1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <net/sock.h> 82 #include <net/sctp/sctp.h> 83 #include <net/sctp/sm.h> 84 85 /* WARNING: Please do not remove the SCTP_STATIC attribute to 86 * any of the functions below as they are used to export functions 87 * used by a project regression testsuite. 88 */ 89 90 /* Forward declarations for internal helper functions. */ 91 static int sctp_writeable(struct sock *sk); 92 static void sctp_wfree(struct sk_buff *skb); 93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 94 size_t msg_len); 95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 97 static int sctp_wait_for_accept(struct sock *sk, long timeo); 98 static void sctp_wait_for_close(struct sock *sk, long timeo); 99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 100 union sctp_addr *addr, int len); 101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf(struct sctp_association *asoc, 106 struct sctp_chunk *chunk); 107 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 108 static int sctp_autobind(struct sock *sk); 109 static void sctp_sock_migrate(struct sock *, struct sock *, 110 struct sctp_association *, sctp_socket_type_t); 111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 112 113 extern struct kmem_cache *sctp_bucket_cachep; 114 extern long sysctl_sctp_mem[3]; 115 extern int sysctl_sctp_rmem[3]; 116 extern int sysctl_sctp_wmem[3]; 117 118 static int sctp_memory_pressure; 119 static atomic_long_t sctp_memory_allocated; 120 struct percpu_counter sctp_sockets_allocated; 121 122 static void sctp_enter_memory_pressure(struct sock *sk) 123 { 124 sctp_memory_pressure = 1; 125 } 126 127 128 /* Get the sndbuf space available at the time on the association. */ 129 static inline int sctp_wspace(struct sctp_association *asoc) 130 { 131 int amt; 132 133 if (asoc->ep->sndbuf_policy) 134 amt = asoc->sndbuf_used; 135 else 136 amt = sk_wmem_alloc_get(asoc->base.sk); 137 138 if (amt >= asoc->base.sk->sk_sndbuf) { 139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 140 amt = 0; 141 else { 142 amt = sk_stream_wspace(asoc->base.sk); 143 if (amt < 0) 144 amt = 0; 145 } 146 } else { 147 amt = asoc->base.sk->sk_sndbuf - amt; 148 } 149 return amt; 150 } 151 152 /* Increment the used sndbuf space count of the corresponding association by 153 * the size of the outgoing data chunk. 154 * Also, set the skb destructor for sndbuf accounting later. 155 * 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 158 * destructor in the data chunk skb for the purpose of the sndbuf space 159 * tracking. 160 */ 161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 162 { 163 struct sctp_association *asoc = chunk->asoc; 164 struct sock *sk = asoc->base.sk; 165 166 /* The sndbuf space is tracked per association. */ 167 sctp_association_hold(asoc); 168 169 skb_set_owner_w(chunk->skb, sk); 170 171 chunk->skb->destructor = sctp_wfree; 172 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 174 175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 176 sizeof(struct sk_buff) + 177 sizeof(struct sctp_chunk); 178 179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 180 sk->sk_wmem_queued += chunk->skb->truesize; 181 sk_mem_charge(sk, chunk->skb->truesize); 182 } 183 184 /* Verify that this is a valid address. */ 185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 186 int len) 187 { 188 struct sctp_af *af; 189 190 /* Verify basic sockaddr. */ 191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 192 if (!af) 193 return -EINVAL; 194 195 /* Is this a valid SCTP address? */ 196 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 197 return -EINVAL; 198 199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 200 return -EINVAL; 201 202 return 0; 203 } 204 205 /* Look up the association by its id. If this is not a UDP-style 206 * socket, the ID field is always ignored. 207 */ 208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 209 { 210 struct sctp_association *asoc = NULL; 211 212 /* If this is not a UDP-style socket, assoc id should be ignored. */ 213 if (!sctp_style(sk, UDP)) { 214 /* Return NULL if the socket state is not ESTABLISHED. It 215 * could be a TCP-style listening socket or a socket which 216 * hasn't yet called connect() to establish an association. 217 */ 218 if (!sctp_sstate(sk, ESTABLISHED)) 219 return NULL; 220 221 /* Get the first and the only association from the list. */ 222 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 224 struct sctp_association, asocs); 225 return asoc; 226 } 227 228 /* Otherwise this is a UDP-style socket. */ 229 if (!id || (id == (sctp_assoc_t)-1)) 230 return NULL; 231 232 spin_lock_bh(&sctp_assocs_id_lock); 233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 234 spin_unlock_bh(&sctp_assocs_id_lock); 235 236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 237 return NULL; 238 239 return asoc; 240 } 241 242 /* Look up the transport from an address and an assoc id. If both address and 243 * id are specified, the associations matching the address and the id should be 244 * the same. 245 */ 246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 247 struct sockaddr_storage *addr, 248 sctp_assoc_t id) 249 { 250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 251 struct sctp_transport *transport; 252 union sctp_addr *laddr = (union sctp_addr *)addr; 253 254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 255 laddr, 256 &transport); 257 258 if (!addr_asoc) 259 return NULL; 260 261 id_asoc = sctp_id2assoc(sk, id); 262 if (id_asoc && (id_asoc != addr_asoc)) 263 return NULL; 264 265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 266 (union sctp_addr *)addr); 267 268 return transport; 269 } 270 271 /* API 3.1.2 bind() - UDP Style Syntax 272 * The syntax of bind() is, 273 * 274 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 275 * 276 * sd - the socket descriptor returned by socket(). 277 * addr - the address structure (struct sockaddr_in or struct 278 * sockaddr_in6 [RFC 2553]), 279 * addr_len - the size of the address structure. 280 */ 281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 282 { 283 int retval = 0; 284 285 sctp_lock_sock(sk); 286 287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 288 sk, addr, addr_len); 289 290 /* Disallow binding twice. */ 291 if (!sctp_sk(sk)->ep->base.bind_addr.port) 292 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 293 addr_len); 294 else 295 retval = -EINVAL; 296 297 sctp_release_sock(sk); 298 299 return retval; 300 } 301 302 static long sctp_get_port_local(struct sock *, union sctp_addr *); 303 304 /* Verify this is a valid sockaddr. */ 305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 306 union sctp_addr *addr, int len) 307 { 308 struct sctp_af *af; 309 310 /* Check minimum size. */ 311 if (len < sizeof (struct sockaddr)) 312 return NULL; 313 314 /* V4 mapped address are really of AF_INET family */ 315 if (addr->sa.sa_family == AF_INET6 && 316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 317 if (!opt->pf->af_supported(AF_INET, opt)) 318 return NULL; 319 } else { 320 /* Does this PF support this AF? */ 321 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 322 return NULL; 323 } 324 325 /* If we get this far, af is valid. */ 326 af = sctp_get_af_specific(addr->sa.sa_family); 327 328 if (len < af->sockaddr_len) 329 return NULL; 330 331 return af; 332 } 333 334 /* Bind a local address either to an endpoint or to an association. */ 335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 336 { 337 struct sctp_sock *sp = sctp_sk(sk); 338 struct sctp_endpoint *ep = sp->ep; 339 struct sctp_bind_addr *bp = &ep->base.bind_addr; 340 struct sctp_af *af; 341 unsigned short snum; 342 int ret = 0; 343 344 /* Common sockaddr verification. */ 345 af = sctp_sockaddr_af(sp, addr, len); 346 if (!af) { 347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 348 sk, addr, len); 349 return -EINVAL; 350 } 351 352 snum = ntohs(addr->v4.sin_port); 353 354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 355 ", port: %d, new port: %d, len: %d)\n", 356 sk, 357 addr, 358 bp->port, snum, 359 len); 360 361 /* PF specific bind() address verification. */ 362 if (!sp->pf->bind_verify(sp, addr)) 363 return -EADDRNOTAVAIL; 364 365 /* We must either be unbound, or bind to the same port. 366 * It's OK to allow 0 ports if we are already bound. 367 * We'll just inhert an already bound port in this case 368 */ 369 if (bp->port) { 370 if (!snum) 371 snum = bp->port; 372 else if (snum != bp->port) { 373 SCTP_DEBUG_PRINTK("sctp_do_bind:" 374 " New port %d does not match existing port " 375 "%d.\n", snum, bp->port); 376 return -EINVAL; 377 } 378 } 379 380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 381 return -EACCES; 382 383 /* See if the address matches any of the addresses we may have 384 * already bound before checking against other endpoints. 385 */ 386 if (sctp_bind_addr_match(bp, addr, sp)) 387 return -EINVAL; 388 389 /* Make sure we are allowed to bind here. 390 * The function sctp_get_port_local() does duplicate address 391 * detection. 392 */ 393 addr->v4.sin_port = htons(snum); 394 if ((ret = sctp_get_port_local(sk, addr))) { 395 return -EADDRINUSE; 396 } 397 398 /* Refresh ephemeral port. */ 399 if (!bp->port) 400 bp->port = inet_sk(sk)->inet_num; 401 402 /* Add the address to the bind address list. 403 * Use GFP_ATOMIC since BHs will be disabled. 404 */ 405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 406 407 /* Copy back into socket for getsockname() use. */ 408 if (!ret) { 409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 410 af->to_sk_saddr(addr, sk); 411 } 412 413 return ret; 414 } 415 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 417 * 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 419 * at any one time. If a sender, after sending an ASCONF chunk, decides 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 422 * subsequent ASCONF. Note this restriction binds each side, so at any 423 * time two ASCONF may be in-transit on any given association (one sent 424 * from each endpoint). 425 */ 426 static int sctp_send_asconf(struct sctp_association *asoc, 427 struct sctp_chunk *chunk) 428 { 429 int retval = 0; 430 431 /* If there is an outstanding ASCONF chunk, queue it for later 432 * transmission. 433 */ 434 if (asoc->addip_last_asconf) { 435 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 436 goto out; 437 } 438 439 /* Hold the chunk until an ASCONF_ACK is received. */ 440 sctp_chunk_hold(chunk); 441 retval = sctp_primitive_ASCONF(asoc, chunk); 442 if (retval) 443 sctp_chunk_free(chunk); 444 else 445 asoc->addip_last_asconf = chunk; 446 447 out: 448 return retval; 449 } 450 451 /* Add a list of addresses as bind addresses to local endpoint or 452 * association. 453 * 454 * Basically run through each address specified in the addrs/addrcnt 455 * array/length pair, determine if it is IPv6 or IPv4 and call 456 * sctp_do_bind() on it. 457 * 458 * If any of them fails, then the operation will be reversed and the 459 * ones that were added will be removed. 460 * 461 * Only sctp_setsockopt_bindx() is supposed to call this function. 462 */ 463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 464 { 465 int cnt; 466 int retval = 0; 467 void *addr_buf; 468 struct sockaddr *sa_addr; 469 struct sctp_af *af; 470 471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 472 sk, addrs, addrcnt); 473 474 addr_buf = addrs; 475 for (cnt = 0; cnt < addrcnt; cnt++) { 476 /* The list may contain either IPv4 or IPv6 address; 477 * determine the address length for walking thru the list. 478 */ 479 sa_addr = addr_buf; 480 af = sctp_get_af_specific(sa_addr->sa_family); 481 if (!af) { 482 retval = -EINVAL; 483 goto err_bindx_add; 484 } 485 486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 487 af->sockaddr_len); 488 489 addr_buf += af->sockaddr_len; 490 491 err_bindx_add: 492 if (retval < 0) { 493 /* Failed. Cleanup the ones that have been added */ 494 if (cnt > 0) 495 sctp_bindx_rem(sk, addrs, cnt); 496 return retval; 497 } 498 } 499 500 return retval; 501 } 502 503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 504 * associations that are part of the endpoint indicating that a list of local 505 * addresses are added to the endpoint. 506 * 507 * If any of the addresses is already in the bind address list of the 508 * association, we do not send the chunk for that association. But it will not 509 * affect other associations. 510 * 511 * Only sctp_setsockopt_bindx() is supposed to call this function. 512 */ 513 static int sctp_send_asconf_add_ip(struct sock *sk, 514 struct sockaddr *addrs, 515 int addrcnt) 516 { 517 struct sctp_sock *sp; 518 struct sctp_endpoint *ep; 519 struct sctp_association *asoc; 520 struct sctp_bind_addr *bp; 521 struct sctp_chunk *chunk; 522 struct sctp_sockaddr_entry *laddr; 523 union sctp_addr *addr; 524 union sctp_addr saveaddr; 525 void *addr_buf; 526 struct sctp_af *af; 527 struct list_head *p; 528 int i; 529 int retval = 0; 530 531 if (!sctp_addip_enable) 532 return retval; 533 534 sp = sctp_sk(sk); 535 ep = sp->ep; 536 537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 538 __func__, sk, addrs, addrcnt); 539 540 list_for_each_entry(asoc, &ep->asocs, asocs) { 541 542 if (!asoc->peer.asconf_capable) 543 continue; 544 545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 546 continue; 547 548 if (!sctp_state(asoc, ESTABLISHED)) 549 continue; 550 551 /* Check if any address in the packed array of addresses is 552 * in the bind address list of the association. If so, 553 * do not send the asconf chunk to its peer, but continue with 554 * other associations. 555 */ 556 addr_buf = addrs; 557 for (i = 0; i < addrcnt; i++) { 558 addr = addr_buf; 559 af = sctp_get_af_specific(addr->v4.sin_family); 560 if (!af) { 561 retval = -EINVAL; 562 goto out; 563 } 564 565 if (sctp_assoc_lookup_laddr(asoc, addr)) 566 break; 567 568 addr_buf += af->sockaddr_len; 569 } 570 if (i < addrcnt) 571 continue; 572 573 /* Use the first valid address in bind addr list of 574 * association as Address Parameter of ASCONF CHUNK. 575 */ 576 bp = &asoc->base.bind_addr; 577 p = bp->address_list.next; 578 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 580 addrcnt, SCTP_PARAM_ADD_IP); 581 if (!chunk) { 582 retval = -ENOMEM; 583 goto out; 584 } 585 586 /* Add the new addresses to the bind address list with 587 * use_as_src set to 0. 588 */ 589 addr_buf = addrs; 590 for (i = 0; i < addrcnt; i++) { 591 addr = addr_buf; 592 af = sctp_get_af_specific(addr->v4.sin_family); 593 memcpy(&saveaddr, addr, af->sockaddr_len); 594 retval = sctp_add_bind_addr(bp, &saveaddr, 595 SCTP_ADDR_NEW, GFP_ATOMIC); 596 addr_buf += af->sockaddr_len; 597 } 598 if (asoc->src_out_of_asoc_ok) { 599 struct sctp_transport *trans; 600 601 list_for_each_entry(trans, 602 &asoc->peer.transport_addr_list, transports) { 603 /* Clear the source and route cache */ 604 dst_release(trans->dst); 605 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 606 2*asoc->pathmtu, 4380)); 607 trans->ssthresh = asoc->peer.i.a_rwnd; 608 trans->rto = asoc->rto_initial; 609 trans->rtt = trans->srtt = trans->rttvar = 0; 610 sctp_transport_route(trans, NULL, 611 sctp_sk(asoc->base.sk)); 612 } 613 } 614 retval = sctp_send_asconf(asoc, chunk); 615 } 616 617 out: 618 return retval; 619 } 620 621 /* Remove a list of addresses from bind addresses list. Do not remove the 622 * last address. 623 * 624 * Basically run through each address specified in the addrs/addrcnt 625 * array/length pair, determine if it is IPv6 or IPv4 and call 626 * sctp_del_bind() on it. 627 * 628 * If any of them fails, then the operation will be reversed and the 629 * ones that were removed will be added back. 630 * 631 * At least one address has to be left; if only one address is 632 * available, the operation will return -EBUSY. 633 * 634 * Only sctp_setsockopt_bindx() is supposed to call this function. 635 */ 636 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 637 { 638 struct sctp_sock *sp = sctp_sk(sk); 639 struct sctp_endpoint *ep = sp->ep; 640 int cnt; 641 struct sctp_bind_addr *bp = &ep->base.bind_addr; 642 int retval = 0; 643 void *addr_buf; 644 union sctp_addr *sa_addr; 645 struct sctp_af *af; 646 647 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 648 sk, addrs, addrcnt); 649 650 addr_buf = addrs; 651 for (cnt = 0; cnt < addrcnt; cnt++) { 652 /* If the bind address list is empty or if there is only one 653 * bind address, there is nothing more to be removed (we need 654 * at least one address here). 655 */ 656 if (list_empty(&bp->address_list) || 657 (sctp_list_single_entry(&bp->address_list))) { 658 retval = -EBUSY; 659 goto err_bindx_rem; 660 } 661 662 sa_addr = addr_buf; 663 af = sctp_get_af_specific(sa_addr->sa.sa_family); 664 if (!af) { 665 retval = -EINVAL; 666 goto err_bindx_rem; 667 } 668 669 if (!af->addr_valid(sa_addr, sp, NULL)) { 670 retval = -EADDRNOTAVAIL; 671 goto err_bindx_rem; 672 } 673 674 if (sa_addr->v4.sin_port && 675 sa_addr->v4.sin_port != htons(bp->port)) { 676 retval = -EINVAL; 677 goto err_bindx_rem; 678 } 679 680 if (!sa_addr->v4.sin_port) 681 sa_addr->v4.sin_port = htons(bp->port); 682 683 /* FIXME - There is probably a need to check if sk->sk_saddr and 684 * sk->sk_rcv_addr are currently set to one of the addresses to 685 * be removed. This is something which needs to be looked into 686 * when we are fixing the outstanding issues with multi-homing 687 * socket routing and failover schemes. Refer to comments in 688 * sctp_do_bind(). -daisy 689 */ 690 retval = sctp_del_bind_addr(bp, sa_addr); 691 692 addr_buf += af->sockaddr_len; 693 err_bindx_rem: 694 if (retval < 0) { 695 /* Failed. Add the ones that has been removed back */ 696 if (cnt > 0) 697 sctp_bindx_add(sk, addrs, cnt); 698 return retval; 699 } 700 } 701 702 return retval; 703 } 704 705 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 706 * the associations that are part of the endpoint indicating that a list of 707 * local addresses are removed from the endpoint. 708 * 709 * If any of the addresses is already in the bind address list of the 710 * association, we do not send the chunk for that association. But it will not 711 * affect other associations. 712 * 713 * Only sctp_setsockopt_bindx() is supposed to call this function. 714 */ 715 static int sctp_send_asconf_del_ip(struct sock *sk, 716 struct sockaddr *addrs, 717 int addrcnt) 718 { 719 struct sctp_sock *sp; 720 struct sctp_endpoint *ep; 721 struct sctp_association *asoc; 722 struct sctp_transport *transport; 723 struct sctp_bind_addr *bp; 724 struct sctp_chunk *chunk; 725 union sctp_addr *laddr; 726 void *addr_buf; 727 struct sctp_af *af; 728 struct sctp_sockaddr_entry *saddr; 729 int i; 730 int retval = 0; 731 int stored = 0; 732 733 chunk = NULL; 734 if (!sctp_addip_enable) 735 return retval; 736 737 sp = sctp_sk(sk); 738 ep = sp->ep; 739 740 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 741 __func__, sk, addrs, addrcnt); 742 743 list_for_each_entry(asoc, &ep->asocs, asocs) { 744 745 if (!asoc->peer.asconf_capable) 746 continue; 747 748 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 749 continue; 750 751 if (!sctp_state(asoc, ESTABLISHED)) 752 continue; 753 754 /* Check if any address in the packed array of addresses is 755 * not present in the bind address list of the association. 756 * If so, do not send the asconf chunk to its peer, but 757 * continue with other associations. 758 */ 759 addr_buf = addrs; 760 for (i = 0; i < addrcnt; i++) { 761 laddr = addr_buf; 762 af = sctp_get_af_specific(laddr->v4.sin_family); 763 if (!af) { 764 retval = -EINVAL; 765 goto out; 766 } 767 768 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 769 break; 770 771 addr_buf += af->sockaddr_len; 772 } 773 if (i < addrcnt) 774 continue; 775 776 /* Find one address in the association's bind address list 777 * that is not in the packed array of addresses. This is to 778 * make sure that we do not delete all the addresses in the 779 * association. 780 */ 781 bp = &asoc->base.bind_addr; 782 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 783 addrcnt, sp); 784 if ((laddr == NULL) && (addrcnt == 1)) { 785 if (asoc->asconf_addr_del_pending) 786 continue; 787 asoc->asconf_addr_del_pending = 788 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 789 if (asoc->asconf_addr_del_pending == NULL) { 790 retval = -ENOMEM; 791 goto out; 792 } 793 asoc->asconf_addr_del_pending->sa.sa_family = 794 addrs->sa_family; 795 asoc->asconf_addr_del_pending->v4.sin_port = 796 htons(bp->port); 797 if (addrs->sa_family == AF_INET) { 798 struct sockaddr_in *sin; 799 800 sin = (struct sockaddr_in *)addrs; 801 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 802 } else if (addrs->sa_family == AF_INET6) { 803 struct sockaddr_in6 *sin6; 804 805 sin6 = (struct sockaddr_in6 *)addrs; 806 ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr); 807 } 808 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 809 " at %p\n", asoc, asoc->asconf_addr_del_pending, 810 asoc->asconf_addr_del_pending); 811 asoc->src_out_of_asoc_ok = 1; 812 stored = 1; 813 goto skip_mkasconf; 814 } 815 816 /* We do not need RCU protection throughout this loop 817 * because this is done under a socket lock from the 818 * setsockopt call. 819 */ 820 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 821 SCTP_PARAM_DEL_IP); 822 if (!chunk) { 823 retval = -ENOMEM; 824 goto out; 825 } 826 827 skip_mkasconf: 828 /* Reset use_as_src flag for the addresses in the bind address 829 * list that are to be deleted. 830 */ 831 addr_buf = addrs; 832 for (i = 0; i < addrcnt; i++) { 833 laddr = addr_buf; 834 af = sctp_get_af_specific(laddr->v4.sin_family); 835 list_for_each_entry(saddr, &bp->address_list, list) { 836 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 837 saddr->state = SCTP_ADDR_DEL; 838 } 839 addr_buf += af->sockaddr_len; 840 } 841 842 /* Update the route and saddr entries for all the transports 843 * as some of the addresses in the bind address list are 844 * about to be deleted and cannot be used as source addresses. 845 */ 846 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 847 transports) { 848 dst_release(transport->dst); 849 sctp_transport_route(transport, NULL, 850 sctp_sk(asoc->base.sk)); 851 } 852 853 if (stored) 854 /* We don't need to transmit ASCONF */ 855 continue; 856 retval = sctp_send_asconf(asoc, chunk); 857 } 858 out: 859 return retval; 860 } 861 862 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 863 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 864 { 865 struct sock *sk = sctp_opt2sk(sp); 866 union sctp_addr *addr; 867 struct sctp_af *af; 868 869 /* It is safe to write port space in caller. */ 870 addr = &addrw->a; 871 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 872 af = sctp_get_af_specific(addr->sa.sa_family); 873 if (!af) 874 return -EINVAL; 875 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 876 return -EINVAL; 877 878 if (addrw->state == SCTP_ADDR_NEW) 879 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 880 else 881 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 882 } 883 884 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 885 * 886 * API 8.1 887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 888 * int flags); 889 * 890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 892 * or IPv6 addresses. 893 * 894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 895 * Section 3.1.2 for this usage. 896 * 897 * addrs is a pointer to an array of one or more socket addresses. Each 898 * address is contained in its appropriate structure (i.e. struct 899 * sockaddr_in or struct sockaddr_in6) the family of the address type 900 * must be used to distinguish the address length (note that this 901 * representation is termed a "packed array" of addresses). The caller 902 * specifies the number of addresses in the array with addrcnt. 903 * 904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 905 * -1, and sets errno to the appropriate error code. 906 * 907 * For SCTP, the port given in each socket address must be the same, or 908 * sctp_bindx() will fail, setting errno to EINVAL. 909 * 910 * The flags parameter is formed from the bitwise OR of zero or more of 911 * the following currently defined flags: 912 * 913 * SCTP_BINDX_ADD_ADDR 914 * 915 * SCTP_BINDX_REM_ADDR 916 * 917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 919 * addresses from the association. The two flags are mutually exclusive; 920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 921 * not remove all addresses from an association; sctp_bindx() will 922 * reject such an attempt with EINVAL. 923 * 924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 925 * additional addresses with an endpoint after calling bind(). Or use 926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 927 * socket is associated with so that no new association accepted will be 928 * associated with those addresses. If the endpoint supports dynamic 929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 930 * endpoint to send the appropriate message to the peer to change the 931 * peers address lists. 932 * 933 * Adding and removing addresses from a connected association is 934 * optional functionality. Implementations that do not support this 935 * functionality should return EOPNOTSUPP. 936 * 937 * Basically do nothing but copying the addresses from user to kernel 938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 940 * from userspace. 941 * 942 * We don't use copy_from_user() for optimization: we first do the 943 * sanity checks (buffer size -fast- and access check-healthy 944 * pointer); if all of those succeed, then we can alloc the memory 945 * (expensive operation) needed to copy the data to kernel. Then we do 946 * the copying without checking the user space area 947 * (__copy_from_user()). 948 * 949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 950 * it. 951 * 952 * sk The sk of the socket 953 * addrs The pointer to the addresses in user land 954 * addrssize Size of the addrs buffer 955 * op Operation to perform (add or remove, see the flags of 956 * sctp_bindx) 957 * 958 * Returns 0 if ok, <0 errno code on error. 959 */ 960 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 961 struct sockaddr __user *addrs, 962 int addrs_size, int op) 963 { 964 struct sockaddr *kaddrs; 965 int err; 966 int addrcnt = 0; 967 int walk_size = 0; 968 struct sockaddr *sa_addr; 969 void *addr_buf; 970 struct sctp_af *af; 971 972 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 973 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 974 975 if (unlikely(addrs_size <= 0)) 976 return -EINVAL; 977 978 /* Check the user passed a healthy pointer. */ 979 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 980 return -EFAULT; 981 982 /* Alloc space for the address array in kernel memory. */ 983 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 984 if (unlikely(!kaddrs)) 985 return -ENOMEM; 986 987 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 988 kfree(kaddrs); 989 return -EFAULT; 990 } 991 992 /* Walk through the addrs buffer and count the number of addresses. */ 993 addr_buf = kaddrs; 994 while (walk_size < addrs_size) { 995 if (walk_size + sizeof(sa_family_t) > addrs_size) { 996 kfree(kaddrs); 997 return -EINVAL; 998 } 999 1000 sa_addr = addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa_family); 1002 1003 /* If the address family is not supported or if this address 1004 * causes the address buffer to overflow return EINVAL. 1005 */ 1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1007 kfree(kaddrs); 1008 return -EINVAL; 1009 } 1010 addrcnt++; 1011 addr_buf += af->sockaddr_len; 1012 walk_size += af->sockaddr_len; 1013 } 1014 1015 /* Do the work. */ 1016 switch (op) { 1017 case SCTP_BINDX_ADD_ADDR: 1018 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1019 if (err) 1020 goto out; 1021 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1022 break; 1023 1024 case SCTP_BINDX_REM_ADDR: 1025 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1026 if (err) 1027 goto out; 1028 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1029 break; 1030 1031 default: 1032 err = -EINVAL; 1033 break; 1034 } 1035 1036 out: 1037 kfree(kaddrs); 1038 1039 return err; 1040 } 1041 1042 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1043 * 1044 * Common routine for handling connect() and sctp_connectx(). 1045 * Connect will come in with just a single address. 1046 */ 1047 static int __sctp_connect(struct sock* sk, 1048 struct sockaddr *kaddrs, 1049 int addrs_size, 1050 sctp_assoc_t *assoc_id) 1051 { 1052 struct sctp_sock *sp; 1053 struct sctp_endpoint *ep; 1054 struct sctp_association *asoc = NULL; 1055 struct sctp_association *asoc2; 1056 struct sctp_transport *transport; 1057 union sctp_addr to; 1058 struct sctp_af *af; 1059 sctp_scope_t scope; 1060 long timeo; 1061 int err = 0; 1062 int addrcnt = 0; 1063 int walk_size = 0; 1064 union sctp_addr *sa_addr = NULL; 1065 void *addr_buf; 1066 unsigned short port; 1067 unsigned int f_flags = 0; 1068 1069 sp = sctp_sk(sk); 1070 ep = sp->ep; 1071 1072 /* connect() cannot be done on a socket that is already in ESTABLISHED 1073 * state - UDP-style peeled off socket or a TCP-style socket that 1074 * is already connected. 1075 * It cannot be done even on a TCP-style listening socket. 1076 */ 1077 if (sctp_sstate(sk, ESTABLISHED) || 1078 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1079 err = -EISCONN; 1080 goto out_free; 1081 } 1082 1083 /* Walk through the addrs buffer and count the number of addresses. */ 1084 addr_buf = kaddrs; 1085 while (walk_size < addrs_size) { 1086 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1087 err = -EINVAL; 1088 goto out_free; 1089 } 1090 1091 sa_addr = addr_buf; 1092 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1093 1094 /* If the address family is not supported or if this address 1095 * causes the address buffer to overflow return EINVAL. 1096 */ 1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1098 err = -EINVAL; 1099 goto out_free; 1100 } 1101 1102 port = ntohs(sa_addr->v4.sin_port); 1103 1104 /* Save current address so we can work with it */ 1105 memcpy(&to, sa_addr, af->sockaddr_len); 1106 1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1108 if (err) 1109 goto out_free; 1110 1111 /* Make sure the destination port is correctly set 1112 * in all addresses. 1113 */ 1114 if (asoc && asoc->peer.port && asoc->peer.port != port) 1115 goto out_free; 1116 1117 1118 /* Check if there already is a matching association on the 1119 * endpoint (other than the one created here). 1120 */ 1121 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1122 if (asoc2 && asoc2 != asoc) { 1123 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1124 err = -EISCONN; 1125 else 1126 err = -EALREADY; 1127 goto out_free; 1128 } 1129 1130 /* If we could not find a matching association on the endpoint, 1131 * make sure that there is no peeled-off association matching 1132 * the peer address even on another socket. 1133 */ 1134 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1135 err = -EADDRNOTAVAIL; 1136 goto out_free; 1137 } 1138 1139 if (!asoc) { 1140 /* If a bind() or sctp_bindx() is not called prior to 1141 * an sctp_connectx() call, the system picks an 1142 * ephemeral port and will choose an address set 1143 * equivalent to binding with a wildcard address. 1144 */ 1145 if (!ep->base.bind_addr.port) { 1146 if (sctp_autobind(sk)) { 1147 err = -EAGAIN; 1148 goto out_free; 1149 } 1150 } else { 1151 /* 1152 * If an unprivileged user inherits a 1-many 1153 * style socket with open associations on a 1154 * privileged port, it MAY be permitted to 1155 * accept new associations, but it SHOULD NOT 1156 * be permitted to open new associations. 1157 */ 1158 if (ep->base.bind_addr.port < PROT_SOCK && 1159 !capable(CAP_NET_BIND_SERVICE)) { 1160 err = -EACCES; 1161 goto out_free; 1162 } 1163 } 1164 1165 scope = sctp_scope(&to); 1166 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1167 if (!asoc) { 1168 err = -ENOMEM; 1169 goto out_free; 1170 } 1171 1172 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1173 GFP_KERNEL); 1174 if (err < 0) { 1175 goto out_free; 1176 } 1177 1178 } 1179 1180 /* Prime the peer's transport structures. */ 1181 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1182 SCTP_UNKNOWN); 1183 if (!transport) { 1184 err = -ENOMEM; 1185 goto out_free; 1186 } 1187 1188 addrcnt++; 1189 addr_buf += af->sockaddr_len; 1190 walk_size += af->sockaddr_len; 1191 } 1192 1193 /* In case the user of sctp_connectx() wants an association 1194 * id back, assign one now. 1195 */ 1196 if (assoc_id) { 1197 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1198 if (err < 0) 1199 goto out_free; 1200 } 1201 1202 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1203 if (err < 0) { 1204 goto out_free; 1205 } 1206 1207 /* Initialize sk's dport and daddr for getpeername() */ 1208 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1209 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1210 af->to_sk_daddr(sa_addr, sk); 1211 sk->sk_err = 0; 1212 1213 /* in-kernel sockets don't generally have a file allocated to them 1214 * if all they do is call sock_create_kern(). 1215 */ 1216 if (sk->sk_socket->file) 1217 f_flags = sk->sk_socket->file->f_flags; 1218 1219 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1220 1221 err = sctp_wait_for_connect(asoc, &timeo); 1222 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1223 *assoc_id = asoc->assoc_id; 1224 1225 /* Don't free association on exit. */ 1226 asoc = NULL; 1227 1228 out_free: 1229 1230 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1231 " kaddrs: %p err: %d\n", 1232 asoc, kaddrs, err); 1233 if (asoc) 1234 sctp_association_free(asoc); 1235 return err; 1236 } 1237 1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1239 * 1240 * API 8.9 1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1242 * sctp_assoc_t *asoc); 1243 * 1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1246 * or IPv6 addresses. 1247 * 1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1249 * Section 3.1.2 for this usage. 1250 * 1251 * addrs is a pointer to an array of one or more socket addresses. Each 1252 * address is contained in its appropriate structure (i.e. struct 1253 * sockaddr_in or struct sockaddr_in6) the family of the address type 1254 * must be used to distengish the address length (note that this 1255 * representation is termed a "packed array" of addresses). The caller 1256 * specifies the number of addresses in the array with addrcnt. 1257 * 1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1259 * the association id of the new association. On failure, sctp_connectx() 1260 * returns -1, and sets errno to the appropriate error code. The assoc_id 1261 * is not touched by the kernel. 1262 * 1263 * For SCTP, the port given in each socket address must be the same, or 1264 * sctp_connectx() will fail, setting errno to EINVAL. 1265 * 1266 * An application can use sctp_connectx to initiate an association with 1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1268 * allows a caller to specify multiple addresses at which a peer can be 1269 * reached. The way the SCTP stack uses the list of addresses to set up 1270 * the association is implementation dependent. This function only 1271 * specifies that the stack will try to make use of all the addresses in 1272 * the list when needed. 1273 * 1274 * Note that the list of addresses passed in is only used for setting up 1275 * the association. It does not necessarily equal the set of addresses 1276 * the peer uses for the resulting association. If the caller wants to 1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1278 * retrieve them after the association has been set up. 1279 * 1280 * Basically do nothing but copying the addresses from user to kernel 1281 * land and invoking either sctp_connectx(). This is used for tunneling 1282 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1283 * 1284 * We don't use copy_from_user() for optimization: we first do the 1285 * sanity checks (buffer size -fast- and access check-healthy 1286 * pointer); if all of those succeed, then we can alloc the memory 1287 * (expensive operation) needed to copy the data to kernel. Then we do 1288 * the copying without checking the user space area 1289 * (__copy_from_user()). 1290 * 1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1292 * it. 1293 * 1294 * sk The sk of the socket 1295 * addrs The pointer to the addresses in user land 1296 * addrssize Size of the addrs buffer 1297 * 1298 * Returns >=0 if ok, <0 errno code on error. 1299 */ 1300 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1301 struct sockaddr __user *addrs, 1302 int addrs_size, 1303 sctp_assoc_t *assoc_id) 1304 { 1305 int err = 0; 1306 struct sockaddr *kaddrs; 1307 1308 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1309 __func__, sk, addrs, addrs_size); 1310 1311 if (unlikely(addrs_size <= 0)) 1312 return -EINVAL; 1313 1314 /* Check the user passed a healthy pointer. */ 1315 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1316 return -EFAULT; 1317 1318 /* Alloc space for the address array in kernel memory. */ 1319 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1320 if (unlikely(!kaddrs)) 1321 return -ENOMEM; 1322 1323 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1324 err = -EFAULT; 1325 } else { 1326 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1327 } 1328 1329 kfree(kaddrs); 1330 1331 return err; 1332 } 1333 1334 /* 1335 * This is an older interface. It's kept for backward compatibility 1336 * to the option that doesn't provide association id. 1337 */ 1338 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1339 struct sockaddr __user *addrs, 1340 int addrs_size) 1341 { 1342 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1343 } 1344 1345 /* 1346 * New interface for the API. The since the API is done with a socket 1347 * option, to make it simple we feed back the association id is as a return 1348 * indication to the call. Error is always negative and association id is 1349 * always positive. 1350 */ 1351 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1352 struct sockaddr __user *addrs, 1353 int addrs_size) 1354 { 1355 sctp_assoc_t assoc_id = 0; 1356 int err = 0; 1357 1358 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1359 1360 if (err) 1361 return err; 1362 else 1363 return assoc_id; 1364 } 1365 1366 /* 1367 * New (hopefully final) interface for the API. 1368 * We use the sctp_getaddrs_old structure so that use-space library 1369 * can avoid any unnecessary allocations. The only defferent part 1370 * is that we store the actual length of the address buffer into the 1371 * addrs_num structure member. That way we can re-use the existing 1372 * code. 1373 */ 1374 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1375 char __user *optval, 1376 int __user *optlen) 1377 { 1378 struct sctp_getaddrs_old param; 1379 sctp_assoc_t assoc_id = 0; 1380 int err = 0; 1381 1382 if (len < sizeof(param)) 1383 return -EINVAL; 1384 1385 if (copy_from_user(¶m, optval, sizeof(param))) 1386 return -EFAULT; 1387 1388 err = __sctp_setsockopt_connectx(sk, 1389 (struct sockaddr __user *)param.addrs, 1390 param.addr_num, &assoc_id); 1391 1392 if (err == 0 || err == -EINPROGRESS) { 1393 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1394 return -EFAULT; 1395 if (put_user(sizeof(assoc_id), optlen)) 1396 return -EFAULT; 1397 } 1398 1399 return err; 1400 } 1401 1402 /* API 3.1.4 close() - UDP Style Syntax 1403 * Applications use close() to perform graceful shutdown (as described in 1404 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1405 * by a UDP-style socket. 1406 * 1407 * The syntax is 1408 * 1409 * ret = close(int sd); 1410 * 1411 * sd - the socket descriptor of the associations to be closed. 1412 * 1413 * To gracefully shutdown a specific association represented by the 1414 * UDP-style socket, an application should use the sendmsg() call, 1415 * passing no user data, but including the appropriate flag in the 1416 * ancillary data (see Section xxxx). 1417 * 1418 * If sd in the close() call is a branched-off socket representing only 1419 * one association, the shutdown is performed on that association only. 1420 * 1421 * 4.1.6 close() - TCP Style Syntax 1422 * 1423 * Applications use close() to gracefully close down an association. 1424 * 1425 * The syntax is: 1426 * 1427 * int close(int sd); 1428 * 1429 * sd - the socket descriptor of the association to be closed. 1430 * 1431 * After an application calls close() on a socket descriptor, no further 1432 * socket operations will succeed on that descriptor. 1433 * 1434 * API 7.1.4 SO_LINGER 1435 * 1436 * An application using the TCP-style socket can use this option to 1437 * perform the SCTP ABORT primitive. The linger option structure is: 1438 * 1439 * struct linger { 1440 * int l_onoff; // option on/off 1441 * int l_linger; // linger time 1442 * }; 1443 * 1444 * To enable the option, set l_onoff to 1. If the l_linger value is set 1445 * to 0, calling close() is the same as the ABORT primitive. If the 1446 * value is set to a negative value, the setsockopt() call will return 1447 * an error. If the value is set to a positive value linger_time, the 1448 * close() can be blocked for at most linger_time ms. If the graceful 1449 * shutdown phase does not finish during this period, close() will 1450 * return but the graceful shutdown phase continues in the system. 1451 */ 1452 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1453 { 1454 struct sctp_endpoint *ep; 1455 struct sctp_association *asoc; 1456 struct list_head *pos, *temp; 1457 unsigned int data_was_unread; 1458 1459 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1460 1461 sctp_lock_sock(sk); 1462 sk->sk_shutdown = SHUTDOWN_MASK; 1463 sk->sk_state = SCTP_SS_CLOSING; 1464 1465 ep = sctp_sk(sk)->ep; 1466 1467 /* Clean up any skbs sitting on the receive queue. */ 1468 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1469 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1470 1471 /* Walk all associations on an endpoint. */ 1472 list_for_each_safe(pos, temp, &ep->asocs) { 1473 asoc = list_entry(pos, struct sctp_association, asocs); 1474 1475 if (sctp_style(sk, TCP)) { 1476 /* A closed association can still be in the list if 1477 * it belongs to a TCP-style listening socket that is 1478 * not yet accepted. If so, free it. If not, send an 1479 * ABORT or SHUTDOWN based on the linger options. 1480 */ 1481 if (sctp_state(asoc, CLOSED)) { 1482 sctp_unhash_established(asoc); 1483 sctp_association_free(asoc); 1484 continue; 1485 } 1486 } 1487 1488 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1489 !skb_queue_empty(&asoc->ulpq.reasm) || 1490 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1491 struct sctp_chunk *chunk; 1492 1493 chunk = sctp_make_abort_user(asoc, NULL, 0); 1494 if (chunk) 1495 sctp_primitive_ABORT(asoc, chunk); 1496 } else 1497 sctp_primitive_SHUTDOWN(asoc, NULL); 1498 } 1499 1500 /* On a TCP-style socket, block for at most linger_time if set. */ 1501 if (sctp_style(sk, TCP) && timeout) 1502 sctp_wait_for_close(sk, timeout); 1503 1504 /* This will run the backlog queue. */ 1505 sctp_release_sock(sk); 1506 1507 /* Supposedly, no process has access to the socket, but 1508 * the net layers still may. 1509 */ 1510 sctp_local_bh_disable(); 1511 sctp_bh_lock_sock(sk); 1512 1513 /* Hold the sock, since sk_common_release() will put sock_put() 1514 * and we have just a little more cleanup. 1515 */ 1516 sock_hold(sk); 1517 sk_common_release(sk); 1518 1519 sctp_bh_unlock_sock(sk); 1520 sctp_local_bh_enable(); 1521 1522 sock_put(sk); 1523 1524 SCTP_DBG_OBJCNT_DEC(sock); 1525 } 1526 1527 /* Handle EPIPE error. */ 1528 static int sctp_error(struct sock *sk, int flags, int err) 1529 { 1530 if (err == -EPIPE) 1531 err = sock_error(sk) ? : -EPIPE; 1532 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1533 send_sig(SIGPIPE, current, 0); 1534 return err; 1535 } 1536 1537 /* API 3.1.3 sendmsg() - UDP Style Syntax 1538 * 1539 * An application uses sendmsg() and recvmsg() calls to transmit data to 1540 * and receive data from its peer. 1541 * 1542 * ssize_t sendmsg(int socket, const struct msghdr *message, 1543 * int flags); 1544 * 1545 * socket - the socket descriptor of the endpoint. 1546 * message - pointer to the msghdr structure which contains a single 1547 * user message and possibly some ancillary data. 1548 * 1549 * See Section 5 for complete description of the data 1550 * structures. 1551 * 1552 * flags - flags sent or received with the user message, see Section 1553 * 5 for complete description of the flags. 1554 * 1555 * Note: This function could use a rewrite especially when explicit 1556 * connect support comes in. 1557 */ 1558 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1559 1560 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1561 1562 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1563 struct msghdr *msg, size_t msg_len) 1564 { 1565 struct sctp_sock *sp; 1566 struct sctp_endpoint *ep; 1567 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1568 struct sctp_transport *transport, *chunk_tp; 1569 struct sctp_chunk *chunk; 1570 union sctp_addr to; 1571 struct sockaddr *msg_name = NULL; 1572 struct sctp_sndrcvinfo default_sinfo; 1573 struct sctp_sndrcvinfo *sinfo; 1574 struct sctp_initmsg *sinit; 1575 sctp_assoc_t associd = 0; 1576 sctp_cmsgs_t cmsgs = { NULL }; 1577 int err; 1578 sctp_scope_t scope; 1579 long timeo; 1580 __u16 sinfo_flags = 0; 1581 struct sctp_datamsg *datamsg; 1582 int msg_flags = msg->msg_flags; 1583 1584 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1585 sk, msg, msg_len); 1586 1587 err = 0; 1588 sp = sctp_sk(sk); 1589 ep = sp->ep; 1590 1591 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1592 1593 /* We cannot send a message over a TCP-style listening socket. */ 1594 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1595 err = -EPIPE; 1596 goto out_nounlock; 1597 } 1598 1599 /* Parse out the SCTP CMSGs. */ 1600 err = sctp_msghdr_parse(msg, &cmsgs); 1601 1602 if (err) { 1603 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1604 goto out_nounlock; 1605 } 1606 1607 /* Fetch the destination address for this packet. This 1608 * address only selects the association--it is not necessarily 1609 * the address we will send to. 1610 * For a peeled-off socket, msg_name is ignored. 1611 */ 1612 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1613 int msg_namelen = msg->msg_namelen; 1614 1615 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1616 msg_namelen); 1617 if (err) 1618 return err; 1619 1620 if (msg_namelen > sizeof(to)) 1621 msg_namelen = sizeof(to); 1622 memcpy(&to, msg->msg_name, msg_namelen); 1623 msg_name = msg->msg_name; 1624 } 1625 1626 sinfo = cmsgs.info; 1627 sinit = cmsgs.init; 1628 1629 /* Did the user specify SNDRCVINFO? */ 1630 if (sinfo) { 1631 sinfo_flags = sinfo->sinfo_flags; 1632 associd = sinfo->sinfo_assoc_id; 1633 } 1634 1635 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1636 msg_len, sinfo_flags); 1637 1638 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1639 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1640 err = -EINVAL; 1641 goto out_nounlock; 1642 } 1643 1644 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1645 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1646 * If SCTP_ABORT is set, the message length could be non zero with 1647 * the msg_iov set to the user abort reason. 1648 */ 1649 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1650 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1651 err = -EINVAL; 1652 goto out_nounlock; 1653 } 1654 1655 /* If SCTP_ADDR_OVER is set, there must be an address 1656 * specified in msg_name. 1657 */ 1658 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1659 err = -EINVAL; 1660 goto out_nounlock; 1661 } 1662 1663 transport = NULL; 1664 1665 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1666 1667 sctp_lock_sock(sk); 1668 1669 /* If a msg_name has been specified, assume this is to be used. */ 1670 if (msg_name) { 1671 /* Look for a matching association on the endpoint. */ 1672 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1673 if (!asoc) { 1674 /* If we could not find a matching association on the 1675 * endpoint, make sure that it is not a TCP-style 1676 * socket that already has an association or there is 1677 * no peeled-off association on another socket. 1678 */ 1679 if ((sctp_style(sk, TCP) && 1680 sctp_sstate(sk, ESTABLISHED)) || 1681 sctp_endpoint_is_peeled_off(ep, &to)) { 1682 err = -EADDRNOTAVAIL; 1683 goto out_unlock; 1684 } 1685 } 1686 } else { 1687 asoc = sctp_id2assoc(sk, associd); 1688 if (!asoc) { 1689 err = -EPIPE; 1690 goto out_unlock; 1691 } 1692 } 1693 1694 if (asoc) { 1695 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1696 1697 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1698 * socket that has an association in CLOSED state. This can 1699 * happen when an accepted socket has an association that is 1700 * already CLOSED. 1701 */ 1702 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1703 err = -EPIPE; 1704 goto out_unlock; 1705 } 1706 1707 if (sinfo_flags & SCTP_EOF) { 1708 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1709 asoc); 1710 sctp_primitive_SHUTDOWN(asoc, NULL); 1711 err = 0; 1712 goto out_unlock; 1713 } 1714 if (sinfo_flags & SCTP_ABORT) { 1715 1716 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1717 if (!chunk) { 1718 err = -ENOMEM; 1719 goto out_unlock; 1720 } 1721 1722 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1723 sctp_primitive_ABORT(asoc, chunk); 1724 err = 0; 1725 goto out_unlock; 1726 } 1727 } 1728 1729 /* Do we need to create the association? */ 1730 if (!asoc) { 1731 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1732 1733 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1734 err = -EINVAL; 1735 goto out_unlock; 1736 } 1737 1738 /* Check for invalid stream against the stream counts, 1739 * either the default or the user specified stream counts. 1740 */ 1741 if (sinfo) { 1742 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1743 /* Check against the defaults. */ 1744 if (sinfo->sinfo_stream >= 1745 sp->initmsg.sinit_num_ostreams) { 1746 err = -EINVAL; 1747 goto out_unlock; 1748 } 1749 } else { 1750 /* Check against the requested. */ 1751 if (sinfo->sinfo_stream >= 1752 sinit->sinit_num_ostreams) { 1753 err = -EINVAL; 1754 goto out_unlock; 1755 } 1756 } 1757 } 1758 1759 /* 1760 * API 3.1.2 bind() - UDP Style Syntax 1761 * If a bind() or sctp_bindx() is not called prior to a 1762 * sendmsg() call that initiates a new association, the 1763 * system picks an ephemeral port and will choose an address 1764 * set equivalent to binding with a wildcard address. 1765 */ 1766 if (!ep->base.bind_addr.port) { 1767 if (sctp_autobind(sk)) { 1768 err = -EAGAIN; 1769 goto out_unlock; 1770 } 1771 } else { 1772 /* 1773 * If an unprivileged user inherits a one-to-many 1774 * style socket with open associations on a privileged 1775 * port, it MAY be permitted to accept new associations, 1776 * but it SHOULD NOT be permitted to open new 1777 * associations. 1778 */ 1779 if (ep->base.bind_addr.port < PROT_SOCK && 1780 !capable(CAP_NET_BIND_SERVICE)) { 1781 err = -EACCES; 1782 goto out_unlock; 1783 } 1784 } 1785 1786 scope = sctp_scope(&to); 1787 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1788 if (!new_asoc) { 1789 err = -ENOMEM; 1790 goto out_unlock; 1791 } 1792 asoc = new_asoc; 1793 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1794 if (err < 0) { 1795 err = -ENOMEM; 1796 goto out_free; 1797 } 1798 1799 /* If the SCTP_INIT ancillary data is specified, set all 1800 * the association init values accordingly. 1801 */ 1802 if (sinit) { 1803 if (sinit->sinit_num_ostreams) { 1804 asoc->c.sinit_num_ostreams = 1805 sinit->sinit_num_ostreams; 1806 } 1807 if (sinit->sinit_max_instreams) { 1808 asoc->c.sinit_max_instreams = 1809 sinit->sinit_max_instreams; 1810 } 1811 if (sinit->sinit_max_attempts) { 1812 asoc->max_init_attempts 1813 = sinit->sinit_max_attempts; 1814 } 1815 if (sinit->sinit_max_init_timeo) { 1816 asoc->max_init_timeo = 1817 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1818 } 1819 } 1820 1821 /* Prime the peer's transport structures. */ 1822 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1823 if (!transport) { 1824 err = -ENOMEM; 1825 goto out_free; 1826 } 1827 } 1828 1829 /* ASSERT: we have a valid association at this point. */ 1830 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1831 1832 if (!sinfo) { 1833 /* If the user didn't specify SNDRCVINFO, make up one with 1834 * some defaults. 1835 */ 1836 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1837 default_sinfo.sinfo_stream = asoc->default_stream; 1838 default_sinfo.sinfo_flags = asoc->default_flags; 1839 default_sinfo.sinfo_ppid = asoc->default_ppid; 1840 default_sinfo.sinfo_context = asoc->default_context; 1841 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1842 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1843 sinfo = &default_sinfo; 1844 } 1845 1846 /* API 7.1.7, the sndbuf size per association bounds the 1847 * maximum size of data that can be sent in a single send call. 1848 */ 1849 if (msg_len > sk->sk_sndbuf) { 1850 err = -EMSGSIZE; 1851 goto out_free; 1852 } 1853 1854 if (asoc->pmtu_pending) 1855 sctp_assoc_pending_pmtu(asoc); 1856 1857 /* If fragmentation is disabled and the message length exceeds the 1858 * association fragmentation point, return EMSGSIZE. The I-D 1859 * does not specify what this error is, but this looks like 1860 * a great fit. 1861 */ 1862 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1863 err = -EMSGSIZE; 1864 goto out_free; 1865 } 1866 1867 /* Check for invalid stream. */ 1868 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1869 err = -EINVAL; 1870 goto out_free; 1871 } 1872 1873 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1874 if (!sctp_wspace(asoc)) { 1875 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1876 if (err) 1877 goto out_free; 1878 } 1879 1880 /* If an address is passed with the sendto/sendmsg call, it is used 1881 * to override the primary destination address in the TCP model, or 1882 * when SCTP_ADDR_OVER flag is set in the UDP model. 1883 */ 1884 if ((sctp_style(sk, TCP) && msg_name) || 1885 (sinfo_flags & SCTP_ADDR_OVER)) { 1886 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1887 if (!chunk_tp) { 1888 err = -EINVAL; 1889 goto out_free; 1890 } 1891 } else 1892 chunk_tp = NULL; 1893 1894 /* Auto-connect, if we aren't connected already. */ 1895 if (sctp_state(asoc, CLOSED)) { 1896 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1897 if (err < 0) 1898 goto out_free; 1899 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1900 } 1901 1902 /* Break the message into multiple chunks of maximum size. */ 1903 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1904 if (!datamsg) { 1905 err = -ENOMEM; 1906 goto out_free; 1907 } 1908 1909 /* Now send the (possibly) fragmented message. */ 1910 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1911 sctp_chunk_hold(chunk); 1912 1913 /* Do accounting for the write space. */ 1914 sctp_set_owner_w(chunk); 1915 1916 chunk->transport = chunk_tp; 1917 } 1918 1919 /* Send it to the lower layers. Note: all chunks 1920 * must either fail or succeed. The lower layer 1921 * works that way today. Keep it that way or this 1922 * breaks. 1923 */ 1924 err = sctp_primitive_SEND(asoc, datamsg); 1925 /* Did the lower layer accept the chunk? */ 1926 if (err) 1927 sctp_datamsg_free(datamsg); 1928 else 1929 sctp_datamsg_put(datamsg); 1930 1931 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1932 1933 if (err) 1934 goto out_free; 1935 else 1936 err = msg_len; 1937 1938 /* If we are already past ASSOCIATE, the lower 1939 * layers are responsible for association cleanup. 1940 */ 1941 goto out_unlock; 1942 1943 out_free: 1944 if (new_asoc) 1945 sctp_association_free(asoc); 1946 out_unlock: 1947 sctp_release_sock(sk); 1948 1949 out_nounlock: 1950 return sctp_error(sk, msg_flags, err); 1951 1952 #if 0 1953 do_sock_err: 1954 if (msg_len) 1955 err = msg_len; 1956 else 1957 err = sock_error(sk); 1958 goto out; 1959 1960 do_interrupted: 1961 if (msg_len) 1962 err = msg_len; 1963 goto out; 1964 #endif /* 0 */ 1965 } 1966 1967 /* This is an extended version of skb_pull() that removes the data from the 1968 * start of a skb even when data is spread across the list of skb's in the 1969 * frag_list. len specifies the total amount of data that needs to be removed. 1970 * when 'len' bytes could be removed from the skb, it returns 0. 1971 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1972 * could not be removed. 1973 */ 1974 static int sctp_skb_pull(struct sk_buff *skb, int len) 1975 { 1976 struct sk_buff *list; 1977 int skb_len = skb_headlen(skb); 1978 int rlen; 1979 1980 if (len <= skb_len) { 1981 __skb_pull(skb, len); 1982 return 0; 1983 } 1984 len -= skb_len; 1985 __skb_pull(skb, skb_len); 1986 1987 skb_walk_frags(skb, list) { 1988 rlen = sctp_skb_pull(list, len); 1989 skb->len -= (len-rlen); 1990 skb->data_len -= (len-rlen); 1991 1992 if (!rlen) 1993 return 0; 1994 1995 len = rlen; 1996 } 1997 1998 return len; 1999 } 2000 2001 /* API 3.1.3 recvmsg() - UDP Style Syntax 2002 * 2003 * ssize_t recvmsg(int socket, struct msghdr *message, 2004 * int flags); 2005 * 2006 * socket - the socket descriptor of the endpoint. 2007 * message - pointer to the msghdr structure which contains a single 2008 * user message and possibly some ancillary data. 2009 * 2010 * See Section 5 for complete description of the data 2011 * structures. 2012 * 2013 * flags - flags sent or received with the user message, see Section 2014 * 5 for complete description of the flags. 2015 */ 2016 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2017 2018 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2019 struct msghdr *msg, size_t len, int noblock, 2020 int flags, int *addr_len) 2021 { 2022 struct sctp_ulpevent *event = NULL; 2023 struct sctp_sock *sp = sctp_sk(sk); 2024 struct sk_buff *skb; 2025 int copied; 2026 int err = 0; 2027 int skb_len; 2028 2029 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2030 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2031 "len", len, "knoblauch", noblock, 2032 "flags", flags, "addr_len", addr_len); 2033 2034 sctp_lock_sock(sk); 2035 2036 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2037 err = -ENOTCONN; 2038 goto out; 2039 } 2040 2041 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2042 if (!skb) 2043 goto out; 2044 2045 /* Get the total length of the skb including any skb's in the 2046 * frag_list. 2047 */ 2048 skb_len = skb->len; 2049 2050 copied = skb_len; 2051 if (copied > len) 2052 copied = len; 2053 2054 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2055 2056 event = sctp_skb2event(skb); 2057 2058 if (err) 2059 goto out_free; 2060 2061 sock_recv_ts_and_drops(msg, sk, skb); 2062 if (sctp_ulpevent_is_notification(event)) { 2063 msg->msg_flags |= MSG_NOTIFICATION; 2064 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2065 } else { 2066 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2067 } 2068 2069 /* Check if we allow SCTP_SNDRCVINFO. */ 2070 if (sp->subscribe.sctp_data_io_event) 2071 sctp_ulpevent_read_sndrcvinfo(event, msg); 2072 #if 0 2073 /* FIXME: we should be calling IP/IPv6 layers. */ 2074 if (sk->sk_protinfo.af_inet.cmsg_flags) 2075 ip_cmsg_recv(msg, skb); 2076 #endif 2077 2078 err = copied; 2079 2080 /* If skb's length exceeds the user's buffer, update the skb and 2081 * push it back to the receive_queue so that the next call to 2082 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2083 */ 2084 if (skb_len > copied) { 2085 msg->msg_flags &= ~MSG_EOR; 2086 if (flags & MSG_PEEK) 2087 goto out_free; 2088 sctp_skb_pull(skb, copied); 2089 skb_queue_head(&sk->sk_receive_queue, skb); 2090 2091 /* When only partial message is copied to the user, increase 2092 * rwnd by that amount. If all the data in the skb is read, 2093 * rwnd is updated when the event is freed. 2094 */ 2095 if (!sctp_ulpevent_is_notification(event)) 2096 sctp_assoc_rwnd_increase(event->asoc, copied); 2097 goto out; 2098 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2099 (event->msg_flags & MSG_EOR)) 2100 msg->msg_flags |= MSG_EOR; 2101 else 2102 msg->msg_flags &= ~MSG_EOR; 2103 2104 out_free: 2105 if (flags & MSG_PEEK) { 2106 /* Release the skb reference acquired after peeking the skb in 2107 * sctp_skb_recv_datagram(). 2108 */ 2109 kfree_skb(skb); 2110 } else { 2111 /* Free the event which includes releasing the reference to 2112 * the owner of the skb, freeing the skb and updating the 2113 * rwnd. 2114 */ 2115 sctp_ulpevent_free(event); 2116 } 2117 out: 2118 sctp_release_sock(sk); 2119 return err; 2120 } 2121 2122 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2123 * 2124 * This option is a on/off flag. If enabled no SCTP message 2125 * fragmentation will be performed. Instead if a message being sent 2126 * exceeds the current PMTU size, the message will NOT be sent and 2127 * instead a error will be indicated to the user. 2128 */ 2129 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2130 char __user *optval, 2131 unsigned int optlen) 2132 { 2133 int val; 2134 2135 if (optlen < sizeof(int)) 2136 return -EINVAL; 2137 2138 if (get_user(val, (int __user *)optval)) 2139 return -EFAULT; 2140 2141 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2142 2143 return 0; 2144 } 2145 2146 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2147 unsigned int optlen) 2148 { 2149 struct sctp_association *asoc; 2150 struct sctp_ulpevent *event; 2151 2152 if (optlen > sizeof(struct sctp_event_subscribe)) 2153 return -EINVAL; 2154 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2155 return -EFAULT; 2156 2157 /* 2158 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2159 * if there is no data to be sent or retransmit, the stack will 2160 * immediately send up this notification. 2161 */ 2162 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2163 &sctp_sk(sk)->subscribe)) { 2164 asoc = sctp_id2assoc(sk, 0); 2165 2166 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2167 event = sctp_ulpevent_make_sender_dry_event(asoc, 2168 GFP_ATOMIC); 2169 if (!event) 2170 return -ENOMEM; 2171 2172 sctp_ulpq_tail_event(&asoc->ulpq, event); 2173 } 2174 } 2175 2176 return 0; 2177 } 2178 2179 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2180 * 2181 * This socket option is applicable to the UDP-style socket only. When 2182 * set it will cause associations that are idle for more than the 2183 * specified number of seconds to automatically close. An association 2184 * being idle is defined an association that has NOT sent or received 2185 * user data. The special value of '0' indicates that no automatic 2186 * close of any associations should be performed. The option expects an 2187 * integer defining the number of seconds of idle time before an 2188 * association is closed. 2189 */ 2190 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2191 unsigned int optlen) 2192 { 2193 struct sctp_sock *sp = sctp_sk(sk); 2194 2195 /* Applicable to UDP-style socket only */ 2196 if (sctp_style(sk, TCP)) 2197 return -EOPNOTSUPP; 2198 if (optlen != sizeof(int)) 2199 return -EINVAL; 2200 if (copy_from_user(&sp->autoclose, optval, optlen)) 2201 return -EFAULT; 2202 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2203 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ); 2204 2205 return 0; 2206 } 2207 2208 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2209 * 2210 * Applications can enable or disable heartbeats for any peer address of 2211 * an association, modify an address's heartbeat interval, force a 2212 * heartbeat to be sent immediately, and adjust the address's maximum 2213 * number of retransmissions sent before an address is considered 2214 * unreachable. The following structure is used to access and modify an 2215 * address's parameters: 2216 * 2217 * struct sctp_paddrparams { 2218 * sctp_assoc_t spp_assoc_id; 2219 * struct sockaddr_storage spp_address; 2220 * uint32_t spp_hbinterval; 2221 * uint16_t spp_pathmaxrxt; 2222 * uint32_t spp_pathmtu; 2223 * uint32_t spp_sackdelay; 2224 * uint32_t spp_flags; 2225 * }; 2226 * 2227 * spp_assoc_id - (one-to-many style socket) This is filled in the 2228 * application, and identifies the association for 2229 * this query. 2230 * spp_address - This specifies which address is of interest. 2231 * spp_hbinterval - This contains the value of the heartbeat interval, 2232 * in milliseconds. If a value of zero 2233 * is present in this field then no changes are to 2234 * be made to this parameter. 2235 * spp_pathmaxrxt - This contains the maximum number of 2236 * retransmissions before this address shall be 2237 * considered unreachable. If a value of zero 2238 * is present in this field then no changes are to 2239 * be made to this parameter. 2240 * spp_pathmtu - When Path MTU discovery is disabled the value 2241 * specified here will be the "fixed" path mtu. 2242 * Note that if the spp_address field is empty 2243 * then all associations on this address will 2244 * have this fixed path mtu set upon them. 2245 * 2246 * spp_sackdelay - When delayed sack is enabled, this value specifies 2247 * the number of milliseconds that sacks will be delayed 2248 * for. This value will apply to all addresses of an 2249 * association if the spp_address field is empty. Note 2250 * also, that if delayed sack is enabled and this 2251 * value is set to 0, no change is made to the last 2252 * recorded delayed sack timer value. 2253 * 2254 * spp_flags - These flags are used to control various features 2255 * on an association. The flag field may contain 2256 * zero or more of the following options. 2257 * 2258 * SPP_HB_ENABLE - Enable heartbeats on the 2259 * specified address. Note that if the address 2260 * field is empty all addresses for the association 2261 * have heartbeats enabled upon them. 2262 * 2263 * SPP_HB_DISABLE - Disable heartbeats on the 2264 * speicifed address. Note that if the address 2265 * field is empty all addresses for the association 2266 * will have their heartbeats disabled. Note also 2267 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2268 * mutually exclusive, only one of these two should 2269 * be specified. Enabling both fields will have 2270 * undetermined results. 2271 * 2272 * SPP_HB_DEMAND - Request a user initiated heartbeat 2273 * to be made immediately. 2274 * 2275 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2276 * heartbeat delayis to be set to the value of 0 2277 * milliseconds. 2278 * 2279 * SPP_PMTUD_ENABLE - This field will enable PMTU 2280 * discovery upon the specified address. Note that 2281 * if the address feild is empty then all addresses 2282 * on the association are effected. 2283 * 2284 * SPP_PMTUD_DISABLE - This field will disable PMTU 2285 * discovery upon the specified address. Note that 2286 * if the address feild is empty then all addresses 2287 * on the association are effected. Not also that 2288 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2289 * exclusive. Enabling both will have undetermined 2290 * results. 2291 * 2292 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2293 * on delayed sack. The time specified in spp_sackdelay 2294 * is used to specify the sack delay for this address. Note 2295 * that if spp_address is empty then all addresses will 2296 * enable delayed sack and take on the sack delay 2297 * value specified in spp_sackdelay. 2298 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2299 * off delayed sack. If the spp_address field is blank then 2300 * delayed sack is disabled for the entire association. Note 2301 * also that this field is mutually exclusive to 2302 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2303 * results. 2304 */ 2305 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2306 struct sctp_transport *trans, 2307 struct sctp_association *asoc, 2308 struct sctp_sock *sp, 2309 int hb_change, 2310 int pmtud_change, 2311 int sackdelay_change) 2312 { 2313 int error; 2314 2315 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2316 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2317 if (error) 2318 return error; 2319 } 2320 2321 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2322 * this field is ignored. Note also that a value of zero indicates 2323 * the current setting should be left unchanged. 2324 */ 2325 if (params->spp_flags & SPP_HB_ENABLE) { 2326 2327 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2328 * set. This lets us use 0 value when this flag 2329 * is set. 2330 */ 2331 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2332 params->spp_hbinterval = 0; 2333 2334 if (params->spp_hbinterval || 2335 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2336 if (trans) { 2337 trans->hbinterval = 2338 msecs_to_jiffies(params->spp_hbinterval); 2339 } else if (asoc) { 2340 asoc->hbinterval = 2341 msecs_to_jiffies(params->spp_hbinterval); 2342 } else { 2343 sp->hbinterval = params->spp_hbinterval; 2344 } 2345 } 2346 } 2347 2348 if (hb_change) { 2349 if (trans) { 2350 trans->param_flags = 2351 (trans->param_flags & ~SPP_HB) | hb_change; 2352 } else if (asoc) { 2353 asoc->param_flags = 2354 (asoc->param_flags & ~SPP_HB) | hb_change; 2355 } else { 2356 sp->param_flags = 2357 (sp->param_flags & ~SPP_HB) | hb_change; 2358 } 2359 } 2360 2361 /* When Path MTU discovery is disabled the value specified here will 2362 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2363 * include the flag SPP_PMTUD_DISABLE for this field to have any 2364 * effect). 2365 */ 2366 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2367 if (trans) { 2368 trans->pathmtu = params->spp_pathmtu; 2369 sctp_assoc_sync_pmtu(asoc); 2370 } else if (asoc) { 2371 asoc->pathmtu = params->spp_pathmtu; 2372 sctp_frag_point(asoc, params->spp_pathmtu); 2373 } else { 2374 sp->pathmtu = params->spp_pathmtu; 2375 } 2376 } 2377 2378 if (pmtud_change) { 2379 if (trans) { 2380 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2381 (params->spp_flags & SPP_PMTUD_ENABLE); 2382 trans->param_flags = 2383 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2384 if (update) { 2385 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2386 sctp_assoc_sync_pmtu(asoc); 2387 } 2388 } else if (asoc) { 2389 asoc->param_flags = 2390 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2391 } else { 2392 sp->param_flags = 2393 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2394 } 2395 } 2396 2397 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2398 * value of this field is ignored. Note also that a value of zero 2399 * indicates the current setting should be left unchanged. 2400 */ 2401 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2402 if (trans) { 2403 trans->sackdelay = 2404 msecs_to_jiffies(params->spp_sackdelay); 2405 } else if (asoc) { 2406 asoc->sackdelay = 2407 msecs_to_jiffies(params->spp_sackdelay); 2408 } else { 2409 sp->sackdelay = params->spp_sackdelay; 2410 } 2411 } 2412 2413 if (sackdelay_change) { 2414 if (trans) { 2415 trans->param_flags = 2416 (trans->param_flags & ~SPP_SACKDELAY) | 2417 sackdelay_change; 2418 } else if (asoc) { 2419 asoc->param_flags = 2420 (asoc->param_flags & ~SPP_SACKDELAY) | 2421 sackdelay_change; 2422 } else { 2423 sp->param_flags = 2424 (sp->param_flags & ~SPP_SACKDELAY) | 2425 sackdelay_change; 2426 } 2427 } 2428 2429 /* Note that a value of zero indicates the current setting should be 2430 left unchanged. 2431 */ 2432 if (params->spp_pathmaxrxt) { 2433 if (trans) { 2434 trans->pathmaxrxt = params->spp_pathmaxrxt; 2435 } else if (asoc) { 2436 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2437 } else { 2438 sp->pathmaxrxt = params->spp_pathmaxrxt; 2439 } 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2446 char __user *optval, 2447 unsigned int optlen) 2448 { 2449 struct sctp_paddrparams params; 2450 struct sctp_transport *trans = NULL; 2451 struct sctp_association *asoc = NULL; 2452 struct sctp_sock *sp = sctp_sk(sk); 2453 int error; 2454 int hb_change, pmtud_change, sackdelay_change; 2455 2456 if (optlen != sizeof(struct sctp_paddrparams)) 2457 return - EINVAL; 2458 2459 if (copy_from_user(¶ms, optval, optlen)) 2460 return -EFAULT; 2461 2462 /* Validate flags and value parameters. */ 2463 hb_change = params.spp_flags & SPP_HB; 2464 pmtud_change = params.spp_flags & SPP_PMTUD; 2465 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2466 2467 if (hb_change == SPP_HB || 2468 pmtud_change == SPP_PMTUD || 2469 sackdelay_change == SPP_SACKDELAY || 2470 params.spp_sackdelay > 500 || 2471 (params.spp_pathmtu && 2472 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2473 return -EINVAL; 2474 2475 /* If an address other than INADDR_ANY is specified, and 2476 * no transport is found, then the request is invalid. 2477 */ 2478 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2479 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2480 params.spp_assoc_id); 2481 if (!trans) 2482 return -EINVAL; 2483 } 2484 2485 /* Get association, if assoc_id != 0 and the socket is a one 2486 * to many style socket, and an association was not found, then 2487 * the id was invalid. 2488 */ 2489 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2490 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2491 return -EINVAL; 2492 2493 /* Heartbeat demand can only be sent on a transport or 2494 * association, but not a socket. 2495 */ 2496 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2497 return -EINVAL; 2498 2499 /* Process parameters. */ 2500 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2501 hb_change, pmtud_change, 2502 sackdelay_change); 2503 2504 if (error) 2505 return error; 2506 2507 /* If changes are for association, also apply parameters to each 2508 * transport. 2509 */ 2510 if (!trans && asoc) { 2511 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2512 transports) { 2513 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2514 hb_change, pmtud_change, 2515 sackdelay_change); 2516 } 2517 } 2518 2519 return 0; 2520 } 2521 2522 /* 2523 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2524 * 2525 * This option will effect the way delayed acks are performed. This 2526 * option allows you to get or set the delayed ack time, in 2527 * milliseconds. It also allows changing the delayed ack frequency. 2528 * Changing the frequency to 1 disables the delayed sack algorithm. If 2529 * the assoc_id is 0, then this sets or gets the endpoints default 2530 * values. If the assoc_id field is non-zero, then the set or get 2531 * effects the specified association for the one to many model (the 2532 * assoc_id field is ignored by the one to one model). Note that if 2533 * sack_delay or sack_freq are 0 when setting this option, then the 2534 * current values will remain unchanged. 2535 * 2536 * struct sctp_sack_info { 2537 * sctp_assoc_t sack_assoc_id; 2538 * uint32_t sack_delay; 2539 * uint32_t sack_freq; 2540 * }; 2541 * 2542 * sack_assoc_id - This parameter, indicates which association the user 2543 * is performing an action upon. Note that if this field's value is 2544 * zero then the endpoints default value is changed (effecting future 2545 * associations only). 2546 * 2547 * sack_delay - This parameter contains the number of milliseconds that 2548 * the user is requesting the delayed ACK timer be set to. Note that 2549 * this value is defined in the standard to be between 200 and 500 2550 * milliseconds. 2551 * 2552 * sack_freq - This parameter contains the number of packets that must 2553 * be received before a sack is sent without waiting for the delay 2554 * timer to expire. The default value for this is 2, setting this 2555 * value to 1 will disable the delayed sack algorithm. 2556 */ 2557 2558 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2559 char __user *optval, unsigned int optlen) 2560 { 2561 struct sctp_sack_info params; 2562 struct sctp_transport *trans = NULL; 2563 struct sctp_association *asoc = NULL; 2564 struct sctp_sock *sp = sctp_sk(sk); 2565 2566 if (optlen == sizeof(struct sctp_sack_info)) { 2567 if (copy_from_user(¶ms, optval, optlen)) 2568 return -EFAULT; 2569 2570 if (params.sack_delay == 0 && params.sack_freq == 0) 2571 return 0; 2572 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2573 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2574 pr_warn("Use struct sctp_sack_info instead\n"); 2575 if (copy_from_user(¶ms, optval, optlen)) 2576 return -EFAULT; 2577 2578 if (params.sack_delay == 0) 2579 params.sack_freq = 1; 2580 else 2581 params.sack_freq = 0; 2582 } else 2583 return - EINVAL; 2584 2585 /* Validate value parameter. */ 2586 if (params.sack_delay > 500) 2587 return -EINVAL; 2588 2589 /* Get association, if sack_assoc_id != 0 and the socket is a one 2590 * to many style socket, and an association was not found, then 2591 * the id was invalid. 2592 */ 2593 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2594 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2595 return -EINVAL; 2596 2597 if (params.sack_delay) { 2598 if (asoc) { 2599 asoc->sackdelay = 2600 msecs_to_jiffies(params.sack_delay); 2601 asoc->param_flags = 2602 (asoc->param_flags & ~SPP_SACKDELAY) | 2603 SPP_SACKDELAY_ENABLE; 2604 } else { 2605 sp->sackdelay = params.sack_delay; 2606 sp->param_flags = 2607 (sp->param_flags & ~SPP_SACKDELAY) | 2608 SPP_SACKDELAY_ENABLE; 2609 } 2610 } 2611 2612 if (params.sack_freq == 1) { 2613 if (asoc) { 2614 asoc->param_flags = 2615 (asoc->param_flags & ~SPP_SACKDELAY) | 2616 SPP_SACKDELAY_DISABLE; 2617 } else { 2618 sp->param_flags = 2619 (sp->param_flags & ~SPP_SACKDELAY) | 2620 SPP_SACKDELAY_DISABLE; 2621 } 2622 } else if (params.sack_freq > 1) { 2623 if (asoc) { 2624 asoc->sackfreq = params.sack_freq; 2625 asoc->param_flags = 2626 (asoc->param_flags & ~SPP_SACKDELAY) | 2627 SPP_SACKDELAY_ENABLE; 2628 } else { 2629 sp->sackfreq = params.sack_freq; 2630 sp->param_flags = 2631 (sp->param_flags & ~SPP_SACKDELAY) | 2632 SPP_SACKDELAY_ENABLE; 2633 } 2634 } 2635 2636 /* If change is for association, also apply to each transport. */ 2637 if (asoc) { 2638 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2639 transports) { 2640 if (params.sack_delay) { 2641 trans->sackdelay = 2642 msecs_to_jiffies(params.sack_delay); 2643 trans->param_flags = 2644 (trans->param_flags & ~SPP_SACKDELAY) | 2645 SPP_SACKDELAY_ENABLE; 2646 } 2647 if (params.sack_freq == 1) { 2648 trans->param_flags = 2649 (trans->param_flags & ~SPP_SACKDELAY) | 2650 SPP_SACKDELAY_DISABLE; 2651 } else if (params.sack_freq > 1) { 2652 trans->sackfreq = params.sack_freq; 2653 trans->param_flags = 2654 (trans->param_flags & ~SPP_SACKDELAY) | 2655 SPP_SACKDELAY_ENABLE; 2656 } 2657 } 2658 } 2659 2660 return 0; 2661 } 2662 2663 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2664 * 2665 * Applications can specify protocol parameters for the default association 2666 * initialization. The option name argument to setsockopt() and getsockopt() 2667 * is SCTP_INITMSG. 2668 * 2669 * Setting initialization parameters is effective only on an unconnected 2670 * socket (for UDP-style sockets only future associations are effected 2671 * by the change). With TCP-style sockets, this option is inherited by 2672 * sockets derived from a listener socket. 2673 */ 2674 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2675 { 2676 struct sctp_initmsg sinit; 2677 struct sctp_sock *sp = sctp_sk(sk); 2678 2679 if (optlen != sizeof(struct sctp_initmsg)) 2680 return -EINVAL; 2681 if (copy_from_user(&sinit, optval, optlen)) 2682 return -EFAULT; 2683 2684 if (sinit.sinit_num_ostreams) 2685 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2686 if (sinit.sinit_max_instreams) 2687 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2688 if (sinit.sinit_max_attempts) 2689 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2690 if (sinit.sinit_max_init_timeo) 2691 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2692 2693 return 0; 2694 } 2695 2696 /* 2697 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2698 * 2699 * Applications that wish to use the sendto() system call may wish to 2700 * specify a default set of parameters that would normally be supplied 2701 * through the inclusion of ancillary data. This socket option allows 2702 * such an application to set the default sctp_sndrcvinfo structure. 2703 * The application that wishes to use this socket option simply passes 2704 * in to this call the sctp_sndrcvinfo structure defined in Section 2705 * 5.2.2) The input parameters accepted by this call include 2706 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2707 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2708 * to this call if the caller is using the UDP model. 2709 */ 2710 static int sctp_setsockopt_default_send_param(struct sock *sk, 2711 char __user *optval, 2712 unsigned int optlen) 2713 { 2714 struct sctp_sndrcvinfo info; 2715 struct sctp_association *asoc; 2716 struct sctp_sock *sp = sctp_sk(sk); 2717 2718 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2719 return -EINVAL; 2720 if (copy_from_user(&info, optval, optlen)) 2721 return -EFAULT; 2722 2723 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2724 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2725 return -EINVAL; 2726 2727 if (asoc) { 2728 asoc->default_stream = info.sinfo_stream; 2729 asoc->default_flags = info.sinfo_flags; 2730 asoc->default_ppid = info.sinfo_ppid; 2731 asoc->default_context = info.sinfo_context; 2732 asoc->default_timetolive = info.sinfo_timetolive; 2733 } else { 2734 sp->default_stream = info.sinfo_stream; 2735 sp->default_flags = info.sinfo_flags; 2736 sp->default_ppid = info.sinfo_ppid; 2737 sp->default_context = info.sinfo_context; 2738 sp->default_timetolive = info.sinfo_timetolive; 2739 } 2740 2741 return 0; 2742 } 2743 2744 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2745 * 2746 * Requests that the local SCTP stack use the enclosed peer address as 2747 * the association primary. The enclosed address must be one of the 2748 * association peer's addresses. 2749 */ 2750 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2751 unsigned int optlen) 2752 { 2753 struct sctp_prim prim; 2754 struct sctp_transport *trans; 2755 2756 if (optlen != sizeof(struct sctp_prim)) 2757 return -EINVAL; 2758 2759 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2760 return -EFAULT; 2761 2762 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2763 if (!trans) 2764 return -EINVAL; 2765 2766 sctp_assoc_set_primary(trans->asoc, trans); 2767 2768 return 0; 2769 } 2770 2771 /* 2772 * 7.1.5 SCTP_NODELAY 2773 * 2774 * Turn on/off any Nagle-like algorithm. This means that packets are 2775 * generally sent as soon as possible and no unnecessary delays are 2776 * introduced, at the cost of more packets in the network. Expects an 2777 * integer boolean flag. 2778 */ 2779 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2780 unsigned int optlen) 2781 { 2782 int val; 2783 2784 if (optlen < sizeof(int)) 2785 return -EINVAL; 2786 if (get_user(val, (int __user *)optval)) 2787 return -EFAULT; 2788 2789 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2790 return 0; 2791 } 2792 2793 /* 2794 * 2795 * 7.1.1 SCTP_RTOINFO 2796 * 2797 * The protocol parameters used to initialize and bound retransmission 2798 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2799 * and modify these parameters. 2800 * All parameters are time values, in milliseconds. A value of 0, when 2801 * modifying the parameters, indicates that the current value should not 2802 * be changed. 2803 * 2804 */ 2805 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2806 { 2807 struct sctp_rtoinfo rtoinfo; 2808 struct sctp_association *asoc; 2809 2810 if (optlen != sizeof (struct sctp_rtoinfo)) 2811 return -EINVAL; 2812 2813 if (copy_from_user(&rtoinfo, optval, optlen)) 2814 return -EFAULT; 2815 2816 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2817 2818 /* Set the values to the specific association */ 2819 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2820 return -EINVAL; 2821 2822 if (asoc) { 2823 if (rtoinfo.srto_initial != 0) 2824 asoc->rto_initial = 2825 msecs_to_jiffies(rtoinfo.srto_initial); 2826 if (rtoinfo.srto_max != 0) 2827 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2828 if (rtoinfo.srto_min != 0) 2829 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2830 } else { 2831 /* If there is no association or the association-id = 0 2832 * set the values to the endpoint. 2833 */ 2834 struct sctp_sock *sp = sctp_sk(sk); 2835 2836 if (rtoinfo.srto_initial != 0) 2837 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2838 if (rtoinfo.srto_max != 0) 2839 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2840 if (rtoinfo.srto_min != 0) 2841 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2842 } 2843 2844 return 0; 2845 } 2846 2847 /* 2848 * 2849 * 7.1.2 SCTP_ASSOCINFO 2850 * 2851 * This option is used to tune the maximum retransmission attempts 2852 * of the association. 2853 * Returns an error if the new association retransmission value is 2854 * greater than the sum of the retransmission value of the peer. 2855 * See [SCTP] for more information. 2856 * 2857 */ 2858 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2859 { 2860 2861 struct sctp_assocparams assocparams; 2862 struct sctp_association *asoc; 2863 2864 if (optlen != sizeof(struct sctp_assocparams)) 2865 return -EINVAL; 2866 if (copy_from_user(&assocparams, optval, optlen)) 2867 return -EFAULT; 2868 2869 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2870 2871 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2872 return -EINVAL; 2873 2874 /* Set the values to the specific association */ 2875 if (asoc) { 2876 if (assocparams.sasoc_asocmaxrxt != 0) { 2877 __u32 path_sum = 0; 2878 int paths = 0; 2879 struct sctp_transport *peer_addr; 2880 2881 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2882 transports) { 2883 path_sum += peer_addr->pathmaxrxt; 2884 paths++; 2885 } 2886 2887 /* Only validate asocmaxrxt if we have more than 2888 * one path/transport. We do this because path 2889 * retransmissions are only counted when we have more 2890 * then one path. 2891 */ 2892 if (paths > 1 && 2893 assocparams.sasoc_asocmaxrxt > path_sum) 2894 return -EINVAL; 2895 2896 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2897 } 2898 2899 if (assocparams.sasoc_cookie_life != 0) { 2900 asoc->cookie_life.tv_sec = 2901 assocparams.sasoc_cookie_life / 1000; 2902 asoc->cookie_life.tv_usec = 2903 (assocparams.sasoc_cookie_life % 1000) 2904 * 1000; 2905 } 2906 } else { 2907 /* Set the values to the endpoint */ 2908 struct sctp_sock *sp = sctp_sk(sk); 2909 2910 if (assocparams.sasoc_asocmaxrxt != 0) 2911 sp->assocparams.sasoc_asocmaxrxt = 2912 assocparams.sasoc_asocmaxrxt; 2913 if (assocparams.sasoc_cookie_life != 0) 2914 sp->assocparams.sasoc_cookie_life = 2915 assocparams.sasoc_cookie_life; 2916 } 2917 return 0; 2918 } 2919 2920 /* 2921 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2922 * 2923 * This socket option is a boolean flag which turns on or off mapped V4 2924 * addresses. If this option is turned on and the socket is type 2925 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2926 * If this option is turned off, then no mapping will be done of V4 2927 * addresses and a user will receive both PF_INET6 and PF_INET type 2928 * addresses on the socket. 2929 */ 2930 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2931 { 2932 int val; 2933 struct sctp_sock *sp = sctp_sk(sk); 2934 2935 if (optlen < sizeof(int)) 2936 return -EINVAL; 2937 if (get_user(val, (int __user *)optval)) 2938 return -EFAULT; 2939 if (val) 2940 sp->v4mapped = 1; 2941 else 2942 sp->v4mapped = 0; 2943 2944 return 0; 2945 } 2946 2947 /* 2948 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2949 * This option will get or set the maximum size to put in any outgoing 2950 * SCTP DATA chunk. If a message is larger than this size it will be 2951 * fragmented by SCTP into the specified size. Note that the underlying 2952 * SCTP implementation may fragment into smaller sized chunks when the 2953 * PMTU of the underlying association is smaller than the value set by 2954 * the user. The default value for this option is '0' which indicates 2955 * the user is NOT limiting fragmentation and only the PMTU will effect 2956 * SCTP's choice of DATA chunk size. Note also that values set larger 2957 * than the maximum size of an IP datagram will effectively let SCTP 2958 * control fragmentation (i.e. the same as setting this option to 0). 2959 * 2960 * The following structure is used to access and modify this parameter: 2961 * 2962 * struct sctp_assoc_value { 2963 * sctp_assoc_t assoc_id; 2964 * uint32_t assoc_value; 2965 * }; 2966 * 2967 * assoc_id: This parameter is ignored for one-to-one style sockets. 2968 * For one-to-many style sockets this parameter indicates which 2969 * association the user is performing an action upon. Note that if 2970 * this field's value is zero then the endpoints default value is 2971 * changed (effecting future associations only). 2972 * assoc_value: This parameter specifies the maximum size in bytes. 2973 */ 2974 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2975 { 2976 struct sctp_assoc_value params; 2977 struct sctp_association *asoc; 2978 struct sctp_sock *sp = sctp_sk(sk); 2979 int val; 2980 2981 if (optlen == sizeof(int)) { 2982 pr_warn("Use of int in maxseg socket option deprecated\n"); 2983 pr_warn("Use struct sctp_assoc_value instead\n"); 2984 if (copy_from_user(&val, optval, optlen)) 2985 return -EFAULT; 2986 params.assoc_id = 0; 2987 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2988 if (copy_from_user(¶ms, optval, optlen)) 2989 return -EFAULT; 2990 val = params.assoc_value; 2991 } else 2992 return -EINVAL; 2993 2994 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2995 return -EINVAL; 2996 2997 asoc = sctp_id2assoc(sk, params.assoc_id); 2998 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2999 return -EINVAL; 3000 3001 if (asoc) { 3002 if (val == 0) { 3003 val = asoc->pathmtu; 3004 val -= sp->pf->af->net_header_len; 3005 val -= sizeof(struct sctphdr) + 3006 sizeof(struct sctp_data_chunk); 3007 } 3008 asoc->user_frag = val; 3009 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3010 } else { 3011 sp->user_frag = val; 3012 } 3013 3014 return 0; 3015 } 3016 3017 3018 /* 3019 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3020 * 3021 * Requests that the peer mark the enclosed address as the association 3022 * primary. The enclosed address must be one of the association's 3023 * locally bound addresses. The following structure is used to make a 3024 * set primary request: 3025 */ 3026 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3027 unsigned int optlen) 3028 { 3029 struct sctp_sock *sp; 3030 struct sctp_association *asoc = NULL; 3031 struct sctp_setpeerprim prim; 3032 struct sctp_chunk *chunk; 3033 struct sctp_af *af; 3034 int err; 3035 3036 sp = sctp_sk(sk); 3037 3038 if (!sctp_addip_enable) 3039 return -EPERM; 3040 3041 if (optlen != sizeof(struct sctp_setpeerprim)) 3042 return -EINVAL; 3043 3044 if (copy_from_user(&prim, optval, optlen)) 3045 return -EFAULT; 3046 3047 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3048 if (!asoc) 3049 return -EINVAL; 3050 3051 if (!asoc->peer.asconf_capable) 3052 return -EPERM; 3053 3054 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3055 return -EPERM; 3056 3057 if (!sctp_state(asoc, ESTABLISHED)) 3058 return -ENOTCONN; 3059 3060 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3061 if (!af) 3062 return -EINVAL; 3063 3064 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3065 return -EADDRNOTAVAIL; 3066 3067 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3068 return -EADDRNOTAVAIL; 3069 3070 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3071 chunk = sctp_make_asconf_set_prim(asoc, 3072 (union sctp_addr *)&prim.sspp_addr); 3073 if (!chunk) 3074 return -ENOMEM; 3075 3076 err = sctp_send_asconf(asoc, chunk); 3077 3078 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3079 3080 return err; 3081 } 3082 3083 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3084 unsigned int optlen) 3085 { 3086 struct sctp_setadaptation adaptation; 3087 3088 if (optlen != sizeof(struct sctp_setadaptation)) 3089 return -EINVAL; 3090 if (copy_from_user(&adaptation, optval, optlen)) 3091 return -EFAULT; 3092 3093 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3094 3095 return 0; 3096 } 3097 3098 /* 3099 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3100 * 3101 * The context field in the sctp_sndrcvinfo structure is normally only 3102 * used when a failed message is retrieved holding the value that was 3103 * sent down on the actual send call. This option allows the setting of 3104 * a default context on an association basis that will be received on 3105 * reading messages from the peer. This is especially helpful in the 3106 * one-2-many model for an application to keep some reference to an 3107 * internal state machine that is processing messages on the 3108 * association. Note that the setting of this value only effects 3109 * received messages from the peer and does not effect the value that is 3110 * saved with outbound messages. 3111 */ 3112 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3113 unsigned int optlen) 3114 { 3115 struct sctp_assoc_value params; 3116 struct sctp_sock *sp; 3117 struct sctp_association *asoc; 3118 3119 if (optlen != sizeof(struct sctp_assoc_value)) 3120 return -EINVAL; 3121 if (copy_from_user(¶ms, optval, optlen)) 3122 return -EFAULT; 3123 3124 sp = sctp_sk(sk); 3125 3126 if (params.assoc_id != 0) { 3127 asoc = sctp_id2assoc(sk, params.assoc_id); 3128 if (!asoc) 3129 return -EINVAL; 3130 asoc->default_rcv_context = params.assoc_value; 3131 } else { 3132 sp->default_rcv_context = params.assoc_value; 3133 } 3134 3135 return 0; 3136 } 3137 3138 /* 3139 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3140 * 3141 * This options will at a minimum specify if the implementation is doing 3142 * fragmented interleave. Fragmented interleave, for a one to many 3143 * socket, is when subsequent calls to receive a message may return 3144 * parts of messages from different associations. Some implementations 3145 * may allow you to turn this value on or off. If so, when turned off, 3146 * no fragment interleave will occur (which will cause a head of line 3147 * blocking amongst multiple associations sharing the same one to many 3148 * socket). When this option is turned on, then each receive call may 3149 * come from a different association (thus the user must receive data 3150 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3151 * association each receive belongs to. 3152 * 3153 * This option takes a boolean value. A non-zero value indicates that 3154 * fragmented interleave is on. A value of zero indicates that 3155 * fragmented interleave is off. 3156 * 3157 * Note that it is important that an implementation that allows this 3158 * option to be turned on, have it off by default. Otherwise an unaware 3159 * application using the one to many model may become confused and act 3160 * incorrectly. 3161 */ 3162 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3163 char __user *optval, 3164 unsigned int optlen) 3165 { 3166 int val; 3167 3168 if (optlen != sizeof(int)) 3169 return -EINVAL; 3170 if (get_user(val, (int __user *)optval)) 3171 return -EFAULT; 3172 3173 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3174 3175 return 0; 3176 } 3177 3178 /* 3179 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3180 * (SCTP_PARTIAL_DELIVERY_POINT) 3181 * 3182 * This option will set or get the SCTP partial delivery point. This 3183 * point is the size of a message where the partial delivery API will be 3184 * invoked to help free up rwnd space for the peer. Setting this to a 3185 * lower value will cause partial deliveries to happen more often. The 3186 * calls argument is an integer that sets or gets the partial delivery 3187 * point. Note also that the call will fail if the user attempts to set 3188 * this value larger than the socket receive buffer size. 3189 * 3190 * Note that any single message having a length smaller than or equal to 3191 * the SCTP partial delivery point will be delivered in one single read 3192 * call as long as the user provided buffer is large enough to hold the 3193 * message. 3194 */ 3195 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3196 char __user *optval, 3197 unsigned int optlen) 3198 { 3199 u32 val; 3200 3201 if (optlen != sizeof(u32)) 3202 return -EINVAL; 3203 if (get_user(val, (int __user *)optval)) 3204 return -EFAULT; 3205 3206 /* Note: We double the receive buffer from what the user sets 3207 * it to be, also initial rwnd is based on rcvbuf/2. 3208 */ 3209 if (val > (sk->sk_rcvbuf >> 1)) 3210 return -EINVAL; 3211 3212 sctp_sk(sk)->pd_point = val; 3213 3214 return 0; /* is this the right error code? */ 3215 } 3216 3217 /* 3218 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3219 * 3220 * This option will allow a user to change the maximum burst of packets 3221 * that can be emitted by this association. Note that the default value 3222 * is 4, and some implementations may restrict this setting so that it 3223 * can only be lowered. 3224 * 3225 * NOTE: This text doesn't seem right. Do this on a socket basis with 3226 * future associations inheriting the socket value. 3227 */ 3228 static int sctp_setsockopt_maxburst(struct sock *sk, 3229 char __user *optval, 3230 unsigned int optlen) 3231 { 3232 struct sctp_assoc_value params; 3233 struct sctp_sock *sp; 3234 struct sctp_association *asoc; 3235 int val; 3236 int assoc_id = 0; 3237 3238 if (optlen == sizeof(int)) { 3239 pr_warn("Use of int in max_burst socket option deprecated\n"); 3240 pr_warn("Use struct sctp_assoc_value instead\n"); 3241 if (copy_from_user(&val, optval, optlen)) 3242 return -EFAULT; 3243 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3244 if (copy_from_user(¶ms, optval, optlen)) 3245 return -EFAULT; 3246 val = params.assoc_value; 3247 assoc_id = params.assoc_id; 3248 } else 3249 return -EINVAL; 3250 3251 sp = sctp_sk(sk); 3252 3253 if (assoc_id != 0) { 3254 asoc = sctp_id2assoc(sk, assoc_id); 3255 if (!asoc) 3256 return -EINVAL; 3257 asoc->max_burst = val; 3258 } else 3259 sp->max_burst = val; 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3266 * 3267 * This set option adds a chunk type that the user is requesting to be 3268 * received only in an authenticated way. Changes to the list of chunks 3269 * will only effect future associations on the socket. 3270 */ 3271 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3272 char __user *optval, 3273 unsigned int optlen) 3274 { 3275 struct sctp_authchunk val; 3276 3277 if (!sctp_auth_enable) 3278 return -EACCES; 3279 3280 if (optlen != sizeof(struct sctp_authchunk)) 3281 return -EINVAL; 3282 if (copy_from_user(&val, optval, optlen)) 3283 return -EFAULT; 3284 3285 switch (val.sauth_chunk) { 3286 case SCTP_CID_INIT: 3287 case SCTP_CID_INIT_ACK: 3288 case SCTP_CID_SHUTDOWN_COMPLETE: 3289 case SCTP_CID_AUTH: 3290 return -EINVAL; 3291 } 3292 3293 /* add this chunk id to the endpoint */ 3294 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3295 } 3296 3297 /* 3298 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3299 * 3300 * This option gets or sets the list of HMAC algorithms that the local 3301 * endpoint requires the peer to use. 3302 */ 3303 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3304 char __user *optval, 3305 unsigned int optlen) 3306 { 3307 struct sctp_hmacalgo *hmacs; 3308 u32 idents; 3309 int err; 3310 3311 if (!sctp_auth_enable) 3312 return -EACCES; 3313 3314 if (optlen < sizeof(struct sctp_hmacalgo)) 3315 return -EINVAL; 3316 3317 hmacs= memdup_user(optval, optlen); 3318 if (IS_ERR(hmacs)) 3319 return PTR_ERR(hmacs); 3320 3321 idents = hmacs->shmac_num_idents; 3322 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3323 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3324 err = -EINVAL; 3325 goto out; 3326 } 3327 3328 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3329 out: 3330 kfree(hmacs); 3331 return err; 3332 } 3333 3334 /* 3335 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3336 * 3337 * This option will set a shared secret key which is used to build an 3338 * association shared key. 3339 */ 3340 static int sctp_setsockopt_auth_key(struct sock *sk, 3341 char __user *optval, 3342 unsigned int optlen) 3343 { 3344 struct sctp_authkey *authkey; 3345 struct sctp_association *asoc; 3346 int ret; 3347 3348 if (!sctp_auth_enable) 3349 return -EACCES; 3350 3351 if (optlen <= sizeof(struct sctp_authkey)) 3352 return -EINVAL; 3353 3354 authkey= memdup_user(optval, optlen); 3355 if (IS_ERR(authkey)) 3356 return PTR_ERR(authkey); 3357 3358 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3359 ret = -EINVAL; 3360 goto out; 3361 } 3362 3363 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3364 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3365 ret = -EINVAL; 3366 goto out; 3367 } 3368 3369 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3370 out: 3371 kfree(authkey); 3372 return ret; 3373 } 3374 3375 /* 3376 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3377 * 3378 * This option will get or set the active shared key to be used to build 3379 * the association shared key. 3380 */ 3381 static int sctp_setsockopt_active_key(struct sock *sk, 3382 char __user *optval, 3383 unsigned int optlen) 3384 { 3385 struct sctp_authkeyid val; 3386 struct sctp_association *asoc; 3387 3388 if (!sctp_auth_enable) 3389 return -EACCES; 3390 3391 if (optlen != sizeof(struct sctp_authkeyid)) 3392 return -EINVAL; 3393 if (copy_from_user(&val, optval, optlen)) 3394 return -EFAULT; 3395 3396 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3397 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3398 return -EINVAL; 3399 3400 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3401 val.scact_keynumber); 3402 } 3403 3404 /* 3405 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3406 * 3407 * This set option will delete a shared secret key from use. 3408 */ 3409 static int sctp_setsockopt_del_key(struct sock *sk, 3410 char __user *optval, 3411 unsigned int optlen) 3412 { 3413 struct sctp_authkeyid val; 3414 struct sctp_association *asoc; 3415 3416 if (!sctp_auth_enable) 3417 return -EACCES; 3418 3419 if (optlen != sizeof(struct sctp_authkeyid)) 3420 return -EINVAL; 3421 if (copy_from_user(&val, optval, optlen)) 3422 return -EFAULT; 3423 3424 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3425 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3426 return -EINVAL; 3427 3428 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3429 val.scact_keynumber); 3430 3431 } 3432 3433 /* 3434 * 8.1.23 SCTP_AUTO_ASCONF 3435 * 3436 * This option will enable or disable the use of the automatic generation of 3437 * ASCONF chunks to add and delete addresses to an existing association. Note 3438 * that this option has two caveats namely: a) it only affects sockets that 3439 * are bound to all addresses available to the SCTP stack, and b) the system 3440 * administrator may have an overriding control that turns the ASCONF feature 3441 * off no matter what setting the socket option may have. 3442 * This option expects an integer boolean flag, where a non-zero value turns on 3443 * the option, and a zero value turns off the option. 3444 * Note. In this implementation, socket operation overrides default parameter 3445 * being set by sysctl as well as FreeBSD implementation 3446 */ 3447 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3448 unsigned int optlen) 3449 { 3450 int val; 3451 struct sctp_sock *sp = sctp_sk(sk); 3452 3453 if (optlen < sizeof(int)) 3454 return -EINVAL; 3455 if (get_user(val, (int __user *)optval)) 3456 return -EFAULT; 3457 if (!sctp_is_ep_boundall(sk) && val) 3458 return -EINVAL; 3459 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3460 return 0; 3461 3462 if (val == 0 && sp->do_auto_asconf) { 3463 list_del(&sp->auto_asconf_list); 3464 sp->do_auto_asconf = 0; 3465 } else if (val && !sp->do_auto_asconf) { 3466 list_add_tail(&sp->auto_asconf_list, 3467 &sctp_auto_asconf_splist); 3468 sp->do_auto_asconf = 1; 3469 } 3470 return 0; 3471 } 3472 3473 3474 /* API 6.2 setsockopt(), getsockopt() 3475 * 3476 * Applications use setsockopt() and getsockopt() to set or retrieve 3477 * socket options. Socket options are used to change the default 3478 * behavior of sockets calls. They are described in Section 7. 3479 * 3480 * The syntax is: 3481 * 3482 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3483 * int __user *optlen); 3484 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3485 * int optlen); 3486 * 3487 * sd - the socket descript. 3488 * level - set to IPPROTO_SCTP for all SCTP options. 3489 * optname - the option name. 3490 * optval - the buffer to store the value of the option. 3491 * optlen - the size of the buffer. 3492 */ 3493 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3494 char __user *optval, unsigned int optlen) 3495 { 3496 int retval = 0; 3497 3498 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3499 sk, optname); 3500 3501 /* I can hardly begin to describe how wrong this is. This is 3502 * so broken as to be worse than useless. The API draft 3503 * REALLY is NOT helpful here... I am not convinced that the 3504 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3505 * are at all well-founded. 3506 */ 3507 if (level != SOL_SCTP) { 3508 struct sctp_af *af = sctp_sk(sk)->pf->af; 3509 retval = af->setsockopt(sk, level, optname, optval, optlen); 3510 goto out_nounlock; 3511 } 3512 3513 sctp_lock_sock(sk); 3514 3515 switch (optname) { 3516 case SCTP_SOCKOPT_BINDX_ADD: 3517 /* 'optlen' is the size of the addresses buffer. */ 3518 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3519 optlen, SCTP_BINDX_ADD_ADDR); 3520 break; 3521 3522 case SCTP_SOCKOPT_BINDX_REM: 3523 /* 'optlen' is the size of the addresses buffer. */ 3524 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3525 optlen, SCTP_BINDX_REM_ADDR); 3526 break; 3527 3528 case SCTP_SOCKOPT_CONNECTX_OLD: 3529 /* 'optlen' is the size of the addresses buffer. */ 3530 retval = sctp_setsockopt_connectx_old(sk, 3531 (struct sockaddr __user *)optval, 3532 optlen); 3533 break; 3534 3535 case SCTP_SOCKOPT_CONNECTX: 3536 /* 'optlen' is the size of the addresses buffer. */ 3537 retval = sctp_setsockopt_connectx(sk, 3538 (struct sockaddr __user *)optval, 3539 optlen); 3540 break; 3541 3542 case SCTP_DISABLE_FRAGMENTS: 3543 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3544 break; 3545 3546 case SCTP_EVENTS: 3547 retval = sctp_setsockopt_events(sk, optval, optlen); 3548 break; 3549 3550 case SCTP_AUTOCLOSE: 3551 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3552 break; 3553 3554 case SCTP_PEER_ADDR_PARAMS: 3555 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3556 break; 3557 3558 case SCTP_DELAYED_SACK: 3559 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3560 break; 3561 case SCTP_PARTIAL_DELIVERY_POINT: 3562 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3563 break; 3564 3565 case SCTP_INITMSG: 3566 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3567 break; 3568 case SCTP_DEFAULT_SEND_PARAM: 3569 retval = sctp_setsockopt_default_send_param(sk, optval, 3570 optlen); 3571 break; 3572 case SCTP_PRIMARY_ADDR: 3573 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3574 break; 3575 case SCTP_SET_PEER_PRIMARY_ADDR: 3576 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3577 break; 3578 case SCTP_NODELAY: 3579 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3580 break; 3581 case SCTP_RTOINFO: 3582 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3583 break; 3584 case SCTP_ASSOCINFO: 3585 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3586 break; 3587 case SCTP_I_WANT_MAPPED_V4_ADDR: 3588 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3589 break; 3590 case SCTP_MAXSEG: 3591 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3592 break; 3593 case SCTP_ADAPTATION_LAYER: 3594 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3595 break; 3596 case SCTP_CONTEXT: 3597 retval = sctp_setsockopt_context(sk, optval, optlen); 3598 break; 3599 case SCTP_FRAGMENT_INTERLEAVE: 3600 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3601 break; 3602 case SCTP_MAX_BURST: 3603 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3604 break; 3605 case SCTP_AUTH_CHUNK: 3606 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3607 break; 3608 case SCTP_HMAC_IDENT: 3609 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3610 break; 3611 case SCTP_AUTH_KEY: 3612 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3613 break; 3614 case SCTP_AUTH_ACTIVE_KEY: 3615 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3616 break; 3617 case SCTP_AUTH_DELETE_KEY: 3618 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3619 break; 3620 case SCTP_AUTO_ASCONF: 3621 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3622 break; 3623 default: 3624 retval = -ENOPROTOOPT; 3625 break; 3626 } 3627 3628 sctp_release_sock(sk); 3629 3630 out_nounlock: 3631 return retval; 3632 } 3633 3634 /* API 3.1.6 connect() - UDP Style Syntax 3635 * 3636 * An application may use the connect() call in the UDP model to initiate an 3637 * association without sending data. 3638 * 3639 * The syntax is: 3640 * 3641 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3642 * 3643 * sd: the socket descriptor to have a new association added to. 3644 * 3645 * nam: the address structure (either struct sockaddr_in or struct 3646 * sockaddr_in6 defined in RFC2553 [7]). 3647 * 3648 * len: the size of the address. 3649 */ 3650 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3651 int addr_len) 3652 { 3653 int err = 0; 3654 struct sctp_af *af; 3655 3656 sctp_lock_sock(sk); 3657 3658 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3659 __func__, sk, addr, addr_len); 3660 3661 /* Validate addr_len before calling common connect/connectx routine. */ 3662 af = sctp_get_af_specific(addr->sa_family); 3663 if (!af || addr_len < af->sockaddr_len) { 3664 err = -EINVAL; 3665 } else { 3666 /* Pass correct addr len to common routine (so it knows there 3667 * is only one address being passed. 3668 */ 3669 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3670 } 3671 3672 sctp_release_sock(sk); 3673 return err; 3674 } 3675 3676 /* FIXME: Write comments. */ 3677 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3678 { 3679 return -EOPNOTSUPP; /* STUB */ 3680 } 3681 3682 /* 4.1.4 accept() - TCP Style Syntax 3683 * 3684 * Applications use accept() call to remove an established SCTP 3685 * association from the accept queue of the endpoint. A new socket 3686 * descriptor will be returned from accept() to represent the newly 3687 * formed association. 3688 */ 3689 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3690 { 3691 struct sctp_sock *sp; 3692 struct sctp_endpoint *ep; 3693 struct sock *newsk = NULL; 3694 struct sctp_association *asoc; 3695 long timeo; 3696 int error = 0; 3697 3698 sctp_lock_sock(sk); 3699 3700 sp = sctp_sk(sk); 3701 ep = sp->ep; 3702 3703 if (!sctp_style(sk, TCP)) { 3704 error = -EOPNOTSUPP; 3705 goto out; 3706 } 3707 3708 if (!sctp_sstate(sk, LISTENING)) { 3709 error = -EINVAL; 3710 goto out; 3711 } 3712 3713 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3714 3715 error = sctp_wait_for_accept(sk, timeo); 3716 if (error) 3717 goto out; 3718 3719 /* We treat the list of associations on the endpoint as the accept 3720 * queue and pick the first association on the list. 3721 */ 3722 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3723 3724 newsk = sp->pf->create_accept_sk(sk, asoc); 3725 if (!newsk) { 3726 error = -ENOMEM; 3727 goto out; 3728 } 3729 3730 /* Populate the fields of the newsk from the oldsk and migrate the 3731 * asoc to the newsk. 3732 */ 3733 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3734 3735 out: 3736 sctp_release_sock(sk); 3737 *err = error; 3738 return newsk; 3739 } 3740 3741 /* The SCTP ioctl handler. */ 3742 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3743 { 3744 int rc = -ENOTCONN; 3745 3746 sctp_lock_sock(sk); 3747 3748 /* 3749 * SEQPACKET-style sockets in LISTENING state are valid, for 3750 * SCTP, so only discard TCP-style sockets in LISTENING state. 3751 */ 3752 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3753 goto out; 3754 3755 switch (cmd) { 3756 case SIOCINQ: { 3757 struct sk_buff *skb; 3758 unsigned int amount = 0; 3759 3760 skb = skb_peek(&sk->sk_receive_queue); 3761 if (skb != NULL) { 3762 /* 3763 * We will only return the amount of this packet since 3764 * that is all that will be read. 3765 */ 3766 amount = skb->len; 3767 } 3768 rc = put_user(amount, (int __user *)arg); 3769 break; 3770 } 3771 default: 3772 rc = -ENOIOCTLCMD; 3773 break; 3774 } 3775 out: 3776 sctp_release_sock(sk); 3777 return rc; 3778 } 3779 3780 /* This is the function which gets called during socket creation to 3781 * initialized the SCTP-specific portion of the sock. 3782 * The sock structure should already be zero-filled memory. 3783 */ 3784 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3785 { 3786 struct sctp_endpoint *ep; 3787 struct sctp_sock *sp; 3788 3789 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3790 3791 sp = sctp_sk(sk); 3792 3793 /* Initialize the SCTP per socket area. */ 3794 switch (sk->sk_type) { 3795 case SOCK_SEQPACKET: 3796 sp->type = SCTP_SOCKET_UDP; 3797 break; 3798 case SOCK_STREAM: 3799 sp->type = SCTP_SOCKET_TCP; 3800 break; 3801 default: 3802 return -ESOCKTNOSUPPORT; 3803 } 3804 3805 /* Initialize default send parameters. These parameters can be 3806 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3807 */ 3808 sp->default_stream = 0; 3809 sp->default_ppid = 0; 3810 sp->default_flags = 0; 3811 sp->default_context = 0; 3812 sp->default_timetolive = 0; 3813 3814 sp->default_rcv_context = 0; 3815 sp->max_burst = sctp_max_burst; 3816 3817 /* Initialize default setup parameters. These parameters 3818 * can be modified with the SCTP_INITMSG socket option or 3819 * overridden by the SCTP_INIT CMSG. 3820 */ 3821 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3822 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3823 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3824 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3825 3826 /* Initialize default RTO related parameters. These parameters can 3827 * be modified for with the SCTP_RTOINFO socket option. 3828 */ 3829 sp->rtoinfo.srto_initial = sctp_rto_initial; 3830 sp->rtoinfo.srto_max = sctp_rto_max; 3831 sp->rtoinfo.srto_min = sctp_rto_min; 3832 3833 /* Initialize default association related parameters. These parameters 3834 * can be modified with the SCTP_ASSOCINFO socket option. 3835 */ 3836 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3837 sp->assocparams.sasoc_number_peer_destinations = 0; 3838 sp->assocparams.sasoc_peer_rwnd = 0; 3839 sp->assocparams.sasoc_local_rwnd = 0; 3840 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3841 3842 /* Initialize default event subscriptions. By default, all the 3843 * options are off. 3844 */ 3845 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3846 3847 /* Default Peer Address Parameters. These defaults can 3848 * be modified via SCTP_PEER_ADDR_PARAMS 3849 */ 3850 sp->hbinterval = sctp_hb_interval; 3851 sp->pathmaxrxt = sctp_max_retrans_path; 3852 sp->pathmtu = 0; // allow default discovery 3853 sp->sackdelay = sctp_sack_timeout; 3854 sp->sackfreq = 2; 3855 sp->param_flags = SPP_HB_ENABLE | 3856 SPP_PMTUD_ENABLE | 3857 SPP_SACKDELAY_ENABLE; 3858 3859 /* If enabled no SCTP message fragmentation will be performed. 3860 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3861 */ 3862 sp->disable_fragments = 0; 3863 3864 /* Enable Nagle algorithm by default. */ 3865 sp->nodelay = 0; 3866 3867 /* Enable by default. */ 3868 sp->v4mapped = 1; 3869 3870 /* Auto-close idle associations after the configured 3871 * number of seconds. A value of 0 disables this 3872 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3873 * for UDP-style sockets only. 3874 */ 3875 sp->autoclose = 0; 3876 3877 /* User specified fragmentation limit. */ 3878 sp->user_frag = 0; 3879 3880 sp->adaptation_ind = 0; 3881 3882 sp->pf = sctp_get_pf_specific(sk->sk_family); 3883 3884 /* Control variables for partial data delivery. */ 3885 atomic_set(&sp->pd_mode, 0); 3886 skb_queue_head_init(&sp->pd_lobby); 3887 sp->frag_interleave = 0; 3888 3889 /* Create a per socket endpoint structure. Even if we 3890 * change the data structure relationships, this may still 3891 * be useful for storing pre-connect address information. 3892 */ 3893 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3894 if (!ep) 3895 return -ENOMEM; 3896 3897 sp->ep = ep; 3898 sp->hmac = NULL; 3899 3900 SCTP_DBG_OBJCNT_INC(sock); 3901 3902 local_bh_disable(); 3903 percpu_counter_inc(&sctp_sockets_allocated); 3904 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3905 if (sctp_default_auto_asconf) { 3906 list_add_tail(&sp->auto_asconf_list, 3907 &sctp_auto_asconf_splist); 3908 sp->do_auto_asconf = 1; 3909 } else 3910 sp->do_auto_asconf = 0; 3911 local_bh_enable(); 3912 3913 return 0; 3914 } 3915 3916 /* Cleanup any SCTP per socket resources. */ 3917 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3918 { 3919 struct sctp_sock *sp; 3920 3921 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3922 3923 /* Release our hold on the endpoint. */ 3924 sp = sctp_sk(sk); 3925 if (sp->do_auto_asconf) { 3926 sp->do_auto_asconf = 0; 3927 list_del(&sp->auto_asconf_list); 3928 } 3929 sctp_endpoint_free(sp->ep); 3930 local_bh_disable(); 3931 percpu_counter_dec(&sctp_sockets_allocated); 3932 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3933 local_bh_enable(); 3934 } 3935 3936 /* API 4.1.7 shutdown() - TCP Style Syntax 3937 * int shutdown(int socket, int how); 3938 * 3939 * sd - the socket descriptor of the association to be closed. 3940 * how - Specifies the type of shutdown. The values are 3941 * as follows: 3942 * SHUT_RD 3943 * Disables further receive operations. No SCTP 3944 * protocol action is taken. 3945 * SHUT_WR 3946 * Disables further send operations, and initiates 3947 * the SCTP shutdown sequence. 3948 * SHUT_RDWR 3949 * Disables further send and receive operations 3950 * and initiates the SCTP shutdown sequence. 3951 */ 3952 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3953 { 3954 struct sctp_endpoint *ep; 3955 struct sctp_association *asoc; 3956 3957 if (!sctp_style(sk, TCP)) 3958 return; 3959 3960 if (how & SEND_SHUTDOWN) { 3961 ep = sctp_sk(sk)->ep; 3962 if (!list_empty(&ep->asocs)) { 3963 asoc = list_entry(ep->asocs.next, 3964 struct sctp_association, asocs); 3965 sctp_primitive_SHUTDOWN(asoc, NULL); 3966 } 3967 } 3968 } 3969 3970 /* 7.2.1 Association Status (SCTP_STATUS) 3971 3972 * Applications can retrieve current status information about an 3973 * association, including association state, peer receiver window size, 3974 * number of unacked data chunks, and number of data chunks pending 3975 * receipt. This information is read-only. 3976 */ 3977 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3978 char __user *optval, 3979 int __user *optlen) 3980 { 3981 struct sctp_status status; 3982 struct sctp_association *asoc = NULL; 3983 struct sctp_transport *transport; 3984 sctp_assoc_t associd; 3985 int retval = 0; 3986 3987 if (len < sizeof(status)) { 3988 retval = -EINVAL; 3989 goto out; 3990 } 3991 3992 len = sizeof(status); 3993 if (copy_from_user(&status, optval, len)) { 3994 retval = -EFAULT; 3995 goto out; 3996 } 3997 3998 associd = status.sstat_assoc_id; 3999 asoc = sctp_id2assoc(sk, associd); 4000 if (!asoc) { 4001 retval = -EINVAL; 4002 goto out; 4003 } 4004 4005 transport = asoc->peer.primary_path; 4006 4007 status.sstat_assoc_id = sctp_assoc2id(asoc); 4008 status.sstat_state = asoc->state; 4009 status.sstat_rwnd = asoc->peer.rwnd; 4010 status.sstat_unackdata = asoc->unack_data; 4011 4012 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4013 status.sstat_instrms = asoc->c.sinit_max_instreams; 4014 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4015 status.sstat_fragmentation_point = asoc->frag_point; 4016 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4017 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4018 transport->af_specific->sockaddr_len); 4019 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4020 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4021 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4022 status.sstat_primary.spinfo_state = transport->state; 4023 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4024 status.sstat_primary.spinfo_srtt = transport->srtt; 4025 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4026 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4027 4028 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4029 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4030 4031 if (put_user(len, optlen)) { 4032 retval = -EFAULT; 4033 goto out; 4034 } 4035 4036 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4037 len, status.sstat_state, status.sstat_rwnd, 4038 status.sstat_assoc_id); 4039 4040 if (copy_to_user(optval, &status, len)) { 4041 retval = -EFAULT; 4042 goto out; 4043 } 4044 4045 out: 4046 return retval; 4047 } 4048 4049 4050 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4051 * 4052 * Applications can retrieve information about a specific peer address 4053 * of an association, including its reachability state, congestion 4054 * window, and retransmission timer values. This information is 4055 * read-only. 4056 */ 4057 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4058 char __user *optval, 4059 int __user *optlen) 4060 { 4061 struct sctp_paddrinfo pinfo; 4062 struct sctp_transport *transport; 4063 int retval = 0; 4064 4065 if (len < sizeof(pinfo)) { 4066 retval = -EINVAL; 4067 goto out; 4068 } 4069 4070 len = sizeof(pinfo); 4071 if (copy_from_user(&pinfo, optval, len)) { 4072 retval = -EFAULT; 4073 goto out; 4074 } 4075 4076 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4077 pinfo.spinfo_assoc_id); 4078 if (!transport) 4079 return -EINVAL; 4080 4081 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4082 pinfo.spinfo_state = transport->state; 4083 pinfo.spinfo_cwnd = transport->cwnd; 4084 pinfo.spinfo_srtt = transport->srtt; 4085 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4086 pinfo.spinfo_mtu = transport->pathmtu; 4087 4088 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4089 pinfo.spinfo_state = SCTP_ACTIVE; 4090 4091 if (put_user(len, optlen)) { 4092 retval = -EFAULT; 4093 goto out; 4094 } 4095 4096 if (copy_to_user(optval, &pinfo, len)) { 4097 retval = -EFAULT; 4098 goto out; 4099 } 4100 4101 out: 4102 return retval; 4103 } 4104 4105 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4106 * 4107 * This option is a on/off flag. If enabled no SCTP message 4108 * fragmentation will be performed. Instead if a message being sent 4109 * exceeds the current PMTU size, the message will NOT be sent and 4110 * instead a error will be indicated to the user. 4111 */ 4112 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4113 char __user *optval, int __user *optlen) 4114 { 4115 int val; 4116 4117 if (len < sizeof(int)) 4118 return -EINVAL; 4119 4120 len = sizeof(int); 4121 val = (sctp_sk(sk)->disable_fragments == 1); 4122 if (put_user(len, optlen)) 4123 return -EFAULT; 4124 if (copy_to_user(optval, &val, len)) 4125 return -EFAULT; 4126 return 0; 4127 } 4128 4129 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4130 * 4131 * This socket option is used to specify various notifications and 4132 * ancillary data the user wishes to receive. 4133 */ 4134 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4135 int __user *optlen) 4136 { 4137 if (len < sizeof(struct sctp_event_subscribe)) 4138 return -EINVAL; 4139 len = sizeof(struct sctp_event_subscribe); 4140 if (put_user(len, optlen)) 4141 return -EFAULT; 4142 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4143 return -EFAULT; 4144 return 0; 4145 } 4146 4147 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4148 * 4149 * This socket option is applicable to the UDP-style socket only. When 4150 * set it will cause associations that are idle for more than the 4151 * specified number of seconds to automatically close. An association 4152 * being idle is defined an association that has NOT sent or received 4153 * user data. The special value of '0' indicates that no automatic 4154 * close of any associations should be performed. The option expects an 4155 * integer defining the number of seconds of idle time before an 4156 * association is closed. 4157 */ 4158 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4159 { 4160 /* Applicable to UDP-style socket only */ 4161 if (sctp_style(sk, TCP)) 4162 return -EOPNOTSUPP; 4163 if (len < sizeof(int)) 4164 return -EINVAL; 4165 len = sizeof(int); 4166 if (put_user(len, optlen)) 4167 return -EFAULT; 4168 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4169 return -EFAULT; 4170 return 0; 4171 } 4172 4173 /* Helper routine to branch off an association to a new socket. */ 4174 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4175 struct socket **sockp) 4176 { 4177 struct sock *sk = asoc->base.sk; 4178 struct socket *sock; 4179 struct sctp_af *af; 4180 int err = 0; 4181 4182 /* An association cannot be branched off from an already peeled-off 4183 * socket, nor is this supported for tcp style sockets. 4184 */ 4185 if (!sctp_style(sk, UDP)) 4186 return -EINVAL; 4187 4188 /* Create a new socket. */ 4189 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4190 if (err < 0) 4191 return err; 4192 4193 sctp_copy_sock(sock->sk, sk, asoc); 4194 4195 /* Make peeled-off sockets more like 1-1 accepted sockets. 4196 * Set the daddr and initialize id to something more random 4197 */ 4198 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4199 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4200 4201 /* Populate the fields of the newsk from the oldsk and migrate the 4202 * asoc to the newsk. 4203 */ 4204 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4205 4206 *sockp = sock; 4207 4208 return err; 4209 } 4210 4211 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4212 { 4213 sctp_peeloff_arg_t peeloff; 4214 struct socket *newsock; 4215 int retval = 0; 4216 struct sctp_association *asoc; 4217 4218 if (len < sizeof(sctp_peeloff_arg_t)) 4219 return -EINVAL; 4220 len = sizeof(sctp_peeloff_arg_t); 4221 if (copy_from_user(&peeloff, optval, len)) 4222 return -EFAULT; 4223 4224 asoc = sctp_id2assoc(sk, peeloff.associd); 4225 if (!asoc) { 4226 retval = -EINVAL; 4227 goto out; 4228 } 4229 4230 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4231 4232 retval = sctp_do_peeloff(asoc, &newsock); 4233 if (retval < 0) 4234 goto out; 4235 4236 /* Map the socket to an unused fd that can be returned to the user. */ 4237 retval = sock_map_fd(newsock, 0); 4238 if (retval < 0) { 4239 sock_release(newsock); 4240 goto out; 4241 } 4242 4243 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4244 __func__, sk, asoc, newsock->sk, retval); 4245 4246 /* Return the fd mapped to the new socket. */ 4247 peeloff.sd = retval; 4248 if (put_user(len, optlen)) 4249 return -EFAULT; 4250 if (copy_to_user(optval, &peeloff, len)) 4251 retval = -EFAULT; 4252 4253 out: 4254 return retval; 4255 } 4256 4257 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4258 * 4259 * Applications can enable or disable heartbeats for any peer address of 4260 * an association, modify an address's heartbeat interval, force a 4261 * heartbeat to be sent immediately, and adjust the address's maximum 4262 * number of retransmissions sent before an address is considered 4263 * unreachable. The following structure is used to access and modify an 4264 * address's parameters: 4265 * 4266 * struct sctp_paddrparams { 4267 * sctp_assoc_t spp_assoc_id; 4268 * struct sockaddr_storage spp_address; 4269 * uint32_t spp_hbinterval; 4270 * uint16_t spp_pathmaxrxt; 4271 * uint32_t spp_pathmtu; 4272 * uint32_t spp_sackdelay; 4273 * uint32_t spp_flags; 4274 * }; 4275 * 4276 * spp_assoc_id - (one-to-many style socket) This is filled in the 4277 * application, and identifies the association for 4278 * this query. 4279 * spp_address - This specifies which address is of interest. 4280 * spp_hbinterval - This contains the value of the heartbeat interval, 4281 * in milliseconds. If a value of zero 4282 * is present in this field then no changes are to 4283 * be made to this parameter. 4284 * spp_pathmaxrxt - This contains the maximum number of 4285 * retransmissions before this address shall be 4286 * considered unreachable. If a value of zero 4287 * is present in this field then no changes are to 4288 * be made to this parameter. 4289 * spp_pathmtu - When Path MTU discovery is disabled the value 4290 * specified here will be the "fixed" path mtu. 4291 * Note that if the spp_address field is empty 4292 * then all associations on this address will 4293 * have this fixed path mtu set upon them. 4294 * 4295 * spp_sackdelay - When delayed sack is enabled, this value specifies 4296 * the number of milliseconds that sacks will be delayed 4297 * for. This value will apply to all addresses of an 4298 * association if the spp_address field is empty. Note 4299 * also, that if delayed sack is enabled and this 4300 * value is set to 0, no change is made to the last 4301 * recorded delayed sack timer value. 4302 * 4303 * spp_flags - These flags are used to control various features 4304 * on an association. The flag field may contain 4305 * zero or more of the following options. 4306 * 4307 * SPP_HB_ENABLE - Enable heartbeats on the 4308 * specified address. Note that if the address 4309 * field is empty all addresses for the association 4310 * have heartbeats enabled upon them. 4311 * 4312 * SPP_HB_DISABLE - Disable heartbeats on the 4313 * speicifed address. Note that if the address 4314 * field is empty all addresses for the association 4315 * will have their heartbeats disabled. Note also 4316 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4317 * mutually exclusive, only one of these two should 4318 * be specified. Enabling both fields will have 4319 * undetermined results. 4320 * 4321 * SPP_HB_DEMAND - Request a user initiated heartbeat 4322 * to be made immediately. 4323 * 4324 * SPP_PMTUD_ENABLE - This field will enable PMTU 4325 * discovery upon the specified address. Note that 4326 * if the address feild is empty then all addresses 4327 * on the association are effected. 4328 * 4329 * SPP_PMTUD_DISABLE - This field will disable PMTU 4330 * discovery upon the specified address. Note that 4331 * if the address feild is empty then all addresses 4332 * on the association are effected. Not also that 4333 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4334 * exclusive. Enabling both will have undetermined 4335 * results. 4336 * 4337 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4338 * on delayed sack. The time specified in spp_sackdelay 4339 * is used to specify the sack delay for this address. Note 4340 * that if spp_address is empty then all addresses will 4341 * enable delayed sack and take on the sack delay 4342 * value specified in spp_sackdelay. 4343 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4344 * off delayed sack. If the spp_address field is blank then 4345 * delayed sack is disabled for the entire association. Note 4346 * also that this field is mutually exclusive to 4347 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4348 * results. 4349 */ 4350 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4351 char __user *optval, int __user *optlen) 4352 { 4353 struct sctp_paddrparams params; 4354 struct sctp_transport *trans = NULL; 4355 struct sctp_association *asoc = NULL; 4356 struct sctp_sock *sp = sctp_sk(sk); 4357 4358 if (len < sizeof(struct sctp_paddrparams)) 4359 return -EINVAL; 4360 len = sizeof(struct sctp_paddrparams); 4361 if (copy_from_user(¶ms, optval, len)) 4362 return -EFAULT; 4363 4364 /* If an address other than INADDR_ANY is specified, and 4365 * no transport is found, then the request is invalid. 4366 */ 4367 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4368 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4369 params.spp_assoc_id); 4370 if (!trans) { 4371 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4372 return -EINVAL; 4373 } 4374 } 4375 4376 /* Get association, if assoc_id != 0 and the socket is a one 4377 * to many style socket, and an association was not found, then 4378 * the id was invalid. 4379 */ 4380 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4381 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4382 SCTP_DEBUG_PRINTK("Failed no association\n"); 4383 return -EINVAL; 4384 } 4385 4386 if (trans) { 4387 /* Fetch transport values. */ 4388 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4389 params.spp_pathmtu = trans->pathmtu; 4390 params.spp_pathmaxrxt = trans->pathmaxrxt; 4391 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4392 4393 /*draft-11 doesn't say what to return in spp_flags*/ 4394 params.spp_flags = trans->param_flags; 4395 } else if (asoc) { 4396 /* Fetch association values. */ 4397 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4398 params.spp_pathmtu = asoc->pathmtu; 4399 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4400 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4401 4402 /*draft-11 doesn't say what to return in spp_flags*/ 4403 params.spp_flags = asoc->param_flags; 4404 } else { 4405 /* Fetch socket values. */ 4406 params.spp_hbinterval = sp->hbinterval; 4407 params.spp_pathmtu = sp->pathmtu; 4408 params.spp_sackdelay = sp->sackdelay; 4409 params.spp_pathmaxrxt = sp->pathmaxrxt; 4410 4411 /*draft-11 doesn't say what to return in spp_flags*/ 4412 params.spp_flags = sp->param_flags; 4413 } 4414 4415 if (copy_to_user(optval, ¶ms, len)) 4416 return -EFAULT; 4417 4418 if (put_user(len, optlen)) 4419 return -EFAULT; 4420 4421 return 0; 4422 } 4423 4424 /* 4425 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4426 * 4427 * This option will effect the way delayed acks are performed. This 4428 * option allows you to get or set the delayed ack time, in 4429 * milliseconds. It also allows changing the delayed ack frequency. 4430 * Changing the frequency to 1 disables the delayed sack algorithm. If 4431 * the assoc_id is 0, then this sets or gets the endpoints default 4432 * values. If the assoc_id field is non-zero, then the set or get 4433 * effects the specified association for the one to many model (the 4434 * assoc_id field is ignored by the one to one model). Note that if 4435 * sack_delay or sack_freq are 0 when setting this option, then the 4436 * current values will remain unchanged. 4437 * 4438 * struct sctp_sack_info { 4439 * sctp_assoc_t sack_assoc_id; 4440 * uint32_t sack_delay; 4441 * uint32_t sack_freq; 4442 * }; 4443 * 4444 * sack_assoc_id - This parameter, indicates which association the user 4445 * is performing an action upon. Note that if this field's value is 4446 * zero then the endpoints default value is changed (effecting future 4447 * associations only). 4448 * 4449 * sack_delay - This parameter contains the number of milliseconds that 4450 * the user is requesting the delayed ACK timer be set to. Note that 4451 * this value is defined in the standard to be between 200 and 500 4452 * milliseconds. 4453 * 4454 * sack_freq - This parameter contains the number of packets that must 4455 * be received before a sack is sent without waiting for the delay 4456 * timer to expire. The default value for this is 2, setting this 4457 * value to 1 will disable the delayed sack algorithm. 4458 */ 4459 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4460 char __user *optval, 4461 int __user *optlen) 4462 { 4463 struct sctp_sack_info params; 4464 struct sctp_association *asoc = NULL; 4465 struct sctp_sock *sp = sctp_sk(sk); 4466 4467 if (len >= sizeof(struct sctp_sack_info)) { 4468 len = sizeof(struct sctp_sack_info); 4469 4470 if (copy_from_user(¶ms, optval, len)) 4471 return -EFAULT; 4472 } else if (len == sizeof(struct sctp_assoc_value)) { 4473 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4474 pr_warn("Use struct sctp_sack_info instead\n"); 4475 if (copy_from_user(¶ms, optval, len)) 4476 return -EFAULT; 4477 } else 4478 return - EINVAL; 4479 4480 /* Get association, if sack_assoc_id != 0 and the socket is a one 4481 * to many style socket, and an association was not found, then 4482 * the id was invalid. 4483 */ 4484 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4485 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4486 return -EINVAL; 4487 4488 if (asoc) { 4489 /* Fetch association values. */ 4490 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4491 params.sack_delay = jiffies_to_msecs( 4492 asoc->sackdelay); 4493 params.sack_freq = asoc->sackfreq; 4494 4495 } else { 4496 params.sack_delay = 0; 4497 params.sack_freq = 1; 4498 } 4499 } else { 4500 /* Fetch socket values. */ 4501 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4502 params.sack_delay = sp->sackdelay; 4503 params.sack_freq = sp->sackfreq; 4504 } else { 4505 params.sack_delay = 0; 4506 params.sack_freq = 1; 4507 } 4508 } 4509 4510 if (copy_to_user(optval, ¶ms, len)) 4511 return -EFAULT; 4512 4513 if (put_user(len, optlen)) 4514 return -EFAULT; 4515 4516 return 0; 4517 } 4518 4519 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4520 * 4521 * Applications can specify protocol parameters for the default association 4522 * initialization. The option name argument to setsockopt() and getsockopt() 4523 * is SCTP_INITMSG. 4524 * 4525 * Setting initialization parameters is effective only on an unconnected 4526 * socket (for UDP-style sockets only future associations are effected 4527 * by the change). With TCP-style sockets, this option is inherited by 4528 * sockets derived from a listener socket. 4529 */ 4530 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4531 { 4532 if (len < sizeof(struct sctp_initmsg)) 4533 return -EINVAL; 4534 len = sizeof(struct sctp_initmsg); 4535 if (put_user(len, optlen)) 4536 return -EFAULT; 4537 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4538 return -EFAULT; 4539 return 0; 4540 } 4541 4542 4543 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4544 char __user *optval, int __user *optlen) 4545 { 4546 struct sctp_association *asoc; 4547 int cnt = 0; 4548 struct sctp_getaddrs getaddrs; 4549 struct sctp_transport *from; 4550 void __user *to; 4551 union sctp_addr temp; 4552 struct sctp_sock *sp = sctp_sk(sk); 4553 int addrlen; 4554 size_t space_left; 4555 int bytes_copied; 4556 4557 if (len < sizeof(struct sctp_getaddrs)) 4558 return -EINVAL; 4559 4560 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4561 return -EFAULT; 4562 4563 /* For UDP-style sockets, id specifies the association to query. */ 4564 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4565 if (!asoc) 4566 return -EINVAL; 4567 4568 to = optval + offsetof(struct sctp_getaddrs,addrs); 4569 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4570 4571 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4572 transports) { 4573 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4574 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4575 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4576 if (space_left < addrlen) 4577 return -ENOMEM; 4578 if (copy_to_user(to, &temp, addrlen)) 4579 return -EFAULT; 4580 to += addrlen; 4581 cnt++; 4582 space_left -= addrlen; 4583 } 4584 4585 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4586 return -EFAULT; 4587 bytes_copied = ((char __user *)to) - optval; 4588 if (put_user(bytes_copied, optlen)) 4589 return -EFAULT; 4590 4591 return 0; 4592 } 4593 4594 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4595 size_t space_left, int *bytes_copied) 4596 { 4597 struct sctp_sockaddr_entry *addr; 4598 union sctp_addr temp; 4599 int cnt = 0; 4600 int addrlen; 4601 4602 rcu_read_lock(); 4603 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4604 if (!addr->valid) 4605 continue; 4606 4607 if ((PF_INET == sk->sk_family) && 4608 (AF_INET6 == addr->a.sa.sa_family)) 4609 continue; 4610 if ((PF_INET6 == sk->sk_family) && 4611 inet_v6_ipv6only(sk) && 4612 (AF_INET == addr->a.sa.sa_family)) 4613 continue; 4614 memcpy(&temp, &addr->a, sizeof(temp)); 4615 if (!temp.v4.sin_port) 4616 temp.v4.sin_port = htons(port); 4617 4618 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4619 &temp); 4620 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4621 if (space_left < addrlen) { 4622 cnt = -ENOMEM; 4623 break; 4624 } 4625 memcpy(to, &temp, addrlen); 4626 4627 to += addrlen; 4628 cnt ++; 4629 space_left -= addrlen; 4630 *bytes_copied += addrlen; 4631 } 4632 rcu_read_unlock(); 4633 4634 return cnt; 4635 } 4636 4637 4638 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4639 char __user *optval, int __user *optlen) 4640 { 4641 struct sctp_bind_addr *bp; 4642 struct sctp_association *asoc; 4643 int cnt = 0; 4644 struct sctp_getaddrs getaddrs; 4645 struct sctp_sockaddr_entry *addr; 4646 void __user *to; 4647 union sctp_addr temp; 4648 struct sctp_sock *sp = sctp_sk(sk); 4649 int addrlen; 4650 int err = 0; 4651 size_t space_left; 4652 int bytes_copied = 0; 4653 void *addrs; 4654 void *buf; 4655 4656 if (len < sizeof(struct sctp_getaddrs)) 4657 return -EINVAL; 4658 4659 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4660 return -EFAULT; 4661 4662 /* 4663 * For UDP-style sockets, id specifies the association to query. 4664 * If the id field is set to the value '0' then the locally bound 4665 * addresses are returned without regard to any particular 4666 * association. 4667 */ 4668 if (0 == getaddrs.assoc_id) { 4669 bp = &sctp_sk(sk)->ep->base.bind_addr; 4670 } else { 4671 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4672 if (!asoc) 4673 return -EINVAL; 4674 bp = &asoc->base.bind_addr; 4675 } 4676 4677 to = optval + offsetof(struct sctp_getaddrs,addrs); 4678 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4679 4680 addrs = kmalloc(space_left, GFP_KERNEL); 4681 if (!addrs) 4682 return -ENOMEM; 4683 4684 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4685 * addresses from the global local address list. 4686 */ 4687 if (sctp_list_single_entry(&bp->address_list)) { 4688 addr = list_entry(bp->address_list.next, 4689 struct sctp_sockaddr_entry, list); 4690 if (sctp_is_any(sk, &addr->a)) { 4691 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4692 space_left, &bytes_copied); 4693 if (cnt < 0) { 4694 err = cnt; 4695 goto out; 4696 } 4697 goto copy_getaddrs; 4698 } 4699 } 4700 4701 buf = addrs; 4702 /* Protection on the bound address list is not needed since 4703 * in the socket option context we hold a socket lock and 4704 * thus the bound address list can't change. 4705 */ 4706 list_for_each_entry(addr, &bp->address_list, list) { 4707 memcpy(&temp, &addr->a, sizeof(temp)); 4708 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4709 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4710 if (space_left < addrlen) { 4711 err = -ENOMEM; /*fixme: right error?*/ 4712 goto out; 4713 } 4714 memcpy(buf, &temp, addrlen); 4715 buf += addrlen; 4716 bytes_copied += addrlen; 4717 cnt ++; 4718 space_left -= addrlen; 4719 } 4720 4721 copy_getaddrs: 4722 if (copy_to_user(to, addrs, bytes_copied)) { 4723 err = -EFAULT; 4724 goto out; 4725 } 4726 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4727 err = -EFAULT; 4728 goto out; 4729 } 4730 if (put_user(bytes_copied, optlen)) 4731 err = -EFAULT; 4732 out: 4733 kfree(addrs); 4734 return err; 4735 } 4736 4737 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4738 * 4739 * Requests that the local SCTP stack use the enclosed peer address as 4740 * the association primary. The enclosed address must be one of the 4741 * association peer's addresses. 4742 */ 4743 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4744 char __user *optval, int __user *optlen) 4745 { 4746 struct sctp_prim prim; 4747 struct sctp_association *asoc; 4748 struct sctp_sock *sp = sctp_sk(sk); 4749 4750 if (len < sizeof(struct sctp_prim)) 4751 return -EINVAL; 4752 4753 len = sizeof(struct sctp_prim); 4754 4755 if (copy_from_user(&prim, optval, len)) 4756 return -EFAULT; 4757 4758 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4759 if (!asoc) 4760 return -EINVAL; 4761 4762 if (!asoc->peer.primary_path) 4763 return -ENOTCONN; 4764 4765 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4766 asoc->peer.primary_path->af_specific->sockaddr_len); 4767 4768 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4769 (union sctp_addr *)&prim.ssp_addr); 4770 4771 if (put_user(len, optlen)) 4772 return -EFAULT; 4773 if (copy_to_user(optval, &prim, len)) 4774 return -EFAULT; 4775 4776 return 0; 4777 } 4778 4779 /* 4780 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4781 * 4782 * Requests that the local endpoint set the specified Adaptation Layer 4783 * Indication parameter for all future INIT and INIT-ACK exchanges. 4784 */ 4785 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4786 char __user *optval, int __user *optlen) 4787 { 4788 struct sctp_setadaptation adaptation; 4789 4790 if (len < sizeof(struct sctp_setadaptation)) 4791 return -EINVAL; 4792 4793 len = sizeof(struct sctp_setadaptation); 4794 4795 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4796 4797 if (put_user(len, optlen)) 4798 return -EFAULT; 4799 if (copy_to_user(optval, &adaptation, len)) 4800 return -EFAULT; 4801 4802 return 0; 4803 } 4804 4805 /* 4806 * 4807 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4808 * 4809 * Applications that wish to use the sendto() system call may wish to 4810 * specify a default set of parameters that would normally be supplied 4811 * through the inclusion of ancillary data. This socket option allows 4812 * such an application to set the default sctp_sndrcvinfo structure. 4813 4814 4815 * The application that wishes to use this socket option simply passes 4816 * in to this call the sctp_sndrcvinfo structure defined in Section 4817 * 5.2.2) The input parameters accepted by this call include 4818 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4819 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4820 * to this call if the caller is using the UDP model. 4821 * 4822 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4823 */ 4824 static int sctp_getsockopt_default_send_param(struct sock *sk, 4825 int len, char __user *optval, 4826 int __user *optlen) 4827 { 4828 struct sctp_sndrcvinfo info; 4829 struct sctp_association *asoc; 4830 struct sctp_sock *sp = sctp_sk(sk); 4831 4832 if (len < sizeof(struct sctp_sndrcvinfo)) 4833 return -EINVAL; 4834 4835 len = sizeof(struct sctp_sndrcvinfo); 4836 4837 if (copy_from_user(&info, optval, len)) 4838 return -EFAULT; 4839 4840 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4841 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4842 return -EINVAL; 4843 4844 if (asoc) { 4845 info.sinfo_stream = asoc->default_stream; 4846 info.sinfo_flags = asoc->default_flags; 4847 info.sinfo_ppid = asoc->default_ppid; 4848 info.sinfo_context = asoc->default_context; 4849 info.sinfo_timetolive = asoc->default_timetolive; 4850 } else { 4851 info.sinfo_stream = sp->default_stream; 4852 info.sinfo_flags = sp->default_flags; 4853 info.sinfo_ppid = sp->default_ppid; 4854 info.sinfo_context = sp->default_context; 4855 info.sinfo_timetolive = sp->default_timetolive; 4856 } 4857 4858 if (put_user(len, optlen)) 4859 return -EFAULT; 4860 if (copy_to_user(optval, &info, len)) 4861 return -EFAULT; 4862 4863 return 0; 4864 } 4865 4866 /* 4867 * 4868 * 7.1.5 SCTP_NODELAY 4869 * 4870 * Turn on/off any Nagle-like algorithm. This means that packets are 4871 * generally sent as soon as possible and no unnecessary delays are 4872 * introduced, at the cost of more packets in the network. Expects an 4873 * integer boolean flag. 4874 */ 4875 4876 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4877 char __user *optval, int __user *optlen) 4878 { 4879 int val; 4880 4881 if (len < sizeof(int)) 4882 return -EINVAL; 4883 4884 len = sizeof(int); 4885 val = (sctp_sk(sk)->nodelay == 1); 4886 if (put_user(len, optlen)) 4887 return -EFAULT; 4888 if (copy_to_user(optval, &val, len)) 4889 return -EFAULT; 4890 return 0; 4891 } 4892 4893 /* 4894 * 4895 * 7.1.1 SCTP_RTOINFO 4896 * 4897 * The protocol parameters used to initialize and bound retransmission 4898 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4899 * and modify these parameters. 4900 * All parameters are time values, in milliseconds. A value of 0, when 4901 * modifying the parameters, indicates that the current value should not 4902 * be changed. 4903 * 4904 */ 4905 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4906 char __user *optval, 4907 int __user *optlen) { 4908 struct sctp_rtoinfo rtoinfo; 4909 struct sctp_association *asoc; 4910 4911 if (len < sizeof (struct sctp_rtoinfo)) 4912 return -EINVAL; 4913 4914 len = sizeof(struct sctp_rtoinfo); 4915 4916 if (copy_from_user(&rtoinfo, optval, len)) 4917 return -EFAULT; 4918 4919 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4920 4921 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4922 return -EINVAL; 4923 4924 /* Values corresponding to the specific association. */ 4925 if (asoc) { 4926 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4927 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4928 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4929 } else { 4930 /* Values corresponding to the endpoint. */ 4931 struct sctp_sock *sp = sctp_sk(sk); 4932 4933 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4934 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4935 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4936 } 4937 4938 if (put_user(len, optlen)) 4939 return -EFAULT; 4940 4941 if (copy_to_user(optval, &rtoinfo, len)) 4942 return -EFAULT; 4943 4944 return 0; 4945 } 4946 4947 /* 4948 * 4949 * 7.1.2 SCTP_ASSOCINFO 4950 * 4951 * This option is used to tune the maximum retransmission attempts 4952 * of the association. 4953 * Returns an error if the new association retransmission value is 4954 * greater than the sum of the retransmission value of the peer. 4955 * See [SCTP] for more information. 4956 * 4957 */ 4958 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4959 char __user *optval, 4960 int __user *optlen) 4961 { 4962 4963 struct sctp_assocparams assocparams; 4964 struct sctp_association *asoc; 4965 struct list_head *pos; 4966 int cnt = 0; 4967 4968 if (len < sizeof (struct sctp_assocparams)) 4969 return -EINVAL; 4970 4971 len = sizeof(struct sctp_assocparams); 4972 4973 if (copy_from_user(&assocparams, optval, len)) 4974 return -EFAULT; 4975 4976 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4977 4978 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4979 return -EINVAL; 4980 4981 /* Values correspoinding to the specific association */ 4982 if (asoc) { 4983 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4984 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4985 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4986 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4987 * 1000) + 4988 (asoc->cookie_life.tv_usec 4989 / 1000); 4990 4991 list_for_each(pos, &asoc->peer.transport_addr_list) { 4992 cnt ++; 4993 } 4994 4995 assocparams.sasoc_number_peer_destinations = cnt; 4996 } else { 4997 /* Values corresponding to the endpoint */ 4998 struct sctp_sock *sp = sctp_sk(sk); 4999 5000 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5001 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5002 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5003 assocparams.sasoc_cookie_life = 5004 sp->assocparams.sasoc_cookie_life; 5005 assocparams.sasoc_number_peer_destinations = 5006 sp->assocparams. 5007 sasoc_number_peer_destinations; 5008 } 5009 5010 if (put_user(len, optlen)) 5011 return -EFAULT; 5012 5013 if (copy_to_user(optval, &assocparams, len)) 5014 return -EFAULT; 5015 5016 return 0; 5017 } 5018 5019 /* 5020 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5021 * 5022 * This socket option is a boolean flag which turns on or off mapped V4 5023 * addresses. If this option is turned on and the socket is type 5024 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5025 * If this option is turned off, then no mapping will be done of V4 5026 * addresses and a user will receive both PF_INET6 and PF_INET type 5027 * addresses on the socket. 5028 */ 5029 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5030 char __user *optval, int __user *optlen) 5031 { 5032 int val; 5033 struct sctp_sock *sp = sctp_sk(sk); 5034 5035 if (len < sizeof(int)) 5036 return -EINVAL; 5037 5038 len = sizeof(int); 5039 val = sp->v4mapped; 5040 if (put_user(len, optlen)) 5041 return -EFAULT; 5042 if (copy_to_user(optval, &val, len)) 5043 return -EFAULT; 5044 5045 return 0; 5046 } 5047 5048 /* 5049 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5050 * (chapter and verse is quoted at sctp_setsockopt_context()) 5051 */ 5052 static int sctp_getsockopt_context(struct sock *sk, int len, 5053 char __user *optval, int __user *optlen) 5054 { 5055 struct sctp_assoc_value params; 5056 struct sctp_sock *sp; 5057 struct sctp_association *asoc; 5058 5059 if (len < sizeof(struct sctp_assoc_value)) 5060 return -EINVAL; 5061 5062 len = sizeof(struct sctp_assoc_value); 5063 5064 if (copy_from_user(¶ms, optval, len)) 5065 return -EFAULT; 5066 5067 sp = sctp_sk(sk); 5068 5069 if (params.assoc_id != 0) { 5070 asoc = sctp_id2assoc(sk, params.assoc_id); 5071 if (!asoc) 5072 return -EINVAL; 5073 params.assoc_value = asoc->default_rcv_context; 5074 } else { 5075 params.assoc_value = sp->default_rcv_context; 5076 } 5077 5078 if (put_user(len, optlen)) 5079 return -EFAULT; 5080 if (copy_to_user(optval, ¶ms, len)) 5081 return -EFAULT; 5082 5083 return 0; 5084 } 5085 5086 /* 5087 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5088 * This option will get or set the maximum size to put in any outgoing 5089 * SCTP DATA chunk. If a message is larger than this size it will be 5090 * fragmented by SCTP into the specified size. Note that the underlying 5091 * SCTP implementation may fragment into smaller sized chunks when the 5092 * PMTU of the underlying association is smaller than the value set by 5093 * the user. The default value for this option is '0' which indicates 5094 * the user is NOT limiting fragmentation and only the PMTU will effect 5095 * SCTP's choice of DATA chunk size. Note also that values set larger 5096 * than the maximum size of an IP datagram will effectively let SCTP 5097 * control fragmentation (i.e. the same as setting this option to 0). 5098 * 5099 * The following structure is used to access and modify this parameter: 5100 * 5101 * struct sctp_assoc_value { 5102 * sctp_assoc_t assoc_id; 5103 * uint32_t assoc_value; 5104 * }; 5105 * 5106 * assoc_id: This parameter is ignored for one-to-one style sockets. 5107 * For one-to-many style sockets this parameter indicates which 5108 * association the user is performing an action upon. Note that if 5109 * this field's value is zero then the endpoints default value is 5110 * changed (effecting future associations only). 5111 * assoc_value: This parameter specifies the maximum size in bytes. 5112 */ 5113 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5114 char __user *optval, int __user *optlen) 5115 { 5116 struct sctp_assoc_value params; 5117 struct sctp_association *asoc; 5118 5119 if (len == sizeof(int)) { 5120 pr_warn("Use of int in maxseg socket option deprecated\n"); 5121 pr_warn("Use struct sctp_assoc_value instead\n"); 5122 params.assoc_id = 0; 5123 } else if (len >= sizeof(struct sctp_assoc_value)) { 5124 len = sizeof(struct sctp_assoc_value); 5125 if (copy_from_user(¶ms, optval, sizeof(params))) 5126 return -EFAULT; 5127 } else 5128 return -EINVAL; 5129 5130 asoc = sctp_id2assoc(sk, params.assoc_id); 5131 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5132 return -EINVAL; 5133 5134 if (asoc) 5135 params.assoc_value = asoc->frag_point; 5136 else 5137 params.assoc_value = sctp_sk(sk)->user_frag; 5138 5139 if (put_user(len, optlen)) 5140 return -EFAULT; 5141 if (len == sizeof(int)) { 5142 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5143 return -EFAULT; 5144 } else { 5145 if (copy_to_user(optval, ¶ms, len)) 5146 return -EFAULT; 5147 } 5148 5149 return 0; 5150 } 5151 5152 /* 5153 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5154 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5155 */ 5156 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5157 char __user *optval, int __user *optlen) 5158 { 5159 int val; 5160 5161 if (len < sizeof(int)) 5162 return -EINVAL; 5163 5164 len = sizeof(int); 5165 5166 val = sctp_sk(sk)->frag_interleave; 5167 if (put_user(len, optlen)) 5168 return -EFAULT; 5169 if (copy_to_user(optval, &val, len)) 5170 return -EFAULT; 5171 5172 return 0; 5173 } 5174 5175 /* 5176 * 7.1.25. Set or Get the sctp partial delivery point 5177 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5178 */ 5179 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5180 char __user *optval, 5181 int __user *optlen) 5182 { 5183 u32 val; 5184 5185 if (len < sizeof(u32)) 5186 return -EINVAL; 5187 5188 len = sizeof(u32); 5189 5190 val = sctp_sk(sk)->pd_point; 5191 if (put_user(len, optlen)) 5192 return -EFAULT; 5193 if (copy_to_user(optval, &val, len)) 5194 return -EFAULT; 5195 5196 return 0; 5197 } 5198 5199 /* 5200 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5201 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5202 */ 5203 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5204 char __user *optval, 5205 int __user *optlen) 5206 { 5207 struct sctp_assoc_value params; 5208 struct sctp_sock *sp; 5209 struct sctp_association *asoc; 5210 5211 if (len == sizeof(int)) { 5212 pr_warn("Use of int in max_burst socket option deprecated\n"); 5213 pr_warn("Use struct sctp_assoc_value instead\n"); 5214 params.assoc_id = 0; 5215 } else if (len >= sizeof(struct sctp_assoc_value)) { 5216 len = sizeof(struct sctp_assoc_value); 5217 if (copy_from_user(¶ms, optval, len)) 5218 return -EFAULT; 5219 } else 5220 return -EINVAL; 5221 5222 sp = sctp_sk(sk); 5223 5224 if (params.assoc_id != 0) { 5225 asoc = sctp_id2assoc(sk, params.assoc_id); 5226 if (!asoc) 5227 return -EINVAL; 5228 params.assoc_value = asoc->max_burst; 5229 } else 5230 params.assoc_value = sp->max_burst; 5231 5232 if (len == sizeof(int)) { 5233 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5234 return -EFAULT; 5235 } else { 5236 if (copy_to_user(optval, ¶ms, len)) 5237 return -EFAULT; 5238 } 5239 5240 return 0; 5241 5242 } 5243 5244 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5245 char __user *optval, int __user *optlen) 5246 { 5247 struct sctp_hmacalgo __user *p = (void __user *)optval; 5248 struct sctp_hmac_algo_param *hmacs; 5249 __u16 data_len = 0; 5250 u32 num_idents; 5251 5252 if (!sctp_auth_enable) 5253 return -EACCES; 5254 5255 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5256 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5257 5258 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5259 return -EINVAL; 5260 5261 len = sizeof(struct sctp_hmacalgo) + data_len; 5262 num_idents = data_len / sizeof(u16); 5263 5264 if (put_user(len, optlen)) 5265 return -EFAULT; 5266 if (put_user(num_idents, &p->shmac_num_idents)) 5267 return -EFAULT; 5268 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5269 return -EFAULT; 5270 return 0; 5271 } 5272 5273 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5274 char __user *optval, int __user *optlen) 5275 { 5276 struct sctp_authkeyid val; 5277 struct sctp_association *asoc; 5278 5279 if (!sctp_auth_enable) 5280 return -EACCES; 5281 5282 if (len < sizeof(struct sctp_authkeyid)) 5283 return -EINVAL; 5284 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5285 return -EFAULT; 5286 5287 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5288 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5289 return -EINVAL; 5290 5291 if (asoc) 5292 val.scact_keynumber = asoc->active_key_id; 5293 else 5294 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5295 5296 len = sizeof(struct sctp_authkeyid); 5297 if (put_user(len, optlen)) 5298 return -EFAULT; 5299 if (copy_to_user(optval, &val, len)) 5300 return -EFAULT; 5301 5302 return 0; 5303 } 5304 5305 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5306 char __user *optval, int __user *optlen) 5307 { 5308 struct sctp_authchunks __user *p = (void __user *)optval; 5309 struct sctp_authchunks val; 5310 struct sctp_association *asoc; 5311 struct sctp_chunks_param *ch; 5312 u32 num_chunks = 0; 5313 char __user *to; 5314 5315 if (!sctp_auth_enable) 5316 return -EACCES; 5317 5318 if (len < sizeof(struct sctp_authchunks)) 5319 return -EINVAL; 5320 5321 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5322 return -EFAULT; 5323 5324 to = p->gauth_chunks; 5325 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5326 if (!asoc) 5327 return -EINVAL; 5328 5329 ch = asoc->peer.peer_chunks; 5330 if (!ch) 5331 goto num; 5332 5333 /* See if the user provided enough room for all the data */ 5334 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5335 if (len < num_chunks) 5336 return -EINVAL; 5337 5338 if (copy_to_user(to, ch->chunks, num_chunks)) 5339 return -EFAULT; 5340 num: 5341 len = sizeof(struct sctp_authchunks) + num_chunks; 5342 if (put_user(len, optlen)) return -EFAULT; 5343 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5344 return -EFAULT; 5345 return 0; 5346 } 5347 5348 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5349 char __user *optval, int __user *optlen) 5350 { 5351 struct sctp_authchunks __user *p = (void __user *)optval; 5352 struct sctp_authchunks val; 5353 struct sctp_association *asoc; 5354 struct sctp_chunks_param *ch; 5355 u32 num_chunks = 0; 5356 char __user *to; 5357 5358 if (!sctp_auth_enable) 5359 return -EACCES; 5360 5361 if (len < sizeof(struct sctp_authchunks)) 5362 return -EINVAL; 5363 5364 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5365 return -EFAULT; 5366 5367 to = p->gauth_chunks; 5368 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5369 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5370 return -EINVAL; 5371 5372 if (asoc) 5373 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5374 else 5375 ch = sctp_sk(sk)->ep->auth_chunk_list; 5376 5377 if (!ch) 5378 goto num; 5379 5380 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5381 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5382 return -EINVAL; 5383 5384 if (copy_to_user(to, ch->chunks, num_chunks)) 5385 return -EFAULT; 5386 num: 5387 len = sizeof(struct sctp_authchunks) + num_chunks; 5388 if (put_user(len, optlen)) 5389 return -EFAULT; 5390 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5391 return -EFAULT; 5392 5393 return 0; 5394 } 5395 5396 /* 5397 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5398 * This option gets the current number of associations that are attached 5399 * to a one-to-many style socket. The option value is an uint32_t. 5400 */ 5401 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5402 char __user *optval, int __user *optlen) 5403 { 5404 struct sctp_sock *sp = sctp_sk(sk); 5405 struct sctp_association *asoc; 5406 u32 val = 0; 5407 5408 if (sctp_style(sk, TCP)) 5409 return -EOPNOTSUPP; 5410 5411 if (len < sizeof(u32)) 5412 return -EINVAL; 5413 5414 len = sizeof(u32); 5415 5416 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5417 val++; 5418 } 5419 5420 if (put_user(len, optlen)) 5421 return -EFAULT; 5422 if (copy_to_user(optval, &val, len)) 5423 return -EFAULT; 5424 5425 return 0; 5426 } 5427 5428 /* 5429 * 8.1.23 SCTP_AUTO_ASCONF 5430 * See the corresponding setsockopt entry as description 5431 */ 5432 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5433 char __user *optval, int __user *optlen) 5434 { 5435 int val = 0; 5436 5437 if (len < sizeof(int)) 5438 return -EINVAL; 5439 5440 len = sizeof(int); 5441 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5442 val = 1; 5443 if (put_user(len, optlen)) 5444 return -EFAULT; 5445 if (copy_to_user(optval, &val, len)) 5446 return -EFAULT; 5447 return 0; 5448 } 5449 5450 /* 5451 * 8.2.6. Get the Current Identifiers of Associations 5452 * (SCTP_GET_ASSOC_ID_LIST) 5453 * 5454 * This option gets the current list of SCTP association identifiers of 5455 * the SCTP associations handled by a one-to-many style socket. 5456 */ 5457 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5458 char __user *optval, int __user *optlen) 5459 { 5460 struct sctp_sock *sp = sctp_sk(sk); 5461 struct sctp_association *asoc; 5462 struct sctp_assoc_ids *ids; 5463 u32 num = 0; 5464 5465 if (sctp_style(sk, TCP)) 5466 return -EOPNOTSUPP; 5467 5468 if (len < sizeof(struct sctp_assoc_ids)) 5469 return -EINVAL; 5470 5471 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5472 num++; 5473 } 5474 5475 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5476 return -EINVAL; 5477 5478 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5479 5480 ids = kmalloc(len, GFP_KERNEL); 5481 if (unlikely(!ids)) 5482 return -ENOMEM; 5483 5484 ids->gaids_number_of_ids = num; 5485 num = 0; 5486 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5487 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5488 } 5489 5490 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5491 kfree(ids); 5492 return -EFAULT; 5493 } 5494 5495 kfree(ids); 5496 return 0; 5497 } 5498 5499 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5500 char __user *optval, int __user *optlen) 5501 { 5502 int retval = 0; 5503 int len; 5504 5505 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5506 sk, optname); 5507 5508 /* I can hardly begin to describe how wrong this is. This is 5509 * so broken as to be worse than useless. The API draft 5510 * REALLY is NOT helpful here... I am not convinced that the 5511 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5512 * are at all well-founded. 5513 */ 5514 if (level != SOL_SCTP) { 5515 struct sctp_af *af = sctp_sk(sk)->pf->af; 5516 5517 retval = af->getsockopt(sk, level, optname, optval, optlen); 5518 return retval; 5519 } 5520 5521 if (get_user(len, optlen)) 5522 return -EFAULT; 5523 5524 sctp_lock_sock(sk); 5525 5526 switch (optname) { 5527 case SCTP_STATUS: 5528 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5529 break; 5530 case SCTP_DISABLE_FRAGMENTS: 5531 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5532 optlen); 5533 break; 5534 case SCTP_EVENTS: 5535 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5536 break; 5537 case SCTP_AUTOCLOSE: 5538 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5539 break; 5540 case SCTP_SOCKOPT_PEELOFF: 5541 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5542 break; 5543 case SCTP_PEER_ADDR_PARAMS: 5544 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5545 optlen); 5546 break; 5547 case SCTP_DELAYED_SACK: 5548 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5549 optlen); 5550 break; 5551 case SCTP_INITMSG: 5552 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5553 break; 5554 case SCTP_GET_PEER_ADDRS: 5555 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5556 optlen); 5557 break; 5558 case SCTP_GET_LOCAL_ADDRS: 5559 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5560 optlen); 5561 break; 5562 case SCTP_SOCKOPT_CONNECTX3: 5563 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5564 break; 5565 case SCTP_DEFAULT_SEND_PARAM: 5566 retval = sctp_getsockopt_default_send_param(sk, len, 5567 optval, optlen); 5568 break; 5569 case SCTP_PRIMARY_ADDR: 5570 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5571 break; 5572 case SCTP_NODELAY: 5573 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5574 break; 5575 case SCTP_RTOINFO: 5576 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5577 break; 5578 case SCTP_ASSOCINFO: 5579 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5580 break; 5581 case SCTP_I_WANT_MAPPED_V4_ADDR: 5582 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5583 break; 5584 case SCTP_MAXSEG: 5585 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5586 break; 5587 case SCTP_GET_PEER_ADDR_INFO: 5588 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5589 optlen); 5590 break; 5591 case SCTP_ADAPTATION_LAYER: 5592 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5593 optlen); 5594 break; 5595 case SCTP_CONTEXT: 5596 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5597 break; 5598 case SCTP_FRAGMENT_INTERLEAVE: 5599 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5600 optlen); 5601 break; 5602 case SCTP_PARTIAL_DELIVERY_POINT: 5603 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5604 optlen); 5605 break; 5606 case SCTP_MAX_BURST: 5607 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5608 break; 5609 case SCTP_AUTH_KEY: 5610 case SCTP_AUTH_CHUNK: 5611 case SCTP_AUTH_DELETE_KEY: 5612 retval = -EOPNOTSUPP; 5613 break; 5614 case SCTP_HMAC_IDENT: 5615 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5616 break; 5617 case SCTP_AUTH_ACTIVE_KEY: 5618 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5619 break; 5620 case SCTP_PEER_AUTH_CHUNKS: 5621 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5622 optlen); 5623 break; 5624 case SCTP_LOCAL_AUTH_CHUNKS: 5625 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5626 optlen); 5627 break; 5628 case SCTP_GET_ASSOC_NUMBER: 5629 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5630 break; 5631 case SCTP_GET_ASSOC_ID_LIST: 5632 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5633 break; 5634 case SCTP_AUTO_ASCONF: 5635 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5636 break; 5637 default: 5638 retval = -ENOPROTOOPT; 5639 break; 5640 } 5641 5642 sctp_release_sock(sk); 5643 return retval; 5644 } 5645 5646 static void sctp_hash(struct sock *sk) 5647 { 5648 /* STUB */ 5649 } 5650 5651 static void sctp_unhash(struct sock *sk) 5652 { 5653 /* STUB */ 5654 } 5655 5656 /* Check if port is acceptable. Possibly find first available port. 5657 * 5658 * The port hash table (contained in the 'global' SCTP protocol storage 5659 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5660 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5661 * list (the list number is the port number hashed out, so as you 5662 * would expect from a hash function, all the ports in a given list have 5663 * such a number that hashes out to the same list number; you were 5664 * expecting that, right?); so each list has a set of ports, with a 5665 * link to the socket (struct sock) that uses it, the port number and 5666 * a fastreuse flag (FIXME: NPI ipg). 5667 */ 5668 static struct sctp_bind_bucket *sctp_bucket_create( 5669 struct sctp_bind_hashbucket *head, unsigned short snum); 5670 5671 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5672 { 5673 struct sctp_bind_hashbucket *head; /* hash list */ 5674 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5675 struct hlist_node *node; 5676 unsigned short snum; 5677 int ret; 5678 5679 snum = ntohs(addr->v4.sin_port); 5680 5681 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5682 sctp_local_bh_disable(); 5683 5684 if (snum == 0) { 5685 /* Search for an available port. */ 5686 int low, high, remaining, index; 5687 unsigned int rover; 5688 5689 inet_get_local_port_range(&low, &high); 5690 remaining = (high - low) + 1; 5691 rover = net_random() % remaining + low; 5692 5693 do { 5694 rover++; 5695 if ((rover < low) || (rover > high)) 5696 rover = low; 5697 if (inet_is_reserved_local_port(rover)) 5698 continue; 5699 index = sctp_phashfn(rover); 5700 head = &sctp_port_hashtable[index]; 5701 sctp_spin_lock(&head->lock); 5702 sctp_for_each_hentry(pp, node, &head->chain) 5703 if (pp->port == rover) 5704 goto next; 5705 break; 5706 next: 5707 sctp_spin_unlock(&head->lock); 5708 } while (--remaining > 0); 5709 5710 /* Exhausted local port range during search? */ 5711 ret = 1; 5712 if (remaining <= 0) 5713 goto fail; 5714 5715 /* OK, here is the one we will use. HEAD (the port 5716 * hash table list entry) is non-NULL and we hold it's 5717 * mutex. 5718 */ 5719 snum = rover; 5720 } else { 5721 /* We are given an specific port number; we verify 5722 * that it is not being used. If it is used, we will 5723 * exahust the search in the hash list corresponding 5724 * to the port number (snum) - we detect that with the 5725 * port iterator, pp being NULL. 5726 */ 5727 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5728 sctp_spin_lock(&head->lock); 5729 sctp_for_each_hentry(pp, node, &head->chain) { 5730 if (pp->port == snum) 5731 goto pp_found; 5732 } 5733 } 5734 pp = NULL; 5735 goto pp_not_found; 5736 pp_found: 5737 if (!hlist_empty(&pp->owner)) { 5738 /* We had a port hash table hit - there is an 5739 * available port (pp != NULL) and it is being 5740 * used by other socket (pp->owner not empty); that other 5741 * socket is going to be sk2. 5742 */ 5743 int reuse = sk->sk_reuse; 5744 struct sock *sk2; 5745 5746 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5747 if (pp->fastreuse && sk->sk_reuse && 5748 sk->sk_state != SCTP_SS_LISTENING) 5749 goto success; 5750 5751 /* Run through the list of sockets bound to the port 5752 * (pp->port) [via the pointers bind_next and 5753 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5754 * we get the endpoint they describe and run through 5755 * the endpoint's list of IP (v4 or v6) addresses, 5756 * comparing each of the addresses with the address of 5757 * the socket sk. If we find a match, then that means 5758 * that this port/socket (sk) combination are already 5759 * in an endpoint. 5760 */ 5761 sk_for_each_bound(sk2, node, &pp->owner) { 5762 struct sctp_endpoint *ep2; 5763 ep2 = sctp_sk(sk2)->ep; 5764 5765 if (sk == sk2 || 5766 (reuse && sk2->sk_reuse && 5767 sk2->sk_state != SCTP_SS_LISTENING)) 5768 continue; 5769 5770 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5771 sctp_sk(sk2), sctp_sk(sk))) { 5772 ret = (long)sk2; 5773 goto fail_unlock; 5774 } 5775 } 5776 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5777 } 5778 pp_not_found: 5779 /* If there was a hash table miss, create a new port. */ 5780 ret = 1; 5781 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5782 goto fail_unlock; 5783 5784 /* In either case (hit or miss), make sure fastreuse is 1 only 5785 * if sk->sk_reuse is too (that is, if the caller requested 5786 * SO_REUSEADDR on this socket -sk-). 5787 */ 5788 if (hlist_empty(&pp->owner)) { 5789 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5790 pp->fastreuse = 1; 5791 else 5792 pp->fastreuse = 0; 5793 } else if (pp->fastreuse && 5794 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5795 pp->fastreuse = 0; 5796 5797 /* We are set, so fill up all the data in the hash table 5798 * entry, tie the socket list information with the rest of the 5799 * sockets FIXME: Blurry, NPI (ipg). 5800 */ 5801 success: 5802 if (!sctp_sk(sk)->bind_hash) { 5803 inet_sk(sk)->inet_num = snum; 5804 sk_add_bind_node(sk, &pp->owner); 5805 sctp_sk(sk)->bind_hash = pp; 5806 } 5807 ret = 0; 5808 5809 fail_unlock: 5810 sctp_spin_unlock(&head->lock); 5811 5812 fail: 5813 sctp_local_bh_enable(); 5814 return ret; 5815 } 5816 5817 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5818 * port is requested. 5819 */ 5820 static int sctp_get_port(struct sock *sk, unsigned short snum) 5821 { 5822 long ret; 5823 union sctp_addr addr; 5824 struct sctp_af *af = sctp_sk(sk)->pf->af; 5825 5826 /* Set up a dummy address struct from the sk. */ 5827 af->from_sk(&addr, sk); 5828 addr.v4.sin_port = htons(snum); 5829 5830 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5831 ret = sctp_get_port_local(sk, &addr); 5832 5833 return ret ? 1 : 0; 5834 } 5835 5836 /* 5837 * Move a socket to LISTENING state. 5838 */ 5839 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5840 { 5841 struct sctp_sock *sp = sctp_sk(sk); 5842 struct sctp_endpoint *ep = sp->ep; 5843 struct crypto_hash *tfm = NULL; 5844 5845 /* Allocate HMAC for generating cookie. */ 5846 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5847 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5848 if (IS_ERR(tfm)) { 5849 if (net_ratelimit()) { 5850 pr_info("failed to load transform for %s: %ld\n", 5851 sctp_hmac_alg, PTR_ERR(tfm)); 5852 } 5853 return -ENOSYS; 5854 } 5855 sctp_sk(sk)->hmac = tfm; 5856 } 5857 5858 /* 5859 * If a bind() or sctp_bindx() is not called prior to a listen() 5860 * call that allows new associations to be accepted, the system 5861 * picks an ephemeral port and will choose an address set equivalent 5862 * to binding with a wildcard address. 5863 * 5864 * This is not currently spelled out in the SCTP sockets 5865 * extensions draft, but follows the practice as seen in TCP 5866 * sockets. 5867 * 5868 */ 5869 sk->sk_state = SCTP_SS_LISTENING; 5870 if (!ep->base.bind_addr.port) { 5871 if (sctp_autobind(sk)) 5872 return -EAGAIN; 5873 } else { 5874 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5875 sk->sk_state = SCTP_SS_CLOSED; 5876 return -EADDRINUSE; 5877 } 5878 } 5879 5880 sk->sk_max_ack_backlog = backlog; 5881 sctp_hash_endpoint(ep); 5882 return 0; 5883 } 5884 5885 /* 5886 * 4.1.3 / 5.1.3 listen() 5887 * 5888 * By default, new associations are not accepted for UDP style sockets. 5889 * An application uses listen() to mark a socket as being able to 5890 * accept new associations. 5891 * 5892 * On TCP style sockets, applications use listen() to ready the SCTP 5893 * endpoint for accepting inbound associations. 5894 * 5895 * On both types of endpoints a backlog of '0' disables listening. 5896 * 5897 * Move a socket to LISTENING state. 5898 */ 5899 int sctp_inet_listen(struct socket *sock, int backlog) 5900 { 5901 struct sock *sk = sock->sk; 5902 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5903 int err = -EINVAL; 5904 5905 if (unlikely(backlog < 0)) 5906 return err; 5907 5908 sctp_lock_sock(sk); 5909 5910 /* Peeled-off sockets are not allowed to listen(). */ 5911 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5912 goto out; 5913 5914 if (sock->state != SS_UNCONNECTED) 5915 goto out; 5916 5917 /* If backlog is zero, disable listening. */ 5918 if (!backlog) { 5919 if (sctp_sstate(sk, CLOSED)) 5920 goto out; 5921 5922 err = 0; 5923 sctp_unhash_endpoint(ep); 5924 sk->sk_state = SCTP_SS_CLOSED; 5925 if (sk->sk_reuse) 5926 sctp_sk(sk)->bind_hash->fastreuse = 1; 5927 goto out; 5928 } 5929 5930 /* If we are already listening, just update the backlog */ 5931 if (sctp_sstate(sk, LISTENING)) 5932 sk->sk_max_ack_backlog = backlog; 5933 else { 5934 err = sctp_listen_start(sk, backlog); 5935 if (err) 5936 goto out; 5937 } 5938 5939 err = 0; 5940 out: 5941 sctp_release_sock(sk); 5942 return err; 5943 } 5944 5945 /* 5946 * This function is done by modeling the current datagram_poll() and the 5947 * tcp_poll(). Note that, based on these implementations, we don't 5948 * lock the socket in this function, even though it seems that, 5949 * ideally, locking or some other mechanisms can be used to ensure 5950 * the integrity of the counters (sndbuf and wmem_alloc) used 5951 * in this place. We assume that we don't need locks either until proven 5952 * otherwise. 5953 * 5954 * Another thing to note is that we include the Async I/O support 5955 * here, again, by modeling the current TCP/UDP code. We don't have 5956 * a good way to test with it yet. 5957 */ 5958 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5959 { 5960 struct sock *sk = sock->sk; 5961 struct sctp_sock *sp = sctp_sk(sk); 5962 unsigned int mask; 5963 5964 poll_wait(file, sk_sleep(sk), wait); 5965 5966 /* A TCP-style listening socket becomes readable when the accept queue 5967 * is not empty. 5968 */ 5969 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5970 return (!list_empty(&sp->ep->asocs)) ? 5971 (POLLIN | POLLRDNORM) : 0; 5972 5973 mask = 0; 5974 5975 /* Is there any exceptional events? */ 5976 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5977 mask |= POLLERR; 5978 if (sk->sk_shutdown & RCV_SHUTDOWN) 5979 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5980 if (sk->sk_shutdown == SHUTDOWN_MASK) 5981 mask |= POLLHUP; 5982 5983 /* Is it readable? Reconsider this code with TCP-style support. */ 5984 if (!skb_queue_empty(&sk->sk_receive_queue)) 5985 mask |= POLLIN | POLLRDNORM; 5986 5987 /* The association is either gone or not ready. */ 5988 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5989 return mask; 5990 5991 /* Is it writable? */ 5992 if (sctp_writeable(sk)) { 5993 mask |= POLLOUT | POLLWRNORM; 5994 } else { 5995 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5996 /* 5997 * Since the socket is not locked, the buffer 5998 * might be made available after the writeable check and 5999 * before the bit is set. This could cause a lost I/O 6000 * signal. tcp_poll() has a race breaker for this race 6001 * condition. Based on their implementation, we put 6002 * in the following code to cover it as well. 6003 */ 6004 if (sctp_writeable(sk)) 6005 mask |= POLLOUT | POLLWRNORM; 6006 } 6007 return mask; 6008 } 6009 6010 /******************************************************************** 6011 * 2nd Level Abstractions 6012 ********************************************************************/ 6013 6014 static struct sctp_bind_bucket *sctp_bucket_create( 6015 struct sctp_bind_hashbucket *head, unsigned short snum) 6016 { 6017 struct sctp_bind_bucket *pp; 6018 6019 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6020 if (pp) { 6021 SCTP_DBG_OBJCNT_INC(bind_bucket); 6022 pp->port = snum; 6023 pp->fastreuse = 0; 6024 INIT_HLIST_HEAD(&pp->owner); 6025 hlist_add_head(&pp->node, &head->chain); 6026 } 6027 return pp; 6028 } 6029 6030 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6031 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6032 { 6033 if (pp && hlist_empty(&pp->owner)) { 6034 __hlist_del(&pp->node); 6035 kmem_cache_free(sctp_bucket_cachep, pp); 6036 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6037 } 6038 } 6039 6040 /* Release this socket's reference to a local port. */ 6041 static inline void __sctp_put_port(struct sock *sk) 6042 { 6043 struct sctp_bind_hashbucket *head = 6044 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 6045 struct sctp_bind_bucket *pp; 6046 6047 sctp_spin_lock(&head->lock); 6048 pp = sctp_sk(sk)->bind_hash; 6049 __sk_del_bind_node(sk); 6050 sctp_sk(sk)->bind_hash = NULL; 6051 inet_sk(sk)->inet_num = 0; 6052 sctp_bucket_destroy(pp); 6053 sctp_spin_unlock(&head->lock); 6054 } 6055 6056 void sctp_put_port(struct sock *sk) 6057 { 6058 sctp_local_bh_disable(); 6059 __sctp_put_port(sk); 6060 sctp_local_bh_enable(); 6061 } 6062 6063 /* 6064 * The system picks an ephemeral port and choose an address set equivalent 6065 * to binding with a wildcard address. 6066 * One of those addresses will be the primary address for the association. 6067 * This automatically enables the multihoming capability of SCTP. 6068 */ 6069 static int sctp_autobind(struct sock *sk) 6070 { 6071 union sctp_addr autoaddr; 6072 struct sctp_af *af; 6073 __be16 port; 6074 6075 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6076 af = sctp_sk(sk)->pf->af; 6077 6078 port = htons(inet_sk(sk)->inet_num); 6079 af->inaddr_any(&autoaddr, port); 6080 6081 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6082 } 6083 6084 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6085 * 6086 * From RFC 2292 6087 * 4.2 The cmsghdr Structure * 6088 * 6089 * When ancillary data is sent or received, any number of ancillary data 6090 * objects can be specified by the msg_control and msg_controllen members of 6091 * the msghdr structure, because each object is preceded by 6092 * a cmsghdr structure defining the object's length (the cmsg_len member). 6093 * Historically Berkeley-derived implementations have passed only one object 6094 * at a time, but this API allows multiple objects to be 6095 * passed in a single call to sendmsg() or recvmsg(). The following example 6096 * shows two ancillary data objects in a control buffer. 6097 * 6098 * |<--------------------------- msg_controllen -------------------------->| 6099 * | | 6100 * 6101 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6102 * 6103 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6104 * | | | 6105 * 6106 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6107 * 6108 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6109 * | | | | | 6110 * 6111 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6112 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6113 * 6114 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6115 * 6116 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6117 * ^ 6118 * | 6119 * 6120 * msg_control 6121 * points here 6122 */ 6123 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6124 sctp_cmsgs_t *cmsgs) 6125 { 6126 struct cmsghdr *cmsg; 6127 struct msghdr *my_msg = (struct msghdr *)msg; 6128 6129 for (cmsg = CMSG_FIRSTHDR(msg); 6130 cmsg != NULL; 6131 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6132 if (!CMSG_OK(my_msg, cmsg)) 6133 return -EINVAL; 6134 6135 /* Should we parse this header or ignore? */ 6136 if (cmsg->cmsg_level != IPPROTO_SCTP) 6137 continue; 6138 6139 /* Strictly check lengths following example in SCM code. */ 6140 switch (cmsg->cmsg_type) { 6141 case SCTP_INIT: 6142 /* SCTP Socket API Extension 6143 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6144 * 6145 * This cmsghdr structure provides information for 6146 * initializing new SCTP associations with sendmsg(). 6147 * The SCTP_INITMSG socket option uses this same data 6148 * structure. This structure is not used for 6149 * recvmsg(). 6150 * 6151 * cmsg_level cmsg_type cmsg_data[] 6152 * ------------ ------------ ---------------------- 6153 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6154 */ 6155 if (cmsg->cmsg_len != 6156 CMSG_LEN(sizeof(struct sctp_initmsg))) 6157 return -EINVAL; 6158 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6159 break; 6160 6161 case SCTP_SNDRCV: 6162 /* SCTP Socket API Extension 6163 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6164 * 6165 * This cmsghdr structure specifies SCTP options for 6166 * sendmsg() and describes SCTP header information 6167 * about a received message through recvmsg(). 6168 * 6169 * cmsg_level cmsg_type cmsg_data[] 6170 * ------------ ------------ ---------------------- 6171 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6172 */ 6173 if (cmsg->cmsg_len != 6174 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6175 return -EINVAL; 6176 6177 cmsgs->info = 6178 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6179 6180 /* Minimally, validate the sinfo_flags. */ 6181 if (cmsgs->info->sinfo_flags & 6182 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6183 SCTP_ABORT | SCTP_EOF)) 6184 return -EINVAL; 6185 break; 6186 6187 default: 6188 return -EINVAL; 6189 } 6190 } 6191 return 0; 6192 } 6193 6194 /* 6195 * Wait for a packet.. 6196 * Note: This function is the same function as in core/datagram.c 6197 * with a few modifications to make lksctp work. 6198 */ 6199 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6200 { 6201 int error; 6202 DEFINE_WAIT(wait); 6203 6204 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6205 6206 /* Socket errors? */ 6207 error = sock_error(sk); 6208 if (error) 6209 goto out; 6210 6211 if (!skb_queue_empty(&sk->sk_receive_queue)) 6212 goto ready; 6213 6214 /* Socket shut down? */ 6215 if (sk->sk_shutdown & RCV_SHUTDOWN) 6216 goto out; 6217 6218 /* Sequenced packets can come disconnected. If so we report the 6219 * problem. 6220 */ 6221 error = -ENOTCONN; 6222 6223 /* Is there a good reason to think that we may receive some data? */ 6224 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6225 goto out; 6226 6227 /* Handle signals. */ 6228 if (signal_pending(current)) 6229 goto interrupted; 6230 6231 /* Let another process have a go. Since we are going to sleep 6232 * anyway. Note: This may cause odd behaviors if the message 6233 * does not fit in the user's buffer, but this seems to be the 6234 * only way to honor MSG_DONTWAIT realistically. 6235 */ 6236 sctp_release_sock(sk); 6237 *timeo_p = schedule_timeout(*timeo_p); 6238 sctp_lock_sock(sk); 6239 6240 ready: 6241 finish_wait(sk_sleep(sk), &wait); 6242 return 0; 6243 6244 interrupted: 6245 error = sock_intr_errno(*timeo_p); 6246 6247 out: 6248 finish_wait(sk_sleep(sk), &wait); 6249 *err = error; 6250 return error; 6251 } 6252 6253 /* Receive a datagram. 6254 * Note: This is pretty much the same routine as in core/datagram.c 6255 * with a few changes to make lksctp work. 6256 */ 6257 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6258 int noblock, int *err) 6259 { 6260 int error; 6261 struct sk_buff *skb; 6262 long timeo; 6263 6264 timeo = sock_rcvtimeo(sk, noblock); 6265 6266 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6267 timeo, MAX_SCHEDULE_TIMEOUT); 6268 6269 do { 6270 /* Again only user level code calls this function, 6271 * so nothing interrupt level 6272 * will suddenly eat the receive_queue. 6273 * 6274 * Look at current nfs client by the way... 6275 * However, this function was correct in any case. 8) 6276 */ 6277 if (flags & MSG_PEEK) { 6278 spin_lock_bh(&sk->sk_receive_queue.lock); 6279 skb = skb_peek(&sk->sk_receive_queue); 6280 if (skb) 6281 atomic_inc(&skb->users); 6282 spin_unlock_bh(&sk->sk_receive_queue.lock); 6283 } else { 6284 skb = skb_dequeue(&sk->sk_receive_queue); 6285 } 6286 6287 if (skb) 6288 return skb; 6289 6290 /* Caller is allowed not to check sk->sk_err before calling. */ 6291 error = sock_error(sk); 6292 if (error) 6293 goto no_packet; 6294 6295 if (sk->sk_shutdown & RCV_SHUTDOWN) 6296 break; 6297 6298 /* User doesn't want to wait. */ 6299 error = -EAGAIN; 6300 if (!timeo) 6301 goto no_packet; 6302 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6303 6304 return NULL; 6305 6306 no_packet: 6307 *err = error; 6308 return NULL; 6309 } 6310 6311 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6312 static void __sctp_write_space(struct sctp_association *asoc) 6313 { 6314 struct sock *sk = asoc->base.sk; 6315 struct socket *sock = sk->sk_socket; 6316 6317 if ((sctp_wspace(asoc) > 0) && sock) { 6318 if (waitqueue_active(&asoc->wait)) 6319 wake_up_interruptible(&asoc->wait); 6320 6321 if (sctp_writeable(sk)) { 6322 wait_queue_head_t *wq = sk_sleep(sk); 6323 6324 if (wq && waitqueue_active(wq)) 6325 wake_up_interruptible(wq); 6326 6327 /* Note that we try to include the Async I/O support 6328 * here by modeling from the current TCP/UDP code. 6329 * We have not tested with it yet. 6330 */ 6331 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6332 sock_wake_async(sock, 6333 SOCK_WAKE_SPACE, POLL_OUT); 6334 } 6335 } 6336 } 6337 6338 /* Do accounting for the sndbuf space. 6339 * Decrement the used sndbuf space of the corresponding association by the 6340 * data size which was just transmitted(freed). 6341 */ 6342 static void sctp_wfree(struct sk_buff *skb) 6343 { 6344 struct sctp_association *asoc; 6345 struct sctp_chunk *chunk; 6346 struct sock *sk; 6347 6348 /* Get the saved chunk pointer. */ 6349 chunk = *((struct sctp_chunk **)(skb->cb)); 6350 asoc = chunk->asoc; 6351 sk = asoc->base.sk; 6352 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6353 sizeof(struct sk_buff) + 6354 sizeof(struct sctp_chunk); 6355 6356 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6357 6358 /* 6359 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6360 */ 6361 sk->sk_wmem_queued -= skb->truesize; 6362 sk_mem_uncharge(sk, skb->truesize); 6363 6364 sock_wfree(skb); 6365 __sctp_write_space(asoc); 6366 6367 sctp_association_put(asoc); 6368 } 6369 6370 /* Do accounting for the receive space on the socket. 6371 * Accounting for the association is done in ulpevent.c 6372 * We set this as a destructor for the cloned data skbs so that 6373 * accounting is done at the correct time. 6374 */ 6375 void sctp_sock_rfree(struct sk_buff *skb) 6376 { 6377 struct sock *sk = skb->sk; 6378 struct sctp_ulpevent *event = sctp_skb2event(skb); 6379 6380 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6381 6382 /* 6383 * Mimic the behavior of sock_rfree 6384 */ 6385 sk_mem_uncharge(sk, event->rmem_len); 6386 } 6387 6388 6389 /* Helper function to wait for space in the sndbuf. */ 6390 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6391 size_t msg_len) 6392 { 6393 struct sock *sk = asoc->base.sk; 6394 int err = 0; 6395 long current_timeo = *timeo_p; 6396 DEFINE_WAIT(wait); 6397 6398 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6399 asoc, (long)(*timeo_p), msg_len); 6400 6401 /* Increment the association's refcnt. */ 6402 sctp_association_hold(asoc); 6403 6404 /* Wait on the association specific sndbuf space. */ 6405 for (;;) { 6406 prepare_to_wait_exclusive(&asoc->wait, &wait, 6407 TASK_INTERRUPTIBLE); 6408 if (!*timeo_p) 6409 goto do_nonblock; 6410 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6411 asoc->base.dead) 6412 goto do_error; 6413 if (signal_pending(current)) 6414 goto do_interrupted; 6415 if (msg_len <= sctp_wspace(asoc)) 6416 break; 6417 6418 /* Let another process have a go. Since we are going 6419 * to sleep anyway. 6420 */ 6421 sctp_release_sock(sk); 6422 current_timeo = schedule_timeout(current_timeo); 6423 BUG_ON(sk != asoc->base.sk); 6424 sctp_lock_sock(sk); 6425 6426 *timeo_p = current_timeo; 6427 } 6428 6429 out: 6430 finish_wait(&asoc->wait, &wait); 6431 6432 /* Release the association's refcnt. */ 6433 sctp_association_put(asoc); 6434 6435 return err; 6436 6437 do_error: 6438 err = -EPIPE; 6439 goto out; 6440 6441 do_interrupted: 6442 err = sock_intr_errno(*timeo_p); 6443 goto out; 6444 6445 do_nonblock: 6446 err = -EAGAIN; 6447 goto out; 6448 } 6449 6450 void sctp_data_ready(struct sock *sk, int len) 6451 { 6452 struct socket_wq *wq; 6453 6454 rcu_read_lock(); 6455 wq = rcu_dereference(sk->sk_wq); 6456 if (wq_has_sleeper(wq)) 6457 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6458 POLLRDNORM | POLLRDBAND); 6459 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6460 rcu_read_unlock(); 6461 } 6462 6463 /* If socket sndbuf has changed, wake up all per association waiters. */ 6464 void sctp_write_space(struct sock *sk) 6465 { 6466 struct sctp_association *asoc; 6467 6468 /* Wake up the tasks in each wait queue. */ 6469 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6470 __sctp_write_space(asoc); 6471 } 6472 } 6473 6474 /* Is there any sndbuf space available on the socket? 6475 * 6476 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6477 * associations on the same socket. For a UDP-style socket with 6478 * multiple associations, it is possible for it to be "unwriteable" 6479 * prematurely. I assume that this is acceptable because 6480 * a premature "unwriteable" is better than an accidental "writeable" which 6481 * would cause an unwanted block under certain circumstances. For the 1-1 6482 * UDP-style sockets or TCP-style sockets, this code should work. 6483 * - Daisy 6484 */ 6485 static int sctp_writeable(struct sock *sk) 6486 { 6487 int amt = 0; 6488 6489 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6490 if (amt < 0) 6491 amt = 0; 6492 return amt; 6493 } 6494 6495 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6496 * returns immediately with EINPROGRESS. 6497 */ 6498 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6499 { 6500 struct sock *sk = asoc->base.sk; 6501 int err = 0; 6502 long current_timeo = *timeo_p; 6503 DEFINE_WAIT(wait); 6504 6505 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6506 (long)(*timeo_p)); 6507 6508 /* Increment the association's refcnt. */ 6509 sctp_association_hold(asoc); 6510 6511 for (;;) { 6512 prepare_to_wait_exclusive(&asoc->wait, &wait, 6513 TASK_INTERRUPTIBLE); 6514 if (!*timeo_p) 6515 goto do_nonblock; 6516 if (sk->sk_shutdown & RCV_SHUTDOWN) 6517 break; 6518 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6519 asoc->base.dead) 6520 goto do_error; 6521 if (signal_pending(current)) 6522 goto do_interrupted; 6523 6524 if (sctp_state(asoc, ESTABLISHED)) 6525 break; 6526 6527 /* Let another process have a go. Since we are going 6528 * to sleep anyway. 6529 */ 6530 sctp_release_sock(sk); 6531 current_timeo = schedule_timeout(current_timeo); 6532 sctp_lock_sock(sk); 6533 6534 *timeo_p = current_timeo; 6535 } 6536 6537 out: 6538 finish_wait(&asoc->wait, &wait); 6539 6540 /* Release the association's refcnt. */ 6541 sctp_association_put(asoc); 6542 6543 return err; 6544 6545 do_error: 6546 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6547 err = -ETIMEDOUT; 6548 else 6549 err = -ECONNREFUSED; 6550 goto out; 6551 6552 do_interrupted: 6553 err = sock_intr_errno(*timeo_p); 6554 goto out; 6555 6556 do_nonblock: 6557 err = -EINPROGRESS; 6558 goto out; 6559 } 6560 6561 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6562 { 6563 struct sctp_endpoint *ep; 6564 int err = 0; 6565 DEFINE_WAIT(wait); 6566 6567 ep = sctp_sk(sk)->ep; 6568 6569 6570 for (;;) { 6571 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6572 TASK_INTERRUPTIBLE); 6573 6574 if (list_empty(&ep->asocs)) { 6575 sctp_release_sock(sk); 6576 timeo = schedule_timeout(timeo); 6577 sctp_lock_sock(sk); 6578 } 6579 6580 err = -EINVAL; 6581 if (!sctp_sstate(sk, LISTENING)) 6582 break; 6583 6584 err = 0; 6585 if (!list_empty(&ep->asocs)) 6586 break; 6587 6588 err = sock_intr_errno(timeo); 6589 if (signal_pending(current)) 6590 break; 6591 6592 err = -EAGAIN; 6593 if (!timeo) 6594 break; 6595 } 6596 6597 finish_wait(sk_sleep(sk), &wait); 6598 6599 return err; 6600 } 6601 6602 static void sctp_wait_for_close(struct sock *sk, long timeout) 6603 { 6604 DEFINE_WAIT(wait); 6605 6606 do { 6607 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6608 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6609 break; 6610 sctp_release_sock(sk); 6611 timeout = schedule_timeout(timeout); 6612 sctp_lock_sock(sk); 6613 } while (!signal_pending(current) && timeout); 6614 6615 finish_wait(sk_sleep(sk), &wait); 6616 } 6617 6618 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6619 { 6620 struct sk_buff *frag; 6621 6622 if (!skb->data_len) 6623 goto done; 6624 6625 /* Don't forget the fragments. */ 6626 skb_walk_frags(skb, frag) 6627 sctp_skb_set_owner_r_frag(frag, sk); 6628 6629 done: 6630 sctp_skb_set_owner_r(skb, sk); 6631 } 6632 6633 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6634 struct sctp_association *asoc) 6635 { 6636 struct inet_sock *inet = inet_sk(sk); 6637 struct inet_sock *newinet; 6638 6639 newsk->sk_type = sk->sk_type; 6640 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6641 newsk->sk_flags = sk->sk_flags; 6642 newsk->sk_no_check = sk->sk_no_check; 6643 newsk->sk_reuse = sk->sk_reuse; 6644 6645 newsk->sk_shutdown = sk->sk_shutdown; 6646 newsk->sk_destruct = inet_sock_destruct; 6647 newsk->sk_family = sk->sk_family; 6648 newsk->sk_protocol = IPPROTO_SCTP; 6649 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6650 newsk->sk_sndbuf = sk->sk_sndbuf; 6651 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6652 newsk->sk_lingertime = sk->sk_lingertime; 6653 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6654 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6655 6656 newinet = inet_sk(newsk); 6657 6658 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6659 * getsockname() and getpeername() 6660 */ 6661 newinet->inet_sport = inet->inet_sport; 6662 newinet->inet_saddr = inet->inet_saddr; 6663 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6664 newinet->inet_dport = htons(asoc->peer.port); 6665 newinet->pmtudisc = inet->pmtudisc; 6666 newinet->inet_id = asoc->next_tsn ^ jiffies; 6667 6668 newinet->uc_ttl = inet->uc_ttl; 6669 newinet->mc_loop = 1; 6670 newinet->mc_ttl = 1; 6671 newinet->mc_index = 0; 6672 newinet->mc_list = NULL; 6673 } 6674 6675 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6676 * and its messages to the newsk. 6677 */ 6678 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6679 struct sctp_association *assoc, 6680 sctp_socket_type_t type) 6681 { 6682 struct sctp_sock *oldsp = sctp_sk(oldsk); 6683 struct sctp_sock *newsp = sctp_sk(newsk); 6684 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6685 struct sctp_endpoint *newep = newsp->ep; 6686 struct sk_buff *skb, *tmp; 6687 struct sctp_ulpevent *event; 6688 struct sctp_bind_hashbucket *head; 6689 struct list_head tmplist; 6690 6691 /* Migrate socket buffer sizes and all the socket level options to the 6692 * new socket. 6693 */ 6694 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6695 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6696 /* Brute force copy old sctp opt. */ 6697 if (oldsp->do_auto_asconf) { 6698 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6699 inet_sk_copy_descendant(newsk, oldsk); 6700 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6701 } else 6702 inet_sk_copy_descendant(newsk, oldsk); 6703 6704 /* Restore the ep value that was overwritten with the above structure 6705 * copy. 6706 */ 6707 newsp->ep = newep; 6708 newsp->hmac = NULL; 6709 6710 /* Hook this new socket in to the bind_hash list. */ 6711 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6712 sctp_local_bh_disable(); 6713 sctp_spin_lock(&head->lock); 6714 pp = sctp_sk(oldsk)->bind_hash; 6715 sk_add_bind_node(newsk, &pp->owner); 6716 sctp_sk(newsk)->bind_hash = pp; 6717 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6718 sctp_spin_unlock(&head->lock); 6719 sctp_local_bh_enable(); 6720 6721 /* Copy the bind_addr list from the original endpoint to the new 6722 * endpoint so that we can handle restarts properly 6723 */ 6724 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6725 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6726 6727 /* Move any messages in the old socket's receive queue that are for the 6728 * peeled off association to the new socket's receive queue. 6729 */ 6730 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6731 event = sctp_skb2event(skb); 6732 if (event->asoc == assoc) { 6733 __skb_unlink(skb, &oldsk->sk_receive_queue); 6734 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6735 sctp_skb_set_owner_r_frag(skb, newsk); 6736 } 6737 } 6738 6739 /* Clean up any messages pending delivery due to partial 6740 * delivery. Three cases: 6741 * 1) No partial deliver; no work. 6742 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6743 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6744 */ 6745 skb_queue_head_init(&newsp->pd_lobby); 6746 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6747 6748 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6749 struct sk_buff_head *queue; 6750 6751 /* Decide which queue to move pd_lobby skbs to. */ 6752 if (assoc->ulpq.pd_mode) { 6753 queue = &newsp->pd_lobby; 6754 } else 6755 queue = &newsk->sk_receive_queue; 6756 6757 /* Walk through the pd_lobby, looking for skbs that 6758 * need moved to the new socket. 6759 */ 6760 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6761 event = sctp_skb2event(skb); 6762 if (event->asoc == assoc) { 6763 __skb_unlink(skb, &oldsp->pd_lobby); 6764 __skb_queue_tail(queue, skb); 6765 sctp_skb_set_owner_r_frag(skb, newsk); 6766 } 6767 } 6768 6769 /* Clear up any skbs waiting for the partial 6770 * delivery to finish. 6771 */ 6772 if (assoc->ulpq.pd_mode) 6773 sctp_clear_pd(oldsk, NULL); 6774 6775 } 6776 6777 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6778 sctp_skb_set_owner_r_frag(skb, newsk); 6779 6780 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6781 sctp_skb_set_owner_r_frag(skb, newsk); 6782 6783 /* Set the type of socket to indicate that it is peeled off from the 6784 * original UDP-style socket or created with the accept() call on a 6785 * TCP-style socket.. 6786 */ 6787 newsp->type = type; 6788 6789 /* Mark the new socket "in-use" by the user so that any packets 6790 * that may arrive on the association after we've moved it are 6791 * queued to the backlog. This prevents a potential race between 6792 * backlog processing on the old socket and new-packet processing 6793 * on the new socket. 6794 * 6795 * The caller has just allocated newsk so we can guarantee that other 6796 * paths won't try to lock it and then oldsk. 6797 */ 6798 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6799 sctp_assoc_migrate(assoc, newsk); 6800 6801 /* If the association on the newsk is already closed before accept() 6802 * is called, set RCV_SHUTDOWN flag. 6803 */ 6804 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6805 newsk->sk_shutdown |= RCV_SHUTDOWN; 6806 6807 newsk->sk_state = SCTP_SS_ESTABLISHED; 6808 sctp_release_sock(newsk); 6809 } 6810 6811 6812 /* This proto struct describes the ULP interface for SCTP. */ 6813 struct proto sctp_prot = { 6814 .name = "SCTP", 6815 .owner = THIS_MODULE, 6816 .close = sctp_close, 6817 .connect = sctp_connect, 6818 .disconnect = sctp_disconnect, 6819 .accept = sctp_accept, 6820 .ioctl = sctp_ioctl, 6821 .init = sctp_init_sock, 6822 .destroy = sctp_destroy_sock, 6823 .shutdown = sctp_shutdown, 6824 .setsockopt = sctp_setsockopt, 6825 .getsockopt = sctp_getsockopt, 6826 .sendmsg = sctp_sendmsg, 6827 .recvmsg = sctp_recvmsg, 6828 .bind = sctp_bind, 6829 .backlog_rcv = sctp_backlog_rcv, 6830 .hash = sctp_hash, 6831 .unhash = sctp_unhash, 6832 .get_port = sctp_get_port, 6833 .obj_size = sizeof(struct sctp_sock), 6834 .sysctl_mem = sysctl_sctp_mem, 6835 .sysctl_rmem = sysctl_sctp_rmem, 6836 .sysctl_wmem = sysctl_sctp_wmem, 6837 .memory_pressure = &sctp_memory_pressure, 6838 .enter_memory_pressure = sctp_enter_memory_pressure, 6839 .memory_allocated = &sctp_memory_allocated, 6840 .sockets_allocated = &sctp_sockets_allocated, 6841 }; 6842 6843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6844 6845 struct proto sctpv6_prot = { 6846 .name = "SCTPv6", 6847 .owner = THIS_MODULE, 6848 .close = sctp_close, 6849 .connect = sctp_connect, 6850 .disconnect = sctp_disconnect, 6851 .accept = sctp_accept, 6852 .ioctl = sctp_ioctl, 6853 .init = sctp_init_sock, 6854 .destroy = sctp_destroy_sock, 6855 .shutdown = sctp_shutdown, 6856 .setsockopt = sctp_setsockopt, 6857 .getsockopt = sctp_getsockopt, 6858 .sendmsg = sctp_sendmsg, 6859 .recvmsg = sctp_recvmsg, 6860 .bind = sctp_bind, 6861 .backlog_rcv = sctp_backlog_rcv, 6862 .hash = sctp_hash, 6863 .unhash = sctp_unhash, 6864 .get_port = sctp_get_port, 6865 .obj_size = sizeof(struct sctp6_sock), 6866 .sysctl_mem = sysctl_sctp_mem, 6867 .sysctl_rmem = sysctl_sctp_rmem, 6868 .sysctl_wmem = sysctl_sctp_wmem, 6869 .memory_pressure = &sctp_memory_pressure, 6870 .enter_memory_pressure = sctp_enter_memory_pressure, 6871 .memory_allocated = &sctp_memory_allocated, 6872 .sockets_allocated = &sctp_sockets_allocated, 6873 }; 6874 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6875