1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 struct percpu_counter sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = sk_wmem_alloc_get(asoc->base.sk); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 } 1084 1085 /* Prime the peer's transport structures. */ 1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1087 SCTP_UNKNOWN); 1088 if (!transport) { 1089 err = -ENOMEM; 1090 goto out_free; 1091 } 1092 1093 addrcnt++; 1094 addr_buf += af->sockaddr_len; 1095 walk_size += af->sockaddr_len; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1099 if (err < 0) { 1100 goto out_free; 1101 } 1102 1103 /* In case the user of sctp_connectx() wants an association 1104 * id back, assign one now. 1105 */ 1106 if (assoc_id) { 1107 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1108 if (err < 0) 1109 goto out_free; 1110 } 1111 1112 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1113 if (err < 0) { 1114 goto out_free; 1115 } 1116 1117 /* Initialize sk's dport and daddr for getpeername() */ 1118 inet_sk(sk)->dport = htons(asoc->peer.port); 1119 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1120 af->to_sk_daddr(sa_addr, sk); 1121 sk->sk_err = 0; 1122 1123 /* in-kernel sockets don't generally have a file allocated to them 1124 * if all they do is call sock_create_kern(). 1125 */ 1126 if (sk->sk_socket->file) 1127 f_flags = sk->sk_socket->file->f_flags; 1128 1129 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1130 1131 err = sctp_wait_for_connect(asoc, &timeo); 1132 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1133 *assoc_id = asoc->assoc_id; 1134 1135 /* Don't free association on exit. */ 1136 asoc = NULL; 1137 1138 out_free: 1139 1140 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1141 " kaddrs: %p err: %d\n", 1142 asoc, kaddrs, err); 1143 if (asoc) 1144 sctp_association_free(asoc); 1145 return err; 1146 } 1147 1148 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1149 * 1150 * API 8.9 1151 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1152 * sctp_assoc_t *asoc); 1153 * 1154 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1155 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1156 * or IPv6 addresses. 1157 * 1158 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1159 * Section 3.1.2 for this usage. 1160 * 1161 * addrs is a pointer to an array of one or more socket addresses. Each 1162 * address is contained in its appropriate structure (i.e. struct 1163 * sockaddr_in or struct sockaddr_in6) the family of the address type 1164 * must be used to distengish the address length (note that this 1165 * representation is termed a "packed array" of addresses). The caller 1166 * specifies the number of addresses in the array with addrcnt. 1167 * 1168 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1169 * the association id of the new association. On failure, sctp_connectx() 1170 * returns -1, and sets errno to the appropriate error code. The assoc_id 1171 * is not touched by the kernel. 1172 * 1173 * For SCTP, the port given in each socket address must be the same, or 1174 * sctp_connectx() will fail, setting errno to EINVAL. 1175 * 1176 * An application can use sctp_connectx to initiate an association with 1177 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1178 * allows a caller to specify multiple addresses at which a peer can be 1179 * reached. The way the SCTP stack uses the list of addresses to set up 1180 * the association is implementation dependant. This function only 1181 * specifies that the stack will try to make use of all the addresses in 1182 * the list when needed. 1183 * 1184 * Note that the list of addresses passed in is only used for setting up 1185 * the association. It does not necessarily equal the set of addresses 1186 * the peer uses for the resulting association. If the caller wants to 1187 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1188 * retrieve them after the association has been set up. 1189 * 1190 * Basically do nothing but copying the addresses from user to kernel 1191 * land and invoking either sctp_connectx(). This is used for tunneling 1192 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1193 * 1194 * We don't use copy_from_user() for optimization: we first do the 1195 * sanity checks (buffer size -fast- and access check-healthy 1196 * pointer); if all of those succeed, then we can alloc the memory 1197 * (expensive operation) needed to copy the data to kernel. Then we do 1198 * the copying without checking the user space area 1199 * (__copy_from_user()). 1200 * 1201 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1202 * it. 1203 * 1204 * sk The sk of the socket 1205 * addrs The pointer to the addresses in user land 1206 * addrssize Size of the addrs buffer 1207 * 1208 * Returns >=0 if ok, <0 errno code on error. 1209 */ 1210 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1211 struct sockaddr __user *addrs, 1212 int addrs_size, 1213 sctp_assoc_t *assoc_id) 1214 { 1215 int err = 0; 1216 struct sockaddr *kaddrs; 1217 1218 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1219 __func__, sk, addrs, addrs_size); 1220 1221 if (unlikely(addrs_size <= 0)) 1222 return -EINVAL; 1223 1224 /* Check the user passed a healthy pointer. */ 1225 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1226 return -EFAULT; 1227 1228 /* Alloc space for the address array in kernel memory. */ 1229 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1230 if (unlikely(!kaddrs)) 1231 return -ENOMEM; 1232 1233 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1234 err = -EFAULT; 1235 } else { 1236 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1237 } 1238 1239 kfree(kaddrs); 1240 1241 return err; 1242 } 1243 1244 /* 1245 * This is an older interface. It's kept for backward compatibility 1246 * to the option that doesn't provide association id. 1247 */ 1248 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1249 struct sockaddr __user *addrs, 1250 int addrs_size) 1251 { 1252 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1253 } 1254 1255 /* 1256 * New interface for the API. The since the API is done with a socket 1257 * option, to make it simple we feed back the association id is as a return 1258 * indication to the call. Error is always negative and association id is 1259 * always positive. 1260 */ 1261 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1262 struct sockaddr __user *addrs, 1263 int addrs_size) 1264 { 1265 sctp_assoc_t assoc_id = 0; 1266 int err = 0; 1267 1268 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1269 1270 if (err) 1271 return err; 1272 else 1273 return assoc_id; 1274 } 1275 1276 /* 1277 * New (hopefully final) interface for the API. The option buffer is used 1278 * both for the returned association id and the addresses. 1279 */ 1280 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1281 char __user *optval, 1282 int __user *optlen) 1283 { 1284 sctp_assoc_t assoc_id = 0; 1285 int err = 0; 1286 1287 if (len < sizeof(assoc_id)) 1288 return -EINVAL; 1289 1290 err = __sctp_setsockopt_connectx(sk, 1291 (struct sockaddr __user *)(optval + sizeof(assoc_id)), 1292 len - sizeof(assoc_id), &assoc_id); 1293 1294 if (err == 0 || err == -EINPROGRESS) { 1295 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1296 return -EFAULT; 1297 if (put_user(sizeof(assoc_id), optlen)) 1298 return -EFAULT; 1299 } 1300 1301 return err; 1302 } 1303 1304 /* API 3.1.4 close() - UDP Style Syntax 1305 * Applications use close() to perform graceful shutdown (as described in 1306 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1307 * by a UDP-style socket. 1308 * 1309 * The syntax is 1310 * 1311 * ret = close(int sd); 1312 * 1313 * sd - the socket descriptor of the associations to be closed. 1314 * 1315 * To gracefully shutdown a specific association represented by the 1316 * UDP-style socket, an application should use the sendmsg() call, 1317 * passing no user data, but including the appropriate flag in the 1318 * ancillary data (see Section xxxx). 1319 * 1320 * If sd in the close() call is a branched-off socket representing only 1321 * one association, the shutdown is performed on that association only. 1322 * 1323 * 4.1.6 close() - TCP Style Syntax 1324 * 1325 * Applications use close() to gracefully close down an association. 1326 * 1327 * The syntax is: 1328 * 1329 * int close(int sd); 1330 * 1331 * sd - the socket descriptor of the association to be closed. 1332 * 1333 * After an application calls close() on a socket descriptor, no further 1334 * socket operations will succeed on that descriptor. 1335 * 1336 * API 7.1.4 SO_LINGER 1337 * 1338 * An application using the TCP-style socket can use this option to 1339 * perform the SCTP ABORT primitive. The linger option structure is: 1340 * 1341 * struct linger { 1342 * int l_onoff; // option on/off 1343 * int l_linger; // linger time 1344 * }; 1345 * 1346 * To enable the option, set l_onoff to 1. If the l_linger value is set 1347 * to 0, calling close() is the same as the ABORT primitive. If the 1348 * value is set to a negative value, the setsockopt() call will return 1349 * an error. If the value is set to a positive value linger_time, the 1350 * close() can be blocked for at most linger_time ms. If the graceful 1351 * shutdown phase does not finish during this period, close() will 1352 * return but the graceful shutdown phase continues in the system. 1353 */ 1354 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1355 { 1356 struct sctp_endpoint *ep; 1357 struct sctp_association *asoc; 1358 struct list_head *pos, *temp; 1359 1360 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1361 1362 sctp_lock_sock(sk); 1363 sk->sk_shutdown = SHUTDOWN_MASK; 1364 sk->sk_state = SCTP_SS_CLOSING; 1365 1366 ep = sctp_sk(sk)->ep; 1367 1368 /* Walk all associations on an endpoint. */ 1369 list_for_each_safe(pos, temp, &ep->asocs) { 1370 asoc = list_entry(pos, struct sctp_association, asocs); 1371 1372 if (sctp_style(sk, TCP)) { 1373 /* A closed association can still be in the list if 1374 * it belongs to a TCP-style listening socket that is 1375 * not yet accepted. If so, free it. If not, send an 1376 * ABORT or SHUTDOWN based on the linger options. 1377 */ 1378 if (sctp_state(asoc, CLOSED)) { 1379 sctp_unhash_established(asoc); 1380 sctp_association_free(asoc); 1381 continue; 1382 } 1383 } 1384 1385 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1386 struct sctp_chunk *chunk; 1387 1388 chunk = sctp_make_abort_user(asoc, NULL, 0); 1389 if (chunk) 1390 sctp_primitive_ABORT(asoc, chunk); 1391 } else 1392 sctp_primitive_SHUTDOWN(asoc, NULL); 1393 } 1394 1395 /* Clean up any skbs sitting on the receive queue. */ 1396 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1397 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1398 1399 /* On a TCP-style socket, block for at most linger_time if set. */ 1400 if (sctp_style(sk, TCP) && timeout) 1401 sctp_wait_for_close(sk, timeout); 1402 1403 /* This will run the backlog queue. */ 1404 sctp_release_sock(sk); 1405 1406 /* Supposedly, no process has access to the socket, but 1407 * the net layers still may. 1408 */ 1409 sctp_local_bh_disable(); 1410 sctp_bh_lock_sock(sk); 1411 1412 /* Hold the sock, since sk_common_release() will put sock_put() 1413 * and we have just a little more cleanup. 1414 */ 1415 sock_hold(sk); 1416 sk_common_release(sk); 1417 1418 sctp_bh_unlock_sock(sk); 1419 sctp_local_bh_enable(); 1420 1421 sock_put(sk); 1422 1423 SCTP_DBG_OBJCNT_DEC(sock); 1424 } 1425 1426 /* Handle EPIPE error. */ 1427 static int sctp_error(struct sock *sk, int flags, int err) 1428 { 1429 if (err == -EPIPE) 1430 err = sock_error(sk) ? : -EPIPE; 1431 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1432 send_sig(SIGPIPE, current, 0); 1433 return err; 1434 } 1435 1436 /* API 3.1.3 sendmsg() - UDP Style Syntax 1437 * 1438 * An application uses sendmsg() and recvmsg() calls to transmit data to 1439 * and receive data from its peer. 1440 * 1441 * ssize_t sendmsg(int socket, const struct msghdr *message, 1442 * int flags); 1443 * 1444 * socket - the socket descriptor of the endpoint. 1445 * message - pointer to the msghdr structure which contains a single 1446 * user message and possibly some ancillary data. 1447 * 1448 * See Section 5 for complete description of the data 1449 * structures. 1450 * 1451 * flags - flags sent or received with the user message, see Section 1452 * 5 for complete description of the flags. 1453 * 1454 * Note: This function could use a rewrite especially when explicit 1455 * connect support comes in. 1456 */ 1457 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1458 1459 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1460 1461 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1462 struct msghdr *msg, size_t msg_len) 1463 { 1464 struct sctp_sock *sp; 1465 struct sctp_endpoint *ep; 1466 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1467 struct sctp_transport *transport, *chunk_tp; 1468 struct sctp_chunk *chunk; 1469 union sctp_addr to; 1470 struct sockaddr *msg_name = NULL; 1471 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1472 struct sctp_sndrcvinfo *sinfo; 1473 struct sctp_initmsg *sinit; 1474 sctp_assoc_t associd = 0; 1475 sctp_cmsgs_t cmsgs = { NULL }; 1476 int err; 1477 sctp_scope_t scope; 1478 long timeo; 1479 __u16 sinfo_flags = 0; 1480 struct sctp_datamsg *datamsg; 1481 int msg_flags = msg->msg_flags; 1482 1483 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1484 sk, msg, msg_len); 1485 1486 err = 0; 1487 sp = sctp_sk(sk); 1488 ep = sp->ep; 1489 1490 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1491 1492 /* We cannot send a message over a TCP-style listening socket. */ 1493 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1494 err = -EPIPE; 1495 goto out_nounlock; 1496 } 1497 1498 /* Parse out the SCTP CMSGs. */ 1499 err = sctp_msghdr_parse(msg, &cmsgs); 1500 1501 if (err) { 1502 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1503 goto out_nounlock; 1504 } 1505 1506 /* Fetch the destination address for this packet. This 1507 * address only selects the association--it is not necessarily 1508 * the address we will send to. 1509 * For a peeled-off socket, msg_name is ignored. 1510 */ 1511 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1512 int msg_namelen = msg->msg_namelen; 1513 1514 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1515 msg_namelen); 1516 if (err) 1517 return err; 1518 1519 if (msg_namelen > sizeof(to)) 1520 msg_namelen = sizeof(to); 1521 memcpy(&to, msg->msg_name, msg_namelen); 1522 msg_name = msg->msg_name; 1523 } 1524 1525 sinfo = cmsgs.info; 1526 sinit = cmsgs.init; 1527 1528 /* Did the user specify SNDRCVINFO? */ 1529 if (sinfo) { 1530 sinfo_flags = sinfo->sinfo_flags; 1531 associd = sinfo->sinfo_assoc_id; 1532 } 1533 1534 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1535 msg_len, sinfo_flags); 1536 1537 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1538 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1539 err = -EINVAL; 1540 goto out_nounlock; 1541 } 1542 1543 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1544 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1545 * If SCTP_ABORT is set, the message length could be non zero with 1546 * the msg_iov set to the user abort reason. 1547 */ 1548 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1549 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1550 err = -EINVAL; 1551 goto out_nounlock; 1552 } 1553 1554 /* If SCTP_ADDR_OVER is set, there must be an address 1555 * specified in msg_name. 1556 */ 1557 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1558 err = -EINVAL; 1559 goto out_nounlock; 1560 } 1561 1562 transport = NULL; 1563 1564 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1565 1566 sctp_lock_sock(sk); 1567 1568 /* If a msg_name has been specified, assume this is to be used. */ 1569 if (msg_name) { 1570 /* Look for a matching association on the endpoint. */ 1571 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1572 if (!asoc) { 1573 /* If we could not find a matching association on the 1574 * endpoint, make sure that it is not a TCP-style 1575 * socket that already has an association or there is 1576 * no peeled-off association on another socket. 1577 */ 1578 if ((sctp_style(sk, TCP) && 1579 sctp_sstate(sk, ESTABLISHED)) || 1580 sctp_endpoint_is_peeled_off(ep, &to)) { 1581 err = -EADDRNOTAVAIL; 1582 goto out_unlock; 1583 } 1584 } 1585 } else { 1586 asoc = sctp_id2assoc(sk, associd); 1587 if (!asoc) { 1588 err = -EPIPE; 1589 goto out_unlock; 1590 } 1591 } 1592 1593 if (asoc) { 1594 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1595 1596 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1597 * socket that has an association in CLOSED state. This can 1598 * happen when an accepted socket has an association that is 1599 * already CLOSED. 1600 */ 1601 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1602 err = -EPIPE; 1603 goto out_unlock; 1604 } 1605 1606 if (sinfo_flags & SCTP_EOF) { 1607 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1608 asoc); 1609 sctp_primitive_SHUTDOWN(asoc, NULL); 1610 err = 0; 1611 goto out_unlock; 1612 } 1613 if (sinfo_flags & SCTP_ABORT) { 1614 1615 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1616 if (!chunk) { 1617 err = -ENOMEM; 1618 goto out_unlock; 1619 } 1620 1621 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1622 sctp_primitive_ABORT(asoc, chunk); 1623 err = 0; 1624 goto out_unlock; 1625 } 1626 } 1627 1628 /* Do we need to create the association? */ 1629 if (!asoc) { 1630 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1631 1632 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1633 err = -EINVAL; 1634 goto out_unlock; 1635 } 1636 1637 /* Check for invalid stream against the stream counts, 1638 * either the default or the user specified stream counts. 1639 */ 1640 if (sinfo) { 1641 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1642 /* Check against the defaults. */ 1643 if (sinfo->sinfo_stream >= 1644 sp->initmsg.sinit_num_ostreams) { 1645 err = -EINVAL; 1646 goto out_unlock; 1647 } 1648 } else { 1649 /* Check against the requested. */ 1650 if (sinfo->sinfo_stream >= 1651 sinit->sinit_num_ostreams) { 1652 err = -EINVAL; 1653 goto out_unlock; 1654 } 1655 } 1656 } 1657 1658 /* 1659 * API 3.1.2 bind() - UDP Style Syntax 1660 * If a bind() or sctp_bindx() is not called prior to a 1661 * sendmsg() call that initiates a new association, the 1662 * system picks an ephemeral port and will choose an address 1663 * set equivalent to binding with a wildcard address. 1664 */ 1665 if (!ep->base.bind_addr.port) { 1666 if (sctp_autobind(sk)) { 1667 err = -EAGAIN; 1668 goto out_unlock; 1669 } 1670 } else { 1671 /* 1672 * If an unprivileged user inherits a one-to-many 1673 * style socket with open associations on a privileged 1674 * port, it MAY be permitted to accept new associations, 1675 * but it SHOULD NOT be permitted to open new 1676 * associations. 1677 */ 1678 if (ep->base.bind_addr.port < PROT_SOCK && 1679 !capable(CAP_NET_BIND_SERVICE)) { 1680 err = -EACCES; 1681 goto out_unlock; 1682 } 1683 } 1684 1685 scope = sctp_scope(&to); 1686 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1687 if (!new_asoc) { 1688 err = -ENOMEM; 1689 goto out_unlock; 1690 } 1691 asoc = new_asoc; 1692 1693 /* If the SCTP_INIT ancillary data is specified, set all 1694 * the association init values accordingly. 1695 */ 1696 if (sinit) { 1697 if (sinit->sinit_num_ostreams) { 1698 asoc->c.sinit_num_ostreams = 1699 sinit->sinit_num_ostreams; 1700 } 1701 if (sinit->sinit_max_instreams) { 1702 asoc->c.sinit_max_instreams = 1703 sinit->sinit_max_instreams; 1704 } 1705 if (sinit->sinit_max_attempts) { 1706 asoc->max_init_attempts 1707 = sinit->sinit_max_attempts; 1708 } 1709 if (sinit->sinit_max_init_timeo) { 1710 asoc->max_init_timeo = 1711 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1712 } 1713 } 1714 1715 /* Prime the peer's transport structures. */ 1716 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1717 if (!transport) { 1718 err = -ENOMEM; 1719 goto out_free; 1720 } 1721 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1722 if (err < 0) { 1723 err = -ENOMEM; 1724 goto out_free; 1725 } 1726 } 1727 1728 /* ASSERT: we have a valid association at this point. */ 1729 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1730 1731 if (!sinfo) { 1732 /* If the user didn't specify SNDRCVINFO, make up one with 1733 * some defaults. 1734 */ 1735 default_sinfo.sinfo_stream = asoc->default_stream; 1736 default_sinfo.sinfo_flags = asoc->default_flags; 1737 default_sinfo.sinfo_ppid = asoc->default_ppid; 1738 default_sinfo.sinfo_context = asoc->default_context; 1739 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1740 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1741 sinfo = &default_sinfo; 1742 } 1743 1744 /* API 7.1.7, the sndbuf size per association bounds the 1745 * maximum size of data that can be sent in a single send call. 1746 */ 1747 if (msg_len > sk->sk_sndbuf) { 1748 err = -EMSGSIZE; 1749 goto out_free; 1750 } 1751 1752 if (asoc->pmtu_pending) 1753 sctp_assoc_pending_pmtu(asoc); 1754 1755 /* If fragmentation is disabled and the message length exceeds the 1756 * association fragmentation point, return EMSGSIZE. The I-D 1757 * does not specify what this error is, but this looks like 1758 * a great fit. 1759 */ 1760 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1761 err = -EMSGSIZE; 1762 goto out_free; 1763 } 1764 1765 if (sinfo) { 1766 /* Check for invalid stream. */ 1767 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1768 err = -EINVAL; 1769 goto out_free; 1770 } 1771 } 1772 1773 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1774 if (!sctp_wspace(asoc)) { 1775 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1776 if (err) 1777 goto out_free; 1778 } 1779 1780 /* If an address is passed with the sendto/sendmsg call, it is used 1781 * to override the primary destination address in the TCP model, or 1782 * when SCTP_ADDR_OVER flag is set in the UDP model. 1783 */ 1784 if ((sctp_style(sk, TCP) && msg_name) || 1785 (sinfo_flags & SCTP_ADDR_OVER)) { 1786 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1787 if (!chunk_tp) { 1788 err = -EINVAL; 1789 goto out_free; 1790 } 1791 } else 1792 chunk_tp = NULL; 1793 1794 /* Auto-connect, if we aren't connected already. */ 1795 if (sctp_state(asoc, CLOSED)) { 1796 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1797 if (err < 0) 1798 goto out_free; 1799 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1800 } 1801 1802 /* Break the message into multiple chunks of maximum size. */ 1803 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1804 if (!datamsg) { 1805 err = -ENOMEM; 1806 goto out_free; 1807 } 1808 1809 /* Now send the (possibly) fragmented message. */ 1810 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1811 sctp_chunk_hold(chunk); 1812 1813 /* Do accounting for the write space. */ 1814 sctp_set_owner_w(chunk); 1815 1816 chunk->transport = chunk_tp; 1817 } 1818 1819 /* Send it to the lower layers. Note: all chunks 1820 * must either fail or succeed. The lower layer 1821 * works that way today. Keep it that way or this 1822 * breaks. 1823 */ 1824 err = sctp_primitive_SEND(asoc, datamsg); 1825 /* Did the lower layer accept the chunk? */ 1826 if (err) 1827 sctp_datamsg_free(datamsg); 1828 else 1829 sctp_datamsg_put(datamsg); 1830 1831 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1832 1833 if (err) 1834 goto out_free; 1835 else 1836 err = msg_len; 1837 1838 /* If we are already past ASSOCIATE, the lower 1839 * layers are responsible for association cleanup. 1840 */ 1841 goto out_unlock; 1842 1843 out_free: 1844 if (new_asoc) 1845 sctp_association_free(asoc); 1846 out_unlock: 1847 sctp_release_sock(sk); 1848 1849 out_nounlock: 1850 return sctp_error(sk, msg_flags, err); 1851 1852 #if 0 1853 do_sock_err: 1854 if (msg_len) 1855 err = msg_len; 1856 else 1857 err = sock_error(sk); 1858 goto out; 1859 1860 do_interrupted: 1861 if (msg_len) 1862 err = msg_len; 1863 goto out; 1864 #endif /* 0 */ 1865 } 1866 1867 /* This is an extended version of skb_pull() that removes the data from the 1868 * start of a skb even when data is spread across the list of skb's in the 1869 * frag_list. len specifies the total amount of data that needs to be removed. 1870 * when 'len' bytes could be removed from the skb, it returns 0. 1871 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1872 * could not be removed. 1873 */ 1874 static int sctp_skb_pull(struct sk_buff *skb, int len) 1875 { 1876 struct sk_buff *list; 1877 int skb_len = skb_headlen(skb); 1878 int rlen; 1879 1880 if (len <= skb_len) { 1881 __skb_pull(skb, len); 1882 return 0; 1883 } 1884 len -= skb_len; 1885 __skb_pull(skb, skb_len); 1886 1887 skb_walk_frags(skb, list) { 1888 rlen = sctp_skb_pull(list, len); 1889 skb->len -= (len-rlen); 1890 skb->data_len -= (len-rlen); 1891 1892 if (!rlen) 1893 return 0; 1894 1895 len = rlen; 1896 } 1897 1898 return len; 1899 } 1900 1901 /* API 3.1.3 recvmsg() - UDP Style Syntax 1902 * 1903 * ssize_t recvmsg(int socket, struct msghdr *message, 1904 * int flags); 1905 * 1906 * socket - the socket descriptor of the endpoint. 1907 * message - pointer to the msghdr structure which contains a single 1908 * user message and possibly some ancillary data. 1909 * 1910 * See Section 5 for complete description of the data 1911 * structures. 1912 * 1913 * flags - flags sent or received with the user message, see Section 1914 * 5 for complete description of the flags. 1915 */ 1916 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1917 1918 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1919 struct msghdr *msg, size_t len, int noblock, 1920 int flags, int *addr_len) 1921 { 1922 struct sctp_ulpevent *event = NULL; 1923 struct sctp_sock *sp = sctp_sk(sk); 1924 struct sk_buff *skb; 1925 int copied; 1926 int err = 0; 1927 int skb_len; 1928 1929 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1930 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1931 "len", len, "knoblauch", noblock, 1932 "flags", flags, "addr_len", addr_len); 1933 1934 sctp_lock_sock(sk); 1935 1936 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1937 err = -ENOTCONN; 1938 goto out; 1939 } 1940 1941 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1942 if (!skb) 1943 goto out; 1944 1945 /* Get the total length of the skb including any skb's in the 1946 * frag_list. 1947 */ 1948 skb_len = skb->len; 1949 1950 copied = skb_len; 1951 if (copied > len) 1952 copied = len; 1953 1954 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1955 1956 event = sctp_skb2event(skb); 1957 1958 if (err) 1959 goto out_free; 1960 1961 sock_recv_timestamp(msg, sk, skb); 1962 if (sctp_ulpevent_is_notification(event)) { 1963 msg->msg_flags |= MSG_NOTIFICATION; 1964 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1965 } else { 1966 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1967 } 1968 1969 /* Check if we allow SCTP_SNDRCVINFO. */ 1970 if (sp->subscribe.sctp_data_io_event) 1971 sctp_ulpevent_read_sndrcvinfo(event, msg); 1972 #if 0 1973 /* FIXME: we should be calling IP/IPv6 layers. */ 1974 if (sk->sk_protinfo.af_inet.cmsg_flags) 1975 ip_cmsg_recv(msg, skb); 1976 #endif 1977 1978 err = copied; 1979 1980 /* If skb's length exceeds the user's buffer, update the skb and 1981 * push it back to the receive_queue so that the next call to 1982 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1983 */ 1984 if (skb_len > copied) { 1985 msg->msg_flags &= ~MSG_EOR; 1986 if (flags & MSG_PEEK) 1987 goto out_free; 1988 sctp_skb_pull(skb, copied); 1989 skb_queue_head(&sk->sk_receive_queue, skb); 1990 1991 /* When only partial message is copied to the user, increase 1992 * rwnd by that amount. If all the data in the skb is read, 1993 * rwnd is updated when the event is freed. 1994 */ 1995 if (!sctp_ulpevent_is_notification(event)) 1996 sctp_assoc_rwnd_increase(event->asoc, copied); 1997 goto out; 1998 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1999 (event->msg_flags & MSG_EOR)) 2000 msg->msg_flags |= MSG_EOR; 2001 else 2002 msg->msg_flags &= ~MSG_EOR; 2003 2004 out_free: 2005 if (flags & MSG_PEEK) { 2006 /* Release the skb reference acquired after peeking the skb in 2007 * sctp_skb_recv_datagram(). 2008 */ 2009 kfree_skb(skb); 2010 } else { 2011 /* Free the event which includes releasing the reference to 2012 * the owner of the skb, freeing the skb and updating the 2013 * rwnd. 2014 */ 2015 sctp_ulpevent_free(event); 2016 } 2017 out: 2018 sctp_release_sock(sk); 2019 return err; 2020 } 2021 2022 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2023 * 2024 * This option is a on/off flag. If enabled no SCTP message 2025 * fragmentation will be performed. Instead if a message being sent 2026 * exceeds the current PMTU size, the message will NOT be sent and 2027 * instead a error will be indicated to the user. 2028 */ 2029 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2030 char __user *optval, int optlen) 2031 { 2032 int val; 2033 2034 if (optlen < sizeof(int)) 2035 return -EINVAL; 2036 2037 if (get_user(val, (int __user *)optval)) 2038 return -EFAULT; 2039 2040 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2041 2042 return 0; 2043 } 2044 2045 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2046 int optlen) 2047 { 2048 if (optlen > sizeof(struct sctp_event_subscribe)) 2049 return -EINVAL; 2050 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2051 return -EFAULT; 2052 return 0; 2053 } 2054 2055 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2056 * 2057 * This socket option is applicable to the UDP-style socket only. When 2058 * set it will cause associations that are idle for more than the 2059 * specified number of seconds to automatically close. An association 2060 * being idle is defined an association that has NOT sent or received 2061 * user data. The special value of '0' indicates that no automatic 2062 * close of any associations should be performed. The option expects an 2063 * integer defining the number of seconds of idle time before an 2064 * association is closed. 2065 */ 2066 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2067 int optlen) 2068 { 2069 struct sctp_sock *sp = sctp_sk(sk); 2070 2071 /* Applicable to UDP-style socket only */ 2072 if (sctp_style(sk, TCP)) 2073 return -EOPNOTSUPP; 2074 if (optlen != sizeof(int)) 2075 return -EINVAL; 2076 if (copy_from_user(&sp->autoclose, optval, optlen)) 2077 return -EFAULT; 2078 2079 return 0; 2080 } 2081 2082 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2083 * 2084 * Applications can enable or disable heartbeats for any peer address of 2085 * an association, modify an address's heartbeat interval, force a 2086 * heartbeat to be sent immediately, and adjust the address's maximum 2087 * number of retransmissions sent before an address is considered 2088 * unreachable. The following structure is used to access and modify an 2089 * address's parameters: 2090 * 2091 * struct sctp_paddrparams { 2092 * sctp_assoc_t spp_assoc_id; 2093 * struct sockaddr_storage spp_address; 2094 * uint32_t spp_hbinterval; 2095 * uint16_t spp_pathmaxrxt; 2096 * uint32_t spp_pathmtu; 2097 * uint32_t spp_sackdelay; 2098 * uint32_t spp_flags; 2099 * }; 2100 * 2101 * spp_assoc_id - (one-to-many style socket) This is filled in the 2102 * application, and identifies the association for 2103 * this query. 2104 * spp_address - This specifies which address is of interest. 2105 * spp_hbinterval - This contains the value of the heartbeat interval, 2106 * in milliseconds. If a value of zero 2107 * is present in this field then no changes are to 2108 * be made to this parameter. 2109 * spp_pathmaxrxt - This contains the maximum number of 2110 * retransmissions before this address shall be 2111 * considered unreachable. If a value of zero 2112 * is present in this field then no changes are to 2113 * be made to this parameter. 2114 * spp_pathmtu - When Path MTU discovery is disabled the value 2115 * specified here will be the "fixed" path mtu. 2116 * Note that if the spp_address field is empty 2117 * then all associations on this address will 2118 * have this fixed path mtu set upon them. 2119 * 2120 * spp_sackdelay - When delayed sack is enabled, this value specifies 2121 * the number of milliseconds that sacks will be delayed 2122 * for. This value will apply to all addresses of an 2123 * association if the spp_address field is empty. Note 2124 * also, that if delayed sack is enabled and this 2125 * value is set to 0, no change is made to the last 2126 * recorded delayed sack timer value. 2127 * 2128 * spp_flags - These flags are used to control various features 2129 * on an association. The flag field may contain 2130 * zero or more of the following options. 2131 * 2132 * SPP_HB_ENABLE - Enable heartbeats on the 2133 * specified address. Note that if the address 2134 * field is empty all addresses for the association 2135 * have heartbeats enabled upon them. 2136 * 2137 * SPP_HB_DISABLE - Disable heartbeats on the 2138 * speicifed address. Note that if the address 2139 * field is empty all addresses for the association 2140 * will have their heartbeats disabled. Note also 2141 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2142 * mutually exclusive, only one of these two should 2143 * be specified. Enabling both fields will have 2144 * undetermined results. 2145 * 2146 * SPP_HB_DEMAND - Request a user initiated heartbeat 2147 * to be made immediately. 2148 * 2149 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2150 * heartbeat delayis to be set to the value of 0 2151 * milliseconds. 2152 * 2153 * SPP_PMTUD_ENABLE - This field will enable PMTU 2154 * discovery upon the specified address. Note that 2155 * if the address feild is empty then all addresses 2156 * on the association are effected. 2157 * 2158 * SPP_PMTUD_DISABLE - This field will disable PMTU 2159 * discovery upon the specified address. Note that 2160 * if the address feild is empty then all addresses 2161 * on the association are effected. Not also that 2162 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2163 * exclusive. Enabling both will have undetermined 2164 * results. 2165 * 2166 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2167 * on delayed sack. The time specified in spp_sackdelay 2168 * is used to specify the sack delay for this address. Note 2169 * that if spp_address is empty then all addresses will 2170 * enable delayed sack and take on the sack delay 2171 * value specified in spp_sackdelay. 2172 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2173 * off delayed sack. If the spp_address field is blank then 2174 * delayed sack is disabled for the entire association. Note 2175 * also that this field is mutually exclusive to 2176 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2177 * results. 2178 */ 2179 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2180 struct sctp_transport *trans, 2181 struct sctp_association *asoc, 2182 struct sctp_sock *sp, 2183 int hb_change, 2184 int pmtud_change, 2185 int sackdelay_change) 2186 { 2187 int error; 2188 2189 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2190 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2191 if (error) 2192 return error; 2193 } 2194 2195 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2196 * this field is ignored. Note also that a value of zero indicates 2197 * the current setting should be left unchanged. 2198 */ 2199 if (params->spp_flags & SPP_HB_ENABLE) { 2200 2201 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2202 * set. This lets us use 0 value when this flag 2203 * is set. 2204 */ 2205 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2206 params->spp_hbinterval = 0; 2207 2208 if (params->spp_hbinterval || 2209 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2210 if (trans) { 2211 trans->hbinterval = 2212 msecs_to_jiffies(params->spp_hbinterval); 2213 } else if (asoc) { 2214 asoc->hbinterval = 2215 msecs_to_jiffies(params->spp_hbinterval); 2216 } else { 2217 sp->hbinterval = params->spp_hbinterval; 2218 } 2219 } 2220 } 2221 2222 if (hb_change) { 2223 if (trans) { 2224 trans->param_flags = 2225 (trans->param_flags & ~SPP_HB) | hb_change; 2226 } else if (asoc) { 2227 asoc->param_flags = 2228 (asoc->param_flags & ~SPP_HB) | hb_change; 2229 } else { 2230 sp->param_flags = 2231 (sp->param_flags & ~SPP_HB) | hb_change; 2232 } 2233 } 2234 2235 /* When Path MTU discovery is disabled the value specified here will 2236 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2237 * include the flag SPP_PMTUD_DISABLE for this field to have any 2238 * effect). 2239 */ 2240 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2241 if (trans) { 2242 trans->pathmtu = params->spp_pathmtu; 2243 sctp_assoc_sync_pmtu(asoc); 2244 } else if (asoc) { 2245 asoc->pathmtu = params->spp_pathmtu; 2246 sctp_frag_point(asoc, params->spp_pathmtu); 2247 } else { 2248 sp->pathmtu = params->spp_pathmtu; 2249 } 2250 } 2251 2252 if (pmtud_change) { 2253 if (trans) { 2254 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2255 (params->spp_flags & SPP_PMTUD_ENABLE); 2256 trans->param_flags = 2257 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2258 if (update) { 2259 sctp_transport_pmtu(trans); 2260 sctp_assoc_sync_pmtu(asoc); 2261 } 2262 } else if (asoc) { 2263 asoc->param_flags = 2264 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2265 } else { 2266 sp->param_flags = 2267 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2268 } 2269 } 2270 2271 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2272 * value of this field is ignored. Note also that a value of zero 2273 * indicates the current setting should be left unchanged. 2274 */ 2275 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2276 if (trans) { 2277 trans->sackdelay = 2278 msecs_to_jiffies(params->spp_sackdelay); 2279 } else if (asoc) { 2280 asoc->sackdelay = 2281 msecs_to_jiffies(params->spp_sackdelay); 2282 } else { 2283 sp->sackdelay = params->spp_sackdelay; 2284 } 2285 } 2286 2287 if (sackdelay_change) { 2288 if (trans) { 2289 trans->param_flags = 2290 (trans->param_flags & ~SPP_SACKDELAY) | 2291 sackdelay_change; 2292 } else if (asoc) { 2293 asoc->param_flags = 2294 (asoc->param_flags & ~SPP_SACKDELAY) | 2295 sackdelay_change; 2296 } else { 2297 sp->param_flags = 2298 (sp->param_flags & ~SPP_SACKDELAY) | 2299 sackdelay_change; 2300 } 2301 } 2302 2303 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2304 * of this field is ignored. Note also that a value of zero 2305 * indicates the current setting should be left unchanged. 2306 */ 2307 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2308 if (trans) { 2309 trans->pathmaxrxt = params->spp_pathmaxrxt; 2310 } else if (asoc) { 2311 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2312 } else { 2313 sp->pathmaxrxt = params->spp_pathmaxrxt; 2314 } 2315 } 2316 2317 return 0; 2318 } 2319 2320 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2321 char __user *optval, int optlen) 2322 { 2323 struct sctp_paddrparams params; 2324 struct sctp_transport *trans = NULL; 2325 struct sctp_association *asoc = NULL; 2326 struct sctp_sock *sp = sctp_sk(sk); 2327 int error; 2328 int hb_change, pmtud_change, sackdelay_change; 2329 2330 if (optlen != sizeof(struct sctp_paddrparams)) 2331 return - EINVAL; 2332 2333 if (copy_from_user(¶ms, optval, optlen)) 2334 return -EFAULT; 2335 2336 /* Validate flags and value parameters. */ 2337 hb_change = params.spp_flags & SPP_HB; 2338 pmtud_change = params.spp_flags & SPP_PMTUD; 2339 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2340 2341 if (hb_change == SPP_HB || 2342 pmtud_change == SPP_PMTUD || 2343 sackdelay_change == SPP_SACKDELAY || 2344 params.spp_sackdelay > 500 || 2345 (params.spp_pathmtu 2346 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2347 return -EINVAL; 2348 2349 /* If an address other than INADDR_ANY is specified, and 2350 * no transport is found, then the request is invalid. 2351 */ 2352 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2353 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2354 params.spp_assoc_id); 2355 if (!trans) 2356 return -EINVAL; 2357 } 2358 2359 /* Get association, if assoc_id != 0 and the socket is a one 2360 * to many style socket, and an association was not found, then 2361 * the id was invalid. 2362 */ 2363 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2364 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2365 return -EINVAL; 2366 2367 /* Heartbeat demand can only be sent on a transport or 2368 * association, but not a socket. 2369 */ 2370 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2371 return -EINVAL; 2372 2373 /* Process parameters. */ 2374 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2375 hb_change, pmtud_change, 2376 sackdelay_change); 2377 2378 if (error) 2379 return error; 2380 2381 /* If changes are for association, also apply parameters to each 2382 * transport. 2383 */ 2384 if (!trans && asoc) { 2385 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2386 transports) { 2387 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2388 hb_change, pmtud_change, 2389 sackdelay_change); 2390 } 2391 } 2392 2393 return 0; 2394 } 2395 2396 /* 2397 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2398 * 2399 * This option will effect the way delayed acks are performed. This 2400 * option allows you to get or set the delayed ack time, in 2401 * milliseconds. It also allows changing the delayed ack frequency. 2402 * Changing the frequency to 1 disables the delayed sack algorithm. If 2403 * the assoc_id is 0, then this sets or gets the endpoints default 2404 * values. If the assoc_id field is non-zero, then the set or get 2405 * effects the specified association for the one to many model (the 2406 * assoc_id field is ignored by the one to one model). Note that if 2407 * sack_delay or sack_freq are 0 when setting this option, then the 2408 * current values will remain unchanged. 2409 * 2410 * struct sctp_sack_info { 2411 * sctp_assoc_t sack_assoc_id; 2412 * uint32_t sack_delay; 2413 * uint32_t sack_freq; 2414 * }; 2415 * 2416 * sack_assoc_id - This parameter, indicates which association the user 2417 * is performing an action upon. Note that if this field's value is 2418 * zero then the endpoints default value is changed (effecting future 2419 * associations only). 2420 * 2421 * sack_delay - This parameter contains the number of milliseconds that 2422 * the user is requesting the delayed ACK timer be set to. Note that 2423 * this value is defined in the standard to be between 200 and 500 2424 * milliseconds. 2425 * 2426 * sack_freq - This parameter contains the number of packets that must 2427 * be received before a sack is sent without waiting for the delay 2428 * timer to expire. The default value for this is 2, setting this 2429 * value to 1 will disable the delayed sack algorithm. 2430 */ 2431 2432 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2433 char __user *optval, int optlen) 2434 { 2435 struct sctp_sack_info params; 2436 struct sctp_transport *trans = NULL; 2437 struct sctp_association *asoc = NULL; 2438 struct sctp_sock *sp = sctp_sk(sk); 2439 2440 if (optlen == sizeof(struct sctp_sack_info)) { 2441 if (copy_from_user(¶ms, optval, optlen)) 2442 return -EFAULT; 2443 2444 if (params.sack_delay == 0 && params.sack_freq == 0) 2445 return 0; 2446 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2447 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 2448 "in delayed_ack socket option deprecated\n"); 2449 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 2450 if (copy_from_user(¶ms, optval, optlen)) 2451 return -EFAULT; 2452 2453 if (params.sack_delay == 0) 2454 params.sack_freq = 1; 2455 else 2456 params.sack_freq = 0; 2457 } else 2458 return - EINVAL; 2459 2460 /* Validate value parameter. */ 2461 if (params.sack_delay > 500) 2462 return -EINVAL; 2463 2464 /* Get association, if sack_assoc_id != 0 and the socket is a one 2465 * to many style socket, and an association was not found, then 2466 * the id was invalid. 2467 */ 2468 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2469 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2470 return -EINVAL; 2471 2472 if (params.sack_delay) { 2473 if (asoc) { 2474 asoc->sackdelay = 2475 msecs_to_jiffies(params.sack_delay); 2476 asoc->param_flags = 2477 (asoc->param_flags & ~SPP_SACKDELAY) | 2478 SPP_SACKDELAY_ENABLE; 2479 } else { 2480 sp->sackdelay = params.sack_delay; 2481 sp->param_flags = 2482 (sp->param_flags & ~SPP_SACKDELAY) | 2483 SPP_SACKDELAY_ENABLE; 2484 } 2485 } 2486 2487 if (params.sack_freq == 1) { 2488 if (asoc) { 2489 asoc->param_flags = 2490 (asoc->param_flags & ~SPP_SACKDELAY) | 2491 SPP_SACKDELAY_DISABLE; 2492 } else { 2493 sp->param_flags = 2494 (sp->param_flags & ~SPP_SACKDELAY) | 2495 SPP_SACKDELAY_DISABLE; 2496 } 2497 } else if (params.sack_freq > 1) { 2498 if (asoc) { 2499 asoc->sackfreq = params.sack_freq; 2500 asoc->param_flags = 2501 (asoc->param_flags & ~SPP_SACKDELAY) | 2502 SPP_SACKDELAY_ENABLE; 2503 } else { 2504 sp->sackfreq = params.sack_freq; 2505 sp->param_flags = 2506 (sp->param_flags & ~SPP_SACKDELAY) | 2507 SPP_SACKDELAY_ENABLE; 2508 } 2509 } 2510 2511 /* If change is for association, also apply to each transport. */ 2512 if (asoc) { 2513 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2514 transports) { 2515 if (params.sack_delay) { 2516 trans->sackdelay = 2517 msecs_to_jiffies(params.sack_delay); 2518 trans->param_flags = 2519 (trans->param_flags & ~SPP_SACKDELAY) | 2520 SPP_SACKDELAY_ENABLE; 2521 } 2522 if (params.sack_freq == 1) { 2523 trans->param_flags = 2524 (trans->param_flags & ~SPP_SACKDELAY) | 2525 SPP_SACKDELAY_DISABLE; 2526 } else if (params.sack_freq > 1) { 2527 trans->sackfreq = params.sack_freq; 2528 trans->param_flags = 2529 (trans->param_flags & ~SPP_SACKDELAY) | 2530 SPP_SACKDELAY_ENABLE; 2531 } 2532 } 2533 } 2534 2535 return 0; 2536 } 2537 2538 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2539 * 2540 * Applications can specify protocol parameters for the default association 2541 * initialization. The option name argument to setsockopt() and getsockopt() 2542 * is SCTP_INITMSG. 2543 * 2544 * Setting initialization parameters is effective only on an unconnected 2545 * socket (for UDP-style sockets only future associations are effected 2546 * by the change). With TCP-style sockets, this option is inherited by 2547 * sockets derived from a listener socket. 2548 */ 2549 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2550 { 2551 struct sctp_initmsg sinit; 2552 struct sctp_sock *sp = sctp_sk(sk); 2553 2554 if (optlen != sizeof(struct sctp_initmsg)) 2555 return -EINVAL; 2556 if (copy_from_user(&sinit, optval, optlen)) 2557 return -EFAULT; 2558 2559 if (sinit.sinit_num_ostreams) 2560 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2561 if (sinit.sinit_max_instreams) 2562 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2563 if (sinit.sinit_max_attempts) 2564 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2565 if (sinit.sinit_max_init_timeo) 2566 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2567 2568 return 0; 2569 } 2570 2571 /* 2572 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2573 * 2574 * Applications that wish to use the sendto() system call may wish to 2575 * specify a default set of parameters that would normally be supplied 2576 * through the inclusion of ancillary data. This socket option allows 2577 * such an application to set the default sctp_sndrcvinfo structure. 2578 * The application that wishes to use this socket option simply passes 2579 * in to this call the sctp_sndrcvinfo structure defined in Section 2580 * 5.2.2) The input parameters accepted by this call include 2581 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2582 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2583 * to this call if the caller is using the UDP model. 2584 */ 2585 static int sctp_setsockopt_default_send_param(struct sock *sk, 2586 char __user *optval, int optlen) 2587 { 2588 struct sctp_sndrcvinfo info; 2589 struct sctp_association *asoc; 2590 struct sctp_sock *sp = sctp_sk(sk); 2591 2592 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2593 return -EINVAL; 2594 if (copy_from_user(&info, optval, optlen)) 2595 return -EFAULT; 2596 2597 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2598 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2599 return -EINVAL; 2600 2601 if (asoc) { 2602 asoc->default_stream = info.sinfo_stream; 2603 asoc->default_flags = info.sinfo_flags; 2604 asoc->default_ppid = info.sinfo_ppid; 2605 asoc->default_context = info.sinfo_context; 2606 asoc->default_timetolive = info.sinfo_timetolive; 2607 } else { 2608 sp->default_stream = info.sinfo_stream; 2609 sp->default_flags = info.sinfo_flags; 2610 sp->default_ppid = info.sinfo_ppid; 2611 sp->default_context = info.sinfo_context; 2612 sp->default_timetolive = info.sinfo_timetolive; 2613 } 2614 2615 return 0; 2616 } 2617 2618 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2619 * 2620 * Requests that the local SCTP stack use the enclosed peer address as 2621 * the association primary. The enclosed address must be one of the 2622 * association peer's addresses. 2623 */ 2624 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2625 int optlen) 2626 { 2627 struct sctp_prim prim; 2628 struct sctp_transport *trans; 2629 2630 if (optlen != sizeof(struct sctp_prim)) 2631 return -EINVAL; 2632 2633 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2634 return -EFAULT; 2635 2636 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2637 if (!trans) 2638 return -EINVAL; 2639 2640 sctp_assoc_set_primary(trans->asoc, trans); 2641 2642 return 0; 2643 } 2644 2645 /* 2646 * 7.1.5 SCTP_NODELAY 2647 * 2648 * Turn on/off any Nagle-like algorithm. This means that packets are 2649 * generally sent as soon as possible and no unnecessary delays are 2650 * introduced, at the cost of more packets in the network. Expects an 2651 * integer boolean flag. 2652 */ 2653 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2654 int optlen) 2655 { 2656 int val; 2657 2658 if (optlen < sizeof(int)) 2659 return -EINVAL; 2660 if (get_user(val, (int __user *)optval)) 2661 return -EFAULT; 2662 2663 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2664 return 0; 2665 } 2666 2667 /* 2668 * 2669 * 7.1.1 SCTP_RTOINFO 2670 * 2671 * The protocol parameters used to initialize and bound retransmission 2672 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2673 * and modify these parameters. 2674 * All parameters are time values, in milliseconds. A value of 0, when 2675 * modifying the parameters, indicates that the current value should not 2676 * be changed. 2677 * 2678 */ 2679 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2680 struct sctp_rtoinfo rtoinfo; 2681 struct sctp_association *asoc; 2682 2683 if (optlen != sizeof (struct sctp_rtoinfo)) 2684 return -EINVAL; 2685 2686 if (copy_from_user(&rtoinfo, optval, optlen)) 2687 return -EFAULT; 2688 2689 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2690 2691 /* Set the values to the specific association */ 2692 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2693 return -EINVAL; 2694 2695 if (asoc) { 2696 if (rtoinfo.srto_initial != 0) 2697 asoc->rto_initial = 2698 msecs_to_jiffies(rtoinfo.srto_initial); 2699 if (rtoinfo.srto_max != 0) 2700 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2701 if (rtoinfo.srto_min != 0) 2702 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2703 } else { 2704 /* If there is no association or the association-id = 0 2705 * set the values to the endpoint. 2706 */ 2707 struct sctp_sock *sp = sctp_sk(sk); 2708 2709 if (rtoinfo.srto_initial != 0) 2710 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2711 if (rtoinfo.srto_max != 0) 2712 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2713 if (rtoinfo.srto_min != 0) 2714 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2715 } 2716 2717 return 0; 2718 } 2719 2720 /* 2721 * 2722 * 7.1.2 SCTP_ASSOCINFO 2723 * 2724 * This option is used to tune the maximum retransmission attempts 2725 * of the association. 2726 * Returns an error if the new association retransmission value is 2727 * greater than the sum of the retransmission value of the peer. 2728 * See [SCTP] for more information. 2729 * 2730 */ 2731 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2732 { 2733 2734 struct sctp_assocparams assocparams; 2735 struct sctp_association *asoc; 2736 2737 if (optlen != sizeof(struct sctp_assocparams)) 2738 return -EINVAL; 2739 if (copy_from_user(&assocparams, optval, optlen)) 2740 return -EFAULT; 2741 2742 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2743 2744 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2745 return -EINVAL; 2746 2747 /* Set the values to the specific association */ 2748 if (asoc) { 2749 if (assocparams.sasoc_asocmaxrxt != 0) { 2750 __u32 path_sum = 0; 2751 int paths = 0; 2752 struct sctp_transport *peer_addr; 2753 2754 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2755 transports) { 2756 path_sum += peer_addr->pathmaxrxt; 2757 paths++; 2758 } 2759 2760 /* Only validate asocmaxrxt if we have more than 2761 * one path/transport. We do this because path 2762 * retransmissions are only counted when we have more 2763 * then one path. 2764 */ 2765 if (paths > 1 && 2766 assocparams.sasoc_asocmaxrxt > path_sum) 2767 return -EINVAL; 2768 2769 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2770 } 2771 2772 if (assocparams.sasoc_cookie_life != 0) { 2773 asoc->cookie_life.tv_sec = 2774 assocparams.sasoc_cookie_life / 1000; 2775 asoc->cookie_life.tv_usec = 2776 (assocparams.sasoc_cookie_life % 1000) 2777 * 1000; 2778 } 2779 } else { 2780 /* Set the values to the endpoint */ 2781 struct sctp_sock *sp = sctp_sk(sk); 2782 2783 if (assocparams.sasoc_asocmaxrxt != 0) 2784 sp->assocparams.sasoc_asocmaxrxt = 2785 assocparams.sasoc_asocmaxrxt; 2786 if (assocparams.sasoc_cookie_life != 0) 2787 sp->assocparams.sasoc_cookie_life = 2788 assocparams.sasoc_cookie_life; 2789 } 2790 return 0; 2791 } 2792 2793 /* 2794 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2795 * 2796 * This socket option is a boolean flag which turns on or off mapped V4 2797 * addresses. If this option is turned on and the socket is type 2798 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2799 * If this option is turned off, then no mapping will be done of V4 2800 * addresses and a user will receive both PF_INET6 and PF_INET type 2801 * addresses on the socket. 2802 */ 2803 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2804 { 2805 int val; 2806 struct sctp_sock *sp = sctp_sk(sk); 2807 2808 if (optlen < sizeof(int)) 2809 return -EINVAL; 2810 if (get_user(val, (int __user *)optval)) 2811 return -EFAULT; 2812 if (val) 2813 sp->v4mapped = 1; 2814 else 2815 sp->v4mapped = 0; 2816 2817 return 0; 2818 } 2819 2820 /* 2821 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2822 * This option will get or set the maximum size to put in any outgoing 2823 * SCTP DATA chunk. If a message is larger than this size it will be 2824 * fragmented by SCTP into the specified size. Note that the underlying 2825 * SCTP implementation may fragment into smaller sized chunks when the 2826 * PMTU of the underlying association is smaller than the value set by 2827 * the user. The default value for this option is '0' which indicates 2828 * the user is NOT limiting fragmentation and only the PMTU will effect 2829 * SCTP's choice of DATA chunk size. Note also that values set larger 2830 * than the maximum size of an IP datagram will effectively let SCTP 2831 * control fragmentation (i.e. the same as setting this option to 0). 2832 * 2833 * The following structure is used to access and modify this parameter: 2834 * 2835 * struct sctp_assoc_value { 2836 * sctp_assoc_t assoc_id; 2837 * uint32_t assoc_value; 2838 * }; 2839 * 2840 * assoc_id: This parameter is ignored for one-to-one style sockets. 2841 * For one-to-many style sockets this parameter indicates which 2842 * association the user is performing an action upon. Note that if 2843 * this field's value is zero then the endpoints default value is 2844 * changed (effecting future associations only). 2845 * assoc_value: This parameter specifies the maximum size in bytes. 2846 */ 2847 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2848 { 2849 struct sctp_assoc_value params; 2850 struct sctp_association *asoc; 2851 struct sctp_sock *sp = sctp_sk(sk); 2852 int val; 2853 2854 if (optlen == sizeof(int)) { 2855 printk(KERN_WARNING 2856 "SCTP: Use of int in maxseg socket option deprecated\n"); 2857 printk(KERN_WARNING 2858 "SCTP: Use struct sctp_assoc_value instead\n"); 2859 if (copy_from_user(&val, optval, optlen)) 2860 return -EFAULT; 2861 params.assoc_id = 0; 2862 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2863 if (copy_from_user(¶ms, optval, optlen)) 2864 return -EFAULT; 2865 val = params.assoc_value; 2866 } else 2867 return -EINVAL; 2868 2869 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2870 return -EINVAL; 2871 2872 asoc = sctp_id2assoc(sk, params.assoc_id); 2873 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2874 return -EINVAL; 2875 2876 if (asoc) { 2877 if (val == 0) { 2878 val = asoc->pathmtu; 2879 val -= sp->pf->af->net_header_len; 2880 val -= sizeof(struct sctphdr) + 2881 sizeof(struct sctp_data_chunk); 2882 } 2883 asoc->user_frag = val; 2884 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2885 } else { 2886 sp->user_frag = val; 2887 } 2888 2889 return 0; 2890 } 2891 2892 2893 /* 2894 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2895 * 2896 * Requests that the peer mark the enclosed address as the association 2897 * primary. The enclosed address must be one of the association's 2898 * locally bound addresses. The following structure is used to make a 2899 * set primary request: 2900 */ 2901 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2902 int optlen) 2903 { 2904 struct sctp_sock *sp; 2905 struct sctp_endpoint *ep; 2906 struct sctp_association *asoc = NULL; 2907 struct sctp_setpeerprim prim; 2908 struct sctp_chunk *chunk; 2909 int err; 2910 2911 sp = sctp_sk(sk); 2912 ep = sp->ep; 2913 2914 if (!sctp_addip_enable) 2915 return -EPERM; 2916 2917 if (optlen != sizeof(struct sctp_setpeerprim)) 2918 return -EINVAL; 2919 2920 if (copy_from_user(&prim, optval, optlen)) 2921 return -EFAULT; 2922 2923 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2924 if (!asoc) 2925 return -EINVAL; 2926 2927 if (!asoc->peer.asconf_capable) 2928 return -EPERM; 2929 2930 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2931 return -EPERM; 2932 2933 if (!sctp_state(asoc, ESTABLISHED)) 2934 return -ENOTCONN; 2935 2936 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2937 return -EADDRNOTAVAIL; 2938 2939 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2940 chunk = sctp_make_asconf_set_prim(asoc, 2941 (union sctp_addr *)&prim.sspp_addr); 2942 if (!chunk) 2943 return -ENOMEM; 2944 2945 err = sctp_send_asconf(asoc, chunk); 2946 2947 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2948 2949 return err; 2950 } 2951 2952 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2953 int optlen) 2954 { 2955 struct sctp_setadaptation adaptation; 2956 2957 if (optlen != sizeof(struct sctp_setadaptation)) 2958 return -EINVAL; 2959 if (copy_from_user(&adaptation, optval, optlen)) 2960 return -EFAULT; 2961 2962 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2963 2964 return 0; 2965 } 2966 2967 /* 2968 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2969 * 2970 * The context field in the sctp_sndrcvinfo structure is normally only 2971 * used when a failed message is retrieved holding the value that was 2972 * sent down on the actual send call. This option allows the setting of 2973 * a default context on an association basis that will be received on 2974 * reading messages from the peer. This is especially helpful in the 2975 * one-2-many model for an application to keep some reference to an 2976 * internal state machine that is processing messages on the 2977 * association. Note that the setting of this value only effects 2978 * received messages from the peer and does not effect the value that is 2979 * saved with outbound messages. 2980 */ 2981 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2982 int optlen) 2983 { 2984 struct sctp_assoc_value params; 2985 struct sctp_sock *sp; 2986 struct sctp_association *asoc; 2987 2988 if (optlen != sizeof(struct sctp_assoc_value)) 2989 return -EINVAL; 2990 if (copy_from_user(¶ms, optval, optlen)) 2991 return -EFAULT; 2992 2993 sp = sctp_sk(sk); 2994 2995 if (params.assoc_id != 0) { 2996 asoc = sctp_id2assoc(sk, params.assoc_id); 2997 if (!asoc) 2998 return -EINVAL; 2999 asoc->default_rcv_context = params.assoc_value; 3000 } else { 3001 sp->default_rcv_context = params.assoc_value; 3002 } 3003 3004 return 0; 3005 } 3006 3007 /* 3008 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3009 * 3010 * This options will at a minimum specify if the implementation is doing 3011 * fragmented interleave. Fragmented interleave, for a one to many 3012 * socket, is when subsequent calls to receive a message may return 3013 * parts of messages from different associations. Some implementations 3014 * may allow you to turn this value on or off. If so, when turned off, 3015 * no fragment interleave will occur (which will cause a head of line 3016 * blocking amongst multiple associations sharing the same one to many 3017 * socket). When this option is turned on, then each receive call may 3018 * come from a different association (thus the user must receive data 3019 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3020 * association each receive belongs to. 3021 * 3022 * This option takes a boolean value. A non-zero value indicates that 3023 * fragmented interleave is on. A value of zero indicates that 3024 * fragmented interleave is off. 3025 * 3026 * Note that it is important that an implementation that allows this 3027 * option to be turned on, have it off by default. Otherwise an unaware 3028 * application using the one to many model may become confused and act 3029 * incorrectly. 3030 */ 3031 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3032 char __user *optval, 3033 int optlen) 3034 { 3035 int val; 3036 3037 if (optlen != sizeof(int)) 3038 return -EINVAL; 3039 if (get_user(val, (int __user *)optval)) 3040 return -EFAULT; 3041 3042 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3043 3044 return 0; 3045 } 3046 3047 /* 3048 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3049 * (SCTP_PARTIAL_DELIVERY_POINT) 3050 * 3051 * This option will set or get the SCTP partial delivery point. This 3052 * point is the size of a message where the partial delivery API will be 3053 * invoked to help free up rwnd space for the peer. Setting this to a 3054 * lower value will cause partial deliveries to happen more often. The 3055 * calls argument is an integer that sets or gets the partial delivery 3056 * point. Note also that the call will fail if the user attempts to set 3057 * this value larger than the socket receive buffer size. 3058 * 3059 * Note that any single message having a length smaller than or equal to 3060 * the SCTP partial delivery point will be delivered in one single read 3061 * call as long as the user provided buffer is large enough to hold the 3062 * message. 3063 */ 3064 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3065 char __user *optval, 3066 int optlen) 3067 { 3068 u32 val; 3069 3070 if (optlen != sizeof(u32)) 3071 return -EINVAL; 3072 if (get_user(val, (int __user *)optval)) 3073 return -EFAULT; 3074 3075 /* Note: We double the receive buffer from what the user sets 3076 * it to be, also initial rwnd is based on rcvbuf/2. 3077 */ 3078 if (val > (sk->sk_rcvbuf >> 1)) 3079 return -EINVAL; 3080 3081 sctp_sk(sk)->pd_point = val; 3082 3083 return 0; /* is this the right error code? */ 3084 } 3085 3086 /* 3087 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3088 * 3089 * This option will allow a user to change the maximum burst of packets 3090 * that can be emitted by this association. Note that the default value 3091 * is 4, and some implementations may restrict this setting so that it 3092 * can only be lowered. 3093 * 3094 * NOTE: This text doesn't seem right. Do this on a socket basis with 3095 * future associations inheriting the socket value. 3096 */ 3097 static int sctp_setsockopt_maxburst(struct sock *sk, 3098 char __user *optval, 3099 int optlen) 3100 { 3101 struct sctp_assoc_value params; 3102 struct sctp_sock *sp; 3103 struct sctp_association *asoc; 3104 int val; 3105 int assoc_id = 0; 3106 3107 if (optlen == sizeof(int)) { 3108 printk(KERN_WARNING 3109 "SCTP: Use of int in max_burst socket option deprecated\n"); 3110 printk(KERN_WARNING 3111 "SCTP: Use struct sctp_assoc_value instead\n"); 3112 if (copy_from_user(&val, optval, optlen)) 3113 return -EFAULT; 3114 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3115 if (copy_from_user(¶ms, optval, optlen)) 3116 return -EFAULT; 3117 val = params.assoc_value; 3118 assoc_id = params.assoc_id; 3119 } else 3120 return -EINVAL; 3121 3122 sp = sctp_sk(sk); 3123 3124 if (assoc_id != 0) { 3125 asoc = sctp_id2assoc(sk, assoc_id); 3126 if (!asoc) 3127 return -EINVAL; 3128 asoc->max_burst = val; 3129 } else 3130 sp->max_burst = val; 3131 3132 return 0; 3133 } 3134 3135 /* 3136 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3137 * 3138 * This set option adds a chunk type that the user is requesting to be 3139 * received only in an authenticated way. Changes to the list of chunks 3140 * will only effect future associations on the socket. 3141 */ 3142 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3143 char __user *optval, 3144 int optlen) 3145 { 3146 struct sctp_authchunk val; 3147 3148 if (!sctp_auth_enable) 3149 return -EACCES; 3150 3151 if (optlen != sizeof(struct sctp_authchunk)) 3152 return -EINVAL; 3153 if (copy_from_user(&val, optval, optlen)) 3154 return -EFAULT; 3155 3156 switch (val.sauth_chunk) { 3157 case SCTP_CID_INIT: 3158 case SCTP_CID_INIT_ACK: 3159 case SCTP_CID_SHUTDOWN_COMPLETE: 3160 case SCTP_CID_AUTH: 3161 return -EINVAL; 3162 } 3163 3164 /* add this chunk id to the endpoint */ 3165 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3166 } 3167 3168 /* 3169 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3170 * 3171 * This option gets or sets the list of HMAC algorithms that the local 3172 * endpoint requires the peer to use. 3173 */ 3174 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3175 char __user *optval, 3176 int optlen) 3177 { 3178 struct sctp_hmacalgo *hmacs; 3179 u32 idents; 3180 int err; 3181 3182 if (!sctp_auth_enable) 3183 return -EACCES; 3184 3185 if (optlen < sizeof(struct sctp_hmacalgo)) 3186 return -EINVAL; 3187 3188 hmacs = kmalloc(optlen, GFP_KERNEL); 3189 if (!hmacs) 3190 return -ENOMEM; 3191 3192 if (copy_from_user(hmacs, optval, optlen)) { 3193 err = -EFAULT; 3194 goto out; 3195 } 3196 3197 idents = hmacs->shmac_num_idents; 3198 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3199 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3200 err = -EINVAL; 3201 goto out; 3202 } 3203 3204 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3205 out: 3206 kfree(hmacs); 3207 return err; 3208 } 3209 3210 /* 3211 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3212 * 3213 * This option will set a shared secret key which is used to build an 3214 * association shared key. 3215 */ 3216 static int sctp_setsockopt_auth_key(struct sock *sk, 3217 char __user *optval, 3218 int optlen) 3219 { 3220 struct sctp_authkey *authkey; 3221 struct sctp_association *asoc; 3222 int ret; 3223 3224 if (!sctp_auth_enable) 3225 return -EACCES; 3226 3227 if (optlen <= sizeof(struct sctp_authkey)) 3228 return -EINVAL; 3229 3230 authkey = kmalloc(optlen, GFP_KERNEL); 3231 if (!authkey) 3232 return -ENOMEM; 3233 3234 if (copy_from_user(authkey, optval, optlen)) { 3235 ret = -EFAULT; 3236 goto out; 3237 } 3238 3239 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3240 ret = -EINVAL; 3241 goto out; 3242 } 3243 3244 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3245 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3246 ret = -EINVAL; 3247 goto out; 3248 } 3249 3250 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3251 out: 3252 kfree(authkey); 3253 return ret; 3254 } 3255 3256 /* 3257 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3258 * 3259 * This option will get or set the active shared key to be used to build 3260 * the association shared key. 3261 */ 3262 static int sctp_setsockopt_active_key(struct sock *sk, 3263 char __user *optval, 3264 int optlen) 3265 { 3266 struct sctp_authkeyid val; 3267 struct sctp_association *asoc; 3268 3269 if (!sctp_auth_enable) 3270 return -EACCES; 3271 3272 if (optlen != sizeof(struct sctp_authkeyid)) 3273 return -EINVAL; 3274 if (copy_from_user(&val, optval, optlen)) 3275 return -EFAULT; 3276 3277 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3278 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3279 return -EINVAL; 3280 3281 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3282 val.scact_keynumber); 3283 } 3284 3285 /* 3286 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3287 * 3288 * This set option will delete a shared secret key from use. 3289 */ 3290 static int sctp_setsockopt_del_key(struct sock *sk, 3291 char __user *optval, 3292 int optlen) 3293 { 3294 struct sctp_authkeyid val; 3295 struct sctp_association *asoc; 3296 3297 if (!sctp_auth_enable) 3298 return -EACCES; 3299 3300 if (optlen != sizeof(struct sctp_authkeyid)) 3301 return -EINVAL; 3302 if (copy_from_user(&val, optval, optlen)) 3303 return -EFAULT; 3304 3305 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3306 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3307 return -EINVAL; 3308 3309 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3310 val.scact_keynumber); 3311 3312 } 3313 3314 3315 /* API 6.2 setsockopt(), getsockopt() 3316 * 3317 * Applications use setsockopt() and getsockopt() to set or retrieve 3318 * socket options. Socket options are used to change the default 3319 * behavior of sockets calls. They are described in Section 7. 3320 * 3321 * The syntax is: 3322 * 3323 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3324 * int __user *optlen); 3325 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3326 * int optlen); 3327 * 3328 * sd - the socket descript. 3329 * level - set to IPPROTO_SCTP for all SCTP options. 3330 * optname - the option name. 3331 * optval - the buffer to store the value of the option. 3332 * optlen - the size of the buffer. 3333 */ 3334 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3335 char __user *optval, int optlen) 3336 { 3337 int retval = 0; 3338 3339 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3340 sk, optname); 3341 3342 /* I can hardly begin to describe how wrong this is. This is 3343 * so broken as to be worse than useless. The API draft 3344 * REALLY is NOT helpful here... I am not convinced that the 3345 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3346 * are at all well-founded. 3347 */ 3348 if (level != SOL_SCTP) { 3349 struct sctp_af *af = sctp_sk(sk)->pf->af; 3350 retval = af->setsockopt(sk, level, optname, optval, optlen); 3351 goto out_nounlock; 3352 } 3353 3354 sctp_lock_sock(sk); 3355 3356 switch (optname) { 3357 case SCTP_SOCKOPT_BINDX_ADD: 3358 /* 'optlen' is the size of the addresses buffer. */ 3359 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3360 optlen, SCTP_BINDX_ADD_ADDR); 3361 break; 3362 3363 case SCTP_SOCKOPT_BINDX_REM: 3364 /* 'optlen' is the size of the addresses buffer. */ 3365 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3366 optlen, SCTP_BINDX_REM_ADDR); 3367 break; 3368 3369 case SCTP_SOCKOPT_CONNECTX_OLD: 3370 /* 'optlen' is the size of the addresses buffer. */ 3371 retval = sctp_setsockopt_connectx_old(sk, 3372 (struct sockaddr __user *)optval, 3373 optlen); 3374 break; 3375 3376 case SCTP_SOCKOPT_CONNECTX: 3377 /* 'optlen' is the size of the addresses buffer. */ 3378 retval = sctp_setsockopt_connectx(sk, 3379 (struct sockaddr __user *)optval, 3380 optlen); 3381 break; 3382 3383 case SCTP_DISABLE_FRAGMENTS: 3384 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3385 break; 3386 3387 case SCTP_EVENTS: 3388 retval = sctp_setsockopt_events(sk, optval, optlen); 3389 break; 3390 3391 case SCTP_AUTOCLOSE: 3392 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3393 break; 3394 3395 case SCTP_PEER_ADDR_PARAMS: 3396 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3397 break; 3398 3399 case SCTP_DELAYED_ACK: 3400 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3401 break; 3402 case SCTP_PARTIAL_DELIVERY_POINT: 3403 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3404 break; 3405 3406 case SCTP_INITMSG: 3407 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3408 break; 3409 case SCTP_DEFAULT_SEND_PARAM: 3410 retval = sctp_setsockopt_default_send_param(sk, optval, 3411 optlen); 3412 break; 3413 case SCTP_PRIMARY_ADDR: 3414 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3415 break; 3416 case SCTP_SET_PEER_PRIMARY_ADDR: 3417 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3418 break; 3419 case SCTP_NODELAY: 3420 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3421 break; 3422 case SCTP_RTOINFO: 3423 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3424 break; 3425 case SCTP_ASSOCINFO: 3426 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3427 break; 3428 case SCTP_I_WANT_MAPPED_V4_ADDR: 3429 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3430 break; 3431 case SCTP_MAXSEG: 3432 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3433 break; 3434 case SCTP_ADAPTATION_LAYER: 3435 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3436 break; 3437 case SCTP_CONTEXT: 3438 retval = sctp_setsockopt_context(sk, optval, optlen); 3439 break; 3440 case SCTP_FRAGMENT_INTERLEAVE: 3441 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3442 break; 3443 case SCTP_MAX_BURST: 3444 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3445 break; 3446 case SCTP_AUTH_CHUNK: 3447 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3448 break; 3449 case SCTP_HMAC_IDENT: 3450 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3451 break; 3452 case SCTP_AUTH_KEY: 3453 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3454 break; 3455 case SCTP_AUTH_ACTIVE_KEY: 3456 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3457 break; 3458 case SCTP_AUTH_DELETE_KEY: 3459 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3460 break; 3461 default: 3462 retval = -ENOPROTOOPT; 3463 break; 3464 } 3465 3466 sctp_release_sock(sk); 3467 3468 out_nounlock: 3469 return retval; 3470 } 3471 3472 /* API 3.1.6 connect() - UDP Style Syntax 3473 * 3474 * An application may use the connect() call in the UDP model to initiate an 3475 * association without sending data. 3476 * 3477 * The syntax is: 3478 * 3479 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3480 * 3481 * sd: the socket descriptor to have a new association added to. 3482 * 3483 * nam: the address structure (either struct sockaddr_in or struct 3484 * sockaddr_in6 defined in RFC2553 [7]). 3485 * 3486 * len: the size of the address. 3487 */ 3488 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3489 int addr_len) 3490 { 3491 int err = 0; 3492 struct sctp_af *af; 3493 3494 sctp_lock_sock(sk); 3495 3496 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3497 __func__, sk, addr, addr_len); 3498 3499 /* Validate addr_len before calling common connect/connectx routine. */ 3500 af = sctp_get_af_specific(addr->sa_family); 3501 if (!af || addr_len < af->sockaddr_len) { 3502 err = -EINVAL; 3503 } else { 3504 /* Pass correct addr len to common routine (so it knows there 3505 * is only one address being passed. 3506 */ 3507 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3508 } 3509 3510 sctp_release_sock(sk); 3511 return err; 3512 } 3513 3514 /* FIXME: Write comments. */ 3515 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3516 { 3517 return -EOPNOTSUPP; /* STUB */ 3518 } 3519 3520 /* 4.1.4 accept() - TCP Style Syntax 3521 * 3522 * Applications use accept() call to remove an established SCTP 3523 * association from the accept queue of the endpoint. A new socket 3524 * descriptor will be returned from accept() to represent the newly 3525 * formed association. 3526 */ 3527 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3528 { 3529 struct sctp_sock *sp; 3530 struct sctp_endpoint *ep; 3531 struct sock *newsk = NULL; 3532 struct sctp_association *asoc; 3533 long timeo; 3534 int error = 0; 3535 3536 sctp_lock_sock(sk); 3537 3538 sp = sctp_sk(sk); 3539 ep = sp->ep; 3540 3541 if (!sctp_style(sk, TCP)) { 3542 error = -EOPNOTSUPP; 3543 goto out; 3544 } 3545 3546 if (!sctp_sstate(sk, LISTENING)) { 3547 error = -EINVAL; 3548 goto out; 3549 } 3550 3551 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3552 3553 error = sctp_wait_for_accept(sk, timeo); 3554 if (error) 3555 goto out; 3556 3557 /* We treat the list of associations on the endpoint as the accept 3558 * queue and pick the first association on the list. 3559 */ 3560 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3561 3562 newsk = sp->pf->create_accept_sk(sk, asoc); 3563 if (!newsk) { 3564 error = -ENOMEM; 3565 goto out; 3566 } 3567 3568 /* Populate the fields of the newsk from the oldsk and migrate the 3569 * asoc to the newsk. 3570 */ 3571 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3572 3573 out: 3574 sctp_release_sock(sk); 3575 *err = error; 3576 return newsk; 3577 } 3578 3579 /* The SCTP ioctl handler. */ 3580 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3581 { 3582 return -ENOIOCTLCMD; 3583 } 3584 3585 /* This is the function which gets called during socket creation to 3586 * initialized the SCTP-specific portion of the sock. 3587 * The sock structure should already be zero-filled memory. 3588 */ 3589 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3590 { 3591 struct sctp_endpoint *ep; 3592 struct sctp_sock *sp; 3593 3594 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3595 3596 sp = sctp_sk(sk); 3597 3598 /* Initialize the SCTP per socket area. */ 3599 switch (sk->sk_type) { 3600 case SOCK_SEQPACKET: 3601 sp->type = SCTP_SOCKET_UDP; 3602 break; 3603 case SOCK_STREAM: 3604 sp->type = SCTP_SOCKET_TCP; 3605 break; 3606 default: 3607 return -ESOCKTNOSUPPORT; 3608 } 3609 3610 /* Initialize default send parameters. These parameters can be 3611 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3612 */ 3613 sp->default_stream = 0; 3614 sp->default_ppid = 0; 3615 sp->default_flags = 0; 3616 sp->default_context = 0; 3617 sp->default_timetolive = 0; 3618 3619 sp->default_rcv_context = 0; 3620 sp->max_burst = sctp_max_burst; 3621 3622 /* Initialize default setup parameters. These parameters 3623 * can be modified with the SCTP_INITMSG socket option or 3624 * overridden by the SCTP_INIT CMSG. 3625 */ 3626 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3627 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3628 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3629 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3630 3631 /* Initialize default RTO related parameters. These parameters can 3632 * be modified for with the SCTP_RTOINFO socket option. 3633 */ 3634 sp->rtoinfo.srto_initial = sctp_rto_initial; 3635 sp->rtoinfo.srto_max = sctp_rto_max; 3636 sp->rtoinfo.srto_min = sctp_rto_min; 3637 3638 /* Initialize default association related parameters. These parameters 3639 * can be modified with the SCTP_ASSOCINFO socket option. 3640 */ 3641 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3642 sp->assocparams.sasoc_number_peer_destinations = 0; 3643 sp->assocparams.sasoc_peer_rwnd = 0; 3644 sp->assocparams.sasoc_local_rwnd = 0; 3645 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3646 3647 /* Initialize default event subscriptions. By default, all the 3648 * options are off. 3649 */ 3650 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3651 3652 /* Default Peer Address Parameters. These defaults can 3653 * be modified via SCTP_PEER_ADDR_PARAMS 3654 */ 3655 sp->hbinterval = sctp_hb_interval; 3656 sp->pathmaxrxt = sctp_max_retrans_path; 3657 sp->pathmtu = 0; // allow default discovery 3658 sp->sackdelay = sctp_sack_timeout; 3659 sp->sackfreq = 2; 3660 sp->param_flags = SPP_HB_ENABLE | 3661 SPP_PMTUD_ENABLE | 3662 SPP_SACKDELAY_ENABLE; 3663 3664 /* If enabled no SCTP message fragmentation will be performed. 3665 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3666 */ 3667 sp->disable_fragments = 0; 3668 3669 /* Enable Nagle algorithm by default. */ 3670 sp->nodelay = 0; 3671 3672 /* Enable by default. */ 3673 sp->v4mapped = 1; 3674 3675 /* Auto-close idle associations after the configured 3676 * number of seconds. A value of 0 disables this 3677 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3678 * for UDP-style sockets only. 3679 */ 3680 sp->autoclose = 0; 3681 3682 /* User specified fragmentation limit. */ 3683 sp->user_frag = 0; 3684 3685 sp->adaptation_ind = 0; 3686 3687 sp->pf = sctp_get_pf_specific(sk->sk_family); 3688 3689 /* Control variables for partial data delivery. */ 3690 atomic_set(&sp->pd_mode, 0); 3691 skb_queue_head_init(&sp->pd_lobby); 3692 sp->frag_interleave = 0; 3693 3694 /* Create a per socket endpoint structure. Even if we 3695 * change the data structure relationships, this may still 3696 * be useful for storing pre-connect address information. 3697 */ 3698 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3699 if (!ep) 3700 return -ENOMEM; 3701 3702 sp->ep = ep; 3703 sp->hmac = NULL; 3704 3705 SCTP_DBG_OBJCNT_INC(sock); 3706 percpu_counter_inc(&sctp_sockets_allocated); 3707 3708 local_bh_disable(); 3709 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3710 local_bh_enable(); 3711 3712 return 0; 3713 } 3714 3715 /* Cleanup any SCTP per socket resources. */ 3716 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3717 { 3718 struct sctp_endpoint *ep; 3719 3720 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3721 3722 /* Release our hold on the endpoint. */ 3723 ep = sctp_sk(sk)->ep; 3724 sctp_endpoint_free(ep); 3725 percpu_counter_dec(&sctp_sockets_allocated); 3726 local_bh_disable(); 3727 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3728 local_bh_enable(); 3729 } 3730 3731 /* API 4.1.7 shutdown() - TCP Style Syntax 3732 * int shutdown(int socket, int how); 3733 * 3734 * sd - the socket descriptor of the association to be closed. 3735 * how - Specifies the type of shutdown. The values are 3736 * as follows: 3737 * SHUT_RD 3738 * Disables further receive operations. No SCTP 3739 * protocol action is taken. 3740 * SHUT_WR 3741 * Disables further send operations, and initiates 3742 * the SCTP shutdown sequence. 3743 * SHUT_RDWR 3744 * Disables further send and receive operations 3745 * and initiates the SCTP shutdown sequence. 3746 */ 3747 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3748 { 3749 struct sctp_endpoint *ep; 3750 struct sctp_association *asoc; 3751 3752 if (!sctp_style(sk, TCP)) 3753 return; 3754 3755 if (how & SEND_SHUTDOWN) { 3756 ep = sctp_sk(sk)->ep; 3757 if (!list_empty(&ep->asocs)) { 3758 asoc = list_entry(ep->asocs.next, 3759 struct sctp_association, asocs); 3760 sctp_primitive_SHUTDOWN(asoc, NULL); 3761 } 3762 } 3763 } 3764 3765 /* 7.2.1 Association Status (SCTP_STATUS) 3766 3767 * Applications can retrieve current status information about an 3768 * association, including association state, peer receiver window size, 3769 * number of unacked data chunks, and number of data chunks pending 3770 * receipt. This information is read-only. 3771 */ 3772 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3773 char __user *optval, 3774 int __user *optlen) 3775 { 3776 struct sctp_status status; 3777 struct sctp_association *asoc = NULL; 3778 struct sctp_transport *transport; 3779 sctp_assoc_t associd; 3780 int retval = 0; 3781 3782 if (len < sizeof(status)) { 3783 retval = -EINVAL; 3784 goto out; 3785 } 3786 3787 len = sizeof(status); 3788 if (copy_from_user(&status, optval, len)) { 3789 retval = -EFAULT; 3790 goto out; 3791 } 3792 3793 associd = status.sstat_assoc_id; 3794 asoc = sctp_id2assoc(sk, associd); 3795 if (!asoc) { 3796 retval = -EINVAL; 3797 goto out; 3798 } 3799 3800 transport = asoc->peer.primary_path; 3801 3802 status.sstat_assoc_id = sctp_assoc2id(asoc); 3803 status.sstat_state = asoc->state; 3804 status.sstat_rwnd = asoc->peer.rwnd; 3805 status.sstat_unackdata = asoc->unack_data; 3806 3807 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3808 status.sstat_instrms = asoc->c.sinit_max_instreams; 3809 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3810 status.sstat_fragmentation_point = asoc->frag_point; 3811 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3812 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3813 transport->af_specific->sockaddr_len); 3814 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3815 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3816 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3817 status.sstat_primary.spinfo_state = transport->state; 3818 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3819 status.sstat_primary.spinfo_srtt = transport->srtt; 3820 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3821 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3822 3823 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3824 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3825 3826 if (put_user(len, optlen)) { 3827 retval = -EFAULT; 3828 goto out; 3829 } 3830 3831 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3832 len, status.sstat_state, status.sstat_rwnd, 3833 status.sstat_assoc_id); 3834 3835 if (copy_to_user(optval, &status, len)) { 3836 retval = -EFAULT; 3837 goto out; 3838 } 3839 3840 out: 3841 return (retval); 3842 } 3843 3844 3845 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3846 * 3847 * Applications can retrieve information about a specific peer address 3848 * of an association, including its reachability state, congestion 3849 * window, and retransmission timer values. This information is 3850 * read-only. 3851 */ 3852 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3853 char __user *optval, 3854 int __user *optlen) 3855 { 3856 struct sctp_paddrinfo pinfo; 3857 struct sctp_transport *transport; 3858 int retval = 0; 3859 3860 if (len < sizeof(pinfo)) { 3861 retval = -EINVAL; 3862 goto out; 3863 } 3864 3865 len = sizeof(pinfo); 3866 if (copy_from_user(&pinfo, optval, len)) { 3867 retval = -EFAULT; 3868 goto out; 3869 } 3870 3871 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3872 pinfo.spinfo_assoc_id); 3873 if (!transport) 3874 return -EINVAL; 3875 3876 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3877 pinfo.spinfo_state = transport->state; 3878 pinfo.spinfo_cwnd = transport->cwnd; 3879 pinfo.spinfo_srtt = transport->srtt; 3880 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3881 pinfo.spinfo_mtu = transport->pathmtu; 3882 3883 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3884 pinfo.spinfo_state = SCTP_ACTIVE; 3885 3886 if (put_user(len, optlen)) { 3887 retval = -EFAULT; 3888 goto out; 3889 } 3890 3891 if (copy_to_user(optval, &pinfo, len)) { 3892 retval = -EFAULT; 3893 goto out; 3894 } 3895 3896 out: 3897 return (retval); 3898 } 3899 3900 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3901 * 3902 * This option is a on/off flag. If enabled no SCTP message 3903 * fragmentation will be performed. Instead if a message being sent 3904 * exceeds the current PMTU size, the message will NOT be sent and 3905 * instead a error will be indicated to the user. 3906 */ 3907 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3908 char __user *optval, int __user *optlen) 3909 { 3910 int val; 3911 3912 if (len < sizeof(int)) 3913 return -EINVAL; 3914 3915 len = sizeof(int); 3916 val = (sctp_sk(sk)->disable_fragments == 1); 3917 if (put_user(len, optlen)) 3918 return -EFAULT; 3919 if (copy_to_user(optval, &val, len)) 3920 return -EFAULT; 3921 return 0; 3922 } 3923 3924 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3925 * 3926 * This socket option is used to specify various notifications and 3927 * ancillary data the user wishes to receive. 3928 */ 3929 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3930 int __user *optlen) 3931 { 3932 if (len < sizeof(struct sctp_event_subscribe)) 3933 return -EINVAL; 3934 len = sizeof(struct sctp_event_subscribe); 3935 if (put_user(len, optlen)) 3936 return -EFAULT; 3937 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3938 return -EFAULT; 3939 return 0; 3940 } 3941 3942 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3943 * 3944 * This socket option is applicable to the UDP-style socket only. When 3945 * set it will cause associations that are idle for more than the 3946 * specified number of seconds to automatically close. An association 3947 * being idle is defined an association that has NOT sent or received 3948 * user data. The special value of '0' indicates that no automatic 3949 * close of any associations should be performed. The option expects an 3950 * integer defining the number of seconds of idle time before an 3951 * association is closed. 3952 */ 3953 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3954 { 3955 /* Applicable to UDP-style socket only */ 3956 if (sctp_style(sk, TCP)) 3957 return -EOPNOTSUPP; 3958 if (len < sizeof(int)) 3959 return -EINVAL; 3960 len = sizeof(int); 3961 if (put_user(len, optlen)) 3962 return -EFAULT; 3963 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3964 return -EFAULT; 3965 return 0; 3966 } 3967 3968 /* Helper routine to branch off an association to a new socket. */ 3969 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3970 struct socket **sockp) 3971 { 3972 struct sock *sk = asoc->base.sk; 3973 struct socket *sock; 3974 struct sctp_af *af; 3975 int err = 0; 3976 3977 /* An association cannot be branched off from an already peeled-off 3978 * socket, nor is this supported for tcp style sockets. 3979 */ 3980 if (!sctp_style(sk, UDP)) 3981 return -EINVAL; 3982 3983 /* Create a new socket. */ 3984 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3985 if (err < 0) 3986 return err; 3987 3988 sctp_copy_sock(sock->sk, sk, asoc); 3989 3990 /* Make peeled-off sockets more like 1-1 accepted sockets. 3991 * Set the daddr and initialize id to something more random 3992 */ 3993 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3994 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3995 3996 /* Populate the fields of the newsk from the oldsk and migrate the 3997 * asoc to the newsk. 3998 */ 3999 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4000 4001 *sockp = sock; 4002 4003 return err; 4004 } 4005 4006 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4007 { 4008 sctp_peeloff_arg_t peeloff; 4009 struct socket *newsock; 4010 int retval = 0; 4011 struct sctp_association *asoc; 4012 4013 if (len < sizeof(sctp_peeloff_arg_t)) 4014 return -EINVAL; 4015 len = sizeof(sctp_peeloff_arg_t); 4016 if (copy_from_user(&peeloff, optval, len)) 4017 return -EFAULT; 4018 4019 asoc = sctp_id2assoc(sk, peeloff.associd); 4020 if (!asoc) { 4021 retval = -EINVAL; 4022 goto out; 4023 } 4024 4025 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4026 4027 retval = sctp_do_peeloff(asoc, &newsock); 4028 if (retval < 0) 4029 goto out; 4030 4031 /* Map the socket to an unused fd that can be returned to the user. */ 4032 retval = sock_map_fd(newsock, 0); 4033 if (retval < 0) { 4034 sock_release(newsock); 4035 goto out; 4036 } 4037 4038 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4039 __func__, sk, asoc, newsock->sk, retval); 4040 4041 /* Return the fd mapped to the new socket. */ 4042 peeloff.sd = retval; 4043 if (put_user(len, optlen)) 4044 return -EFAULT; 4045 if (copy_to_user(optval, &peeloff, len)) 4046 retval = -EFAULT; 4047 4048 out: 4049 return retval; 4050 } 4051 4052 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4053 * 4054 * Applications can enable or disable heartbeats for any peer address of 4055 * an association, modify an address's heartbeat interval, force a 4056 * heartbeat to be sent immediately, and adjust the address's maximum 4057 * number of retransmissions sent before an address is considered 4058 * unreachable. The following structure is used to access and modify an 4059 * address's parameters: 4060 * 4061 * struct sctp_paddrparams { 4062 * sctp_assoc_t spp_assoc_id; 4063 * struct sockaddr_storage spp_address; 4064 * uint32_t spp_hbinterval; 4065 * uint16_t spp_pathmaxrxt; 4066 * uint32_t spp_pathmtu; 4067 * uint32_t spp_sackdelay; 4068 * uint32_t spp_flags; 4069 * }; 4070 * 4071 * spp_assoc_id - (one-to-many style socket) This is filled in the 4072 * application, and identifies the association for 4073 * this query. 4074 * spp_address - This specifies which address is of interest. 4075 * spp_hbinterval - This contains the value of the heartbeat interval, 4076 * in milliseconds. If a value of zero 4077 * is present in this field then no changes are to 4078 * be made to this parameter. 4079 * spp_pathmaxrxt - This contains the maximum number of 4080 * retransmissions before this address shall be 4081 * considered unreachable. If a value of zero 4082 * is present in this field then no changes are to 4083 * be made to this parameter. 4084 * spp_pathmtu - When Path MTU discovery is disabled the value 4085 * specified here will be the "fixed" path mtu. 4086 * Note that if the spp_address field is empty 4087 * then all associations on this address will 4088 * have this fixed path mtu set upon them. 4089 * 4090 * spp_sackdelay - When delayed sack is enabled, this value specifies 4091 * the number of milliseconds that sacks will be delayed 4092 * for. This value will apply to all addresses of an 4093 * association if the spp_address field is empty. Note 4094 * also, that if delayed sack is enabled and this 4095 * value is set to 0, no change is made to the last 4096 * recorded delayed sack timer value. 4097 * 4098 * spp_flags - These flags are used to control various features 4099 * on an association. The flag field may contain 4100 * zero or more of the following options. 4101 * 4102 * SPP_HB_ENABLE - Enable heartbeats on the 4103 * specified address. Note that if the address 4104 * field is empty all addresses for the association 4105 * have heartbeats enabled upon them. 4106 * 4107 * SPP_HB_DISABLE - Disable heartbeats on the 4108 * speicifed address. Note that if the address 4109 * field is empty all addresses for the association 4110 * will have their heartbeats disabled. Note also 4111 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4112 * mutually exclusive, only one of these two should 4113 * be specified. Enabling both fields will have 4114 * undetermined results. 4115 * 4116 * SPP_HB_DEMAND - Request a user initiated heartbeat 4117 * to be made immediately. 4118 * 4119 * SPP_PMTUD_ENABLE - This field will enable PMTU 4120 * discovery upon the specified address. Note that 4121 * if the address feild is empty then all addresses 4122 * on the association are effected. 4123 * 4124 * SPP_PMTUD_DISABLE - This field will disable PMTU 4125 * discovery upon the specified address. Note that 4126 * if the address feild is empty then all addresses 4127 * on the association are effected. Not also that 4128 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4129 * exclusive. Enabling both will have undetermined 4130 * results. 4131 * 4132 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4133 * on delayed sack. The time specified in spp_sackdelay 4134 * is used to specify the sack delay for this address. Note 4135 * that if spp_address is empty then all addresses will 4136 * enable delayed sack and take on the sack delay 4137 * value specified in spp_sackdelay. 4138 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4139 * off delayed sack. If the spp_address field is blank then 4140 * delayed sack is disabled for the entire association. Note 4141 * also that this field is mutually exclusive to 4142 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4143 * results. 4144 */ 4145 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4146 char __user *optval, int __user *optlen) 4147 { 4148 struct sctp_paddrparams params; 4149 struct sctp_transport *trans = NULL; 4150 struct sctp_association *asoc = NULL; 4151 struct sctp_sock *sp = sctp_sk(sk); 4152 4153 if (len < sizeof(struct sctp_paddrparams)) 4154 return -EINVAL; 4155 len = sizeof(struct sctp_paddrparams); 4156 if (copy_from_user(¶ms, optval, len)) 4157 return -EFAULT; 4158 4159 /* If an address other than INADDR_ANY is specified, and 4160 * no transport is found, then the request is invalid. 4161 */ 4162 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4163 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4164 params.spp_assoc_id); 4165 if (!trans) { 4166 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4167 return -EINVAL; 4168 } 4169 } 4170 4171 /* Get association, if assoc_id != 0 and the socket is a one 4172 * to many style socket, and an association was not found, then 4173 * the id was invalid. 4174 */ 4175 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4176 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4177 SCTP_DEBUG_PRINTK("Failed no association\n"); 4178 return -EINVAL; 4179 } 4180 4181 if (trans) { 4182 /* Fetch transport values. */ 4183 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4184 params.spp_pathmtu = trans->pathmtu; 4185 params.spp_pathmaxrxt = trans->pathmaxrxt; 4186 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4187 4188 /*draft-11 doesn't say what to return in spp_flags*/ 4189 params.spp_flags = trans->param_flags; 4190 } else if (asoc) { 4191 /* Fetch association values. */ 4192 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4193 params.spp_pathmtu = asoc->pathmtu; 4194 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4195 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4196 4197 /*draft-11 doesn't say what to return in spp_flags*/ 4198 params.spp_flags = asoc->param_flags; 4199 } else { 4200 /* Fetch socket values. */ 4201 params.spp_hbinterval = sp->hbinterval; 4202 params.spp_pathmtu = sp->pathmtu; 4203 params.spp_sackdelay = sp->sackdelay; 4204 params.spp_pathmaxrxt = sp->pathmaxrxt; 4205 4206 /*draft-11 doesn't say what to return in spp_flags*/ 4207 params.spp_flags = sp->param_flags; 4208 } 4209 4210 if (copy_to_user(optval, ¶ms, len)) 4211 return -EFAULT; 4212 4213 if (put_user(len, optlen)) 4214 return -EFAULT; 4215 4216 return 0; 4217 } 4218 4219 /* 4220 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4221 * 4222 * This option will effect the way delayed acks are performed. This 4223 * option allows you to get or set the delayed ack time, in 4224 * milliseconds. It also allows changing the delayed ack frequency. 4225 * Changing the frequency to 1 disables the delayed sack algorithm. If 4226 * the assoc_id is 0, then this sets or gets the endpoints default 4227 * values. If the assoc_id field is non-zero, then the set or get 4228 * effects the specified association for the one to many model (the 4229 * assoc_id field is ignored by the one to one model). Note that if 4230 * sack_delay or sack_freq are 0 when setting this option, then the 4231 * current values will remain unchanged. 4232 * 4233 * struct sctp_sack_info { 4234 * sctp_assoc_t sack_assoc_id; 4235 * uint32_t sack_delay; 4236 * uint32_t sack_freq; 4237 * }; 4238 * 4239 * sack_assoc_id - This parameter, indicates which association the user 4240 * is performing an action upon. Note that if this field's value is 4241 * zero then the endpoints default value is changed (effecting future 4242 * associations only). 4243 * 4244 * sack_delay - This parameter contains the number of milliseconds that 4245 * the user is requesting the delayed ACK timer be set to. Note that 4246 * this value is defined in the standard to be between 200 and 500 4247 * milliseconds. 4248 * 4249 * sack_freq - This parameter contains the number of packets that must 4250 * be received before a sack is sent without waiting for the delay 4251 * timer to expire. The default value for this is 2, setting this 4252 * value to 1 will disable the delayed sack algorithm. 4253 */ 4254 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4255 char __user *optval, 4256 int __user *optlen) 4257 { 4258 struct sctp_sack_info params; 4259 struct sctp_association *asoc = NULL; 4260 struct sctp_sock *sp = sctp_sk(sk); 4261 4262 if (len >= sizeof(struct sctp_sack_info)) { 4263 len = sizeof(struct sctp_sack_info); 4264 4265 if (copy_from_user(¶ms, optval, len)) 4266 return -EFAULT; 4267 } else if (len == sizeof(struct sctp_assoc_value)) { 4268 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 4269 "in delayed_ack socket option deprecated\n"); 4270 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 4271 if (copy_from_user(¶ms, optval, len)) 4272 return -EFAULT; 4273 } else 4274 return - EINVAL; 4275 4276 /* Get association, if sack_assoc_id != 0 and the socket is a one 4277 * to many style socket, and an association was not found, then 4278 * the id was invalid. 4279 */ 4280 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4281 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4282 return -EINVAL; 4283 4284 if (asoc) { 4285 /* Fetch association values. */ 4286 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4287 params.sack_delay = jiffies_to_msecs( 4288 asoc->sackdelay); 4289 params.sack_freq = asoc->sackfreq; 4290 4291 } else { 4292 params.sack_delay = 0; 4293 params.sack_freq = 1; 4294 } 4295 } else { 4296 /* Fetch socket values. */ 4297 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4298 params.sack_delay = sp->sackdelay; 4299 params.sack_freq = sp->sackfreq; 4300 } else { 4301 params.sack_delay = 0; 4302 params.sack_freq = 1; 4303 } 4304 } 4305 4306 if (copy_to_user(optval, ¶ms, len)) 4307 return -EFAULT; 4308 4309 if (put_user(len, optlen)) 4310 return -EFAULT; 4311 4312 return 0; 4313 } 4314 4315 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4316 * 4317 * Applications can specify protocol parameters for the default association 4318 * initialization. The option name argument to setsockopt() and getsockopt() 4319 * is SCTP_INITMSG. 4320 * 4321 * Setting initialization parameters is effective only on an unconnected 4322 * socket (for UDP-style sockets only future associations are effected 4323 * by the change). With TCP-style sockets, this option is inherited by 4324 * sockets derived from a listener socket. 4325 */ 4326 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4327 { 4328 if (len < sizeof(struct sctp_initmsg)) 4329 return -EINVAL; 4330 len = sizeof(struct sctp_initmsg); 4331 if (put_user(len, optlen)) 4332 return -EFAULT; 4333 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4334 return -EFAULT; 4335 return 0; 4336 } 4337 4338 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4339 char __user *optval, 4340 int __user *optlen) 4341 { 4342 sctp_assoc_t id; 4343 struct sctp_association *asoc; 4344 struct list_head *pos; 4345 int cnt = 0; 4346 4347 if (len < sizeof(sctp_assoc_t)) 4348 return -EINVAL; 4349 4350 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4351 return -EFAULT; 4352 4353 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD " 4354 "socket option deprecated\n"); 4355 /* For UDP-style sockets, id specifies the association to query. */ 4356 asoc = sctp_id2assoc(sk, id); 4357 if (!asoc) 4358 return -EINVAL; 4359 4360 list_for_each(pos, &asoc->peer.transport_addr_list) { 4361 cnt ++; 4362 } 4363 4364 return cnt; 4365 } 4366 4367 /* 4368 * Old API for getting list of peer addresses. Does not work for 32-bit 4369 * programs running on a 64-bit kernel 4370 */ 4371 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4372 char __user *optval, 4373 int __user *optlen) 4374 { 4375 struct sctp_association *asoc; 4376 int cnt = 0; 4377 struct sctp_getaddrs_old getaddrs; 4378 struct sctp_transport *from; 4379 void __user *to; 4380 union sctp_addr temp; 4381 struct sctp_sock *sp = sctp_sk(sk); 4382 int addrlen; 4383 4384 if (len < sizeof(struct sctp_getaddrs_old)) 4385 return -EINVAL; 4386 4387 len = sizeof(struct sctp_getaddrs_old); 4388 4389 if (copy_from_user(&getaddrs, optval, len)) 4390 return -EFAULT; 4391 4392 if (getaddrs.addr_num <= 0) return -EINVAL; 4393 4394 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD " 4395 "socket option deprecated\n"); 4396 4397 /* For UDP-style sockets, id specifies the association to query. */ 4398 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4399 if (!asoc) 4400 return -EINVAL; 4401 4402 to = (void __user *)getaddrs.addrs; 4403 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4404 transports) { 4405 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4406 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4407 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4408 if (copy_to_user(to, &temp, addrlen)) 4409 return -EFAULT; 4410 to += addrlen ; 4411 cnt ++; 4412 if (cnt >= getaddrs.addr_num) break; 4413 } 4414 getaddrs.addr_num = cnt; 4415 if (put_user(len, optlen)) 4416 return -EFAULT; 4417 if (copy_to_user(optval, &getaddrs, len)) 4418 return -EFAULT; 4419 4420 return 0; 4421 } 4422 4423 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4424 char __user *optval, int __user *optlen) 4425 { 4426 struct sctp_association *asoc; 4427 int cnt = 0; 4428 struct sctp_getaddrs getaddrs; 4429 struct sctp_transport *from; 4430 void __user *to; 4431 union sctp_addr temp; 4432 struct sctp_sock *sp = sctp_sk(sk); 4433 int addrlen; 4434 size_t space_left; 4435 int bytes_copied; 4436 4437 if (len < sizeof(struct sctp_getaddrs)) 4438 return -EINVAL; 4439 4440 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4441 return -EFAULT; 4442 4443 /* For UDP-style sockets, id specifies the association to query. */ 4444 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4445 if (!asoc) 4446 return -EINVAL; 4447 4448 to = optval + offsetof(struct sctp_getaddrs,addrs); 4449 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4450 4451 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4452 transports) { 4453 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4454 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4455 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4456 if (space_left < addrlen) 4457 return -ENOMEM; 4458 if (copy_to_user(to, &temp, addrlen)) 4459 return -EFAULT; 4460 to += addrlen; 4461 cnt++; 4462 space_left -= addrlen; 4463 } 4464 4465 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4466 return -EFAULT; 4467 bytes_copied = ((char __user *)to) - optval; 4468 if (put_user(bytes_copied, optlen)) 4469 return -EFAULT; 4470 4471 return 0; 4472 } 4473 4474 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4475 char __user *optval, 4476 int __user *optlen) 4477 { 4478 sctp_assoc_t id; 4479 struct sctp_bind_addr *bp; 4480 struct sctp_association *asoc; 4481 struct sctp_sockaddr_entry *addr; 4482 int cnt = 0; 4483 4484 if (len < sizeof(sctp_assoc_t)) 4485 return -EINVAL; 4486 4487 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4488 return -EFAULT; 4489 4490 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD " 4491 "socket option deprecated\n"); 4492 4493 /* 4494 * For UDP-style sockets, id specifies the association to query. 4495 * If the id field is set to the value '0' then the locally bound 4496 * addresses are returned without regard to any particular 4497 * association. 4498 */ 4499 if (0 == id) { 4500 bp = &sctp_sk(sk)->ep->base.bind_addr; 4501 } else { 4502 asoc = sctp_id2assoc(sk, id); 4503 if (!asoc) 4504 return -EINVAL; 4505 bp = &asoc->base.bind_addr; 4506 } 4507 4508 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4509 * addresses from the global local address list. 4510 */ 4511 if (sctp_list_single_entry(&bp->address_list)) { 4512 addr = list_entry(bp->address_list.next, 4513 struct sctp_sockaddr_entry, list); 4514 if (sctp_is_any(sk, &addr->a)) { 4515 rcu_read_lock(); 4516 list_for_each_entry_rcu(addr, 4517 &sctp_local_addr_list, list) { 4518 if (!addr->valid) 4519 continue; 4520 4521 if ((PF_INET == sk->sk_family) && 4522 (AF_INET6 == addr->a.sa.sa_family)) 4523 continue; 4524 4525 if ((PF_INET6 == sk->sk_family) && 4526 inet_v6_ipv6only(sk) && 4527 (AF_INET == addr->a.sa.sa_family)) 4528 continue; 4529 4530 cnt++; 4531 } 4532 rcu_read_unlock(); 4533 } else { 4534 cnt = 1; 4535 } 4536 goto done; 4537 } 4538 4539 /* Protection on the bound address list is not needed, 4540 * since in the socket option context we hold the socket lock, 4541 * so there is no way that the bound address list can change. 4542 */ 4543 list_for_each_entry(addr, &bp->address_list, list) { 4544 cnt ++; 4545 } 4546 done: 4547 return cnt; 4548 } 4549 4550 /* Helper function that copies local addresses to user and returns the number 4551 * of addresses copied. 4552 */ 4553 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4554 int max_addrs, void *to, 4555 int *bytes_copied) 4556 { 4557 struct sctp_sockaddr_entry *addr; 4558 union sctp_addr temp; 4559 int cnt = 0; 4560 int addrlen; 4561 4562 rcu_read_lock(); 4563 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4564 if (!addr->valid) 4565 continue; 4566 4567 if ((PF_INET == sk->sk_family) && 4568 (AF_INET6 == addr->a.sa.sa_family)) 4569 continue; 4570 if ((PF_INET6 == sk->sk_family) && 4571 inet_v6_ipv6only(sk) && 4572 (AF_INET == addr->a.sa.sa_family)) 4573 continue; 4574 memcpy(&temp, &addr->a, sizeof(temp)); 4575 if (!temp.v4.sin_port) 4576 temp.v4.sin_port = htons(port); 4577 4578 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4579 &temp); 4580 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4581 memcpy(to, &temp, addrlen); 4582 4583 to += addrlen; 4584 *bytes_copied += addrlen; 4585 cnt ++; 4586 if (cnt >= max_addrs) break; 4587 } 4588 rcu_read_unlock(); 4589 4590 return cnt; 4591 } 4592 4593 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4594 size_t space_left, int *bytes_copied) 4595 { 4596 struct sctp_sockaddr_entry *addr; 4597 union sctp_addr temp; 4598 int cnt = 0; 4599 int addrlen; 4600 4601 rcu_read_lock(); 4602 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4603 if (!addr->valid) 4604 continue; 4605 4606 if ((PF_INET == sk->sk_family) && 4607 (AF_INET6 == addr->a.sa.sa_family)) 4608 continue; 4609 if ((PF_INET6 == sk->sk_family) && 4610 inet_v6_ipv6only(sk) && 4611 (AF_INET == addr->a.sa.sa_family)) 4612 continue; 4613 memcpy(&temp, &addr->a, sizeof(temp)); 4614 if (!temp.v4.sin_port) 4615 temp.v4.sin_port = htons(port); 4616 4617 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4618 &temp); 4619 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4620 if (space_left < addrlen) { 4621 cnt = -ENOMEM; 4622 break; 4623 } 4624 memcpy(to, &temp, addrlen); 4625 4626 to += addrlen; 4627 cnt ++; 4628 space_left -= addrlen; 4629 *bytes_copied += addrlen; 4630 } 4631 rcu_read_unlock(); 4632 4633 return cnt; 4634 } 4635 4636 /* Old API for getting list of local addresses. Does not work for 32-bit 4637 * programs running on a 64-bit kernel 4638 */ 4639 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4640 char __user *optval, int __user *optlen) 4641 { 4642 struct sctp_bind_addr *bp; 4643 struct sctp_association *asoc; 4644 int cnt = 0; 4645 struct sctp_getaddrs_old getaddrs; 4646 struct sctp_sockaddr_entry *addr; 4647 void __user *to; 4648 union sctp_addr temp; 4649 struct sctp_sock *sp = sctp_sk(sk); 4650 int addrlen; 4651 int err = 0; 4652 void *addrs; 4653 void *buf; 4654 int bytes_copied = 0; 4655 4656 if (len < sizeof(struct sctp_getaddrs_old)) 4657 return -EINVAL; 4658 4659 len = sizeof(struct sctp_getaddrs_old); 4660 if (copy_from_user(&getaddrs, optval, len)) 4661 return -EFAULT; 4662 4663 if (getaddrs.addr_num <= 0 || 4664 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr))) 4665 return -EINVAL; 4666 4667 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD " 4668 "socket option deprecated\n"); 4669 4670 /* 4671 * For UDP-style sockets, id specifies the association to query. 4672 * If the id field is set to the value '0' then the locally bound 4673 * addresses are returned without regard to any particular 4674 * association. 4675 */ 4676 if (0 == getaddrs.assoc_id) { 4677 bp = &sctp_sk(sk)->ep->base.bind_addr; 4678 } else { 4679 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4680 if (!asoc) 4681 return -EINVAL; 4682 bp = &asoc->base.bind_addr; 4683 } 4684 4685 to = getaddrs.addrs; 4686 4687 /* Allocate space for a local instance of packed array to hold all 4688 * the data. We store addresses here first and then put write them 4689 * to the user in one shot. 4690 */ 4691 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4692 GFP_KERNEL); 4693 if (!addrs) 4694 return -ENOMEM; 4695 4696 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4697 * addresses from the global local address list. 4698 */ 4699 if (sctp_list_single_entry(&bp->address_list)) { 4700 addr = list_entry(bp->address_list.next, 4701 struct sctp_sockaddr_entry, list); 4702 if (sctp_is_any(sk, &addr->a)) { 4703 cnt = sctp_copy_laddrs_old(sk, bp->port, 4704 getaddrs.addr_num, 4705 addrs, &bytes_copied); 4706 goto copy_getaddrs; 4707 } 4708 } 4709 4710 buf = addrs; 4711 /* Protection on the bound address list is not needed since 4712 * in the socket option context we hold a socket lock and 4713 * thus the bound address list can't change. 4714 */ 4715 list_for_each_entry(addr, &bp->address_list, list) { 4716 memcpy(&temp, &addr->a, sizeof(temp)); 4717 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4718 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4719 memcpy(buf, &temp, addrlen); 4720 buf += addrlen; 4721 bytes_copied += addrlen; 4722 cnt ++; 4723 if (cnt >= getaddrs.addr_num) break; 4724 } 4725 4726 copy_getaddrs: 4727 /* copy the entire address list into the user provided space */ 4728 if (copy_to_user(to, addrs, bytes_copied)) { 4729 err = -EFAULT; 4730 goto error; 4731 } 4732 4733 /* copy the leading structure back to user */ 4734 getaddrs.addr_num = cnt; 4735 if (copy_to_user(optval, &getaddrs, len)) 4736 err = -EFAULT; 4737 4738 error: 4739 kfree(addrs); 4740 return err; 4741 } 4742 4743 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4744 char __user *optval, int __user *optlen) 4745 { 4746 struct sctp_bind_addr *bp; 4747 struct sctp_association *asoc; 4748 int cnt = 0; 4749 struct sctp_getaddrs getaddrs; 4750 struct sctp_sockaddr_entry *addr; 4751 void __user *to; 4752 union sctp_addr temp; 4753 struct sctp_sock *sp = sctp_sk(sk); 4754 int addrlen; 4755 int err = 0; 4756 size_t space_left; 4757 int bytes_copied = 0; 4758 void *addrs; 4759 void *buf; 4760 4761 if (len < sizeof(struct sctp_getaddrs)) 4762 return -EINVAL; 4763 4764 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4765 return -EFAULT; 4766 4767 /* 4768 * For UDP-style sockets, id specifies the association to query. 4769 * If the id field is set to the value '0' then the locally bound 4770 * addresses are returned without regard to any particular 4771 * association. 4772 */ 4773 if (0 == getaddrs.assoc_id) { 4774 bp = &sctp_sk(sk)->ep->base.bind_addr; 4775 } else { 4776 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4777 if (!asoc) 4778 return -EINVAL; 4779 bp = &asoc->base.bind_addr; 4780 } 4781 4782 to = optval + offsetof(struct sctp_getaddrs,addrs); 4783 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4784 4785 addrs = kmalloc(space_left, GFP_KERNEL); 4786 if (!addrs) 4787 return -ENOMEM; 4788 4789 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4790 * addresses from the global local address list. 4791 */ 4792 if (sctp_list_single_entry(&bp->address_list)) { 4793 addr = list_entry(bp->address_list.next, 4794 struct sctp_sockaddr_entry, list); 4795 if (sctp_is_any(sk, &addr->a)) { 4796 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4797 space_left, &bytes_copied); 4798 if (cnt < 0) { 4799 err = cnt; 4800 goto out; 4801 } 4802 goto copy_getaddrs; 4803 } 4804 } 4805 4806 buf = addrs; 4807 /* Protection on the bound address list is not needed since 4808 * in the socket option context we hold a socket lock and 4809 * thus the bound address list can't change. 4810 */ 4811 list_for_each_entry(addr, &bp->address_list, list) { 4812 memcpy(&temp, &addr->a, sizeof(temp)); 4813 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4814 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4815 if (space_left < addrlen) { 4816 err = -ENOMEM; /*fixme: right error?*/ 4817 goto out; 4818 } 4819 memcpy(buf, &temp, addrlen); 4820 buf += addrlen; 4821 bytes_copied += addrlen; 4822 cnt ++; 4823 space_left -= addrlen; 4824 } 4825 4826 copy_getaddrs: 4827 if (copy_to_user(to, addrs, bytes_copied)) { 4828 err = -EFAULT; 4829 goto out; 4830 } 4831 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4832 err = -EFAULT; 4833 goto out; 4834 } 4835 if (put_user(bytes_copied, optlen)) 4836 err = -EFAULT; 4837 out: 4838 kfree(addrs); 4839 return err; 4840 } 4841 4842 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4843 * 4844 * Requests that the local SCTP stack use the enclosed peer address as 4845 * the association primary. The enclosed address must be one of the 4846 * association peer's addresses. 4847 */ 4848 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4849 char __user *optval, int __user *optlen) 4850 { 4851 struct sctp_prim prim; 4852 struct sctp_association *asoc; 4853 struct sctp_sock *sp = sctp_sk(sk); 4854 4855 if (len < sizeof(struct sctp_prim)) 4856 return -EINVAL; 4857 4858 len = sizeof(struct sctp_prim); 4859 4860 if (copy_from_user(&prim, optval, len)) 4861 return -EFAULT; 4862 4863 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4864 if (!asoc) 4865 return -EINVAL; 4866 4867 if (!asoc->peer.primary_path) 4868 return -ENOTCONN; 4869 4870 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4871 asoc->peer.primary_path->af_specific->sockaddr_len); 4872 4873 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4874 (union sctp_addr *)&prim.ssp_addr); 4875 4876 if (put_user(len, optlen)) 4877 return -EFAULT; 4878 if (copy_to_user(optval, &prim, len)) 4879 return -EFAULT; 4880 4881 return 0; 4882 } 4883 4884 /* 4885 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4886 * 4887 * Requests that the local endpoint set the specified Adaptation Layer 4888 * Indication parameter for all future INIT and INIT-ACK exchanges. 4889 */ 4890 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4891 char __user *optval, int __user *optlen) 4892 { 4893 struct sctp_setadaptation adaptation; 4894 4895 if (len < sizeof(struct sctp_setadaptation)) 4896 return -EINVAL; 4897 4898 len = sizeof(struct sctp_setadaptation); 4899 4900 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4901 4902 if (put_user(len, optlen)) 4903 return -EFAULT; 4904 if (copy_to_user(optval, &adaptation, len)) 4905 return -EFAULT; 4906 4907 return 0; 4908 } 4909 4910 /* 4911 * 4912 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4913 * 4914 * Applications that wish to use the sendto() system call may wish to 4915 * specify a default set of parameters that would normally be supplied 4916 * through the inclusion of ancillary data. This socket option allows 4917 * such an application to set the default sctp_sndrcvinfo structure. 4918 4919 4920 * The application that wishes to use this socket option simply passes 4921 * in to this call the sctp_sndrcvinfo structure defined in Section 4922 * 5.2.2) The input parameters accepted by this call include 4923 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4924 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4925 * to this call if the caller is using the UDP model. 4926 * 4927 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4928 */ 4929 static int sctp_getsockopt_default_send_param(struct sock *sk, 4930 int len, char __user *optval, 4931 int __user *optlen) 4932 { 4933 struct sctp_sndrcvinfo info; 4934 struct sctp_association *asoc; 4935 struct sctp_sock *sp = sctp_sk(sk); 4936 4937 if (len < sizeof(struct sctp_sndrcvinfo)) 4938 return -EINVAL; 4939 4940 len = sizeof(struct sctp_sndrcvinfo); 4941 4942 if (copy_from_user(&info, optval, len)) 4943 return -EFAULT; 4944 4945 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4946 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4947 return -EINVAL; 4948 4949 if (asoc) { 4950 info.sinfo_stream = asoc->default_stream; 4951 info.sinfo_flags = asoc->default_flags; 4952 info.sinfo_ppid = asoc->default_ppid; 4953 info.sinfo_context = asoc->default_context; 4954 info.sinfo_timetolive = asoc->default_timetolive; 4955 } else { 4956 info.sinfo_stream = sp->default_stream; 4957 info.sinfo_flags = sp->default_flags; 4958 info.sinfo_ppid = sp->default_ppid; 4959 info.sinfo_context = sp->default_context; 4960 info.sinfo_timetolive = sp->default_timetolive; 4961 } 4962 4963 if (put_user(len, optlen)) 4964 return -EFAULT; 4965 if (copy_to_user(optval, &info, len)) 4966 return -EFAULT; 4967 4968 return 0; 4969 } 4970 4971 /* 4972 * 4973 * 7.1.5 SCTP_NODELAY 4974 * 4975 * Turn on/off any Nagle-like algorithm. This means that packets are 4976 * generally sent as soon as possible and no unnecessary delays are 4977 * introduced, at the cost of more packets in the network. Expects an 4978 * integer boolean flag. 4979 */ 4980 4981 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4982 char __user *optval, int __user *optlen) 4983 { 4984 int val; 4985 4986 if (len < sizeof(int)) 4987 return -EINVAL; 4988 4989 len = sizeof(int); 4990 val = (sctp_sk(sk)->nodelay == 1); 4991 if (put_user(len, optlen)) 4992 return -EFAULT; 4993 if (copy_to_user(optval, &val, len)) 4994 return -EFAULT; 4995 return 0; 4996 } 4997 4998 /* 4999 * 5000 * 7.1.1 SCTP_RTOINFO 5001 * 5002 * The protocol parameters used to initialize and bound retransmission 5003 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5004 * and modify these parameters. 5005 * All parameters are time values, in milliseconds. A value of 0, when 5006 * modifying the parameters, indicates that the current value should not 5007 * be changed. 5008 * 5009 */ 5010 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5011 char __user *optval, 5012 int __user *optlen) { 5013 struct sctp_rtoinfo rtoinfo; 5014 struct sctp_association *asoc; 5015 5016 if (len < sizeof (struct sctp_rtoinfo)) 5017 return -EINVAL; 5018 5019 len = sizeof(struct sctp_rtoinfo); 5020 5021 if (copy_from_user(&rtoinfo, optval, len)) 5022 return -EFAULT; 5023 5024 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5025 5026 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5027 return -EINVAL; 5028 5029 /* Values corresponding to the specific association. */ 5030 if (asoc) { 5031 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5032 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5033 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5034 } else { 5035 /* Values corresponding to the endpoint. */ 5036 struct sctp_sock *sp = sctp_sk(sk); 5037 5038 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5039 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5040 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5041 } 5042 5043 if (put_user(len, optlen)) 5044 return -EFAULT; 5045 5046 if (copy_to_user(optval, &rtoinfo, len)) 5047 return -EFAULT; 5048 5049 return 0; 5050 } 5051 5052 /* 5053 * 5054 * 7.1.2 SCTP_ASSOCINFO 5055 * 5056 * This option is used to tune the maximum retransmission attempts 5057 * of the association. 5058 * Returns an error if the new association retransmission value is 5059 * greater than the sum of the retransmission value of the peer. 5060 * See [SCTP] for more information. 5061 * 5062 */ 5063 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5064 char __user *optval, 5065 int __user *optlen) 5066 { 5067 5068 struct sctp_assocparams assocparams; 5069 struct sctp_association *asoc; 5070 struct list_head *pos; 5071 int cnt = 0; 5072 5073 if (len < sizeof (struct sctp_assocparams)) 5074 return -EINVAL; 5075 5076 len = sizeof(struct sctp_assocparams); 5077 5078 if (copy_from_user(&assocparams, optval, len)) 5079 return -EFAULT; 5080 5081 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5082 5083 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5084 return -EINVAL; 5085 5086 /* Values correspoinding to the specific association */ 5087 if (asoc) { 5088 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5089 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5090 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5091 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5092 * 1000) + 5093 (asoc->cookie_life.tv_usec 5094 / 1000); 5095 5096 list_for_each(pos, &asoc->peer.transport_addr_list) { 5097 cnt ++; 5098 } 5099 5100 assocparams.sasoc_number_peer_destinations = cnt; 5101 } else { 5102 /* Values corresponding to the endpoint */ 5103 struct sctp_sock *sp = sctp_sk(sk); 5104 5105 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5106 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5107 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5108 assocparams.sasoc_cookie_life = 5109 sp->assocparams.sasoc_cookie_life; 5110 assocparams.sasoc_number_peer_destinations = 5111 sp->assocparams. 5112 sasoc_number_peer_destinations; 5113 } 5114 5115 if (put_user(len, optlen)) 5116 return -EFAULT; 5117 5118 if (copy_to_user(optval, &assocparams, len)) 5119 return -EFAULT; 5120 5121 return 0; 5122 } 5123 5124 /* 5125 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5126 * 5127 * This socket option is a boolean flag which turns on or off mapped V4 5128 * addresses. If this option is turned on and the socket is type 5129 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5130 * If this option is turned off, then no mapping will be done of V4 5131 * addresses and a user will receive both PF_INET6 and PF_INET type 5132 * addresses on the socket. 5133 */ 5134 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5135 char __user *optval, int __user *optlen) 5136 { 5137 int val; 5138 struct sctp_sock *sp = sctp_sk(sk); 5139 5140 if (len < sizeof(int)) 5141 return -EINVAL; 5142 5143 len = sizeof(int); 5144 val = sp->v4mapped; 5145 if (put_user(len, optlen)) 5146 return -EFAULT; 5147 if (copy_to_user(optval, &val, len)) 5148 return -EFAULT; 5149 5150 return 0; 5151 } 5152 5153 /* 5154 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5155 * (chapter and verse is quoted at sctp_setsockopt_context()) 5156 */ 5157 static int sctp_getsockopt_context(struct sock *sk, int len, 5158 char __user *optval, int __user *optlen) 5159 { 5160 struct sctp_assoc_value params; 5161 struct sctp_sock *sp; 5162 struct sctp_association *asoc; 5163 5164 if (len < sizeof(struct sctp_assoc_value)) 5165 return -EINVAL; 5166 5167 len = sizeof(struct sctp_assoc_value); 5168 5169 if (copy_from_user(¶ms, optval, len)) 5170 return -EFAULT; 5171 5172 sp = sctp_sk(sk); 5173 5174 if (params.assoc_id != 0) { 5175 asoc = sctp_id2assoc(sk, params.assoc_id); 5176 if (!asoc) 5177 return -EINVAL; 5178 params.assoc_value = asoc->default_rcv_context; 5179 } else { 5180 params.assoc_value = sp->default_rcv_context; 5181 } 5182 5183 if (put_user(len, optlen)) 5184 return -EFAULT; 5185 if (copy_to_user(optval, ¶ms, len)) 5186 return -EFAULT; 5187 5188 return 0; 5189 } 5190 5191 /* 5192 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5193 * This option will get or set the maximum size to put in any outgoing 5194 * SCTP DATA chunk. If a message is larger than this size it will be 5195 * fragmented by SCTP into the specified size. Note that the underlying 5196 * SCTP implementation may fragment into smaller sized chunks when the 5197 * PMTU of the underlying association is smaller than the value set by 5198 * the user. The default value for this option is '0' which indicates 5199 * the user is NOT limiting fragmentation and only the PMTU will effect 5200 * SCTP's choice of DATA chunk size. Note also that values set larger 5201 * than the maximum size of an IP datagram will effectively let SCTP 5202 * control fragmentation (i.e. the same as setting this option to 0). 5203 * 5204 * The following structure is used to access and modify this parameter: 5205 * 5206 * struct sctp_assoc_value { 5207 * sctp_assoc_t assoc_id; 5208 * uint32_t assoc_value; 5209 * }; 5210 * 5211 * assoc_id: This parameter is ignored for one-to-one style sockets. 5212 * For one-to-many style sockets this parameter indicates which 5213 * association the user is performing an action upon. Note that if 5214 * this field's value is zero then the endpoints default value is 5215 * changed (effecting future associations only). 5216 * assoc_value: This parameter specifies the maximum size in bytes. 5217 */ 5218 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5219 char __user *optval, int __user *optlen) 5220 { 5221 struct sctp_assoc_value params; 5222 struct sctp_association *asoc; 5223 5224 if (len == sizeof(int)) { 5225 printk(KERN_WARNING 5226 "SCTP: Use of int in maxseg socket option deprecated\n"); 5227 printk(KERN_WARNING 5228 "SCTP: Use struct sctp_assoc_value instead\n"); 5229 params.assoc_id = 0; 5230 } else if (len >= sizeof(struct sctp_assoc_value)) { 5231 len = sizeof(struct sctp_assoc_value); 5232 if (copy_from_user(¶ms, optval, sizeof(params))) 5233 return -EFAULT; 5234 } else 5235 return -EINVAL; 5236 5237 asoc = sctp_id2assoc(sk, params.assoc_id); 5238 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5239 return -EINVAL; 5240 5241 if (asoc) 5242 params.assoc_value = asoc->frag_point; 5243 else 5244 params.assoc_value = sctp_sk(sk)->user_frag; 5245 5246 if (put_user(len, optlen)) 5247 return -EFAULT; 5248 if (len == sizeof(int)) { 5249 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5250 return -EFAULT; 5251 } else { 5252 if (copy_to_user(optval, ¶ms, len)) 5253 return -EFAULT; 5254 } 5255 5256 return 0; 5257 } 5258 5259 /* 5260 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5261 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5262 */ 5263 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5264 char __user *optval, int __user *optlen) 5265 { 5266 int val; 5267 5268 if (len < sizeof(int)) 5269 return -EINVAL; 5270 5271 len = sizeof(int); 5272 5273 val = sctp_sk(sk)->frag_interleave; 5274 if (put_user(len, optlen)) 5275 return -EFAULT; 5276 if (copy_to_user(optval, &val, len)) 5277 return -EFAULT; 5278 5279 return 0; 5280 } 5281 5282 /* 5283 * 7.1.25. Set or Get the sctp partial delivery point 5284 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5285 */ 5286 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5287 char __user *optval, 5288 int __user *optlen) 5289 { 5290 u32 val; 5291 5292 if (len < sizeof(u32)) 5293 return -EINVAL; 5294 5295 len = sizeof(u32); 5296 5297 val = sctp_sk(sk)->pd_point; 5298 if (put_user(len, optlen)) 5299 return -EFAULT; 5300 if (copy_to_user(optval, &val, len)) 5301 return -EFAULT; 5302 5303 return -ENOTSUPP; 5304 } 5305 5306 /* 5307 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5308 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5309 */ 5310 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5311 char __user *optval, 5312 int __user *optlen) 5313 { 5314 struct sctp_assoc_value params; 5315 struct sctp_sock *sp; 5316 struct sctp_association *asoc; 5317 5318 if (len == sizeof(int)) { 5319 printk(KERN_WARNING 5320 "SCTP: Use of int in max_burst socket option deprecated\n"); 5321 printk(KERN_WARNING 5322 "SCTP: Use struct sctp_assoc_value instead\n"); 5323 params.assoc_id = 0; 5324 } else if (len >= sizeof(struct sctp_assoc_value)) { 5325 len = sizeof(struct sctp_assoc_value); 5326 if (copy_from_user(¶ms, optval, len)) 5327 return -EFAULT; 5328 } else 5329 return -EINVAL; 5330 5331 sp = sctp_sk(sk); 5332 5333 if (params.assoc_id != 0) { 5334 asoc = sctp_id2assoc(sk, params.assoc_id); 5335 if (!asoc) 5336 return -EINVAL; 5337 params.assoc_value = asoc->max_burst; 5338 } else 5339 params.assoc_value = sp->max_burst; 5340 5341 if (len == sizeof(int)) { 5342 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5343 return -EFAULT; 5344 } else { 5345 if (copy_to_user(optval, ¶ms, len)) 5346 return -EFAULT; 5347 } 5348 5349 return 0; 5350 5351 } 5352 5353 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5354 char __user *optval, int __user *optlen) 5355 { 5356 struct sctp_hmacalgo __user *p = (void __user *)optval; 5357 struct sctp_hmac_algo_param *hmacs; 5358 __u16 data_len = 0; 5359 u32 num_idents; 5360 5361 if (!sctp_auth_enable) 5362 return -EACCES; 5363 5364 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5365 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5366 5367 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5368 return -EINVAL; 5369 5370 len = sizeof(struct sctp_hmacalgo) + data_len; 5371 num_idents = data_len / sizeof(u16); 5372 5373 if (put_user(len, optlen)) 5374 return -EFAULT; 5375 if (put_user(num_idents, &p->shmac_num_idents)) 5376 return -EFAULT; 5377 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5378 return -EFAULT; 5379 return 0; 5380 } 5381 5382 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5383 char __user *optval, int __user *optlen) 5384 { 5385 struct sctp_authkeyid val; 5386 struct sctp_association *asoc; 5387 5388 if (!sctp_auth_enable) 5389 return -EACCES; 5390 5391 if (len < sizeof(struct sctp_authkeyid)) 5392 return -EINVAL; 5393 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5394 return -EFAULT; 5395 5396 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5397 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5398 return -EINVAL; 5399 5400 if (asoc) 5401 val.scact_keynumber = asoc->active_key_id; 5402 else 5403 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5404 5405 len = sizeof(struct sctp_authkeyid); 5406 if (put_user(len, optlen)) 5407 return -EFAULT; 5408 if (copy_to_user(optval, &val, len)) 5409 return -EFAULT; 5410 5411 return 0; 5412 } 5413 5414 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5415 char __user *optval, int __user *optlen) 5416 { 5417 struct sctp_authchunks __user *p = (void __user *)optval; 5418 struct sctp_authchunks val; 5419 struct sctp_association *asoc; 5420 struct sctp_chunks_param *ch; 5421 u32 num_chunks = 0; 5422 char __user *to; 5423 5424 if (!sctp_auth_enable) 5425 return -EACCES; 5426 5427 if (len < sizeof(struct sctp_authchunks)) 5428 return -EINVAL; 5429 5430 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5431 return -EFAULT; 5432 5433 to = p->gauth_chunks; 5434 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5435 if (!asoc) 5436 return -EINVAL; 5437 5438 ch = asoc->peer.peer_chunks; 5439 if (!ch) 5440 goto num; 5441 5442 /* See if the user provided enough room for all the data */ 5443 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5444 if (len < num_chunks) 5445 return -EINVAL; 5446 5447 if (copy_to_user(to, ch->chunks, num_chunks)) 5448 return -EFAULT; 5449 num: 5450 len = sizeof(struct sctp_authchunks) + num_chunks; 5451 if (put_user(len, optlen)) return -EFAULT; 5452 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5453 return -EFAULT; 5454 return 0; 5455 } 5456 5457 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5458 char __user *optval, int __user *optlen) 5459 { 5460 struct sctp_authchunks __user *p = (void __user *)optval; 5461 struct sctp_authchunks val; 5462 struct sctp_association *asoc; 5463 struct sctp_chunks_param *ch; 5464 u32 num_chunks = 0; 5465 char __user *to; 5466 5467 if (!sctp_auth_enable) 5468 return -EACCES; 5469 5470 if (len < sizeof(struct sctp_authchunks)) 5471 return -EINVAL; 5472 5473 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5474 return -EFAULT; 5475 5476 to = p->gauth_chunks; 5477 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5478 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5479 return -EINVAL; 5480 5481 if (asoc) 5482 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5483 else 5484 ch = sctp_sk(sk)->ep->auth_chunk_list; 5485 5486 if (!ch) 5487 goto num; 5488 5489 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5490 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5491 return -EINVAL; 5492 5493 if (copy_to_user(to, ch->chunks, num_chunks)) 5494 return -EFAULT; 5495 num: 5496 len = sizeof(struct sctp_authchunks) + num_chunks; 5497 if (put_user(len, optlen)) 5498 return -EFAULT; 5499 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5500 return -EFAULT; 5501 5502 return 0; 5503 } 5504 5505 /* 5506 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5507 * This option gets the current number of associations that are attached 5508 * to a one-to-many style socket. The option value is an uint32_t. 5509 */ 5510 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5511 char __user *optval, int __user *optlen) 5512 { 5513 struct sctp_sock *sp = sctp_sk(sk); 5514 struct sctp_association *asoc; 5515 u32 val = 0; 5516 5517 if (sctp_style(sk, TCP)) 5518 return -EOPNOTSUPP; 5519 5520 if (len < sizeof(u32)) 5521 return -EINVAL; 5522 5523 len = sizeof(u32); 5524 5525 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5526 val++; 5527 } 5528 5529 if (put_user(len, optlen)) 5530 return -EFAULT; 5531 if (copy_to_user(optval, &val, len)) 5532 return -EFAULT; 5533 5534 return 0; 5535 } 5536 5537 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5538 char __user *optval, int __user *optlen) 5539 { 5540 int retval = 0; 5541 int len; 5542 5543 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5544 sk, optname); 5545 5546 /* I can hardly begin to describe how wrong this is. This is 5547 * so broken as to be worse than useless. The API draft 5548 * REALLY is NOT helpful here... I am not convinced that the 5549 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5550 * are at all well-founded. 5551 */ 5552 if (level != SOL_SCTP) { 5553 struct sctp_af *af = sctp_sk(sk)->pf->af; 5554 5555 retval = af->getsockopt(sk, level, optname, optval, optlen); 5556 return retval; 5557 } 5558 5559 if (get_user(len, optlen)) 5560 return -EFAULT; 5561 5562 sctp_lock_sock(sk); 5563 5564 switch (optname) { 5565 case SCTP_STATUS: 5566 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5567 break; 5568 case SCTP_DISABLE_FRAGMENTS: 5569 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5570 optlen); 5571 break; 5572 case SCTP_EVENTS: 5573 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5574 break; 5575 case SCTP_AUTOCLOSE: 5576 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5577 break; 5578 case SCTP_SOCKOPT_PEELOFF: 5579 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5580 break; 5581 case SCTP_PEER_ADDR_PARAMS: 5582 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5583 optlen); 5584 break; 5585 case SCTP_DELAYED_ACK: 5586 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5587 optlen); 5588 break; 5589 case SCTP_INITMSG: 5590 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5591 break; 5592 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5593 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5594 optlen); 5595 break; 5596 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5597 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5598 optlen); 5599 break; 5600 case SCTP_GET_PEER_ADDRS_OLD: 5601 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5602 optlen); 5603 break; 5604 case SCTP_GET_LOCAL_ADDRS_OLD: 5605 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5606 optlen); 5607 break; 5608 case SCTP_GET_PEER_ADDRS: 5609 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5610 optlen); 5611 break; 5612 case SCTP_GET_LOCAL_ADDRS: 5613 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5614 optlen); 5615 break; 5616 case SCTP_SOCKOPT_CONNECTX3: 5617 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5618 break; 5619 case SCTP_DEFAULT_SEND_PARAM: 5620 retval = sctp_getsockopt_default_send_param(sk, len, 5621 optval, optlen); 5622 break; 5623 case SCTP_PRIMARY_ADDR: 5624 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5625 break; 5626 case SCTP_NODELAY: 5627 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5628 break; 5629 case SCTP_RTOINFO: 5630 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5631 break; 5632 case SCTP_ASSOCINFO: 5633 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5634 break; 5635 case SCTP_I_WANT_MAPPED_V4_ADDR: 5636 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5637 break; 5638 case SCTP_MAXSEG: 5639 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5640 break; 5641 case SCTP_GET_PEER_ADDR_INFO: 5642 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5643 optlen); 5644 break; 5645 case SCTP_ADAPTATION_LAYER: 5646 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5647 optlen); 5648 break; 5649 case SCTP_CONTEXT: 5650 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5651 break; 5652 case SCTP_FRAGMENT_INTERLEAVE: 5653 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5654 optlen); 5655 break; 5656 case SCTP_PARTIAL_DELIVERY_POINT: 5657 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5658 optlen); 5659 break; 5660 case SCTP_MAX_BURST: 5661 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5662 break; 5663 case SCTP_AUTH_KEY: 5664 case SCTP_AUTH_CHUNK: 5665 case SCTP_AUTH_DELETE_KEY: 5666 retval = -EOPNOTSUPP; 5667 break; 5668 case SCTP_HMAC_IDENT: 5669 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5670 break; 5671 case SCTP_AUTH_ACTIVE_KEY: 5672 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5673 break; 5674 case SCTP_PEER_AUTH_CHUNKS: 5675 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5676 optlen); 5677 break; 5678 case SCTP_LOCAL_AUTH_CHUNKS: 5679 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5680 optlen); 5681 break; 5682 case SCTP_GET_ASSOC_NUMBER: 5683 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5684 break; 5685 default: 5686 retval = -ENOPROTOOPT; 5687 break; 5688 } 5689 5690 sctp_release_sock(sk); 5691 return retval; 5692 } 5693 5694 static void sctp_hash(struct sock *sk) 5695 { 5696 /* STUB */ 5697 } 5698 5699 static void sctp_unhash(struct sock *sk) 5700 { 5701 /* STUB */ 5702 } 5703 5704 /* Check if port is acceptable. Possibly find first available port. 5705 * 5706 * The port hash table (contained in the 'global' SCTP protocol storage 5707 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5708 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5709 * list (the list number is the port number hashed out, so as you 5710 * would expect from a hash function, all the ports in a given list have 5711 * such a number that hashes out to the same list number; you were 5712 * expecting that, right?); so each list has a set of ports, with a 5713 * link to the socket (struct sock) that uses it, the port number and 5714 * a fastreuse flag (FIXME: NPI ipg). 5715 */ 5716 static struct sctp_bind_bucket *sctp_bucket_create( 5717 struct sctp_bind_hashbucket *head, unsigned short snum); 5718 5719 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5720 { 5721 struct sctp_bind_hashbucket *head; /* hash list */ 5722 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5723 struct hlist_node *node; 5724 unsigned short snum; 5725 int ret; 5726 5727 snum = ntohs(addr->v4.sin_port); 5728 5729 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5730 sctp_local_bh_disable(); 5731 5732 if (snum == 0) { 5733 /* Search for an available port. */ 5734 int low, high, remaining, index; 5735 unsigned int rover; 5736 5737 inet_get_local_port_range(&low, &high); 5738 remaining = (high - low) + 1; 5739 rover = net_random() % remaining + low; 5740 5741 do { 5742 rover++; 5743 if ((rover < low) || (rover > high)) 5744 rover = low; 5745 index = sctp_phashfn(rover); 5746 head = &sctp_port_hashtable[index]; 5747 sctp_spin_lock(&head->lock); 5748 sctp_for_each_hentry(pp, node, &head->chain) 5749 if (pp->port == rover) 5750 goto next; 5751 break; 5752 next: 5753 sctp_spin_unlock(&head->lock); 5754 } while (--remaining > 0); 5755 5756 /* Exhausted local port range during search? */ 5757 ret = 1; 5758 if (remaining <= 0) 5759 goto fail; 5760 5761 /* OK, here is the one we will use. HEAD (the port 5762 * hash table list entry) is non-NULL and we hold it's 5763 * mutex. 5764 */ 5765 snum = rover; 5766 } else { 5767 /* We are given an specific port number; we verify 5768 * that it is not being used. If it is used, we will 5769 * exahust the search in the hash list corresponding 5770 * to the port number (snum) - we detect that with the 5771 * port iterator, pp being NULL. 5772 */ 5773 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5774 sctp_spin_lock(&head->lock); 5775 sctp_for_each_hentry(pp, node, &head->chain) { 5776 if (pp->port == snum) 5777 goto pp_found; 5778 } 5779 } 5780 pp = NULL; 5781 goto pp_not_found; 5782 pp_found: 5783 if (!hlist_empty(&pp->owner)) { 5784 /* We had a port hash table hit - there is an 5785 * available port (pp != NULL) and it is being 5786 * used by other socket (pp->owner not empty); that other 5787 * socket is going to be sk2. 5788 */ 5789 int reuse = sk->sk_reuse; 5790 struct sock *sk2; 5791 struct hlist_node *node; 5792 5793 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5794 if (pp->fastreuse && sk->sk_reuse && 5795 sk->sk_state != SCTP_SS_LISTENING) 5796 goto success; 5797 5798 /* Run through the list of sockets bound to the port 5799 * (pp->port) [via the pointers bind_next and 5800 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5801 * we get the endpoint they describe and run through 5802 * the endpoint's list of IP (v4 or v6) addresses, 5803 * comparing each of the addresses with the address of 5804 * the socket sk. If we find a match, then that means 5805 * that this port/socket (sk) combination are already 5806 * in an endpoint. 5807 */ 5808 sk_for_each_bound(sk2, node, &pp->owner) { 5809 struct sctp_endpoint *ep2; 5810 ep2 = sctp_sk(sk2)->ep; 5811 5812 if (sk == sk2 || 5813 (reuse && sk2->sk_reuse && 5814 sk2->sk_state != SCTP_SS_LISTENING)) 5815 continue; 5816 5817 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5818 sctp_sk(sk2), sctp_sk(sk))) { 5819 ret = (long)sk2; 5820 goto fail_unlock; 5821 } 5822 } 5823 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5824 } 5825 pp_not_found: 5826 /* If there was a hash table miss, create a new port. */ 5827 ret = 1; 5828 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5829 goto fail_unlock; 5830 5831 /* In either case (hit or miss), make sure fastreuse is 1 only 5832 * if sk->sk_reuse is too (that is, if the caller requested 5833 * SO_REUSEADDR on this socket -sk-). 5834 */ 5835 if (hlist_empty(&pp->owner)) { 5836 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5837 pp->fastreuse = 1; 5838 else 5839 pp->fastreuse = 0; 5840 } else if (pp->fastreuse && 5841 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5842 pp->fastreuse = 0; 5843 5844 /* We are set, so fill up all the data in the hash table 5845 * entry, tie the socket list information with the rest of the 5846 * sockets FIXME: Blurry, NPI (ipg). 5847 */ 5848 success: 5849 if (!sctp_sk(sk)->bind_hash) { 5850 inet_sk(sk)->num = snum; 5851 sk_add_bind_node(sk, &pp->owner); 5852 sctp_sk(sk)->bind_hash = pp; 5853 } 5854 ret = 0; 5855 5856 fail_unlock: 5857 sctp_spin_unlock(&head->lock); 5858 5859 fail: 5860 sctp_local_bh_enable(); 5861 return ret; 5862 } 5863 5864 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5865 * port is requested. 5866 */ 5867 static int sctp_get_port(struct sock *sk, unsigned short snum) 5868 { 5869 long ret; 5870 union sctp_addr addr; 5871 struct sctp_af *af = sctp_sk(sk)->pf->af; 5872 5873 /* Set up a dummy address struct from the sk. */ 5874 af->from_sk(&addr, sk); 5875 addr.v4.sin_port = htons(snum); 5876 5877 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5878 ret = sctp_get_port_local(sk, &addr); 5879 5880 return (ret ? 1 : 0); 5881 } 5882 5883 /* 5884 * Move a socket to LISTENING state. 5885 */ 5886 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5887 { 5888 struct sctp_sock *sp = sctp_sk(sk); 5889 struct sctp_endpoint *ep = sp->ep; 5890 struct crypto_hash *tfm = NULL; 5891 5892 /* Allocate HMAC for generating cookie. */ 5893 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5894 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5895 if (IS_ERR(tfm)) { 5896 if (net_ratelimit()) { 5897 printk(KERN_INFO 5898 "SCTP: failed to load transform for %s: %ld\n", 5899 sctp_hmac_alg, PTR_ERR(tfm)); 5900 } 5901 return -ENOSYS; 5902 } 5903 sctp_sk(sk)->hmac = tfm; 5904 } 5905 5906 /* 5907 * If a bind() or sctp_bindx() is not called prior to a listen() 5908 * call that allows new associations to be accepted, the system 5909 * picks an ephemeral port and will choose an address set equivalent 5910 * to binding with a wildcard address. 5911 * 5912 * This is not currently spelled out in the SCTP sockets 5913 * extensions draft, but follows the practice as seen in TCP 5914 * sockets. 5915 * 5916 */ 5917 sk->sk_state = SCTP_SS_LISTENING; 5918 if (!ep->base.bind_addr.port) { 5919 if (sctp_autobind(sk)) 5920 return -EAGAIN; 5921 } else { 5922 if (sctp_get_port(sk, inet_sk(sk)->num)) { 5923 sk->sk_state = SCTP_SS_CLOSED; 5924 return -EADDRINUSE; 5925 } 5926 } 5927 5928 sk->sk_max_ack_backlog = backlog; 5929 sctp_hash_endpoint(ep); 5930 return 0; 5931 } 5932 5933 /* 5934 * 4.1.3 / 5.1.3 listen() 5935 * 5936 * By default, new associations are not accepted for UDP style sockets. 5937 * An application uses listen() to mark a socket as being able to 5938 * accept new associations. 5939 * 5940 * On TCP style sockets, applications use listen() to ready the SCTP 5941 * endpoint for accepting inbound associations. 5942 * 5943 * On both types of endpoints a backlog of '0' disables listening. 5944 * 5945 * Move a socket to LISTENING state. 5946 */ 5947 int sctp_inet_listen(struct socket *sock, int backlog) 5948 { 5949 struct sock *sk = sock->sk; 5950 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5951 int err = -EINVAL; 5952 5953 if (unlikely(backlog < 0)) 5954 return err; 5955 5956 sctp_lock_sock(sk); 5957 5958 /* Peeled-off sockets are not allowed to listen(). */ 5959 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5960 goto out; 5961 5962 if (sock->state != SS_UNCONNECTED) 5963 goto out; 5964 5965 /* If backlog is zero, disable listening. */ 5966 if (!backlog) { 5967 if (sctp_sstate(sk, CLOSED)) 5968 goto out; 5969 5970 err = 0; 5971 sctp_unhash_endpoint(ep); 5972 sk->sk_state = SCTP_SS_CLOSED; 5973 if (sk->sk_reuse) 5974 sctp_sk(sk)->bind_hash->fastreuse = 1; 5975 goto out; 5976 } 5977 5978 /* If we are already listening, just update the backlog */ 5979 if (sctp_sstate(sk, LISTENING)) 5980 sk->sk_max_ack_backlog = backlog; 5981 else { 5982 err = sctp_listen_start(sk, backlog); 5983 if (err) 5984 goto out; 5985 } 5986 5987 err = 0; 5988 out: 5989 sctp_release_sock(sk); 5990 return err; 5991 } 5992 5993 /* 5994 * This function is done by modeling the current datagram_poll() and the 5995 * tcp_poll(). Note that, based on these implementations, we don't 5996 * lock the socket in this function, even though it seems that, 5997 * ideally, locking or some other mechanisms can be used to ensure 5998 * the integrity of the counters (sndbuf and wmem_alloc) used 5999 * in this place. We assume that we don't need locks either until proven 6000 * otherwise. 6001 * 6002 * Another thing to note is that we include the Async I/O support 6003 * here, again, by modeling the current TCP/UDP code. We don't have 6004 * a good way to test with it yet. 6005 */ 6006 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6007 { 6008 struct sock *sk = sock->sk; 6009 struct sctp_sock *sp = sctp_sk(sk); 6010 unsigned int mask; 6011 6012 poll_wait(file, sk->sk_sleep, wait); 6013 6014 /* A TCP-style listening socket becomes readable when the accept queue 6015 * is not empty. 6016 */ 6017 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6018 return (!list_empty(&sp->ep->asocs)) ? 6019 (POLLIN | POLLRDNORM) : 0; 6020 6021 mask = 0; 6022 6023 /* Is there any exceptional events? */ 6024 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6025 mask |= POLLERR; 6026 if (sk->sk_shutdown & RCV_SHUTDOWN) 6027 mask |= POLLRDHUP; 6028 if (sk->sk_shutdown == SHUTDOWN_MASK) 6029 mask |= POLLHUP; 6030 6031 /* Is it readable? Reconsider this code with TCP-style support. */ 6032 if (!skb_queue_empty(&sk->sk_receive_queue) || 6033 (sk->sk_shutdown & RCV_SHUTDOWN)) 6034 mask |= POLLIN | POLLRDNORM; 6035 6036 /* The association is either gone or not ready. */ 6037 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6038 return mask; 6039 6040 /* Is it writable? */ 6041 if (sctp_writeable(sk)) { 6042 mask |= POLLOUT | POLLWRNORM; 6043 } else { 6044 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6045 /* 6046 * Since the socket is not locked, the buffer 6047 * might be made available after the writeable check and 6048 * before the bit is set. This could cause a lost I/O 6049 * signal. tcp_poll() has a race breaker for this race 6050 * condition. Based on their implementation, we put 6051 * in the following code to cover it as well. 6052 */ 6053 if (sctp_writeable(sk)) 6054 mask |= POLLOUT | POLLWRNORM; 6055 } 6056 return mask; 6057 } 6058 6059 /******************************************************************** 6060 * 2nd Level Abstractions 6061 ********************************************************************/ 6062 6063 static struct sctp_bind_bucket *sctp_bucket_create( 6064 struct sctp_bind_hashbucket *head, unsigned short snum) 6065 { 6066 struct sctp_bind_bucket *pp; 6067 6068 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6069 if (pp) { 6070 SCTP_DBG_OBJCNT_INC(bind_bucket); 6071 pp->port = snum; 6072 pp->fastreuse = 0; 6073 INIT_HLIST_HEAD(&pp->owner); 6074 hlist_add_head(&pp->node, &head->chain); 6075 } 6076 return pp; 6077 } 6078 6079 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6080 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6081 { 6082 if (pp && hlist_empty(&pp->owner)) { 6083 __hlist_del(&pp->node); 6084 kmem_cache_free(sctp_bucket_cachep, pp); 6085 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6086 } 6087 } 6088 6089 /* Release this socket's reference to a local port. */ 6090 static inline void __sctp_put_port(struct sock *sk) 6091 { 6092 struct sctp_bind_hashbucket *head = 6093 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 6094 struct sctp_bind_bucket *pp; 6095 6096 sctp_spin_lock(&head->lock); 6097 pp = sctp_sk(sk)->bind_hash; 6098 __sk_del_bind_node(sk); 6099 sctp_sk(sk)->bind_hash = NULL; 6100 inet_sk(sk)->num = 0; 6101 sctp_bucket_destroy(pp); 6102 sctp_spin_unlock(&head->lock); 6103 } 6104 6105 void sctp_put_port(struct sock *sk) 6106 { 6107 sctp_local_bh_disable(); 6108 __sctp_put_port(sk); 6109 sctp_local_bh_enable(); 6110 } 6111 6112 /* 6113 * The system picks an ephemeral port and choose an address set equivalent 6114 * to binding with a wildcard address. 6115 * One of those addresses will be the primary address for the association. 6116 * This automatically enables the multihoming capability of SCTP. 6117 */ 6118 static int sctp_autobind(struct sock *sk) 6119 { 6120 union sctp_addr autoaddr; 6121 struct sctp_af *af; 6122 __be16 port; 6123 6124 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6125 af = sctp_sk(sk)->pf->af; 6126 6127 port = htons(inet_sk(sk)->num); 6128 af->inaddr_any(&autoaddr, port); 6129 6130 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6131 } 6132 6133 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6134 * 6135 * From RFC 2292 6136 * 4.2 The cmsghdr Structure * 6137 * 6138 * When ancillary data is sent or received, any number of ancillary data 6139 * objects can be specified by the msg_control and msg_controllen members of 6140 * the msghdr structure, because each object is preceded by 6141 * a cmsghdr structure defining the object's length (the cmsg_len member). 6142 * Historically Berkeley-derived implementations have passed only one object 6143 * at a time, but this API allows multiple objects to be 6144 * passed in a single call to sendmsg() or recvmsg(). The following example 6145 * shows two ancillary data objects in a control buffer. 6146 * 6147 * |<--------------------------- msg_controllen -------------------------->| 6148 * | | 6149 * 6150 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6151 * 6152 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6153 * | | | 6154 * 6155 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6156 * 6157 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6158 * | | | | | 6159 * 6160 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6161 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6162 * 6163 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6164 * 6165 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6166 * ^ 6167 * | 6168 * 6169 * msg_control 6170 * points here 6171 */ 6172 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6173 sctp_cmsgs_t *cmsgs) 6174 { 6175 struct cmsghdr *cmsg; 6176 struct msghdr *my_msg = (struct msghdr *)msg; 6177 6178 for (cmsg = CMSG_FIRSTHDR(msg); 6179 cmsg != NULL; 6180 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6181 if (!CMSG_OK(my_msg, cmsg)) 6182 return -EINVAL; 6183 6184 /* Should we parse this header or ignore? */ 6185 if (cmsg->cmsg_level != IPPROTO_SCTP) 6186 continue; 6187 6188 /* Strictly check lengths following example in SCM code. */ 6189 switch (cmsg->cmsg_type) { 6190 case SCTP_INIT: 6191 /* SCTP Socket API Extension 6192 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6193 * 6194 * This cmsghdr structure provides information for 6195 * initializing new SCTP associations with sendmsg(). 6196 * The SCTP_INITMSG socket option uses this same data 6197 * structure. This structure is not used for 6198 * recvmsg(). 6199 * 6200 * cmsg_level cmsg_type cmsg_data[] 6201 * ------------ ------------ ---------------------- 6202 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6203 */ 6204 if (cmsg->cmsg_len != 6205 CMSG_LEN(sizeof(struct sctp_initmsg))) 6206 return -EINVAL; 6207 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6208 break; 6209 6210 case SCTP_SNDRCV: 6211 /* SCTP Socket API Extension 6212 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6213 * 6214 * This cmsghdr structure specifies SCTP options for 6215 * sendmsg() and describes SCTP header information 6216 * about a received message through recvmsg(). 6217 * 6218 * cmsg_level cmsg_type cmsg_data[] 6219 * ------------ ------------ ---------------------- 6220 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6221 */ 6222 if (cmsg->cmsg_len != 6223 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6224 return -EINVAL; 6225 6226 cmsgs->info = 6227 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6228 6229 /* Minimally, validate the sinfo_flags. */ 6230 if (cmsgs->info->sinfo_flags & 6231 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6232 SCTP_ABORT | SCTP_EOF)) 6233 return -EINVAL; 6234 break; 6235 6236 default: 6237 return -EINVAL; 6238 } 6239 } 6240 return 0; 6241 } 6242 6243 /* 6244 * Wait for a packet.. 6245 * Note: This function is the same function as in core/datagram.c 6246 * with a few modifications to make lksctp work. 6247 */ 6248 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6249 { 6250 int error; 6251 DEFINE_WAIT(wait); 6252 6253 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6254 6255 /* Socket errors? */ 6256 error = sock_error(sk); 6257 if (error) 6258 goto out; 6259 6260 if (!skb_queue_empty(&sk->sk_receive_queue)) 6261 goto ready; 6262 6263 /* Socket shut down? */ 6264 if (sk->sk_shutdown & RCV_SHUTDOWN) 6265 goto out; 6266 6267 /* Sequenced packets can come disconnected. If so we report the 6268 * problem. 6269 */ 6270 error = -ENOTCONN; 6271 6272 /* Is there a good reason to think that we may receive some data? */ 6273 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6274 goto out; 6275 6276 /* Handle signals. */ 6277 if (signal_pending(current)) 6278 goto interrupted; 6279 6280 /* Let another process have a go. Since we are going to sleep 6281 * anyway. Note: This may cause odd behaviors if the message 6282 * does not fit in the user's buffer, but this seems to be the 6283 * only way to honor MSG_DONTWAIT realistically. 6284 */ 6285 sctp_release_sock(sk); 6286 *timeo_p = schedule_timeout(*timeo_p); 6287 sctp_lock_sock(sk); 6288 6289 ready: 6290 finish_wait(sk->sk_sleep, &wait); 6291 return 0; 6292 6293 interrupted: 6294 error = sock_intr_errno(*timeo_p); 6295 6296 out: 6297 finish_wait(sk->sk_sleep, &wait); 6298 *err = error; 6299 return error; 6300 } 6301 6302 /* Receive a datagram. 6303 * Note: This is pretty much the same routine as in core/datagram.c 6304 * with a few changes to make lksctp work. 6305 */ 6306 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6307 int noblock, int *err) 6308 { 6309 int error; 6310 struct sk_buff *skb; 6311 long timeo; 6312 6313 timeo = sock_rcvtimeo(sk, noblock); 6314 6315 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6316 timeo, MAX_SCHEDULE_TIMEOUT); 6317 6318 do { 6319 /* Again only user level code calls this function, 6320 * so nothing interrupt level 6321 * will suddenly eat the receive_queue. 6322 * 6323 * Look at current nfs client by the way... 6324 * However, this function was corrent in any case. 8) 6325 */ 6326 if (flags & MSG_PEEK) { 6327 spin_lock_bh(&sk->sk_receive_queue.lock); 6328 skb = skb_peek(&sk->sk_receive_queue); 6329 if (skb) 6330 atomic_inc(&skb->users); 6331 spin_unlock_bh(&sk->sk_receive_queue.lock); 6332 } else { 6333 skb = skb_dequeue(&sk->sk_receive_queue); 6334 } 6335 6336 if (skb) 6337 return skb; 6338 6339 /* Caller is allowed not to check sk->sk_err before calling. */ 6340 error = sock_error(sk); 6341 if (error) 6342 goto no_packet; 6343 6344 if (sk->sk_shutdown & RCV_SHUTDOWN) 6345 break; 6346 6347 /* User doesn't want to wait. */ 6348 error = -EAGAIN; 6349 if (!timeo) 6350 goto no_packet; 6351 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6352 6353 return NULL; 6354 6355 no_packet: 6356 *err = error; 6357 return NULL; 6358 } 6359 6360 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6361 static void __sctp_write_space(struct sctp_association *asoc) 6362 { 6363 struct sock *sk = asoc->base.sk; 6364 struct socket *sock = sk->sk_socket; 6365 6366 if ((sctp_wspace(asoc) > 0) && sock) { 6367 if (waitqueue_active(&asoc->wait)) 6368 wake_up_interruptible(&asoc->wait); 6369 6370 if (sctp_writeable(sk)) { 6371 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6372 wake_up_interruptible(sk->sk_sleep); 6373 6374 /* Note that we try to include the Async I/O support 6375 * here by modeling from the current TCP/UDP code. 6376 * We have not tested with it yet. 6377 */ 6378 if (sock->fasync_list && 6379 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6380 sock_wake_async(sock, 6381 SOCK_WAKE_SPACE, POLL_OUT); 6382 } 6383 } 6384 } 6385 6386 /* Do accounting for the sndbuf space. 6387 * Decrement the used sndbuf space of the corresponding association by the 6388 * data size which was just transmitted(freed). 6389 */ 6390 static void sctp_wfree(struct sk_buff *skb) 6391 { 6392 struct sctp_association *asoc; 6393 struct sctp_chunk *chunk; 6394 struct sock *sk; 6395 6396 /* Get the saved chunk pointer. */ 6397 chunk = *((struct sctp_chunk **)(skb->cb)); 6398 asoc = chunk->asoc; 6399 sk = asoc->base.sk; 6400 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6401 sizeof(struct sk_buff) + 6402 sizeof(struct sctp_chunk); 6403 6404 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6405 6406 /* 6407 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6408 */ 6409 sk->sk_wmem_queued -= skb->truesize; 6410 sk_mem_uncharge(sk, skb->truesize); 6411 6412 sock_wfree(skb); 6413 __sctp_write_space(asoc); 6414 6415 sctp_association_put(asoc); 6416 } 6417 6418 /* Do accounting for the receive space on the socket. 6419 * Accounting for the association is done in ulpevent.c 6420 * We set this as a destructor for the cloned data skbs so that 6421 * accounting is done at the correct time. 6422 */ 6423 void sctp_sock_rfree(struct sk_buff *skb) 6424 { 6425 struct sock *sk = skb->sk; 6426 struct sctp_ulpevent *event = sctp_skb2event(skb); 6427 6428 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6429 6430 /* 6431 * Mimic the behavior of sock_rfree 6432 */ 6433 sk_mem_uncharge(sk, event->rmem_len); 6434 } 6435 6436 6437 /* Helper function to wait for space in the sndbuf. */ 6438 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6439 size_t msg_len) 6440 { 6441 struct sock *sk = asoc->base.sk; 6442 int err = 0; 6443 long current_timeo = *timeo_p; 6444 DEFINE_WAIT(wait); 6445 6446 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6447 asoc, (long)(*timeo_p), msg_len); 6448 6449 /* Increment the association's refcnt. */ 6450 sctp_association_hold(asoc); 6451 6452 /* Wait on the association specific sndbuf space. */ 6453 for (;;) { 6454 prepare_to_wait_exclusive(&asoc->wait, &wait, 6455 TASK_INTERRUPTIBLE); 6456 if (!*timeo_p) 6457 goto do_nonblock; 6458 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6459 asoc->base.dead) 6460 goto do_error; 6461 if (signal_pending(current)) 6462 goto do_interrupted; 6463 if (msg_len <= sctp_wspace(asoc)) 6464 break; 6465 6466 /* Let another process have a go. Since we are going 6467 * to sleep anyway. 6468 */ 6469 sctp_release_sock(sk); 6470 current_timeo = schedule_timeout(current_timeo); 6471 BUG_ON(sk != asoc->base.sk); 6472 sctp_lock_sock(sk); 6473 6474 *timeo_p = current_timeo; 6475 } 6476 6477 out: 6478 finish_wait(&asoc->wait, &wait); 6479 6480 /* Release the association's refcnt. */ 6481 sctp_association_put(asoc); 6482 6483 return err; 6484 6485 do_error: 6486 err = -EPIPE; 6487 goto out; 6488 6489 do_interrupted: 6490 err = sock_intr_errno(*timeo_p); 6491 goto out; 6492 6493 do_nonblock: 6494 err = -EAGAIN; 6495 goto out; 6496 } 6497 6498 /* If socket sndbuf has changed, wake up all per association waiters. */ 6499 void sctp_write_space(struct sock *sk) 6500 { 6501 struct sctp_association *asoc; 6502 6503 /* Wake up the tasks in each wait queue. */ 6504 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6505 __sctp_write_space(asoc); 6506 } 6507 } 6508 6509 /* Is there any sndbuf space available on the socket? 6510 * 6511 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6512 * associations on the same socket. For a UDP-style socket with 6513 * multiple associations, it is possible for it to be "unwriteable" 6514 * prematurely. I assume that this is acceptable because 6515 * a premature "unwriteable" is better than an accidental "writeable" which 6516 * would cause an unwanted block under certain circumstances. For the 1-1 6517 * UDP-style sockets or TCP-style sockets, this code should work. 6518 * - Daisy 6519 */ 6520 static int sctp_writeable(struct sock *sk) 6521 { 6522 int amt = 0; 6523 6524 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6525 if (amt < 0) 6526 amt = 0; 6527 return amt; 6528 } 6529 6530 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6531 * returns immediately with EINPROGRESS. 6532 */ 6533 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6534 { 6535 struct sock *sk = asoc->base.sk; 6536 int err = 0; 6537 long current_timeo = *timeo_p; 6538 DEFINE_WAIT(wait); 6539 6540 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6541 (long)(*timeo_p)); 6542 6543 /* Increment the association's refcnt. */ 6544 sctp_association_hold(asoc); 6545 6546 for (;;) { 6547 prepare_to_wait_exclusive(&asoc->wait, &wait, 6548 TASK_INTERRUPTIBLE); 6549 if (!*timeo_p) 6550 goto do_nonblock; 6551 if (sk->sk_shutdown & RCV_SHUTDOWN) 6552 break; 6553 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6554 asoc->base.dead) 6555 goto do_error; 6556 if (signal_pending(current)) 6557 goto do_interrupted; 6558 6559 if (sctp_state(asoc, ESTABLISHED)) 6560 break; 6561 6562 /* Let another process have a go. Since we are going 6563 * to sleep anyway. 6564 */ 6565 sctp_release_sock(sk); 6566 current_timeo = schedule_timeout(current_timeo); 6567 sctp_lock_sock(sk); 6568 6569 *timeo_p = current_timeo; 6570 } 6571 6572 out: 6573 finish_wait(&asoc->wait, &wait); 6574 6575 /* Release the association's refcnt. */ 6576 sctp_association_put(asoc); 6577 6578 return err; 6579 6580 do_error: 6581 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6582 err = -ETIMEDOUT; 6583 else 6584 err = -ECONNREFUSED; 6585 goto out; 6586 6587 do_interrupted: 6588 err = sock_intr_errno(*timeo_p); 6589 goto out; 6590 6591 do_nonblock: 6592 err = -EINPROGRESS; 6593 goto out; 6594 } 6595 6596 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6597 { 6598 struct sctp_endpoint *ep; 6599 int err = 0; 6600 DEFINE_WAIT(wait); 6601 6602 ep = sctp_sk(sk)->ep; 6603 6604 6605 for (;;) { 6606 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6607 TASK_INTERRUPTIBLE); 6608 6609 if (list_empty(&ep->asocs)) { 6610 sctp_release_sock(sk); 6611 timeo = schedule_timeout(timeo); 6612 sctp_lock_sock(sk); 6613 } 6614 6615 err = -EINVAL; 6616 if (!sctp_sstate(sk, LISTENING)) 6617 break; 6618 6619 err = 0; 6620 if (!list_empty(&ep->asocs)) 6621 break; 6622 6623 err = sock_intr_errno(timeo); 6624 if (signal_pending(current)) 6625 break; 6626 6627 err = -EAGAIN; 6628 if (!timeo) 6629 break; 6630 } 6631 6632 finish_wait(sk->sk_sleep, &wait); 6633 6634 return err; 6635 } 6636 6637 static void sctp_wait_for_close(struct sock *sk, long timeout) 6638 { 6639 DEFINE_WAIT(wait); 6640 6641 do { 6642 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6643 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6644 break; 6645 sctp_release_sock(sk); 6646 timeout = schedule_timeout(timeout); 6647 sctp_lock_sock(sk); 6648 } while (!signal_pending(current) && timeout); 6649 6650 finish_wait(sk->sk_sleep, &wait); 6651 } 6652 6653 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6654 { 6655 struct sk_buff *frag; 6656 6657 if (!skb->data_len) 6658 goto done; 6659 6660 /* Don't forget the fragments. */ 6661 skb_walk_frags(skb, frag) 6662 sctp_skb_set_owner_r_frag(frag, sk); 6663 6664 done: 6665 sctp_skb_set_owner_r(skb, sk); 6666 } 6667 6668 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6669 struct sctp_association *asoc) 6670 { 6671 struct inet_sock *inet = inet_sk(sk); 6672 struct inet_sock *newinet = inet_sk(newsk); 6673 6674 newsk->sk_type = sk->sk_type; 6675 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6676 newsk->sk_flags = sk->sk_flags; 6677 newsk->sk_no_check = sk->sk_no_check; 6678 newsk->sk_reuse = sk->sk_reuse; 6679 6680 newsk->sk_shutdown = sk->sk_shutdown; 6681 newsk->sk_destruct = inet_sock_destruct; 6682 newsk->sk_family = sk->sk_family; 6683 newsk->sk_protocol = IPPROTO_SCTP; 6684 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6685 newsk->sk_sndbuf = sk->sk_sndbuf; 6686 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6687 newsk->sk_lingertime = sk->sk_lingertime; 6688 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6689 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6690 6691 newinet = inet_sk(newsk); 6692 6693 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6694 * getsockname() and getpeername() 6695 */ 6696 newinet->sport = inet->sport; 6697 newinet->saddr = inet->saddr; 6698 newinet->rcv_saddr = inet->rcv_saddr; 6699 newinet->dport = htons(asoc->peer.port); 6700 newinet->pmtudisc = inet->pmtudisc; 6701 newinet->id = asoc->next_tsn ^ jiffies; 6702 6703 newinet->uc_ttl = inet->uc_ttl; 6704 newinet->mc_loop = 1; 6705 newinet->mc_ttl = 1; 6706 newinet->mc_index = 0; 6707 newinet->mc_list = NULL; 6708 } 6709 6710 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6711 * and its messages to the newsk. 6712 */ 6713 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6714 struct sctp_association *assoc, 6715 sctp_socket_type_t type) 6716 { 6717 struct sctp_sock *oldsp = sctp_sk(oldsk); 6718 struct sctp_sock *newsp = sctp_sk(newsk); 6719 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6720 struct sctp_endpoint *newep = newsp->ep; 6721 struct sk_buff *skb, *tmp; 6722 struct sctp_ulpevent *event; 6723 struct sctp_bind_hashbucket *head; 6724 6725 /* Migrate socket buffer sizes and all the socket level options to the 6726 * new socket. 6727 */ 6728 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6729 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6730 /* Brute force copy old sctp opt. */ 6731 inet_sk_copy_descendant(newsk, oldsk); 6732 6733 /* Restore the ep value that was overwritten with the above structure 6734 * copy. 6735 */ 6736 newsp->ep = newep; 6737 newsp->hmac = NULL; 6738 6739 /* Hook this new socket in to the bind_hash list. */ 6740 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6741 sctp_local_bh_disable(); 6742 sctp_spin_lock(&head->lock); 6743 pp = sctp_sk(oldsk)->bind_hash; 6744 sk_add_bind_node(newsk, &pp->owner); 6745 sctp_sk(newsk)->bind_hash = pp; 6746 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6747 sctp_spin_unlock(&head->lock); 6748 sctp_local_bh_enable(); 6749 6750 /* Copy the bind_addr list from the original endpoint to the new 6751 * endpoint so that we can handle restarts properly 6752 */ 6753 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6754 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6755 6756 /* Move any messages in the old socket's receive queue that are for the 6757 * peeled off association to the new socket's receive queue. 6758 */ 6759 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6760 event = sctp_skb2event(skb); 6761 if (event->asoc == assoc) { 6762 __skb_unlink(skb, &oldsk->sk_receive_queue); 6763 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6764 sctp_skb_set_owner_r_frag(skb, newsk); 6765 } 6766 } 6767 6768 /* Clean up any messages pending delivery due to partial 6769 * delivery. Three cases: 6770 * 1) No partial deliver; no work. 6771 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6772 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6773 */ 6774 skb_queue_head_init(&newsp->pd_lobby); 6775 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6776 6777 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6778 struct sk_buff_head *queue; 6779 6780 /* Decide which queue to move pd_lobby skbs to. */ 6781 if (assoc->ulpq.pd_mode) { 6782 queue = &newsp->pd_lobby; 6783 } else 6784 queue = &newsk->sk_receive_queue; 6785 6786 /* Walk through the pd_lobby, looking for skbs that 6787 * need moved to the new socket. 6788 */ 6789 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6790 event = sctp_skb2event(skb); 6791 if (event->asoc == assoc) { 6792 __skb_unlink(skb, &oldsp->pd_lobby); 6793 __skb_queue_tail(queue, skb); 6794 sctp_skb_set_owner_r_frag(skb, newsk); 6795 } 6796 } 6797 6798 /* Clear up any skbs waiting for the partial 6799 * delivery to finish. 6800 */ 6801 if (assoc->ulpq.pd_mode) 6802 sctp_clear_pd(oldsk, NULL); 6803 6804 } 6805 6806 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6807 sctp_skb_set_owner_r_frag(skb, newsk); 6808 6809 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6810 sctp_skb_set_owner_r_frag(skb, newsk); 6811 6812 /* Set the type of socket to indicate that it is peeled off from the 6813 * original UDP-style socket or created with the accept() call on a 6814 * TCP-style socket.. 6815 */ 6816 newsp->type = type; 6817 6818 /* Mark the new socket "in-use" by the user so that any packets 6819 * that may arrive on the association after we've moved it are 6820 * queued to the backlog. This prevents a potential race between 6821 * backlog processing on the old socket and new-packet processing 6822 * on the new socket. 6823 * 6824 * The caller has just allocated newsk so we can guarantee that other 6825 * paths won't try to lock it and then oldsk. 6826 */ 6827 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6828 sctp_assoc_migrate(assoc, newsk); 6829 6830 /* If the association on the newsk is already closed before accept() 6831 * is called, set RCV_SHUTDOWN flag. 6832 */ 6833 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6834 newsk->sk_shutdown |= RCV_SHUTDOWN; 6835 6836 newsk->sk_state = SCTP_SS_ESTABLISHED; 6837 sctp_release_sock(newsk); 6838 } 6839 6840 6841 /* This proto struct describes the ULP interface for SCTP. */ 6842 struct proto sctp_prot = { 6843 .name = "SCTP", 6844 .owner = THIS_MODULE, 6845 .close = sctp_close, 6846 .connect = sctp_connect, 6847 .disconnect = sctp_disconnect, 6848 .accept = sctp_accept, 6849 .ioctl = sctp_ioctl, 6850 .init = sctp_init_sock, 6851 .destroy = sctp_destroy_sock, 6852 .shutdown = sctp_shutdown, 6853 .setsockopt = sctp_setsockopt, 6854 .getsockopt = sctp_getsockopt, 6855 .sendmsg = sctp_sendmsg, 6856 .recvmsg = sctp_recvmsg, 6857 .bind = sctp_bind, 6858 .backlog_rcv = sctp_backlog_rcv, 6859 .hash = sctp_hash, 6860 .unhash = sctp_unhash, 6861 .get_port = sctp_get_port, 6862 .obj_size = sizeof(struct sctp_sock), 6863 .sysctl_mem = sysctl_sctp_mem, 6864 .sysctl_rmem = sysctl_sctp_rmem, 6865 .sysctl_wmem = sysctl_sctp_wmem, 6866 .memory_pressure = &sctp_memory_pressure, 6867 .enter_memory_pressure = sctp_enter_memory_pressure, 6868 .memory_allocated = &sctp_memory_allocated, 6869 .sockets_allocated = &sctp_sockets_allocated, 6870 }; 6871 6872 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6873 6874 struct proto sctpv6_prot = { 6875 .name = "SCTPv6", 6876 .owner = THIS_MODULE, 6877 .close = sctp_close, 6878 .connect = sctp_connect, 6879 .disconnect = sctp_disconnect, 6880 .accept = sctp_accept, 6881 .ioctl = sctp_ioctl, 6882 .init = sctp_init_sock, 6883 .destroy = sctp_destroy_sock, 6884 .shutdown = sctp_shutdown, 6885 .setsockopt = sctp_setsockopt, 6886 .getsockopt = sctp_getsockopt, 6887 .sendmsg = sctp_sendmsg, 6888 .recvmsg = sctp_recvmsg, 6889 .bind = sctp_bind, 6890 .backlog_rcv = sctp_backlog_rcv, 6891 .hash = sctp_hash, 6892 .unhash = sctp_unhash, 6893 .get_port = sctp_get_port, 6894 .obj_size = sizeof(struct sctp6_sock), 6895 .sysctl_mem = sysctl_sctp_mem, 6896 .sysctl_rmem = sysctl_sctp_rmem, 6897 .sysctl_wmem = sysctl_sctp_wmem, 6898 .memory_pressure = &sctp_memory_pressure, 6899 .enter_memory_pressure = sctp_enter_memory_pressure, 6900 .memory_allocated = &sctp_memory_allocated, 6901 .sockets_allocated = &sctp_sockets_allocated, 6902 }; 6903 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6904