1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = memdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = memdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 iov_iter_revert(&msg->msg_iter, msg_len); 1870 1871 return 0; 1872 } 1873 1874 return 1; 1875 } 1876 1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1878 struct msghdr *msg, size_t msg_len, 1879 struct sctp_transport *transport, 1880 struct sctp_sndrcvinfo *sinfo) 1881 { 1882 struct sock *sk = asoc->base.sk; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct net *net = sock_net(sk); 1885 struct sctp_datamsg *datamsg; 1886 bool wait_connect = false; 1887 struct sctp_chunk *chunk; 1888 long timeo; 1889 int err; 1890 1891 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1892 err = -EINVAL; 1893 goto err; 1894 } 1895 1896 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1897 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1898 if (err) 1899 goto err; 1900 } 1901 1902 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1903 err = -EMSGSIZE; 1904 goto err; 1905 } 1906 1907 if (asoc->pmtu_pending) { 1908 if (sp->param_flags & SPP_PMTUD_ENABLE) 1909 sctp_assoc_sync_pmtu(asoc); 1910 asoc->pmtu_pending = 0; 1911 } 1912 1913 if (sctp_wspace(asoc) < (int)msg_len) 1914 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1915 1916 if (sk_under_memory_pressure(sk)) 1917 sk_mem_reclaim(sk); 1918 1919 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1920 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1921 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1922 if (err) 1923 goto err; 1924 } 1925 1926 if (sctp_state(asoc, CLOSED)) { 1927 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1928 if (err) 1929 goto err; 1930 1931 if (sp->strm_interleave) { 1932 timeo = sock_sndtimeo(sk, 0); 1933 err = sctp_wait_for_connect(asoc, &timeo); 1934 if (err) { 1935 err = -ESRCH; 1936 goto err; 1937 } 1938 } else { 1939 wait_connect = true; 1940 } 1941 1942 pr_debug("%s: we associated primitively\n", __func__); 1943 } 1944 1945 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1946 if (IS_ERR(datamsg)) { 1947 err = PTR_ERR(datamsg); 1948 goto err; 1949 } 1950 1951 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1952 1953 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1954 sctp_chunk_hold(chunk); 1955 sctp_set_owner_w(chunk); 1956 chunk->transport = transport; 1957 } 1958 1959 err = sctp_primitive_SEND(net, asoc, datamsg); 1960 if (err) { 1961 sctp_datamsg_free(datamsg); 1962 goto err; 1963 } 1964 1965 pr_debug("%s: we sent primitively\n", __func__); 1966 1967 sctp_datamsg_put(datamsg); 1968 1969 if (unlikely(wait_connect)) { 1970 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1971 sctp_wait_for_connect(asoc, &timeo); 1972 } 1973 1974 err = msg_len; 1975 1976 err: 1977 return err; 1978 } 1979 1980 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1981 const struct msghdr *msg, 1982 struct sctp_cmsgs *cmsgs) 1983 { 1984 union sctp_addr *daddr = NULL; 1985 int err; 1986 1987 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1988 int len = msg->msg_namelen; 1989 1990 if (len > sizeof(*daddr)) 1991 len = sizeof(*daddr); 1992 1993 daddr = (union sctp_addr *)msg->msg_name; 1994 1995 err = sctp_verify_addr(sk, daddr, len); 1996 if (err) 1997 return ERR_PTR(err); 1998 } 1999 2000 return daddr; 2001 } 2002 2003 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2004 struct sctp_sndrcvinfo *sinfo, 2005 struct sctp_cmsgs *cmsgs) 2006 { 2007 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2008 sinfo->sinfo_stream = asoc->default_stream; 2009 sinfo->sinfo_ppid = asoc->default_ppid; 2010 sinfo->sinfo_context = asoc->default_context; 2011 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2012 2013 if (!cmsgs->prinfo) 2014 sinfo->sinfo_flags = asoc->default_flags; 2015 } 2016 2017 if (!cmsgs->srinfo && !cmsgs->prinfo) 2018 sinfo->sinfo_timetolive = asoc->default_timetolive; 2019 2020 if (cmsgs->authinfo) { 2021 /* Reuse sinfo_tsn to indicate that authinfo was set and 2022 * sinfo_ssn to save the keyid on tx path. 2023 */ 2024 sinfo->sinfo_tsn = 1; 2025 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2026 } 2027 } 2028 2029 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2030 { 2031 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2032 struct sctp_transport *transport = NULL; 2033 struct sctp_sndrcvinfo _sinfo, *sinfo; 2034 struct sctp_association *asoc, *tmp; 2035 struct sctp_cmsgs cmsgs; 2036 union sctp_addr *daddr; 2037 bool new = false; 2038 __u16 sflags; 2039 int err; 2040 2041 /* Parse and get snd_info */ 2042 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2043 if (err) 2044 goto out; 2045 2046 sinfo = &_sinfo; 2047 sflags = sinfo->sinfo_flags; 2048 2049 /* Get daddr from msg */ 2050 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2051 if (IS_ERR(daddr)) { 2052 err = PTR_ERR(daddr); 2053 goto out; 2054 } 2055 2056 lock_sock(sk); 2057 2058 /* SCTP_SENDALL process */ 2059 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2060 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2061 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2062 msg_len); 2063 if (err == 0) 2064 continue; 2065 if (err < 0) 2066 goto out_unlock; 2067 2068 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2069 2070 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2071 NULL, sinfo); 2072 if (err < 0) 2073 goto out_unlock; 2074 2075 iov_iter_revert(&msg->msg_iter, err); 2076 } 2077 2078 goto out_unlock; 2079 } 2080 2081 /* Get and check or create asoc */ 2082 if (daddr) { 2083 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2084 if (asoc) { 2085 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2086 msg_len); 2087 if (err <= 0) 2088 goto out_unlock; 2089 } else { 2090 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2091 &transport); 2092 if (err) 2093 goto out_unlock; 2094 2095 asoc = transport->asoc; 2096 new = true; 2097 } 2098 2099 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2100 transport = NULL; 2101 } else { 2102 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2103 if (!asoc) { 2104 err = -EPIPE; 2105 goto out_unlock; 2106 } 2107 2108 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2109 if (err <= 0) 2110 goto out_unlock; 2111 } 2112 2113 /* Update snd_info with the asoc */ 2114 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2115 2116 /* Send msg to the asoc */ 2117 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2118 if (err < 0 && err != -ESRCH && new) 2119 sctp_association_free(asoc); 2120 2121 out_unlock: 2122 release_sock(sk); 2123 out: 2124 return sctp_error(sk, msg->msg_flags, err); 2125 } 2126 2127 /* This is an extended version of skb_pull() that removes the data from the 2128 * start of a skb even when data is spread across the list of skb's in the 2129 * frag_list. len specifies the total amount of data that needs to be removed. 2130 * when 'len' bytes could be removed from the skb, it returns 0. 2131 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2132 * could not be removed. 2133 */ 2134 static int sctp_skb_pull(struct sk_buff *skb, int len) 2135 { 2136 struct sk_buff *list; 2137 int skb_len = skb_headlen(skb); 2138 int rlen; 2139 2140 if (len <= skb_len) { 2141 __skb_pull(skb, len); 2142 return 0; 2143 } 2144 len -= skb_len; 2145 __skb_pull(skb, skb_len); 2146 2147 skb_walk_frags(skb, list) { 2148 rlen = sctp_skb_pull(list, len); 2149 skb->len -= (len-rlen); 2150 skb->data_len -= (len-rlen); 2151 2152 if (!rlen) 2153 return 0; 2154 2155 len = rlen; 2156 } 2157 2158 return len; 2159 } 2160 2161 /* API 3.1.3 recvmsg() - UDP Style Syntax 2162 * 2163 * ssize_t recvmsg(int socket, struct msghdr *message, 2164 * int flags); 2165 * 2166 * socket - the socket descriptor of the endpoint. 2167 * message - pointer to the msghdr structure which contains a single 2168 * user message and possibly some ancillary data. 2169 * 2170 * See Section 5 for complete description of the data 2171 * structures. 2172 * 2173 * flags - flags sent or received with the user message, see Section 2174 * 5 for complete description of the flags. 2175 */ 2176 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2177 int noblock, int flags, int *addr_len) 2178 { 2179 struct sctp_ulpevent *event = NULL; 2180 struct sctp_sock *sp = sctp_sk(sk); 2181 struct sk_buff *skb, *head_skb; 2182 int copied; 2183 int err = 0; 2184 int skb_len; 2185 2186 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2187 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2188 addr_len); 2189 2190 lock_sock(sk); 2191 2192 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2193 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2194 err = -ENOTCONN; 2195 goto out; 2196 } 2197 2198 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2199 if (!skb) 2200 goto out; 2201 2202 /* Get the total length of the skb including any skb's in the 2203 * frag_list. 2204 */ 2205 skb_len = skb->len; 2206 2207 copied = skb_len; 2208 if (copied > len) 2209 copied = len; 2210 2211 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2212 2213 event = sctp_skb2event(skb); 2214 2215 if (err) 2216 goto out_free; 2217 2218 if (event->chunk && event->chunk->head_skb) 2219 head_skb = event->chunk->head_skb; 2220 else 2221 head_skb = skb; 2222 sock_recv_ts_and_drops(msg, sk, head_skb); 2223 if (sctp_ulpevent_is_notification(event)) { 2224 msg->msg_flags |= MSG_NOTIFICATION; 2225 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2226 } else { 2227 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2228 } 2229 2230 /* Check if we allow SCTP_NXTINFO. */ 2231 if (sp->recvnxtinfo) 2232 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2233 /* Check if we allow SCTP_RCVINFO. */ 2234 if (sp->recvrcvinfo) 2235 sctp_ulpevent_read_rcvinfo(event, msg); 2236 /* Check if we allow SCTP_SNDRCVINFO. */ 2237 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2238 sctp_ulpevent_read_sndrcvinfo(event, msg); 2239 2240 err = copied; 2241 2242 /* If skb's length exceeds the user's buffer, update the skb and 2243 * push it back to the receive_queue so that the next call to 2244 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2245 */ 2246 if (skb_len > copied) { 2247 msg->msg_flags &= ~MSG_EOR; 2248 if (flags & MSG_PEEK) 2249 goto out_free; 2250 sctp_skb_pull(skb, copied); 2251 skb_queue_head(&sk->sk_receive_queue, skb); 2252 2253 /* When only partial message is copied to the user, increase 2254 * rwnd by that amount. If all the data in the skb is read, 2255 * rwnd is updated when the event is freed. 2256 */ 2257 if (!sctp_ulpevent_is_notification(event)) 2258 sctp_assoc_rwnd_increase(event->asoc, copied); 2259 goto out; 2260 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2261 (event->msg_flags & MSG_EOR)) 2262 msg->msg_flags |= MSG_EOR; 2263 else 2264 msg->msg_flags &= ~MSG_EOR; 2265 2266 out_free: 2267 if (flags & MSG_PEEK) { 2268 /* Release the skb reference acquired after peeking the skb in 2269 * sctp_skb_recv_datagram(). 2270 */ 2271 kfree_skb(skb); 2272 } else { 2273 /* Free the event which includes releasing the reference to 2274 * the owner of the skb, freeing the skb and updating the 2275 * rwnd. 2276 */ 2277 sctp_ulpevent_free(event); 2278 } 2279 out: 2280 release_sock(sk); 2281 return err; 2282 } 2283 2284 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2285 * 2286 * This option is a on/off flag. If enabled no SCTP message 2287 * fragmentation will be performed. Instead if a message being sent 2288 * exceeds the current PMTU size, the message will NOT be sent and 2289 * instead a error will be indicated to the user. 2290 */ 2291 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2292 char __user *optval, 2293 unsigned int optlen) 2294 { 2295 int val; 2296 2297 if (optlen < sizeof(int)) 2298 return -EINVAL; 2299 2300 if (get_user(val, (int __user *)optval)) 2301 return -EFAULT; 2302 2303 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2304 2305 return 0; 2306 } 2307 2308 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2309 unsigned int optlen) 2310 { 2311 struct sctp_event_subscribe subscribe; 2312 __u8 *sn_type = (__u8 *)&subscribe; 2313 struct sctp_sock *sp = sctp_sk(sk); 2314 struct sctp_association *asoc; 2315 int i; 2316 2317 if (optlen > sizeof(struct sctp_event_subscribe)) 2318 return -EINVAL; 2319 2320 if (copy_from_user(&subscribe, optval, optlen)) 2321 return -EFAULT; 2322 2323 for (i = 0; i < optlen; i++) 2324 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2325 sn_type[i]); 2326 2327 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2328 asoc->subscribe = sctp_sk(sk)->subscribe; 2329 2330 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2331 * if there is no data to be sent or retransmit, the stack will 2332 * immediately send up this notification. 2333 */ 2334 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2335 struct sctp_ulpevent *event; 2336 2337 asoc = sctp_id2assoc(sk, 0); 2338 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2339 event = sctp_ulpevent_make_sender_dry_event(asoc, 2340 GFP_USER | __GFP_NOWARN); 2341 if (!event) 2342 return -ENOMEM; 2343 2344 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2345 } 2346 } 2347 2348 return 0; 2349 } 2350 2351 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2352 * 2353 * This socket option is applicable to the UDP-style socket only. When 2354 * set it will cause associations that are idle for more than the 2355 * specified number of seconds to automatically close. An association 2356 * being idle is defined an association that has NOT sent or received 2357 * user data. The special value of '0' indicates that no automatic 2358 * close of any associations should be performed. The option expects an 2359 * integer defining the number of seconds of idle time before an 2360 * association is closed. 2361 */ 2362 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2363 unsigned int optlen) 2364 { 2365 struct sctp_sock *sp = sctp_sk(sk); 2366 struct net *net = sock_net(sk); 2367 2368 /* Applicable to UDP-style socket only */ 2369 if (sctp_style(sk, TCP)) 2370 return -EOPNOTSUPP; 2371 if (optlen != sizeof(int)) 2372 return -EINVAL; 2373 if (copy_from_user(&sp->autoclose, optval, optlen)) 2374 return -EFAULT; 2375 2376 if (sp->autoclose > net->sctp.max_autoclose) 2377 sp->autoclose = net->sctp.max_autoclose; 2378 2379 return 0; 2380 } 2381 2382 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2383 * 2384 * Applications can enable or disable heartbeats for any peer address of 2385 * an association, modify an address's heartbeat interval, force a 2386 * heartbeat to be sent immediately, and adjust the address's maximum 2387 * number of retransmissions sent before an address is considered 2388 * unreachable. The following structure is used to access and modify an 2389 * address's parameters: 2390 * 2391 * struct sctp_paddrparams { 2392 * sctp_assoc_t spp_assoc_id; 2393 * struct sockaddr_storage spp_address; 2394 * uint32_t spp_hbinterval; 2395 * uint16_t spp_pathmaxrxt; 2396 * uint32_t spp_pathmtu; 2397 * uint32_t spp_sackdelay; 2398 * uint32_t spp_flags; 2399 * uint32_t spp_ipv6_flowlabel; 2400 * uint8_t spp_dscp; 2401 * }; 2402 * 2403 * spp_assoc_id - (one-to-many style socket) This is filled in the 2404 * application, and identifies the association for 2405 * this query. 2406 * spp_address - This specifies which address is of interest. 2407 * spp_hbinterval - This contains the value of the heartbeat interval, 2408 * in milliseconds. If a value of zero 2409 * is present in this field then no changes are to 2410 * be made to this parameter. 2411 * spp_pathmaxrxt - This contains the maximum number of 2412 * retransmissions before this address shall be 2413 * considered unreachable. If a value of zero 2414 * is present in this field then no changes are to 2415 * be made to this parameter. 2416 * spp_pathmtu - When Path MTU discovery is disabled the value 2417 * specified here will be the "fixed" path mtu. 2418 * Note that if the spp_address field is empty 2419 * then all associations on this address will 2420 * have this fixed path mtu set upon them. 2421 * 2422 * spp_sackdelay - When delayed sack is enabled, this value specifies 2423 * the number of milliseconds that sacks will be delayed 2424 * for. This value will apply to all addresses of an 2425 * association if the spp_address field is empty. Note 2426 * also, that if delayed sack is enabled and this 2427 * value is set to 0, no change is made to the last 2428 * recorded delayed sack timer value. 2429 * 2430 * spp_flags - These flags are used to control various features 2431 * on an association. The flag field may contain 2432 * zero or more of the following options. 2433 * 2434 * SPP_HB_ENABLE - Enable heartbeats on the 2435 * specified address. Note that if the address 2436 * field is empty all addresses for the association 2437 * have heartbeats enabled upon them. 2438 * 2439 * SPP_HB_DISABLE - Disable heartbeats on the 2440 * speicifed address. Note that if the address 2441 * field is empty all addresses for the association 2442 * will have their heartbeats disabled. Note also 2443 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2444 * mutually exclusive, only one of these two should 2445 * be specified. Enabling both fields will have 2446 * undetermined results. 2447 * 2448 * SPP_HB_DEMAND - Request a user initiated heartbeat 2449 * to be made immediately. 2450 * 2451 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2452 * heartbeat delayis to be set to the value of 0 2453 * milliseconds. 2454 * 2455 * SPP_PMTUD_ENABLE - This field will enable PMTU 2456 * discovery upon the specified address. Note that 2457 * if the address feild is empty then all addresses 2458 * on the association are effected. 2459 * 2460 * SPP_PMTUD_DISABLE - This field will disable PMTU 2461 * discovery upon the specified address. Note that 2462 * if the address feild is empty then all addresses 2463 * on the association are effected. Not also that 2464 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2465 * exclusive. Enabling both will have undetermined 2466 * results. 2467 * 2468 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2469 * on delayed sack. The time specified in spp_sackdelay 2470 * is used to specify the sack delay for this address. Note 2471 * that if spp_address is empty then all addresses will 2472 * enable delayed sack and take on the sack delay 2473 * value specified in spp_sackdelay. 2474 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2475 * off delayed sack. If the spp_address field is blank then 2476 * delayed sack is disabled for the entire association. Note 2477 * also that this field is mutually exclusive to 2478 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2479 * results. 2480 * 2481 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2482 * setting of the IPV6 flow label value. The value is 2483 * contained in the spp_ipv6_flowlabel field. 2484 * Upon retrieval, this flag will be set to indicate that 2485 * the spp_ipv6_flowlabel field has a valid value returned. 2486 * If a specific destination address is set (in the 2487 * spp_address field), then the value returned is that of 2488 * the address. If just an association is specified (and 2489 * no address), then the association's default flow label 2490 * is returned. If neither an association nor a destination 2491 * is specified, then the socket's default flow label is 2492 * returned. For non-IPv6 sockets, this flag will be left 2493 * cleared. 2494 * 2495 * SPP_DSCP: Setting this flag enables the setting of the 2496 * Differentiated Services Code Point (DSCP) value 2497 * associated with either the association or a specific 2498 * address. The value is obtained in the spp_dscp field. 2499 * Upon retrieval, this flag will be set to indicate that 2500 * the spp_dscp field has a valid value returned. If a 2501 * specific destination address is set when called (in the 2502 * spp_address field), then that specific destination 2503 * address's DSCP value is returned. If just an association 2504 * is specified, then the association's default DSCP is 2505 * returned. If neither an association nor a destination is 2506 * specified, then the socket's default DSCP is returned. 2507 * 2508 * spp_ipv6_flowlabel 2509 * - This field is used in conjunction with the 2510 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2511 * The 20 least significant bits are used for the flow 2512 * label. This setting has precedence over any IPv6-layer 2513 * setting. 2514 * 2515 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2516 * and contains the DSCP. The 6 most significant bits are 2517 * used for the DSCP. This setting has precedence over any 2518 * IPv4- or IPv6- layer setting. 2519 */ 2520 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2521 struct sctp_transport *trans, 2522 struct sctp_association *asoc, 2523 struct sctp_sock *sp, 2524 int hb_change, 2525 int pmtud_change, 2526 int sackdelay_change) 2527 { 2528 int error; 2529 2530 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2531 struct net *net = sock_net(trans->asoc->base.sk); 2532 2533 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2534 if (error) 2535 return error; 2536 } 2537 2538 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2539 * this field is ignored. Note also that a value of zero indicates 2540 * the current setting should be left unchanged. 2541 */ 2542 if (params->spp_flags & SPP_HB_ENABLE) { 2543 2544 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2545 * set. This lets us use 0 value when this flag 2546 * is set. 2547 */ 2548 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2549 params->spp_hbinterval = 0; 2550 2551 if (params->spp_hbinterval || 2552 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2553 if (trans) { 2554 trans->hbinterval = 2555 msecs_to_jiffies(params->spp_hbinterval); 2556 } else if (asoc) { 2557 asoc->hbinterval = 2558 msecs_to_jiffies(params->spp_hbinterval); 2559 } else { 2560 sp->hbinterval = params->spp_hbinterval; 2561 } 2562 } 2563 } 2564 2565 if (hb_change) { 2566 if (trans) { 2567 trans->param_flags = 2568 (trans->param_flags & ~SPP_HB) | hb_change; 2569 } else if (asoc) { 2570 asoc->param_flags = 2571 (asoc->param_flags & ~SPP_HB) | hb_change; 2572 } else { 2573 sp->param_flags = 2574 (sp->param_flags & ~SPP_HB) | hb_change; 2575 } 2576 } 2577 2578 /* When Path MTU discovery is disabled the value specified here will 2579 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2580 * include the flag SPP_PMTUD_DISABLE for this field to have any 2581 * effect). 2582 */ 2583 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2584 if (trans) { 2585 trans->pathmtu = params->spp_pathmtu; 2586 sctp_assoc_sync_pmtu(asoc); 2587 } else if (asoc) { 2588 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2589 } else { 2590 sp->pathmtu = params->spp_pathmtu; 2591 } 2592 } 2593 2594 if (pmtud_change) { 2595 if (trans) { 2596 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2597 (params->spp_flags & SPP_PMTUD_ENABLE); 2598 trans->param_flags = 2599 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2600 if (update) { 2601 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2602 sctp_assoc_sync_pmtu(asoc); 2603 } 2604 } else if (asoc) { 2605 asoc->param_flags = 2606 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2607 } else { 2608 sp->param_flags = 2609 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2610 } 2611 } 2612 2613 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2614 * value of this field is ignored. Note also that a value of zero 2615 * indicates the current setting should be left unchanged. 2616 */ 2617 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2618 if (trans) { 2619 trans->sackdelay = 2620 msecs_to_jiffies(params->spp_sackdelay); 2621 } else if (asoc) { 2622 asoc->sackdelay = 2623 msecs_to_jiffies(params->spp_sackdelay); 2624 } else { 2625 sp->sackdelay = params->spp_sackdelay; 2626 } 2627 } 2628 2629 if (sackdelay_change) { 2630 if (trans) { 2631 trans->param_flags = 2632 (trans->param_flags & ~SPP_SACKDELAY) | 2633 sackdelay_change; 2634 } else if (asoc) { 2635 asoc->param_flags = 2636 (asoc->param_flags & ~SPP_SACKDELAY) | 2637 sackdelay_change; 2638 } else { 2639 sp->param_flags = 2640 (sp->param_flags & ~SPP_SACKDELAY) | 2641 sackdelay_change; 2642 } 2643 } 2644 2645 /* Note that a value of zero indicates the current setting should be 2646 left unchanged. 2647 */ 2648 if (params->spp_pathmaxrxt) { 2649 if (trans) { 2650 trans->pathmaxrxt = params->spp_pathmaxrxt; 2651 } else if (asoc) { 2652 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2653 } else { 2654 sp->pathmaxrxt = params->spp_pathmaxrxt; 2655 } 2656 } 2657 2658 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2659 if (trans) { 2660 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2661 trans->flowlabel = params->spp_ipv6_flowlabel & 2662 SCTP_FLOWLABEL_VAL_MASK; 2663 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2664 } 2665 } else if (asoc) { 2666 struct sctp_transport *t; 2667 2668 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2669 transports) { 2670 if (t->ipaddr.sa.sa_family != AF_INET6) 2671 continue; 2672 t->flowlabel = params->spp_ipv6_flowlabel & 2673 SCTP_FLOWLABEL_VAL_MASK; 2674 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2675 } 2676 asoc->flowlabel = params->spp_ipv6_flowlabel & 2677 SCTP_FLOWLABEL_VAL_MASK; 2678 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2679 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2680 sp->flowlabel = params->spp_ipv6_flowlabel & 2681 SCTP_FLOWLABEL_VAL_MASK; 2682 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2683 } 2684 } 2685 2686 if (params->spp_flags & SPP_DSCP) { 2687 if (trans) { 2688 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2689 trans->dscp |= SCTP_DSCP_SET_MASK; 2690 } else if (asoc) { 2691 struct sctp_transport *t; 2692 2693 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2694 transports) { 2695 t->dscp = params->spp_dscp & 2696 SCTP_DSCP_VAL_MASK; 2697 t->dscp |= SCTP_DSCP_SET_MASK; 2698 } 2699 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2700 asoc->dscp |= SCTP_DSCP_SET_MASK; 2701 } else { 2702 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2703 sp->dscp |= SCTP_DSCP_SET_MASK; 2704 } 2705 } 2706 2707 return 0; 2708 } 2709 2710 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2711 char __user *optval, 2712 unsigned int optlen) 2713 { 2714 struct sctp_paddrparams params; 2715 struct sctp_transport *trans = NULL; 2716 struct sctp_association *asoc = NULL; 2717 struct sctp_sock *sp = sctp_sk(sk); 2718 int error; 2719 int hb_change, pmtud_change, sackdelay_change; 2720 2721 if (optlen == sizeof(params)) { 2722 if (copy_from_user(¶ms, optval, optlen)) 2723 return -EFAULT; 2724 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2725 spp_ipv6_flowlabel), 4)) { 2726 if (copy_from_user(¶ms, optval, optlen)) 2727 return -EFAULT; 2728 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2729 return -EINVAL; 2730 } else { 2731 return -EINVAL; 2732 } 2733 2734 /* Validate flags and value parameters. */ 2735 hb_change = params.spp_flags & SPP_HB; 2736 pmtud_change = params.spp_flags & SPP_PMTUD; 2737 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2738 2739 if (hb_change == SPP_HB || 2740 pmtud_change == SPP_PMTUD || 2741 sackdelay_change == SPP_SACKDELAY || 2742 params.spp_sackdelay > 500 || 2743 (params.spp_pathmtu && 2744 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2745 return -EINVAL; 2746 2747 /* If an address other than INADDR_ANY is specified, and 2748 * no transport is found, then the request is invalid. 2749 */ 2750 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2751 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2752 params.spp_assoc_id); 2753 if (!trans) 2754 return -EINVAL; 2755 } 2756 2757 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2758 * socket is a one to many style socket, and an association 2759 * was not found, then the id was invalid. 2760 */ 2761 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2762 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2763 sctp_style(sk, UDP)) 2764 return -EINVAL; 2765 2766 /* Heartbeat demand can only be sent on a transport or 2767 * association, but not a socket. 2768 */ 2769 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2770 return -EINVAL; 2771 2772 /* Process parameters. */ 2773 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2774 hb_change, pmtud_change, 2775 sackdelay_change); 2776 2777 if (error) 2778 return error; 2779 2780 /* If changes are for association, also apply parameters to each 2781 * transport. 2782 */ 2783 if (!trans && asoc) { 2784 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2785 transports) { 2786 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2787 hb_change, pmtud_change, 2788 sackdelay_change); 2789 } 2790 } 2791 2792 return 0; 2793 } 2794 2795 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2796 { 2797 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2798 } 2799 2800 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2801 { 2802 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2803 } 2804 2805 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2806 struct sctp_association *asoc) 2807 { 2808 struct sctp_transport *trans; 2809 2810 if (params->sack_delay) { 2811 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2812 asoc->param_flags = 2813 sctp_spp_sackdelay_enable(asoc->param_flags); 2814 } 2815 if (params->sack_freq == 1) { 2816 asoc->param_flags = 2817 sctp_spp_sackdelay_disable(asoc->param_flags); 2818 } else if (params->sack_freq > 1) { 2819 asoc->sackfreq = params->sack_freq; 2820 asoc->param_flags = 2821 sctp_spp_sackdelay_enable(asoc->param_flags); 2822 } 2823 2824 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2825 transports) { 2826 if (params->sack_delay) { 2827 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2828 trans->param_flags = 2829 sctp_spp_sackdelay_enable(trans->param_flags); 2830 } 2831 if (params->sack_freq == 1) { 2832 trans->param_flags = 2833 sctp_spp_sackdelay_disable(trans->param_flags); 2834 } else if (params->sack_freq > 1) { 2835 trans->sackfreq = params->sack_freq; 2836 trans->param_flags = 2837 sctp_spp_sackdelay_enable(trans->param_flags); 2838 } 2839 } 2840 } 2841 2842 /* 2843 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2844 * 2845 * This option will effect the way delayed acks are performed. This 2846 * option allows you to get or set the delayed ack time, in 2847 * milliseconds. It also allows changing the delayed ack frequency. 2848 * Changing the frequency to 1 disables the delayed sack algorithm. If 2849 * the assoc_id is 0, then this sets or gets the endpoints default 2850 * values. If the assoc_id field is non-zero, then the set or get 2851 * effects the specified association for the one to many model (the 2852 * assoc_id field is ignored by the one to one model). Note that if 2853 * sack_delay or sack_freq are 0 when setting this option, then the 2854 * current values will remain unchanged. 2855 * 2856 * struct sctp_sack_info { 2857 * sctp_assoc_t sack_assoc_id; 2858 * uint32_t sack_delay; 2859 * uint32_t sack_freq; 2860 * }; 2861 * 2862 * sack_assoc_id - This parameter, indicates which association the user 2863 * is performing an action upon. Note that if this field's value is 2864 * zero then the endpoints default value is changed (effecting future 2865 * associations only). 2866 * 2867 * sack_delay - This parameter contains the number of milliseconds that 2868 * the user is requesting the delayed ACK timer be set to. Note that 2869 * this value is defined in the standard to be between 200 and 500 2870 * milliseconds. 2871 * 2872 * sack_freq - This parameter contains the number of packets that must 2873 * be received before a sack is sent without waiting for the delay 2874 * timer to expire. The default value for this is 2, setting this 2875 * value to 1 will disable the delayed sack algorithm. 2876 */ 2877 2878 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2879 char __user *optval, unsigned int optlen) 2880 { 2881 struct sctp_sock *sp = sctp_sk(sk); 2882 struct sctp_association *asoc; 2883 struct sctp_sack_info params; 2884 2885 if (optlen == sizeof(struct sctp_sack_info)) { 2886 if (copy_from_user(¶ms, optval, optlen)) 2887 return -EFAULT; 2888 2889 if (params.sack_delay == 0 && params.sack_freq == 0) 2890 return 0; 2891 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2892 pr_warn_ratelimited(DEPRECATED 2893 "%s (pid %d) " 2894 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2895 "Use struct sctp_sack_info instead\n", 2896 current->comm, task_pid_nr(current)); 2897 if (copy_from_user(¶ms, optval, optlen)) 2898 return -EFAULT; 2899 2900 if (params.sack_delay == 0) 2901 params.sack_freq = 1; 2902 else 2903 params.sack_freq = 0; 2904 } else 2905 return -EINVAL; 2906 2907 /* Validate value parameter. */ 2908 if (params.sack_delay > 500) 2909 return -EINVAL; 2910 2911 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2912 * socket is a one to many style socket, and an association 2913 * was not found, then the id was invalid. 2914 */ 2915 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2916 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2917 sctp_style(sk, UDP)) 2918 return -EINVAL; 2919 2920 if (asoc) { 2921 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2922 2923 return 0; 2924 } 2925 2926 if (sctp_style(sk, TCP)) 2927 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2928 2929 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2930 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2931 if (params.sack_delay) { 2932 sp->sackdelay = params.sack_delay; 2933 sp->param_flags = 2934 sctp_spp_sackdelay_enable(sp->param_flags); 2935 } 2936 if (params.sack_freq == 1) { 2937 sp->param_flags = 2938 sctp_spp_sackdelay_disable(sp->param_flags); 2939 } else if (params.sack_freq > 1) { 2940 sp->sackfreq = params.sack_freq; 2941 sp->param_flags = 2942 sctp_spp_sackdelay_enable(sp->param_flags); 2943 } 2944 } 2945 2946 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2947 params.sack_assoc_id == SCTP_ALL_ASSOC) 2948 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2949 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2950 2951 return 0; 2952 } 2953 2954 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2955 * 2956 * Applications can specify protocol parameters for the default association 2957 * initialization. The option name argument to setsockopt() and getsockopt() 2958 * is SCTP_INITMSG. 2959 * 2960 * Setting initialization parameters is effective only on an unconnected 2961 * socket (for UDP-style sockets only future associations are effected 2962 * by the change). With TCP-style sockets, this option is inherited by 2963 * sockets derived from a listener socket. 2964 */ 2965 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2966 { 2967 struct sctp_initmsg sinit; 2968 struct sctp_sock *sp = sctp_sk(sk); 2969 2970 if (optlen != sizeof(struct sctp_initmsg)) 2971 return -EINVAL; 2972 if (copy_from_user(&sinit, optval, optlen)) 2973 return -EFAULT; 2974 2975 if (sinit.sinit_num_ostreams) 2976 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2977 if (sinit.sinit_max_instreams) 2978 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2979 if (sinit.sinit_max_attempts) 2980 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2981 if (sinit.sinit_max_init_timeo) 2982 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2983 2984 return 0; 2985 } 2986 2987 /* 2988 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2989 * 2990 * Applications that wish to use the sendto() system call may wish to 2991 * specify a default set of parameters that would normally be supplied 2992 * through the inclusion of ancillary data. This socket option allows 2993 * such an application to set the default sctp_sndrcvinfo structure. 2994 * The application that wishes to use this socket option simply passes 2995 * in to this call the sctp_sndrcvinfo structure defined in Section 2996 * 5.2.2) The input parameters accepted by this call include 2997 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2998 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2999 * to this call if the caller is using the UDP model. 3000 */ 3001 static int sctp_setsockopt_default_send_param(struct sock *sk, 3002 char __user *optval, 3003 unsigned int optlen) 3004 { 3005 struct sctp_sock *sp = sctp_sk(sk); 3006 struct sctp_association *asoc; 3007 struct sctp_sndrcvinfo info; 3008 3009 if (optlen != sizeof(info)) 3010 return -EINVAL; 3011 if (copy_from_user(&info, optval, optlen)) 3012 return -EFAULT; 3013 if (info.sinfo_flags & 3014 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3015 SCTP_ABORT | SCTP_EOF)) 3016 return -EINVAL; 3017 3018 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3019 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3020 sctp_style(sk, UDP)) 3021 return -EINVAL; 3022 3023 if (asoc) { 3024 asoc->default_stream = info.sinfo_stream; 3025 asoc->default_flags = info.sinfo_flags; 3026 asoc->default_ppid = info.sinfo_ppid; 3027 asoc->default_context = info.sinfo_context; 3028 asoc->default_timetolive = info.sinfo_timetolive; 3029 3030 return 0; 3031 } 3032 3033 if (sctp_style(sk, TCP)) 3034 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3035 3036 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3037 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3038 sp->default_stream = info.sinfo_stream; 3039 sp->default_flags = info.sinfo_flags; 3040 sp->default_ppid = info.sinfo_ppid; 3041 sp->default_context = info.sinfo_context; 3042 sp->default_timetolive = info.sinfo_timetolive; 3043 } 3044 3045 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3046 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3047 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3048 asoc->default_stream = info.sinfo_stream; 3049 asoc->default_flags = info.sinfo_flags; 3050 asoc->default_ppid = info.sinfo_ppid; 3051 asoc->default_context = info.sinfo_context; 3052 asoc->default_timetolive = info.sinfo_timetolive; 3053 } 3054 } 3055 3056 return 0; 3057 } 3058 3059 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3060 * (SCTP_DEFAULT_SNDINFO) 3061 */ 3062 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3063 char __user *optval, 3064 unsigned int optlen) 3065 { 3066 struct sctp_sock *sp = sctp_sk(sk); 3067 struct sctp_association *asoc; 3068 struct sctp_sndinfo info; 3069 3070 if (optlen != sizeof(info)) 3071 return -EINVAL; 3072 if (copy_from_user(&info, optval, optlen)) 3073 return -EFAULT; 3074 if (info.snd_flags & 3075 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3076 SCTP_ABORT | SCTP_EOF)) 3077 return -EINVAL; 3078 3079 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3080 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3081 sctp_style(sk, UDP)) 3082 return -EINVAL; 3083 3084 if (asoc) { 3085 asoc->default_stream = info.snd_sid; 3086 asoc->default_flags = info.snd_flags; 3087 asoc->default_ppid = info.snd_ppid; 3088 asoc->default_context = info.snd_context; 3089 3090 return 0; 3091 } 3092 3093 if (sctp_style(sk, TCP)) 3094 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3095 3096 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3097 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3098 sp->default_stream = info.snd_sid; 3099 sp->default_flags = info.snd_flags; 3100 sp->default_ppid = info.snd_ppid; 3101 sp->default_context = info.snd_context; 3102 } 3103 3104 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3105 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3106 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3107 asoc->default_stream = info.snd_sid; 3108 asoc->default_flags = info.snd_flags; 3109 asoc->default_ppid = info.snd_ppid; 3110 asoc->default_context = info.snd_context; 3111 } 3112 } 3113 3114 return 0; 3115 } 3116 3117 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3118 * 3119 * Requests that the local SCTP stack use the enclosed peer address as 3120 * the association primary. The enclosed address must be one of the 3121 * association peer's addresses. 3122 */ 3123 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3124 unsigned int optlen) 3125 { 3126 struct sctp_prim prim; 3127 struct sctp_transport *trans; 3128 struct sctp_af *af; 3129 int err; 3130 3131 if (optlen != sizeof(struct sctp_prim)) 3132 return -EINVAL; 3133 3134 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3135 return -EFAULT; 3136 3137 /* Allow security module to validate address but need address len. */ 3138 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3139 if (!af) 3140 return -EINVAL; 3141 3142 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3143 (struct sockaddr *)&prim.ssp_addr, 3144 af->sockaddr_len); 3145 if (err) 3146 return err; 3147 3148 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3149 if (!trans) 3150 return -EINVAL; 3151 3152 sctp_assoc_set_primary(trans->asoc, trans); 3153 3154 return 0; 3155 } 3156 3157 /* 3158 * 7.1.5 SCTP_NODELAY 3159 * 3160 * Turn on/off any Nagle-like algorithm. This means that packets are 3161 * generally sent as soon as possible and no unnecessary delays are 3162 * introduced, at the cost of more packets in the network. Expects an 3163 * integer boolean flag. 3164 */ 3165 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3166 unsigned int optlen) 3167 { 3168 int val; 3169 3170 if (optlen < sizeof(int)) 3171 return -EINVAL; 3172 if (get_user(val, (int __user *)optval)) 3173 return -EFAULT; 3174 3175 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3176 return 0; 3177 } 3178 3179 /* 3180 * 3181 * 7.1.1 SCTP_RTOINFO 3182 * 3183 * The protocol parameters used to initialize and bound retransmission 3184 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3185 * and modify these parameters. 3186 * All parameters are time values, in milliseconds. A value of 0, when 3187 * modifying the parameters, indicates that the current value should not 3188 * be changed. 3189 * 3190 */ 3191 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3192 { 3193 struct sctp_rtoinfo rtoinfo; 3194 struct sctp_association *asoc; 3195 unsigned long rto_min, rto_max; 3196 struct sctp_sock *sp = sctp_sk(sk); 3197 3198 if (optlen != sizeof (struct sctp_rtoinfo)) 3199 return -EINVAL; 3200 3201 if (copy_from_user(&rtoinfo, optval, optlen)) 3202 return -EFAULT; 3203 3204 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3205 3206 /* Set the values to the specific association */ 3207 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3208 sctp_style(sk, UDP)) 3209 return -EINVAL; 3210 3211 rto_max = rtoinfo.srto_max; 3212 rto_min = rtoinfo.srto_min; 3213 3214 if (rto_max) 3215 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3216 else 3217 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3218 3219 if (rto_min) 3220 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3221 else 3222 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3223 3224 if (rto_min > rto_max) 3225 return -EINVAL; 3226 3227 if (asoc) { 3228 if (rtoinfo.srto_initial != 0) 3229 asoc->rto_initial = 3230 msecs_to_jiffies(rtoinfo.srto_initial); 3231 asoc->rto_max = rto_max; 3232 asoc->rto_min = rto_min; 3233 } else { 3234 /* If there is no association or the association-id = 0 3235 * set the values to the endpoint. 3236 */ 3237 if (rtoinfo.srto_initial != 0) 3238 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3239 sp->rtoinfo.srto_max = rto_max; 3240 sp->rtoinfo.srto_min = rto_min; 3241 } 3242 3243 return 0; 3244 } 3245 3246 /* 3247 * 3248 * 7.1.2 SCTP_ASSOCINFO 3249 * 3250 * This option is used to tune the maximum retransmission attempts 3251 * of the association. 3252 * Returns an error if the new association retransmission value is 3253 * greater than the sum of the retransmission value of the peer. 3254 * See [SCTP] for more information. 3255 * 3256 */ 3257 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3258 { 3259 3260 struct sctp_assocparams assocparams; 3261 struct sctp_association *asoc; 3262 3263 if (optlen != sizeof(struct sctp_assocparams)) 3264 return -EINVAL; 3265 if (copy_from_user(&assocparams, optval, optlen)) 3266 return -EFAULT; 3267 3268 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3269 3270 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3271 sctp_style(sk, UDP)) 3272 return -EINVAL; 3273 3274 /* Set the values to the specific association */ 3275 if (asoc) { 3276 if (assocparams.sasoc_asocmaxrxt != 0) { 3277 __u32 path_sum = 0; 3278 int paths = 0; 3279 struct sctp_transport *peer_addr; 3280 3281 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3282 transports) { 3283 path_sum += peer_addr->pathmaxrxt; 3284 paths++; 3285 } 3286 3287 /* Only validate asocmaxrxt if we have more than 3288 * one path/transport. We do this because path 3289 * retransmissions are only counted when we have more 3290 * then one path. 3291 */ 3292 if (paths > 1 && 3293 assocparams.sasoc_asocmaxrxt > path_sum) 3294 return -EINVAL; 3295 3296 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3297 } 3298 3299 if (assocparams.sasoc_cookie_life != 0) 3300 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3301 } else { 3302 /* Set the values to the endpoint */ 3303 struct sctp_sock *sp = sctp_sk(sk); 3304 3305 if (assocparams.sasoc_asocmaxrxt != 0) 3306 sp->assocparams.sasoc_asocmaxrxt = 3307 assocparams.sasoc_asocmaxrxt; 3308 if (assocparams.sasoc_cookie_life != 0) 3309 sp->assocparams.sasoc_cookie_life = 3310 assocparams.sasoc_cookie_life; 3311 } 3312 return 0; 3313 } 3314 3315 /* 3316 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3317 * 3318 * This socket option is a boolean flag which turns on or off mapped V4 3319 * addresses. If this option is turned on and the socket is type 3320 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3321 * If this option is turned off, then no mapping will be done of V4 3322 * addresses and a user will receive both PF_INET6 and PF_INET type 3323 * addresses on the socket. 3324 */ 3325 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3326 { 3327 int val; 3328 struct sctp_sock *sp = sctp_sk(sk); 3329 3330 if (optlen < sizeof(int)) 3331 return -EINVAL; 3332 if (get_user(val, (int __user *)optval)) 3333 return -EFAULT; 3334 if (val) 3335 sp->v4mapped = 1; 3336 else 3337 sp->v4mapped = 0; 3338 3339 return 0; 3340 } 3341 3342 /* 3343 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3344 * This option will get or set the maximum size to put in any outgoing 3345 * SCTP DATA chunk. If a message is larger than this size it will be 3346 * fragmented by SCTP into the specified size. Note that the underlying 3347 * SCTP implementation may fragment into smaller sized chunks when the 3348 * PMTU of the underlying association is smaller than the value set by 3349 * the user. The default value for this option is '0' which indicates 3350 * the user is NOT limiting fragmentation and only the PMTU will effect 3351 * SCTP's choice of DATA chunk size. Note also that values set larger 3352 * than the maximum size of an IP datagram will effectively let SCTP 3353 * control fragmentation (i.e. the same as setting this option to 0). 3354 * 3355 * The following structure is used to access and modify this parameter: 3356 * 3357 * struct sctp_assoc_value { 3358 * sctp_assoc_t assoc_id; 3359 * uint32_t assoc_value; 3360 * }; 3361 * 3362 * assoc_id: This parameter is ignored for one-to-one style sockets. 3363 * For one-to-many style sockets this parameter indicates which 3364 * association the user is performing an action upon. Note that if 3365 * this field's value is zero then the endpoints default value is 3366 * changed (effecting future associations only). 3367 * assoc_value: This parameter specifies the maximum size in bytes. 3368 */ 3369 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3370 { 3371 struct sctp_sock *sp = sctp_sk(sk); 3372 struct sctp_assoc_value params; 3373 struct sctp_association *asoc; 3374 int val; 3375 3376 if (optlen == sizeof(int)) { 3377 pr_warn_ratelimited(DEPRECATED 3378 "%s (pid %d) " 3379 "Use of int in maxseg socket option.\n" 3380 "Use struct sctp_assoc_value instead\n", 3381 current->comm, task_pid_nr(current)); 3382 if (copy_from_user(&val, optval, optlen)) 3383 return -EFAULT; 3384 params.assoc_id = SCTP_FUTURE_ASSOC; 3385 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3386 if (copy_from_user(¶ms, optval, optlen)) 3387 return -EFAULT; 3388 val = params.assoc_value; 3389 } else { 3390 return -EINVAL; 3391 } 3392 3393 asoc = sctp_id2assoc(sk, params.assoc_id); 3394 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3395 sctp_style(sk, UDP)) 3396 return -EINVAL; 3397 3398 if (val) { 3399 int min_len, max_len; 3400 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3401 sizeof(struct sctp_data_chunk); 3402 3403 min_len = sctp_min_frag_point(sp, datasize); 3404 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3405 3406 if (val < min_len || val > max_len) 3407 return -EINVAL; 3408 } 3409 3410 if (asoc) { 3411 asoc->user_frag = val; 3412 sctp_assoc_update_frag_point(asoc); 3413 } else { 3414 sp->user_frag = val; 3415 } 3416 3417 return 0; 3418 } 3419 3420 3421 /* 3422 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3423 * 3424 * Requests that the peer mark the enclosed address as the association 3425 * primary. The enclosed address must be one of the association's 3426 * locally bound addresses. The following structure is used to make a 3427 * set primary request: 3428 */ 3429 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3430 unsigned int optlen) 3431 { 3432 struct net *net = sock_net(sk); 3433 struct sctp_sock *sp; 3434 struct sctp_association *asoc = NULL; 3435 struct sctp_setpeerprim prim; 3436 struct sctp_chunk *chunk; 3437 struct sctp_af *af; 3438 int err; 3439 3440 sp = sctp_sk(sk); 3441 3442 if (!net->sctp.addip_enable) 3443 return -EPERM; 3444 3445 if (optlen != sizeof(struct sctp_setpeerprim)) 3446 return -EINVAL; 3447 3448 if (copy_from_user(&prim, optval, optlen)) 3449 return -EFAULT; 3450 3451 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3452 if (!asoc) 3453 return -EINVAL; 3454 3455 if (!asoc->peer.asconf_capable) 3456 return -EPERM; 3457 3458 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3459 return -EPERM; 3460 3461 if (!sctp_state(asoc, ESTABLISHED)) 3462 return -ENOTCONN; 3463 3464 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3465 if (!af) 3466 return -EINVAL; 3467 3468 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3469 return -EADDRNOTAVAIL; 3470 3471 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3472 return -EADDRNOTAVAIL; 3473 3474 /* Allow security module to validate address. */ 3475 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3476 (struct sockaddr *)&prim.sspp_addr, 3477 af->sockaddr_len); 3478 if (err) 3479 return err; 3480 3481 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3482 chunk = sctp_make_asconf_set_prim(asoc, 3483 (union sctp_addr *)&prim.sspp_addr); 3484 if (!chunk) 3485 return -ENOMEM; 3486 3487 err = sctp_send_asconf(asoc, chunk); 3488 3489 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3490 3491 return err; 3492 } 3493 3494 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3495 unsigned int optlen) 3496 { 3497 struct sctp_setadaptation adaptation; 3498 3499 if (optlen != sizeof(struct sctp_setadaptation)) 3500 return -EINVAL; 3501 if (copy_from_user(&adaptation, optval, optlen)) 3502 return -EFAULT; 3503 3504 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3505 3506 return 0; 3507 } 3508 3509 /* 3510 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3511 * 3512 * The context field in the sctp_sndrcvinfo structure is normally only 3513 * used when a failed message is retrieved holding the value that was 3514 * sent down on the actual send call. This option allows the setting of 3515 * a default context on an association basis that will be received on 3516 * reading messages from the peer. This is especially helpful in the 3517 * one-2-many model for an application to keep some reference to an 3518 * internal state machine that is processing messages on the 3519 * association. Note that the setting of this value only effects 3520 * received messages from the peer and does not effect the value that is 3521 * saved with outbound messages. 3522 */ 3523 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3524 unsigned int optlen) 3525 { 3526 struct sctp_sock *sp = sctp_sk(sk); 3527 struct sctp_assoc_value params; 3528 struct sctp_association *asoc; 3529 3530 if (optlen != sizeof(struct sctp_assoc_value)) 3531 return -EINVAL; 3532 if (copy_from_user(¶ms, optval, optlen)) 3533 return -EFAULT; 3534 3535 asoc = sctp_id2assoc(sk, params.assoc_id); 3536 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3537 sctp_style(sk, UDP)) 3538 return -EINVAL; 3539 3540 if (asoc) { 3541 asoc->default_rcv_context = params.assoc_value; 3542 3543 return 0; 3544 } 3545 3546 if (sctp_style(sk, TCP)) 3547 params.assoc_id = SCTP_FUTURE_ASSOC; 3548 3549 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3550 params.assoc_id == SCTP_ALL_ASSOC) 3551 sp->default_rcv_context = params.assoc_value; 3552 3553 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3554 params.assoc_id == SCTP_ALL_ASSOC) 3555 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3556 asoc->default_rcv_context = params.assoc_value; 3557 3558 return 0; 3559 } 3560 3561 /* 3562 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3563 * 3564 * This options will at a minimum specify if the implementation is doing 3565 * fragmented interleave. Fragmented interleave, for a one to many 3566 * socket, is when subsequent calls to receive a message may return 3567 * parts of messages from different associations. Some implementations 3568 * may allow you to turn this value on or off. If so, when turned off, 3569 * no fragment interleave will occur (which will cause a head of line 3570 * blocking amongst multiple associations sharing the same one to many 3571 * socket). When this option is turned on, then each receive call may 3572 * come from a different association (thus the user must receive data 3573 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3574 * association each receive belongs to. 3575 * 3576 * This option takes a boolean value. A non-zero value indicates that 3577 * fragmented interleave is on. A value of zero indicates that 3578 * fragmented interleave is off. 3579 * 3580 * Note that it is important that an implementation that allows this 3581 * option to be turned on, have it off by default. Otherwise an unaware 3582 * application using the one to many model may become confused and act 3583 * incorrectly. 3584 */ 3585 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3586 char __user *optval, 3587 unsigned int optlen) 3588 { 3589 int val; 3590 3591 if (optlen != sizeof(int)) 3592 return -EINVAL; 3593 if (get_user(val, (int __user *)optval)) 3594 return -EFAULT; 3595 3596 sctp_sk(sk)->frag_interleave = !!val; 3597 3598 if (!sctp_sk(sk)->frag_interleave) 3599 sctp_sk(sk)->strm_interleave = 0; 3600 3601 return 0; 3602 } 3603 3604 /* 3605 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3606 * (SCTP_PARTIAL_DELIVERY_POINT) 3607 * 3608 * This option will set or get the SCTP partial delivery point. This 3609 * point is the size of a message where the partial delivery API will be 3610 * invoked to help free up rwnd space for the peer. Setting this to a 3611 * lower value will cause partial deliveries to happen more often. The 3612 * calls argument is an integer that sets or gets the partial delivery 3613 * point. Note also that the call will fail if the user attempts to set 3614 * this value larger than the socket receive buffer size. 3615 * 3616 * Note that any single message having a length smaller than or equal to 3617 * the SCTP partial delivery point will be delivered in one single read 3618 * call as long as the user provided buffer is large enough to hold the 3619 * message. 3620 */ 3621 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3622 char __user *optval, 3623 unsigned int optlen) 3624 { 3625 u32 val; 3626 3627 if (optlen != sizeof(u32)) 3628 return -EINVAL; 3629 if (get_user(val, (int __user *)optval)) 3630 return -EFAULT; 3631 3632 /* Note: We double the receive buffer from what the user sets 3633 * it to be, also initial rwnd is based on rcvbuf/2. 3634 */ 3635 if (val > (sk->sk_rcvbuf >> 1)) 3636 return -EINVAL; 3637 3638 sctp_sk(sk)->pd_point = val; 3639 3640 return 0; /* is this the right error code? */ 3641 } 3642 3643 /* 3644 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3645 * 3646 * This option will allow a user to change the maximum burst of packets 3647 * that can be emitted by this association. Note that the default value 3648 * is 4, and some implementations may restrict this setting so that it 3649 * can only be lowered. 3650 * 3651 * NOTE: This text doesn't seem right. Do this on a socket basis with 3652 * future associations inheriting the socket value. 3653 */ 3654 static int sctp_setsockopt_maxburst(struct sock *sk, 3655 char __user *optval, 3656 unsigned int optlen) 3657 { 3658 struct sctp_sock *sp = sctp_sk(sk); 3659 struct sctp_assoc_value params; 3660 struct sctp_association *asoc; 3661 3662 if (optlen == sizeof(int)) { 3663 pr_warn_ratelimited(DEPRECATED 3664 "%s (pid %d) " 3665 "Use of int in max_burst socket option deprecated.\n" 3666 "Use struct sctp_assoc_value instead\n", 3667 current->comm, task_pid_nr(current)); 3668 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3669 return -EFAULT; 3670 params.assoc_id = SCTP_FUTURE_ASSOC; 3671 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3672 if (copy_from_user(¶ms, optval, optlen)) 3673 return -EFAULT; 3674 } else 3675 return -EINVAL; 3676 3677 asoc = sctp_id2assoc(sk, params.assoc_id); 3678 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3679 sctp_style(sk, UDP)) 3680 return -EINVAL; 3681 3682 if (asoc) { 3683 asoc->max_burst = params.assoc_value; 3684 3685 return 0; 3686 } 3687 3688 if (sctp_style(sk, TCP)) 3689 params.assoc_id = SCTP_FUTURE_ASSOC; 3690 3691 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3692 params.assoc_id == SCTP_ALL_ASSOC) 3693 sp->max_burst = params.assoc_value; 3694 3695 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3696 params.assoc_id == SCTP_ALL_ASSOC) 3697 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3698 asoc->max_burst = params.assoc_value; 3699 3700 return 0; 3701 } 3702 3703 /* 3704 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3705 * 3706 * This set option adds a chunk type that the user is requesting to be 3707 * received only in an authenticated way. Changes to the list of chunks 3708 * will only effect future associations on the socket. 3709 */ 3710 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3711 char __user *optval, 3712 unsigned int optlen) 3713 { 3714 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3715 struct sctp_authchunk val; 3716 3717 if (!ep->auth_enable) 3718 return -EACCES; 3719 3720 if (optlen != sizeof(struct sctp_authchunk)) 3721 return -EINVAL; 3722 if (copy_from_user(&val, optval, optlen)) 3723 return -EFAULT; 3724 3725 switch (val.sauth_chunk) { 3726 case SCTP_CID_INIT: 3727 case SCTP_CID_INIT_ACK: 3728 case SCTP_CID_SHUTDOWN_COMPLETE: 3729 case SCTP_CID_AUTH: 3730 return -EINVAL; 3731 } 3732 3733 /* add this chunk id to the endpoint */ 3734 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3735 } 3736 3737 /* 3738 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3739 * 3740 * This option gets or sets the list of HMAC algorithms that the local 3741 * endpoint requires the peer to use. 3742 */ 3743 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3744 char __user *optval, 3745 unsigned int optlen) 3746 { 3747 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3748 struct sctp_hmacalgo *hmacs; 3749 u32 idents; 3750 int err; 3751 3752 if (!ep->auth_enable) 3753 return -EACCES; 3754 3755 if (optlen < sizeof(struct sctp_hmacalgo)) 3756 return -EINVAL; 3757 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3758 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3759 3760 hmacs = memdup_user(optval, optlen); 3761 if (IS_ERR(hmacs)) 3762 return PTR_ERR(hmacs); 3763 3764 idents = hmacs->shmac_num_idents; 3765 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3766 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3767 err = -EINVAL; 3768 goto out; 3769 } 3770 3771 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3772 out: 3773 kfree(hmacs); 3774 return err; 3775 } 3776 3777 /* 3778 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3779 * 3780 * This option will set a shared secret key which is used to build an 3781 * association shared key. 3782 */ 3783 static int sctp_setsockopt_auth_key(struct sock *sk, 3784 char __user *optval, 3785 unsigned int optlen) 3786 { 3787 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3788 struct sctp_authkey *authkey; 3789 struct sctp_association *asoc; 3790 int ret = -EINVAL; 3791 3792 if (!ep->auth_enable) 3793 return -EACCES; 3794 3795 if (optlen <= sizeof(struct sctp_authkey)) 3796 return -EINVAL; 3797 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3798 * this. 3799 */ 3800 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3801 3802 authkey = memdup_user(optval, optlen); 3803 if (IS_ERR(authkey)) 3804 return PTR_ERR(authkey); 3805 3806 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3807 goto out; 3808 3809 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3810 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3811 sctp_style(sk, UDP)) 3812 goto out; 3813 3814 if (asoc) { 3815 ret = sctp_auth_set_key(ep, asoc, authkey); 3816 goto out; 3817 } 3818 3819 if (sctp_style(sk, TCP)) 3820 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3821 3822 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3823 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3824 ret = sctp_auth_set_key(ep, asoc, authkey); 3825 if (ret) 3826 goto out; 3827 } 3828 3829 ret = 0; 3830 3831 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3832 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3833 list_for_each_entry(asoc, &ep->asocs, asocs) { 3834 int res = sctp_auth_set_key(ep, asoc, authkey); 3835 3836 if (res && !ret) 3837 ret = res; 3838 } 3839 } 3840 3841 out: 3842 kzfree(authkey); 3843 return ret; 3844 } 3845 3846 /* 3847 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3848 * 3849 * This option will get or set the active shared key to be used to build 3850 * the association shared key. 3851 */ 3852 static int sctp_setsockopt_active_key(struct sock *sk, 3853 char __user *optval, 3854 unsigned int optlen) 3855 { 3856 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3857 struct sctp_association *asoc; 3858 struct sctp_authkeyid val; 3859 int ret = 0; 3860 3861 if (!ep->auth_enable) 3862 return -EACCES; 3863 3864 if (optlen != sizeof(struct sctp_authkeyid)) 3865 return -EINVAL; 3866 if (copy_from_user(&val, optval, optlen)) 3867 return -EFAULT; 3868 3869 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3870 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3871 sctp_style(sk, UDP)) 3872 return -EINVAL; 3873 3874 if (asoc) 3875 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3876 3877 if (sctp_style(sk, TCP)) 3878 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3879 3880 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3881 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3882 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3883 if (ret) 3884 return ret; 3885 } 3886 3887 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3888 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3889 list_for_each_entry(asoc, &ep->asocs, asocs) { 3890 int res = sctp_auth_set_active_key(ep, asoc, 3891 val.scact_keynumber); 3892 3893 if (res && !ret) 3894 ret = res; 3895 } 3896 } 3897 3898 return ret; 3899 } 3900 3901 /* 3902 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3903 * 3904 * This set option will delete a shared secret key from use. 3905 */ 3906 static int sctp_setsockopt_del_key(struct sock *sk, 3907 char __user *optval, 3908 unsigned int optlen) 3909 { 3910 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3911 struct sctp_association *asoc; 3912 struct sctp_authkeyid val; 3913 int ret = 0; 3914 3915 if (!ep->auth_enable) 3916 return -EACCES; 3917 3918 if (optlen != sizeof(struct sctp_authkeyid)) 3919 return -EINVAL; 3920 if (copy_from_user(&val, optval, optlen)) 3921 return -EFAULT; 3922 3923 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3924 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3925 sctp_style(sk, UDP)) 3926 return -EINVAL; 3927 3928 if (asoc) 3929 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3930 3931 if (sctp_style(sk, TCP)) 3932 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3933 3934 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3935 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3936 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3937 if (ret) 3938 return ret; 3939 } 3940 3941 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3942 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3943 list_for_each_entry(asoc, &ep->asocs, asocs) { 3944 int res = sctp_auth_del_key_id(ep, asoc, 3945 val.scact_keynumber); 3946 3947 if (res && !ret) 3948 ret = res; 3949 } 3950 } 3951 3952 return ret; 3953 } 3954 3955 /* 3956 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3957 * 3958 * This set option will deactivate a shared secret key. 3959 */ 3960 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3961 unsigned int optlen) 3962 { 3963 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3964 struct sctp_association *asoc; 3965 struct sctp_authkeyid val; 3966 int ret = 0; 3967 3968 if (!ep->auth_enable) 3969 return -EACCES; 3970 3971 if (optlen != sizeof(struct sctp_authkeyid)) 3972 return -EINVAL; 3973 if (copy_from_user(&val, optval, optlen)) 3974 return -EFAULT; 3975 3976 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3977 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3978 sctp_style(sk, UDP)) 3979 return -EINVAL; 3980 3981 if (asoc) 3982 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3983 3984 if (sctp_style(sk, TCP)) 3985 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3986 3987 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3988 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3989 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3990 if (ret) 3991 return ret; 3992 } 3993 3994 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3995 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3996 list_for_each_entry(asoc, &ep->asocs, asocs) { 3997 int res = sctp_auth_deact_key_id(ep, asoc, 3998 val.scact_keynumber); 3999 4000 if (res && !ret) 4001 ret = res; 4002 } 4003 } 4004 4005 return ret; 4006 } 4007 4008 /* 4009 * 8.1.23 SCTP_AUTO_ASCONF 4010 * 4011 * This option will enable or disable the use of the automatic generation of 4012 * ASCONF chunks to add and delete addresses to an existing association. Note 4013 * that this option has two caveats namely: a) it only affects sockets that 4014 * are bound to all addresses available to the SCTP stack, and b) the system 4015 * administrator may have an overriding control that turns the ASCONF feature 4016 * off no matter what setting the socket option may have. 4017 * This option expects an integer boolean flag, where a non-zero value turns on 4018 * the option, and a zero value turns off the option. 4019 * Note. In this implementation, socket operation overrides default parameter 4020 * being set by sysctl as well as FreeBSD implementation 4021 */ 4022 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4023 unsigned int optlen) 4024 { 4025 int val; 4026 struct sctp_sock *sp = sctp_sk(sk); 4027 4028 if (optlen < sizeof(int)) 4029 return -EINVAL; 4030 if (get_user(val, (int __user *)optval)) 4031 return -EFAULT; 4032 if (!sctp_is_ep_boundall(sk) && val) 4033 return -EINVAL; 4034 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4035 return 0; 4036 4037 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4038 if (val == 0 && sp->do_auto_asconf) { 4039 list_del(&sp->auto_asconf_list); 4040 sp->do_auto_asconf = 0; 4041 } else if (val && !sp->do_auto_asconf) { 4042 list_add_tail(&sp->auto_asconf_list, 4043 &sock_net(sk)->sctp.auto_asconf_splist); 4044 sp->do_auto_asconf = 1; 4045 } 4046 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4047 return 0; 4048 } 4049 4050 /* 4051 * SCTP_PEER_ADDR_THLDS 4052 * 4053 * This option allows us to alter the partially failed threshold for one or all 4054 * transports in an association. See Section 6.1 of: 4055 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4056 */ 4057 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4058 char __user *optval, 4059 unsigned int optlen) 4060 { 4061 struct sctp_paddrthlds val; 4062 struct sctp_transport *trans; 4063 struct sctp_association *asoc; 4064 4065 if (optlen < sizeof(struct sctp_paddrthlds)) 4066 return -EINVAL; 4067 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4068 sizeof(struct sctp_paddrthlds))) 4069 return -EFAULT; 4070 4071 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4072 trans = sctp_addr_id2transport(sk, &val.spt_address, 4073 val.spt_assoc_id); 4074 if (!trans) 4075 return -ENOENT; 4076 4077 if (val.spt_pathmaxrxt) 4078 trans->pathmaxrxt = val.spt_pathmaxrxt; 4079 trans->pf_retrans = val.spt_pathpfthld; 4080 4081 return 0; 4082 } 4083 4084 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4085 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4086 sctp_style(sk, UDP)) 4087 return -EINVAL; 4088 4089 if (asoc) { 4090 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4091 transports) { 4092 if (val.spt_pathmaxrxt) 4093 trans->pathmaxrxt = val.spt_pathmaxrxt; 4094 trans->pf_retrans = val.spt_pathpfthld; 4095 } 4096 4097 if (val.spt_pathmaxrxt) 4098 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4099 asoc->pf_retrans = val.spt_pathpfthld; 4100 } else { 4101 struct sctp_sock *sp = sctp_sk(sk); 4102 4103 if (val.spt_pathmaxrxt) 4104 sp->pathmaxrxt = val.spt_pathmaxrxt; 4105 sp->pf_retrans = val.spt_pathpfthld; 4106 } 4107 4108 return 0; 4109 } 4110 4111 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4112 char __user *optval, 4113 unsigned int optlen) 4114 { 4115 int val; 4116 4117 if (optlen < sizeof(int)) 4118 return -EINVAL; 4119 if (get_user(val, (int __user *) optval)) 4120 return -EFAULT; 4121 4122 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4123 4124 return 0; 4125 } 4126 4127 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4128 char __user *optval, 4129 unsigned int optlen) 4130 { 4131 int val; 4132 4133 if (optlen < sizeof(int)) 4134 return -EINVAL; 4135 if (get_user(val, (int __user *) optval)) 4136 return -EFAULT; 4137 4138 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4139 4140 return 0; 4141 } 4142 4143 static int sctp_setsockopt_pr_supported(struct sock *sk, 4144 char __user *optval, 4145 unsigned int optlen) 4146 { 4147 struct sctp_assoc_value params; 4148 struct sctp_association *asoc; 4149 4150 if (optlen != sizeof(params)) 4151 return -EINVAL; 4152 4153 if (copy_from_user(¶ms, optval, optlen)) 4154 return -EFAULT; 4155 4156 asoc = sctp_id2assoc(sk, params.assoc_id); 4157 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4158 sctp_style(sk, UDP)) 4159 return -EINVAL; 4160 4161 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4162 4163 return 0; 4164 } 4165 4166 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4167 char __user *optval, 4168 unsigned int optlen) 4169 { 4170 struct sctp_sock *sp = sctp_sk(sk); 4171 struct sctp_default_prinfo info; 4172 struct sctp_association *asoc; 4173 int retval = -EINVAL; 4174 4175 if (optlen != sizeof(info)) 4176 goto out; 4177 4178 if (copy_from_user(&info, optval, sizeof(info))) { 4179 retval = -EFAULT; 4180 goto out; 4181 } 4182 4183 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4184 goto out; 4185 4186 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4187 info.pr_value = 0; 4188 4189 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4190 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4191 sctp_style(sk, UDP)) 4192 goto out; 4193 4194 retval = 0; 4195 4196 if (asoc) { 4197 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4198 asoc->default_timetolive = info.pr_value; 4199 goto out; 4200 } 4201 4202 if (sctp_style(sk, TCP)) 4203 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4204 4205 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4206 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4207 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4208 sp->default_timetolive = info.pr_value; 4209 } 4210 4211 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4212 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4213 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4214 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4215 asoc->default_timetolive = info.pr_value; 4216 } 4217 } 4218 4219 out: 4220 return retval; 4221 } 4222 4223 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4224 char __user *optval, 4225 unsigned int optlen) 4226 { 4227 struct sctp_assoc_value params; 4228 struct sctp_association *asoc; 4229 int retval = -EINVAL; 4230 4231 if (optlen != sizeof(params)) 4232 goto out; 4233 4234 if (copy_from_user(¶ms, optval, optlen)) { 4235 retval = -EFAULT; 4236 goto out; 4237 } 4238 4239 asoc = sctp_id2assoc(sk, params.assoc_id); 4240 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4241 sctp_style(sk, UDP)) 4242 goto out; 4243 4244 if (asoc) 4245 asoc->reconf_enable = !!params.assoc_value; 4246 else 4247 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4248 4249 retval = 0; 4250 4251 out: 4252 return retval; 4253 } 4254 4255 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4256 char __user *optval, 4257 unsigned int optlen) 4258 { 4259 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4260 struct sctp_assoc_value params; 4261 struct sctp_association *asoc; 4262 int retval = -EINVAL; 4263 4264 if (optlen != sizeof(params)) 4265 goto out; 4266 4267 if (copy_from_user(¶ms, optval, optlen)) { 4268 retval = -EFAULT; 4269 goto out; 4270 } 4271 4272 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4273 goto out; 4274 4275 asoc = sctp_id2assoc(sk, params.assoc_id); 4276 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4277 sctp_style(sk, UDP)) 4278 goto out; 4279 4280 retval = 0; 4281 4282 if (asoc) { 4283 asoc->strreset_enable = params.assoc_value; 4284 goto out; 4285 } 4286 4287 if (sctp_style(sk, TCP)) 4288 params.assoc_id = SCTP_FUTURE_ASSOC; 4289 4290 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4291 params.assoc_id == SCTP_ALL_ASSOC) 4292 ep->strreset_enable = params.assoc_value; 4293 4294 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4295 params.assoc_id == SCTP_ALL_ASSOC) 4296 list_for_each_entry(asoc, &ep->asocs, asocs) 4297 asoc->strreset_enable = params.assoc_value; 4298 4299 out: 4300 return retval; 4301 } 4302 4303 static int sctp_setsockopt_reset_streams(struct sock *sk, 4304 char __user *optval, 4305 unsigned int optlen) 4306 { 4307 struct sctp_reset_streams *params; 4308 struct sctp_association *asoc; 4309 int retval = -EINVAL; 4310 4311 if (optlen < sizeof(*params)) 4312 return -EINVAL; 4313 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4314 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4315 sizeof(__u16) * sizeof(*params)); 4316 4317 params = memdup_user(optval, optlen); 4318 if (IS_ERR(params)) 4319 return PTR_ERR(params); 4320 4321 if (params->srs_number_streams * sizeof(__u16) > 4322 optlen - sizeof(*params)) 4323 goto out; 4324 4325 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4326 if (!asoc) 4327 goto out; 4328 4329 retval = sctp_send_reset_streams(asoc, params); 4330 4331 out: 4332 kfree(params); 4333 return retval; 4334 } 4335 4336 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4337 char __user *optval, 4338 unsigned int optlen) 4339 { 4340 struct sctp_association *asoc; 4341 sctp_assoc_t associd; 4342 int retval = -EINVAL; 4343 4344 if (optlen != sizeof(associd)) 4345 goto out; 4346 4347 if (copy_from_user(&associd, optval, optlen)) { 4348 retval = -EFAULT; 4349 goto out; 4350 } 4351 4352 asoc = sctp_id2assoc(sk, associd); 4353 if (!asoc) 4354 goto out; 4355 4356 retval = sctp_send_reset_assoc(asoc); 4357 4358 out: 4359 return retval; 4360 } 4361 4362 static int sctp_setsockopt_add_streams(struct sock *sk, 4363 char __user *optval, 4364 unsigned int optlen) 4365 { 4366 struct sctp_association *asoc; 4367 struct sctp_add_streams params; 4368 int retval = -EINVAL; 4369 4370 if (optlen != sizeof(params)) 4371 goto out; 4372 4373 if (copy_from_user(¶ms, optval, optlen)) { 4374 retval = -EFAULT; 4375 goto out; 4376 } 4377 4378 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4379 if (!asoc) 4380 goto out; 4381 4382 retval = sctp_send_add_streams(asoc, ¶ms); 4383 4384 out: 4385 return retval; 4386 } 4387 4388 static int sctp_setsockopt_scheduler(struct sock *sk, 4389 char __user *optval, 4390 unsigned int optlen) 4391 { 4392 struct sctp_sock *sp = sctp_sk(sk); 4393 struct sctp_association *asoc; 4394 struct sctp_assoc_value params; 4395 int retval = 0; 4396 4397 if (optlen < sizeof(params)) 4398 return -EINVAL; 4399 4400 optlen = sizeof(params); 4401 if (copy_from_user(¶ms, optval, optlen)) 4402 return -EFAULT; 4403 4404 if (params.assoc_value > SCTP_SS_MAX) 4405 return -EINVAL; 4406 4407 asoc = sctp_id2assoc(sk, params.assoc_id); 4408 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4409 sctp_style(sk, UDP)) 4410 return -EINVAL; 4411 4412 if (asoc) 4413 return sctp_sched_set_sched(asoc, params.assoc_value); 4414 4415 if (sctp_style(sk, TCP)) 4416 params.assoc_id = SCTP_FUTURE_ASSOC; 4417 4418 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4419 params.assoc_id == SCTP_ALL_ASSOC) 4420 sp->default_ss = params.assoc_value; 4421 4422 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4423 params.assoc_id == SCTP_ALL_ASSOC) { 4424 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4425 int ret = sctp_sched_set_sched(asoc, 4426 params.assoc_value); 4427 4428 if (ret && !retval) 4429 retval = ret; 4430 } 4431 } 4432 4433 return retval; 4434 } 4435 4436 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4437 char __user *optval, 4438 unsigned int optlen) 4439 { 4440 struct sctp_stream_value params; 4441 struct sctp_association *asoc; 4442 int retval = -EINVAL; 4443 4444 if (optlen < sizeof(params)) 4445 goto out; 4446 4447 optlen = sizeof(params); 4448 if (copy_from_user(¶ms, optval, optlen)) { 4449 retval = -EFAULT; 4450 goto out; 4451 } 4452 4453 asoc = sctp_id2assoc(sk, params.assoc_id); 4454 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4455 sctp_style(sk, UDP)) 4456 goto out; 4457 4458 if (asoc) { 4459 retval = sctp_sched_set_value(asoc, params.stream_id, 4460 params.stream_value, GFP_KERNEL); 4461 goto out; 4462 } 4463 4464 retval = 0; 4465 4466 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4467 int ret = sctp_sched_set_value(asoc, params.stream_id, 4468 params.stream_value, GFP_KERNEL); 4469 if (ret && !retval) /* try to return the 1st error. */ 4470 retval = ret; 4471 } 4472 4473 out: 4474 return retval; 4475 } 4476 4477 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4478 char __user *optval, 4479 unsigned int optlen) 4480 { 4481 struct sctp_sock *sp = sctp_sk(sk); 4482 struct sctp_assoc_value params; 4483 struct sctp_association *asoc; 4484 int retval = -EINVAL; 4485 4486 if (optlen < sizeof(params)) 4487 goto out; 4488 4489 optlen = sizeof(params); 4490 if (copy_from_user(¶ms, optval, optlen)) { 4491 retval = -EFAULT; 4492 goto out; 4493 } 4494 4495 asoc = sctp_id2assoc(sk, params.assoc_id); 4496 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4497 sctp_style(sk, UDP)) 4498 goto out; 4499 4500 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4501 retval = -EPERM; 4502 goto out; 4503 } 4504 4505 sp->strm_interleave = !!params.assoc_value; 4506 4507 retval = 0; 4508 4509 out: 4510 return retval; 4511 } 4512 4513 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4514 unsigned int optlen) 4515 { 4516 int val; 4517 4518 if (!sctp_style(sk, TCP)) 4519 return -EOPNOTSUPP; 4520 4521 if (sctp_sk(sk)->ep->base.bind_addr.port) 4522 return -EFAULT; 4523 4524 if (optlen < sizeof(int)) 4525 return -EINVAL; 4526 4527 if (get_user(val, (int __user *)optval)) 4528 return -EFAULT; 4529 4530 sctp_sk(sk)->reuse = !!val; 4531 4532 return 0; 4533 } 4534 4535 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4536 struct sctp_association *asoc) 4537 { 4538 struct sctp_ulpevent *event; 4539 4540 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4541 4542 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4543 if (sctp_outq_is_empty(&asoc->outqueue)) { 4544 event = sctp_ulpevent_make_sender_dry_event(asoc, 4545 GFP_USER | __GFP_NOWARN); 4546 if (!event) 4547 return -ENOMEM; 4548 4549 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4550 } 4551 } 4552 4553 return 0; 4554 } 4555 4556 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4557 unsigned int optlen) 4558 { 4559 struct sctp_sock *sp = sctp_sk(sk); 4560 struct sctp_association *asoc; 4561 struct sctp_event param; 4562 int retval = 0; 4563 4564 if (optlen < sizeof(param)) 4565 return -EINVAL; 4566 4567 optlen = sizeof(param); 4568 if (copy_from_user(¶m, optval, optlen)) 4569 return -EFAULT; 4570 4571 if (param.se_type < SCTP_SN_TYPE_BASE || 4572 param.se_type > SCTP_SN_TYPE_MAX) 4573 return -EINVAL; 4574 4575 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4576 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4577 sctp_style(sk, UDP)) 4578 return -EINVAL; 4579 4580 if (asoc) 4581 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4582 4583 if (sctp_style(sk, TCP)) 4584 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4585 4586 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4587 param.se_assoc_id == SCTP_ALL_ASSOC) 4588 sctp_ulpevent_type_set(&sp->subscribe, 4589 param.se_type, param.se_on); 4590 4591 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4592 param.se_assoc_id == SCTP_ALL_ASSOC) { 4593 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4594 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4595 4596 if (ret && !retval) 4597 retval = ret; 4598 } 4599 } 4600 4601 return retval; 4602 } 4603 4604 /* API 6.2 setsockopt(), getsockopt() 4605 * 4606 * Applications use setsockopt() and getsockopt() to set or retrieve 4607 * socket options. Socket options are used to change the default 4608 * behavior of sockets calls. They are described in Section 7. 4609 * 4610 * The syntax is: 4611 * 4612 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4613 * int __user *optlen); 4614 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4615 * int optlen); 4616 * 4617 * sd - the socket descript. 4618 * level - set to IPPROTO_SCTP for all SCTP options. 4619 * optname - the option name. 4620 * optval - the buffer to store the value of the option. 4621 * optlen - the size of the buffer. 4622 */ 4623 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4624 char __user *optval, unsigned int optlen) 4625 { 4626 int retval = 0; 4627 4628 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4629 4630 /* I can hardly begin to describe how wrong this is. This is 4631 * so broken as to be worse than useless. The API draft 4632 * REALLY is NOT helpful here... I am not convinced that the 4633 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4634 * are at all well-founded. 4635 */ 4636 if (level != SOL_SCTP) { 4637 struct sctp_af *af = sctp_sk(sk)->pf->af; 4638 retval = af->setsockopt(sk, level, optname, optval, optlen); 4639 goto out_nounlock; 4640 } 4641 4642 lock_sock(sk); 4643 4644 switch (optname) { 4645 case SCTP_SOCKOPT_BINDX_ADD: 4646 /* 'optlen' is the size of the addresses buffer. */ 4647 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4648 optlen, SCTP_BINDX_ADD_ADDR); 4649 break; 4650 4651 case SCTP_SOCKOPT_BINDX_REM: 4652 /* 'optlen' is the size of the addresses buffer. */ 4653 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4654 optlen, SCTP_BINDX_REM_ADDR); 4655 break; 4656 4657 case SCTP_SOCKOPT_CONNECTX_OLD: 4658 /* 'optlen' is the size of the addresses buffer. */ 4659 retval = sctp_setsockopt_connectx_old(sk, 4660 (struct sockaddr __user *)optval, 4661 optlen); 4662 break; 4663 4664 case SCTP_SOCKOPT_CONNECTX: 4665 /* 'optlen' is the size of the addresses buffer. */ 4666 retval = sctp_setsockopt_connectx(sk, 4667 (struct sockaddr __user *)optval, 4668 optlen); 4669 break; 4670 4671 case SCTP_DISABLE_FRAGMENTS: 4672 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4673 break; 4674 4675 case SCTP_EVENTS: 4676 retval = sctp_setsockopt_events(sk, optval, optlen); 4677 break; 4678 4679 case SCTP_AUTOCLOSE: 4680 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4681 break; 4682 4683 case SCTP_PEER_ADDR_PARAMS: 4684 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4685 break; 4686 4687 case SCTP_DELAYED_SACK: 4688 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4689 break; 4690 case SCTP_PARTIAL_DELIVERY_POINT: 4691 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4692 break; 4693 4694 case SCTP_INITMSG: 4695 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4696 break; 4697 case SCTP_DEFAULT_SEND_PARAM: 4698 retval = sctp_setsockopt_default_send_param(sk, optval, 4699 optlen); 4700 break; 4701 case SCTP_DEFAULT_SNDINFO: 4702 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4703 break; 4704 case SCTP_PRIMARY_ADDR: 4705 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4706 break; 4707 case SCTP_SET_PEER_PRIMARY_ADDR: 4708 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4709 break; 4710 case SCTP_NODELAY: 4711 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4712 break; 4713 case SCTP_RTOINFO: 4714 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4715 break; 4716 case SCTP_ASSOCINFO: 4717 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4718 break; 4719 case SCTP_I_WANT_MAPPED_V4_ADDR: 4720 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4721 break; 4722 case SCTP_MAXSEG: 4723 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4724 break; 4725 case SCTP_ADAPTATION_LAYER: 4726 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4727 break; 4728 case SCTP_CONTEXT: 4729 retval = sctp_setsockopt_context(sk, optval, optlen); 4730 break; 4731 case SCTP_FRAGMENT_INTERLEAVE: 4732 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4733 break; 4734 case SCTP_MAX_BURST: 4735 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4736 break; 4737 case SCTP_AUTH_CHUNK: 4738 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4739 break; 4740 case SCTP_HMAC_IDENT: 4741 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4742 break; 4743 case SCTP_AUTH_KEY: 4744 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4745 break; 4746 case SCTP_AUTH_ACTIVE_KEY: 4747 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4748 break; 4749 case SCTP_AUTH_DELETE_KEY: 4750 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4751 break; 4752 case SCTP_AUTH_DEACTIVATE_KEY: 4753 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4754 break; 4755 case SCTP_AUTO_ASCONF: 4756 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4757 break; 4758 case SCTP_PEER_ADDR_THLDS: 4759 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4760 break; 4761 case SCTP_RECVRCVINFO: 4762 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4763 break; 4764 case SCTP_RECVNXTINFO: 4765 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4766 break; 4767 case SCTP_PR_SUPPORTED: 4768 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4769 break; 4770 case SCTP_DEFAULT_PRINFO: 4771 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4772 break; 4773 case SCTP_RECONFIG_SUPPORTED: 4774 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4775 break; 4776 case SCTP_ENABLE_STREAM_RESET: 4777 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4778 break; 4779 case SCTP_RESET_STREAMS: 4780 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4781 break; 4782 case SCTP_RESET_ASSOC: 4783 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4784 break; 4785 case SCTP_ADD_STREAMS: 4786 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4787 break; 4788 case SCTP_STREAM_SCHEDULER: 4789 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4790 break; 4791 case SCTP_STREAM_SCHEDULER_VALUE: 4792 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4793 break; 4794 case SCTP_INTERLEAVING_SUPPORTED: 4795 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4796 optlen); 4797 break; 4798 case SCTP_REUSE_PORT: 4799 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4800 break; 4801 case SCTP_EVENT: 4802 retval = sctp_setsockopt_event(sk, optval, optlen); 4803 break; 4804 default: 4805 retval = -ENOPROTOOPT; 4806 break; 4807 } 4808 4809 release_sock(sk); 4810 4811 out_nounlock: 4812 return retval; 4813 } 4814 4815 /* API 3.1.6 connect() - UDP Style Syntax 4816 * 4817 * An application may use the connect() call in the UDP model to initiate an 4818 * association without sending data. 4819 * 4820 * The syntax is: 4821 * 4822 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4823 * 4824 * sd: the socket descriptor to have a new association added to. 4825 * 4826 * nam: the address structure (either struct sockaddr_in or struct 4827 * sockaddr_in6 defined in RFC2553 [7]). 4828 * 4829 * len: the size of the address. 4830 */ 4831 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4832 int addr_len, int flags) 4833 { 4834 struct inet_sock *inet = inet_sk(sk); 4835 struct sctp_af *af; 4836 int err = 0; 4837 4838 lock_sock(sk); 4839 4840 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4841 addr, addr_len); 4842 4843 /* We may need to bind the socket. */ 4844 if (!inet->inet_num) { 4845 if (sk->sk_prot->get_port(sk, 0)) { 4846 release_sock(sk); 4847 return -EAGAIN; 4848 } 4849 inet->inet_sport = htons(inet->inet_num); 4850 } 4851 4852 /* Validate addr_len before calling common connect/connectx routine. */ 4853 af = sctp_get_af_specific(addr->sa_family); 4854 if (!af || addr_len < af->sockaddr_len) { 4855 err = -EINVAL; 4856 } else { 4857 /* Pass correct addr len to common routine (so it knows there 4858 * is only one address being passed. 4859 */ 4860 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4861 } 4862 4863 release_sock(sk); 4864 return err; 4865 } 4866 4867 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4868 int addr_len, int flags) 4869 { 4870 if (addr_len < sizeof(uaddr->sa_family)) 4871 return -EINVAL; 4872 4873 if (uaddr->sa_family == AF_UNSPEC) 4874 return -EOPNOTSUPP; 4875 4876 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4877 } 4878 4879 /* FIXME: Write comments. */ 4880 static int sctp_disconnect(struct sock *sk, int flags) 4881 { 4882 return -EOPNOTSUPP; /* STUB */ 4883 } 4884 4885 /* 4.1.4 accept() - TCP Style Syntax 4886 * 4887 * Applications use accept() call to remove an established SCTP 4888 * association from the accept queue of the endpoint. A new socket 4889 * descriptor will be returned from accept() to represent the newly 4890 * formed association. 4891 */ 4892 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4893 { 4894 struct sctp_sock *sp; 4895 struct sctp_endpoint *ep; 4896 struct sock *newsk = NULL; 4897 struct sctp_association *asoc; 4898 long timeo; 4899 int error = 0; 4900 4901 lock_sock(sk); 4902 4903 sp = sctp_sk(sk); 4904 ep = sp->ep; 4905 4906 if (!sctp_style(sk, TCP)) { 4907 error = -EOPNOTSUPP; 4908 goto out; 4909 } 4910 4911 if (!sctp_sstate(sk, LISTENING)) { 4912 error = -EINVAL; 4913 goto out; 4914 } 4915 4916 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4917 4918 error = sctp_wait_for_accept(sk, timeo); 4919 if (error) 4920 goto out; 4921 4922 /* We treat the list of associations on the endpoint as the accept 4923 * queue and pick the first association on the list. 4924 */ 4925 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4926 4927 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4928 if (!newsk) { 4929 error = -ENOMEM; 4930 goto out; 4931 } 4932 4933 /* Populate the fields of the newsk from the oldsk and migrate the 4934 * asoc to the newsk. 4935 */ 4936 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4937 if (error) { 4938 sk_common_release(newsk); 4939 newsk = NULL; 4940 } 4941 4942 out: 4943 release_sock(sk); 4944 *err = error; 4945 return newsk; 4946 } 4947 4948 /* The SCTP ioctl handler. */ 4949 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4950 { 4951 int rc = -ENOTCONN; 4952 4953 lock_sock(sk); 4954 4955 /* 4956 * SEQPACKET-style sockets in LISTENING state are valid, for 4957 * SCTP, so only discard TCP-style sockets in LISTENING state. 4958 */ 4959 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4960 goto out; 4961 4962 switch (cmd) { 4963 case SIOCINQ: { 4964 struct sk_buff *skb; 4965 unsigned int amount = 0; 4966 4967 skb = skb_peek(&sk->sk_receive_queue); 4968 if (skb != NULL) { 4969 /* 4970 * We will only return the amount of this packet since 4971 * that is all that will be read. 4972 */ 4973 amount = skb->len; 4974 } 4975 rc = put_user(amount, (int __user *)arg); 4976 break; 4977 } 4978 default: 4979 rc = -ENOIOCTLCMD; 4980 break; 4981 } 4982 out: 4983 release_sock(sk); 4984 return rc; 4985 } 4986 4987 /* This is the function which gets called during socket creation to 4988 * initialized the SCTP-specific portion of the sock. 4989 * The sock structure should already be zero-filled memory. 4990 */ 4991 static int sctp_init_sock(struct sock *sk) 4992 { 4993 struct net *net = sock_net(sk); 4994 struct sctp_sock *sp; 4995 4996 pr_debug("%s: sk:%p\n", __func__, sk); 4997 4998 sp = sctp_sk(sk); 4999 5000 /* Initialize the SCTP per socket area. */ 5001 switch (sk->sk_type) { 5002 case SOCK_SEQPACKET: 5003 sp->type = SCTP_SOCKET_UDP; 5004 break; 5005 case SOCK_STREAM: 5006 sp->type = SCTP_SOCKET_TCP; 5007 break; 5008 default: 5009 return -ESOCKTNOSUPPORT; 5010 } 5011 5012 sk->sk_gso_type = SKB_GSO_SCTP; 5013 5014 /* Initialize default send parameters. These parameters can be 5015 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5016 */ 5017 sp->default_stream = 0; 5018 sp->default_ppid = 0; 5019 sp->default_flags = 0; 5020 sp->default_context = 0; 5021 sp->default_timetolive = 0; 5022 5023 sp->default_rcv_context = 0; 5024 sp->max_burst = net->sctp.max_burst; 5025 5026 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5027 5028 /* Initialize default setup parameters. These parameters 5029 * can be modified with the SCTP_INITMSG socket option or 5030 * overridden by the SCTP_INIT CMSG. 5031 */ 5032 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5033 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5034 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5035 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5036 5037 /* Initialize default RTO related parameters. These parameters can 5038 * be modified for with the SCTP_RTOINFO socket option. 5039 */ 5040 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5041 sp->rtoinfo.srto_max = net->sctp.rto_max; 5042 sp->rtoinfo.srto_min = net->sctp.rto_min; 5043 5044 /* Initialize default association related parameters. These parameters 5045 * can be modified with the SCTP_ASSOCINFO socket option. 5046 */ 5047 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5048 sp->assocparams.sasoc_number_peer_destinations = 0; 5049 sp->assocparams.sasoc_peer_rwnd = 0; 5050 sp->assocparams.sasoc_local_rwnd = 0; 5051 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5052 5053 /* Initialize default event subscriptions. By default, all the 5054 * options are off. 5055 */ 5056 sp->subscribe = 0; 5057 5058 /* Default Peer Address Parameters. These defaults can 5059 * be modified via SCTP_PEER_ADDR_PARAMS 5060 */ 5061 sp->hbinterval = net->sctp.hb_interval; 5062 sp->pathmaxrxt = net->sctp.max_retrans_path; 5063 sp->pf_retrans = net->sctp.pf_retrans; 5064 sp->pathmtu = 0; /* allow default discovery */ 5065 sp->sackdelay = net->sctp.sack_timeout; 5066 sp->sackfreq = 2; 5067 sp->param_flags = SPP_HB_ENABLE | 5068 SPP_PMTUD_ENABLE | 5069 SPP_SACKDELAY_ENABLE; 5070 sp->default_ss = SCTP_SS_DEFAULT; 5071 5072 /* If enabled no SCTP message fragmentation will be performed. 5073 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5074 */ 5075 sp->disable_fragments = 0; 5076 5077 /* Enable Nagle algorithm by default. */ 5078 sp->nodelay = 0; 5079 5080 sp->recvrcvinfo = 0; 5081 sp->recvnxtinfo = 0; 5082 5083 /* Enable by default. */ 5084 sp->v4mapped = 1; 5085 5086 /* Auto-close idle associations after the configured 5087 * number of seconds. A value of 0 disables this 5088 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5089 * for UDP-style sockets only. 5090 */ 5091 sp->autoclose = 0; 5092 5093 /* User specified fragmentation limit. */ 5094 sp->user_frag = 0; 5095 5096 sp->adaptation_ind = 0; 5097 5098 sp->pf = sctp_get_pf_specific(sk->sk_family); 5099 5100 /* Control variables for partial data delivery. */ 5101 atomic_set(&sp->pd_mode, 0); 5102 skb_queue_head_init(&sp->pd_lobby); 5103 sp->frag_interleave = 0; 5104 5105 /* Create a per socket endpoint structure. Even if we 5106 * change the data structure relationships, this may still 5107 * be useful for storing pre-connect address information. 5108 */ 5109 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5110 if (!sp->ep) 5111 return -ENOMEM; 5112 5113 sp->hmac = NULL; 5114 5115 sk->sk_destruct = sctp_destruct_sock; 5116 5117 SCTP_DBG_OBJCNT_INC(sock); 5118 5119 local_bh_disable(); 5120 sk_sockets_allocated_inc(sk); 5121 sock_prot_inuse_add(net, sk->sk_prot, 1); 5122 5123 /* Nothing can fail after this block, otherwise 5124 * sctp_destroy_sock() will be called without addr_wq_lock held 5125 */ 5126 if (net->sctp.default_auto_asconf) { 5127 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5128 list_add_tail(&sp->auto_asconf_list, 5129 &net->sctp.auto_asconf_splist); 5130 sp->do_auto_asconf = 1; 5131 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5132 } else { 5133 sp->do_auto_asconf = 0; 5134 } 5135 5136 local_bh_enable(); 5137 5138 return 0; 5139 } 5140 5141 /* Cleanup any SCTP per socket resources. Must be called with 5142 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5143 */ 5144 static void sctp_destroy_sock(struct sock *sk) 5145 { 5146 struct sctp_sock *sp; 5147 5148 pr_debug("%s: sk:%p\n", __func__, sk); 5149 5150 /* Release our hold on the endpoint. */ 5151 sp = sctp_sk(sk); 5152 /* This could happen during socket init, thus we bail out 5153 * early, since the rest of the below is not setup either. 5154 */ 5155 if (sp->ep == NULL) 5156 return; 5157 5158 if (sp->do_auto_asconf) { 5159 sp->do_auto_asconf = 0; 5160 list_del(&sp->auto_asconf_list); 5161 } 5162 sctp_endpoint_free(sp->ep); 5163 local_bh_disable(); 5164 sk_sockets_allocated_dec(sk); 5165 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5166 local_bh_enable(); 5167 } 5168 5169 /* Triggered when there are no references on the socket anymore */ 5170 static void sctp_destruct_sock(struct sock *sk) 5171 { 5172 struct sctp_sock *sp = sctp_sk(sk); 5173 5174 /* Free up the HMAC transform. */ 5175 crypto_free_shash(sp->hmac); 5176 5177 inet_sock_destruct(sk); 5178 } 5179 5180 /* API 4.1.7 shutdown() - TCP Style Syntax 5181 * int shutdown(int socket, int how); 5182 * 5183 * sd - the socket descriptor of the association to be closed. 5184 * how - Specifies the type of shutdown. The values are 5185 * as follows: 5186 * SHUT_RD 5187 * Disables further receive operations. No SCTP 5188 * protocol action is taken. 5189 * SHUT_WR 5190 * Disables further send operations, and initiates 5191 * the SCTP shutdown sequence. 5192 * SHUT_RDWR 5193 * Disables further send and receive operations 5194 * and initiates the SCTP shutdown sequence. 5195 */ 5196 static void sctp_shutdown(struct sock *sk, int how) 5197 { 5198 struct net *net = sock_net(sk); 5199 struct sctp_endpoint *ep; 5200 5201 if (!sctp_style(sk, TCP)) 5202 return; 5203 5204 ep = sctp_sk(sk)->ep; 5205 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5206 struct sctp_association *asoc; 5207 5208 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5209 asoc = list_entry(ep->asocs.next, 5210 struct sctp_association, asocs); 5211 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5212 } 5213 } 5214 5215 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5216 struct sctp_info *info) 5217 { 5218 struct sctp_transport *prim; 5219 struct list_head *pos; 5220 int mask; 5221 5222 memset(info, 0, sizeof(*info)); 5223 if (!asoc) { 5224 struct sctp_sock *sp = sctp_sk(sk); 5225 5226 info->sctpi_s_autoclose = sp->autoclose; 5227 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5228 info->sctpi_s_pd_point = sp->pd_point; 5229 info->sctpi_s_nodelay = sp->nodelay; 5230 info->sctpi_s_disable_fragments = sp->disable_fragments; 5231 info->sctpi_s_v4mapped = sp->v4mapped; 5232 info->sctpi_s_frag_interleave = sp->frag_interleave; 5233 info->sctpi_s_type = sp->type; 5234 5235 return 0; 5236 } 5237 5238 info->sctpi_tag = asoc->c.my_vtag; 5239 info->sctpi_state = asoc->state; 5240 info->sctpi_rwnd = asoc->a_rwnd; 5241 info->sctpi_unackdata = asoc->unack_data; 5242 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5243 info->sctpi_instrms = asoc->stream.incnt; 5244 info->sctpi_outstrms = asoc->stream.outcnt; 5245 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5246 info->sctpi_inqueue++; 5247 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5248 info->sctpi_outqueue++; 5249 info->sctpi_overall_error = asoc->overall_error_count; 5250 info->sctpi_max_burst = asoc->max_burst; 5251 info->sctpi_maxseg = asoc->frag_point; 5252 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5253 info->sctpi_peer_tag = asoc->c.peer_vtag; 5254 5255 mask = asoc->peer.ecn_capable << 1; 5256 mask = (mask | asoc->peer.ipv4_address) << 1; 5257 mask = (mask | asoc->peer.ipv6_address) << 1; 5258 mask = (mask | asoc->peer.hostname_address) << 1; 5259 mask = (mask | asoc->peer.asconf_capable) << 1; 5260 mask = (mask | asoc->peer.prsctp_capable) << 1; 5261 mask = (mask | asoc->peer.auth_capable); 5262 info->sctpi_peer_capable = mask; 5263 mask = asoc->peer.sack_needed << 1; 5264 mask = (mask | asoc->peer.sack_generation) << 1; 5265 mask = (mask | asoc->peer.zero_window_announced); 5266 info->sctpi_peer_sack = mask; 5267 5268 info->sctpi_isacks = asoc->stats.isacks; 5269 info->sctpi_osacks = asoc->stats.osacks; 5270 info->sctpi_opackets = asoc->stats.opackets; 5271 info->sctpi_ipackets = asoc->stats.ipackets; 5272 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5273 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5274 info->sctpi_idupchunks = asoc->stats.idupchunks; 5275 info->sctpi_gapcnt = asoc->stats.gapcnt; 5276 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5277 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5278 info->sctpi_oodchunks = asoc->stats.oodchunks; 5279 info->sctpi_iodchunks = asoc->stats.iodchunks; 5280 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5281 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5282 5283 prim = asoc->peer.primary_path; 5284 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5285 info->sctpi_p_state = prim->state; 5286 info->sctpi_p_cwnd = prim->cwnd; 5287 info->sctpi_p_srtt = prim->srtt; 5288 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5289 info->sctpi_p_hbinterval = prim->hbinterval; 5290 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5291 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5292 info->sctpi_p_ssthresh = prim->ssthresh; 5293 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5294 info->sctpi_p_flight_size = prim->flight_size; 5295 info->sctpi_p_error = prim->error_count; 5296 5297 return 0; 5298 } 5299 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5300 5301 /* use callback to avoid exporting the core structure */ 5302 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5303 { 5304 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5305 5306 rhashtable_walk_start(iter); 5307 } 5308 5309 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5310 { 5311 rhashtable_walk_stop(iter); 5312 rhashtable_walk_exit(iter); 5313 } 5314 5315 struct sctp_transport *sctp_transport_get_next(struct net *net, 5316 struct rhashtable_iter *iter) 5317 { 5318 struct sctp_transport *t; 5319 5320 t = rhashtable_walk_next(iter); 5321 for (; t; t = rhashtable_walk_next(iter)) { 5322 if (IS_ERR(t)) { 5323 if (PTR_ERR(t) == -EAGAIN) 5324 continue; 5325 break; 5326 } 5327 5328 if (!sctp_transport_hold(t)) 5329 continue; 5330 5331 if (net_eq(sock_net(t->asoc->base.sk), net) && 5332 t->asoc->peer.primary_path == t) 5333 break; 5334 5335 sctp_transport_put(t); 5336 } 5337 5338 return t; 5339 } 5340 5341 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5342 struct rhashtable_iter *iter, 5343 int pos) 5344 { 5345 struct sctp_transport *t; 5346 5347 if (!pos) 5348 return SEQ_START_TOKEN; 5349 5350 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5351 if (!--pos) 5352 break; 5353 sctp_transport_put(t); 5354 } 5355 5356 return t; 5357 } 5358 5359 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5360 void *p) { 5361 int err = 0; 5362 int hash = 0; 5363 struct sctp_ep_common *epb; 5364 struct sctp_hashbucket *head; 5365 5366 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5367 hash++, head++) { 5368 read_lock_bh(&head->lock); 5369 sctp_for_each_hentry(epb, &head->chain) { 5370 err = cb(sctp_ep(epb), p); 5371 if (err) 5372 break; 5373 } 5374 read_unlock_bh(&head->lock); 5375 } 5376 5377 return err; 5378 } 5379 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5380 5381 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5382 struct net *net, 5383 const union sctp_addr *laddr, 5384 const union sctp_addr *paddr, void *p) 5385 { 5386 struct sctp_transport *transport; 5387 int err; 5388 5389 rcu_read_lock(); 5390 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5391 rcu_read_unlock(); 5392 if (!transport) 5393 return -ENOENT; 5394 5395 err = cb(transport, p); 5396 sctp_transport_put(transport); 5397 5398 return err; 5399 } 5400 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5401 5402 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5403 int (*cb_done)(struct sctp_transport *, void *), 5404 struct net *net, int *pos, void *p) { 5405 struct rhashtable_iter hti; 5406 struct sctp_transport *tsp; 5407 int ret; 5408 5409 again: 5410 ret = 0; 5411 sctp_transport_walk_start(&hti); 5412 5413 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5414 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5415 ret = cb(tsp, p); 5416 if (ret) 5417 break; 5418 (*pos)++; 5419 sctp_transport_put(tsp); 5420 } 5421 sctp_transport_walk_stop(&hti); 5422 5423 if (ret) { 5424 if (cb_done && !cb_done(tsp, p)) { 5425 (*pos)++; 5426 sctp_transport_put(tsp); 5427 goto again; 5428 } 5429 sctp_transport_put(tsp); 5430 } 5431 5432 return ret; 5433 } 5434 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5435 5436 /* 7.2.1 Association Status (SCTP_STATUS) 5437 5438 * Applications can retrieve current status information about an 5439 * association, including association state, peer receiver window size, 5440 * number of unacked data chunks, and number of data chunks pending 5441 * receipt. This information is read-only. 5442 */ 5443 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5444 char __user *optval, 5445 int __user *optlen) 5446 { 5447 struct sctp_status status; 5448 struct sctp_association *asoc = NULL; 5449 struct sctp_transport *transport; 5450 sctp_assoc_t associd; 5451 int retval = 0; 5452 5453 if (len < sizeof(status)) { 5454 retval = -EINVAL; 5455 goto out; 5456 } 5457 5458 len = sizeof(status); 5459 if (copy_from_user(&status, optval, len)) { 5460 retval = -EFAULT; 5461 goto out; 5462 } 5463 5464 associd = status.sstat_assoc_id; 5465 asoc = sctp_id2assoc(sk, associd); 5466 if (!asoc) { 5467 retval = -EINVAL; 5468 goto out; 5469 } 5470 5471 transport = asoc->peer.primary_path; 5472 5473 status.sstat_assoc_id = sctp_assoc2id(asoc); 5474 status.sstat_state = sctp_assoc_to_state(asoc); 5475 status.sstat_rwnd = asoc->peer.rwnd; 5476 status.sstat_unackdata = asoc->unack_data; 5477 5478 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5479 status.sstat_instrms = asoc->stream.incnt; 5480 status.sstat_outstrms = asoc->stream.outcnt; 5481 status.sstat_fragmentation_point = asoc->frag_point; 5482 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5483 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5484 transport->af_specific->sockaddr_len); 5485 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5486 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5487 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5488 status.sstat_primary.spinfo_state = transport->state; 5489 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5490 status.sstat_primary.spinfo_srtt = transport->srtt; 5491 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5492 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5493 5494 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5495 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5496 5497 if (put_user(len, optlen)) { 5498 retval = -EFAULT; 5499 goto out; 5500 } 5501 5502 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5503 __func__, len, status.sstat_state, status.sstat_rwnd, 5504 status.sstat_assoc_id); 5505 5506 if (copy_to_user(optval, &status, len)) { 5507 retval = -EFAULT; 5508 goto out; 5509 } 5510 5511 out: 5512 return retval; 5513 } 5514 5515 5516 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5517 * 5518 * Applications can retrieve information about a specific peer address 5519 * of an association, including its reachability state, congestion 5520 * window, and retransmission timer values. This information is 5521 * read-only. 5522 */ 5523 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5524 char __user *optval, 5525 int __user *optlen) 5526 { 5527 struct sctp_paddrinfo pinfo; 5528 struct sctp_transport *transport; 5529 int retval = 0; 5530 5531 if (len < sizeof(pinfo)) { 5532 retval = -EINVAL; 5533 goto out; 5534 } 5535 5536 len = sizeof(pinfo); 5537 if (copy_from_user(&pinfo, optval, len)) { 5538 retval = -EFAULT; 5539 goto out; 5540 } 5541 5542 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5543 pinfo.spinfo_assoc_id); 5544 if (!transport) 5545 return -EINVAL; 5546 5547 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5548 pinfo.spinfo_state = transport->state; 5549 pinfo.spinfo_cwnd = transport->cwnd; 5550 pinfo.spinfo_srtt = transport->srtt; 5551 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5552 pinfo.spinfo_mtu = transport->pathmtu; 5553 5554 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5555 pinfo.spinfo_state = SCTP_ACTIVE; 5556 5557 if (put_user(len, optlen)) { 5558 retval = -EFAULT; 5559 goto out; 5560 } 5561 5562 if (copy_to_user(optval, &pinfo, len)) { 5563 retval = -EFAULT; 5564 goto out; 5565 } 5566 5567 out: 5568 return retval; 5569 } 5570 5571 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5572 * 5573 * This option is a on/off flag. If enabled no SCTP message 5574 * fragmentation will be performed. Instead if a message being sent 5575 * exceeds the current PMTU size, the message will NOT be sent and 5576 * instead a error will be indicated to the user. 5577 */ 5578 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5579 char __user *optval, int __user *optlen) 5580 { 5581 int val; 5582 5583 if (len < sizeof(int)) 5584 return -EINVAL; 5585 5586 len = sizeof(int); 5587 val = (sctp_sk(sk)->disable_fragments == 1); 5588 if (put_user(len, optlen)) 5589 return -EFAULT; 5590 if (copy_to_user(optval, &val, len)) 5591 return -EFAULT; 5592 return 0; 5593 } 5594 5595 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5596 * 5597 * This socket option is used to specify various notifications and 5598 * ancillary data the user wishes to receive. 5599 */ 5600 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5601 int __user *optlen) 5602 { 5603 struct sctp_event_subscribe subscribe; 5604 __u8 *sn_type = (__u8 *)&subscribe; 5605 int i; 5606 5607 if (len == 0) 5608 return -EINVAL; 5609 if (len > sizeof(struct sctp_event_subscribe)) 5610 len = sizeof(struct sctp_event_subscribe); 5611 if (put_user(len, optlen)) 5612 return -EFAULT; 5613 5614 for (i = 0; i < len; i++) 5615 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5616 SCTP_SN_TYPE_BASE + i); 5617 5618 if (copy_to_user(optval, &subscribe, len)) 5619 return -EFAULT; 5620 5621 return 0; 5622 } 5623 5624 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5625 * 5626 * This socket option is applicable to the UDP-style socket only. When 5627 * set it will cause associations that are idle for more than the 5628 * specified number of seconds to automatically close. An association 5629 * being idle is defined an association that has NOT sent or received 5630 * user data. The special value of '0' indicates that no automatic 5631 * close of any associations should be performed. The option expects an 5632 * integer defining the number of seconds of idle time before an 5633 * association is closed. 5634 */ 5635 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5636 { 5637 /* Applicable to UDP-style socket only */ 5638 if (sctp_style(sk, TCP)) 5639 return -EOPNOTSUPP; 5640 if (len < sizeof(int)) 5641 return -EINVAL; 5642 len = sizeof(int); 5643 if (put_user(len, optlen)) 5644 return -EFAULT; 5645 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5646 return -EFAULT; 5647 return 0; 5648 } 5649 5650 /* Helper routine to branch off an association to a new socket. */ 5651 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5652 { 5653 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5654 struct sctp_sock *sp = sctp_sk(sk); 5655 struct socket *sock; 5656 int err = 0; 5657 5658 /* Do not peel off from one netns to another one. */ 5659 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5660 return -EINVAL; 5661 5662 if (!asoc) 5663 return -EINVAL; 5664 5665 /* An association cannot be branched off from an already peeled-off 5666 * socket, nor is this supported for tcp style sockets. 5667 */ 5668 if (!sctp_style(sk, UDP)) 5669 return -EINVAL; 5670 5671 /* Create a new socket. */ 5672 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5673 if (err < 0) 5674 return err; 5675 5676 sctp_copy_sock(sock->sk, sk, asoc); 5677 5678 /* Make peeled-off sockets more like 1-1 accepted sockets. 5679 * Set the daddr and initialize id to something more random and also 5680 * copy over any ip options. 5681 */ 5682 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5683 sp->pf->copy_ip_options(sk, sock->sk); 5684 5685 /* Populate the fields of the newsk from the oldsk and migrate the 5686 * asoc to the newsk. 5687 */ 5688 err = sctp_sock_migrate(sk, sock->sk, asoc, 5689 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5690 if (err) { 5691 sock_release(sock); 5692 sock = NULL; 5693 } 5694 5695 *sockp = sock; 5696 5697 return err; 5698 } 5699 EXPORT_SYMBOL(sctp_do_peeloff); 5700 5701 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5702 struct file **newfile, unsigned flags) 5703 { 5704 struct socket *newsock; 5705 int retval; 5706 5707 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5708 if (retval < 0) 5709 goto out; 5710 5711 /* Map the socket to an unused fd that can be returned to the user. */ 5712 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5713 if (retval < 0) { 5714 sock_release(newsock); 5715 goto out; 5716 } 5717 5718 *newfile = sock_alloc_file(newsock, 0, NULL); 5719 if (IS_ERR(*newfile)) { 5720 put_unused_fd(retval); 5721 retval = PTR_ERR(*newfile); 5722 *newfile = NULL; 5723 return retval; 5724 } 5725 5726 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5727 retval); 5728 5729 peeloff->sd = retval; 5730 5731 if (flags & SOCK_NONBLOCK) 5732 (*newfile)->f_flags |= O_NONBLOCK; 5733 out: 5734 return retval; 5735 } 5736 5737 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5738 { 5739 sctp_peeloff_arg_t peeloff; 5740 struct file *newfile = NULL; 5741 int retval = 0; 5742 5743 if (len < sizeof(sctp_peeloff_arg_t)) 5744 return -EINVAL; 5745 len = sizeof(sctp_peeloff_arg_t); 5746 if (copy_from_user(&peeloff, optval, len)) 5747 return -EFAULT; 5748 5749 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5750 if (retval < 0) 5751 goto out; 5752 5753 /* Return the fd mapped to the new socket. */ 5754 if (put_user(len, optlen)) { 5755 fput(newfile); 5756 put_unused_fd(retval); 5757 return -EFAULT; 5758 } 5759 5760 if (copy_to_user(optval, &peeloff, len)) { 5761 fput(newfile); 5762 put_unused_fd(retval); 5763 return -EFAULT; 5764 } 5765 fd_install(retval, newfile); 5766 out: 5767 return retval; 5768 } 5769 5770 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5771 char __user *optval, int __user *optlen) 5772 { 5773 sctp_peeloff_flags_arg_t peeloff; 5774 struct file *newfile = NULL; 5775 int retval = 0; 5776 5777 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5778 return -EINVAL; 5779 len = sizeof(sctp_peeloff_flags_arg_t); 5780 if (copy_from_user(&peeloff, optval, len)) 5781 return -EFAULT; 5782 5783 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5784 &newfile, peeloff.flags); 5785 if (retval < 0) 5786 goto out; 5787 5788 /* Return the fd mapped to the new socket. */ 5789 if (put_user(len, optlen)) { 5790 fput(newfile); 5791 put_unused_fd(retval); 5792 return -EFAULT; 5793 } 5794 5795 if (copy_to_user(optval, &peeloff, len)) { 5796 fput(newfile); 5797 put_unused_fd(retval); 5798 return -EFAULT; 5799 } 5800 fd_install(retval, newfile); 5801 out: 5802 return retval; 5803 } 5804 5805 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5806 * 5807 * Applications can enable or disable heartbeats for any peer address of 5808 * an association, modify an address's heartbeat interval, force a 5809 * heartbeat to be sent immediately, and adjust the address's maximum 5810 * number of retransmissions sent before an address is considered 5811 * unreachable. The following structure is used to access and modify an 5812 * address's parameters: 5813 * 5814 * struct sctp_paddrparams { 5815 * sctp_assoc_t spp_assoc_id; 5816 * struct sockaddr_storage spp_address; 5817 * uint32_t spp_hbinterval; 5818 * uint16_t spp_pathmaxrxt; 5819 * uint32_t spp_pathmtu; 5820 * uint32_t spp_sackdelay; 5821 * uint32_t spp_flags; 5822 * }; 5823 * 5824 * spp_assoc_id - (one-to-many style socket) This is filled in the 5825 * application, and identifies the association for 5826 * this query. 5827 * spp_address - This specifies which address is of interest. 5828 * spp_hbinterval - This contains the value of the heartbeat interval, 5829 * in milliseconds. If a value of zero 5830 * is present in this field then no changes are to 5831 * be made to this parameter. 5832 * spp_pathmaxrxt - This contains the maximum number of 5833 * retransmissions before this address shall be 5834 * considered unreachable. If a value of zero 5835 * is present in this field then no changes are to 5836 * be made to this parameter. 5837 * spp_pathmtu - When Path MTU discovery is disabled the value 5838 * specified here will be the "fixed" path mtu. 5839 * Note that if the spp_address field is empty 5840 * then all associations on this address will 5841 * have this fixed path mtu set upon them. 5842 * 5843 * spp_sackdelay - When delayed sack is enabled, this value specifies 5844 * the number of milliseconds that sacks will be delayed 5845 * for. This value will apply to all addresses of an 5846 * association if the spp_address field is empty. Note 5847 * also, that if delayed sack is enabled and this 5848 * value is set to 0, no change is made to the last 5849 * recorded delayed sack timer value. 5850 * 5851 * spp_flags - These flags are used to control various features 5852 * on an association. The flag field may contain 5853 * zero or more of the following options. 5854 * 5855 * SPP_HB_ENABLE - Enable heartbeats on the 5856 * specified address. Note that if the address 5857 * field is empty all addresses for the association 5858 * have heartbeats enabled upon them. 5859 * 5860 * SPP_HB_DISABLE - Disable heartbeats on the 5861 * speicifed address. Note that if the address 5862 * field is empty all addresses for the association 5863 * will have their heartbeats disabled. Note also 5864 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5865 * mutually exclusive, only one of these two should 5866 * be specified. Enabling both fields will have 5867 * undetermined results. 5868 * 5869 * SPP_HB_DEMAND - Request a user initiated heartbeat 5870 * to be made immediately. 5871 * 5872 * SPP_PMTUD_ENABLE - This field will enable PMTU 5873 * discovery upon the specified address. Note that 5874 * if the address feild is empty then all addresses 5875 * on the association are effected. 5876 * 5877 * SPP_PMTUD_DISABLE - This field will disable PMTU 5878 * discovery upon the specified address. Note that 5879 * if the address feild is empty then all addresses 5880 * on the association are effected. Not also that 5881 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5882 * exclusive. Enabling both will have undetermined 5883 * results. 5884 * 5885 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5886 * on delayed sack. The time specified in spp_sackdelay 5887 * is used to specify the sack delay for this address. Note 5888 * that if spp_address is empty then all addresses will 5889 * enable delayed sack and take on the sack delay 5890 * value specified in spp_sackdelay. 5891 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5892 * off delayed sack. If the spp_address field is blank then 5893 * delayed sack is disabled for the entire association. Note 5894 * also that this field is mutually exclusive to 5895 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5896 * results. 5897 * 5898 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5899 * setting of the IPV6 flow label value. The value is 5900 * contained in the spp_ipv6_flowlabel field. 5901 * Upon retrieval, this flag will be set to indicate that 5902 * the spp_ipv6_flowlabel field has a valid value returned. 5903 * If a specific destination address is set (in the 5904 * spp_address field), then the value returned is that of 5905 * the address. If just an association is specified (and 5906 * no address), then the association's default flow label 5907 * is returned. If neither an association nor a destination 5908 * is specified, then the socket's default flow label is 5909 * returned. For non-IPv6 sockets, this flag will be left 5910 * cleared. 5911 * 5912 * SPP_DSCP: Setting this flag enables the setting of the 5913 * Differentiated Services Code Point (DSCP) value 5914 * associated with either the association or a specific 5915 * address. The value is obtained in the spp_dscp field. 5916 * Upon retrieval, this flag will be set to indicate that 5917 * the spp_dscp field has a valid value returned. If a 5918 * specific destination address is set when called (in the 5919 * spp_address field), then that specific destination 5920 * address's DSCP value is returned. If just an association 5921 * is specified, then the association's default DSCP is 5922 * returned. If neither an association nor a destination is 5923 * specified, then the socket's default DSCP is returned. 5924 * 5925 * spp_ipv6_flowlabel 5926 * - This field is used in conjunction with the 5927 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5928 * The 20 least significant bits are used for the flow 5929 * label. This setting has precedence over any IPv6-layer 5930 * setting. 5931 * 5932 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5933 * and contains the DSCP. The 6 most significant bits are 5934 * used for the DSCP. This setting has precedence over any 5935 * IPv4- or IPv6- layer setting. 5936 */ 5937 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5938 char __user *optval, int __user *optlen) 5939 { 5940 struct sctp_paddrparams params; 5941 struct sctp_transport *trans = NULL; 5942 struct sctp_association *asoc = NULL; 5943 struct sctp_sock *sp = sctp_sk(sk); 5944 5945 if (len >= sizeof(params)) 5946 len = sizeof(params); 5947 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5948 spp_ipv6_flowlabel), 4)) 5949 len = ALIGN(offsetof(struct sctp_paddrparams, 5950 spp_ipv6_flowlabel), 4); 5951 else 5952 return -EINVAL; 5953 5954 if (copy_from_user(¶ms, optval, len)) 5955 return -EFAULT; 5956 5957 /* If an address other than INADDR_ANY is specified, and 5958 * no transport is found, then the request is invalid. 5959 */ 5960 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5961 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5962 params.spp_assoc_id); 5963 if (!trans) { 5964 pr_debug("%s: failed no transport\n", __func__); 5965 return -EINVAL; 5966 } 5967 } 5968 5969 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5970 * socket is a one to many style socket, and an association 5971 * was not found, then the id was invalid. 5972 */ 5973 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5974 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5975 sctp_style(sk, UDP)) { 5976 pr_debug("%s: failed no association\n", __func__); 5977 return -EINVAL; 5978 } 5979 5980 if (trans) { 5981 /* Fetch transport values. */ 5982 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5983 params.spp_pathmtu = trans->pathmtu; 5984 params.spp_pathmaxrxt = trans->pathmaxrxt; 5985 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5986 5987 /*draft-11 doesn't say what to return in spp_flags*/ 5988 params.spp_flags = trans->param_flags; 5989 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5990 params.spp_ipv6_flowlabel = trans->flowlabel & 5991 SCTP_FLOWLABEL_VAL_MASK; 5992 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5993 } 5994 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5995 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5996 params.spp_flags |= SPP_DSCP; 5997 } 5998 } else if (asoc) { 5999 /* Fetch association values. */ 6000 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6001 params.spp_pathmtu = asoc->pathmtu; 6002 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6003 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6004 6005 /*draft-11 doesn't say what to return in spp_flags*/ 6006 params.spp_flags = asoc->param_flags; 6007 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6008 params.spp_ipv6_flowlabel = asoc->flowlabel & 6009 SCTP_FLOWLABEL_VAL_MASK; 6010 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6011 } 6012 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6013 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6014 params.spp_flags |= SPP_DSCP; 6015 } 6016 } else { 6017 /* Fetch socket values. */ 6018 params.spp_hbinterval = sp->hbinterval; 6019 params.spp_pathmtu = sp->pathmtu; 6020 params.spp_sackdelay = sp->sackdelay; 6021 params.spp_pathmaxrxt = sp->pathmaxrxt; 6022 6023 /*draft-11 doesn't say what to return in spp_flags*/ 6024 params.spp_flags = sp->param_flags; 6025 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6026 params.spp_ipv6_flowlabel = sp->flowlabel & 6027 SCTP_FLOWLABEL_VAL_MASK; 6028 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6029 } 6030 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6031 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6032 params.spp_flags |= SPP_DSCP; 6033 } 6034 } 6035 6036 if (copy_to_user(optval, ¶ms, len)) 6037 return -EFAULT; 6038 6039 if (put_user(len, optlen)) 6040 return -EFAULT; 6041 6042 return 0; 6043 } 6044 6045 /* 6046 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6047 * 6048 * This option will effect the way delayed acks are performed. This 6049 * option allows you to get or set the delayed ack time, in 6050 * milliseconds. It also allows changing the delayed ack frequency. 6051 * Changing the frequency to 1 disables the delayed sack algorithm. If 6052 * the assoc_id is 0, then this sets or gets the endpoints default 6053 * values. If the assoc_id field is non-zero, then the set or get 6054 * effects the specified association for the one to many model (the 6055 * assoc_id field is ignored by the one to one model). Note that if 6056 * sack_delay or sack_freq are 0 when setting this option, then the 6057 * current values will remain unchanged. 6058 * 6059 * struct sctp_sack_info { 6060 * sctp_assoc_t sack_assoc_id; 6061 * uint32_t sack_delay; 6062 * uint32_t sack_freq; 6063 * }; 6064 * 6065 * sack_assoc_id - This parameter, indicates which association the user 6066 * is performing an action upon. Note that if this field's value is 6067 * zero then the endpoints default value is changed (effecting future 6068 * associations only). 6069 * 6070 * sack_delay - This parameter contains the number of milliseconds that 6071 * the user is requesting the delayed ACK timer be set to. Note that 6072 * this value is defined in the standard to be between 200 and 500 6073 * milliseconds. 6074 * 6075 * sack_freq - This parameter contains the number of packets that must 6076 * be received before a sack is sent without waiting for the delay 6077 * timer to expire. The default value for this is 2, setting this 6078 * value to 1 will disable the delayed sack algorithm. 6079 */ 6080 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6081 char __user *optval, 6082 int __user *optlen) 6083 { 6084 struct sctp_sack_info params; 6085 struct sctp_association *asoc = NULL; 6086 struct sctp_sock *sp = sctp_sk(sk); 6087 6088 if (len >= sizeof(struct sctp_sack_info)) { 6089 len = sizeof(struct sctp_sack_info); 6090 6091 if (copy_from_user(¶ms, optval, len)) 6092 return -EFAULT; 6093 } else if (len == sizeof(struct sctp_assoc_value)) { 6094 pr_warn_ratelimited(DEPRECATED 6095 "%s (pid %d) " 6096 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6097 "Use struct sctp_sack_info instead\n", 6098 current->comm, task_pid_nr(current)); 6099 if (copy_from_user(¶ms, optval, len)) 6100 return -EFAULT; 6101 } else 6102 return -EINVAL; 6103 6104 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6105 * socket is a one to many style socket, and an association 6106 * was not found, then the id was invalid. 6107 */ 6108 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6109 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6110 sctp_style(sk, UDP)) 6111 return -EINVAL; 6112 6113 if (asoc) { 6114 /* Fetch association values. */ 6115 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6116 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6117 params.sack_freq = asoc->sackfreq; 6118 6119 } else { 6120 params.sack_delay = 0; 6121 params.sack_freq = 1; 6122 } 6123 } else { 6124 /* Fetch socket values. */ 6125 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6126 params.sack_delay = sp->sackdelay; 6127 params.sack_freq = sp->sackfreq; 6128 } else { 6129 params.sack_delay = 0; 6130 params.sack_freq = 1; 6131 } 6132 } 6133 6134 if (copy_to_user(optval, ¶ms, len)) 6135 return -EFAULT; 6136 6137 if (put_user(len, optlen)) 6138 return -EFAULT; 6139 6140 return 0; 6141 } 6142 6143 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6144 * 6145 * Applications can specify protocol parameters for the default association 6146 * initialization. The option name argument to setsockopt() and getsockopt() 6147 * is SCTP_INITMSG. 6148 * 6149 * Setting initialization parameters is effective only on an unconnected 6150 * socket (for UDP-style sockets only future associations are effected 6151 * by the change). With TCP-style sockets, this option is inherited by 6152 * sockets derived from a listener socket. 6153 */ 6154 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6155 { 6156 if (len < sizeof(struct sctp_initmsg)) 6157 return -EINVAL; 6158 len = sizeof(struct sctp_initmsg); 6159 if (put_user(len, optlen)) 6160 return -EFAULT; 6161 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6162 return -EFAULT; 6163 return 0; 6164 } 6165 6166 6167 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6168 char __user *optval, int __user *optlen) 6169 { 6170 struct sctp_association *asoc; 6171 int cnt = 0; 6172 struct sctp_getaddrs getaddrs; 6173 struct sctp_transport *from; 6174 void __user *to; 6175 union sctp_addr temp; 6176 struct sctp_sock *sp = sctp_sk(sk); 6177 int addrlen; 6178 size_t space_left; 6179 int bytes_copied; 6180 6181 if (len < sizeof(struct sctp_getaddrs)) 6182 return -EINVAL; 6183 6184 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6185 return -EFAULT; 6186 6187 /* For UDP-style sockets, id specifies the association to query. */ 6188 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6189 if (!asoc) 6190 return -EINVAL; 6191 6192 to = optval + offsetof(struct sctp_getaddrs, addrs); 6193 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6194 6195 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6196 transports) { 6197 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6198 addrlen = sctp_get_pf_specific(sk->sk_family) 6199 ->addr_to_user(sp, &temp); 6200 if (space_left < addrlen) 6201 return -ENOMEM; 6202 if (copy_to_user(to, &temp, addrlen)) 6203 return -EFAULT; 6204 to += addrlen; 6205 cnt++; 6206 space_left -= addrlen; 6207 } 6208 6209 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6210 return -EFAULT; 6211 bytes_copied = ((char __user *)to) - optval; 6212 if (put_user(bytes_copied, optlen)) 6213 return -EFAULT; 6214 6215 return 0; 6216 } 6217 6218 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6219 size_t space_left, int *bytes_copied) 6220 { 6221 struct sctp_sockaddr_entry *addr; 6222 union sctp_addr temp; 6223 int cnt = 0; 6224 int addrlen; 6225 struct net *net = sock_net(sk); 6226 6227 rcu_read_lock(); 6228 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6229 if (!addr->valid) 6230 continue; 6231 6232 if ((PF_INET == sk->sk_family) && 6233 (AF_INET6 == addr->a.sa.sa_family)) 6234 continue; 6235 if ((PF_INET6 == sk->sk_family) && 6236 inet_v6_ipv6only(sk) && 6237 (AF_INET == addr->a.sa.sa_family)) 6238 continue; 6239 memcpy(&temp, &addr->a, sizeof(temp)); 6240 if (!temp.v4.sin_port) 6241 temp.v4.sin_port = htons(port); 6242 6243 addrlen = sctp_get_pf_specific(sk->sk_family) 6244 ->addr_to_user(sctp_sk(sk), &temp); 6245 6246 if (space_left < addrlen) { 6247 cnt = -ENOMEM; 6248 break; 6249 } 6250 memcpy(to, &temp, addrlen); 6251 6252 to += addrlen; 6253 cnt++; 6254 space_left -= addrlen; 6255 *bytes_copied += addrlen; 6256 } 6257 rcu_read_unlock(); 6258 6259 return cnt; 6260 } 6261 6262 6263 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6264 char __user *optval, int __user *optlen) 6265 { 6266 struct sctp_bind_addr *bp; 6267 struct sctp_association *asoc; 6268 int cnt = 0; 6269 struct sctp_getaddrs getaddrs; 6270 struct sctp_sockaddr_entry *addr; 6271 void __user *to; 6272 union sctp_addr temp; 6273 struct sctp_sock *sp = sctp_sk(sk); 6274 int addrlen; 6275 int err = 0; 6276 size_t space_left; 6277 int bytes_copied = 0; 6278 void *addrs; 6279 void *buf; 6280 6281 if (len < sizeof(struct sctp_getaddrs)) 6282 return -EINVAL; 6283 6284 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6285 return -EFAULT; 6286 6287 /* 6288 * For UDP-style sockets, id specifies the association to query. 6289 * If the id field is set to the value '0' then the locally bound 6290 * addresses are returned without regard to any particular 6291 * association. 6292 */ 6293 if (0 == getaddrs.assoc_id) { 6294 bp = &sctp_sk(sk)->ep->base.bind_addr; 6295 } else { 6296 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6297 if (!asoc) 6298 return -EINVAL; 6299 bp = &asoc->base.bind_addr; 6300 } 6301 6302 to = optval + offsetof(struct sctp_getaddrs, addrs); 6303 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6304 6305 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6306 if (!addrs) 6307 return -ENOMEM; 6308 6309 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6310 * addresses from the global local address list. 6311 */ 6312 if (sctp_list_single_entry(&bp->address_list)) { 6313 addr = list_entry(bp->address_list.next, 6314 struct sctp_sockaddr_entry, list); 6315 if (sctp_is_any(sk, &addr->a)) { 6316 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6317 space_left, &bytes_copied); 6318 if (cnt < 0) { 6319 err = cnt; 6320 goto out; 6321 } 6322 goto copy_getaddrs; 6323 } 6324 } 6325 6326 buf = addrs; 6327 /* Protection on the bound address list is not needed since 6328 * in the socket option context we hold a socket lock and 6329 * thus the bound address list can't change. 6330 */ 6331 list_for_each_entry(addr, &bp->address_list, list) { 6332 memcpy(&temp, &addr->a, sizeof(temp)); 6333 addrlen = sctp_get_pf_specific(sk->sk_family) 6334 ->addr_to_user(sp, &temp); 6335 if (space_left < addrlen) { 6336 err = -ENOMEM; /*fixme: right error?*/ 6337 goto out; 6338 } 6339 memcpy(buf, &temp, addrlen); 6340 buf += addrlen; 6341 bytes_copied += addrlen; 6342 cnt++; 6343 space_left -= addrlen; 6344 } 6345 6346 copy_getaddrs: 6347 if (copy_to_user(to, addrs, bytes_copied)) { 6348 err = -EFAULT; 6349 goto out; 6350 } 6351 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6352 err = -EFAULT; 6353 goto out; 6354 } 6355 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6356 * but we can't change it anymore. 6357 */ 6358 if (put_user(bytes_copied, optlen)) 6359 err = -EFAULT; 6360 out: 6361 kfree(addrs); 6362 return err; 6363 } 6364 6365 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6366 * 6367 * Requests that the local SCTP stack use the enclosed peer address as 6368 * the association primary. The enclosed address must be one of the 6369 * association peer's addresses. 6370 */ 6371 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6372 char __user *optval, int __user *optlen) 6373 { 6374 struct sctp_prim prim; 6375 struct sctp_association *asoc; 6376 struct sctp_sock *sp = sctp_sk(sk); 6377 6378 if (len < sizeof(struct sctp_prim)) 6379 return -EINVAL; 6380 6381 len = sizeof(struct sctp_prim); 6382 6383 if (copy_from_user(&prim, optval, len)) 6384 return -EFAULT; 6385 6386 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6387 if (!asoc) 6388 return -EINVAL; 6389 6390 if (!asoc->peer.primary_path) 6391 return -ENOTCONN; 6392 6393 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6394 asoc->peer.primary_path->af_specific->sockaddr_len); 6395 6396 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6397 (union sctp_addr *)&prim.ssp_addr); 6398 6399 if (put_user(len, optlen)) 6400 return -EFAULT; 6401 if (copy_to_user(optval, &prim, len)) 6402 return -EFAULT; 6403 6404 return 0; 6405 } 6406 6407 /* 6408 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6409 * 6410 * Requests that the local endpoint set the specified Adaptation Layer 6411 * Indication parameter for all future INIT and INIT-ACK exchanges. 6412 */ 6413 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6414 char __user *optval, int __user *optlen) 6415 { 6416 struct sctp_setadaptation adaptation; 6417 6418 if (len < sizeof(struct sctp_setadaptation)) 6419 return -EINVAL; 6420 6421 len = sizeof(struct sctp_setadaptation); 6422 6423 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6424 6425 if (put_user(len, optlen)) 6426 return -EFAULT; 6427 if (copy_to_user(optval, &adaptation, len)) 6428 return -EFAULT; 6429 6430 return 0; 6431 } 6432 6433 /* 6434 * 6435 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6436 * 6437 * Applications that wish to use the sendto() system call may wish to 6438 * specify a default set of parameters that would normally be supplied 6439 * through the inclusion of ancillary data. This socket option allows 6440 * such an application to set the default sctp_sndrcvinfo structure. 6441 6442 6443 * The application that wishes to use this socket option simply passes 6444 * in to this call the sctp_sndrcvinfo structure defined in Section 6445 * 5.2.2) The input parameters accepted by this call include 6446 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6447 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6448 * to this call if the caller is using the UDP model. 6449 * 6450 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6451 */ 6452 static int sctp_getsockopt_default_send_param(struct sock *sk, 6453 int len, char __user *optval, 6454 int __user *optlen) 6455 { 6456 struct sctp_sock *sp = sctp_sk(sk); 6457 struct sctp_association *asoc; 6458 struct sctp_sndrcvinfo info; 6459 6460 if (len < sizeof(info)) 6461 return -EINVAL; 6462 6463 len = sizeof(info); 6464 6465 if (copy_from_user(&info, optval, len)) 6466 return -EFAULT; 6467 6468 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6469 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6470 sctp_style(sk, UDP)) 6471 return -EINVAL; 6472 6473 if (asoc) { 6474 info.sinfo_stream = asoc->default_stream; 6475 info.sinfo_flags = asoc->default_flags; 6476 info.sinfo_ppid = asoc->default_ppid; 6477 info.sinfo_context = asoc->default_context; 6478 info.sinfo_timetolive = asoc->default_timetolive; 6479 } else { 6480 info.sinfo_stream = sp->default_stream; 6481 info.sinfo_flags = sp->default_flags; 6482 info.sinfo_ppid = sp->default_ppid; 6483 info.sinfo_context = sp->default_context; 6484 info.sinfo_timetolive = sp->default_timetolive; 6485 } 6486 6487 if (put_user(len, optlen)) 6488 return -EFAULT; 6489 if (copy_to_user(optval, &info, len)) 6490 return -EFAULT; 6491 6492 return 0; 6493 } 6494 6495 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6496 * (SCTP_DEFAULT_SNDINFO) 6497 */ 6498 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6499 char __user *optval, 6500 int __user *optlen) 6501 { 6502 struct sctp_sock *sp = sctp_sk(sk); 6503 struct sctp_association *asoc; 6504 struct sctp_sndinfo info; 6505 6506 if (len < sizeof(info)) 6507 return -EINVAL; 6508 6509 len = sizeof(info); 6510 6511 if (copy_from_user(&info, optval, len)) 6512 return -EFAULT; 6513 6514 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6515 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6516 sctp_style(sk, UDP)) 6517 return -EINVAL; 6518 6519 if (asoc) { 6520 info.snd_sid = asoc->default_stream; 6521 info.snd_flags = asoc->default_flags; 6522 info.snd_ppid = asoc->default_ppid; 6523 info.snd_context = asoc->default_context; 6524 } else { 6525 info.snd_sid = sp->default_stream; 6526 info.snd_flags = sp->default_flags; 6527 info.snd_ppid = sp->default_ppid; 6528 info.snd_context = sp->default_context; 6529 } 6530 6531 if (put_user(len, optlen)) 6532 return -EFAULT; 6533 if (copy_to_user(optval, &info, len)) 6534 return -EFAULT; 6535 6536 return 0; 6537 } 6538 6539 /* 6540 * 6541 * 7.1.5 SCTP_NODELAY 6542 * 6543 * Turn on/off any Nagle-like algorithm. This means that packets are 6544 * generally sent as soon as possible and no unnecessary delays are 6545 * introduced, at the cost of more packets in the network. Expects an 6546 * integer boolean flag. 6547 */ 6548 6549 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6550 char __user *optval, int __user *optlen) 6551 { 6552 int val; 6553 6554 if (len < sizeof(int)) 6555 return -EINVAL; 6556 6557 len = sizeof(int); 6558 val = (sctp_sk(sk)->nodelay == 1); 6559 if (put_user(len, optlen)) 6560 return -EFAULT; 6561 if (copy_to_user(optval, &val, len)) 6562 return -EFAULT; 6563 return 0; 6564 } 6565 6566 /* 6567 * 6568 * 7.1.1 SCTP_RTOINFO 6569 * 6570 * The protocol parameters used to initialize and bound retransmission 6571 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6572 * and modify these parameters. 6573 * All parameters are time values, in milliseconds. A value of 0, when 6574 * modifying the parameters, indicates that the current value should not 6575 * be changed. 6576 * 6577 */ 6578 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6579 char __user *optval, 6580 int __user *optlen) { 6581 struct sctp_rtoinfo rtoinfo; 6582 struct sctp_association *asoc; 6583 6584 if (len < sizeof (struct sctp_rtoinfo)) 6585 return -EINVAL; 6586 6587 len = sizeof(struct sctp_rtoinfo); 6588 6589 if (copy_from_user(&rtoinfo, optval, len)) 6590 return -EFAULT; 6591 6592 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6593 6594 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6595 sctp_style(sk, UDP)) 6596 return -EINVAL; 6597 6598 /* Values corresponding to the specific association. */ 6599 if (asoc) { 6600 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6601 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6602 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6603 } else { 6604 /* Values corresponding to the endpoint. */ 6605 struct sctp_sock *sp = sctp_sk(sk); 6606 6607 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6608 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6609 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6610 } 6611 6612 if (put_user(len, optlen)) 6613 return -EFAULT; 6614 6615 if (copy_to_user(optval, &rtoinfo, len)) 6616 return -EFAULT; 6617 6618 return 0; 6619 } 6620 6621 /* 6622 * 6623 * 7.1.2 SCTP_ASSOCINFO 6624 * 6625 * This option is used to tune the maximum retransmission attempts 6626 * of the association. 6627 * Returns an error if the new association retransmission value is 6628 * greater than the sum of the retransmission value of the peer. 6629 * See [SCTP] for more information. 6630 * 6631 */ 6632 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6633 char __user *optval, 6634 int __user *optlen) 6635 { 6636 6637 struct sctp_assocparams assocparams; 6638 struct sctp_association *asoc; 6639 struct list_head *pos; 6640 int cnt = 0; 6641 6642 if (len < sizeof (struct sctp_assocparams)) 6643 return -EINVAL; 6644 6645 len = sizeof(struct sctp_assocparams); 6646 6647 if (copy_from_user(&assocparams, optval, len)) 6648 return -EFAULT; 6649 6650 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6651 6652 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6653 sctp_style(sk, UDP)) 6654 return -EINVAL; 6655 6656 /* Values correspoinding to the specific association */ 6657 if (asoc) { 6658 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6659 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6660 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6661 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6662 6663 list_for_each(pos, &asoc->peer.transport_addr_list) { 6664 cnt++; 6665 } 6666 6667 assocparams.sasoc_number_peer_destinations = cnt; 6668 } else { 6669 /* Values corresponding to the endpoint */ 6670 struct sctp_sock *sp = sctp_sk(sk); 6671 6672 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6673 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6674 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6675 assocparams.sasoc_cookie_life = 6676 sp->assocparams.sasoc_cookie_life; 6677 assocparams.sasoc_number_peer_destinations = 6678 sp->assocparams. 6679 sasoc_number_peer_destinations; 6680 } 6681 6682 if (put_user(len, optlen)) 6683 return -EFAULT; 6684 6685 if (copy_to_user(optval, &assocparams, len)) 6686 return -EFAULT; 6687 6688 return 0; 6689 } 6690 6691 /* 6692 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6693 * 6694 * This socket option is a boolean flag which turns on or off mapped V4 6695 * addresses. If this option is turned on and the socket is type 6696 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6697 * If this option is turned off, then no mapping will be done of V4 6698 * addresses and a user will receive both PF_INET6 and PF_INET type 6699 * addresses on the socket. 6700 */ 6701 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6702 char __user *optval, int __user *optlen) 6703 { 6704 int val; 6705 struct sctp_sock *sp = sctp_sk(sk); 6706 6707 if (len < sizeof(int)) 6708 return -EINVAL; 6709 6710 len = sizeof(int); 6711 val = sp->v4mapped; 6712 if (put_user(len, optlen)) 6713 return -EFAULT; 6714 if (copy_to_user(optval, &val, len)) 6715 return -EFAULT; 6716 6717 return 0; 6718 } 6719 6720 /* 6721 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6722 * (chapter and verse is quoted at sctp_setsockopt_context()) 6723 */ 6724 static int sctp_getsockopt_context(struct sock *sk, int len, 6725 char __user *optval, int __user *optlen) 6726 { 6727 struct sctp_assoc_value params; 6728 struct sctp_association *asoc; 6729 6730 if (len < sizeof(struct sctp_assoc_value)) 6731 return -EINVAL; 6732 6733 len = sizeof(struct sctp_assoc_value); 6734 6735 if (copy_from_user(¶ms, optval, len)) 6736 return -EFAULT; 6737 6738 asoc = sctp_id2assoc(sk, params.assoc_id); 6739 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6740 sctp_style(sk, UDP)) 6741 return -EINVAL; 6742 6743 params.assoc_value = asoc ? asoc->default_rcv_context 6744 : sctp_sk(sk)->default_rcv_context; 6745 6746 if (put_user(len, optlen)) 6747 return -EFAULT; 6748 if (copy_to_user(optval, ¶ms, len)) 6749 return -EFAULT; 6750 6751 return 0; 6752 } 6753 6754 /* 6755 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6756 * This option will get or set the maximum size to put in any outgoing 6757 * SCTP DATA chunk. If a message is larger than this size it will be 6758 * fragmented by SCTP into the specified size. Note that the underlying 6759 * SCTP implementation may fragment into smaller sized chunks when the 6760 * PMTU of the underlying association is smaller than the value set by 6761 * the user. The default value for this option is '0' which indicates 6762 * the user is NOT limiting fragmentation and only the PMTU will effect 6763 * SCTP's choice of DATA chunk size. Note also that values set larger 6764 * than the maximum size of an IP datagram will effectively let SCTP 6765 * control fragmentation (i.e. the same as setting this option to 0). 6766 * 6767 * The following structure is used to access and modify this parameter: 6768 * 6769 * struct sctp_assoc_value { 6770 * sctp_assoc_t assoc_id; 6771 * uint32_t assoc_value; 6772 * }; 6773 * 6774 * assoc_id: This parameter is ignored for one-to-one style sockets. 6775 * For one-to-many style sockets this parameter indicates which 6776 * association the user is performing an action upon. Note that if 6777 * this field's value is zero then the endpoints default value is 6778 * changed (effecting future associations only). 6779 * assoc_value: This parameter specifies the maximum size in bytes. 6780 */ 6781 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6782 char __user *optval, int __user *optlen) 6783 { 6784 struct sctp_assoc_value params; 6785 struct sctp_association *asoc; 6786 6787 if (len == sizeof(int)) { 6788 pr_warn_ratelimited(DEPRECATED 6789 "%s (pid %d) " 6790 "Use of int in maxseg socket option.\n" 6791 "Use struct sctp_assoc_value instead\n", 6792 current->comm, task_pid_nr(current)); 6793 params.assoc_id = SCTP_FUTURE_ASSOC; 6794 } else if (len >= sizeof(struct sctp_assoc_value)) { 6795 len = sizeof(struct sctp_assoc_value); 6796 if (copy_from_user(¶ms, optval, len)) 6797 return -EFAULT; 6798 } else 6799 return -EINVAL; 6800 6801 asoc = sctp_id2assoc(sk, params.assoc_id); 6802 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6803 sctp_style(sk, UDP)) 6804 return -EINVAL; 6805 6806 if (asoc) 6807 params.assoc_value = asoc->frag_point; 6808 else 6809 params.assoc_value = sctp_sk(sk)->user_frag; 6810 6811 if (put_user(len, optlen)) 6812 return -EFAULT; 6813 if (len == sizeof(int)) { 6814 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6815 return -EFAULT; 6816 } else { 6817 if (copy_to_user(optval, ¶ms, len)) 6818 return -EFAULT; 6819 } 6820 6821 return 0; 6822 } 6823 6824 /* 6825 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6826 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6827 */ 6828 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6829 char __user *optval, int __user *optlen) 6830 { 6831 int val; 6832 6833 if (len < sizeof(int)) 6834 return -EINVAL; 6835 6836 len = sizeof(int); 6837 6838 val = sctp_sk(sk)->frag_interleave; 6839 if (put_user(len, optlen)) 6840 return -EFAULT; 6841 if (copy_to_user(optval, &val, len)) 6842 return -EFAULT; 6843 6844 return 0; 6845 } 6846 6847 /* 6848 * 7.1.25. Set or Get the sctp partial delivery point 6849 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6850 */ 6851 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6852 char __user *optval, 6853 int __user *optlen) 6854 { 6855 u32 val; 6856 6857 if (len < sizeof(u32)) 6858 return -EINVAL; 6859 6860 len = sizeof(u32); 6861 6862 val = sctp_sk(sk)->pd_point; 6863 if (put_user(len, optlen)) 6864 return -EFAULT; 6865 if (copy_to_user(optval, &val, len)) 6866 return -EFAULT; 6867 6868 return 0; 6869 } 6870 6871 /* 6872 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6873 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6874 */ 6875 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6876 char __user *optval, 6877 int __user *optlen) 6878 { 6879 struct sctp_assoc_value params; 6880 struct sctp_association *asoc; 6881 6882 if (len == sizeof(int)) { 6883 pr_warn_ratelimited(DEPRECATED 6884 "%s (pid %d) " 6885 "Use of int in max_burst socket option.\n" 6886 "Use struct sctp_assoc_value instead\n", 6887 current->comm, task_pid_nr(current)); 6888 params.assoc_id = SCTP_FUTURE_ASSOC; 6889 } else if (len >= sizeof(struct sctp_assoc_value)) { 6890 len = sizeof(struct sctp_assoc_value); 6891 if (copy_from_user(¶ms, optval, len)) 6892 return -EFAULT; 6893 } else 6894 return -EINVAL; 6895 6896 asoc = sctp_id2assoc(sk, params.assoc_id); 6897 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6898 sctp_style(sk, UDP)) 6899 return -EINVAL; 6900 6901 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6902 6903 if (len == sizeof(int)) { 6904 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6905 return -EFAULT; 6906 } else { 6907 if (copy_to_user(optval, ¶ms, len)) 6908 return -EFAULT; 6909 } 6910 6911 return 0; 6912 6913 } 6914 6915 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6916 char __user *optval, int __user *optlen) 6917 { 6918 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6919 struct sctp_hmacalgo __user *p = (void __user *)optval; 6920 struct sctp_hmac_algo_param *hmacs; 6921 __u16 data_len = 0; 6922 u32 num_idents; 6923 int i; 6924 6925 if (!ep->auth_enable) 6926 return -EACCES; 6927 6928 hmacs = ep->auth_hmacs_list; 6929 data_len = ntohs(hmacs->param_hdr.length) - 6930 sizeof(struct sctp_paramhdr); 6931 6932 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6933 return -EINVAL; 6934 6935 len = sizeof(struct sctp_hmacalgo) + data_len; 6936 num_idents = data_len / sizeof(u16); 6937 6938 if (put_user(len, optlen)) 6939 return -EFAULT; 6940 if (put_user(num_idents, &p->shmac_num_idents)) 6941 return -EFAULT; 6942 for (i = 0; i < num_idents; i++) { 6943 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6944 6945 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6946 return -EFAULT; 6947 } 6948 return 0; 6949 } 6950 6951 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6952 char __user *optval, int __user *optlen) 6953 { 6954 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6955 struct sctp_authkeyid val; 6956 struct sctp_association *asoc; 6957 6958 if (!ep->auth_enable) 6959 return -EACCES; 6960 6961 if (len < sizeof(struct sctp_authkeyid)) 6962 return -EINVAL; 6963 6964 len = sizeof(struct sctp_authkeyid); 6965 if (copy_from_user(&val, optval, len)) 6966 return -EFAULT; 6967 6968 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6969 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6970 return -EINVAL; 6971 6972 if (asoc) 6973 val.scact_keynumber = asoc->active_key_id; 6974 else 6975 val.scact_keynumber = ep->active_key_id; 6976 6977 if (put_user(len, optlen)) 6978 return -EFAULT; 6979 if (copy_to_user(optval, &val, len)) 6980 return -EFAULT; 6981 6982 return 0; 6983 } 6984 6985 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6986 char __user *optval, int __user *optlen) 6987 { 6988 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6989 struct sctp_authchunks __user *p = (void __user *)optval; 6990 struct sctp_authchunks val; 6991 struct sctp_association *asoc; 6992 struct sctp_chunks_param *ch; 6993 u32 num_chunks = 0; 6994 char __user *to; 6995 6996 if (!ep->auth_enable) 6997 return -EACCES; 6998 6999 if (len < sizeof(struct sctp_authchunks)) 7000 return -EINVAL; 7001 7002 if (copy_from_user(&val, optval, sizeof(val))) 7003 return -EFAULT; 7004 7005 to = p->gauth_chunks; 7006 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7007 if (!asoc) 7008 return -EINVAL; 7009 7010 ch = asoc->peer.peer_chunks; 7011 if (!ch) 7012 goto num; 7013 7014 /* See if the user provided enough room for all the data */ 7015 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7016 if (len < num_chunks) 7017 return -EINVAL; 7018 7019 if (copy_to_user(to, ch->chunks, num_chunks)) 7020 return -EFAULT; 7021 num: 7022 len = sizeof(struct sctp_authchunks) + num_chunks; 7023 if (put_user(len, optlen)) 7024 return -EFAULT; 7025 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7026 return -EFAULT; 7027 return 0; 7028 } 7029 7030 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7031 char __user *optval, int __user *optlen) 7032 { 7033 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7034 struct sctp_authchunks __user *p = (void __user *)optval; 7035 struct sctp_authchunks val; 7036 struct sctp_association *asoc; 7037 struct sctp_chunks_param *ch; 7038 u32 num_chunks = 0; 7039 char __user *to; 7040 7041 if (!ep->auth_enable) 7042 return -EACCES; 7043 7044 if (len < sizeof(struct sctp_authchunks)) 7045 return -EINVAL; 7046 7047 if (copy_from_user(&val, optval, sizeof(val))) 7048 return -EFAULT; 7049 7050 to = p->gauth_chunks; 7051 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7052 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7053 sctp_style(sk, UDP)) 7054 return -EINVAL; 7055 7056 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7057 : ep->auth_chunk_list; 7058 if (!ch) 7059 goto num; 7060 7061 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7062 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7063 return -EINVAL; 7064 7065 if (copy_to_user(to, ch->chunks, num_chunks)) 7066 return -EFAULT; 7067 num: 7068 len = sizeof(struct sctp_authchunks) + num_chunks; 7069 if (put_user(len, optlen)) 7070 return -EFAULT; 7071 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7072 return -EFAULT; 7073 7074 return 0; 7075 } 7076 7077 /* 7078 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7079 * This option gets the current number of associations that are attached 7080 * to a one-to-many style socket. The option value is an uint32_t. 7081 */ 7082 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7083 char __user *optval, int __user *optlen) 7084 { 7085 struct sctp_sock *sp = sctp_sk(sk); 7086 struct sctp_association *asoc; 7087 u32 val = 0; 7088 7089 if (sctp_style(sk, TCP)) 7090 return -EOPNOTSUPP; 7091 7092 if (len < sizeof(u32)) 7093 return -EINVAL; 7094 7095 len = sizeof(u32); 7096 7097 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7098 val++; 7099 } 7100 7101 if (put_user(len, optlen)) 7102 return -EFAULT; 7103 if (copy_to_user(optval, &val, len)) 7104 return -EFAULT; 7105 7106 return 0; 7107 } 7108 7109 /* 7110 * 8.1.23 SCTP_AUTO_ASCONF 7111 * See the corresponding setsockopt entry as description 7112 */ 7113 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7114 char __user *optval, int __user *optlen) 7115 { 7116 int val = 0; 7117 7118 if (len < sizeof(int)) 7119 return -EINVAL; 7120 7121 len = sizeof(int); 7122 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7123 val = 1; 7124 if (put_user(len, optlen)) 7125 return -EFAULT; 7126 if (copy_to_user(optval, &val, len)) 7127 return -EFAULT; 7128 return 0; 7129 } 7130 7131 /* 7132 * 8.2.6. Get the Current Identifiers of Associations 7133 * (SCTP_GET_ASSOC_ID_LIST) 7134 * 7135 * This option gets the current list of SCTP association identifiers of 7136 * the SCTP associations handled by a one-to-many style socket. 7137 */ 7138 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7139 char __user *optval, int __user *optlen) 7140 { 7141 struct sctp_sock *sp = sctp_sk(sk); 7142 struct sctp_association *asoc; 7143 struct sctp_assoc_ids *ids; 7144 u32 num = 0; 7145 7146 if (sctp_style(sk, TCP)) 7147 return -EOPNOTSUPP; 7148 7149 if (len < sizeof(struct sctp_assoc_ids)) 7150 return -EINVAL; 7151 7152 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7153 num++; 7154 } 7155 7156 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7157 return -EINVAL; 7158 7159 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7160 7161 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7162 if (unlikely(!ids)) 7163 return -ENOMEM; 7164 7165 ids->gaids_number_of_ids = num; 7166 num = 0; 7167 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7168 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7169 } 7170 7171 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7172 kfree(ids); 7173 return -EFAULT; 7174 } 7175 7176 kfree(ids); 7177 return 0; 7178 } 7179 7180 /* 7181 * SCTP_PEER_ADDR_THLDS 7182 * 7183 * This option allows us to fetch the partially failed threshold for one or all 7184 * transports in an association. See Section 6.1 of: 7185 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7186 */ 7187 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7188 char __user *optval, 7189 int len, 7190 int __user *optlen) 7191 { 7192 struct sctp_paddrthlds val; 7193 struct sctp_transport *trans; 7194 struct sctp_association *asoc; 7195 7196 if (len < sizeof(struct sctp_paddrthlds)) 7197 return -EINVAL; 7198 len = sizeof(struct sctp_paddrthlds); 7199 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7200 return -EFAULT; 7201 7202 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7203 trans = sctp_addr_id2transport(sk, &val.spt_address, 7204 val.spt_assoc_id); 7205 if (!trans) 7206 return -ENOENT; 7207 7208 val.spt_pathmaxrxt = trans->pathmaxrxt; 7209 val.spt_pathpfthld = trans->pf_retrans; 7210 7211 return 0; 7212 } 7213 7214 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7215 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7216 sctp_style(sk, UDP)) 7217 return -EINVAL; 7218 7219 if (asoc) { 7220 val.spt_pathpfthld = asoc->pf_retrans; 7221 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7222 } else { 7223 struct sctp_sock *sp = sctp_sk(sk); 7224 7225 val.spt_pathpfthld = sp->pf_retrans; 7226 val.spt_pathmaxrxt = sp->pathmaxrxt; 7227 } 7228 7229 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7230 return -EFAULT; 7231 7232 return 0; 7233 } 7234 7235 /* 7236 * SCTP_GET_ASSOC_STATS 7237 * 7238 * This option retrieves local per endpoint statistics. It is modeled 7239 * after OpenSolaris' implementation 7240 */ 7241 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7242 char __user *optval, 7243 int __user *optlen) 7244 { 7245 struct sctp_assoc_stats sas; 7246 struct sctp_association *asoc = NULL; 7247 7248 /* User must provide at least the assoc id */ 7249 if (len < sizeof(sctp_assoc_t)) 7250 return -EINVAL; 7251 7252 /* Allow the struct to grow and fill in as much as possible */ 7253 len = min_t(size_t, len, sizeof(sas)); 7254 7255 if (copy_from_user(&sas, optval, len)) 7256 return -EFAULT; 7257 7258 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7259 if (!asoc) 7260 return -EINVAL; 7261 7262 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7263 sas.sas_gapcnt = asoc->stats.gapcnt; 7264 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7265 sas.sas_osacks = asoc->stats.osacks; 7266 sas.sas_isacks = asoc->stats.isacks; 7267 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7268 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7269 sas.sas_oodchunks = asoc->stats.oodchunks; 7270 sas.sas_iodchunks = asoc->stats.iodchunks; 7271 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7272 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7273 sas.sas_idupchunks = asoc->stats.idupchunks; 7274 sas.sas_opackets = asoc->stats.opackets; 7275 sas.sas_ipackets = asoc->stats.ipackets; 7276 7277 /* New high max rto observed, will return 0 if not a single 7278 * RTO update took place. obs_rto_ipaddr will be bogus 7279 * in such a case 7280 */ 7281 sas.sas_maxrto = asoc->stats.max_obs_rto; 7282 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7283 sizeof(struct sockaddr_storage)); 7284 7285 /* Mark beginning of a new observation period */ 7286 asoc->stats.max_obs_rto = asoc->rto_min; 7287 7288 if (put_user(len, optlen)) 7289 return -EFAULT; 7290 7291 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7292 7293 if (copy_to_user(optval, &sas, len)) 7294 return -EFAULT; 7295 7296 return 0; 7297 } 7298 7299 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7300 char __user *optval, 7301 int __user *optlen) 7302 { 7303 int val = 0; 7304 7305 if (len < sizeof(int)) 7306 return -EINVAL; 7307 7308 len = sizeof(int); 7309 if (sctp_sk(sk)->recvrcvinfo) 7310 val = 1; 7311 if (put_user(len, optlen)) 7312 return -EFAULT; 7313 if (copy_to_user(optval, &val, len)) 7314 return -EFAULT; 7315 7316 return 0; 7317 } 7318 7319 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7320 char __user *optval, 7321 int __user *optlen) 7322 { 7323 int val = 0; 7324 7325 if (len < sizeof(int)) 7326 return -EINVAL; 7327 7328 len = sizeof(int); 7329 if (sctp_sk(sk)->recvnxtinfo) 7330 val = 1; 7331 if (put_user(len, optlen)) 7332 return -EFAULT; 7333 if (copy_to_user(optval, &val, len)) 7334 return -EFAULT; 7335 7336 return 0; 7337 } 7338 7339 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7340 char __user *optval, 7341 int __user *optlen) 7342 { 7343 struct sctp_assoc_value params; 7344 struct sctp_association *asoc; 7345 int retval = -EFAULT; 7346 7347 if (len < sizeof(params)) { 7348 retval = -EINVAL; 7349 goto out; 7350 } 7351 7352 len = sizeof(params); 7353 if (copy_from_user(¶ms, optval, len)) 7354 goto out; 7355 7356 asoc = sctp_id2assoc(sk, params.assoc_id); 7357 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7358 sctp_style(sk, UDP)) { 7359 retval = -EINVAL; 7360 goto out; 7361 } 7362 7363 params.assoc_value = asoc ? asoc->prsctp_enable 7364 : sctp_sk(sk)->ep->prsctp_enable; 7365 7366 if (put_user(len, optlen)) 7367 goto out; 7368 7369 if (copy_to_user(optval, ¶ms, len)) 7370 goto out; 7371 7372 retval = 0; 7373 7374 out: 7375 return retval; 7376 } 7377 7378 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7379 char __user *optval, 7380 int __user *optlen) 7381 { 7382 struct sctp_default_prinfo info; 7383 struct sctp_association *asoc; 7384 int retval = -EFAULT; 7385 7386 if (len < sizeof(info)) { 7387 retval = -EINVAL; 7388 goto out; 7389 } 7390 7391 len = sizeof(info); 7392 if (copy_from_user(&info, optval, len)) 7393 goto out; 7394 7395 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7396 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7397 sctp_style(sk, UDP)) { 7398 retval = -EINVAL; 7399 goto out; 7400 } 7401 7402 if (asoc) { 7403 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7404 info.pr_value = asoc->default_timetolive; 7405 } else { 7406 struct sctp_sock *sp = sctp_sk(sk); 7407 7408 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7409 info.pr_value = sp->default_timetolive; 7410 } 7411 7412 if (put_user(len, optlen)) 7413 goto out; 7414 7415 if (copy_to_user(optval, &info, len)) 7416 goto out; 7417 7418 retval = 0; 7419 7420 out: 7421 return retval; 7422 } 7423 7424 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7425 char __user *optval, 7426 int __user *optlen) 7427 { 7428 struct sctp_prstatus params; 7429 struct sctp_association *asoc; 7430 int policy; 7431 int retval = -EINVAL; 7432 7433 if (len < sizeof(params)) 7434 goto out; 7435 7436 len = sizeof(params); 7437 if (copy_from_user(¶ms, optval, len)) { 7438 retval = -EFAULT; 7439 goto out; 7440 } 7441 7442 policy = params.sprstat_policy; 7443 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7444 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7445 goto out; 7446 7447 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7448 if (!asoc) 7449 goto out; 7450 7451 if (policy == SCTP_PR_SCTP_ALL) { 7452 params.sprstat_abandoned_unsent = 0; 7453 params.sprstat_abandoned_sent = 0; 7454 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7455 params.sprstat_abandoned_unsent += 7456 asoc->abandoned_unsent[policy]; 7457 params.sprstat_abandoned_sent += 7458 asoc->abandoned_sent[policy]; 7459 } 7460 } else { 7461 params.sprstat_abandoned_unsent = 7462 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7463 params.sprstat_abandoned_sent = 7464 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7465 } 7466 7467 if (put_user(len, optlen)) { 7468 retval = -EFAULT; 7469 goto out; 7470 } 7471 7472 if (copy_to_user(optval, ¶ms, len)) { 7473 retval = -EFAULT; 7474 goto out; 7475 } 7476 7477 retval = 0; 7478 7479 out: 7480 return retval; 7481 } 7482 7483 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7484 char __user *optval, 7485 int __user *optlen) 7486 { 7487 struct sctp_stream_out_ext *streamoute; 7488 struct sctp_association *asoc; 7489 struct sctp_prstatus params; 7490 int retval = -EINVAL; 7491 int policy; 7492 7493 if (len < sizeof(params)) 7494 goto out; 7495 7496 len = sizeof(params); 7497 if (copy_from_user(¶ms, optval, len)) { 7498 retval = -EFAULT; 7499 goto out; 7500 } 7501 7502 policy = params.sprstat_policy; 7503 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7504 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7505 goto out; 7506 7507 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7508 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7509 goto out; 7510 7511 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7512 if (!streamoute) { 7513 /* Not allocated yet, means all stats are 0 */ 7514 params.sprstat_abandoned_unsent = 0; 7515 params.sprstat_abandoned_sent = 0; 7516 retval = 0; 7517 goto out; 7518 } 7519 7520 if (policy == SCTP_PR_SCTP_ALL) { 7521 params.sprstat_abandoned_unsent = 0; 7522 params.sprstat_abandoned_sent = 0; 7523 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7524 params.sprstat_abandoned_unsent += 7525 streamoute->abandoned_unsent[policy]; 7526 params.sprstat_abandoned_sent += 7527 streamoute->abandoned_sent[policy]; 7528 } 7529 } else { 7530 params.sprstat_abandoned_unsent = 7531 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7532 params.sprstat_abandoned_sent = 7533 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7534 } 7535 7536 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7537 retval = -EFAULT; 7538 goto out; 7539 } 7540 7541 retval = 0; 7542 7543 out: 7544 return retval; 7545 } 7546 7547 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7548 char __user *optval, 7549 int __user *optlen) 7550 { 7551 struct sctp_assoc_value params; 7552 struct sctp_association *asoc; 7553 int retval = -EFAULT; 7554 7555 if (len < sizeof(params)) { 7556 retval = -EINVAL; 7557 goto out; 7558 } 7559 7560 len = sizeof(params); 7561 if (copy_from_user(¶ms, optval, len)) 7562 goto out; 7563 7564 asoc = sctp_id2assoc(sk, params.assoc_id); 7565 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7566 sctp_style(sk, UDP)) { 7567 retval = -EINVAL; 7568 goto out; 7569 } 7570 7571 params.assoc_value = asoc ? asoc->reconf_enable 7572 : sctp_sk(sk)->ep->reconf_enable; 7573 7574 if (put_user(len, optlen)) 7575 goto out; 7576 7577 if (copy_to_user(optval, ¶ms, len)) 7578 goto out; 7579 7580 retval = 0; 7581 7582 out: 7583 return retval; 7584 } 7585 7586 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7587 char __user *optval, 7588 int __user *optlen) 7589 { 7590 struct sctp_assoc_value params; 7591 struct sctp_association *asoc; 7592 int retval = -EFAULT; 7593 7594 if (len < sizeof(params)) { 7595 retval = -EINVAL; 7596 goto out; 7597 } 7598 7599 len = sizeof(params); 7600 if (copy_from_user(¶ms, optval, len)) 7601 goto out; 7602 7603 asoc = sctp_id2assoc(sk, params.assoc_id); 7604 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7605 sctp_style(sk, UDP)) { 7606 retval = -EINVAL; 7607 goto out; 7608 } 7609 7610 params.assoc_value = asoc ? asoc->strreset_enable 7611 : sctp_sk(sk)->ep->strreset_enable; 7612 7613 if (put_user(len, optlen)) 7614 goto out; 7615 7616 if (copy_to_user(optval, ¶ms, len)) 7617 goto out; 7618 7619 retval = 0; 7620 7621 out: 7622 return retval; 7623 } 7624 7625 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7626 char __user *optval, 7627 int __user *optlen) 7628 { 7629 struct sctp_assoc_value params; 7630 struct sctp_association *asoc; 7631 int retval = -EFAULT; 7632 7633 if (len < sizeof(params)) { 7634 retval = -EINVAL; 7635 goto out; 7636 } 7637 7638 len = sizeof(params); 7639 if (copy_from_user(¶ms, optval, len)) 7640 goto out; 7641 7642 asoc = sctp_id2assoc(sk, params.assoc_id); 7643 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7644 sctp_style(sk, UDP)) { 7645 retval = -EINVAL; 7646 goto out; 7647 } 7648 7649 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7650 : sctp_sk(sk)->default_ss; 7651 7652 if (put_user(len, optlen)) 7653 goto out; 7654 7655 if (copy_to_user(optval, ¶ms, len)) 7656 goto out; 7657 7658 retval = 0; 7659 7660 out: 7661 return retval; 7662 } 7663 7664 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7665 char __user *optval, 7666 int __user *optlen) 7667 { 7668 struct sctp_stream_value params; 7669 struct sctp_association *asoc; 7670 int retval = -EFAULT; 7671 7672 if (len < sizeof(params)) { 7673 retval = -EINVAL; 7674 goto out; 7675 } 7676 7677 len = sizeof(params); 7678 if (copy_from_user(¶ms, optval, len)) 7679 goto out; 7680 7681 asoc = sctp_id2assoc(sk, params.assoc_id); 7682 if (!asoc) { 7683 retval = -EINVAL; 7684 goto out; 7685 } 7686 7687 retval = sctp_sched_get_value(asoc, params.stream_id, 7688 ¶ms.stream_value); 7689 if (retval) 7690 goto out; 7691 7692 if (put_user(len, optlen)) { 7693 retval = -EFAULT; 7694 goto out; 7695 } 7696 7697 if (copy_to_user(optval, ¶ms, len)) { 7698 retval = -EFAULT; 7699 goto out; 7700 } 7701 7702 out: 7703 return retval; 7704 } 7705 7706 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7707 char __user *optval, 7708 int __user *optlen) 7709 { 7710 struct sctp_assoc_value params; 7711 struct sctp_association *asoc; 7712 int retval = -EFAULT; 7713 7714 if (len < sizeof(params)) { 7715 retval = -EINVAL; 7716 goto out; 7717 } 7718 7719 len = sizeof(params); 7720 if (copy_from_user(¶ms, optval, len)) 7721 goto out; 7722 7723 asoc = sctp_id2assoc(sk, params.assoc_id); 7724 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7725 sctp_style(sk, UDP)) { 7726 retval = -EINVAL; 7727 goto out; 7728 } 7729 7730 params.assoc_value = asoc ? asoc->intl_enable 7731 : sctp_sk(sk)->strm_interleave; 7732 7733 if (put_user(len, optlen)) 7734 goto out; 7735 7736 if (copy_to_user(optval, ¶ms, len)) 7737 goto out; 7738 7739 retval = 0; 7740 7741 out: 7742 return retval; 7743 } 7744 7745 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7746 char __user *optval, 7747 int __user *optlen) 7748 { 7749 int val; 7750 7751 if (len < sizeof(int)) 7752 return -EINVAL; 7753 7754 len = sizeof(int); 7755 val = sctp_sk(sk)->reuse; 7756 if (put_user(len, optlen)) 7757 return -EFAULT; 7758 7759 if (copy_to_user(optval, &val, len)) 7760 return -EFAULT; 7761 7762 return 0; 7763 } 7764 7765 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7766 int __user *optlen) 7767 { 7768 struct sctp_association *asoc; 7769 struct sctp_event param; 7770 __u16 subscribe; 7771 7772 if (len < sizeof(param)) 7773 return -EINVAL; 7774 7775 len = sizeof(param); 7776 if (copy_from_user(¶m, optval, len)) 7777 return -EFAULT; 7778 7779 if (param.se_type < SCTP_SN_TYPE_BASE || 7780 param.se_type > SCTP_SN_TYPE_MAX) 7781 return -EINVAL; 7782 7783 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7784 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7785 sctp_style(sk, UDP)) 7786 return -EINVAL; 7787 7788 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7789 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7790 7791 if (put_user(len, optlen)) 7792 return -EFAULT; 7793 7794 if (copy_to_user(optval, ¶m, len)) 7795 return -EFAULT; 7796 7797 return 0; 7798 } 7799 7800 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7801 char __user *optval, int __user *optlen) 7802 { 7803 int retval = 0; 7804 int len; 7805 7806 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7807 7808 /* I can hardly begin to describe how wrong this is. This is 7809 * so broken as to be worse than useless. The API draft 7810 * REALLY is NOT helpful here... I am not convinced that the 7811 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7812 * are at all well-founded. 7813 */ 7814 if (level != SOL_SCTP) { 7815 struct sctp_af *af = sctp_sk(sk)->pf->af; 7816 7817 retval = af->getsockopt(sk, level, optname, optval, optlen); 7818 return retval; 7819 } 7820 7821 if (get_user(len, optlen)) 7822 return -EFAULT; 7823 7824 if (len < 0) 7825 return -EINVAL; 7826 7827 lock_sock(sk); 7828 7829 switch (optname) { 7830 case SCTP_STATUS: 7831 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7832 break; 7833 case SCTP_DISABLE_FRAGMENTS: 7834 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7835 optlen); 7836 break; 7837 case SCTP_EVENTS: 7838 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7839 break; 7840 case SCTP_AUTOCLOSE: 7841 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7842 break; 7843 case SCTP_SOCKOPT_PEELOFF: 7844 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7845 break; 7846 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7847 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7848 break; 7849 case SCTP_PEER_ADDR_PARAMS: 7850 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7851 optlen); 7852 break; 7853 case SCTP_DELAYED_SACK: 7854 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7855 optlen); 7856 break; 7857 case SCTP_INITMSG: 7858 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7859 break; 7860 case SCTP_GET_PEER_ADDRS: 7861 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7862 optlen); 7863 break; 7864 case SCTP_GET_LOCAL_ADDRS: 7865 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7866 optlen); 7867 break; 7868 case SCTP_SOCKOPT_CONNECTX3: 7869 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7870 break; 7871 case SCTP_DEFAULT_SEND_PARAM: 7872 retval = sctp_getsockopt_default_send_param(sk, len, 7873 optval, optlen); 7874 break; 7875 case SCTP_DEFAULT_SNDINFO: 7876 retval = sctp_getsockopt_default_sndinfo(sk, len, 7877 optval, optlen); 7878 break; 7879 case SCTP_PRIMARY_ADDR: 7880 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7881 break; 7882 case SCTP_NODELAY: 7883 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7884 break; 7885 case SCTP_RTOINFO: 7886 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7887 break; 7888 case SCTP_ASSOCINFO: 7889 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7890 break; 7891 case SCTP_I_WANT_MAPPED_V4_ADDR: 7892 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7893 break; 7894 case SCTP_MAXSEG: 7895 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7896 break; 7897 case SCTP_GET_PEER_ADDR_INFO: 7898 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7899 optlen); 7900 break; 7901 case SCTP_ADAPTATION_LAYER: 7902 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7903 optlen); 7904 break; 7905 case SCTP_CONTEXT: 7906 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7907 break; 7908 case SCTP_FRAGMENT_INTERLEAVE: 7909 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7910 optlen); 7911 break; 7912 case SCTP_PARTIAL_DELIVERY_POINT: 7913 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7914 optlen); 7915 break; 7916 case SCTP_MAX_BURST: 7917 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7918 break; 7919 case SCTP_AUTH_KEY: 7920 case SCTP_AUTH_CHUNK: 7921 case SCTP_AUTH_DELETE_KEY: 7922 case SCTP_AUTH_DEACTIVATE_KEY: 7923 retval = -EOPNOTSUPP; 7924 break; 7925 case SCTP_HMAC_IDENT: 7926 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7927 break; 7928 case SCTP_AUTH_ACTIVE_KEY: 7929 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7930 break; 7931 case SCTP_PEER_AUTH_CHUNKS: 7932 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7933 optlen); 7934 break; 7935 case SCTP_LOCAL_AUTH_CHUNKS: 7936 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7937 optlen); 7938 break; 7939 case SCTP_GET_ASSOC_NUMBER: 7940 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7941 break; 7942 case SCTP_GET_ASSOC_ID_LIST: 7943 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7944 break; 7945 case SCTP_AUTO_ASCONF: 7946 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7947 break; 7948 case SCTP_PEER_ADDR_THLDS: 7949 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7950 break; 7951 case SCTP_GET_ASSOC_STATS: 7952 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7953 break; 7954 case SCTP_RECVRCVINFO: 7955 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7956 break; 7957 case SCTP_RECVNXTINFO: 7958 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7959 break; 7960 case SCTP_PR_SUPPORTED: 7961 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7962 break; 7963 case SCTP_DEFAULT_PRINFO: 7964 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7965 optlen); 7966 break; 7967 case SCTP_PR_ASSOC_STATUS: 7968 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7969 optlen); 7970 break; 7971 case SCTP_PR_STREAM_STATUS: 7972 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7973 optlen); 7974 break; 7975 case SCTP_RECONFIG_SUPPORTED: 7976 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7977 optlen); 7978 break; 7979 case SCTP_ENABLE_STREAM_RESET: 7980 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7981 optlen); 7982 break; 7983 case SCTP_STREAM_SCHEDULER: 7984 retval = sctp_getsockopt_scheduler(sk, len, optval, 7985 optlen); 7986 break; 7987 case SCTP_STREAM_SCHEDULER_VALUE: 7988 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7989 optlen); 7990 break; 7991 case SCTP_INTERLEAVING_SUPPORTED: 7992 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7993 optlen); 7994 break; 7995 case SCTP_REUSE_PORT: 7996 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7997 break; 7998 case SCTP_EVENT: 7999 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8000 break; 8001 default: 8002 retval = -ENOPROTOOPT; 8003 break; 8004 } 8005 8006 release_sock(sk); 8007 return retval; 8008 } 8009 8010 static int sctp_hash(struct sock *sk) 8011 { 8012 /* STUB */ 8013 return 0; 8014 } 8015 8016 static void sctp_unhash(struct sock *sk) 8017 { 8018 /* STUB */ 8019 } 8020 8021 /* Check if port is acceptable. Possibly find first available port. 8022 * 8023 * The port hash table (contained in the 'global' SCTP protocol storage 8024 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8025 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8026 * list (the list number is the port number hashed out, so as you 8027 * would expect from a hash function, all the ports in a given list have 8028 * such a number that hashes out to the same list number; you were 8029 * expecting that, right?); so each list has a set of ports, with a 8030 * link to the socket (struct sock) that uses it, the port number and 8031 * a fastreuse flag (FIXME: NPI ipg). 8032 */ 8033 static struct sctp_bind_bucket *sctp_bucket_create( 8034 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8035 8036 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8037 { 8038 struct sctp_sock *sp = sctp_sk(sk); 8039 bool reuse = (sk->sk_reuse || sp->reuse); 8040 struct sctp_bind_hashbucket *head; /* hash list */ 8041 kuid_t uid = sock_i_uid(sk); 8042 struct sctp_bind_bucket *pp; 8043 unsigned short snum; 8044 int ret; 8045 8046 snum = ntohs(addr->v4.sin_port); 8047 8048 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8049 8050 local_bh_disable(); 8051 8052 if (snum == 0) { 8053 /* Search for an available port. */ 8054 int low, high, remaining, index; 8055 unsigned int rover; 8056 struct net *net = sock_net(sk); 8057 8058 inet_get_local_port_range(net, &low, &high); 8059 remaining = (high - low) + 1; 8060 rover = prandom_u32() % remaining + low; 8061 8062 do { 8063 rover++; 8064 if ((rover < low) || (rover > high)) 8065 rover = low; 8066 if (inet_is_local_reserved_port(net, rover)) 8067 continue; 8068 index = sctp_phashfn(sock_net(sk), rover); 8069 head = &sctp_port_hashtable[index]; 8070 spin_lock(&head->lock); 8071 sctp_for_each_hentry(pp, &head->chain) 8072 if ((pp->port == rover) && 8073 net_eq(sock_net(sk), pp->net)) 8074 goto next; 8075 break; 8076 next: 8077 spin_unlock(&head->lock); 8078 } while (--remaining > 0); 8079 8080 /* Exhausted local port range during search? */ 8081 ret = 1; 8082 if (remaining <= 0) 8083 goto fail; 8084 8085 /* OK, here is the one we will use. HEAD (the port 8086 * hash table list entry) is non-NULL and we hold it's 8087 * mutex. 8088 */ 8089 snum = rover; 8090 } else { 8091 /* We are given an specific port number; we verify 8092 * that it is not being used. If it is used, we will 8093 * exahust the search in the hash list corresponding 8094 * to the port number (snum) - we detect that with the 8095 * port iterator, pp being NULL. 8096 */ 8097 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8098 spin_lock(&head->lock); 8099 sctp_for_each_hentry(pp, &head->chain) { 8100 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8101 goto pp_found; 8102 } 8103 } 8104 pp = NULL; 8105 goto pp_not_found; 8106 pp_found: 8107 if (!hlist_empty(&pp->owner)) { 8108 /* We had a port hash table hit - there is an 8109 * available port (pp != NULL) and it is being 8110 * used by other socket (pp->owner not empty); that other 8111 * socket is going to be sk2. 8112 */ 8113 struct sock *sk2; 8114 8115 pr_debug("%s: found a possible match\n", __func__); 8116 8117 if ((pp->fastreuse && reuse && 8118 sk->sk_state != SCTP_SS_LISTENING) || 8119 (pp->fastreuseport && sk->sk_reuseport && 8120 uid_eq(pp->fastuid, uid))) 8121 goto success; 8122 8123 /* Run through the list of sockets bound to the port 8124 * (pp->port) [via the pointers bind_next and 8125 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8126 * we get the endpoint they describe and run through 8127 * the endpoint's list of IP (v4 or v6) addresses, 8128 * comparing each of the addresses with the address of 8129 * the socket sk. If we find a match, then that means 8130 * that this port/socket (sk) combination are already 8131 * in an endpoint. 8132 */ 8133 sk_for_each_bound(sk2, &pp->owner) { 8134 struct sctp_sock *sp2 = sctp_sk(sk2); 8135 struct sctp_endpoint *ep2 = sp2->ep; 8136 8137 if (sk == sk2 || 8138 (reuse && (sk2->sk_reuse || sp2->reuse) && 8139 sk2->sk_state != SCTP_SS_LISTENING) || 8140 (sk->sk_reuseport && sk2->sk_reuseport && 8141 uid_eq(uid, sock_i_uid(sk2)))) 8142 continue; 8143 8144 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8145 addr, sp2, sp)) { 8146 ret = (long)sk2; 8147 goto fail_unlock; 8148 } 8149 } 8150 8151 pr_debug("%s: found a match\n", __func__); 8152 } 8153 pp_not_found: 8154 /* If there was a hash table miss, create a new port. */ 8155 ret = 1; 8156 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8157 goto fail_unlock; 8158 8159 /* In either case (hit or miss), make sure fastreuse is 1 only 8160 * if sk->sk_reuse is too (that is, if the caller requested 8161 * SO_REUSEADDR on this socket -sk-). 8162 */ 8163 if (hlist_empty(&pp->owner)) { 8164 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8165 pp->fastreuse = 1; 8166 else 8167 pp->fastreuse = 0; 8168 8169 if (sk->sk_reuseport) { 8170 pp->fastreuseport = 1; 8171 pp->fastuid = uid; 8172 } else { 8173 pp->fastreuseport = 0; 8174 } 8175 } else { 8176 if (pp->fastreuse && 8177 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8178 pp->fastreuse = 0; 8179 8180 if (pp->fastreuseport && 8181 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8182 pp->fastreuseport = 0; 8183 } 8184 8185 /* We are set, so fill up all the data in the hash table 8186 * entry, tie the socket list information with the rest of the 8187 * sockets FIXME: Blurry, NPI (ipg). 8188 */ 8189 success: 8190 if (!sp->bind_hash) { 8191 inet_sk(sk)->inet_num = snum; 8192 sk_add_bind_node(sk, &pp->owner); 8193 sp->bind_hash = pp; 8194 } 8195 ret = 0; 8196 8197 fail_unlock: 8198 spin_unlock(&head->lock); 8199 8200 fail: 8201 local_bh_enable(); 8202 return ret; 8203 } 8204 8205 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8206 * port is requested. 8207 */ 8208 static int sctp_get_port(struct sock *sk, unsigned short snum) 8209 { 8210 union sctp_addr addr; 8211 struct sctp_af *af = sctp_sk(sk)->pf->af; 8212 8213 /* Set up a dummy address struct from the sk. */ 8214 af->from_sk(&addr, sk); 8215 addr.v4.sin_port = htons(snum); 8216 8217 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8218 return !!sctp_get_port_local(sk, &addr); 8219 } 8220 8221 /* 8222 * Move a socket to LISTENING state. 8223 */ 8224 static int sctp_listen_start(struct sock *sk, int backlog) 8225 { 8226 struct sctp_sock *sp = sctp_sk(sk); 8227 struct sctp_endpoint *ep = sp->ep; 8228 struct crypto_shash *tfm = NULL; 8229 char alg[32]; 8230 8231 /* Allocate HMAC for generating cookie. */ 8232 if (!sp->hmac && sp->sctp_hmac_alg) { 8233 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8234 tfm = crypto_alloc_shash(alg, 0, 0); 8235 if (IS_ERR(tfm)) { 8236 net_info_ratelimited("failed to load transform for %s: %ld\n", 8237 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8238 return -ENOSYS; 8239 } 8240 sctp_sk(sk)->hmac = tfm; 8241 } 8242 8243 /* 8244 * If a bind() or sctp_bindx() is not called prior to a listen() 8245 * call that allows new associations to be accepted, the system 8246 * picks an ephemeral port and will choose an address set equivalent 8247 * to binding with a wildcard address. 8248 * 8249 * This is not currently spelled out in the SCTP sockets 8250 * extensions draft, but follows the practice as seen in TCP 8251 * sockets. 8252 * 8253 */ 8254 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8255 if (!ep->base.bind_addr.port) { 8256 if (sctp_autobind(sk)) 8257 return -EAGAIN; 8258 } else { 8259 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8260 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8261 return -EADDRINUSE; 8262 } 8263 } 8264 8265 sk->sk_max_ack_backlog = backlog; 8266 return sctp_hash_endpoint(ep); 8267 } 8268 8269 /* 8270 * 4.1.3 / 5.1.3 listen() 8271 * 8272 * By default, new associations are not accepted for UDP style sockets. 8273 * An application uses listen() to mark a socket as being able to 8274 * accept new associations. 8275 * 8276 * On TCP style sockets, applications use listen() to ready the SCTP 8277 * endpoint for accepting inbound associations. 8278 * 8279 * On both types of endpoints a backlog of '0' disables listening. 8280 * 8281 * Move a socket to LISTENING state. 8282 */ 8283 int sctp_inet_listen(struct socket *sock, int backlog) 8284 { 8285 struct sock *sk = sock->sk; 8286 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8287 int err = -EINVAL; 8288 8289 if (unlikely(backlog < 0)) 8290 return err; 8291 8292 lock_sock(sk); 8293 8294 /* Peeled-off sockets are not allowed to listen(). */ 8295 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8296 goto out; 8297 8298 if (sock->state != SS_UNCONNECTED) 8299 goto out; 8300 8301 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8302 goto out; 8303 8304 /* If backlog is zero, disable listening. */ 8305 if (!backlog) { 8306 if (sctp_sstate(sk, CLOSED)) 8307 goto out; 8308 8309 err = 0; 8310 sctp_unhash_endpoint(ep); 8311 sk->sk_state = SCTP_SS_CLOSED; 8312 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8313 sctp_sk(sk)->bind_hash->fastreuse = 1; 8314 goto out; 8315 } 8316 8317 /* If we are already listening, just update the backlog */ 8318 if (sctp_sstate(sk, LISTENING)) 8319 sk->sk_max_ack_backlog = backlog; 8320 else { 8321 err = sctp_listen_start(sk, backlog); 8322 if (err) 8323 goto out; 8324 } 8325 8326 err = 0; 8327 out: 8328 release_sock(sk); 8329 return err; 8330 } 8331 8332 /* 8333 * This function is done by modeling the current datagram_poll() and the 8334 * tcp_poll(). Note that, based on these implementations, we don't 8335 * lock the socket in this function, even though it seems that, 8336 * ideally, locking or some other mechanisms can be used to ensure 8337 * the integrity of the counters (sndbuf and wmem_alloc) used 8338 * in this place. We assume that we don't need locks either until proven 8339 * otherwise. 8340 * 8341 * Another thing to note is that we include the Async I/O support 8342 * here, again, by modeling the current TCP/UDP code. We don't have 8343 * a good way to test with it yet. 8344 */ 8345 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8346 { 8347 struct sock *sk = sock->sk; 8348 struct sctp_sock *sp = sctp_sk(sk); 8349 __poll_t mask; 8350 8351 poll_wait(file, sk_sleep(sk), wait); 8352 8353 sock_rps_record_flow(sk); 8354 8355 /* A TCP-style listening socket becomes readable when the accept queue 8356 * is not empty. 8357 */ 8358 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8359 return (!list_empty(&sp->ep->asocs)) ? 8360 (EPOLLIN | EPOLLRDNORM) : 0; 8361 8362 mask = 0; 8363 8364 /* Is there any exceptional events? */ 8365 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8366 mask |= EPOLLERR | 8367 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8368 if (sk->sk_shutdown & RCV_SHUTDOWN) 8369 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8370 if (sk->sk_shutdown == SHUTDOWN_MASK) 8371 mask |= EPOLLHUP; 8372 8373 /* Is it readable? Reconsider this code with TCP-style support. */ 8374 if (!skb_queue_empty(&sk->sk_receive_queue)) 8375 mask |= EPOLLIN | EPOLLRDNORM; 8376 8377 /* The association is either gone or not ready. */ 8378 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8379 return mask; 8380 8381 /* Is it writable? */ 8382 if (sctp_writeable(sk)) { 8383 mask |= EPOLLOUT | EPOLLWRNORM; 8384 } else { 8385 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8386 /* 8387 * Since the socket is not locked, the buffer 8388 * might be made available after the writeable check and 8389 * before the bit is set. This could cause a lost I/O 8390 * signal. tcp_poll() has a race breaker for this race 8391 * condition. Based on their implementation, we put 8392 * in the following code to cover it as well. 8393 */ 8394 if (sctp_writeable(sk)) 8395 mask |= EPOLLOUT | EPOLLWRNORM; 8396 } 8397 return mask; 8398 } 8399 8400 /******************************************************************** 8401 * 2nd Level Abstractions 8402 ********************************************************************/ 8403 8404 static struct sctp_bind_bucket *sctp_bucket_create( 8405 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8406 { 8407 struct sctp_bind_bucket *pp; 8408 8409 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8410 if (pp) { 8411 SCTP_DBG_OBJCNT_INC(bind_bucket); 8412 pp->port = snum; 8413 pp->fastreuse = 0; 8414 INIT_HLIST_HEAD(&pp->owner); 8415 pp->net = net; 8416 hlist_add_head(&pp->node, &head->chain); 8417 } 8418 return pp; 8419 } 8420 8421 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8422 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8423 { 8424 if (pp && hlist_empty(&pp->owner)) { 8425 __hlist_del(&pp->node); 8426 kmem_cache_free(sctp_bucket_cachep, pp); 8427 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8428 } 8429 } 8430 8431 /* Release this socket's reference to a local port. */ 8432 static inline void __sctp_put_port(struct sock *sk) 8433 { 8434 struct sctp_bind_hashbucket *head = 8435 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8436 inet_sk(sk)->inet_num)]; 8437 struct sctp_bind_bucket *pp; 8438 8439 spin_lock(&head->lock); 8440 pp = sctp_sk(sk)->bind_hash; 8441 __sk_del_bind_node(sk); 8442 sctp_sk(sk)->bind_hash = NULL; 8443 inet_sk(sk)->inet_num = 0; 8444 sctp_bucket_destroy(pp); 8445 spin_unlock(&head->lock); 8446 } 8447 8448 void sctp_put_port(struct sock *sk) 8449 { 8450 local_bh_disable(); 8451 __sctp_put_port(sk); 8452 local_bh_enable(); 8453 } 8454 8455 /* 8456 * The system picks an ephemeral port and choose an address set equivalent 8457 * to binding with a wildcard address. 8458 * One of those addresses will be the primary address for the association. 8459 * This automatically enables the multihoming capability of SCTP. 8460 */ 8461 static int sctp_autobind(struct sock *sk) 8462 { 8463 union sctp_addr autoaddr; 8464 struct sctp_af *af; 8465 __be16 port; 8466 8467 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8468 af = sctp_sk(sk)->pf->af; 8469 8470 port = htons(inet_sk(sk)->inet_num); 8471 af->inaddr_any(&autoaddr, port); 8472 8473 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8474 } 8475 8476 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8477 * 8478 * From RFC 2292 8479 * 4.2 The cmsghdr Structure * 8480 * 8481 * When ancillary data is sent or received, any number of ancillary data 8482 * objects can be specified by the msg_control and msg_controllen members of 8483 * the msghdr structure, because each object is preceded by 8484 * a cmsghdr structure defining the object's length (the cmsg_len member). 8485 * Historically Berkeley-derived implementations have passed only one object 8486 * at a time, but this API allows multiple objects to be 8487 * passed in a single call to sendmsg() or recvmsg(). The following example 8488 * shows two ancillary data objects in a control buffer. 8489 * 8490 * |<--------------------------- msg_controllen -------------------------->| 8491 * | | 8492 * 8493 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8494 * 8495 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8496 * | | | 8497 * 8498 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8499 * 8500 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8501 * | | | | | 8502 * 8503 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8504 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8505 * 8506 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8507 * 8508 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8509 * ^ 8510 * | 8511 * 8512 * msg_control 8513 * points here 8514 */ 8515 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8516 { 8517 struct msghdr *my_msg = (struct msghdr *)msg; 8518 struct cmsghdr *cmsg; 8519 8520 for_each_cmsghdr(cmsg, my_msg) { 8521 if (!CMSG_OK(my_msg, cmsg)) 8522 return -EINVAL; 8523 8524 /* Should we parse this header or ignore? */ 8525 if (cmsg->cmsg_level != IPPROTO_SCTP) 8526 continue; 8527 8528 /* Strictly check lengths following example in SCM code. */ 8529 switch (cmsg->cmsg_type) { 8530 case SCTP_INIT: 8531 /* SCTP Socket API Extension 8532 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8533 * 8534 * This cmsghdr structure provides information for 8535 * initializing new SCTP associations with sendmsg(). 8536 * The SCTP_INITMSG socket option uses this same data 8537 * structure. This structure is not used for 8538 * recvmsg(). 8539 * 8540 * cmsg_level cmsg_type cmsg_data[] 8541 * ------------ ------------ ---------------------- 8542 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8543 */ 8544 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8545 return -EINVAL; 8546 8547 cmsgs->init = CMSG_DATA(cmsg); 8548 break; 8549 8550 case SCTP_SNDRCV: 8551 /* SCTP Socket API Extension 8552 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8553 * 8554 * This cmsghdr structure specifies SCTP options for 8555 * sendmsg() and describes SCTP header information 8556 * about a received message through recvmsg(). 8557 * 8558 * cmsg_level cmsg_type cmsg_data[] 8559 * ------------ ------------ ---------------------- 8560 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8561 */ 8562 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8563 return -EINVAL; 8564 8565 cmsgs->srinfo = CMSG_DATA(cmsg); 8566 8567 if (cmsgs->srinfo->sinfo_flags & 8568 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8569 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8570 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8571 return -EINVAL; 8572 break; 8573 8574 case SCTP_SNDINFO: 8575 /* SCTP Socket API Extension 8576 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8577 * 8578 * This cmsghdr structure specifies SCTP options for 8579 * sendmsg(). This structure and SCTP_RCVINFO replaces 8580 * SCTP_SNDRCV which has been deprecated. 8581 * 8582 * cmsg_level cmsg_type cmsg_data[] 8583 * ------------ ------------ --------------------- 8584 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8585 */ 8586 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8587 return -EINVAL; 8588 8589 cmsgs->sinfo = CMSG_DATA(cmsg); 8590 8591 if (cmsgs->sinfo->snd_flags & 8592 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8593 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8594 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8595 return -EINVAL; 8596 break; 8597 case SCTP_PRINFO: 8598 /* SCTP Socket API Extension 8599 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8600 * 8601 * This cmsghdr structure specifies SCTP options for sendmsg(). 8602 * 8603 * cmsg_level cmsg_type cmsg_data[] 8604 * ------------ ------------ --------------------- 8605 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8606 */ 8607 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8608 return -EINVAL; 8609 8610 cmsgs->prinfo = CMSG_DATA(cmsg); 8611 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8612 return -EINVAL; 8613 8614 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8615 cmsgs->prinfo->pr_value = 0; 8616 break; 8617 case SCTP_AUTHINFO: 8618 /* SCTP Socket API Extension 8619 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8620 * 8621 * This cmsghdr structure specifies SCTP options for sendmsg(). 8622 * 8623 * cmsg_level cmsg_type cmsg_data[] 8624 * ------------ ------------ --------------------- 8625 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8626 */ 8627 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8628 return -EINVAL; 8629 8630 cmsgs->authinfo = CMSG_DATA(cmsg); 8631 break; 8632 case SCTP_DSTADDRV4: 8633 case SCTP_DSTADDRV6: 8634 /* SCTP Socket API Extension 8635 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8636 * 8637 * This cmsghdr structure specifies SCTP options for sendmsg(). 8638 * 8639 * cmsg_level cmsg_type cmsg_data[] 8640 * ------------ ------------ --------------------- 8641 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8642 * ------------ ------------ --------------------- 8643 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8644 */ 8645 cmsgs->addrs_msg = my_msg; 8646 break; 8647 default: 8648 return -EINVAL; 8649 } 8650 } 8651 8652 return 0; 8653 } 8654 8655 /* 8656 * Wait for a packet.. 8657 * Note: This function is the same function as in core/datagram.c 8658 * with a few modifications to make lksctp work. 8659 */ 8660 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8661 { 8662 int error; 8663 DEFINE_WAIT(wait); 8664 8665 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8666 8667 /* Socket errors? */ 8668 error = sock_error(sk); 8669 if (error) 8670 goto out; 8671 8672 if (!skb_queue_empty(&sk->sk_receive_queue)) 8673 goto ready; 8674 8675 /* Socket shut down? */ 8676 if (sk->sk_shutdown & RCV_SHUTDOWN) 8677 goto out; 8678 8679 /* Sequenced packets can come disconnected. If so we report the 8680 * problem. 8681 */ 8682 error = -ENOTCONN; 8683 8684 /* Is there a good reason to think that we may receive some data? */ 8685 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8686 goto out; 8687 8688 /* Handle signals. */ 8689 if (signal_pending(current)) 8690 goto interrupted; 8691 8692 /* Let another process have a go. Since we are going to sleep 8693 * anyway. Note: This may cause odd behaviors if the message 8694 * does not fit in the user's buffer, but this seems to be the 8695 * only way to honor MSG_DONTWAIT realistically. 8696 */ 8697 release_sock(sk); 8698 *timeo_p = schedule_timeout(*timeo_p); 8699 lock_sock(sk); 8700 8701 ready: 8702 finish_wait(sk_sleep(sk), &wait); 8703 return 0; 8704 8705 interrupted: 8706 error = sock_intr_errno(*timeo_p); 8707 8708 out: 8709 finish_wait(sk_sleep(sk), &wait); 8710 *err = error; 8711 return error; 8712 } 8713 8714 /* Receive a datagram. 8715 * Note: This is pretty much the same routine as in core/datagram.c 8716 * with a few changes to make lksctp work. 8717 */ 8718 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8719 int noblock, int *err) 8720 { 8721 int error; 8722 struct sk_buff *skb; 8723 long timeo; 8724 8725 timeo = sock_rcvtimeo(sk, noblock); 8726 8727 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8728 MAX_SCHEDULE_TIMEOUT); 8729 8730 do { 8731 /* Again only user level code calls this function, 8732 * so nothing interrupt level 8733 * will suddenly eat the receive_queue. 8734 * 8735 * Look at current nfs client by the way... 8736 * However, this function was correct in any case. 8) 8737 */ 8738 if (flags & MSG_PEEK) { 8739 skb = skb_peek(&sk->sk_receive_queue); 8740 if (skb) 8741 refcount_inc(&skb->users); 8742 } else { 8743 skb = __skb_dequeue(&sk->sk_receive_queue); 8744 } 8745 8746 if (skb) 8747 return skb; 8748 8749 /* Caller is allowed not to check sk->sk_err before calling. */ 8750 error = sock_error(sk); 8751 if (error) 8752 goto no_packet; 8753 8754 if (sk->sk_shutdown & RCV_SHUTDOWN) 8755 break; 8756 8757 if (sk_can_busy_loop(sk)) { 8758 sk_busy_loop(sk, noblock); 8759 8760 if (!skb_queue_empty(&sk->sk_receive_queue)) 8761 continue; 8762 } 8763 8764 /* User doesn't want to wait. */ 8765 error = -EAGAIN; 8766 if (!timeo) 8767 goto no_packet; 8768 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8769 8770 return NULL; 8771 8772 no_packet: 8773 *err = error; 8774 return NULL; 8775 } 8776 8777 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8778 static void __sctp_write_space(struct sctp_association *asoc) 8779 { 8780 struct sock *sk = asoc->base.sk; 8781 8782 if (sctp_wspace(asoc) <= 0) 8783 return; 8784 8785 if (waitqueue_active(&asoc->wait)) 8786 wake_up_interruptible(&asoc->wait); 8787 8788 if (sctp_writeable(sk)) { 8789 struct socket_wq *wq; 8790 8791 rcu_read_lock(); 8792 wq = rcu_dereference(sk->sk_wq); 8793 if (wq) { 8794 if (waitqueue_active(&wq->wait)) 8795 wake_up_interruptible(&wq->wait); 8796 8797 /* Note that we try to include the Async I/O support 8798 * here by modeling from the current TCP/UDP code. 8799 * We have not tested with it yet. 8800 */ 8801 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8802 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8803 } 8804 rcu_read_unlock(); 8805 } 8806 } 8807 8808 static void sctp_wake_up_waiters(struct sock *sk, 8809 struct sctp_association *asoc) 8810 { 8811 struct sctp_association *tmp = asoc; 8812 8813 /* We do accounting for the sndbuf space per association, 8814 * so we only need to wake our own association. 8815 */ 8816 if (asoc->ep->sndbuf_policy) 8817 return __sctp_write_space(asoc); 8818 8819 /* If association goes down and is just flushing its 8820 * outq, then just normally notify others. 8821 */ 8822 if (asoc->base.dead) 8823 return sctp_write_space(sk); 8824 8825 /* Accounting for the sndbuf space is per socket, so we 8826 * need to wake up others, try to be fair and in case of 8827 * other associations, let them have a go first instead 8828 * of just doing a sctp_write_space() call. 8829 * 8830 * Note that we reach sctp_wake_up_waiters() only when 8831 * associations free up queued chunks, thus we are under 8832 * lock and the list of associations on a socket is 8833 * guaranteed not to change. 8834 */ 8835 for (tmp = list_next_entry(tmp, asocs); 1; 8836 tmp = list_next_entry(tmp, asocs)) { 8837 /* Manually skip the head element. */ 8838 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8839 continue; 8840 /* Wake up association. */ 8841 __sctp_write_space(tmp); 8842 /* We've reached the end. */ 8843 if (tmp == asoc) 8844 break; 8845 } 8846 } 8847 8848 /* Do accounting for the sndbuf space. 8849 * Decrement the used sndbuf space of the corresponding association by the 8850 * data size which was just transmitted(freed). 8851 */ 8852 static void sctp_wfree(struct sk_buff *skb) 8853 { 8854 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8855 struct sctp_association *asoc = chunk->asoc; 8856 struct sock *sk = asoc->base.sk; 8857 8858 sk_mem_uncharge(sk, skb->truesize); 8859 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8860 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8861 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8862 &sk->sk_wmem_alloc)); 8863 8864 if (chunk->shkey) { 8865 struct sctp_shared_key *shkey = chunk->shkey; 8866 8867 /* refcnt == 2 and !list_empty mean after this release, it's 8868 * not being used anywhere, and it's time to notify userland 8869 * that this shkey can be freed if it's been deactivated. 8870 */ 8871 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8872 refcount_read(&shkey->refcnt) == 2) { 8873 struct sctp_ulpevent *ev; 8874 8875 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8876 SCTP_AUTH_FREE_KEY, 8877 GFP_KERNEL); 8878 if (ev) 8879 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8880 } 8881 sctp_auth_shkey_release(chunk->shkey); 8882 } 8883 8884 sock_wfree(skb); 8885 sctp_wake_up_waiters(sk, asoc); 8886 8887 sctp_association_put(asoc); 8888 } 8889 8890 /* Do accounting for the receive space on the socket. 8891 * Accounting for the association is done in ulpevent.c 8892 * We set this as a destructor for the cloned data skbs so that 8893 * accounting is done at the correct time. 8894 */ 8895 void sctp_sock_rfree(struct sk_buff *skb) 8896 { 8897 struct sock *sk = skb->sk; 8898 struct sctp_ulpevent *event = sctp_skb2event(skb); 8899 8900 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8901 8902 /* 8903 * Mimic the behavior of sock_rfree 8904 */ 8905 sk_mem_uncharge(sk, event->rmem_len); 8906 } 8907 8908 8909 /* Helper function to wait for space in the sndbuf. */ 8910 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8911 size_t msg_len) 8912 { 8913 struct sock *sk = asoc->base.sk; 8914 long current_timeo = *timeo_p; 8915 DEFINE_WAIT(wait); 8916 int err = 0; 8917 8918 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8919 *timeo_p, msg_len); 8920 8921 /* Increment the association's refcnt. */ 8922 sctp_association_hold(asoc); 8923 8924 /* Wait on the association specific sndbuf space. */ 8925 for (;;) { 8926 prepare_to_wait_exclusive(&asoc->wait, &wait, 8927 TASK_INTERRUPTIBLE); 8928 if (asoc->base.dead) 8929 goto do_dead; 8930 if (!*timeo_p) 8931 goto do_nonblock; 8932 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8933 goto do_error; 8934 if (signal_pending(current)) 8935 goto do_interrupted; 8936 if (sk_under_memory_pressure(sk)) 8937 sk_mem_reclaim(sk); 8938 if ((int)msg_len <= sctp_wspace(asoc) && 8939 sk_wmem_schedule(sk, msg_len)) 8940 break; 8941 8942 /* Let another process have a go. Since we are going 8943 * to sleep anyway. 8944 */ 8945 release_sock(sk); 8946 current_timeo = schedule_timeout(current_timeo); 8947 lock_sock(sk); 8948 if (sk != asoc->base.sk) 8949 goto do_error; 8950 8951 *timeo_p = current_timeo; 8952 } 8953 8954 out: 8955 finish_wait(&asoc->wait, &wait); 8956 8957 /* Release the association's refcnt. */ 8958 sctp_association_put(asoc); 8959 8960 return err; 8961 8962 do_dead: 8963 err = -ESRCH; 8964 goto out; 8965 8966 do_error: 8967 err = -EPIPE; 8968 goto out; 8969 8970 do_interrupted: 8971 err = sock_intr_errno(*timeo_p); 8972 goto out; 8973 8974 do_nonblock: 8975 err = -EAGAIN; 8976 goto out; 8977 } 8978 8979 void sctp_data_ready(struct sock *sk) 8980 { 8981 struct socket_wq *wq; 8982 8983 rcu_read_lock(); 8984 wq = rcu_dereference(sk->sk_wq); 8985 if (skwq_has_sleeper(wq)) 8986 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8987 EPOLLRDNORM | EPOLLRDBAND); 8988 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8989 rcu_read_unlock(); 8990 } 8991 8992 /* If socket sndbuf has changed, wake up all per association waiters. */ 8993 void sctp_write_space(struct sock *sk) 8994 { 8995 struct sctp_association *asoc; 8996 8997 /* Wake up the tasks in each wait queue. */ 8998 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8999 __sctp_write_space(asoc); 9000 } 9001 } 9002 9003 /* Is there any sndbuf space available on the socket? 9004 * 9005 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9006 * associations on the same socket. For a UDP-style socket with 9007 * multiple associations, it is possible for it to be "unwriteable" 9008 * prematurely. I assume that this is acceptable because 9009 * a premature "unwriteable" is better than an accidental "writeable" which 9010 * would cause an unwanted block under certain circumstances. For the 1-1 9011 * UDP-style sockets or TCP-style sockets, this code should work. 9012 * - Daisy 9013 */ 9014 static bool sctp_writeable(struct sock *sk) 9015 { 9016 return sk->sk_sndbuf > sk->sk_wmem_queued; 9017 } 9018 9019 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9020 * returns immediately with EINPROGRESS. 9021 */ 9022 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9023 { 9024 struct sock *sk = asoc->base.sk; 9025 int err = 0; 9026 long current_timeo = *timeo_p; 9027 DEFINE_WAIT(wait); 9028 9029 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9030 9031 /* Increment the association's refcnt. */ 9032 sctp_association_hold(asoc); 9033 9034 for (;;) { 9035 prepare_to_wait_exclusive(&asoc->wait, &wait, 9036 TASK_INTERRUPTIBLE); 9037 if (!*timeo_p) 9038 goto do_nonblock; 9039 if (sk->sk_shutdown & RCV_SHUTDOWN) 9040 break; 9041 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9042 asoc->base.dead) 9043 goto do_error; 9044 if (signal_pending(current)) 9045 goto do_interrupted; 9046 9047 if (sctp_state(asoc, ESTABLISHED)) 9048 break; 9049 9050 /* Let another process have a go. Since we are going 9051 * to sleep anyway. 9052 */ 9053 release_sock(sk); 9054 current_timeo = schedule_timeout(current_timeo); 9055 lock_sock(sk); 9056 9057 *timeo_p = current_timeo; 9058 } 9059 9060 out: 9061 finish_wait(&asoc->wait, &wait); 9062 9063 /* Release the association's refcnt. */ 9064 sctp_association_put(asoc); 9065 9066 return err; 9067 9068 do_error: 9069 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9070 err = -ETIMEDOUT; 9071 else 9072 err = -ECONNREFUSED; 9073 goto out; 9074 9075 do_interrupted: 9076 err = sock_intr_errno(*timeo_p); 9077 goto out; 9078 9079 do_nonblock: 9080 err = -EINPROGRESS; 9081 goto out; 9082 } 9083 9084 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9085 { 9086 struct sctp_endpoint *ep; 9087 int err = 0; 9088 DEFINE_WAIT(wait); 9089 9090 ep = sctp_sk(sk)->ep; 9091 9092 9093 for (;;) { 9094 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9095 TASK_INTERRUPTIBLE); 9096 9097 if (list_empty(&ep->asocs)) { 9098 release_sock(sk); 9099 timeo = schedule_timeout(timeo); 9100 lock_sock(sk); 9101 } 9102 9103 err = -EINVAL; 9104 if (!sctp_sstate(sk, LISTENING)) 9105 break; 9106 9107 err = 0; 9108 if (!list_empty(&ep->asocs)) 9109 break; 9110 9111 err = sock_intr_errno(timeo); 9112 if (signal_pending(current)) 9113 break; 9114 9115 err = -EAGAIN; 9116 if (!timeo) 9117 break; 9118 } 9119 9120 finish_wait(sk_sleep(sk), &wait); 9121 9122 return err; 9123 } 9124 9125 static void sctp_wait_for_close(struct sock *sk, long timeout) 9126 { 9127 DEFINE_WAIT(wait); 9128 9129 do { 9130 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9131 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9132 break; 9133 release_sock(sk); 9134 timeout = schedule_timeout(timeout); 9135 lock_sock(sk); 9136 } while (!signal_pending(current) && timeout); 9137 9138 finish_wait(sk_sleep(sk), &wait); 9139 } 9140 9141 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9142 { 9143 struct sk_buff *frag; 9144 9145 if (!skb->data_len) 9146 goto done; 9147 9148 /* Don't forget the fragments. */ 9149 skb_walk_frags(skb, frag) 9150 sctp_skb_set_owner_r_frag(frag, sk); 9151 9152 done: 9153 sctp_skb_set_owner_r(skb, sk); 9154 } 9155 9156 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9157 struct sctp_association *asoc) 9158 { 9159 struct inet_sock *inet = inet_sk(sk); 9160 struct inet_sock *newinet; 9161 struct sctp_sock *sp = sctp_sk(sk); 9162 struct sctp_endpoint *ep = sp->ep; 9163 9164 newsk->sk_type = sk->sk_type; 9165 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9166 newsk->sk_flags = sk->sk_flags; 9167 newsk->sk_tsflags = sk->sk_tsflags; 9168 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9169 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9170 newsk->sk_reuse = sk->sk_reuse; 9171 sctp_sk(newsk)->reuse = sp->reuse; 9172 9173 newsk->sk_shutdown = sk->sk_shutdown; 9174 newsk->sk_destruct = sctp_destruct_sock; 9175 newsk->sk_family = sk->sk_family; 9176 newsk->sk_protocol = IPPROTO_SCTP; 9177 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9178 newsk->sk_sndbuf = sk->sk_sndbuf; 9179 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9180 newsk->sk_lingertime = sk->sk_lingertime; 9181 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9182 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9183 newsk->sk_rxhash = sk->sk_rxhash; 9184 9185 newinet = inet_sk(newsk); 9186 9187 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9188 * getsockname() and getpeername() 9189 */ 9190 newinet->inet_sport = inet->inet_sport; 9191 newinet->inet_saddr = inet->inet_saddr; 9192 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9193 newinet->inet_dport = htons(asoc->peer.port); 9194 newinet->pmtudisc = inet->pmtudisc; 9195 newinet->inet_id = asoc->next_tsn ^ jiffies; 9196 9197 newinet->uc_ttl = inet->uc_ttl; 9198 newinet->mc_loop = 1; 9199 newinet->mc_ttl = 1; 9200 newinet->mc_index = 0; 9201 newinet->mc_list = NULL; 9202 9203 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9204 net_enable_timestamp(); 9205 9206 /* Set newsk security attributes from orginal sk and connection 9207 * security attribute from ep. 9208 */ 9209 security_sctp_sk_clone(ep, sk, newsk); 9210 } 9211 9212 static inline void sctp_copy_descendant(struct sock *sk_to, 9213 const struct sock *sk_from) 9214 { 9215 int ancestor_size = sizeof(struct inet_sock) + 9216 sizeof(struct sctp_sock) - 9217 offsetof(struct sctp_sock, pd_lobby); 9218 9219 if (sk_from->sk_family == PF_INET6) 9220 ancestor_size += sizeof(struct ipv6_pinfo); 9221 9222 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9223 } 9224 9225 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9226 * and its messages to the newsk. 9227 */ 9228 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9229 struct sctp_association *assoc, 9230 enum sctp_socket_type type) 9231 { 9232 struct sctp_sock *oldsp = sctp_sk(oldsk); 9233 struct sctp_sock *newsp = sctp_sk(newsk); 9234 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9235 struct sctp_endpoint *newep = newsp->ep; 9236 struct sk_buff *skb, *tmp; 9237 struct sctp_ulpevent *event; 9238 struct sctp_bind_hashbucket *head; 9239 int err; 9240 9241 /* Migrate socket buffer sizes and all the socket level options to the 9242 * new socket. 9243 */ 9244 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9245 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9246 /* Brute force copy old sctp opt. */ 9247 sctp_copy_descendant(newsk, oldsk); 9248 9249 /* Restore the ep value that was overwritten with the above structure 9250 * copy. 9251 */ 9252 newsp->ep = newep; 9253 newsp->hmac = NULL; 9254 9255 /* Hook this new socket in to the bind_hash list. */ 9256 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9257 inet_sk(oldsk)->inet_num)]; 9258 spin_lock_bh(&head->lock); 9259 pp = sctp_sk(oldsk)->bind_hash; 9260 sk_add_bind_node(newsk, &pp->owner); 9261 sctp_sk(newsk)->bind_hash = pp; 9262 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9263 spin_unlock_bh(&head->lock); 9264 9265 /* Copy the bind_addr list from the original endpoint to the new 9266 * endpoint so that we can handle restarts properly 9267 */ 9268 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9269 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9270 if (err) 9271 return err; 9272 9273 /* New ep's auth_hmacs should be set if old ep's is set, in case 9274 * that net->sctp.auth_enable has been changed to 0 by users and 9275 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9276 */ 9277 if (oldsp->ep->auth_hmacs) { 9278 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9279 if (err) 9280 return err; 9281 } 9282 9283 /* Move any messages in the old socket's receive queue that are for the 9284 * peeled off association to the new socket's receive queue. 9285 */ 9286 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9287 event = sctp_skb2event(skb); 9288 if (event->asoc == assoc) { 9289 __skb_unlink(skb, &oldsk->sk_receive_queue); 9290 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9291 sctp_skb_set_owner_r_frag(skb, newsk); 9292 } 9293 } 9294 9295 /* Clean up any messages pending delivery due to partial 9296 * delivery. Three cases: 9297 * 1) No partial deliver; no work. 9298 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9299 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9300 */ 9301 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9302 9303 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9304 struct sk_buff_head *queue; 9305 9306 /* Decide which queue to move pd_lobby skbs to. */ 9307 if (assoc->ulpq.pd_mode) { 9308 queue = &newsp->pd_lobby; 9309 } else 9310 queue = &newsk->sk_receive_queue; 9311 9312 /* Walk through the pd_lobby, looking for skbs that 9313 * need moved to the new socket. 9314 */ 9315 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9316 event = sctp_skb2event(skb); 9317 if (event->asoc == assoc) { 9318 __skb_unlink(skb, &oldsp->pd_lobby); 9319 __skb_queue_tail(queue, skb); 9320 sctp_skb_set_owner_r_frag(skb, newsk); 9321 } 9322 } 9323 9324 /* Clear up any skbs waiting for the partial 9325 * delivery to finish. 9326 */ 9327 if (assoc->ulpq.pd_mode) 9328 sctp_clear_pd(oldsk, NULL); 9329 9330 } 9331 9332 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9333 9334 /* Set the type of socket to indicate that it is peeled off from the 9335 * original UDP-style socket or created with the accept() call on a 9336 * TCP-style socket.. 9337 */ 9338 newsp->type = type; 9339 9340 /* Mark the new socket "in-use" by the user so that any packets 9341 * that may arrive on the association after we've moved it are 9342 * queued to the backlog. This prevents a potential race between 9343 * backlog processing on the old socket and new-packet processing 9344 * on the new socket. 9345 * 9346 * The caller has just allocated newsk so we can guarantee that other 9347 * paths won't try to lock it and then oldsk. 9348 */ 9349 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9350 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9351 sctp_assoc_migrate(assoc, newsk); 9352 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9353 9354 /* If the association on the newsk is already closed before accept() 9355 * is called, set RCV_SHUTDOWN flag. 9356 */ 9357 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9358 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9359 newsk->sk_shutdown |= RCV_SHUTDOWN; 9360 } else { 9361 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9362 } 9363 9364 release_sock(newsk); 9365 9366 return 0; 9367 } 9368 9369 9370 /* This proto struct describes the ULP interface for SCTP. */ 9371 struct proto sctp_prot = { 9372 .name = "SCTP", 9373 .owner = THIS_MODULE, 9374 .close = sctp_close, 9375 .disconnect = sctp_disconnect, 9376 .accept = sctp_accept, 9377 .ioctl = sctp_ioctl, 9378 .init = sctp_init_sock, 9379 .destroy = sctp_destroy_sock, 9380 .shutdown = sctp_shutdown, 9381 .setsockopt = sctp_setsockopt, 9382 .getsockopt = sctp_getsockopt, 9383 .sendmsg = sctp_sendmsg, 9384 .recvmsg = sctp_recvmsg, 9385 .bind = sctp_bind, 9386 .backlog_rcv = sctp_backlog_rcv, 9387 .hash = sctp_hash, 9388 .unhash = sctp_unhash, 9389 .get_port = sctp_get_port, 9390 .obj_size = sizeof(struct sctp_sock), 9391 .useroffset = offsetof(struct sctp_sock, subscribe), 9392 .usersize = offsetof(struct sctp_sock, initmsg) - 9393 offsetof(struct sctp_sock, subscribe) + 9394 sizeof_field(struct sctp_sock, initmsg), 9395 .sysctl_mem = sysctl_sctp_mem, 9396 .sysctl_rmem = sysctl_sctp_rmem, 9397 .sysctl_wmem = sysctl_sctp_wmem, 9398 .memory_pressure = &sctp_memory_pressure, 9399 .enter_memory_pressure = sctp_enter_memory_pressure, 9400 .memory_allocated = &sctp_memory_allocated, 9401 .sockets_allocated = &sctp_sockets_allocated, 9402 }; 9403 9404 #if IS_ENABLED(CONFIG_IPV6) 9405 9406 #include <net/transp_v6.h> 9407 static void sctp_v6_destroy_sock(struct sock *sk) 9408 { 9409 sctp_destroy_sock(sk); 9410 inet6_destroy_sock(sk); 9411 } 9412 9413 struct proto sctpv6_prot = { 9414 .name = "SCTPv6", 9415 .owner = THIS_MODULE, 9416 .close = sctp_close, 9417 .disconnect = sctp_disconnect, 9418 .accept = sctp_accept, 9419 .ioctl = sctp_ioctl, 9420 .init = sctp_init_sock, 9421 .destroy = sctp_v6_destroy_sock, 9422 .shutdown = sctp_shutdown, 9423 .setsockopt = sctp_setsockopt, 9424 .getsockopt = sctp_getsockopt, 9425 .sendmsg = sctp_sendmsg, 9426 .recvmsg = sctp_recvmsg, 9427 .bind = sctp_bind, 9428 .backlog_rcv = sctp_backlog_rcv, 9429 .hash = sctp_hash, 9430 .unhash = sctp_unhash, 9431 .get_port = sctp_get_port, 9432 .obj_size = sizeof(struct sctp6_sock), 9433 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9434 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9435 offsetof(struct sctp6_sock, sctp.subscribe) + 9436 sizeof_field(struct sctp6_sock, sctp.initmsg), 9437 .sysctl_mem = sysctl_sctp_mem, 9438 .sysctl_rmem = sysctl_sctp_rmem, 9439 .sysctl_wmem = sysctl_sctp_wmem, 9440 .memory_pressure = &sctp_memory_pressure, 9441 .enter_memory_pressure = sctp_enter_memory_pressure, 9442 .memory_allocated = &sctp_memory_allocated, 9443 .sockets_allocated = &sctp_sockets_allocated, 9444 }; 9445 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9446