signal.  tcp_poll() has a race breaker for this race
6001 		 * condition.  Based on their implementation, we put
6002 		 * in the following code to cover it as well.
6003 		 */
6004 		if (sctp_writeable(sk))
6005 			mask |= POLLOUT | POLLWRNORM;
6006 	}
6007 	return mask;
6008 }
6009 
6010 /********************************************************************
6011  * 2nd Level Abstractions
6012  ********************************************************************/
6013 
6014 static struct sctp_bind_bucket *sctp_bucket_create(
6015 	struct sctp_bind_hashbucket *head, unsigned short snum)
6016 {
6017 	struct sctp_bind_bucket *pp;
6018 
6019 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6020 	if (pp) {
6021 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6022 		pp->port = snum;
6023 		pp->fastreuse = 0;
6024 		INIT_HLIST_HEAD(&pp->owner);
6025 		hlist_add_head(&pp->node, &head->chain);
6026 	}
6027 	return pp;
6028 }
6029 
6030 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6031 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6032 {
6033 	if (pp && hlist_empty(&pp->owner)) {
6034 		__hlist_del(&pp->node);
6035 		kmem_cache_free(sctp_bucket_cachep, pp);
6036 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6037 	}
6038 }
6039 
6040 /* Release this socket's reference to a local port.  */
6041 static inline void __sctp_put_port(struct sock *sk)
6042 {
6043 	struct sctp_bind_hashbucket *head =
6044 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6045 	struct sctp_bind_bucket *pp;
6046 
6047 	sctp_spin_lock(&head->lock);
6048 	pp = sctp_sk(sk)->bind_hash;
6049 	__sk_del_bind_node(sk);
6050 	sctp_sk(sk)->bind_hash = NULL;
6051 	inet_sk(sk)->inet_num = 0;
6052 	sctp_bucket_destroy(pp);
6053 	sctp_spin_unlock(&head->lock);
6054 }
6055 
6056 void sctp_put_port(struct sock *sk)
6057 {
6058 	sctp_local_bh_disable();
6059 	__sctp_put_port(sk);
6060 	sctp_local_bh_enable();
6061 }
6062 
6063 /*
6064  * The system picks an ephemeral port and choose an address set equivalent
6065  * to binding with a wildcard address.
6066  * One of those addresses will be the primary address for the association.
6067  * This automatically enables the multihoming capability of SCTP.
6068  */
6069 static int sctp_autobind(struct sock *sk)
6070 {
6071 	union sctp_addr autoaddr;
6072 	struct sctp_af *af;
6073 	__be16 port;
6074 
6075 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6076 	af = sctp_sk(sk)->pf->af;
6077 
6078 	port = htons(inet_sk(sk)->inet_num);
6079 	af->inaddr_any(&autoaddr, port);
6080 
6081 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6082 }
6083 
6084 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6085  *
6086  * From RFC 2292
6087  * 4.2 The cmsghdr Structure *
6088  *
6089  * When ancillary data is sent or received, any number of ancillary data
6090  * objects can be specified by the msg_control and msg_controllen members of
6091  * the msghdr structure, because each object is preceded by
6092  * a cmsghdr structure defining the object's length (the cmsg_len member).
6093  * Historically Berkeley-derived implementations have passed only one object
6094  * at a time, but this API allows multiple objects to be
6095  * passed in a single call to sendmsg() or recvmsg(). The following example
6096  * shows two ancillary data objects in a control buffer.
6097  *
6098  *   |<--------------------------- msg_controllen -------------------------->|
6099  *   |                                                                       |
6100  *
6101  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6102  *
6103  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6104  *   |                                   |                                   |
6105  *
6106  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6107  *
6108  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6109  *   |                                |  |                                |  |
6110  *
6111  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6112  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6113  *
6114  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6115  *
6116  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6117  *    ^
6118  *    |
6119  *
6120  * msg_control
6121  * points here
6122  */
6123 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6124 				  sctp_cmsgs_t *cmsgs)
6125 {
6126 	struct cmsghdr *cmsg;
6127 	struct msghdr *my_msg = (struct msghdr *)msg;
6128 
6129 	for (cmsg = CMSG_FIRSTHDR(msg);
6130 	     cmsg != NULL;
6131 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6132 		if (!CMSG_OK(my_msg, cmsg))
6133 			return -EINVAL;
6134 
6135 		/* Should we parse this header or ignore?  */
6136 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6137 			continue;
6138 
6139 		/* Strictly check lengths following example in SCM code.  */
6140 		switch (cmsg->cmsg_type) {
6141 		case SCTP_INIT:
6142 			/* SCTP Socket API Extension
6143 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6144 			 *
6145 			 * This cmsghdr structure provides information for
6146 			 * initializing new SCTP associations with sendmsg().
6147 			 * The SCTP_INITMSG socket option uses this same data
6148 			 * structure.  This structure is not used for
6149 			 * recvmsg().
6150 			 *
6151 			 * cmsg_level    cmsg_type      cmsg_data[]
6152 			 * ------------  ------------   ----------------------
6153 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6154 			 */
6155 			if (cmsg->cmsg_len !=
6156 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6157 				return -EINVAL;
6158 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6159 			break;
6160 
6161 		case SCTP_SNDRCV:
6162 			/* SCTP Socket API Extension
6163 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6164 			 *
6165 			 * This cmsghdr structure specifies SCTP options for
6166 			 * sendmsg() and describes SCTP header information
6167 			 * about a received message through recvmsg().
6168 			 *
6169 			 * cmsg_level    cmsg_type      cmsg_data[]
6170 			 * ------------  ------------   ----------------------
6171 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6172 			 */
6173 			if (cmsg->cmsg_len !=
6174 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6175 				return -EINVAL;
6176 
6177 			cmsgs->info =
6178 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6179 
6180 			/* Minimally, validate the sinfo_flags. */
6181 			if (cmsgs->info->sinfo_flags &
6182 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6183 			      SCTP_ABORT | SCTP_EOF))
6184 				return -EINVAL;
6185 			break;
6186 
6187 		default:
6188 			return -EINVAL;
6189 		}
6190 	}
6191 	return 0;
6192 }
6193 
6194 /*
6195  * Wait for a packet..
6196  * Note: This function is the same function as in core/datagram.c
6197  * with a few modifications to make lksctp work.
6198  */
6199 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6200 {
6201 	int error;
6202 	DEFINE_WAIT(wait);
6203 
6204 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6205 
6206 	/* Socket errors? */
6207 	error = sock_error(sk);
6208 	if (error)
6209 		goto out;
6210 
6211 	if (!skb_queue_empty(&sk->sk_receive_queue))
6212 		goto ready;
6213 
6214 	/* Socket shut down?  */
6215 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6216 		goto out;
6217 
6218 	/* Sequenced packets can come disconnected.  If so we report the
6219 	 * problem.
6220 	 */
6221 	error = -ENOTCONN;
6222 
6223 	/* Is there a good reason to think that we may receive some data?  */
6224 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6225 		goto out;
6226 
6227 	/* Handle signals.  */
6228 	if (signal_pending(current))
6229 		goto interrupted;
6230 
6231 	/* Let another process have a go.  Since we are going to sleep
6232 	 * anyway.  Note: This may cause odd behaviors if the message
6233 	 * does not fit in the user's buffer, but this seems to be the
6234 	 * only way to honor MSG_DONTWAIT realistically.
6235 	 */
6236 	sctp_release_sock(sk);
6237 	*timeo_p = schedule_timeout(*timeo_p);
6238 	sctp_lock_sock(sk);
6239 
6240 ready:
6241 	finish_wait(sk_sleep(sk), &wait);
6242 	return 0;
6243 
6244 interrupted:
6245 	error = sock_intr_errno(*timeo_p);
6246 
6247 out:
6248 	finish_wait(sk_sleep(sk), &wait);
6249 	*err = error;
6250 	return error;
6251 }
6252 
6253 /* Receive a datagram.
6254  * Note: This is pretty much the same routine as in core/datagram.c
6255  * with a few changes to make lksctp work.
6256  */
6257 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6258 					      int noblock, int *err)
6259 {
6260 	int error;
6261 	struct sk_buff *skb;
6262 	long timeo;
6263 
6264 	timeo = sock_rcvtimeo(sk, noblock);
6265 
6266 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6267 			  timeo, MAX_SCHEDULE_TIMEOUT);
6268 
6269 	do {
6270 		/* Again only user level code calls this function,
6271 		 * so nothing interrupt level
6272 		 * will suddenly eat the receive_queue.
6273 		 *
6274 		 *  Look at current nfs client by the way...
6275 		 *  However, this function was correct in any case. 8)
6276 		 */
6277 		if (flags & MSG_PEEK) {
6278 			spin_lock_bh(&sk->sk_receive_queue.lock);
6279 			skb = skb_peek(&sk->sk_receive_queue);
6280 			if (skb)
6281 				atomic_inc(&skb->users);
6282 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6283 		} else {
6284 			skb = skb_dequeue(&sk->sk_receive_queue);
6285 		}
6286 
6287 		if (skb)
6288 			return skb;
6289 
6290 		/* Caller is allowed not to check sk->sk_err before calling. */
6291 		error = sock_error(sk);
6292 		if (error)
6293 			goto no_packet;
6294 
6295 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6296 			break;
6297 
6298 		/* User doesn't want to wait.  */
6299 		error = -EAGAIN;
6300 		if (!timeo)
6301 			goto no_packet;
6302 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6303 
6304 	return NULL;
6305 
6306 no_packet:
6307 	*err = error;
6308 	return NULL;
6309 }
6310 
6311 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6312 static void __sctp_write_space(struct sctp_association *asoc)
6313 {
6314 	struct sock *sk = asoc->base.sk;
6315 	struct socket *sock = sk->sk_socket;
6316 
6317 	if ((sctp_wspace(asoc) > 0) && sock) {
6318 		if (waitqueue_active(&asoc->wait))
6319 			wake_up_interruptible(&asoc->wait);
6320 
6321 		if (sctp_writeable(sk)) {
6322 			wait_queue_head_t *wq = sk_sleep(sk);
6323 
6324 			if (wq && waitqueue_active(wq))
6325 				wake_up_interruptible(wq);
6326 
6327 			/* Note that we try to include the Async I/O support
6328 			 * here by modeling from the current TCP/UDP code.
6329 			 * We have not tested with it yet.
6330 			 */
6331 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6332 				sock_wake_async(sock,
6333 						SOCK_WAKE_SPACE, POLL_OUT);
6334 		}
6335 	}
6336 }
6337 
6338 /* Do accounting for the sndbuf space.
6339  * Decrement the used sndbuf space of the corresponding association by the
6340  * data size which was just transmitted(freed).
6341  */
6342 static void sctp_wfree(struct sk_buff *skb)
6343 {
6344 	struct sctp_association *asoc;
6345 	struct sctp_chunk *chunk;
6346 	struct sock *sk;
6347 
6348 	/* Get the saved chunk pointer.  */
6349 	chunk = *((struct sctp_chunk **)(skb->cb));
6350 	asoc = chunk->asoc;
6351 	sk = asoc->base.sk;
6352 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6353 				sizeof(struct sk_buff) +
6354 				sizeof(struct sctp_chunk);
6355 
6356 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6357 
6358 	/*
6359 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6360 	 */
6361 	sk->sk_wmem_queued   -= skb->truesize;
6362 	sk_mem_uncharge(sk, skb->truesize);
6363 
6364 	sock_wfree(skb);
6365 	__sctp_write_space(asoc);
6366 
6367 	sctp_association_put(asoc);
6368 }
6369 
6370 /* Do accounting for the receive space on the socket.
6371  * Accounting for the association is done in ulpevent.c
6372  * We set this as a destructor for the cloned data skbs so that
6373  * accounting is done at the correct time.
6374  */
6375 void sctp_sock_rfree(struct sk_buff *skb)
6376 {
6377 	struct sock *sk = skb->sk;
6378 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6379 
6380 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6381 
6382 	/*
6383 	 * Mimic the behavior of sock_rfree
6384 	 */
6385 	sk_mem_uncharge(sk, event->rmem_len);
6386 }
6387 
6388 
6389 /* Helper function to wait for space in the sndbuf.  */
6390 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6391 				size_t msg_len)
6392 {
6393 	struct sock *sk = asoc->base.sk;
6394 	int err = 0;
6395 	long current_timeo = *timeo_p;
6396 	DEFINE_WAIT(wait);
6397 
6398 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6399 			  asoc, (long)(*timeo_p), msg_len);
6400 
6401 	/* Increment the association's refcnt.  */
6402 	sctp_association_hold(asoc);
6403 
6404 	/* Wait on the association specific sndbuf space. */
6405 	for (;;) {
6406 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6407 					  TASK_INTERRUPTIBLE);
6408 		if (!*timeo_p)
6409 			goto do_nonblock;
6410 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6411 		    asoc->base.dead)
6412 			goto do_error;
6413 		if (signal_pending(current))
6414 			goto do_interrupted;
6415 		if (msg_len <= sctp_wspace(asoc))
6416 			break;
6417 
6418 		/* Let another process have a go.  Since we are going
6419 		 * to sleep anyway.
6420 		 */
6421 		sctp_release_sock(sk);
6422 		current_timeo = schedule_timeout(current_timeo);
6423 		BUG_ON(sk != asoc->base.sk);
6424 		sctp_lock_sock(sk);
6425 
6426 		*timeo_p = current_timeo;
6427 	}
6428 
6429 out:
6430 	finish_wait(&asoc->wait, &wait);
6431 
6432 	/* Release the association's refcnt.  */
6433 	sctp_association_put(asoc);
6434 
6435 	return err;
6436 
6437 do_error:
6438 	err = -EPIPE;
6439 	goto out;
6440 
6441 do_interrupted:
6442 	err = sock_intr_errno(*timeo_p);
6443 	goto out;
6444 
6445 do_nonblock:
6446 	err = -EAGAIN;
6447 	goto out;
6448 }
6449 
6450 void sctp_data_ready(struct sock *sk, int len)
6451 {
6452 	struct socket_wq *wq;
6453 
6454 	rcu_read_lock();
6455 	wq = rcu_dereference(sk->sk_wq);
6456 	if (wq_has_sleeper(wq))
6457 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6458 						POLLRDNORM | POLLRDBAND);
6459 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6460 	rcu_read_unlock();
6461 }
6462 
6463 /* If socket sndbuf has changed, wake up all per association waiters.  */
6464 void sctp_write_space(struct sock *sk)
6465 {
6466 	struct sctp_association *asoc;
6467 
6468 	/* Wake up the tasks in each wait queue.  */
6469 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6470 		__sctp_write_space(asoc);
6471 	}
6472 }
6473 
6474 /* Is there any sndbuf space available on the socket?
6475  *
6476  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6477  * associations on the same socket.  For a UDP-style socket with
6478  * multiple associations, it is possible for it to be "unwriteable"
6479  * prematurely.  I assume that this is acceptable because
6480  * a premature "unwriteable" is better than an accidental "writeable" which
6481  * would cause an unwanted block under certain circumstances.  For the 1-1
6482  * UDP-style sockets or TCP-style sockets, this code should work.
6483  *  - Daisy
6484  */
6485 static int sctp_writeable(struct sock *sk)
6486 {
6487 	int amt = 0;
6488 
6489 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6490 	if (amt < 0)
6491 		amt = 0;
6492 	return amt;
6493 }
6494 
6495 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6496  * returns immediately with EINPROGRESS.
6497  */
6498 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6499 {
6500 	struct sock *sk = asoc->base.sk;
6501 	int err = 0;
6502 	long current_timeo = *timeo_p;
6503 	DEFINE_WAIT(wait);
6504 
6505 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6506 			  (long)(*timeo_p));
6507 
6508 	/* Increment the association's refcnt.  */
6509 	sctp_association_hold(asoc);
6510 
6511 	for (;;) {
6512 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6513 					  TASK_INTERRUPTIBLE);
6514 		if (!*timeo_p)
6515 			goto do_nonblock;
6516 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6517 			break;
6518 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6519 		    asoc->base.dead)
6520 			goto do_error;
6521 		if (signal_pending(current))
6522 			goto do_interrupted;
6523 
6524 		if (sctp_state(asoc, ESTABLISHED))
6525 			break;
6526 
6527 		/* Let another process have a go.  Since we are going
6528 		 * to sleep anyway.
6529 		 */
6530 		sctp_release_sock(sk);
6531 		current_timeo = schedule_timeout(current_timeo);
6532 		sctp_lock_sock(sk);
6533 
6534 		*timeo_p = current_timeo;
6535 	}
6536 
6537 out:
6538 	finish_wait(&asoc->wait, &wait);
6539 
6540 	/* Release the association's refcnt.  */
6541 	sctp_association_put(asoc);
6542 
6543 	return err;
6544 
6545 do_error:
6546 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6547 		err = -ETIMEDOUT;
6548 	else
6549 		err = -ECONNREFUSED;
6550 	goto out;
6551 
6552 do_interrupted:
6553 	err = sock_intr_errno(*timeo_p);
6554 	goto out;
6555 
6556 do_nonblock:
6557 	err = -EINPROGRESS;
6558 	goto out;
6559 }
6560 
6561 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6562 {
6563 	struct sctp_endpoint *ep;
6564 	int err = 0;
6565 	DEFINE_WAIT(wait);
6566 
6567 	ep = sctp_sk(sk)->ep;
6568 
6569 
6570 	for (;;) {
6571 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6572 					  TASK_INTERRUPTIBLE);
6573 
6574 		if (list_empty(&ep->asocs)) {
6575 			sctp_release_sock(sk);
6576 			timeo = schedule_timeout(timeo);
6577 			sctp_lock_sock(sk);
6578 		}
6579 
6580 		err = -EINVAL;
6581 		if (!sctp_sstate(sk, LISTENING))
6582 			break;
6583 
6584 		err = 0;
6585 		if (!list_empty(&ep->asocs))
6586 			break;
6587 
6588 		err = sock_intr_errno(timeo);
6589 		if (signal_pending(current))
6590 			break;
6591 
6592 		err = -EAGAIN;
6593 		if (!timeo)
6594 			break;
6595 	}
6596 
6597 	finish_wait(sk_sleep(sk), &wait);
6598 
6599 	return err;
6600 }
6601 
6602 static void sctp_wait_for_close(struct sock *sk, long timeout)
6603 {
6604 	DEFINE_WAIT(wait);
6605 
6606 	do {
6607 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6608 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6609 			break;
6610 		sctp_release_sock(sk);
6611 		timeout = schedule_timeout(timeout);
6612 		sctp_lock_sock(sk);
6613 	} while (!signal_pending(current) && timeout);
6614 
6615 	finish_wait(sk_sleep(sk), &wait);
6616 }
6617 
6618 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6619 {
6620 	struct sk_buff *frag;
6621 
6622 	if (!skb->data_len)
6623 		goto done;
6624 
6625 	/* Don't forget the fragments. */
6626 	skb_walk_frags(skb, frag)
6627 		sctp_skb_set_owner_r_frag(frag, sk);
6628 
6629 done:
6630 	sctp_skb_set_owner_r(skb, sk);
6631 }
6632 
6633 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6634 		    struct sctp_association *asoc)
6635 {
6636 	struct inet_sock *inet = inet_sk(sk);
6637 	struct inet_sock *newinet;
6638 
6639 	newsk->sk_type = sk->sk_type;
6640 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6641 	newsk->sk_flags = sk->sk_flags;
6642 	newsk->sk_no_check = sk->sk_no_check;
6643 	newsk->sk_reuse = sk->sk_reuse;
6644 
6645 	newsk->sk_shutdown = sk->sk_shutdown;
6646 	newsk->sk_destruct = inet_sock_destruct;
6647 	newsk->sk_family = sk->sk_family;
6648 	newsk->sk_protocol = IPPROTO_SCTP;
6649 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6650 	newsk->sk_sndbuf = sk->sk_sndbuf;
6651 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6652 	newsk->sk_lingertime = sk->sk_lingertime;
6653 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6654 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6655 
6656 	newinet = inet_sk(newsk);
6657 
6658 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6659 	 * getsockname() and getpeername()
6660 	 */
6661 	newinet->inet_sport = inet->inet_sport;
6662 	newinet->inet_saddr = inet->inet_saddr;
6663 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6664 	newinet->inet_dport = htons(asoc->peer.port);
6665 	newinet->pmtudisc = inet->pmtudisc;
6666 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6667 
6668 	newinet->uc_ttl = inet->uc_ttl;
6669 	newinet->mc_loop = 1;
6670 	newinet->mc_ttl = 1;
6671 	newinet->mc_index = 0;
6672 	newinet->mc_list = NULL;
6673 }
6674 
6675 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6676  * and its messages to the newsk.
6677  */
6678 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6679 			      struct sctp_association *assoc,
6680 			      sctp_socket_type_t type)
6681 {
6682 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6683 	struct sctp_sock *newsp = sctp_sk(newsk);
6684 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6685 	struct sctp_endpoint *newep = newsp->ep;
6686 	struct sk_buff *skb, *tmp;
6687 	struct sctp_ulpevent *event;
6688 	struct sctp_bind_hashbucket *head;
6689 	struct list_head tmplist;
6690 
6691 	/* Migrate socket buffer sizes and all the socket level options to the
6692 	 * new socket.
6693 	 */
6694 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6695 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6696 	/* Brute force copy old sctp opt. */
6697 	if (oldsp->do_auto_asconf) {
6698 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6699 		inet_sk_copy_descendant(newsk, oldsk);
6700 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6701 	} else
6702 		inet_sk_copy_descendant(newsk, oldsk);
6703 
6704 	/* Restore the ep value that was overwritten with the above structure
6705 	 * copy.
6706 	 */
6707 	newsp->ep = newep;
6708 	newsp->hmac = NULL;
6709 
6710 	/* Hook this new socket in to the bind_hash list. */
6711 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6712 	sctp_local_bh_disable();
6713 	sctp_spin_lock(&head->lock);
6714 	pp = sctp_sk(oldsk)->bind_hash;
6715 	sk_add_bind_node(newsk, &pp->owner);
6716 	sctp_sk(newsk)->bind_hash = pp;
6717 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6718 	sctp_spin_unlock(&head->lock);
6719 	sctp_local_bh_enable();
6720 
6721 	/* Copy the bind_addr list from the original endpoint to the new
6722 	 * endpoint so that we can handle restarts properly
6723 	 */
6724 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6725 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6726 
6727 	/* Move any messages in the old socket's receive queue that are for the
6728 	 * peeled off association to the new socket's receive queue.
6729 	 */
6730 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6731 		event = sctp_skb2event(skb);
6732 		if (event->asoc == assoc) {
6733 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6734 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6735 			sctp_skb_set_owner_r_frag(skb, newsk);
6736 		}
6737 	}
6738 
6739 	/* Clean up any messages pending delivery due to partial
6740 	 * delivery.   Three cases:
6741 	 * 1) No partial deliver;  no work.
6742 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6743 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6744 	 */
6745 	skb_queue_head_init(&newsp->pd_lobby);
6746 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6747 
6748 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6749 		struct sk_buff_head *queue;
6750 
6751 		/* Decide which queue to move pd_lobby skbs to. */
6752 		if (assoc->ulpq.pd_mode) {
6753 			queue = &newsp->pd_lobby;
6754 		} else
6755 			queue = &newsk->sk_receive_queue;
6756 
6757 		/* Walk through the pd_lobby, looking for skbs that
6758 		 * need moved to the new socket.
6759 		 */
6760 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6761 			event = sctp_skb2event(skb);
6762 			if (event->asoc == assoc) {
6763 				__skb_unlink(skb, &oldsp->pd_lobby);
6764 				__skb_queue_tail(queue, skb);
6765 				sctp_skb_set_owner_r_frag(skb, newsk);
6766 			}
6767 		}
6768 
6769 		/* Clear up any skbs waiting for the partial
6770 		 * delivery to finish.
6771 		 */
6772 		if (assoc->ulpq.pd_mode)
6773 			sctp_clear_pd(oldsk, NULL);
6774 
6775 	}
6776 
6777 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6778 		sctp_skb_set_owner_r_frag(skb, newsk);
6779 
6780 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6781 		sctp_skb_set_owner_r_frag(skb, newsk);
6782 
6783 	/* Set the type of socket to indicate that it is peeled off from the
6784 	 * original UDP-style socket or created with the accept() call on a
6785 	 * TCP-style socket..
6786 	 */
6787 	newsp->type = type;
6788 
6789 	/* Mark the new socket "in-use" by the user so that any packets
6790 	 * that may arrive on the association after we've moved it are
6791 	 * queued to the backlog.  This prevents a potential race between
6792 	 * backlog processing on the old socket and new-packet processing
6793 	 * on the new socket.
6794 	 *
6795 	 * The caller has just allocated newsk so we can guarantee that other
6796 	 * paths won't try to lock it and then oldsk.
6797 	 */
6798 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6799 	sctp_assoc_migrate(assoc, newsk);
6800 
6801 	/* If the association on the newsk is already closed before accept()
6802 	 * is called, set RCV_SHUTDOWN flag.
6803 	 */
6804 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6805 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6806 
6807 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6808 	sctp_release_sock(newsk);
6809 }
6810 
6811 
6812 /* This proto struct describes the ULP interface for SCTP.  */
6813 struct proto sctp_prot = {
6814 	.name        =	"SCTP",
6815 	.owner       =	THIS_MODULE,
6816 	.close       =	sctp_close,
6817 	.connect     =	sctp_connect,
6818 	.disconnect  =	sctp_disconnect,
6819 	.accept      =	sctp_accept,
6820 	.ioctl       =	sctp_ioctl,
6821 	.init        =	sctp_init_sock,
6822 	.destroy     =	sctp_destroy_sock,
6823 	.shutdown    =	sctp_shutdown,
6824 	.setsockopt  =	sctp_setsockopt,
6825 	.getsockopt  =	sctp_getsockopt,
6826 	.sendmsg     =	sctp_sendmsg,
6827 	.recvmsg     =	sctp_recvmsg,
6828 	.bind        =	sctp_bind,
6829 	.backlog_rcv =	sctp_backlog_rcv,
6830 	.hash        =	sctp_hash,
6831 	.unhash      =	sctp_unhash,
6832 	.get_port    =	sctp_get_port,
6833 	.obj_size    =  sizeof(struct sctp_sock),
6834 	.sysctl_mem  =  sysctl_sctp_mem,
6835 	.sysctl_rmem =  sysctl_sctp_rmem,
6836 	.sysctl_wmem =  sysctl_sctp_wmem,
6837 	.memory_pressure = &sctp_memory_pressure,
6838 	.enter_memory_pressure = sctp_enter_memory_pressure,
6839 	.memory_allocated = &sctp_memory_allocated,
6840 	.sockets_allocated = &sctp_sockets_allocated,
6841 };
6842 
6843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6844 
6845 struct proto sctpv6_prot = {
6846 	.name		= "SCTPv6",
6847 	.owner		= THIS_MODULE,
6848 	.close		= sctp_close,
6849 	.connect	= sctp_connect,
6850 	.disconnect	= sctp_disconnect,
6851 	.accept		= sctp_accept,
6852 	.ioctl		= sctp_ioctl,
6853 	.init		= sctp_init_sock,
6854 	.destroy	= sctp_destroy_sock,
6855 	.shutdown	= sctp_shutdown,
6856 	.setsockopt	= sctp_setsockopt,
6857 	.getsockopt	= sctp_getsockopt,
6858 	.sendmsg	= sctp_sendmsg,
6859 	.recvmsg	= sctp_recvmsg,
6860 	.bind		= sctp_bind,
6861 	.backlog_rcv	= sctp_backlog_rcv,
6862 	.hash		= sctp_hash,
6863 	.unhash		= sctp_unhash,
6864 	.get_port	= sctp_get_port,
6865 	.obj_size	= sizeof(struct sctp6_sock),
6866 	.sysctl_mem	= sysctl_sctp_mem,
6867 	.sysctl_rmem	= sysctl_sctp_rmem,
6868 	.sysctl_wmem	= sysctl_sctp_wmem,
6869 	.memory_pressure = &sctp_memory_pressure,
6870 	.enter_memory_pressure = sctp_enter_memory_pressure,
6871 	.memory_allocated = &sctp_memory_allocated,
6872 	.sockets_allocated = &sctp_sockets_allocated,
6873 };
6874 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6875