xref: /linux/net/sctp/socket.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 struct percpu_counter sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = sk_wmem_alloc_get(asoc->base.sk);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk->sk_wmem_queued += chunk->skb->truesize;
178 	sk_mem_charge(sk, chunk->skb->truesize);
179 }
180 
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 				   int len)
184 {
185 	struct sctp_af *af;
186 
187 	/* Verify basic sockaddr. */
188 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 	if (!af)
190 		return -EINVAL;
191 
192 	/* Is this a valid SCTP address?  */
193 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 		return -EINVAL;
195 
196 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 /* Look up the association by its id.  If this is not a UDP-style
203  * socket, the ID field is always ignored.
204  */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 	struct sctp_association *asoc = NULL;
208 
209 	/* If this is not a UDP-style socket, assoc id should be ignored. */
210 	if (!sctp_style(sk, UDP)) {
211 		/* Return NULL if the socket state is not ESTABLISHED. It
212 		 * could be a TCP-style listening socket or a socket which
213 		 * hasn't yet called connect() to establish an association.
214 		 */
215 		if (!sctp_sstate(sk, ESTABLISHED))
216 			return NULL;
217 
218 		/* Get the first and the only association from the list. */
219 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 					  struct sctp_association, asocs);
222 		return asoc;
223 	}
224 
225 	/* Otherwise this is a UDP-style socket. */
226 	if (!id || (id == (sctp_assoc_t)-1))
227 		return NULL;
228 
229 	spin_lock_bh(&sctp_assocs_id_lock);
230 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 	spin_unlock_bh(&sctp_assocs_id_lock);
232 
233 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 		return NULL;
235 
236 	return asoc;
237 }
238 
239 /* Look up the transport from an address and an assoc id. If both address and
240  * id are specified, the associations matching the address and the id should be
241  * the same.
242  */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 					      struct sockaddr_storage *addr,
245 					      sctp_assoc_t id)
246 {
247 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 	struct sctp_transport *transport;
249 	union sctp_addr *laddr = (union sctp_addr *)addr;
250 
251 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 					       laddr,
253 					       &transport);
254 
255 	if (!addr_asoc)
256 		return NULL;
257 
258 	id_asoc = sctp_id2assoc(sk, id);
259 	if (id_asoc && (id_asoc != addr_asoc))
260 		return NULL;
261 
262 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 						(union sctp_addr *)addr);
264 
265 	return transport;
266 }
267 
268 /* API 3.1.2 bind() - UDP Style Syntax
269  * The syntax of bind() is,
270  *
271  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
272  *
273  *   sd      - the socket descriptor returned by socket().
274  *   addr    - the address structure (struct sockaddr_in or struct
275  *             sockaddr_in6 [RFC 2553]),
276  *   addr_len - the size of the address structure.
277  */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 	int retval = 0;
281 
282 	sctp_lock_sock(sk);
283 
284 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 			  sk, addr, addr_len);
286 
287 	/* Disallow binding twice. */
288 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 				      addr_len);
291 	else
292 		retval = -EINVAL;
293 
294 	sctp_release_sock(sk);
295 
296 	return retval;
297 }
298 
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300 
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 					union sctp_addr *addr, int len)
304 {
305 	struct sctp_af *af;
306 
307 	/* Check minimum size.  */
308 	if (len < sizeof (struct sockaddr))
309 		return NULL;
310 
311 	/* V4 mapped address are really of AF_INET family */
312 	if (addr->sa.sa_family == AF_INET6 &&
313 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 		if (!opt->pf->af_supported(AF_INET, opt))
315 			return NULL;
316 	} else {
317 		/* Does this PF support this AF? */
318 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 			return NULL;
320 	}
321 
322 	/* If we get this far, af is valid. */
323 	af = sctp_get_af_specific(addr->sa.sa_family);
324 
325 	if (len < af->sockaddr_len)
326 		return NULL;
327 
328 	return af;
329 }
330 
331 /* Bind a local address either to an endpoint or to an association.  */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 	struct sctp_sock *sp = sctp_sk(sk);
335 	struct sctp_endpoint *ep = sp->ep;
336 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 	struct sctp_af *af;
338 	unsigned short snum;
339 	int ret = 0;
340 
341 	/* Common sockaddr verification. */
342 	af = sctp_sockaddr_af(sp, addr, len);
343 	if (!af) {
344 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 				  sk, addr, len);
346 		return -EINVAL;
347 	}
348 
349 	snum = ntohs(addr->v4.sin_port);
350 
351 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 				 ", port: %d, new port: %d, len: %d)\n",
353 				 sk,
354 				 addr,
355 				 bp->port, snum,
356 				 len);
357 
358 	/* PF specific bind() address verification. */
359 	if (!sp->pf->bind_verify(sp, addr))
360 		return -EADDRNOTAVAIL;
361 
362 	/* We must either be unbound, or bind to the same port.
363 	 * It's OK to allow 0 ports if we are already bound.
364 	 * We'll just inhert an already bound port in this case
365 	 */
366 	if (bp->port) {
367 		if (!snum)
368 			snum = bp->port;
369 		else if (snum != bp->port) {
370 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 				  " New port %d does not match existing port "
372 				  "%d.\n", snum, bp->port);
373 			return -EINVAL;
374 		}
375 	}
376 
377 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 		return -EACCES;
379 
380 	/* See if the address matches any of the addresses we may have
381 	 * already bound before checking against other endpoints.
382 	 */
383 	if (sctp_bind_addr_match(bp, addr, sp))
384 		return -EINVAL;
385 
386 	/* Make sure we are allowed to bind here.
387 	 * The function sctp_get_port_local() does duplicate address
388 	 * detection.
389 	 */
390 	addr->v4.sin_port = htons(snum);
391 	if ((ret = sctp_get_port_local(sk, addr))) {
392 		return -EADDRINUSE;
393 	}
394 
395 	/* Refresh ephemeral port.  */
396 	if (!bp->port)
397 		bp->port = inet_sk(sk)->num;
398 
399 	/* Add the address to the bind address list.
400 	 * Use GFP_ATOMIC since BHs will be disabled.
401 	 */
402 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403 
404 	/* Copy back into socket for getsockname() use. */
405 	if (!ret) {
406 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 		af->to_sk_saddr(addr, sk);
408 	}
409 
410 	return ret;
411 }
412 
413  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414  *
415  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416  * at any one time.  If a sender, after sending an ASCONF chunk, decides
417  * it needs to transfer another ASCONF Chunk, it MUST wait until the
418  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419  * subsequent ASCONF. Note this restriction binds each side, so at any
420  * time two ASCONF may be in-transit on any given association (one sent
421  * from each endpoint).
422  */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 			    struct sctp_chunk *chunk)
425 {
426 	int		retval = 0;
427 
428 	/* If there is an outstanding ASCONF chunk, queue it for later
429 	 * transmission.
430 	 */
431 	if (asoc->addip_last_asconf) {
432 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 		goto out;
434 	}
435 
436 	/* Hold the chunk until an ASCONF_ACK is received. */
437 	sctp_chunk_hold(chunk);
438 	retval = sctp_primitive_ASCONF(asoc, chunk);
439 	if (retval)
440 		sctp_chunk_free(chunk);
441 	else
442 		asoc->addip_last_asconf = chunk;
443 
444 out:
445 	return retval;
446 }
447 
448 /* Add a list of addresses as bind addresses to local endpoint or
449  * association.
450  *
451  * Basically run through each address specified in the addrs/addrcnt
452  * array/length pair, determine if it is IPv6 or IPv4 and call
453  * sctp_do_bind() on it.
454  *
455  * If any of them fails, then the operation will be reversed and the
456  * ones that were added will be removed.
457  *
458  * Only sctp_setsockopt_bindx() is supposed to call this function.
459  */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 	int cnt;
463 	int retval = 0;
464 	void *addr_buf;
465 	struct sockaddr *sa_addr;
466 	struct sctp_af *af;
467 
468 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 			  sk, addrs, addrcnt);
470 
471 	addr_buf = addrs;
472 	for (cnt = 0; cnt < addrcnt; cnt++) {
473 		/* The list may contain either IPv4 or IPv6 address;
474 		 * determine the address length for walking thru the list.
475 		 */
476 		sa_addr = (struct sockaddr *)addr_buf;
477 		af = sctp_get_af_specific(sa_addr->sa_family);
478 		if (!af) {
479 			retval = -EINVAL;
480 			goto err_bindx_add;
481 		}
482 
483 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 				      af->sockaddr_len);
485 
486 		addr_buf += af->sockaddr_len;
487 
488 err_bindx_add:
489 		if (retval < 0) {
490 			/* Failed. Cleanup the ones that have been added */
491 			if (cnt > 0)
492 				sctp_bindx_rem(sk, addrs, cnt);
493 			return retval;
494 		}
495 	}
496 
497 	return retval;
498 }
499 
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501  * associations that are part of the endpoint indicating that a list of local
502  * addresses are added to the endpoint.
503  *
504  * If any of the addresses is already in the bind address list of the
505  * association, we do not send the chunk for that association.  But it will not
506  * affect other associations.
507  *
508  * Only sctp_setsockopt_bindx() is supposed to call this function.
509  */
510 static int sctp_send_asconf_add_ip(struct sock		*sk,
511 				   struct sockaddr	*addrs,
512 				   int 			addrcnt)
513 {
514 	struct sctp_sock		*sp;
515 	struct sctp_endpoint		*ep;
516 	struct sctp_association		*asoc;
517 	struct sctp_bind_addr		*bp;
518 	struct sctp_chunk		*chunk;
519 	struct sctp_sockaddr_entry	*laddr;
520 	union sctp_addr			*addr;
521 	union sctp_addr			saveaddr;
522 	void				*addr_buf;
523 	struct sctp_af			*af;
524 	struct list_head		*p;
525 	int 				i;
526 	int 				retval = 0;
527 
528 	if (!sctp_addip_enable)
529 		return retval;
530 
531 	sp = sctp_sk(sk);
532 	ep = sp->ep;
533 
534 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 			  __func__, sk, addrs, addrcnt);
536 
537 	list_for_each_entry(asoc, &ep->asocs, asocs) {
538 
539 		if (!asoc->peer.asconf_capable)
540 			continue;
541 
542 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 			continue;
544 
545 		if (!sctp_state(asoc, ESTABLISHED))
546 			continue;
547 
548 		/* Check if any address in the packed array of addresses is
549 		 * in the bind address list of the association. If so,
550 		 * do not send the asconf chunk to its peer, but continue with
551 		 * other associations.
552 		 */
553 		addr_buf = addrs;
554 		for (i = 0; i < addrcnt; i++) {
555 			addr = (union sctp_addr *)addr_buf;
556 			af = sctp_get_af_specific(addr->v4.sin_family);
557 			if (!af) {
558 				retval = -EINVAL;
559 				goto out;
560 			}
561 
562 			if (sctp_assoc_lookup_laddr(asoc, addr))
563 				break;
564 
565 			addr_buf += af->sockaddr_len;
566 		}
567 		if (i < addrcnt)
568 			continue;
569 
570 		/* Use the first valid address in bind addr list of
571 		 * association as Address Parameter of ASCONF CHUNK.
572 		 */
573 		bp = &asoc->base.bind_addr;
574 		p = bp->address_list.next;
575 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 						   addrcnt, SCTP_PARAM_ADD_IP);
578 		if (!chunk) {
579 			retval = -ENOMEM;
580 			goto out;
581 		}
582 
583 		retval = sctp_send_asconf(asoc, chunk);
584 		if (retval)
585 			goto out;
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = (union sctp_addr *)addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 	}
600 
601 out:
602 	return retval;
603 }
604 
605 /* Remove a list of addresses from bind addresses list.  Do not remove the
606  * last address.
607  *
608  * Basically run through each address specified in the addrs/addrcnt
609  * array/length pair, determine if it is IPv6 or IPv4 and call
610  * sctp_del_bind() on it.
611  *
612  * If any of them fails, then the operation will be reversed and the
613  * ones that were removed will be added back.
614  *
615  * At least one address has to be left; if only one address is
616  * available, the operation will return -EBUSY.
617  *
618  * Only sctp_setsockopt_bindx() is supposed to call this function.
619  */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 	struct sctp_sock *sp = sctp_sk(sk);
623 	struct sctp_endpoint *ep = sp->ep;
624 	int cnt;
625 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 	int retval = 0;
627 	void *addr_buf;
628 	union sctp_addr *sa_addr;
629 	struct sctp_af *af;
630 
631 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 			  sk, addrs, addrcnt);
633 
634 	addr_buf = addrs;
635 	for (cnt = 0; cnt < addrcnt; cnt++) {
636 		/* If the bind address list is empty or if there is only one
637 		 * bind address, there is nothing more to be removed (we need
638 		 * at least one address here).
639 		 */
640 		if (list_empty(&bp->address_list) ||
641 		    (sctp_list_single_entry(&bp->address_list))) {
642 			retval = -EBUSY;
643 			goto err_bindx_rem;
644 		}
645 
646 		sa_addr = (union sctp_addr *)addr_buf;
647 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 		if (!af) {
649 			retval = -EINVAL;
650 			goto err_bindx_rem;
651 		}
652 
653 		if (!af->addr_valid(sa_addr, sp, NULL)) {
654 			retval = -EADDRNOTAVAIL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (sa_addr->v4.sin_port != htons(bp->port)) {
659 			retval = -EINVAL;
660 			goto err_bindx_rem;
661 		}
662 
663 		/* FIXME - There is probably a need to check if sk->sk_saddr and
664 		 * sk->sk_rcv_addr are currently set to one of the addresses to
665 		 * be removed. This is something which needs to be looked into
666 		 * when we are fixing the outstanding issues with multi-homing
667 		 * socket routing and failover schemes. Refer to comments in
668 		 * sctp_do_bind(). -daisy
669 		 */
670 		retval = sctp_del_bind_addr(bp, sa_addr);
671 
672 		addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 		if (retval < 0) {
675 			/* Failed. Add the ones that has been removed back */
676 			if (cnt > 0)
677 				sctp_bindx_add(sk, addrs, cnt);
678 			return retval;
679 		}
680 	}
681 
682 	return retval;
683 }
684 
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686  * the associations that are part of the endpoint indicating that a list of
687  * local addresses are removed from the endpoint.
688  *
689  * If any of the addresses is already in the bind address list of the
690  * association, we do not send the chunk for that association.  But it will not
691  * affect other associations.
692  *
693  * Only sctp_setsockopt_bindx() is supposed to call this function.
694  */
695 static int sctp_send_asconf_del_ip(struct sock		*sk,
696 				   struct sockaddr	*addrs,
697 				   int			addrcnt)
698 {
699 	struct sctp_sock	*sp;
700 	struct sctp_endpoint	*ep;
701 	struct sctp_association	*asoc;
702 	struct sctp_transport	*transport;
703 	struct sctp_bind_addr	*bp;
704 	struct sctp_chunk	*chunk;
705 	union sctp_addr		*laddr;
706 	void			*addr_buf;
707 	struct sctp_af		*af;
708 	struct sctp_sockaddr_entry *saddr;
709 	int 			i;
710 	int 			retval = 0;
711 
712 	if (!sctp_addip_enable)
713 		return retval;
714 
715 	sp = sctp_sk(sk);
716 	ep = sp->ep;
717 
718 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 			  __func__, sk, addrs, addrcnt);
720 
721 	list_for_each_entry(asoc, &ep->asocs, asocs) {
722 
723 		if (!asoc->peer.asconf_capable)
724 			continue;
725 
726 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 			continue;
728 
729 		if (!sctp_state(asoc, ESTABLISHED))
730 			continue;
731 
732 		/* Check if any address in the packed array of addresses is
733 		 * not present in the bind address list of the association.
734 		 * If so, do not send the asconf chunk to its peer, but
735 		 * continue with other associations.
736 		 */
737 		addr_buf = addrs;
738 		for (i = 0; i < addrcnt; i++) {
739 			laddr = (union sctp_addr *)addr_buf;
740 			af = sctp_get_af_specific(laddr->v4.sin_family);
741 			if (!af) {
742 				retval = -EINVAL;
743 				goto out;
744 			}
745 
746 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 				break;
748 
749 			addr_buf += af->sockaddr_len;
750 		}
751 		if (i < addrcnt)
752 			continue;
753 
754 		/* Find one address in the association's bind address list
755 		 * that is not in the packed array of addresses. This is to
756 		 * make sure that we do not delete all the addresses in the
757 		 * association.
758 		 */
759 		bp = &asoc->base.bind_addr;
760 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 					       addrcnt, sp);
762 		if (!laddr)
763 			continue;
764 
765 		/* We do not need RCU protection throughout this loop
766 		 * because this is done under a socket lock from the
767 		 * setsockopt call.
768 		 */
769 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 						   SCTP_PARAM_DEL_IP);
771 		if (!chunk) {
772 			retval = -ENOMEM;
773 			goto out;
774 		}
775 
776 		/* Reset use_as_src flag for the addresses in the bind address
777 		 * list that are to be deleted.
778 		 */
779 		addr_buf = addrs;
780 		for (i = 0; i < addrcnt; i++) {
781 			laddr = (union sctp_addr *)addr_buf;
782 			af = sctp_get_af_specific(laddr->v4.sin_family);
783 			list_for_each_entry(saddr, &bp->address_list, list) {
784 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 					saddr->state = SCTP_ADDR_DEL;
786 			}
787 			addr_buf += af->sockaddr_len;
788 		}
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 					transports) {
796 			dst_release(transport->dst);
797 			sctp_transport_route(transport, NULL,
798 					     sctp_sk(asoc->base.sk));
799 		}
800 
801 		retval = sctp_send_asconf(asoc, chunk);
802 	}
803 out:
804 	return retval;
805 }
806 
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808  *
809  * API 8.1
810  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811  *                int flags);
812  *
813  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815  * or IPv6 addresses.
816  *
817  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818  * Section 3.1.2 for this usage.
819  *
820  * addrs is a pointer to an array of one or more socket addresses. Each
821  * address is contained in its appropriate structure (i.e. struct
822  * sockaddr_in or struct sockaddr_in6) the family of the address type
823  * must be used to distinguish the address length (note that this
824  * representation is termed a "packed array" of addresses). The caller
825  * specifies the number of addresses in the array with addrcnt.
826  *
827  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828  * -1, and sets errno to the appropriate error code.
829  *
830  * For SCTP, the port given in each socket address must be the same, or
831  * sctp_bindx() will fail, setting errno to EINVAL.
832  *
833  * The flags parameter is formed from the bitwise OR of zero or more of
834  * the following currently defined flags:
835  *
836  * SCTP_BINDX_ADD_ADDR
837  *
838  * SCTP_BINDX_REM_ADDR
839  *
840  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842  * addresses from the association. The two flags are mutually exclusive;
843  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844  * not remove all addresses from an association; sctp_bindx() will
845  * reject such an attempt with EINVAL.
846  *
847  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848  * additional addresses with an endpoint after calling bind().  Or use
849  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850  * socket is associated with so that no new association accepted will be
851  * associated with those addresses. If the endpoint supports dynamic
852  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853  * endpoint to send the appropriate message to the peer to change the
854  * peers address lists.
855  *
856  * Adding and removing addresses from a connected association is
857  * optional functionality. Implementations that do not support this
858  * functionality should return EOPNOTSUPP.
859  *
860  * Basically do nothing but copying the addresses from user to kernel
861  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863  * from userspace.
864  *
865  * We don't use copy_from_user() for optimization: we first do the
866  * sanity checks (buffer size -fast- and access check-healthy
867  * pointer); if all of those succeed, then we can alloc the memory
868  * (expensive operation) needed to copy the data to kernel. Then we do
869  * the copying without checking the user space area
870  * (__copy_from_user()).
871  *
872  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873  * it.
874  *
875  * sk        The sk of the socket
876  * addrs     The pointer to the addresses in user land
877  * addrssize Size of the addrs buffer
878  * op        Operation to perform (add or remove, see the flags of
879  *           sctp_bindx)
880  *
881  * Returns 0 if ok, <0 errno code on error.
882  */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 				      struct sockaddr __user *addrs,
885 				      int addrs_size, int op)
886 {
887 	struct sockaddr *kaddrs;
888 	int err;
889 	int addrcnt = 0;
890 	int walk_size = 0;
891 	struct sockaddr *sa_addr;
892 	void *addr_buf;
893 	struct sctp_af *af;
894 
895 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897 
898 	if (unlikely(addrs_size <= 0))
899 		return -EINVAL;
900 
901 	/* Check the user passed a healthy pointer.  */
902 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 		return -EFAULT;
904 
905 	/* Alloc space for the address array in kernel memory.  */
906 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 	if (unlikely(!kaddrs))
908 		return -ENOMEM;
909 
910 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 		kfree(kaddrs);
912 		return -EFAULT;
913 	}
914 
915 	/* Walk through the addrs buffer and count the number of addresses. */
916 	addr_buf = kaddrs;
917 	while (walk_size < addrs_size) {
918 		sa_addr = (struct sockaddr *)addr_buf;
919 		af = sctp_get_af_specific(sa_addr->sa_family);
920 
921 		/* If the address family is not supported or if this address
922 		 * causes the address buffer to overflow return EINVAL.
923 		 */
924 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 			kfree(kaddrs);
926 			return -EINVAL;
927 		}
928 		addrcnt++;
929 		addr_buf += af->sockaddr_len;
930 		walk_size += af->sockaddr_len;
931 	}
932 
933 	/* Do the work. */
934 	switch (op) {
935 	case SCTP_BINDX_ADD_ADDR:
936 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 		if (err)
938 			goto out;
939 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 		break;
941 
942 	case SCTP_BINDX_REM_ADDR:
943 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 		if (err)
945 			goto out;
946 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 		break;
948 
949 	default:
950 		err = -EINVAL;
951 		break;
952 	}
953 
954 out:
955 	kfree(kaddrs);
956 
957 	return err;
958 }
959 
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961  *
962  * Common routine for handling connect() and sctp_connectx().
963  * Connect will come in with just a single address.
964  */
965 static int __sctp_connect(struct sock* sk,
966 			  struct sockaddr *kaddrs,
967 			  int addrs_size,
968 			  sctp_assoc_t *assoc_id)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	union sctp_addr *sa_addr = NULL;
983 	void *addr_buf;
984 	unsigned short port;
985 	unsigned int f_flags = 0;
986 
987 	sp = sctp_sk(sk);
988 	ep = sp->ep;
989 
990 	/* connect() cannot be done on a socket that is already in ESTABLISHED
991 	 * state - UDP-style peeled off socket or a TCP-style socket that
992 	 * is already connected.
993 	 * It cannot be done even on a TCP-style listening socket.
994 	 */
995 	if (sctp_sstate(sk, ESTABLISHED) ||
996 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 		err = -EISCONN;
998 		goto out_free;
999 	}
1000 
1001 	/* Walk through the addrs buffer and count the number of addresses. */
1002 	addr_buf = kaddrs;
1003 	while (walk_size < addrs_size) {
1004 		sa_addr = (union sctp_addr *)addr_buf;
1005 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 		port = ntohs(sa_addr->v4.sin_port);
1007 
1008 		/* If the address family is not supported or if this address
1009 		 * causes the address buffer to overflow return EINVAL.
1010 		 */
1011 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 			err = -EINVAL;
1013 			goto out_free;
1014 		}
1015 
1016 		/* Save current address so we can work with it */
1017 		memcpy(&to, sa_addr, af->sockaddr_len);
1018 
1019 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 		if (err)
1021 			goto out_free;
1022 
1023 		/* Make sure the destination port is correctly set
1024 		 * in all addresses.
1025 		 */
1026 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 			goto out_free;
1028 
1029 
1030 		/* Check if there already is a matching association on the
1031 		 * endpoint (other than the one created here).
1032 		 */
1033 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 		if (asoc2 && asoc2 != asoc) {
1035 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 				err = -EISCONN;
1037 			else
1038 				err = -EALREADY;
1039 			goto out_free;
1040 		}
1041 
1042 		/* If we could not find a matching association on the endpoint,
1043 		 * make sure that there is no peeled-off association matching
1044 		 * the peer address even on another socket.
1045 		 */
1046 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 			err = -EADDRNOTAVAIL;
1048 			goto out_free;
1049 		}
1050 
1051 		if (!asoc) {
1052 			/* If a bind() or sctp_bindx() is not called prior to
1053 			 * an sctp_connectx() call, the system picks an
1054 			 * ephemeral port and will choose an address set
1055 			 * equivalent to binding with a wildcard address.
1056 			 */
1057 			if (!ep->base.bind_addr.port) {
1058 				if (sctp_autobind(sk)) {
1059 					err = -EAGAIN;
1060 					goto out_free;
1061 				}
1062 			} else {
1063 				/*
1064 				 * If an unprivileged user inherits a 1-many
1065 				 * style socket with open associations on a
1066 				 * privileged port, it MAY be permitted to
1067 				 * accept new associations, but it SHOULD NOT
1068 				 * be permitted to open new associations.
1069 				 */
1070 				if (ep->base.bind_addr.port < PROT_SOCK &&
1071 				    !capable(CAP_NET_BIND_SERVICE)) {
1072 					err = -EACCES;
1073 					goto out_free;
1074 				}
1075 			}
1076 
1077 			scope = sctp_scope(&to);
1078 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 			if (!asoc) {
1080 				err = -ENOMEM;
1081 				goto out_free;
1082 			}
1083 		}
1084 
1085 		/* Prime the peer's transport structures.  */
1086 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 						SCTP_UNKNOWN);
1088 		if (!transport) {
1089 			err = -ENOMEM;
1090 			goto out_free;
1091 		}
1092 
1093 		addrcnt++;
1094 		addr_buf += af->sockaddr_len;
1095 		walk_size += af->sockaddr_len;
1096 	}
1097 
1098 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 	if (err < 0) {
1100 		goto out_free;
1101 	}
1102 
1103 	/* In case the user of sctp_connectx() wants an association
1104 	 * id back, assign one now.
1105 	 */
1106 	if (assoc_id) {
1107 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1108 		if (err < 0)
1109 			goto out_free;
1110 	}
1111 
1112 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1113 	if (err < 0) {
1114 		goto out_free;
1115 	}
1116 
1117 	/* Initialize sk's dport and daddr for getpeername() */
1118 	inet_sk(sk)->dport = htons(asoc->peer.port);
1119 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1120 	af->to_sk_daddr(sa_addr, sk);
1121 	sk->sk_err = 0;
1122 
1123 	/* in-kernel sockets don't generally have a file allocated to them
1124 	 * if all they do is call sock_create_kern().
1125 	 */
1126 	if (sk->sk_socket->file)
1127 		f_flags = sk->sk_socket->file->f_flags;
1128 
1129 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1130 
1131 	err = sctp_wait_for_connect(asoc, &timeo);
1132 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1133 		*assoc_id = asoc->assoc_id;
1134 
1135 	/* Don't free association on exit. */
1136 	asoc = NULL;
1137 
1138 out_free:
1139 
1140 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1141 			  " kaddrs: %p err: %d\n",
1142 			  asoc, kaddrs, err);
1143 	if (asoc)
1144 		sctp_association_free(asoc);
1145 	return err;
1146 }
1147 
1148 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1149  *
1150  * API 8.9
1151  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1152  * 			sctp_assoc_t *asoc);
1153  *
1154  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1155  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1156  * or IPv6 addresses.
1157  *
1158  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1159  * Section 3.1.2 for this usage.
1160  *
1161  * addrs is a pointer to an array of one or more socket addresses. Each
1162  * address is contained in its appropriate structure (i.e. struct
1163  * sockaddr_in or struct sockaddr_in6) the family of the address type
1164  * must be used to distengish the address length (note that this
1165  * representation is termed a "packed array" of addresses). The caller
1166  * specifies the number of addresses in the array with addrcnt.
1167  *
1168  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1169  * the association id of the new association.  On failure, sctp_connectx()
1170  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1171  * is not touched by the kernel.
1172  *
1173  * For SCTP, the port given in each socket address must be the same, or
1174  * sctp_connectx() will fail, setting errno to EINVAL.
1175  *
1176  * An application can use sctp_connectx to initiate an association with
1177  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1178  * allows a caller to specify multiple addresses at which a peer can be
1179  * reached.  The way the SCTP stack uses the list of addresses to set up
1180  * the association is implementation dependant.  This function only
1181  * specifies that the stack will try to make use of all the addresses in
1182  * the list when needed.
1183  *
1184  * Note that the list of addresses passed in is only used for setting up
1185  * the association.  It does not necessarily equal the set of addresses
1186  * the peer uses for the resulting association.  If the caller wants to
1187  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1188  * retrieve them after the association has been set up.
1189  *
1190  * Basically do nothing but copying the addresses from user to kernel
1191  * land and invoking either sctp_connectx(). This is used for tunneling
1192  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1193  *
1194  * We don't use copy_from_user() for optimization: we first do the
1195  * sanity checks (buffer size -fast- and access check-healthy
1196  * pointer); if all of those succeed, then we can alloc the memory
1197  * (expensive operation) needed to copy the data to kernel. Then we do
1198  * the copying without checking the user space area
1199  * (__copy_from_user()).
1200  *
1201  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1202  * it.
1203  *
1204  * sk        The sk of the socket
1205  * addrs     The pointer to the addresses in user land
1206  * addrssize Size of the addrs buffer
1207  *
1208  * Returns >=0 if ok, <0 errno code on error.
1209  */
1210 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1211 				      struct sockaddr __user *addrs,
1212 				      int addrs_size,
1213 				      sctp_assoc_t *assoc_id)
1214 {
1215 	int err = 0;
1216 	struct sockaddr *kaddrs;
1217 
1218 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1219 			  __func__, sk, addrs, addrs_size);
1220 
1221 	if (unlikely(addrs_size <= 0))
1222 		return -EINVAL;
1223 
1224 	/* Check the user passed a healthy pointer.  */
1225 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1226 		return -EFAULT;
1227 
1228 	/* Alloc space for the address array in kernel memory.  */
1229 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1230 	if (unlikely(!kaddrs))
1231 		return -ENOMEM;
1232 
1233 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1234 		err = -EFAULT;
1235 	} else {
1236 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1237 	}
1238 
1239 	kfree(kaddrs);
1240 
1241 	return err;
1242 }
1243 
1244 /*
1245  * This is an older interface.  It's kept for backward compatibility
1246  * to the option that doesn't provide association id.
1247  */
1248 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1249 				      struct sockaddr __user *addrs,
1250 				      int addrs_size)
1251 {
1252 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1253 }
1254 
1255 /*
1256  * New interface for the API.  The since the API is done with a socket
1257  * option, to make it simple we feed back the association id is as a return
1258  * indication to the call.  Error is always negative and association id is
1259  * always positive.
1260  */
1261 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1262 				      struct sockaddr __user *addrs,
1263 				      int addrs_size)
1264 {
1265 	sctp_assoc_t assoc_id = 0;
1266 	int err = 0;
1267 
1268 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1269 
1270 	if (err)
1271 		return err;
1272 	else
1273 		return assoc_id;
1274 }
1275 
1276 /*
1277  * New (hopefully final) interface for the API.  The option buffer is used
1278  * both for the returned association id and the addresses.
1279  */
1280 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1281 					char __user *optval,
1282 					int __user *optlen)
1283 {
1284 	sctp_assoc_t assoc_id = 0;
1285 	int err = 0;
1286 
1287 	if (len < sizeof(assoc_id))
1288 		return -EINVAL;
1289 
1290 	err = __sctp_setsockopt_connectx(sk,
1291 			(struct sockaddr __user *)(optval + sizeof(assoc_id)),
1292 			len - sizeof(assoc_id), &assoc_id);
1293 
1294 	if (err == 0 || err == -EINPROGRESS) {
1295 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1296 			return -EFAULT;
1297 		if (put_user(sizeof(assoc_id), optlen))
1298 			return -EFAULT;
1299 	}
1300 
1301 	return err;
1302 }
1303 
1304 /* API 3.1.4 close() - UDP Style Syntax
1305  * Applications use close() to perform graceful shutdown (as described in
1306  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1307  * by a UDP-style socket.
1308  *
1309  * The syntax is
1310  *
1311  *   ret = close(int sd);
1312  *
1313  *   sd      - the socket descriptor of the associations to be closed.
1314  *
1315  * To gracefully shutdown a specific association represented by the
1316  * UDP-style socket, an application should use the sendmsg() call,
1317  * passing no user data, but including the appropriate flag in the
1318  * ancillary data (see Section xxxx).
1319  *
1320  * If sd in the close() call is a branched-off socket representing only
1321  * one association, the shutdown is performed on that association only.
1322  *
1323  * 4.1.6 close() - TCP Style Syntax
1324  *
1325  * Applications use close() to gracefully close down an association.
1326  *
1327  * The syntax is:
1328  *
1329  *    int close(int sd);
1330  *
1331  *      sd      - the socket descriptor of the association to be closed.
1332  *
1333  * After an application calls close() on a socket descriptor, no further
1334  * socket operations will succeed on that descriptor.
1335  *
1336  * API 7.1.4 SO_LINGER
1337  *
1338  * An application using the TCP-style socket can use this option to
1339  * perform the SCTP ABORT primitive.  The linger option structure is:
1340  *
1341  *  struct  linger {
1342  *     int     l_onoff;                // option on/off
1343  *     int     l_linger;               // linger time
1344  * };
1345  *
1346  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1347  * to 0, calling close() is the same as the ABORT primitive.  If the
1348  * value is set to a negative value, the setsockopt() call will return
1349  * an error.  If the value is set to a positive value linger_time, the
1350  * close() can be blocked for at most linger_time ms.  If the graceful
1351  * shutdown phase does not finish during this period, close() will
1352  * return but the graceful shutdown phase continues in the system.
1353  */
1354 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1355 {
1356 	struct sctp_endpoint *ep;
1357 	struct sctp_association *asoc;
1358 	struct list_head *pos, *temp;
1359 
1360 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1361 
1362 	sctp_lock_sock(sk);
1363 	sk->sk_shutdown = SHUTDOWN_MASK;
1364 	sk->sk_state = SCTP_SS_CLOSING;
1365 
1366 	ep = sctp_sk(sk)->ep;
1367 
1368 	/* Walk all associations on an endpoint.  */
1369 	list_for_each_safe(pos, temp, &ep->asocs) {
1370 		asoc = list_entry(pos, struct sctp_association, asocs);
1371 
1372 		if (sctp_style(sk, TCP)) {
1373 			/* A closed association can still be in the list if
1374 			 * it belongs to a TCP-style listening socket that is
1375 			 * not yet accepted. If so, free it. If not, send an
1376 			 * ABORT or SHUTDOWN based on the linger options.
1377 			 */
1378 			if (sctp_state(asoc, CLOSED)) {
1379 				sctp_unhash_established(asoc);
1380 				sctp_association_free(asoc);
1381 				continue;
1382 			}
1383 		}
1384 
1385 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1386 			struct sctp_chunk *chunk;
1387 
1388 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1389 			if (chunk)
1390 				sctp_primitive_ABORT(asoc, chunk);
1391 		} else
1392 			sctp_primitive_SHUTDOWN(asoc, NULL);
1393 	}
1394 
1395 	/* Clean up any skbs sitting on the receive queue.  */
1396 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1397 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1398 
1399 	/* On a TCP-style socket, block for at most linger_time if set. */
1400 	if (sctp_style(sk, TCP) && timeout)
1401 		sctp_wait_for_close(sk, timeout);
1402 
1403 	/* This will run the backlog queue.  */
1404 	sctp_release_sock(sk);
1405 
1406 	/* Supposedly, no process has access to the socket, but
1407 	 * the net layers still may.
1408 	 */
1409 	sctp_local_bh_disable();
1410 	sctp_bh_lock_sock(sk);
1411 
1412 	/* Hold the sock, since sk_common_release() will put sock_put()
1413 	 * and we have just a little more cleanup.
1414 	 */
1415 	sock_hold(sk);
1416 	sk_common_release(sk);
1417 
1418 	sctp_bh_unlock_sock(sk);
1419 	sctp_local_bh_enable();
1420 
1421 	sock_put(sk);
1422 
1423 	SCTP_DBG_OBJCNT_DEC(sock);
1424 }
1425 
1426 /* Handle EPIPE error. */
1427 static int sctp_error(struct sock *sk, int flags, int err)
1428 {
1429 	if (err == -EPIPE)
1430 		err = sock_error(sk) ? : -EPIPE;
1431 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1432 		send_sig(SIGPIPE, current, 0);
1433 	return err;
1434 }
1435 
1436 /* API 3.1.3 sendmsg() - UDP Style Syntax
1437  *
1438  * An application uses sendmsg() and recvmsg() calls to transmit data to
1439  * and receive data from its peer.
1440  *
1441  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1442  *                  int flags);
1443  *
1444  *  socket  - the socket descriptor of the endpoint.
1445  *  message - pointer to the msghdr structure which contains a single
1446  *            user message and possibly some ancillary data.
1447  *
1448  *            See Section 5 for complete description of the data
1449  *            structures.
1450  *
1451  *  flags   - flags sent or received with the user message, see Section
1452  *            5 for complete description of the flags.
1453  *
1454  * Note:  This function could use a rewrite especially when explicit
1455  * connect support comes in.
1456  */
1457 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1458 
1459 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1460 
1461 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1462 			     struct msghdr *msg, size_t msg_len)
1463 {
1464 	struct sctp_sock *sp;
1465 	struct sctp_endpoint *ep;
1466 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1467 	struct sctp_transport *transport, *chunk_tp;
1468 	struct sctp_chunk *chunk;
1469 	union sctp_addr to;
1470 	struct sockaddr *msg_name = NULL;
1471 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1472 	struct sctp_sndrcvinfo *sinfo;
1473 	struct sctp_initmsg *sinit;
1474 	sctp_assoc_t associd = 0;
1475 	sctp_cmsgs_t cmsgs = { NULL };
1476 	int err;
1477 	sctp_scope_t scope;
1478 	long timeo;
1479 	__u16 sinfo_flags = 0;
1480 	struct sctp_datamsg *datamsg;
1481 	int msg_flags = msg->msg_flags;
1482 
1483 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1484 			  sk, msg, msg_len);
1485 
1486 	err = 0;
1487 	sp = sctp_sk(sk);
1488 	ep = sp->ep;
1489 
1490 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1491 
1492 	/* We cannot send a message over a TCP-style listening socket. */
1493 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1494 		err = -EPIPE;
1495 		goto out_nounlock;
1496 	}
1497 
1498 	/* Parse out the SCTP CMSGs.  */
1499 	err = sctp_msghdr_parse(msg, &cmsgs);
1500 
1501 	if (err) {
1502 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1503 		goto out_nounlock;
1504 	}
1505 
1506 	/* Fetch the destination address for this packet.  This
1507 	 * address only selects the association--it is not necessarily
1508 	 * the address we will send to.
1509 	 * For a peeled-off socket, msg_name is ignored.
1510 	 */
1511 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1512 		int msg_namelen = msg->msg_namelen;
1513 
1514 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1515 				       msg_namelen);
1516 		if (err)
1517 			return err;
1518 
1519 		if (msg_namelen > sizeof(to))
1520 			msg_namelen = sizeof(to);
1521 		memcpy(&to, msg->msg_name, msg_namelen);
1522 		msg_name = msg->msg_name;
1523 	}
1524 
1525 	sinfo = cmsgs.info;
1526 	sinit = cmsgs.init;
1527 
1528 	/* Did the user specify SNDRCVINFO?  */
1529 	if (sinfo) {
1530 		sinfo_flags = sinfo->sinfo_flags;
1531 		associd = sinfo->sinfo_assoc_id;
1532 	}
1533 
1534 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1535 			  msg_len, sinfo_flags);
1536 
1537 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1538 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1539 		err = -EINVAL;
1540 		goto out_nounlock;
1541 	}
1542 
1543 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1544 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1545 	 * If SCTP_ABORT is set, the message length could be non zero with
1546 	 * the msg_iov set to the user abort reason.
1547 	 */
1548 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1549 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1550 		err = -EINVAL;
1551 		goto out_nounlock;
1552 	}
1553 
1554 	/* If SCTP_ADDR_OVER is set, there must be an address
1555 	 * specified in msg_name.
1556 	 */
1557 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1558 		err = -EINVAL;
1559 		goto out_nounlock;
1560 	}
1561 
1562 	transport = NULL;
1563 
1564 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1565 
1566 	sctp_lock_sock(sk);
1567 
1568 	/* If a msg_name has been specified, assume this is to be used.  */
1569 	if (msg_name) {
1570 		/* Look for a matching association on the endpoint. */
1571 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1572 		if (!asoc) {
1573 			/* If we could not find a matching association on the
1574 			 * endpoint, make sure that it is not a TCP-style
1575 			 * socket that already has an association or there is
1576 			 * no peeled-off association on another socket.
1577 			 */
1578 			if ((sctp_style(sk, TCP) &&
1579 			     sctp_sstate(sk, ESTABLISHED)) ||
1580 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1581 				err = -EADDRNOTAVAIL;
1582 				goto out_unlock;
1583 			}
1584 		}
1585 	} else {
1586 		asoc = sctp_id2assoc(sk, associd);
1587 		if (!asoc) {
1588 			err = -EPIPE;
1589 			goto out_unlock;
1590 		}
1591 	}
1592 
1593 	if (asoc) {
1594 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1595 
1596 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1597 		 * socket that has an association in CLOSED state. This can
1598 		 * happen when an accepted socket has an association that is
1599 		 * already CLOSED.
1600 		 */
1601 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1602 			err = -EPIPE;
1603 			goto out_unlock;
1604 		}
1605 
1606 		if (sinfo_flags & SCTP_EOF) {
1607 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1608 					  asoc);
1609 			sctp_primitive_SHUTDOWN(asoc, NULL);
1610 			err = 0;
1611 			goto out_unlock;
1612 		}
1613 		if (sinfo_flags & SCTP_ABORT) {
1614 
1615 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1616 			if (!chunk) {
1617 				err = -ENOMEM;
1618 				goto out_unlock;
1619 			}
1620 
1621 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1622 			sctp_primitive_ABORT(asoc, chunk);
1623 			err = 0;
1624 			goto out_unlock;
1625 		}
1626 	}
1627 
1628 	/* Do we need to create the association?  */
1629 	if (!asoc) {
1630 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1631 
1632 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1633 			err = -EINVAL;
1634 			goto out_unlock;
1635 		}
1636 
1637 		/* Check for invalid stream against the stream counts,
1638 		 * either the default or the user specified stream counts.
1639 		 */
1640 		if (sinfo) {
1641 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1642 				/* Check against the defaults. */
1643 				if (sinfo->sinfo_stream >=
1644 				    sp->initmsg.sinit_num_ostreams) {
1645 					err = -EINVAL;
1646 					goto out_unlock;
1647 				}
1648 			} else {
1649 				/* Check against the requested.  */
1650 				if (sinfo->sinfo_stream >=
1651 				    sinit->sinit_num_ostreams) {
1652 					err = -EINVAL;
1653 					goto out_unlock;
1654 				}
1655 			}
1656 		}
1657 
1658 		/*
1659 		 * API 3.1.2 bind() - UDP Style Syntax
1660 		 * If a bind() or sctp_bindx() is not called prior to a
1661 		 * sendmsg() call that initiates a new association, the
1662 		 * system picks an ephemeral port and will choose an address
1663 		 * set equivalent to binding with a wildcard address.
1664 		 */
1665 		if (!ep->base.bind_addr.port) {
1666 			if (sctp_autobind(sk)) {
1667 				err = -EAGAIN;
1668 				goto out_unlock;
1669 			}
1670 		} else {
1671 			/*
1672 			 * If an unprivileged user inherits a one-to-many
1673 			 * style socket with open associations on a privileged
1674 			 * port, it MAY be permitted to accept new associations,
1675 			 * but it SHOULD NOT be permitted to open new
1676 			 * associations.
1677 			 */
1678 			if (ep->base.bind_addr.port < PROT_SOCK &&
1679 			    !capable(CAP_NET_BIND_SERVICE)) {
1680 				err = -EACCES;
1681 				goto out_unlock;
1682 			}
1683 		}
1684 
1685 		scope = sctp_scope(&to);
1686 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1687 		if (!new_asoc) {
1688 			err = -ENOMEM;
1689 			goto out_unlock;
1690 		}
1691 		asoc = new_asoc;
1692 
1693 		/* If the SCTP_INIT ancillary data is specified, set all
1694 		 * the association init values accordingly.
1695 		 */
1696 		if (sinit) {
1697 			if (sinit->sinit_num_ostreams) {
1698 				asoc->c.sinit_num_ostreams =
1699 					sinit->sinit_num_ostreams;
1700 			}
1701 			if (sinit->sinit_max_instreams) {
1702 				asoc->c.sinit_max_instreams =
1703 					sinit->sinit_max_instreams;
1704 			}
1705 			if (sinit->sinit_max_attempts) {
1706 				asoc->max_init_attempts
1707 					= sinit->sinit_max_attempts;
1708 			}
1709 			if (sinit->sinit_max_init_timeo) {
1710 				asoc->max_init_timeo =
1711 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1712 			}
1713 		}
1714 
1715 		/* Prime the peer's transport structures.  */
1716 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1717 		if (!transport) {
1718 			err = -ENOMEM;
1719 			goto out_free;
1720 		}
1721 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1722 		if (err < 0) {
1723 			err = -ENOMEM;
1724 			goto out_free;
1725 		}
1726 	}
1727 
1728 	/* ASSERT: we have a valid association at this point.  */
1729 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1730 
1731 	if (!sinfo) {
1732 		/* If the user didn't specify SNDRCVINFO, make up one with
1733 		 * some defaults.
1734 		 */
1735 		default_sinfo.sinfo_stream = asoc->default_stream;
1736 		default_sinfo.sinfo_flags = asoc->default_flags;
1737 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1738 		default_sinfo.sinfo_context = asoc->default_context;
1739 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1740 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1741 		sinfo = &default_sinfo;
1742 	}
1743 
1744 	/* API 7.1.7, the sndbuf size per association bounds the
1745 	 * maximum size of data that can be sent in a single send call.
1746 	 */
1747 	if (msg_len > sk->sk_sndbuf) {
1748 		err = -EMSGSIZE;
1749 		goto out_free;
1750 	}
1751 
1752 	if (asoc->pmtu_pending)
1753 		sctp_assoc_pending_pmtu(asoc);
1754 
1755 	/* If fragmentation is disabled and the message length exceeds the
1756 	 * association fragmentation point, return EMSGSIZE.  The I-D
1757 	 * does not specify what this error is, but this looks like
1758 	 * a great fit.
1759 	 */
1760 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1761 		err = -EMSGSIZE;
1762 		goto out_free;
1763 	}
1764 
1765 	if (sinfo) {
1766 		/* Check for invalid stream. */
1767 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1768 			err = -EINVAL;
1769 			goto out_free;
1770 		}
1771 	}
1772 
1773 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1774 	if (!sctp_wspace(asoc)) {
1775 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1776 		if (err)
1777 			goto out_free;
1778 	}
1779 
1780 	/* If an address is passed with the sendto/sendmsg call, it is used
1781 	 * to override the primary destination address in the TCP model, or
1782 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1783 	 */
1784 	if ((sctp_style(sk, TCP) && msg_name) ||
1785 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1786 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1787 		if (!chunk_tp) {
1788 			err = -EINVAL;
1789 			goto out_free;
1790 		}
1791 	} else
1792 		chunk_tp = NULL;
1793 
1794 	/* Auto-connect, if we aren't connected already. */
1795 	if (sctp_state(asoc, CLOSED)) {
1796 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1797 		if (err < 0)
1798 			goto out_free;
1799 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1800 	}
1801 
1802 	/* Break the message into multiple chunks of maximum size. */
1803 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1804 	if (!datamsg) {
1805 		err = -ENOMEM;
1806 		goto out_free;
1807 	}
1808 
1809 	/* Now send the (possibly) fragmented message. */
1810 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1811 		sctp_chunk_hold(chunk);
1812 
1813 		/* Do accounting for the write space.  */
1814 		sctp_set_owner_w(chunk);
1815 
1816 		chunk->transport = chunk_tp;
1817 	}
1818 
1819 	/* Send it to the lower layers.  Note:  all chunks
1820 	 * must either fail or succeed.   The lower layer
1821 	 * works that way today.  Keep it that way or this
1822 	 * breaks.
1823 	 */
1824 	err = sctp_primitive_SEND(asoc, datamsg);
1825 	/* Did the lower layer accept the chunk? */
1826 	if (err)
1827 		sctp_datamsg_free(datamsg);
1828 	else
1829 		sctp_datamsg_put(datamsg);
1830 
1831 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1832 
1833 	if (err)
1834 		goto out_free;
1835 	else
1836 		err = msg_len;
1837 
1838 	/* If we are already past ASSOCIATE, the lower
1839 	 * layers are responsible for association cleanup.
1840 	 */
1841 	goto out_unlock;
1842 
1843 out_free:
1844 	if (new_asoc)
1845 		sctp_association_free(asoc);
1846 out_unlock:
1847 	sctp_release_sock(sk);
1848 
1849 out_nounlock:
1850 	return sctp_error(sk, msg_flags, err);
1851 
1852 #if 0
1853 do_sock_err:
1854 	if (msg_len)
1855 		err = msg_len;
1856 	else
1857 		err = sock_error(sk);
1858 	goto out;
1859 
1860 do_interrupted:
1861 	if (msg_len)
1862 		err = msg_len;
1863 	goto out;
1864 #endif /* 0 */
1865 }
1866 
1867 /* This is an extended version of skb_pull() that removes the data from the
1868  * start of a skb even when data is spread across the list of skb's in the
1869  * frag_list. len specifies the total amount of data that needs to be removed.
1870  * when 'len' bytes could be removed from the skb, it returns 0.
1871  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1872  * could not be removed.
1873  */
1874 static int sctp_skb_pull(struct sk_buff *skb, int len)
1875 {
1876 	struct sk_buff *list;
1877 	int skb_len = skb_headlen(skb);
1878 	int rlen;
1879 
1880 	if (len <= skb_len) {
1881 		__skb_pull(skb, len);
1882 		return 0;
1883 	}
1884 	len -= skb_len;
1885 	__skb_pull(skb, skb_len);
1886 
1887 	skb_walk_frags(skb, list) {
1888 		rlen = sctp_skb_pull(list, len);
1889 		skb->len -= (len-rlen);
1890 		skb->data_len -= (len-rlen);
1891 
1892 		if (!rlen)
1893 			return 0;
1894 
1895 		len = rlen;
1896 	}
1897 
1898 	return len;
1899 }
1900 
1901 /* API 3.1.3  recvmsg() - UDP Style Syntax
1902  *
1903  *  ssize_t recvmsg(int socket, struct msghdr *message,
1904  *                    int flags);
1905  *
1906  *  socket  - the socket descriptor of the endpoint.
1907  *  message - pointer to the msghdr structure which contains a single
1908  *            user message and possibly some ancillary data.
1909  *
1910  *            See Section 5 for complete description of the data
1911  *            structures.
1912  *
1913  *  flags   - flags sent or received with the user message, see Section
1914  *            5 for complete description of the flags.
1915  */
1916 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1917 
1918 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1919 			     struct msghdr *msg, size_t len, int noblock,
1920 			     int flags, int *addr_len)
1921 {
1922 	struct sctp_ulpevent *event = NULL;
1923 	struct sctp_sock *sp = sctp_sk(sk);
1924 	struct sk_buff *skb;
1925 	int copied;
1926 	int err = 0;
1927 	int skb_len;
1928 
1929 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1930 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1931 			  "len", len, "knoblauch", noblock,
1932 			  "flags", flags, "addr_len", addr_len);
1933 
1934 	sctp_lock_sock(sk);
1935 
1936 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1937 		err = -ENOTCONN;
1938 		goto out;
1939 	}
1940 
1941 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1942 	if (!skb)
1943 		goto out;
1944 
1945 	/* Get the total length of the skb including any skb's in the
1946 	 * frag_list.
1947 	 */
1948 	skb_len = skb->len;
1949 
1950 	copied = skb_len;
1951 	if (copied > len)
1952 		copied = len;
1953 
1954 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1955 
1956 	event = sctp_skb2event(skb);
1957 
1958 	if (err)
1959 		goto out_free;
1960 
1961 	sock_recv_timestamp(msg, sk, skb);
1962 	if (sctp_ulpevent_is_notification(event)) {
1963 		msg->msg_flags |= MSG_NOTIFICATION;
1964 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1965 	} else {
1966 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1967 	}
1968 
1969 	/* Check if we allow SCTP_SNDRCVINFO. */
1970 	if (sp->subscribe.sctp_data_io_event)
1971 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1972 #if 0
1973 	/* FIXME: we should be calling IP/IPv6 layers.  */
1974 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1975 		ip_cmsg_recv(msg, skb);
1976 #endif
1977 
1978 	err = copied;
1979 
1980 	/* If skb's length exceeds the user's buffer, update the skb and
1981 	 * push it back to the receive_queue so that the next call to
1982 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1983 	 */
1984 	if (skb_len > copied) {
1985 		msg->msg_flags &= ~MSG_EOR;
1986 		if (flags & MSG_PEEK)
1987 			goto out_free;
1988 		sctp_skb_pull(skb, copied);
1989 		skb_queue_head(&sk->sk_receive_queue, skb);
1990 
1991 		/* When only partial message is copied to the user, increase
1992 		 * rwnd by that amount. If all the data in the skb is read,
1993 		 * rwnd is updated when the event is freed.
1994 		 */
1995 		if (!sctp_ulpevent_is_notification(event))
1996 			sctp_assoc_rwnd_increase(event->asoc, copied);
1997 		goto out;
1998 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1999 		   (event->msg_flags & MSG_EOR))
2000 		msg->msg_flags |= MSG_EOR;
2001 	else
2002 		msg->msg_flags &= ~MSG_EOR;
2003 
2004 out_free:
2005 	if (flags & MSG_PEEK) {
2006 		/* Release the skb reference acquired after peeking the skb in
2007 		 * sctp_skb_recv_datagram().
2008 		 */
2009 		kfree_skb(skb);
2010 	} else {
2011 		/* Free the event which includes releasing the reference to
2012 		 * the owner of the skb, freeing the skb and updating the
2013 		 * rwnd.
2014 		 */
2015 		sctp_ulpevent_free(event);
2016 	}
2017 out:
2018 	sctp_release_sock(sk);
2019 	return err;
2020 }
2021 
2022 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2023  *
2024  * This option is a on/off flag.  If enabled no SCTP message
2025  * fragmentation will be performed.  Instead if a message being sent
2026  * exceeds the current PMTU size, the message will NOT be sent and
2027  * instead a error will be indicated to the user.
2028  */
2029 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2030 					    char __user *optval, int optlen)
2031 {
2032 	int val;
2033 
2034 	if (optlen < sizeof(int))
2035 		return -EINVAL;
2036 
2037 	if (get_user(val, (int __user *)optval))
2038 		return -EFAULT;
2039 
2040 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2041 
2042 	return 0;
2043 }
2044 
2045 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2046 					int optlen)
2047 {
2048 	if (optlen > sizeof(struct sctp_event_subscribe))
2049 		return -EINVAL;
2050 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2051 		return -EFAULT;
2052 	return 0;
2053 }
2054 
2055 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2056  *
2057  * This socket option is applicable to the UDP-style socket only.  When
2058  * set it will cause associations that are idle for more than the
2059  * specified number of seconds to automatically close.  An association
2060  * being idle is defined an association that has NOT sent or received
2061  * user data.  The special value of '0' indicates that no automatic
2062  * close of any associations should be performed.  The option expects an
2063  * integer defining the number of seconds of idle time before an
2064  * association is closed.
2065  */
2066 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2067 					    int optlen)
2068 {
2069 	struct sctp_sock *sp = sctp_sk(sk);
2070 
2071 	/* Applicable to UDP-style socket only */
2072 	if (sctp_style(sk, TCP))
2073 		return -EOPNOTSUPP;
2074 	if (optlen != sizeof(int))
2075 		return -EINVAL;
2076 	if (copy_from_user(&sp->autoclose, optval, optlen))
2077 		return -EFAULT;
2078 
2079 	return 0;
2080 }
2081 
2082 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2083  *
2084  * Applications can enable or disable heartbeats for any peer address of
2085  * an association, modify an address's heartbeat interval, force a
2086  * heartbeat to be sent immediately, and adjust the address's maximum
2087  * number of retransmissions sent before an address is considered
2088  * unreachable.  The following structure is used to access and modify an
2089  * address's parameters:
2090  *
2091  *  struct sctp_paddrparams {
2092  *     sctp_assoc_t            spp_assoc_id;
2093  *     struct sockaddr_storage spp_address;
2094  *     uint32_t                spp_hbinterval;
2095  *     uint16_t                spp_pathmaxrxt;
2096  *     uint32_t                spp_pathmtu;
2097  *     uint32_t                spp_sackdelay;
2098  *     uint32_t                spp_flags;
2099  * };
2100  *
2101  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2102  *                     application, and identifies the association for
2103  *                     this query.
2104  *   spp_address     - This specifies which address is of interest.
2105  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2106  *                     in milliseconds.  If a  value of zero
2107  *                     is present in this field then no changes are to
2108  *                     be made to this parameter.
2109  *   spp_pathmaxrxt  - This contains the maximum number of
2110  *                     retransmissions before this address shall be
2111  *                     considered unreachable. If a  value of zero
2112  *                     is present in this field then no changes are to
2113  *                     be made to this parameter.
2114  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2115  *                     specified here will be the "fixed" path mtu.
2116  *                     Note that if the spp_address field is empty
2117  *                     then all associations on this address will
2118  *                     have this fixed path mtu set upon them.
2119  *
2120  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2121  *                     the number of milliseconds that sacks will be delayed
2122  *                     for. This value will apply to all addresses of an
2123  *                     association if the spp_address field is empty. Note
2124  *                     also, that if delayed sack is enabled and this
2125  *                     value is set to 0, no change is made to the last
2126  *                     recorded delayed sack timer value.
2127  *
2128  *   spp_flags       - These flags are used to control various features
2129  *                     on an association. The flag field may contain
2130  *                     zero or more of the following options.
2131  *
2132  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2133  *                     specified address. Note that if the address
2134  *                     field is empty all addresses for the association
2135  *                     have heartbeats enabled upon them.
2136  *
2137  *                     SPP_HB_DISABLE - Disable heartbeats on the
2138  *                     speicifed address. Note that if the address
2139  *                     field is empty all addresses for the association
2140  *                     will have their heartbeats disabled. Note also
2141  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2142  *                     mutually exclusive, only one of these two should
2143  *                     be specified. Enabling both fields will have
2144  *                     undetermined results.
2145  *
2146  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2147  *                     to be made immediately.
2148  *
2149  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2150  *                     heartbeat delayis to be set to the value of 0
2151  *                     milliseconds.
2152  *
2153  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2154  *                     discovery upon the specified address. Note that
2155  *                     if the address feild is empty then all addresses
2156  *                     on the association are effected.
2157  *
2158  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2159  *                     discovery upon the specified address. Note that
2160  *                     if the address feild is empty then all addresses
2161  *                     on the association are effected. Not also that
2162  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2163  *                     exclusive. Enabling both will have undetermined
2164  *                     results.
2165  *
2166  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2167  *                     on delayed sack. The time specified in spp_sackdelay
2168  *                     is used to specify the sack delay for this address. Note
2169  *                     that if spp_address is empty then all addresses will
2170  *                     enable delayed sack and take on the sack delay
2171  *                     value specified in spp_sackdelay.
2172  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2173  *                     off delayed sack. If the spp_address field is blank then
2174  *                     delayed sack is disabled for the entire association. Note
2175  *                     also that this field is mutually exclusive to
2176  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2177  *                     results.
2178  */
2179 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2180 				       struct sctp_transport   *trans,
2181 				       struct sctp_association *asoc,
2182 				       struct sctp_sock        *sp,
2183 				       int                      hb_change,
2184 				       int                      pmtud_change,
2185 				       int                      sackdelay_change)
2186 {
2187 	int error;
2188 
2189 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2190 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2191 		if (error)
2192 			return error;
2193 	}
2194 
2195 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2196 	 * this field is ignored.  Note also that a value of zero indicates
2197 	 * the current setting should be left unchanged.
2198 	 */
2199 	if (params->spp_flags & SPP_HB_ENABLE) {
2200 
2201 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2202 		 * set.  This lets us use 0 value when this flag
2203 		 * is set.
2204 		 */
2205 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2206 			params->spp_hbinterval = 0;
2207 
2208 		if (params->spp_hbinterval ||
2209 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2210 			if (trans) {
2211 				trans->hbinterval =
2212 				    msecs_to_jiffies(params->spp_hbinterval);
2213 			} else if (asoc) {
2214 				asoc->hbinterval =
2215 				    msecs_to_jiffies(params->spp_hbinterval);
2216 			} else {
2217 				sp->hbinterval = params->spp_hbinterval;
2218 			}
2219 		}
2220 	}
2221 
2222 	if (hb_change) {
2223 		if (trans) {
2224 			trans->param_flags =
2225 				(trans->param_flags & ~SPP_HB) | hb_change;
2226 		} else if (asoc) {
2227 			asoc->param_flags =
2228 				(asoc->param_flags & ~SPP_HB) | hb_change;
2229 		} else {
2230 			sp->param_flags =
2231 				(sp->param_flags & ~SPP_HB) | hb_change;
2232 		}
2233 	}
2234 
2235 	/* When Path MTU discovery is disabled the value specified here will
2236 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2237 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2238 	 * effect).
2239 	 */
2240 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2241 		if (trans) {
2242 			trans->pathmtu = params->spp_pathmtu;
2243 			sctp_assoc_sync_pmtu(asoc);
2244 		} else if (asoc) {
2245 			asoc->pathmtu = params->spp_pathmtu;
2246 			sctp_frag_point(asoc, params->spp_pathmtu);
2247 		} else {
2248 			sp->pathmtu = params->spp_pathmtu;
2249 		}
2250 	}
2251 
2252 	if (pmtud_change) {
2253 		if (trans) {
2254 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2255 				(params->spp_flags & SPP_PMTUD_ENABLE);
2256 			trans->param_flags =
2257 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2258 			if (update) {
2259 				sctp_transport_pmtu(trans);
2260 				sctp_assoc_sync_pmtu(asoc);
2261 			}
2262 		} else if (asoc) {
2263 			asoc->param_flags =
2264 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2265 		} else {
2266 			sp->param_flags =
2267 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2268 		}
2269 	}
2270 
2271 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2272 	 * value of this field is ignored.  Note also that a value of zero
2273 	 * indicates the current setting should be left unchanged.
2274 	 */
2275 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2276 		if (trans) {
2277 			trans->sackdelay =
2278 				msecs_to_jiffies(params->spp_sackdelay);
2279 		} else if (asoc) {
2280 			asoc->sackdelay =
2281 				msecs_to_jiffies(params->spp_sackdelay);
2282 		} else {
2283 			sp->sackdelay = params->spp_sackdelay;
2284 		}
2285 	}
2286 
2287 	if (sackdelay_change) {
2288 		if (trans) {
2289 			trans->param_flags =
2290 				(trans->param_flags & ~SPP_SACKDELAY) |
2291 				sackdelay_change;
2292 		} else if (asoc) {
2293 			asoc->param_flags =
2294 				(asoc->param_flags & ~SPP_SACKDELAY) |
2295 				sackdelay_change;
2296 		} else {
2297 			sp->param_flags =
2298 				(sp->param_flags & ~SPP_SACKDELAY) |
2299 				sackdelay_change;
2300 		}
2301 	}
2302 
2303 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2304 	 * of this field is ignored.  Note also that a value of zero
2305 	 * indicates the current setting should be left unchanged.
2306 	 */
2307 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2308 		if (trans) {
2309 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2310 		} else if (asoc) {
2311 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2312 		} else {
2313 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2314 		}
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2321 					    char __user *optval, int optlen)
2322 {
2323 	struct sctp_paddrparams  params;
2324 	struct sctp_transport   *trans = NULL;
2325 	struct sctp_association *asoc = NULL;
2326 	struct sctp_sock        *sp = sctp_sk(sk);
2327 	int error;
2328 	int hb_change, pmtud_change, sackdelay_change;
2329 
2330 	if (optlen != sizeof(struct sctp_paddrparams))
2331 		return - EINVAL;
2332 
2333 	if (copy_from_user(&params, optval, optlen))
2334 		return -EFAULT;
2335 
2336 	/* Validate flags and value parameters. */
2337 	hb_change        = params.spp_flags & SPP_HB;
2338 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2339 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2340 
2341 	if (hb_change        == SPP_HB ||
2342 	    pmtud_change     == SPP_PMTUD ||
2343 	    sackdelay_change == SPP_SACKDELAY ||
2344 	    params.spp_sackdelay > 500 ||
2345 	    (params.spp_pathmtu
2346 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2347 		return -EINVAL;
2348 
2349 	/* If an address other than INADDR_ANY is specified, and
2350 	 * no transport is found, then the request is invalid.
2351 	 */
2352 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2353 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2354 					       params.spp_assoc_id);
2355 		if (!trans)
2356 			return -EINVAL;
2357 	}
2358 
2359 	/* Get association, if assoc_id != 0 and the socket is a one
2360 	 * to many style socket, and an association was not found, then
2361 	 * the id was invalid.
2362 	 */
2363 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2364 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2365 		return -EINVAL;
2366 
2367 	/* Heartbeat demand can only be sent on a transport or
2368 	 * association, but not a socket.
2369 	 */
2370 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2371 		return -EINVAL;
2372 
2373 	/* Process parameters. */
2374 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2375 					    hb_change, pmtud_change,
2376 					    sackdelay_change);
2377 
2378 	if (error)
2379 		return error;
2380 
2381 	/* If changes are for association, also apply parameters to each
2382 	 * transport.
2383 	 */
2384 	if (!trans && asoc) {
2385 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2386 				transports) {
2387 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2388 						    hb_change, pmtud_change,
2389 						    sackdelay_change);
2390 		}
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 /*
2397  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2398  *
2399  * This option will effect the way delayed acks are performed.  This
2400  * option allows you to get or set the delayed ack time, in
2401  * milliseconds.  It also allows changing the delayed ack frequency.
2402  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2403  * the assoc_id is 0, then this sets or gets the endpoints default
2404  * values.  If the assoc_id field is non-zero, then the set or get
2405  * effects the specified association for the one to many model (the
2406  * assoc_id field is ignored by the one to one model).  Note that if
2407  * sack_delay or sack_freq are 0 when setting this option, then the
2408  * current values will remain unchanged.
2409  *
2410  * struct sctp_sack_info {
2411  *     sctp_assoc_t            sack_assoc_id;
2412  *     uint32_t                sack_delay;
2413  *     uint32_t                sack_freq;
2414  * };
2415  *
2416  * sack_assoc_id -  This parameter, indicates which association the user
2417  *    is performing an action upon.  Note that if this field's value is
2418  *    zero then the endpoints default value is changed (effecting future
2419  *    associations only).
2420  *
2421  * sack_delay -  This parameter contains the number of milliseconds that
2422  *    the user is requesting the delayed ACK timer be set to.  Note that
2423  *    this value is defined in the standard to be between 200 and 500
2424  *    milliseconds.
2425  *
2426  * sack_freq -  This parameter contains the number of packets that must
2427  *    be received before a sack is sent without waiting for the delay
2428  *    timer to expire.  The default value for this is 2, setting this
2429  *    value to 1 will disable the delayed sack algorithm.
2430  */
2431 
2432 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2433 					    char __user *optval, int optlen)
2434 {
2435 	struct sctp_sack_info    params;
2436 	struct sctp_transport   *trans = NULL;
2437 	struct sctp_association *asoc = NULL;
2438 	struct sctp_sock        *sp = sctp_sk(sk);
2439 
2440 	if (optlen == sizeof(struct sctp_sack_info)) {
2441 		if (copy_from_user(&params, optval, optlen))
2442 			return -EFAULT;
2443 
2444 		if (params.sack_delay == 0 && params.sack_freq == 0)
2445 			return 0;
2446 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2447 		printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
2448 		       "in delayed_ack socket option deprecated\n");
2449 		printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
2450 		if (copy_from_user(&params, optval, optlen))
2451 			return -EFAULT;
2452 
2453 		if (params.sack_delay == 0)
2454 			params.sack_freq = 1;
2455 		else
2456 			params.sack_freq = 0;
2457 	} else
2458 		return - EINVAL;
2459 
2460 	/* Validate value parameter. */
2461 	if (params.sack_delay > 500)
2462 		return -EINVAL;
2463 
2464 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2465 	 * to many style socket, and an association was not found, then
2466 	 * the id was invalid.
2467 	 */
2468 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2469 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2470 		return -EINVAL;
2471 
2472 	if (params.sack_delay) {
2473 		if (asoc) {
2474 			asoc->sackdelay =
2475 				msecs_to_jiffies(params.sack_delay);
2476 			asoc->param_flags =
2477 				(asoc->param_flags & ~SPP_SACKDELAY) |
2478 				SPP_SACKDELAY_ENABLE;
2479 		} else {
2480 			sp->sackdelay = params.sack_delay;
2481 			sp->param_flags =
2482 				(sp->param_flags & ~SPP_SACKDELAY) |
2483 				SPP_SACKDELAY_ENABLE;
2484 		}
2485 	}
2486 
2487 	if (params.sack_freq == 1) {
2488 		if (asoc) {
2489 			asoc->param_flags =
2490 				(asoc->param_flags & ~SPP_SACKDELAY) |
2491 				SPP_SACKDELAY_DISABLE;
2492 		} else {
2493 			sp->param_flags =
2494 				(sp->param_flags & ~SPP_SACKDELAY) |
2495 				SPP_SACKDELAY_DISABLE;
2496 		}
2497 	} else if (params.sack_freq > 1) {
2498 		if (asoc) {
2499 			asoc->sackfreq = params.sack_freq;
2500 			asoc->param_flags =
2501 				(asoc->param_flags & ~SPP_SACKDELAY) |
2502 				SPP_SACKDELAY_ENABLE;
2503 		} else {
2504 			sp->sackfreq = params.sack_freq;
2505 			sp->param_flags =
2506 				(sp->param_flags & ~SPP_SACKDELAY) |
2507 				SPP_SACKDELAY_ENABLE;
2508 		}
2509 	}
2510 
2511 	/* If change is for association, also apply to each transport. */
2512 	if (asoc) {
2513 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2514 				transports) {
2515 			if (params.sack_delay) {
2516 				trans->sackdelay =
2517 					msecs_to_jiffies(params.sack_delay);
2518 				trans->param_flags =
2519 					(trans->param_flags & ~SPP_SACKDELAY) |
2520 					SPP_SACKDELAY_ENABLE;
2521 			}
2522 			if (params.sack_freq == 1) {
2523 				trans->param_flags =
2524 					(trans->param_flags & ~SPP_SACKDELAY) |
2525 					SPP_SACKDELAY_DISABLE;
2526 			} else if (params.sack_freq > 1) {
2527 				trans->sackfreq = params.sack_freq;
2528 				trans->param_flags =
2529 					(trans->param_flags & ~SPP_SACKDELAY) |
2530 					SPP_SACKDELAY_ENABLE;
2531 			}
2532 		}
2533 	}
2534 
2535 	return 0;
2536 }
2537 
2538 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2539  *
2540  * Applications can specify protocol parameters for the default association
2541  * initialization.  The option name argument to setsockopt() and getsockopt()
2542  * is SCTP_INITMSG.
2543  *
2544  * Setting initialization parameters is effective only on an unconnected
2545  * socket (for UDP-style sockets only future associations are effected
2546  * by the change).  With TCP-style sockets, this option is inherited by
2547  * sockets derived from a listener socket.
2548  */
2549 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2550 {
2551 	struct sctp_initmsg sinit;
2552 	struct sctp_sock *sp = sctp_sk(sk);
2553 
2554 	if (optlen != sizeof(struct sctp_initmsg))
2555 		return -EINVAL;
2556 	if (copy_from_user(&sinit, optval, optlen))
2557 		return -EFAULT;
2558 
2559 	if (sinit.sinit_num_ostreams)
2560 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2561 	if (sinit.sinit_max_instreams)
2562 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2563 	if (sinit.sinit_max_attempts)
2564 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2565 	if (sinit.sinit_max_init_timeo)
2566 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2567 
2568 	return 0;
2569 }
2570 
2571 /*
2572  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2573  *
2574  *   Applications that wish to use the sendto() system call may wish to
2575  *   specify a default set of parameters that would normally be supplied
2576  *   through the inclusion of ancillary data.  This socket option allows
2577  *   such an application to set the default sctp_sndrcvinfo structure.
2578  *   The application that wishes to use this socket option simply passes
2579  *   in to this call the sctp_sndrcvinfo structure defined in Section
2580  *   5.2.2) The input parameters accepted by this call include
2581  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2582  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2583  *   to this call if the caller is using the UDP model.
2584  */
2585 static int sctp_setsockopt_default_send_param(struct sock *sk,
2586 						char __user *optval, int optlen)
2587 {
2588 	struct sctp_sndrcvinfo info;
2589 	struct sctp_association *asoc;
2590 	struct sctp_sock *sp = sctp_sk(sk);
2591 
2592 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2593 		return -EINVAL;
2594 	if (copy_from_user(&info, optval, optlen))
2595 		return -EFAULT;
2596 
2597 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2598 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2599 		return -EINVAL;
2600 
2601 	if (asoc) {
2602 		asoc->default_stream = info.sinfo_stream;
2603 		asoc->default_flags = info.sinfo_flags;
2604 		asoc->default_ppid = info.sinfo_ppid;
2605 		asoc->default_context = info.sinfo_context;
2606 		asoc->default_timetolive = info.sinfo_timetolive;
2607 	} else {
2608 		sp->default_stream = info.sinfo_stream;
2609 		sp->default_flags = info.sinfo_flags;
2610 		sp->default_ppid = info.sinfo_ppid;
2611 		sp->default_context = info.sinfo_context;
2612 		sp->default_timetolive = info.sinfo_timetolive;
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2619  *
2620  * Requests that the local SCTP stack use the enclosed peer address as
2621  * the association primary.  The enclosed address must be one of the
2622  * association peer's addresses.
2623  */
2624 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2625 					int optlen)
2626 {
2627 	struct sctp_prim prim;
2628 	struct sctp_transport *trans;
2629 
2630 	if (optlen != sizeof(struct sctp_prim))
2631 		return -EINVAL;
2632 
2633 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2634 		return -EFAULT;
2635 
2636 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2637 	if (!trans)
2638 		return -EINVAL;
2639 
2640 	sctp_assoc_set_primary(trans->asoc, trans);
2641 
2642 	return 0;
2643 }
2644 
2645 /*
2646  * 7.1.5 SCTP_NODELAY
2647  *
2648  * Turn on/off any Nagle-like algorithm.  This means that packets are
2649  * generally sent as soon as possible and no unnecessary delays are
2650  * introduced, at the cost of more packets in the network.  Expects an
2651  *  integer boolean flag.
2652  */
2653 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2654 					int optlen)
2655 {
2656 	int val;
2657 
2658 	if (optlen < sizeof(int))
2659 		return -EINVAL;
2660 	if (get_user(val, (int __user *)optval))
2661 		return -EFAULT;
2662 
2663 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2664 	return 0;
2665 }
2666 
2667 /*
2668  *
2669  * 7.1.1 SCTP_RTOINFO
2670  *
2671  * The protocol parameters used to initialize and bound retransmission
2672  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2673  * and modify these parameters.
2674  * All parameters are time values, in milliseconds.  A value of 0, when
2675  * modifying the parameters, indicates that the current value should not
2676  * be changed.
2677  *
2678  */
2679 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2680 	struct sctp_rtoinfo rtoinfo;
2681 	struct sctp_association *asoc;
2682 
2683 	if (optlen != sizeof (struct sctp_rtoinfo))
2684 		return -EINVAL;
2685 
2686 	if (copy_from_user(&rtoinfo, optval, optlen))
2687 		return -EFAULT;
2688 
2689 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2690 
2691 	/* Set the values to the specific association */
2692 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2693 		return -EINVAL;
2694 
2695 	if (asoc) {
2696 		if (rtoinfo.srto_initial != 0)
2697 			asoc->rto_initial =
2698 				msecs_to_jiffies(rtoinfo.srto_initial);
2699 		if (rtoinfo.srto_max != 0)
2700 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2701 		if (rtoinfo.srto_min != 0)
2702 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2703 	} else {
2704 		/* If there is no association or the association-id = 0
2705 		 * set the values to the endpoint.
2706 		 */
2707 		struct sctp_sock *sp = sctp_sk(sk);
2708 
2709 		if (rtoinfo.srto_initial != 0)
2710 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2711 		if (rtoinfo.srto_max != 0)
2712 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2713 		if (rtoinfo.srto_min != 0)
2714 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 /*
2721  *
2722  * 7.1.2 SCTP_ASSOCINFO
2723  *
2724  * This option is used to tune the maximum retransmission attempts
2725  * of the association.
2726  * Returns an error if the new association retransmission value is
2727  * greater than the sum of the retransmission value  of the peer.
2728  * See [SCTP] for more information.
2729  *
2730  */
2731 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2732 {
2733 
2734 	struct sctp_assocparams assocparams;
2735 	struct sctp_association *asoc;
2736 
2737 	if (optlen != sizeof(struct sctp_assocparams))
2738 		return -EINVAL;
2739 	if (copy_from_user(&assocparams, optval, optlen))
2740 		return -EFAULT;
2741 
2742 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2743 
2744 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2745 		return -EINVAL;
2746 
2747 	/* Set the values to the specific association */
2748 	if (asoc) {
2749 		if (assocparams.sasoc_asocmaxrxt != 0) {
2750 			__u32 path_sum = 0;
2751 			int   paths = 0;
2752 			struct sctp_transport *peer_addr;
2753 
2754 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2755 					transports) {
2756 				path_sum += peer_addr->pathmaxrxt;
2757 				paths++;
2758 			}
2759 
2760 			/* Only validate asocmaxrxt if we have more than
2761 			 * one path/transport.  We do this because path
2762 			 * retransmissions are only counted when we have more
2763 			 * then one path.
2764 			 */
2765 			if (paths > 1 &&
2766 			    assocparams.sasoc_asocmaxrxt > path_sum)
2767 				return -EINVAL;
2768 
2769 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2770 		}
2771 
2772 		if (assocparams.sasoc_cookie_life != 0) {
2773 			asoc->cookie_life.tv_sec =
2774 					assocparams.sasoc_cookie_life / 1000;
2775 			asoc->cookie_life.tv_usec =
2776 					(assocparams.sasoc_cookie_life % 1000)
2777 					* 1000;
2778 		}
2779 	} else {
2780 		/* Set the values to the endpoint */
2781 		struct sctp_sock *sp = sctp_sk(sk);
2782 
2783 		if (assocparams.sasoc_asocmaxrxt != 0)
2784 			sp->assocparams.sasoc_asocmaxrxt =
2785 						assocparams.sasoc_asocmaxrxt;
2786 		if (assocparams.sasoc_cookie_life != 0)
2787 			sp->assocparams.sasoc_cookie_life =
2788 						assocparams.sasoc_cookie_life;
2789 	}
2790 	return 0;
2791 }
2792 
2793 /*
2794  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2795  *
2796  * This socket option is a boolean flag which turns on or off mapped V4
2797  * addresses.  If this option is turned on and the socket is type
2798  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2799  * If this option is turned off, then no mapping will be done of V4
2800  * addresses and a user will receive both PF_INET6 and PF_INET type
2801  * addresses on the socket.
2802  */
2803 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2804 {
2805 	int val;
2806 	struct sctp_sock *sp = sctp_sk(sk);
2807 
2808 	if (optlen < sizeof(int))
2809 		return -EINVAL;
2810 	if (get_user(val, (int __user *)optval))
2811 		return -EFAULT;
2812 	if (val)
2813 		sp->v4mapped = 1;
2814 	else
2815 		sp->v4mapped = 0;
2816 
2817 	return 0;
2818 }
2819 
2820 /*
2821  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2822  * This option will get or set the maximum size to put in any outgoing
2823  * SCTP DATA chunk.  If a message is larger than this size it will be
2824  * fragmented by SCTP into the specified size.  Note that the underlying
2825  * SCTP implementation may fragment into smaller sized chunks when the
2826  * PMTU of the underlying association is smaller than the value set by
2827  * the user.  The default value for this option is '0' which indicates
2828  * the user is NOT limiting fragmentation and only the PMTU will effect
2829  * SCTP's choice of DATA chunk size.  Note also that values set larger
2830  * than the maximum size of an IP datagram will effectively let SCTP
2831  * control fragmentation (i.e. the same as setting this option to 0).
2832  *
2833  * The following structure is used to access and modify this parameter:
2834  *
2835  * struct sctp_assoc_value {
2836  *   sctp_assoc_t assoc_id;
2837  *   uint32_t assoc_value;
2838  * };
2839  *
2840  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2841  *    For one-to-many style sockets this parameter indicates which
2842  *    association the user is performing an action upon.  Note that if
2843  *    this field's value is zero then the endpoints default value is
2844  *    changed (effecting future associations only).
2845  * assoc_value:  This parameter specifies the maximum size in bytes.
2846  */
2847 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2848 {
2849 	struct sctp_assoc_value params;
2850 	struct sctp_association *asoc;
2851 	struct sctp_sock *sp = sctp_sk(sk);
2852 	int val;
2853 
2854 	if (optlen == sizeof(int)) {
2855 		printk(KERN_WARNING
2856 		   "SCTP: Use of int in maxseg socket option deprecated\n");
2857 		printk(KERN_WARNING
2858 		   "SCTP: Use struct sctp_assoc_value instead\n");
2859 		if (copy_from_user(&val, optval, optlen))
2860 			return -EFAULT;
2861 		params.assoc_id = 0;
2862 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2863 		if (copy_from_user(&params, optval, optlen))
2864 			return -EFAULT;
2865 		val = params.assoc_value;
2866 	} else
2867 		return -EINVAL;
2868 
2869 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2870 		return -EINVAL;
2871 
2872 	asoc = sctp_id2assoc(sk, params.assoc_id);
2873 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2874 		return -EINVAL;
2875 
2876 	if (asoc) {
2877 		if (val == 0) {
2878 			val = asoc->pathmtu;
2879 			val -= sp->pf->af->net_header_len;
2880 			val -= sizeof(struct sctphdr) +
2881 					sizeof(struct sctp_data_chunk);
2882 		}
2883 		asoc->user_frag = val;
2884 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2885 	} else {
2886 		sp->user_frag = val;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 
2893 /*
2894  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2895  *
2896  *   Requests that the peer mark the enclosed address as the association
2897  *   primary. The enclosed address must be one of the association's
2898  *   locally bound addresses. The following structure is used to make a
2899  *   set primary request:
2900  */
2901 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2902 					     int optlen)
2903 {
2904 	struct sctp_sock	*sp;
2905 	struct sctp_endpoint	*ep;
2906 	struct sctp_association	*asoc = NULL;
2907 	struct sctp_setpeerprim	prim;
2908 	struct sctp_chunk	*chunk;
2909 	int 			err;
2910 
2911 	sp = sctp_sk(sk);
2912 	ep = sp->ep;
2913 
2914 	if (!sctp_addip_enable)
2915 		return -EPERM;
2916 
2917 	if (optlen != sizeof(struct sctp_setpeerprim))
2918 		return -EINVAL;
2919 
2920 	if (copy_from_user(&prim, optval, optlen))
2921 		return -EFAULT;
2922 
2923 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2924 	if (!asoc)
2925 		return -EINVAL;
2926 
2927 	if (!asoc->peer.asconf_capable)
2928 		return -EPERM;
2929 
2930 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2931 		return -EPERM;
2932 
2933 	if (!sctp_state(asoc, ESTABLISHED))
2934 		return -ENOTCONN;
2935 
2936 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2937 		return -EADDRNOTAVAIL;
2938 
2939 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2940 	chunk = sctp_make_asconf_set_prim(asoc,
2941 					  (union sctp_addr *)&prim.sspp_addr);
2942 	if (!chunk)
2943 		return -ENOMEM;
2944 
2945 	err = sctp_send_asconf(asoc, chunk);
2946 
2947 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2948 
2949 	return err;
2950 }
2951 
2952 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2953 					  int optlen)
2954 {
2955 	struct sctp_setadaptation adaptation;
2956 
2957 	if (optlen != sizeof(struct sctp_setadaptation))
2958 		return -EINVAL;
2959 	if (copy_from_user(&adaptation, optval, optlen))
2960 		return -EFAULT;
2961 
2962 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2963 
2964 	return 0;
2965 }
2966 
2967 /*
2968  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2969  *
2970  * The context field in the sctp_sndrcvinfo structure is normally only
2971  * used when a failed message is retrieved holding the value that was
2972  * sent down on the actual send call.  This option allows the setting of
2973  * a default context on an association basis that will be received on
2974  * reading messages from the peer.  This is especially helpful in the
2975  * one-2-many model for an application to keep some reference to an
2976  * internal state machine that is processing messages on the
2977  * association.  Note that the setting of this value only effects
2978  * received messages from the peer and does not effect the value that is
2979  * saved with outbound messages.
2980  */
2981 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2982 				   int optlen)
2983 {
2984 	struct sctp_assoc_value params;
2985 	struct sctp_sock *sp;
2986 	struct sctp_association *asoc;
2987 
2988 	if (optlen != sizeof(struct sctp_assoc_value))
2989 		return -EINVAL;
2990 	if (copy_from_user(&params, optval, optlen))
2991 		return -EFAULT;
2992 
2993 	sp = sctp_sk(sk);
2994 
2995 	if (params.assoc_id != 0) {
2996 		asoc = sctp_id2assoc(sk, params.assoc_id);
2997 		if (!asoc)
2998 			return -EINVAL;
2999 		asoc->default_rcv_context = params.assoc_value;
3000 	} else {
3001 		sp->default_rcv_context = params.assoc_value;
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 /*
3008  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3009  *
3010  * This options will at a minimum specify if the implementation is doing
3011  * fragmented interleave.  Fragmented interleave, for a one to many
3012  * socket, is when subsequent calls to receive a message may return
3013  * parts of messages from different associations.  Some implementations
3014  * may allow you to turn this value on or off.  If so, when turned off,
3015  * no fragment interleave will occur (which will cause a head of line
3016  * blocking amongst multiple associations sharing the same one to many
3017  * socket).  When this option is turned on, then each receive call may
3018  * come from a different association (thus the user must receive data
3019  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3020  * association each receive belongs to.
3021  *
3022  * This option takes a boolean value.  A non-zero value indicates that
3023  * fragmented interleave is on.  A value of zero indicates that
3024  * fragmented interleave is off.
3025  *
3026  * Note that it is important that an implementation that allows this
3027  * option to be turned on, have it off by default.  Otherwise an unaware
3028  * application using the one to many model may become confused and act
3029  * incorrectly.
3030  */
3031 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3032 					       char __user *optval,
3033 					       int optlen)
3034 {
3035 	int val;
3036 
3037 	if (optlen != sizeof(int))
3038 		return -EINVAL;
3039 	if (get_user(val, (int __user *)optval))
3040 		return -EFAULT;
3041 
3042 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3043 
3044 	return 0;
3045 }
3046 
3047 /*
3048  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3049  *       (SCTP_PARTIAL_DELIVERY_POINT)
3050  *
3051  * This option will set or get the SCTP partial delivery point.  This
3052  * point is the size of a message where the partial delivery API will be
3053  * invoked to help free up rwnd space for the peer.  Setting this to a
3054  * lower value will cause partial deliveries to happen more often.  The
3055  * calls argument is an integer that sets or gets the partial delivery
3056  * point.  Note also that the call will fail if the user attempts to set
3057  * this value larger than the socket receive buffer size.
3058  *
3059  * Note that any single message having a length smaller than or equal to
3060  * the SCTP partial delivery point will be delivered in one single read
3061  * call as long as the user provided buffer is large enough to hold the
3062  * message.
3063  */
3064 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3065 						  char __user *optval,
3066 						  int optlen)
3067 {
3068 	u32 val;
3069 
3070 	if (optlen != sizeof(u32))
3071 		return -EINVAL;
3072 	if (get_user(val, (int __user *)optval))
3073 		return -EFAULT;
3074 
3075 	/* Note: We double the receive buffer from what the user sets
3076 	 * it to be, also initial rwnd is based on rcvbuf/2.
3077 	 */
3078 	if (val > (sk->sk_rcvbuf >> 1))
3079 		return -EINVAL;
3080 
3081 	sctp_sk(sk)->pd_point = val;
3082 
3083 	return 0; /* is this the right error code? */
3084 }
3085 
3086 /*
3087  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3088  *
3089  * This option will allow a user to change the maximum burst of packets
3090  * that can be emitted by this association.  Note that the default value
3091  * is 4, and some implementations may restrict this setting so that it
3092  * can only be lowered.
3093  *
3094  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3095  * future associations inheriting the socket value.
3096  */
3097 static int sctp_setsockopt_maxburst(struct sock *sk,
3098 				    char __user *optval,
3099 				    int optlen)
3100 {
3101 	struct sctp_assoc_value params;
3102 	struct sctp_sock *sp;
3103 	struct sctp_association *asoc;
3104 	int val;
3105 	int assoc_id = 0;
3106 
3107 	if (optlen == sizeof(int)) {
3108 		printk(KERN_WARNING
3109 		   "SCTP: Use of int in max_burst socket option deprecated\n");
3110 		printk(KERN_WARNING
3111 		   "SCTP: Use struct sctp_assoc_value instead\n");
3112 		if (copy_from_user(&val, optval, optlen))
3113 			return -EFAULT;
3114 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3115 		if (copy_from_user(&params, optval, optlen))
3116 			return -EFAULT;
3117 		val = params.assoc_value;
3118 		assoc_id = params.assoc_id;
3119 	} else
3120 		return -EINVAL;
3121 
3122 	sp = sctp_sk(sk);
3123 
3124 	if (assoc_id != 0) {
3125 		asoc = sctp_id2assoc(sk, assoc_id);
3126 		if (!asoc)
3127 			return -EINVAL;
3128 		asoc->max_burst = val;
3129 	} else
3130 		sp->max_burst = val;
3131 
3132 	return 0;
3133 }
3134 
3135 /*
3136  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3137  *
3138  * This set option adds a chunk type that the user is requesting to be
3139  * received only in an authenticated way.  Changes to the list of chunks
3140  * will only effect future associations on the socket.
3141  */
3142 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3143 				    char __user *optval,
3144 				    int optlen)
3145 {
3146 	struct sctp_authchunk val;
3147 
3148 	if (!sctp_auth_enable)
3149 		return -EACCES;
3150 
3151 	if (optlen != sizeof(struct sctp_authchunk))
3152 		return -EINVAL;
3153 	if (copy_from_user(&val, optval, optlen))
3154 		return -EFAULT;
3155 
3156 	switch (val.sauth_chunk) {
3157 		case SCTP_CID_INIT:
3158 		case SCTP_CID_INIT_ACK:
3159 		case SCTP_CID_SHUTDOWN_COMPLETE:
3160 		case SCTP_CID_AUTH:
3161 			return -EINVAL;
3162 	}
3163 
3164 	/* add this chunk id to the endpoint */
3165 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3166 }
3167 
3168 /*
3169  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3170  *
3171  * This option gets or sets the list of HMAC algorithms that the local
3172  * endpoint requires the peer to use.
3173  */
3174 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3175 				    char __user *optval,
3176 				    int optlen)
3177 {
3178 	struct sctp_hmacalgo *hmacs;
3179 	u32 idents;
3180 	int err;
3181 
3182 	if (!sctp_auth_enable)
3183 		return -EACCES;
3184 
3185 	if (optlen < sizeof(struct sctp_hmacalgo))
3186 		return -EINVAL;
3187 
3188 	hmacs = kmalloc(optlen, GFP_KERNEL);
3189 	if (!hmacs)
3190 		return -ENOMEM;
3191 
3192 	if (copy_from_user(hmacs, optval, optlen)) {
3193 		err = -EFAULT;
3194 		goto out;
3195 	}
3196 
3197 	idents = hmacs->shmac_num_idents;
3198 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3199 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3200 		err = -EINVAL;
3201 		goto out;
3202 	}
3203 
3204 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3205 out:
3206 	kfree(hmacs);
3207 	return err;
3208 }
3209 
3210 /*
3211  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3212  *
3213  * This option will set a shared secret key which is used to build an
3214  * association shared key.
3215  */
3216 static int sctp_setsockopt_auth_key(struct sock *sk,
3217 				    char __user *optval,
3218 				    int optlen)
3219 {
3220 	struct sctp_authkey *authkey;
3221 	struct sctp_association *asoc;
3222 	int ret;
3223 
3224 	if (!sctp_auth_enable)
3225 		return -EACCES;
3226 
3227 	if (optlen <= sizeof(struct sctp_authkey))
3228 		return -EINVAL;
3229 
3230 	authkey = kmalloc(optlen, GFP_KERNEL);
3231 	if (!authkey)
3232 		return -ENOMEM;
3233 
3234 	if (copy_from_user(authkey, optval, optlen)) {
3235 		ret = -EFAULT;
3236 		goto out;
3237 	}
3238 
3239 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3240 		ret = -EINVAL;
3241 		goto out;
3242 	}
3243 
3244 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3245 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3246 		ret = -EINVAL;
3247 		goto out;
3248 	}
3249 
3250 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3251 out:
3252 	kfree(authkey);
3253 	return ret;
3254 }
3255 
3256 /*
3257  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3258  *
3259  * This option will get or set the active shared key to be used to build
3260  * the association shared key.
3261  */
3262 static int sctp_setsockopt_active_key(struct sock *sk,
3263 					char __user *optval,
3264 					int optlen)
3265 {
3266 	struct sctp_authkeyid val;
3267 	struct sctp_association *asoc;
3268 
3269 	if (!sctp_auth_enable)
3270 		return -EACCES;
3271 
3272 	if (optlen != sizeof(struct sctp_authkeyid))
3273 		return -EINVAL;
3274 	if (copy_from_user(&val, optval, optlen))
3275 		return -EFAULT;
3276 
3277 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3278 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3279 		return -EINVAL;
3280 
3281 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3282 					val.scact_keynumber);
3283 }
3284 
3285 /*
3286  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3287  *
3288  * This set option will delete a shared secret key from use.
3289  */
3290 static int sctp_setsockopt_del_key(struct sock *sk,
3291 					char __user *optval,
3292 					int optlen)
3293 {
3294 	struct sctp_authkeyid val;
3295 	struct sctp_association *asoc;
3296 
3297 	if (!sctp_auth_enable)
3298 		return -EACCES;
3299 
3300 	if (optlen != sizeof(struct sctp_authkeyid))
3301 		return -EINVAL;
3302 	if (copy_from_user(&val, optval, optlen))
3303 		return -EFAULT;
3304 
3305 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3306 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3307 		return -EINVAL;
3308 
3309 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3310 				    val.scact_keynumber);
3311 
3312 }
3313 
3314 
3315 /* API 6.2 setsockopt(), getsockopt()
3316  *
3317  * Applications use setsockopt() and getsockopt() to set or retrieve
3318  * socket options.  Socket options are used to change the default
3319  * behavior of sockets calls.  They are described in Section 7.
3320  *
3321  * The syntax is:
3322  *
3323  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3324  *                    int __user *optlen);
3325  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3326  *                    int optlen);
3327  *
3328  *   sd      - the socket descript.
3329  *   level   - set to IPPROTO_SCTP for all SCTP options.
3330  *   optname - the option name.
3331  *   optval  - the buffer to store the value of the option.
3332  *   optlen  - the size of the buffer.
3333  */
3334 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3335 				char __user *optval, int optlen)
3336 {
3337 	int retval = 0;
3338 
3339 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3340 			  sk, optname);
3341 
3342 	/* I can hardly begin to describe how wrong this is.  This is
3343 	 * so broken as to be worse than useless.  The API draft
3344 	 * REALLY is NOT helpful here...  I am not convinced that the
3345 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3346 	 * are at all well-founded.
3347 	 */
3348 	if (level != SOL_SCTP) {
3349 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3350 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3351 		goto out_nounlock;
3352 	}
3353 
3354 	sctp_lock_sock(sk);
3355 
3356 	switch (optname) {
3357 	case SCTP_SOCKOPT_BINDX_ADD:
3358 		/* 'optlen' is the size of the addresses buffer. */
3359 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3360 					       optlen, SCTP_BINDX_ADD_ADDR);
3361 		break;
3362 
3363 	case SCTP_SOCKOPT_BINDX_REM:
3364 		/* 'optlen' is the size of the addresses buffer. */
3365 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3366 					       optlen, SCTP_BINDX_REM_ADDR);
3367 		break;
3368 
3369 	case SCTP_SOCKOPT_CONNECTX_OLD:
3370 		/* 'optlen' is the size of the addresses buffer. */
3371 		retval = sctp_setsockopt_connectx_old(sk,
3372 					    (struct sockaddr __user *)optval,
3373 					    optlen);
3374 		break;
3375 
3376 	case SCTP_SOCKOPT_CONNECTX:
3377 		/* 'optlen' is the size of the addresses buffer. */
3378 		retval = sctp_setsockopt_connectx(sk,
3379 					    (struct sockaddr __user *)optval,
3380 					    optlen);
3381 		break;
3382 
3383 	case SCTP_DISABLE_FRAGMENTS:
3384 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3385 		break;
3386 
3387 	case SCTP_EVENTS:
3388 		retval = sctp_setsockopt_events(sk, optval, optlen);
3389 		break;
3390 
3391 	case SCTP_AUTOCLOSE:
3392 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3393 		break;
3394 
3395 	case SCTP_PEER_ADDR_PARAMS:
3396 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3397 		break;
3398 
3399 	case SCTP_DELAYED_ACK:
3400 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3401 		break;
3402 	case SCTP_PARTIAL_DELIVERY_POINT:
3403 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3404 		break;
3405 
3406 	case SCTP_INITMSG:
3407 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3408 		break;
3409 	case SCTP_DEFAULT_SEND_PARAM:
3410 		retval = sctp_setsockopt_default_send_param(sk, optval,
3411 							    optlen);
3412 		break;
3413 	case SCTP_PRIMARY_ADDR:
3414 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3415 		break;
3416 	case SCTP_SET_PEER_PRIMARY_ADDR:
3417 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3418 		break;
3419 	case SCTP_NODELAY:
3420 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3421 		break;
3422 	case SCTP_RTOINFO:
3423 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3424 		break;
3425 	case SCTP_ASSOCINFO:
3426 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3427 		break;
3428 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3429 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3430 		break;
3431 	case SCTP_MAXSEG:
3432 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3433 		break;
3434 	case SCTP_ADAPTATION_LAYER:
3435 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3436 		break;
3437 	case SCTP_CONTEXT:
3438 		retval = sctp_setsockopt_context(sk, optval, optlen);
3439 		break;
3440 	case SCTP_FRAGMENT_INTERLEAVE:
3441 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3442 		break;
3443 	case SCTP_MAX_BURST:
3444 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3445 		break;
3446 	case SCTP_AUTH_CHUNK:
3447 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3448 		break;
3449 	case SCTP_HMAC_IDENT:
3450 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3451 		break;
3452 	case SCTP_AUTH_KEY:
3453 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3454 		break;
3455 	case SCTP_AUTH_ACTIVE_KEY:
3456 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3457 		break;
3458 	case SCTP_AUTH_DELETE_KEY:
3459 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3460 		break;
3461 	default:
3462 		retval = -ENOPROTOOPT;
3463 		break;
3464 	}
3465 
3466 	sctp_release_sock(sk);
3467 
3468 out_nounlock:
3469 	return retval;
3470 }
3471 
3472 /* API 3.1.6 connect() - UDP Style Syntax
3473  *
3474  * An application may use the connect() call in the UDP model to initiate an
3475  * association without sending data.
3476  *
3477  * The syntax is:
3478  *
3479  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3480  *
3481  * sd: the socket descriptor to have a new association added to.
3482  *
3483  * nam: the address structure (either struct sockaddr_in or struct
3484  *    sockaddr_in6 defined in RFC2553 [7]).
3485  *
3486  * len: the size of the address.
3487  */
3488 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3489 			     int addr_len)
3490 {
3491 	int err = 0;
3492 	struct sctp_af *af;
3493 
3494 	sctp_lock_sock(sk);
3495 
3496 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3497 			  __func__, sk, addr, addr_len);
3498 
3499 	/* Validate addr_len before calling common connect/connectx routine. */
3500 	af = sctp_get_af_specific(addr->sa_family);
3501 	if (!af || addr_len < af->sockaddr_len) {
3502 		err = -EINVAL;
3503 	} else {
3504 		/* Pass correct addr len to common routine (so it knows there
3505 		 * is only one address being passed.
3506 		 */
3507 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3508 	}
3509 
3510 	sctp_release_sock(sk);
3511 	return err;
3512 }
3513 
3514 /* FIXME: Write comments. */
3515 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3516 {
3517 	return -EOPNOTSUPP; /* STUB */
3518 }
3519 
3520 /* 4.1.4 accept() - TCP Style Syntax
3521  *
3522  * Applications use accept() call to remove an established SCTP
3523  * association from the accept queue of the endpoint.  A new socket
3524  * descriptor will be returned from accept() to represent the newly
3525  * formed association.
3526  */
3527 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3528 {
3529 	struct sctp_sock *sp;
3530 	struct sctp_endpoint *ep;
3531 	struct sock *newsk = NULL;
3532 	struct sctp_association *asoc;
3533 	long timeo;
3534 	int error = 0;
3535 
3536 	sctp_lock_sock(sk);
3537 
3538 	sp = sctp_sk(sk);
3539 	ep = sp->ep;
3540 
3541 	if (!sctp_style(sk, TCP)) {
3542 		error = -EOPNOTSUPP;
3543 		goto out;
3544 	}
3545 
3546 	if (!sctp_sstate(sk, LISTENING)) {
3547 		error = -EINVAL;
3548 		goto out;
3549 	}
3550 
3551 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3552 
3553 	error = sctp_wait_for_accept(sk, timeo);
3554 	if (error)
3555 		goto out;
3556 
3557 	/* We treat the list of associations on the endpoint as the accept
3558 	 * queue and pick the first association on the list.
3559 	 */
3560 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3561 
3562 	newsk = sp->pf->create_accept_sk(sk, asoc);
3563 	if (!newsk) {
3564 		error = -ENOMEM;
3565 		goto out;
3566 	}
3567 
3568 	/* Populate the fields of the newsk from the oldsk and migrate the
3569 	 * asoc to the newsk.
3570 	 */
3571 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3572 
3573 out:
3574 	sctp_release_sock(sk);
3575 	*err = error;
3576 	return newsk;
3577 }
3578 
3579 /* The SCTP ioctl handler. */
3580 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3581 {
3582 	return -ENOIOCTLCMD;
3583 }
3584 
3585 /* This is the function which gets called during socket creation to
3586  * initialized the SCTP-specific portion of the sock.
3587  * The sock structure should already be zero-filled memory.
3588  */
3589 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3590 {
3591 	struct sctp_endpoint *ep;
3592 	struct sctp_sock *sp;
3593 
3594 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3595 
3596 	sp = sctp_sk(sk);
3597 
3598 	/* Initialize the SCTP per socket area.  */
3599 	switch (sk->sk_type) {
3600 	case SOCK_SEQPACKET:
3601 		sp->type = SCTP_SOCKET_UDP;
3602 		break;
3603 	case SOCK_STREAM:
3604 		sp->type = SCTP_SOCKET_TCP;
3605 		break;
3606 	default:
3607 		return -ESOCKTNOSUPPORT;
3608 	}
3609 
3610 	/* Initialize default send parameters. These parameters can be
3611 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3612 	 */
3613 	sp->default_stream = 0;
3614 	sp->default_ppid = 0;
3615 	sp->default_flags = 0;
3616 	sp->default_context = 0;
3617 	sp->default_timetolive = 0;
3618 
3619 	sp->default_rcv_context = 0;
3620 	sp->max_burst = sctp_max_burst;
3621 
3622 	/* Initialize default setup parameters. These parameters
3623 	 * can be modified with the SCTP_INITMSG socket option or
3624 	 * overridden by the SCTP_INIT CMSG.
3625 	 */
3626 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3627 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3628 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3629 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3630 
3631 	/* Initialize default RTO related parameters.  These parameters can
3632 	 * be modified for with the SCTP_RTOINFO socket option.
3633 	 */
3634 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3635 	sp->rtoinfo.srto_max     = sctp_rto_max;
3636 	sp->rtoinfo.srto_min     = sctp_rto_min;
3637 
3638 	/* Initialize default association related parameters. These parameters
3639 	 * can be modified with the SCTP_ASSOCINFO socket option.
3640 	 */
3641 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3642 	sp->assocparams.sasoc_number_peer_destinations = 0;
3643 	sp->assocparams.sasoc_peer_rwnd = 0;
3644 	sp->assocparams.sasoc_local_rwnd = 0;
3645 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3646 
3647 	/* Initialize default event subscriptions. By default, all the
3648 	 * options are off.
3649 	 */
3650 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3651 
3652 	/* Default Peer Address Parameters.  These defaults can
3653 	 * be modified via SCTP_PEER_ADDR_PARAMS
3654 	 */
3655 	sp->hbinterval  = sctp_hb_interval;
3656 	sp->pathmaxrxt  = sctp_max_retrans_path;
3657 	sp->pathmtu     = 0; // allow default discovery
3658 	sp->sackdelay   = sctp_sack_timeout;
3659 	sp->sackfreq	= 2;
3660 	sp->param_flags = SPP_HB_ENABLE |
3661 			  SPP_PMTUD_ENABLE |
3662 			  SPP_SACKDELAY_ENABLE;
3663 
3664 	/* If enabled no SCTP message fragmentation will be performed.
3665 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3666 	 */
3667 	sp->disable_fragments = 0;
3668 
3669 	/* Enable Nagle algorithm by default.  */
3670 	sp->nodelay           = 0;
3671 
3672 	/* Enable by default. */
3673 	sp->v4mapped          = 1;
3674 
3675 	/* Auto-close idle associations after the configured
3676 	 * number of seconds.  A value of 0 disables this
3677 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3678 	 * for UDP-style sockets only.
3679 	 */
3680 	sp->autoclose         = 0;
3681 
3682 	/* User specified fragmentation limit. */
3683 	sp->user_frag         = 0;
3684 
3685 	sp->adaptation_ind = 0;
3686 
3687 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3688 
3689 	/* Control variables for partial data delivery. */
3690 	atomic_set(&sp->pd_mode, 0);
3691 	skb_queue_head_init(&sp->pd_lobby);
3692 	sp->frag_interleave = 0;
3693 
3694 	/* Create a per socket endpoint structure.  Even if we
3695 	 * change the data structure relationships, this may still
3696 	 * be useful for storing pre-connect address information.
3697 	 */
3698 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3699 	if (!ep)
3700 		return -ENOMEM;
3701 
3702 	sp->ep = ep;
3703 	sp->hmac = NULL;
3704 
3705 	SCTP_DBG_OBJCNT_INC(sock);
3706 	percpu_counter_inc(&sctp_sockets_allocated);
3707 
3708 	local_bh_disable();
3709 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3710 	local_bh_enable();
3711 
3712 	return 0;
3713 }
3714 
3715 /* Cleanup any SCTP per socket resources.  */
3716 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3717 {
3718 	struct sctp_endpoint *ep;
3719 
3720 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3721 
3722 	/* Release our hold on the endpoint. */
3723 	ep = sctp_sk(sk)->ep;
3724 	sctp_endpoint_free(ep);
3725 	percpu_counter_dec(&sctp_sockets_allocated);
3726 	local_bh_disable();
3727 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3728 	local_bh_enable();
3729 }
3730 
3731 /* API 4.1.7 shutdown() - TCP Style Syntax
3732  *     int shutdown(int socket, int how);
3733  *
3734  *     sd      - the socket descriptor of the association to be closed.
3735  *     how     - Specifies the type of shutdown.  The  values  are
3736  *               as follows:
3737  *               SHUT_RD
3738  *                     Disables further receive operations. No SCTP
3739  *                     protocol action is taken.
3740  *               SHUT_WR
3741  *                     Disables further send operations, and initiates
3742  *                     the SCTP shutdown sequence.
3743  *               SHUT_RDWR
3744  *                     Disables further send  and  receive  operations
3745  *                     and initiates the SCTP shutdown sequence.
3746  */
3747 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3748 {
3749 	struct sctp_endpoint *ep;
3750 	struct sctp_association *asoc;
3751 
3752 	if (!sctp_style(sk, TCP))
3753 		return;
3754 
3755 	if (how & SEND_SHUTDOWN) {
3756 		ep = sctp_sk(sk)->ep;
3757 		if (!list_empty(&ep->asocs)) {
3758 			asoc = list_entry(ep->asocs.next,
3759 					  struct sctp_association, asocs);
3760 			sctp_primitive_SHUTDOWN(asoc, NULL);
3761 		}
3762 	}
3763 }
3764 
3765 /* 7.2.1 Association Status (SCTP_STATUS)
3766 
3767  * Applications can retrieve current status information about an
3768  * association, including association state, peer receiver window size,
3769  * number of unacked data chunks, and number of data chunks pending
3770  * receipt.  This information is read-only.
3771  */
3772 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3773 				       char __user *optval,
3774 				       int __user *optlen)
3775 {
3776 	struct sctp_status status;
3777 	struct sctp_association *asoc = NULL;
3778 	struct sctp_transport *transport;
3779 	sctp_assoc_t associd;
3780 	int retval = 0;
3781 
3782 	if (len < sizeof(status)) {
3783 		retval = -EINVAL;
3784 		goto out;
3785 	}
3786 
3787 	len = sizeof(status);
3788 	if (copy_from_user(&status, optval, len)) {
3789 		retval = -EFAULT;
3790 		goto out;
3791 	}
3792 
3793 	associd = status.sstat_assoc_id;
3794 	asoc = sctp_id2assoc(sk, associd);
3795 	if (!asoc) {
3796 		retval = -EINVAL;
3797 		goto out;
3798 	}
3799 
3800 	transport = asoc->peer.primary_path;
3801 
3802 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3803 	status.sstat_state = asoc->state;
3804 	status.sstat_rwnd =  asoc->peer.rwnd;
3805 	status.sstat_unackdata = asoc->unack_data;
3806 
3807 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3808 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3809 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3810 	status.sstat_fragmentation_point = asoc->frag_point;
3811 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3812 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3813 			transport->af_specific->sockaddr_len);
3814 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3815 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3816 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3817 	status.sstat_primary.spinfo_state = transport->state;
3818 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3819 	status.sstat_primary.spinfo_srtt = transport->srtt;
3820 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3821 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3822 
3823 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3824 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3825 
3826 	if (put_user(len, optlen)) {
3827 		retval = -EFAULT;
3828 		goto out;
3829 	}
3830 
3831 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3832 			  len, status.sstat_state, status.sstat_rwnd,
3833 			  status.sstat_assoc_id);
3834 
3835 	if (copy_to_user(optval, &status, len)) {
3836 		retval = -EFAULT;
3837 		goto out;
3838 	}
3839 
3840 out:
3841 	return (retval);
3842 }
3843 
3844 
3845 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3846  *
3847  * Applications can retrieve information about a specific peer address
3848  * of an association, including its reachability state, congestion
3849  * window, and retransmission timer values.  This information is
3850  * read-only.
3851  */
3852 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3853 					  char __user *optval,
3854 					  int __user *optlen)
3855 {
3856 	struct sctp_paddrinfo pinfo;
3857 	struct sctp_transport *transport;
3858 	int retval = 0;
3859 
3860 	if (len < sizeof(pinfo)) {
3861 		retval = -EINVAL;
3862 		goto out;
3863 	}
3864 
3865 	len = sizeof(pinfo);
3866 	if (copy_from_user(&pinfo, optval, len)) {
3867 		retval = -EFAULT;
3868 		goto out;
3869 	}
3870 
3871 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3872 					   pinfo.spinfo_assoc_id);
3873 	if (!transport)
3874 		return -EINVAL;
3875 
3876 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3877 	pinfo.spinfo_state = transport->state;
3878 	pinfo.spinfo_cwnd = transport->cwnd;
3879 	pinfo.spinfo_srtt = transport->srtt;
3880 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3881 	pinfo.spinfo_mtu = transport->pathmtu;
3882 
3883 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3884 		pinfo.spinfo_state = SCTP_ACTIVE;
3885 
3886 	if (put_user(len, optlen)) {
3887 		retval = -EFAULT;
3888 		goto out;
3889 	}
3890 
3891 	if (copy_to_user(optval, &pinfo, len)) {
3892 		retval = -EFAULT;
3893 		goto out;
3894 	}
3895 
3896 out:
3897 	return (retval);
3898 }
3899 
3900 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3901  *
3902  * This option is a on/off flag.  If enabled no SCTP message
3903  * fragmentation will be performed.  Instead if a message being sent
3904  * exceeds the current PMTU size, the message will NOT be sent and
3905  * instead a error will be indicated to the user.
3906  */
3907 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3908 					char __user *optval, int __user *optlen)
3909 {
3910 	int val;
3911 
3912 	if (len < sizeof(int))
3913 		return -EINVAL;
3914 
3915 	len = sizeof(int);
3916 	val = (sctp_sk(sk)->disable_fragments == 1);
3917 	if (put_user(len, optlen))
3918 		return -EFAULT;
3919 	if (copy_to_user(optval, &val, len))
3920 		return -EFAULT;
3921 	return 0;
3922 }
3923 
3924 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3925  *
3926  * This socket option is used to specify various notifications and
3927  * ancillary data the user wishes to receive.
3928  */
3929 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3930 				  int __user *optlen)
3931 {
3932 	if (len < sizeof(struct sctp_event_subscribe))
3933 		return -EINVAL;
3934 	len = sizeof(struct sctp_event_subscribe);
3935 	if (put_user(len, optlen))
3936 		return -EFAULT;
3937 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3938 		return -EFAULT;
3939 	return 0;
3940 }
3941 
3942 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3943  *
3944  * This socket option is applicable to the UDP-style socket only.  When
3945  * set it will cause associations that are idle for more than the
3946  * specified number of seconds to automatically close.  An association
3947  * being idle is defined an association that has NOT sent or received
3948  * user data.  The special value of '0' indicates that no automatic
3949  * close of any associations should be performed.  The option expects an
3950  * integer defining the number of seconds of idle time before an
3951  * association is closed.
3952  */
3953 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3954 {
3955 	/* Applicable to UDP-style socket only */
3956 	if (sctp_style(sk, TCP))
3957 		return -EOPNOTSUPP;
3958 	if (len < sizeof(int))
3959 		return -EINVAL;
3960 	len = sizeof(int);
3961 	if (put_user(len, optlen))
3962 		return -EFAULT;
3963 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3964 		return -EFAULT;
3965 	return 0;
3966 }
3967 
3968 /* Helper routine to branch off an association to a new socket.  */
3969 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3970 				struct socket **sockp)
3971 {
3972 	struct sock *sk = asoc->base.sk;
3973 	struct socket *sock;
3974 	struct sctp_af *af;
3975 	int err = 0;
3976 
3977 	/* An association cannot be branched off from an already peeled-off
3978 	 * socket, nor is this supported for tcp style sockets.
3979 	 */
3980 	if (!sctp_style(sk, UDP))
3981 		return -EINVAL;
3982 
3983 	/* Create a new socket.  */
3984 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3985 	if (err < 0)
3986 		return err;
3987 
3988 	sctp_copy_sock(sock->sk, sk, asoc);
3989 
3990 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3991 	 * Set the daddr and initialize id to something more random
3992 	 */
3993 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3994 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3995 
3996 	/* Populate the fields of the newsk from the oldsk and migrate the
3997 	 * asoc to the newsk.
3998 	 */
3999 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4000 
4001 	*sockp = sock;
4002 
4003 	return err;
4004 }
4005 
4006 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4007 {
4008 	sctp_peeloff_arg_t peeloff;
4009 	struct socket *newsock;
4010 	int retval = 0;
4011 	struct sctp_association *asoc;
4012 
4013 	if (len < sizeof(sctp_peeloff_arg_t))
4014 		return -EINVAL;
4015 	len = sizeof(sctp_peeloff_arg_t);
4016 	if (copy_from_user(&peeloff, optval, len))
4017 		return -EFAULT;
4018 
4019 	asoc = sctp_id2assoc(sk, peeloff.associd);
4020 	if (!asoc) {
4021 		retval = -EINVAL;
4022 		goto out;
4023 	}
4024 
4025 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4026 
4027 	retval = sctp_do_peeloff(asoc, &newsock);
4028 	if (retval < 0)
4029 		goto out;
4030 
4031 	/* Map the socket to an unused fd that can be returned to the user.  */
4032 	retval = sock_map_fd(newsock, 0);
4033 	if (retval < 0) {
4034 		sock_release(newsock);
4035 		goto out;
4036 	}
4037 
4038 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4039 			  __func__, sk, asoc, newsock->sk, retval);
4040 
4041 	/* Return the fd mapped to the new socket.  */
4042 	peeloff.sd = retval;
4043 	if (put_user(len, optlen))
4044 		return -EFAULT;
4045 	if (copy_to_user(optval, &peeloff, len))
4046 		retval = -EFAULT;
4047 
4048 out:
4049 	return retval;
4050 }
4051 
4052 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4053  *
4054  * Applications can enable or disable heartbeats for any peer address of
4055  * an association, modify an address's heartbeat interval, force a
4056  * heartbeat to be sent immediately, and adjust the address's maximum
4057  * number of retransmissions sent before an address is considered
4058  * unreachable.  The following structure is used to access and modify an
4059  * address's parameters:
4060  *
4061  *  struct sctp_paddrparams {
4062  *     sctp_assoc_t            spp_assoc_id;
4063  *     struct sockaddr_storage spp_address;
4064  *     uint32_t                spp_hbinterval;
4065  *     uint16_t                spp_pathmaxrxt;
4066  *     uint32_t                spp_pathmtu;
4067  *     uint32_t                spp_sackdelay;
4068  *     uint32_t                spp_flags;
4069  * };
4070  *
4071  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4072  *                     application, and identifies the association for
4073  *                     this query.
4074  *   spp_address     - This specifies which address is of interest.
4075  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4076  *                     in milliseconds.  If a  value of zero
4077  *                     is present in this field then no changes are to
4078  *                     be made to this parameter.
4079  *   spp_pathmaxrxt  - This contains the maximum number of
4080  *                     retransmissions before this address shall be
4081  *                     considered unreachable. If a  value of zero
4082  *                     is present in this field then no changes are to
4083  *                     be made to this parameter.
4084  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4085  *                     specified here will be the "fixed" path mtu.
4086  *                     Note that if the spp_address field is empty
4087  *                     then all associations on this address will
4088  *                     have this fixed path mtu set upon them.
4089  *
4090  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4091  *                     the number of milliseconds that sacks will be delayed
4092  *                     for. This value will apply to all addresses of an
4093  *                     association if the spp_address field is empty. Note
4094  *                     also, that if delayed sack is enabled and this
4095  *                     value is set to 0, no change is made to the last
4096  *                     recorded delayed sack timer value.
4097  *
4098  *   spp_flags       - These flags are used to control various features
4099  *                     on an association. The flag field may contain
4100  *                     zero or more of the following options.
4101  *
4102  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4103  *                     specified address. Note that if the address
4104  *                     field is empty all addresses for the association
4105  *                     have heartbeats enabled upon them.
4106  *
4107  *                     SPP_HB_DISABLE - Disable heartbeats on the
4108  *                     speicifed address. Note that if the address
4109  *                     field is empty all addresses for the association
4110  *                     will have their heartbeats disabled. Note also
4111  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4112  *                     mutually exclusive, only one of these two should
4113  *                     be specified. Enabling both fields will have
4114  *                     undetermined results.
4115  *
4116  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4117  *                     to be made immediately.
4118  *
4119  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4120  *                     discovery upon the specified address. Note that
4121  *                     if the address feild is empty then all addresses
4122  *                     on the association are effected.
4123  *
4124  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4125  *                     discovery upon the specified address. Note that
4126  *                     if the address feild is empty then all addresses
4127  *                     on the association are effected. Not also that
4128  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4129  *                     exclusive. Enabling both will have undetermined
4130  *                     results.
4131  *
4132  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4133  *                     on delayed sack. The time specified in spp_sackdelay
4134  *                     is used to specify the sack delay for this address. Note
4135  *                     that if spp_address is empty then all addresses will
4136  *                     enable delayed sack and take on the sack delay
4137  *                     value specified in spp_sackdelay.
4138  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4139  *                     off delayed sack. If the spp_address field is blank then
4140  *                     delayed sack is disabled for the entire association. Note
4141  *                     also that this field is mutually exclusive to
4142  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4143  *                     results.
4144  */
4145 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4146 					    char __user *optval, int __user *optlen)
4147 {
4148 	struct sctp_paddrparams  params;
4149 	struct sctp_transport   *trans = NULL;
4150 	struct sctp_association *asoc = NULL;
4151 	struct sctp_sock        *sp = sctp_sk(sk);
4152 
4153 	if (len < sizeof(struct sctp_paddrparams))
4154 		return -EINVAL;
4155 	len = sizeof(struct sctp_paddrparams);
4156 	if (copy_from_user(&params, optval, len))
4157 		return -EFAULT;
4158 
4159 	/* If an address other than INADDR_ANY is specified, and
4160 	 * no transport is found, then the request is invalid.
4161 	 */
4162 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4163 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4164 					       params.spp_assoc_id);
4165 		if (!trans) {
4166 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4167 			return -EINVAL;
4168 		}
4169 	}
4170 
4171 	/* Get association, if assoc_id != 0 and the socket is a one
4172 	 * to many style socket, and an association was not found, then
4173 	 * the id was invalid.
4174 	 */
4175 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4176 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4177 		SCTP_DEBUG_PRINTK("Failed no association\n");
4178 		return -EINVAL;
4179 	}
4180 
4181 	if (trans) {
4182 		/* Fetch transport values. */
4183 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4184 		params.spp_pathmtu    = trans->pathmtu;
4185 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4186 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4187 
4188 		/*draft-11 doesn't say what to return in spp_flags*/
4189 		params.spp_flags      = trans->param_flags;
4190 	} else if (asoc) {
4191 		/* Fetch association values. */
4192 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4193 		params.spp_pathmtu    = asoc->pathmtu;
4194 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4195 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4196 
4197 		/*draft-11 doesn't say what to return in spp_flags*/
4198 		params.spp_flags      = asoc->param_flags;
4199 	} else {
4200 		/* Fetch socket values. */
4201 		params.spp_hbinterval = sp->hbinterval;
4202 		params.spp_pathmtu    = sp->pathmtu;
4203 		params.spp_sackdelay  = sp->sackdelay;
4204 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4205 
4206 		/*draft-11 doesn't say what to return in spp_flags*/
4207 		params.spp_flags      = sp->param_flags;
4208 	}
4209 
4210 	if (copy_to_user(optval, &params, len))
4211 		return -EFAULT;
4212 
4213 	if (put_user(len, optlen))
4214 		return -EFAULT;
4215 
4216 	return 0;
4217 }
4218 
4219 /*
4220  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4221  *
4222  * This option will effect the way delayed acks are performed.  This
4223  * option allows you to get or set the delayed ack time, in
4224  * milliseconds.  It also allows changing the delayed ack frequency.
4225  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4226  * the assoc_id is 0, then this sets or gets the endpoints default
4227  * values.  If the assoc_id field is non-zero, then the set or get
4228  * effects the specified association for the one to many model (the
4229  * assoc_id field is ignored by the one to one model).  Note that if
4230  * sack_delay or sack_freq are 0 when setting this option, then the
4231  * current values will remain unchanged.
4232  *
4233  * struct sctp_sack_info {
4234  *     sctp_assoc_t            sack_assoc_id;
4235  *     uint32_t                sack_delay;
4236  *     uint32_t                sack_freq;
4237  * };
4238  *
4239  * sack_assoc_id -  This parameter, indicates which association the user
4240  *    is performing an action upon.  Note that if this field's value is
4241  *    zero then the endpoints default value is changed (effecting future
4242  *    associations only).
4243  *
4244  * sack_delay -  This parameter contains the number of milliseconds that
4245  *    the user is requesting the delayed ACK timer be set to.  Note that
4246  *    this value is defined in the standard to be between 200 and 500
4247  *    milliseconds.
4248  *
4249  * sack_freq -  This parameter contains the number of packets that must
4250  *    be received before a sack is sent without waiting for the delay
4251  *    timer to expire.  The default value for this is 2, setting this
4252  *    value to 1 will disable the delayed sack algorithm.
4253  */
4254 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4255 					    char __user *optval,
4256 					    int __user *optlen)
4257 {
4258 	struct sctp_sack_info    params;
4259 	struct sctp_association *asoc = NULL;
4260 	struct sctp_sock        *sp = sctp_sk(sk);
4261 
4262 	if (len >= sizeof(struct sctp_sack_info)) {
4263 		len = sizeof(struct sctp_sack_info);
4264 
4265 		if (copy_from_user(&params, optval, len))
4266 			return -EFAULT;
4267 	} else if (len == sizeof(struct sctp_assoc_value)) {
4268 		printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
4269 		       "in delayed_ack socket option deprecated\n");
4270 		printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
4271 		if (copy_from_user(&params, optval, len))
4272 			return -EFAULT;
4273 	} else
4274 		return - EINVAL;
4275 
4276 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4277 	 * to many style socket, and an association was not found, then
4278 	 * the id was invalid.
4279 	 */
4280 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4281 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4282 		return -EINVAL;
4283 
4284 	if (asoc) {
4285 		/* Fetch association values. */
4286 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4287 			params.sack_delay = jiffies_to_msecs(
4288 				asoc->sackdelay);
4289 			params.sack_freq = asoc->sackfreq;
4290 
4291 		} else {
4292 			params.sack_delay = 0;
4293 			params.sack_freq = 1;
4294 		}
4295 	} else {
4296 		/* Fetch socket values. */
4297 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4298 			params.sack_delay  = sp->sackdelay;
4299 			params.sack_freq = sp->sackfreq;
4300 		} else {
4301 			params.sack_delay  = 0;
4302 			params.sack_freq = 1;
4303 		}
4304 	}
4305 
4306 	if (copy_to_user(optval, &params, len))
4307 		return -EFAULT;
4308 
4309 	if (put_user(len, optlen))
4310 		return -EFAULT;
4311 
4312 	return 0;
4313 }
4314 
4315 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4316  *
4317  * Applications can specify protocol parameters for the default association
4318  * initialization.  The option name argument to setsockopt() and getsockopt()
4319  * is SCTP_INITMSG.
4320  *
4321  * Setting initialization parameters is effective only on an unconnected
4322  * socket (for UDP-style sockets only future associations are effected
4323  * by the change).  With TCP-style sockets, this option is inherited by
4324  * sockets derived from a listener socket.
4325  */
4326 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4327 {
4328 	if (len < sizeof(struct sctp_initmsg))
4329 		return -EINVAL;
4330 	len = sizeof(struct sctp_initmsg);
4331 	if (put_user(len, optlen))
4332 		return -EFAULT;
4333 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4334 		return -EFAULT;
4335 	return 0;
4336 }
4337 
4338 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4339 					      char __user *optval,
4340 					      int __user *optlen)
4341 {
4342 	sctp_assoc_t id;
4343 	struct sctp_association *asoc;
4344 	struct list_head *pos;
4345 	int cnt = 0;
4346 
4347 	if (len < sizeof(sctp_assoc_t))
4348 		return -EINVAL;
4349 
4350 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4351 		return -EFAULT;
4352 
4353 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4354 			    "socket option deprecated\n");
4355 	/* For UDP-style sockets, id specifies the association to query.  */
4356 	asoc = sctp_id2assoc(sk, id);
4357 	if (!asoc)
4358 		return -EINVAL;
4359 
4360 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4361 		cnt ++;
4362 	}
4363 
4364 	return cnt;
4365 }
4366 
4367 /*
4368  * Old API for getting list of peer addresses. Does not work for 32-bit
4369  * programs running on a 64-bit kernel
4370  */
4371 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4372 					  char __user *optval,
4373 					  int __user *optlen)
4374 {
4375 	struct sctp_association *asoc;
4376 	int cnt = 0;
4377 	struct sctp_getaddrs_old getaddrs;
4378 	struct sctp_transport *from;
4379 	void __user *to;
4380 	union sctp_addr temp;
4381 	struct sctp_sock *sp = sctp_sk(sk);
4382 	int addrlen;
4383 
4384 	if (len < sizeof(struct sctp_getaddrs_old))
4385 		return -EINVAL;
4386 
4387 	len = sizeof(struct sctp_getaddrs_old);
4388 
4389 	if (copy_from_user(&getaddrs, optval, len))
4390 		return -EFAULT;
4391 
4392 	if (getaddrs.addr_num <= 0) return -EINVAL;
4393 
4394 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4395 			    "socket option deprecated\n");
4396 
4397 	/* For UDP-style sockets, id specifies the association to query.  */
4398 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4399 	if (!asoc)
4400 		return -EINVAL;
4401 
4402 	to = (void __user *)getaddrs.addrs;
4403 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4404 				transports) {
4405 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4406 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4407 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4408 		if (copy_to_user(to, &temp, addrlen))
4409 			return -EFAULT;
4410 		to += addrlen ;
4411 		cnt ++;
4412 		if (cnt >= getaddrs.addr_num) break;
4413 	}
4414 	getaddrs.addr_num = cnt;
4415 	if (put_user(len, optlen))
4416 		return -EFAULT;
4417 	if (copy_to_user(optval, &getaddrs, len))
4418 		return -EFAULT;
4419 
4420 	return 0;
4421 }
4422 
4423 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4424 				      char __user *optval, int __user *optlen)
4425 {
4426 	struct sctp_association *asoc;
4427 	int cnt = 0;
4428 	struct sctp_getaddrs getaddrs;
4429 	struct sctp_transport *from;
4430 	void __user *to;
4431 	union sctp_addr temp;
4432 	struct sctp_sock *sp = sctp_sk(sk);
4433 	int addrlen;
4434 	size_t space_left;
4435 	int bytes_copied;
4436 
4437 	if (len < sizeof(struct sctp_getaddrs))
4438 		return -EINVAL;
4439 
4440 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4441 		return -EFAULT;
4442 
4443 	/* For UDP-style sockets, id specifies the association to query.  */
4444 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4445 	if (!asoc)
4446 		return -EINVAL;
4447 
4448 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4449 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4450 
4451 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4452 				transports) {
4453 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4454 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4455 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4456 		if (space_left < addrlen)
4457 			return -ENOMEM;
4458 		if (copy_to_user(to, &temp, addrlen))
4459 			return -EFAULT;
4460 		to += addrlen;
4461 		cnt++;
4462 		space_left -= addrlen;
4463 	}
4464 
4465 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4466 		return -EFAULT;
4467 	bytes_copied = ((char __user *)to) - optval;
4468 	if (put_user(bytes_copied, optlen))
4469 		return -EFAULT;
4470 
4471 	return 0;
4472 }
4473 
4474 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4475 					       char __user *optval,
4476 					       int __user *optlen)
4477 {
4478 	sctp_assoc_t id;
4479 	struct sctp_bind_addr *bp;
4480 	struct sctp_association *asoc;
4481 	struct sctp_sockaddr_entry *addr;
4482 	int cnt = 0;
4483 
4484 	if (len < sizeof(sctp_assoc_t))
4485 		return -EINVAL;
4486 
4487 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4488 		return -EFAULT;
4489 
4490 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4491 			    "socket option deprecated\n");
4492 
4493 	/*
4494 	 *  For UDP-style sockets, id specifies the association to query.
4495 	 *  If the id field is set to the value '0' then the locally bound
4496 	 *  addresses are returned without regard to any particular
4497 	 *  association.
4498 	 */
4499 	if (0 == id) {
4500 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4501 	} else {
4502 		asoc = sctp_id2assoc(sk, id);
4503 		if (!asoc)
4504 			return -EINVAL;
4505 		bp = &asoc->base.bind_addr;
4506 	}
4507 
4508 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4509 	 * addresses from the global local address list.
4510 	 */
4511 	if (sctp_list_single_entry(&bp->address_list)) {
4512 		addr = list_entry(bp->address_list.next,
4513 				  struct sctp_sockaddr_entry, list);
4514 		if (sctp_is_any(sk, &addr->a)) {
4515 			rcu_read_lock();
4516 			list_for_each_entry_rcu(addr,
4517 						&sctp_local_addr_list, list) {
4518 				if (!addr->valid)
4519 					continue;
4520 
4521 				if ((PF_INET == sk->sk_family) &&
4522 				    (AF_INET6 == addr->a.sa.sa_family))
4523 					continue;
4524 
4525 				if ((PF_INET6 == sk->sk_family) &&
4526 				    inet_v6_ipv6only(sk) &&
4527 				    (AF_INET == addr->a.sa.sa_family))
4528 					continue;
4529 
4530 				cnt++;
4531 			}
4532 			rcu_read_unlock();
4533 		} else {
4534 			cnt = 1;
4535 		}
4536 		goto done;
4537 	}
4538 
4539 	/* Protection on the bound address list is not needed,
4540 	 * since in the socket option context we hold the socket lock,
4541 	 * so there is no way that the bound address list can change.
4542 	 */
4543 	list_for_each_entry(addr, &bp->address_list, list) {
4544 		cnt ++;
4545 	}
4546 done:
4547 	return cnt;
4548 }
4549 
4550 /* Helper function that copies local addresses to user and returns the number
4551  * of addresses copied.
4552  */
4553 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4554 					int max_addrs, void *to,
4555 					int *bytes_copied)
4556 {
4557 	struct sctp_sockaddr_entry *addr;
4558 	union sctp_addr temp;
4559 	int cnt = 0;
4560 	int addrlen;
4561 
4562 	rcu_read_lock();
4563 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4564 		if (!addr->valid)
4565 			continue;
4566 
4567 		if ((PF_INET == sk->sk_family) &&
4568 		    (AF_INET6 == addr->a.sa.sa_family))
4569 			continue;
4570 		if ((PF_INET6 == sk->sk_family) &&
4571 		    inet_v6_ipv6only(sk) &&
4572 		    (AF_INET == addr->a.sa.sa_family))
4573 			continue;
4574 		memcpy(&temp, &addr->a, sizeof(temp));
4575 		if (!temp.v4.sin_port)
4576 			temp.v4.sin_port = htons(port);
4577 
4578 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4579 								&temp);
4580 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4581 		memcpy(to, &temp, addrlen);
4582 
4583 		to += addrlen;
4584 		*bytes_copied += addrlen;
4585 		cnt ++;
4586 		if (cnt >= max_addrs) break;
4587 	}
4588 	rcu_read_unlock();
4589 
4590 	return cnt;
4591 }
4592 
4593 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4594 			    size_t space_left, int *bytes_copied)
4595 {
4596 	struct sctp_sockaddr_entry *addr;
4597 	union sctp_addr temp;
4598 	int cnt = 0;
4599 	int addrlen;
4600 
4601 	rcu_read_lock();
4602 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4603 		if (!addr->valid)
4604 			continue;
4605 
4606 		if ((PF_INET == sk->sk_family) &&
4607 		    (AF_INET6 == addr->a.sa.sa_family))
4608 			continue;
4609 		if ((PF_INET6 == sk->sk_family) &&
4610 		    inet_v6_ipv6only(sk) &&
4611 		    (AF_INET == addr->a.sa.sa_family))
4612 			continue;
4613 		memcpy(&temp, &addr->a, sizeof(temp));
4614 		if (!temp.v4.sin_port)
4615 			temp.v4.sin_port = htons(port);
4616 
4617 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4618 								&temp);
4619 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4620 		if (space_left < addrlen) {
4621 			cnt =  -ENOMEM;
4622 			break;
4623 		}
4624 		memcpy(to, &temp, addrlen);
4625 
4626 		to += addrlen;
4627 		cnt ++;
4628 		space_left -= addrlen;
4629 		*bytes_copied += addrlen;
4630 	}
4631 	rcu_read_unlock();
4632 
4633 	return cnt;
4634 }
4635 
4636 /* Old API for getting list of local addresses. Does not work for 32-bit
4637  * programs running on a 64-bit kernel
4638  */
4639 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4640 					   char __user *optval, int __user *optlen)
4641 {
4642 	struct sctp_bind_addr *bp;
4643 	struct sctp_association *asoc;
4644 	int cnt = 0;
4645 	struct sctp_getaddrs_old getaddrs;
4646 	struct sctp_sockaddr_entry *addr;
4647 	void __user *to;
4648 	union sctp_addr temp;
4649 	struct sctp_sock *sp = sctp_sk(sk);
4650 	int addrlen;
4651 	int err = 0;
4652 	void *addrs;
4653 	void *buf;
4654 	int bytes_copied = 0;
4655 
4656 	if (len < sizeof(struct sctp_getaddrs_old))
4657 		return -EINVAL;
4658 
4659 	len = sizeof(struct sctp_getaddrs_old);
4660 	if (copy_from_user(&getaddrs, optval, len))
4661 		return -EFAULT;
4662 
4663 	if (getaddrs.addr_num <= 0 ||
4664 	    getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4665 		return -EINVAL;
4666 
4667 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4668 			    "socket option deprecated\n");
4669 
4670 	/*
4671 	 *  For UDP-style sockets, id specifies the association to query.
4672 	 *  If the id field is set to the value '0' then the locally bound
4673 	 *  addresses are returned without regard to any particular
4674 	 *  association.
4675 	 */
4676 	if (0 == getaddrs.assoc_id) {
4677 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4678 	} else {
4679 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4680 		if (!asoc)
4681 			return -EINVAL;
4682 		bp = &asoc->base.bind_addr;
4683 	}
4684 
4685 	to = getaddrs.addrs;
4686 
4687 	/* Allocate space for a local instance of packed array to hold all
4688 	 * the data.  We store addresses here first and then put write them
4689 	 * to the user in one shot.
4690 	 */
4691 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4692 			GFP_KERNEL);
4693 	if (!addrs)
4694 		return -ENOMEM;
4695 
4696 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4697 	 * addresses from the global local address list.
4698 	 */
4699 	if (sctp_list_single_entry(&bp->address_list)) {
4700 		addr = list_entry(bp->address_list.next,
4701 				  struct sctp_sockaddr_entry, list);
4702 		if (sctp_is_any(sk, &addr->a)) {
4703 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4704 						   getaddrs.addr_num,
4705 						   addrs, &bytes_copied);
4706 			goto copy_getaddrs;
4707 		}
4708 	}
4709 
4710 	buf = addrs;
4711 	/* Protection on the bound address list is not needed since
4712 	 * in the socket option context we hold a socket lock and
4713 	 * thus the bound address list can't change.
4714 	 */
4715 	list_for_each_entry(addr, &bp->address_list, list) {
4716 		memcpy(&temp, &addr->a, sizeof(temp));
4717 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4718 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4719 		memcpy(buf, &temp, addrlen);
4720 		buf += addrlen;
4721 		bytes_copied += addrlen;
4722 		cnt ++;
4723 		if (cnt >= getaddrs.addr_num) break;
4724 	}
4725 
4726 copy_getaddrs:
4727 	/* copy the entire address list into the user provided space */
4728 	if (copy_to_user(to, addrs, bytes_copied)) {
4729 		err = -EFAULT;
4730 		goto error;
4731 	}
4732 
4733 	/* copy the leading structure back to user */
4734 	getaddrs.addr_num = cnt;
4735 	if (copy_to_user(optval, &getaddrs, len))
4736 		err = -EFAULT;
4737 
4738 error:
4739 	kfree(addrs);
4740 	return err;
4741 }
4742 
4743 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4744 				       char __user *optval, int __user *optlen)
4745 {
4746 	struct sctp_bind_addr *bp;
4747 	struct sctp_association *asoc;
4748 	int cnt = 0;
4749 	struct sctp_getaddrs getaddrs;
4750 	struct sctp_sockaddr_entry *addr;
4751 	void __user *to;
4752 	union sctp_addr temp;
4753 	struct sctp_sock *sp = sctp_sk(sk);
4754 	int addrlen;
4755 	int err = 0;
4756 	size_t space_left;
4757 	int bytes_copied = 0;
4758 	void *addrs;
4759 	void *buf;
4760 
4761 	if (len < sizeof(struct sctp_getaddrs))
4762 		return -EINVAL;
4763 
4764 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4765 		return -EFAULT;
4766 
4767 	/*
4768 	 *  For UDP-style sockets, id specifies the association to query.
4769 	 *  If the id field is set to the value '0' then the locally bound
4770 	 *  addresses are returned without regard to any particular
4771 	 *  association.
4772 	 */
4773 	if (0 == getaddrs.assoc_id) {
4774 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4775 	} else {
4776 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4777 		if (!asoc)
4778 			return -EINVAL;
4779 		bp = &asoc->base.bind_addr;
4780 	}
4781 
4782 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4783 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4784 
4785 	addrs = kmalloc(space_left, GFP_KERNEL);
4786 	if (!addrs)
4787 		return -ENOMEM;
4788 
4789 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4790 	 * addresses from the global local address list.
4791 	 */
4792 	if (sctp_list_single_entry(&bp->address_list)) {
4793 		addr = list_entry(bp->address_list.next,
4794 				  struct sctp_sockaddr_entry, list);
4795 		if (sctp_is_any(sk, &addr->a)) {
4796 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4797 						space_left, &bytes_copied);
4798 			if (cnt < 0) {
4799 				err = cnt;
4800 				goto out;
4801 			}
4802 			goto copy_getaddrs;
4803 		}
4804 	}
4805 
4806 	buf = addrs;
4807 	/* Protection on the bound address list is not needed since
4808 	 * in the socket option context we hold a socket lock and
4809 	 * thus the bound address list can't change.
4810 	 */
4811 	list_for_each_entry(addr, &bp->address_list, list) {
4812 		memcpy(&temp, &addr->a, sizeof(temp));
4813 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4814 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4815 		if (space_left < addrlen) {
4816 			err =  -ENOMEM; /*fixme: right error?*/
4817 			goto out;
4818 		}
4819 		memcpy(buf, &temp, addrlen);
4820 		buf += addrlen;
4821 		bytes_copied += addrlen;
4822 		cnt ++;
4823 		space_left -= addrlen;
4824 	}
4825 
4826 copy_getaddrs:
4827 	if (copy_to_user(to, addrs, bytes_copied)) {
4828 		err = -EFAULT;
4829 		goto out;
4830 	}
4831 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4832 		err = -EFAULT;
4833 		goto out;
4834 	}
4835 	if (put_user(bytes_copied, optlen))
4836 		err = -EFAULT;
4837 out:
4838 	kfree(addrs);
4839 	return err;
4840 }
4841 
4842 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4843  *
4844  * Requests that the local SCTP stack use the enclosed peer address as
4845  * the association primary.  The enclosed address must be one of the
4846  * association peer's addresses.
4847  */
4848 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4849 					char __user *optval, int __user *optlen)
4850 {
4851 	struct sctp_prim prim;
4852 	struct sctp_association *asoc;
4853 	struct sctp_sock *sp = sctp_sk(sk);
4854 
4855 	if (len < sizeof(struct sctp_prim))
4856 		return -EINVAL;
4857 
4858 	len = sizeof(struct sctp_prim);
4859 
4860 	if (copy_from_user(&prim, optval, len))
4861 		return -EFAULT;
4862 
4863 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4864 	if (!asoc)
4865 		return -EINVAL;
4866 
4867 	if (!asoc->peer.primary_path)
4868 		return -ENOTCONN;
4869 
4870 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4871 		asoc->peer.primary_path->af_specific->sockaddr_len);
4872 
4873 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4874 			(union sctp_addr *)&prim.ssp_addr);
4875 
4876 	if (put_user(len, optlen))
4877 		return -EFAULT;
4878 	if (copy_to_user(optval, &prim, len))
4879 		return -EFAULT;
4880 
4881 	return 0;
4882 }
4883 
4884 /*
4885  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4886  *
4887  * Requests that the local endpoint set the specified Adaptation Layer
4888  * Indication parameter for all future INIT and INIT-ACK exchanges.
4889  */
4890 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4891 				  char __user *optval, int __user *optlen)
4892 {
4893 	struct sctp_setadaptation adaptation;
4894 
4895 	if (len < sizeof(struct sctp_setadaptation))
4896 		return -EINVAL;
4897 
4898 	len = sizeof(struct sctp_setadaptation);
4899 
4900 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4901 
4902 	if (put_user(len, optlen))
4903 		return -EFAULT;
4904 	if (copy_to_user(optval, &adaptation, len))
4905 		return -EFAULT;
4906 
4907 	return 0;
4908 }
4909 
4910 /*
4911  *
4912  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4913  *
4914  *   Applications that wish to use the sendto() system call may wish to
4915  *   specify a default set of parameters that would normally be supplied
4916  *   through the inclusion of ancillary data.  This socket option allows
4917  *   such an application to set the default sctp_sndrcvinfo structure.
4918 
4919 
4920  *   The application that wishes to use this socket option simply passes
4921  *   in to this call the sctp_sndrcvinfo structure defined in Section
4922  *   5.2.2) The input parameters accepted by this call include
4923  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4924  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4925  *   to this call if the caller is using the UDP model.
4926  *
4927  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4928  */
4929 static int sctp_getsockopt_default_send_param(struct sock *sk,
4930 					int len, char __user *optval,
4931 					int __user *optlen)
4932 {
4933 	struct sctp_sndrcvinfo info;
4934 	struct sctp_association *asoc;
4935 	struct sctp_sock *sp = sctp_sk(sk);
4936 
4937 	if (len < sizeof(struct sctp_sndrcvinfo))
4938 		return -EINVAL;
4939 
4940 	len = sizeof(struct sctp_sndrcvinfo);
4941 
4942 	if (copy_from_user(&info, optval, len))
4943 		return -EFAULT;
4944 
4945 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4946 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4947 		return -EINVAL;
4948 
4949 	if (asoc) {
4950 		info.sinfo_stream = asoc->default_stream;
4951 		info.sinfo_flags = asoc->default_flags;
4952 		info.sinfo_ppid = asoc->default_ppid;
4953 		info.sinfo_context = asoc->default_context;
4954 		info.sinfo_timetolive = asoc->default_timetolive;
4955 	} else {
4956 		info.sinfo_stream = sp->default_stream;
4957 		info.sinfo_flags = sp->default_flags;
4958 		info.sinfo_ppid = sp->default_ppid;
4959 		info.sinfo_context = sp->default_context;
4960 		info.sinfo_timetolive = sp->default_timetolive;
4961 	}
4962 
4963 	if (put_user(len, optlen))
4964 		return -EFAULT;
4965 	if (copy_to_user(optval, &info, len))
4966 		return -EFAULT;
4967 
4968 	return 0;
4969 }
4970 
4971 /*
4972  *
4973  * 7.1.5 SCTP_NODELAY
4974  *
4975  * Turn on/off any Nagle-like algorithm.  This means that packets are
4976  * generally sent as soon as possible and no unnecessary delays are
4977  * introduced, at the cost of more packets in the network.  Expects an
4978  * integer boolean flag.
4979  */
4980 
4981 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4982 				   char __user *optval, int __user *optlen)
4983 {
4984 	int val;
4985 
4986 	if (len < sizeof(int))
4987 		return -EINVAL;
4988 
4989 	len = sizeof(int);
4990 	val = (sctp_sk(sk)->nodelay == 1);
4991 	if (put_user(len, optlen))
4992 		return -EFAULT;
4993 	if (copy_to_user(optval, &val, len))
4994 		return -EFAULT;
4995 	return 0;
4996 }
4997 
4998 /*
4999  *
5000  * 7.1.1 SCTP_RTOINFO
5001  *
5002  * The protocol parameters used to initialize and bound retransmission
5003  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5004  * and modify these parameters.
5005  * All parameters are time values, in milliseconds.  A value of 0, when
5006  * modifying the parameters, indicates that the current value should not
5007  * be changed.
5008  *
5009  */
5010 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5011 				char __user *optval,
5012 				int __user *optlen) {
5013 	struct sctp_rtoinfo rtoinfo;
5014 	struct sctp_association *asoc;
5015 
5016 	if (len < sizeof (struct sctp_rtoinfo))
5017 		return -EINVAL;
5018 
5019 	len = sizeof(struct sctp_rtoinfo);
5020 
5021 	if (copy_from_user(&rtoinfo, optval, len))
5022 		return -EFAULT;
5023 
5024 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5025 
5026 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5027 		return -EINVAL;
5028 
5029 	/* Values corresponding to the specific association. */
5030 	if (asoc) {
5031 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5032 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5033 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5034 	} else {
5035 		/* Values corresponding to the endpoint. */
5036 		struct sctp_sock *sp = sctp_sk(sk);
5037 
5038 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5039 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5040 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5041 	}
5042 
5043 	if (put_user(len, optlen))
5044 		return -EFAULT;
5045 
5046 	if (copy_to_user(optval, &rtoinfo, len))
5047 		return -EFAULT;
5048 
5049 	return 0;
5050 }
5051 
5052 /*
5053  *
5054  * 7.1.2 SCTP_ASSOCINFO
5055  *
5056  * This option is used to tune the maximum retransmission attempts
5057  * of the association.
5058  * Returns an error if the new association retransmission value is
5059  * greater than the sum of the retransmission value  of the peer.
5060  * See [SCTP] for more information.
5061  *
5062  */
5063 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5064 				     char __user *optval,
5065 				     int __user *optlen)
5066 {
5067 
5068 	struct sctp_assocparams assocparams;
5069 	struct sctp_association *asoc;
5070 	struct list_head *pos;
5071 	int cnt = 0;
5072 
5073 	if (len < sizeof (struct sctp_assocparams))
5074 		return -EINVAL;
5075 
5076 	len = sizeof(struct sctp_assocparams);
5077 
5078 	if (copy_from_user(&assocparams, optval, len))
5079 		return -EFAULT;
5080 
5081 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5082 
5083 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5084 		return -EINVAL;
5085 
5086 	/* Values correspoinding to the specific association */
5087 	if (asoc) {
5088 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5089 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5090 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5091 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5092 						* 1000) +
5093 						(asoc->cookie_life.tv_usec
5094 						/ 1000);
5095 
5096 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5097 			cnt ++;
5098 		}
5099 
5100 		assocparams.sasoc_number_peer_destinations = cnt;
5101 	} else {
5102 		/* Values corresponding to the endpoint */
5103 		struct sctp_sock *sp = sctp_sk(sk);
5104 
5105 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5106 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5107 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5108 		assocparams.sasoc_cookie_life =
5109 					sp->assocparams.sasoc_cookie_life;
5110 		assocparams.sasoc_number_peer_destinations =
5111 					sp->assocparams.
5112 					sasoc_number_peer_destinations;
5113 	}
5114 
5115 	if (put_user(len, optlen))
5116 		return -EFAULT;
5117 
5118 	if (copy_to_user(optval, &assocparams, len))
5119 		return -EFAULT;
5120 
5121 	return 0;
5122 }
5123 
5124 /*
5125  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5126  *
5127  * This socket option is a boolean flag which turns on or off mapped V4
5128  * addresses.  If this option is turned on and the socket is type
5129  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5130  * If this option is turned off, then no mapping will be done of V4
5131  * addresses and a user will receive both PF_INET6 and PF_INET type
5132  * addresses on the socket.
5133  */
5134 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5135 				    char __user *optval, int __user *optlen)
5136 {
5137 	int val;
5138 	struct sctp_sock *sp = sctp_sk(sk);
5139 
5140 	if (len < sizeof(int))
5141 		return -EINVAL;
5142 
5143 	len = sizeof(int);
5144 	val = sp->v4mapped;
5145 	if (put_user(len, optlen))
5146 		return -EFAULT;
5147 	if (copy_to_user(optval, &val, len))
5148 		return -EFAULT;
5149 
5150 	return 0;
5151 }
5152 
5153 /*
5154  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5155  * (chapter and verse is quoted at sctp_setsockopt_context())
5156  */
5157 static int sctp_getsockopt_context(struct sock *sk, int len,
5158 				   char __user *optval, int __user *optlen)
5159 {
5160 	struct sctp_assoc_value params;
5161 	struct sctp_sock *sp;
5162 	struct sctp_association *asoc;
5163 
5164 	if (len < sizeof(struct sctp_assoc_value))
5165 		return -EINVAL;
5166 
5167 	len = sizeof(struct sctp_assoc_value);
5168 
5169 	if (copy_from_user(&params, optval, len))
5170 		return -EFAULT;
5171 
5172 	sp = sctp_sk(sk);
5173 
5174 	if (params.assoc_id != 0) {
5175 		asoc = sctp_id2assoc(sk, params.assoc_id);
5176 		if (!asoc)
5177 			return -EINVAL;
5178 		params.assoc_value = asoc->default_rcv_context;
5179 	} else {
5180 		params.assoc_value = sp->default_rcv_context;
5181 	}
5182 
5183 	if (put_user(len, optlen))
5184 		return -EFAULT;
5185 	if (copy_to_user(optval, &params, len))
5186 		return -EFAULT;
5187 
5188 	return 0;
5189 }
5190 
5191 /*
5192  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5193  * This option will get or set the maximum size to put in any outgoing
5194  * SCTP DATA chunk.  If a message is larger than this size it will be
5195  * fragmented by SCTP into the specified size.  Note that the underlying
5196  * SCTP implementation may fragment into smaller sized chunks when the
5197  * PMTU of the underlying association is smaller than the value set by
5198  * the user.  The default value for this option is '0' which indicates
5199  * the user is NOT limiting fragmentation and only the PMTU will effect
5200  * SCTP's choice of DATA chunk size.  Note also that values set larger
5201  * than the maximum size of an IP datagram will effectively let SCTP
5202  * control fragmentation (i.e. the same as setting this option to 0).
5203  *
5204  * The following structure is used to access and modify this parameter:
5205  *
5206  * struct sctp_assoc_value {
5207  *   sctp_assoc_t assoc_id;
5208  *   uint32_t assoc_value;
5209  * };
5210  *
5211  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5212  *    For one-to-many style sockets this parameter indicates which
5213  *    association the user is performing an action upon.  Note that if
5214  *    this field's value is zero then the endpoints default value is
5215  *    changed (effecting future associations only).
5216  * assoc_value:  This parameter specifies the maximum size in bytes.
5217  */
5218 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5219 				  char __user *optval, int __user *optlen)
5220 {
5221 	struct sctp_assoc_value params;
5222 	struct sctp_association *asoc;
5223 
5224 	if (len == sizeof(int)) {
5225 		printk(KERN_WARNING
5226 		   "SCTP: Use of int in maxseg socket option deprecated\n");
5227 		printk(KERN_WARNING
5228 		   "SCTP: Use struct sctp_assoc_value instead\n");
5229 		params.assoc_id = 0;
5230 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5231 		len = sizeof(struct sctp_assoc_value);
5232 		if (copy_from_user(&params, optval, sizeof(params)))
5233 			return -EFAULT;
5234 	} else
5235 		return -EINVAL;
5236 
5237 	asoc = sctp_id2assoc(sk, params.assoc_id);
5238 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5239 		return -EINVAL;
5240 
5241 	if (asoc)
5242 		params.assoc_value = asoc->frag_point;
5243 	else
5244 		params.assoc_value = sctp_sk(sk)->user_frag;
5245 
5246 	if (put_user(len, optlen))
5247 		return -EFAULT;
5248 	if (len == sizeof(int)) {
5249 		if (copy_to_user(optval, &params.assoc_value, len))
5250 			return -EFAULT;
5251 	} else {
5252 		if (copy_to_user(optval, &params, len))
5253 			return -EFAULT;
5254 	}
5255 
5256 	return 0;
5257 }
5258 
5259 /*
5260  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5261  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5262  */
5263 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5264 					       char __user *optval, int __user *optlen)
5265 {
5266 	int val;
5267 
5268 	if (len < sizeof(int))
5269 		return -EINVAL;
5270 
5271 	len = sizeof(int);
5272 
5273 	val = sctp_sk(sk)->frag_interleave;
5274 	if (put_user(len, optlen))
5275 		return -EFAULT;
5276 	if (copy_to_user(optval, &val, len))
5277 		return -EFAULT;
5278 
5279 	return 0;
5280 }
5281 
5282 /*
5283  * 7.1.25.  Set or Get the sctp partial delivery point
5284  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5285  */
5286 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5287 						  char __user *optval,
5288 						  int __user *optlen)
5289 {
5290 	u32 val;
5291 
5292 	if (len < sizeof(u32))
5293 		return -EINVAL;
5294 
5295 	len = sizeof(u32);
5296 
5297 	val = sctp_sk(sk)->pd_point;
5298 	if (put_user(len, optlen))
5299 		return -EFAULT;
5300 	if (copy_to_user(optval, &val, len))
5301 		return -EFAULT;
5302 
5303 	return -ENOTSUPP;
5304 }
5305 
5306 /*
5307  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5308  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5309  */
5310 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5311 				    char __user *optval,
5312 				    int __user *optlen)
5313 {
5314 	struct sctp_assoc_value params;
5315 	struct sctp_sock *sp;
5316 	struct sctp_association *asoc;
5317 
5318 	if (len == sizeof(int)) {
5319 		printk(KERN_WARNING
5320 		   "SCTP: Use of int in max_burst socket option deprecated\n");
5321 		printk(KERN_WARNING
5322 		   "SCTP: Use struct sctp_assoc_value instead\n");
5323 		params.assoc_id = 0;
5324 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5325 		len = sizeof(struct sctp_assoc_value);
5326 		if (copy_from_user(&params, optval, len))
5327 			return -EFAULT;
5328 	} else
5329 		return -EINVAL;
5330 
5331 	sp = sctp_sk(sk);
5332 
5333 	if (params.assoc_id != 0) {
5334 		asoc = sctp_id2assoc(sk, params.assoc_id);
5335 		if (!asoc)
5336 			return -EINVAL;
5337 		params.assoc_value = asoc->max_burst;
5338 	} else
5339 		params.assoc_value = sp->max_burst;
5340 
5341 	if (len == sizeof(int)) {
5342 		if (copy_to_user(optval, &params.assoc_value, len))
5343 			return -EFAULT;
5344 	} else {
5345 		if (copy_to_user(optval, &params, len))
5346 			return -EFAULT;
5347 	}
5348 
5349 	return 0;
5350 
5351 }
5352 
5353 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5354 				    char __user *optval, int __user *optlen)
5355 {
5356 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5357 	struct sctp_hmac_algo_param *hmacs;
5358 	__u16 data_len = 0;
5359 	u32 num_idents;
5360 
5361 	if (!sctp_auth_enable)
5362 		return -EACCES;
5363 
5364 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5365 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5366 
5367 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5368 		return -EINVAL;
5369 
5370 	len = sizeof(struct sctp_hmacalgo) + data_len;
5371 	num_idents = data_len / sizeof(u16);
5372 
5373 	if (put_user(len, optlen))
5374 		return -EFAULT;
5375 	if (put_user(num_idents, &p->shmac_num_idents))
5376 		return -EFAULT;
5377 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5378 		return -EFAULT;
5379 	return 0;
5380 }
5381 
5382 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5383 				    char __user *optval, int __user *optlen)
5384 {
5385 	struct sctp_authkeyid val;
5386 	struct sctp_association *asoc;
5387 
5388 	if (!sctp_auth_enable)
5389 		return -EACCES;
5390 
5391 	if (len < sizeof(struct sctp_authkeyid))
5392 		return -EINVAL;
5393 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5394 		return -EFAULT;
5395 
5396 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5397 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5398 		return -EINVAL;
5399 
5400 	if (asoc)
5401 		val.scact_keynumber = asoc->active_key_id;
5402 	else
5403 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5404 
5405 	len = sizeof(struct sctp_authkeyid);
5406 	if (put_user(len, optlen))
5407 		return -EFAULT;
5408 	if (copy_to_user(optval, &val, len))
5409 		return -EFAULT;
5410 
5411 	return 0;
5412 }
5413 
5414 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5415 				    char __user *optval, int __user *optlen)
5416 {
5417 	struct sctp_authchunks __user *p = (void __user *)optval;
5418 	struct sctp_authchunks val;
5419 	struct sctp_association *asoc;
5420 	struct sctp_chunks_param *ch;
5421 	u32    num_chunks = 0;
5422 	char __user *to;
5423 
5424 	if (!sctp_auth_enable)
5425 		return -EACCES;
5426 
5427 	if (len < sizeof(struct sctp_authchunks))
5428 		return -EINVAL;
5429 
5430 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5431 		return -EFAULT;
5432 
5433 	to = p->gauth_chunks;
5434 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5435 	if (!asoc)
5436 		return -EINVAL;
5437 
5438 	ch = asoc->peer.peer_chunks;
5439 	if (!ch)
5440 		goto num;
5441 
5442 	/* See if the user provided enough room for all the data */
5443 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5444 	if (len < num_chunks)
5445 		return -EINVAL;
5446 
5447 	if (copy_to_user(to, ch->chunks, num_chunks))
5448 		return -EFAULT;
5449 num:
5450 	len = sizeof(struct sctp_authchunks) + num_chunks;
5451 	if (put_user(len, optlen)) return -EFAULT;
5452 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5453 		return -EFAULT;
5454 	return 0;
5455 }
5456 
5457 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5458 				    char __user *optval, int __user *optlen)
5459 {
5460 	struct sctp_authchunks __user *p = (void __user *)optval;
5461 	struct sctp_authchunks val;
5462 	struct sctp_association *asoc;
5463 	struct sctp_chunks_param *ch;
5464 	u32    num_chunks = 0;
5465 	char __user *to;
5466 
5467 	if (!sctp_auth_enable)
5468 		return -EACCES;
5469 
5470 	if (len < sizeof(struct sctp_authchunks))
5471 		return -EINVAL;
5472 
5473 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5474 		return -EFAULT;
5475 
5476 	to = p->gauth_chunks;
5477 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5478 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5479 		return -EINVAL;
5480 
5481 	if (asoc)
5482 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5483 	else
5484 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5485 
5486 	if (!ch)
5487 		goto num;
5488 
5489 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5490 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5491 		return -EINVAL;
5492 
5493 	if (copy_to_user(to, ch->chunks, num_chunks))
5494 		return -EFAULT;
5495 num:
5496 	len = sizeof(struct sctp_authchunks) + num_chunks;
5497 	if (put_user(len, optlen))
5498 		return -EFAULT;
5499 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5500 		return -EFAULT;
5501 
5502 	return 0;
5503 }
5504 
5505 /*
5506  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5507  * This option gets the current number of associations that are attached
5508  * to a one-to-many style socket.  The option value is an uint32_t.
5509  */
5510 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5511 				    char __user *optval, int __user *optlen)
5512 {
5513 	struct sctp_sock *sp = sctp_sk(sk);
5514 	struct sctp_association *asoc;
5515 	u32 val = 0;
5516 
5517 	if (sctp_style(sk, TCP))
5518 		return -EOPNOTSUPP;
5519 
5520 	if (len < sizeof(u32))
5521 		return -EINVAL;
5522 
5523 	len = sizeof(u32);
5524 
5525 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5526 		val++;
5527 	}
5528 
5529 	if (put_user(len, optlen))
5530 		return -EFAULT;
5531 	if (copy_to_user(optval, &val, len))
5532 		return -EFAULT;
5533 
5534 	return 0;
5535 }
5536 
5537 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5538 				char __user *optval, int __user *optlen)
5539 {
5540 	int retval = 0;
5541 	int len;
5542 
5543 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5544 			  sk, optname);
5545 
5546 	/* I can hardly begin to describe how wrong this is.  This is
5547 	 * so broken as to be worse than useless.  The API draft
5548 	 * REALLY is NOT helpful here...  I am not convinced that the
5549 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5550 	 * are at all well-founded.
5551 	 */
5552 	if (level != SOL_SCTP) {
5553 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5554 
5555 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5556 		return retval;
5557 	}
5558 
5559 	if (get_user(len, optlen))
5560 		return -EFAULT;
5561 
5562 	sctp_lock_sock(sk);
5563 
5564 	switch (optname) {
5565 	case SCTP_STATUS:
5566 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5567 		break;
5568 	case SCTP_DISABLE_FRAGMENTS:
5569 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5570 							   optlen);
5571 		break;
5572 	case SCTP_EVENTS:
5573 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5574 		break;
5575 	case SCTP_AUTOCLOSE:
5576 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5577 		break;
5578 	case SCTP_SOCKOPT_PEELOFF:
5579 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5580 		break;
5581 	case SCTP_PEER_ADDR_PARAMS:
5582 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5583 							  optlen);
5584 		break;
5585 	case SCTP_DELAYED_ACK:
5586 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5587 							  optlen);
5588 		break;
5589 	case SCTP_INITMSG:
5590 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5591 		break;
5592 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
5593 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5594 							    optlen);
5595 		break;
5596 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5597 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5598 							     optlen);
5599 		break;
5600 	case SCTP_GET_PEER_ADDRS_OLD:
5601 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5602 							optlen);
5603 		break;
5604 	case SCTP_GET_LOCAL_ADDRS_OLD:
5605 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5606 							 optlen);
5607 		break;
5608 	case SCTP_GET_PEER_ADDRS:
5609 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5610 						    optlen);
5611 		break;
5612 	case SCTP_GET_LOCAL_ADDRS:
5613 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5614 						     optlen);
5615 		break;
5616 	case SCTP_SOCKOPT_CONNECTX3:
5617 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5618 		break;
5619 	case SCTP_DEFAULT_SEND_PARAM:
5620 		retval = sctp_getsockopt_default_send_param(sk, len,
5621 							    optval, optlen);
5622 		break;
5623 	case SCTP_PRIMARY_ADDR:
5624 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5625 		break;
5626 	case SCTP_NODELAY:
5627 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5628 		break;
5629 	case SCTP_RTOINFO:
5630 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5631 		break;
5632 	case SCTP_ASSOCINFO:
5633 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5634 		break;
5635 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5636 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5637 		break;
5638 	case SCTP_MAXSEG:
5639 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5640 		break;
5641 	case SCTP_GET_PEER_ADDR_INFO:
5642 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5643 							optlen);
5644 		break;
5645 	case SCTP_ADAPTATION_LAYER:
5646 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5647 							optlen);
5648 		break;
5649 	case SCTP_CONTEXT:
5650 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5651 		break;
5652 	case SCTP_FRAGMENT_INTERLEAVE:
5653 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5654 							     optlen);
5655 		break;
5656 	case SCTP_PARTIAL_DELIVERY_POINT:
5657 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5658 								optlen);
5659 		break;
5660 	case SCTP_MAX_BURST:
5661 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5662 		break;
5663 	case SCTP_AUTH_KEY:
5664 	case SCTP_AUTH_CHUNK:
5665 	case SCTP_AUTH_DELETE_KEY:
5666 		retval = -EOPNOTSUPP;
5667 		break;
5668 	case SCTP_HMAC_IDENT:
5669 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5670 		break;
5671 	case SCTP_AUTH_ACTIVE_KEY:
5672 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5673 		break;
5674 	case SCTP_PEER_AUTH_CHUNKS:
5675 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5676 							optlen);
5677 		break;
5678 	case SCTP_LOCAL_AUTH_CHUNKS:
5679 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5680 							optlen);
5681 		break;
5682 	case SCTP_GET_ASSOC_NUMBER:
5683 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5684 		break;
5685 	default:
5686 		retval = -ENOPROTOOPT;
5687 		break;
5688 	}
5689 
5690 	sctp_release_sock(sk);
5691 	return retval;
5692 }
5693 
5694 static void sctp_hash(struct sock *sk)
5695 {
5696 	/* STUB */
5697 }
5698 
5699 static void sctp_unhash(struct sock *sk)
5700 {
5701 	/* STUB */
5702 }
5703 
5704 /* Check if port is acceptable.  Possibly find first available port.
5705  *
5706  * The port hash table (contained in the 'global' SCTP protocol storage
5707  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5708  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5709  * list (the list number is the port number hashed out, so as you
5710  * would expect from a hash function, all the ports in a given list have
5711  * such a number that hashes out to the same list number; you were
5712  * expecting that, right?); so each list has a set of ports, with a
5713  * link to the socket (struct sock) that uses it, the port number and
5714  * a fastreuse flag (FIXME: NPI ipg).
5715  */
5716 static struct sctp_bind_bucket *sctp_bucket_create(
5717 	struct sctp_bind_hashbucket *head, unsigned short snum);
5718 
5719 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5720 {
5721 	struct sctp_bind_hashbucket *head; /* hash list */
5722 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5723 	struct hlist_node *node;
5724 	unsigned short snum;
5725 	int ret;
5726 
5727 	snum = ntohs(addr->v4.sin_port);
5728 
5729 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5730 	sctp_local_bh_disable();
5731 
5732 	if (snum == 0) {
5733 		/* Search for an available port. */
5734 		int low, high, remaining, index;
5735 		unsigned int rover;
5736 
5737 		inet_get_local_port_range(&low, &high);
5738 		remaining = (high - low) + 1;
5739 		rover = net_random() % remaining + low;
5740 
5741 		do {
5742 			rover++;
5743 			if ((rover < low) || (rover > high))
5744 				rover = low;
5745 			index = sctp_phashfn(rover);
5746 			head = &sctp_port_hashtable[index];
5747 			sctp_spin_lock(&head->lock);
5748 			sctp_for_each_hentry(pp, node, &head->chain)
5749 				if (pp->port == rover)
5750 					goto next;
5751 			break;
5752 		next:
5753 			sctp_spin_unlock(&head->lock);
5754 		} while (--remaining > 0);
5755 
5756 		/* Exhausted local port range during search? */
5757 		ret = 1;
5758 		if (remaining <= 0)
5759 			goto fail;
5760 
5761 		/* OK, here is the one we will use.  HEAD (the port
5762 		 * hash table list entry) is non-NULL and we hold it's
5763 		 * mutex.
5764 		 */
5765 		snum = rover;
5766 	} else {
5767 		/* We are given an specific port number; we verify
5768 		 * that it is not being used. If it is used, we will
5769 		 * exahust the search in the hash list corresponding
5770 		 * to the port number (snum) - we detect that with the
5771 		 * port iterator, pp being NULL.
5772 		 */
5773 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5774 		sctp_spin_lock(&head->lock);
5775 		sctp_for_each_hentry(pp, node, &head->chain) {
5776 			if (pp->port == snum)
5777 				goto pp_found;
5778 		}
5779 	}
5780 	pp = NULL;
5781 	goto pp_not_found;
5782 pp_found:
5783 	if (!hlist_empty(&pp->owner)) {
5784 		/* We had a port hash table hit - there is an
5785 		 * available port (pp != NULL) and it is being
5786 		 * used by other socket (pp->owner not empty); that other
5787 		 * socket is going to be sk2.
5788 		 */
5789 		int reuse = sk->sk_reuse;
5790 		struct sock *sk2;
5791 		struct hlist_node *node;
5792 
5793 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5794 		if (pp->fastreuse && sk->sk_reuse &&
5795 			sk->sk_state != SCTP_SS_LISTENING)
5796 			goto success;
5797 
5798 		/* Run through the list of sockets bound to the port
5799 		 * (pp->port) [via the pointers bind_next and
5800 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5801 		 * we get the endpoint they describe and run through
5802 		 * the endpoint's list of IP (v4 or v6) addresses,
5803 		 * comparing each of the addresses with the address of
5804 		 * the socket sk. If we find a match, then that means
5805 		 * that this port/socket (sk) combination are already
5806 		 * in an endpoint.
5807 		 */
5808 		sk_for_each_bound(sk2, node, &pp->owner) {
5809 			struct sctp_endpoint *ep2;
5810 			ep2 = sctp_sk(sk2)->ep;
5811 
5812 			if (sk == sk2 ||
5813 			    (reuse && sk2->sk_reuse &&
5814 			     sk2->sk_state != SCTP_SS_LISTENING))
5815 				continue;
5816 
5817 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5818 						 sctp_sk(sk2), sctp_sk(sk))) {
5819 				ret = (long)sk2;
5820 				goto fail_unlock;
5821 			}
5822 		}
5823 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5824 	}
5825 pp_not_found:
5826 	/* If there was a hash table miss, create a new port.  */
5827 	ret = 1;
5828 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5829 		goto fail_unlock;
5830 
5831 	/* In either case (hit or miss), make sure fastreuse is 1 only
5832 	 * if sk->sk_reuse is too (that is, if the caller requested
5833 	 * SO_REUSEADDR on this socket -sk-).
5834 	 */
5835 	if (hlist_empty(&pp->owner)) {
5836 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5837 			pp->fastreuse = 1;
5838 		else
5839 			pp->fastreuse = 0;
5840 	} else if (pp->fastreuse &&
5841 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5842 		pp->fastreuse = 0;
5843 
5844 	/* We are set, so fill up all the data in the hash table
5845 	 * entry, tie the socket list information with the rest of the
5846 	 * sockets FIXME: Blurry, NPI (ipg).
5847 	 */
5848 success:
5849 	if (!sctp_sk(sk)->bind_hash) {
5850 		inet_sk(sk)->num = snum;
5851 		sk_add_bind_node(sk, &pp->owner);
5852 		sctp_sk(sk)->bind_hash = pp;
5853 	}
5854 	ret = 0;
5855 
5856 fail_unlock:
5857 	sctp_spin_unlock(&head->lock);
5858 
5859 fail:
5860 	sctp_local_bh_enable();
5861 	return ret;
5862 }
5863 
5864 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5865  * port is requested.
5866  */
5867 static int sctp_get_port(struct sock *sk, unsigned short snum)
5868 {
5869 	long ret;
5870 	union sctp_addr addr;
5871 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5872 
5873 	/* Set up a dummy address struct from the sk. */
5874 	af->from_sk(&addr, sk);
5875 	addr.v4.sin_port = htons(snum);
5876 
5877 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5878 	ret = sctp_get_port_local(sk, &addr);
5879 
5880 	return (ret ? 1 : 0);
5881 }
5882 
5883 /*
5884  *  Move a socket to LISTENING state.
5885  */
5886 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5887 {
5888 	struct sctp_sock *sp = sctp_sk(sk);
5889 	struct sctp_endpoint *ep = sp->ep;
5890 	struct crypto_hash *tfm = NULL;
5891 
5892 	/* Allocate HMAC for generating cookie. */
5893 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5894 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5895 		if (IS_ERR(tfm)) {
5896 			if (net_ratelimit()) {
5897 				printk(KERN_INFO
5898 				       "SCTP: failed to load transform for %s: %ld\n",
5899 					sctp_hmac_alg, PTR_ERR(tfm));
5900 			}
5901 			return -ENOSYS;
5902 		}
5903 		sctp_sk(sk)->hmac = tfm;
5904 	}
5905 
5906 	/*
5907 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5908 	 * call that allows new associations to be accepted, the system
5909 	 * picks an ephemeral port and will choose an address set equivalent
5910 	 * to binding with a wildcard address.
5911 	 *
5912 	 * This is not currently spelled out in the SCTP sockets
5913 	 * extensions draft, but follows the practice as seen in TCP
5914 	 * sockets.
5915 	 *
5916 	 */
5917 	sk->sk_state = SCTP_SS_LISTENING;
5918 	if (!ep->base.bind_addr.port) {
5919 		if (sctp_autobind(sk))
5920 			return -EAGAIN;
5921 	} else {
5922 		if (sctp_get_port(sk, inet_sk(sk)->num)) {
5923 			sk->sk_state = SCTP_SS_CLOSED;
5924 			return -EADDRINUSE;
5925 		}
5926 	}
5927 
5928 	sk->sk_max_ack_backlog = backlog;
5929 	sctp_hash_endpoint(ep);
5930 	return 0;
5931 }
5932 
5933 /*
5934  * 4.1.3 / 5.1.3 listen()
5935  *
5936  *   By default, new associations are not accepted for UDP style sockets.
5937  *   An application uses listen() to mark a socket as being able to
5938  *   accept new associations.
5939  *
5940  *   On TCP style sockets, applications use listen() to ready the SCTP
5941  *   endpoint for accepting inbound associations.
5942  *
5943  *   On both types of endpoints a backlog of '0' disables listening.
5944  *
5945  *  Move a socket to LISTENING state.
5946  */
5947 int sctp_inet_listen(struct socket *sock, int backlog)
5948 {
5949 	struct sock *sk = sock->sk;
5950 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5951 	int err = -EINVAL;
5952 
5953 	if (unlikely(backlog < 0))
5954 		return err;
5955 
5956 	sctp_lock_sock(sk);
5957 
5958 	/* Peeled-off sockets are not allowed to listen().  */
5959 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5960 		goto out;
5961 
5962 	if (sock->state != SS_UNCONNECTED)
5963 		goto out;
5964 
5965 	/* If backlog is zero, disable listening. */
5966 	if (!backlog) {
5967 		if (sctp_sstate(sk, CLOSED))
5968 			goto out;
5969 
5970 		err = 0;
5971 		sctp_unhash_endpoint(ep);
5972 		sk->sk_state = SCTP_SS_CLOSED;
5973 		if (sk->sk_reuse)
5974 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5975 		goto out;
5976 	}
5977 
5978 	/* If we are already listening, just update the backlog */
5979 	if (sctp_sstate(sk, LISTENING))
5980 		sk->sk_max_ack_backlog = backlog;
5981 	else {
5982 		err = sctp_listen_start(sk, backlog);
5983 		if (err)
5984 			goto out;
5985 	}
5986 
5987 	err = 0;
5988 out:
5989 	sctp_release_sock(sk);
5990 	return err;
5991 }
5992 
5993 /*
5994  * This function is done by modeling the current datagram_poll() and the
5995  * tcp_poll().  Note that, based on these implementations, we don't
5996  * lock the socket in this function, even though it seems that,
5997  * ideally, locking or some other mechanisms can be used to ensure
5998  * the integrity of the counters (sndbuf and wmem_alloc) used
5999  * in this place.  We assume that we don't need locks either until proven
6000  * otherwise.
6001  *
6002  * Another thing to note is that we include the Async I/O support
6003  * here, again, by modeling the current TCP/UDP code.  We don't have
6004  * a good way to test with it yet.
6005  */
6006 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6007 {
6008 	struct sock *sk = sock->sk;
6009 	struct sctp_sock *sp = sctp_sk(sk);
6010 	unsigned int mask;
6011 
6012 	poll_wait(file, sk->sk_sleep, wait);
6013 
6014 	/* A TCP-style listening socket becomes readable when the accept queue
6015 	 * is not empty.
6016 	 */
6017 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6018 		return (!list_empty(&sp->ep->asocs)) ?
6019 			(POLLIN | POLLRDNORM) : 0;
6020 
6021 	mask = 0;
6022 
6023 	/* Is there any exceptional events?  */
6024 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6025 		mask |= POLLERR;
6026 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6027 		mask |= POLLRDHUP;
6028 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6029 		mask |= POLLHUP;
6030 
6031 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6032 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
6033 	    (sk->sk_shutdown & RCV_SHUTDOWN))
6034 		mask |= POLLIN | POLLRDNORM;
6035 
6036 	/* The association is either gone or not ready.  */
6037 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6038 		return mask;
6039 
6040 	/* Is it writable?  */
6041 	if (sctp_writeable(sk)) {
6042 		mask |= POLLOUT | POLLWRNORM;
6043 	} else {
6044 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6045 		/*
6046 		 * Since the socket is not locked, the buffer
6047 		 * might be made available after the writeable check and
6048 		 * before the bit is set.  This could cause a lost I/O
6049 		 * signal.  tcp_poll() has a race breaker for this race
6050 		 * condition.  Based on their implementation, we put
6051 		 * in the following code to cover it as well.
6052 		 */
6053 		if (sctp_writeable(sk))
6054 			mask |= POLLOUT | POLLWRNORM;
6055 	}
6056 	return mask;
6057 }
6058 
6059 /********************************************************************
6060  * 2nd Level Abstractions
6061  ********************************************************************/
6062 
6063 static struct sctp_bind_bucket *sctp_bucket_create(
6064 	struct sctp_bind_hashbucket *head, unsigned short snum)
6065 {
6066 	struct sctp_bind_bucket *pp;
6067 
6068 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6069 	if (pp) {
6070 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6071 		pp->port = snum;
6072 		pp->fastreuse = 0;
6073 		INIT_HLIST_HEAD(&pp->owner);
6074 		hlist_add_head(&pp->node, &head->chain);
6075 	}
6076 	return pp;
6077 }
6078 
6079 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6080 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6081 {
6082 	if (pp && hlist_empty(&pp->owner)) {
6083 		__hlist_del(&pp->node);
6084 		kmem_cache_free(sctp_bucket_cachep, pp);
6085 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6086 	}
6087 }
6088 
6089 /* Release this socket's reference to a local port.  */
6090 static inline void __sctp_put_port(struct sock *sk)
6091 {
6092 	struct sctp_bind_hashbucket *head =
6093 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
6094 	struct sctp_bind_bucket *pp;
6095 
6096 	sctp_spin_lock(&head->lock);
6097 	pp = sctp_sk(sk)->bind_hash;
6098 	__sk_del_bind_node(sk);
6099 	sctp_sk(sk)->bind_hash = NULL;
6100 	inet_sk(sk)->num = 0;
6101 	sctp_bucket_destroy(pp);
6102 	sctp_spin_unlock(&head->lock);
6103 }
6104 
6105 void sctp_put_port(struct sock *sk)
6106 {
6107 	sctp_local_bh_disable();
6108 	__sctp_put_port(sk);
6109 	sctp_local_bh_enable();
6110 }
6111 
6112 /*
6113  * The system picks an ephemeral port and choose an address set equivalent
6114  * to binding with a wildcard address.
6115  * One of those addresses will be the primary address for the association.
6116  * This automatically enables the multihoming capability of SCTP.
6117  */
6118 static int sctp_autobind(struct sock *sk)
6119 {
6120 	union sctp_addr autoaddr;
6121 	struct sctp_af *af;
6122 	__be16 port;
6123 
6124 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6125 	af = sctp_sk(sk)->pf->af;
6126 
6127 	port = htons(inet_sk(sk)->num);
6128 	af->inaddr_any(&autoaddr, port);
6129 
6130 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6131 }
6132 
6133 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6134  *
6135  * From RFC 2292
6136  * 4.2 The cmsghdr Structure *
6137  *
6138  * When ancillary data is sent or received, any number of ancillary data
6139  * objects can be specified by the msg_control and msg_controllen members of
6140  * the msghdr structure, because each object is preceded by
6141  * a cmsghdr structure defining the object's length (the cmsg_len member).
6142  * Historically Berkeley-derived implementations have passed only one object
6143  * at a time, but this API allows multiple objects to be
6144  * passed in a single call to sendmsg() or recvmsg(). The following example
6145  * shows two ancillary data objects in a control buffer.
6146  *
6147  *   |<--------------------------- msg_controllen -------------------------->|
6148  *   |                                                                       |
6149  *
6150  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6151  *
6152  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6153  *   |                                   |                                   |
6154  *
6155  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6156  *
6157  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6158  *   |                                |  |                                |  |
6159  *
6160  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6161  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6162  *
6163  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6164  *
6165  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6166  *    ^
6167  *    |
6168  *
6169  * msg_control
6170  * points here
6171  */
6172 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6173 				  sctp_cmsgs_t *cmsgs)
6174 {
6175 	struct cmsghdr *cmsg;
6176 	struct msghdr *my_msg = (struct msghdr *)msg;
6177 
6178 	for (cmsg = CMSG_FIRSTHDR(msg);
6179 	     cmsg != NULL;
6180 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6181 		if (!CMSG_OK(my_msg, cmsg))
6182 			return -EINVAL;
6183 
6184 		/* Should we parse this header or ignore?  */
6185 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6186 			continue;
6187 
6188 		/* Strictly check lengths following example in SCM code.  */
6189 		switch (cmsg->cmsg_type) {
6190 		case SCTP_INIT:
6191 			/* SCTP Socket API Extension
6192 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6193 			 *
6194 			 * This cmsghdr structure provides information for
6195 			 * initializing new SCTP associations with sendmsg().
6196 			 * The SCTP_INITMSG socket option uses this same data
6197 			 * structure.  This structure is not used for
6198 			 * recvmsg().
6199 			 *
6200 			 * cmsg_level    cmsg_type      cmsg_data[]
6201 			 * ------------  ------------   ----------------------
6202 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6203 			 */
6204 			if (cmsg->cmsg_len !=
6205 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6206 				return -EINVAL;
6207 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6208 			break;
6209 
6210 		case SCTP_SNDRCV:
6211 			/* SCTP Socket API Extension
6212 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6213 			 *
6214 			 * This cmsghdr structure specifies SCTP options for
6215 			 * sendmsg() and describes SCTP header information
6216 			 * about a received message through recvmsg().
6217 			 *
6218 			 * cmsg_level    cmsg_type      cmsg_data[]
6219 			 * ------------  ------------   ----------------------
6220 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6221 			 */
6222 			if (cmsg->cmsg_len !=
6223 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6224 				return -EINVAL;
6225 
6226 			cmsgs->info =
6227 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6228 
6229 			/* Minimally, validate the sinfo_flags. */
6230 			if (cmsgs->info->sinfo_flags &
6231 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6232 			      SCTP_ABORT | SCTP_EOF))
6233 				return -EINVAL;
6234 			break;
6235 
6236 		default:
6237 			return -EINVAL;
6238 		}
6239 	}
6240 	return 0;
6241 }
6242 
6243 /*
6244  * Wait for a packet..
6245  * Note: This function is the same function as in core/datagram.c
6246  * with a few modifications to make lksctp work.
6247  */
6248 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6249 {
6250 	int error;
6251 	DEFINE_WAIT(wait);
6252 
6253 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6254 
6255 	/* Socket errors? */
6256 	error = sock_error(sk);
6257 	if (error)
6258 		goto out;
6259 
6260 	if (!skb_queue_empty(&sk->sk_receive_queue))
6261 		goto ready;
6262 
6263 	/* Socket shut down?  */
6264 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6265 		goto out;
6266 
6267 	/* Sequenced packets can come disconnected.  If so we report the
6268 	 * problem.
6269 	 */
6270 	error = -ENOTCONN;
6271 
6272 	/* Is there a good reason to think that we may receive some data?  */
6273 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6274 		goto out;
6275 
6276 	/* Handle signals.  */
6277 	if (signal_pending(current))
6278 		goto interrupted;
6279 
6280 	/* Let another process have a go.  Since we are going to sleep
6281 	 * anyway.  Note: This may cause odd behaviors if the message
6282 	 * does not fit in the user's buffer, but this seems to be the
6283 	 * only way to honor MSG_DONTWAIT realistically.
6284 	 */
6285 	sctp_release_sock(sk);
6286 	*timeo_p = schedule_timeout(*timeo_p);
6287 	sctp_lock_sock(sk);
6288 
6289 ready:
6290 	finish_wait(sk->sk_sleep, &wait);
6291 	return 0;
6292 
6293 interrupted:
6294 	error = sock_intr_errno(*timeo_p);
6295 
6296 out:
6297 	finish_wait(sk->sk_sleep, &wait);
6298 	*err = error;
6299 	return error;
6300 }
6301 
6302 /* Receive a datagram.
6303  * Note: This is pretty much the same routine as in core/datagram.c
6304  * with a few changes to make lksctp work.
6305  */
6306 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6307 					      int noblock, int *err)
6308 {
6309 	int error;
6310 	struct sk_buff *skb;
6311 	long timeo;
6312 
6313 	timeo = sock_rcvtimeo(sk, noblock);
6314 
6315 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6316 			  timeo, MAX_SCHEDULE_TIMEOUT);
6317 
6318 	do {
6319 		/* Again only user level code calls this function,
6320 		 * so nothing interrupt level
6321 		 * will suddenly eat the receive_queue.
6322 		 *
6323 		 *  Look at current nfs client by the way...
6324 		 *  However, this function was corrent in any case. 8)
6325 		 */
6326 		if (flags & MSG_PEEK) {
6327 			spin_lock_bh(&sk->sk_receive_queue.lock);
6328 			skb = skb_peek(&sk->sk_receive_queue);
6329 			if (skb)
6330 				atomic_inc(&skb->users);
6331 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6332 		} else {
6333 			skb = skb_dequeue(&sk->sk_receive_queue);
6334 		}
6335 
6336 		if (skb)
6337 			return skb;
6338 
6339 		/* Caller is allowed not to check sk->sk_err before calling. */
6340 		error = sock_error(sk);
6341 		if (error)
6342 			goto no_packet;
6343 
6344 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6345 			break;
6346 
6347 		/* User doesn't want to wait.  */
6348 		error = -EAGAIN;
6349 		if (!timeo)
6350 			goto no_packet;
6351 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6352 
6353 	return NULL;
6354 
6355 no_packet:
6356 	*err = error;
6357 	return NULL;
6358 }
6359 
6360 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6361 static void __sctp_write_space(struct sctp_association *asoc)
6362 {
6363 	struct sock *sk = asoc->base.sk;
6364 	struct socket *sock = sk->sk_socket;
6365 
6366 	if ((sctp_wspace(asoc) > 0) && sock) {
6367 		if (waitqueue_active(&asoc->wait))
6368 			wake_up_interruptible(&asoc->wait);
6369 
6370 		if (sctp_writeable(sk)) {
6371 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6372 				wake_up_interruptible(sk->sk_sleep);
6373 
6374 			/* Note that we try to include the Async I/O support
6375 			 * here by modeling from the current TCP/UDP code.
6376 			 * We have not tested with it yet.
6377 			 */
6378 			if (sock->fasync_list &&
6379 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6380 				sock_wake_async(sock,
6381 						SOCK_WAKE_SPACE, POLL_OUT);
6382 		}
6383 	}
6384 }
6385 
6386 /* Do accounting for the sndbuf space.
6387  * Decrement the used sndbuf space of the corresponding association by the
6388  * data size which was just transmitted(freed).
6389  */
6390 static void sctp_wfree(struct sk_buff *skb)
6391 {
6392 	struct sctp_association *asoc;
6393 	struct sctp_chunk *chunk;
6394 	struct sock *sk;
6395 
6396 	/* Get the saved chunk pointer.  */
6397 	chunk = *((struct sctp_chunk **)(skb->cb));
6398 	asoc = chunk->asoc;
6399 	sk = asoc->base.sk;
6400 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6401 				sizeof(struct sk_buff) +
6402 				sizeof(struct sctp_chunk);
6403 
6404 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6405 
6406 	/*
6407 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6408 	 */
6409 	sk->sk_wmem_queued   -= skb->truesize;
6410 	sk_mem_uncharge(sk, skb->truesize);
6411 
6412 	sock_wfree(skb);
6413 	__sctp_write_space(asoc);
6414 
6415 	sctp_association_put(asoc);
6416 }
6417 
6418 /* Do accounting for the receive space on the socket.
6419  * Accounting for the association is done in ulpevent.c
6420  * We set this as a destructor for the cloned data skbs so that
6421  * accounting is done at the correct time.
6422  */
6423 void sctp_sock_rfree(struct sk_buff *skb)
6424 {
6425 	struct sock *sk = skb->sk;
6426 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6427 
6428 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6429 
6430 	/*
6431 	 * Mimic the behavior of sock_rfree
6432 	 */
6433 	sk_mem_uncharge(sk, event->rmem_len);
6434 }
6435 
6436 
6437 /* Helper function to wait for space in the sndbuf.  */
6438 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6439 				size_t msg_len)
6440 {
6441 	struct sock *sk = asoc->base.sk;
6442 	int err = 0;
6443 	long current_timeo = *timeo_p;
6444 	DEFINE_WAIT(wait);
6445 
6446 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6447 			  asoc, (long)(*timeo_p), msg_len);
6448 
6449 	/* Increment the association's refcnt.  */
6450 	sctp_association_hold(asoc);
6451 
6452 	/* Wait on the association specific sndbuf space. */
6453 	for (;;) {
6454 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6455 					  TASK_INTERRUPTIBLE);
6456 		if (!*timeo_p)
6457 			goto do_nonblock;
6458 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6459 		    asoc->base.dead)
6460 			goto do_error;
6461 		if (signal_pending(current))
6462 			goto do_interrupted;
6463 		if (msg_len <= sctp_wspace(asoc))
6464 			break;
6465 
6466 		/* Let another process have a go.  Since we are going
6467 		 * to sleep anyway.
6468 		 */
6469 		sctp_release_sock(sk);
6470 		current_timeo = schedule_timeout(current_timeo);
6471 		BUG_ON(sk != asoc->base.sk);
6472 		sctp_lock_sock(sk);
6473 
6474 		*timeo_p = current_timeo;
6475 	}
6476 
6477 out:
6478 	finish_wait(&asoc->wait, &wait);
6479 
6480 	/* Release the association's refcnt.  */
6481 	sctp_association_put(asoc);
6482 
6483 	return err;
6484 
6485 do_error:
6486 	err = -EPIPE;
6487 	goto out;
6488 
6489 do_interrupted:
6490 	err = sock_intr_errno(*timeo_p);
6491 	goto out;
6492 
6493 do_nonblock:
6494 	err = -EAGAIN;
6495 	goto out;
6496 }
6497 
6498 /* If socket sndbuf has changed, wake up all per association waiters.  */
6499 void sctp_write_space(struct sock *sk)
6500 {
6501 	struct sctp_association *asoc;
6502 
6503 	/* Wake up the tasks in each wait queue.  */
6504 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6505 		__sctp_write_space(asoc);
6506 	}
6507 }
6508 
6509 /* Is there any sndbuf space available on the socket?
6510  *
6511  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6512  * associations on the same socket.  For a UDP-style socket with
6513  * multiple associations, it is possible for it to be "unwriteable"
6514  * prematurely.  I assume that this is acceptable because
6515  * a premature "unwriteable" is better than an accidental "writeable" which
6516  * would cause an unwanted block under certain circumstances.  For the 1-1
6517  * UDP-style sockets or TCP-style sockets, this code should work.
6518  *  - Daisy
6519  */
6520 static int sctp_writeable(struct sock *sk)
6521 {
6522 	int amt = 0;
6523 
6524 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6525 	if (amt < 0)
6526 		amt = 0;
6527 	return amt;
6528 }
6529 
6530 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6531  * returns immediately with EINPROGRESS.
6532  */
6533 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6534 {
6535 	struct sock *sk = asoc->base.sk;
6536 	int err = 0;
6537 	long current_timeo = *timeo_p;
6538 	DEFINE_WAIT(wait);
6539 
6540 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6541 			  (long)(*timeo_p));
6542 
6543 	/* Increment the association's refcnt.  */
6544 	sctp_association_hold(asoc);
6545 
6546 	for (;;) {
6547 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6548 					  TASK_INTERRUPTIBLE);
6549 		if (!*timeo_p)
6550 			goto do_nonblock;
6551 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6552 			break;
6553 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6554 		    asoc->base.dead)
6555 			goto do_error;
6556 		if (signal_pending(current))
6557 			goto do_interrupted;
6558 
6559 		if (sctp_state(asoc, ESTABLISHED))
6560 			break;
6561 
6562 		/* Let another process have a go.  Since we are going
6563 		 * to sleep anyway.
6564 		 */
6565 		sctp_release_sock(sk);
6566 		current_timeo = schedule_timeout(current_timeo);
6567 		sctp_lock_sock(sk);
6568 
6569 		*timeo_p = current_timeo;
6570 	}
6571 
6572 out:
6573 	finish_wait(&asoc->wait, &wait);
6574 
6575 	/* Release the association's refcnt.  */
6576 	sctp_association_put(asoc);
6577 
6578 	return err;
6579 
6580 do_error:
6581 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6582 		err = -ETIMEDOUT;
6583 	else
6584 		err = -ECONNREFUSED;
6585 	goto out;
6586 
6587 do_interrupted:
6588 	err = sock_intr_errno(*timeo_p);
6589 	goto out;
6590 
6591 do_nonblock:
6592 	err = -EINPROGRESS;
6593 	goto out;
6594 }
6595 
6596 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6597 {
6598 	struct sctp_endpoint *ep;
6599 	int err = 0;
6600 	DEFINE_WAIT(wait);
6601 
6602 	ep = sctp_sk(sk)->ep;
6603 
6604 
6605 	for (;;) {
6606 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6607 					  TASK_INTERRUPTIBLE);
6608 
6609 		if (list_empty(&ep->asocs)) {
6610 			sctp_release_sock(sk);
6611 			timeo = schedule_timeout(timeo);
6612 			sctp_lock_sock(sk);
6613 		}
6614 
6615 		err = -EINVAL;
6616 		if (!sctp_sstate(sk, LISTENING))
6617 			break;
6618 
6619 		err = 0;
6620 		if (!list_empty(&ep->asocs))
6621 			break;
6622 
6623 		err = sock_intr_errno(timeo);
6624 		if (signal_pending(current))
6625 			break;
6626 
6627 		err = -EAGAIN;
6628 		if (!timeo)
6629 			break;
6630 	}
6631 
6632 	finish_wait(sk->sk_sleep, &wait);
6633 
6634 	return err;
6635 }
6636 
6637 static void sctp_wait_for_close(struct sock *sk, long timeout)
6638 {
6639 	DEFINE_WAIT(wait);
6640 
6641 	do {
6642 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6643 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6644 			break;
6645 		sctp_release_sock(sk);
6646 		timeout = schedule_timeout(timeout);
6647 		sctp_lock_sock(sk);
6648 	} while (!signal_pending(current) && timeout);
6649 
6650 	finish_wait(sk->sk_sleep, &wait);
6651 }
6652 
6653 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6654 {
6655 	struct sk_buff *frag;
6656 
6657 	if (!skb->data_len)
6658 		goto done;
6659 
6660 	/* Don't forget the fragments. */
6661 	skb_walk_frags(skb, frag)
6662 		sctp_skb_set_owner_r_frag(frag, sk);
6663 
6664 done:
6665 	sctp_skb_set_owner_r(skb, sk);
6666 }
6667 
6668 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6669 		    struct sctp_association *asoc)
6670 {
6671 	struct inet_sock *inet = inet_sk(sk);
6672 	struct inet_sock *newinet = inet_sk(newsk);
6673 
6674 	newsk->sk_type = sk->sk_type;
6675 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6676 	newsk->sk_flags = sk->sk_flags;
6677 	newsk->sk_no_check = sk->sk_no_check;
6678 	newsk->sk_reuse = sk->sk_reuse;
6679 
6680 	newsk->sk_shutdown = sk->sk_shutdown;
6681 	newsk->sk_destruct = inet_sock_destruct;
6682 	newsk->sk_family = sk->sk_family;
6683 	newsk->sk_protocol = IPPROTO_SCTP;
6684 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6685 	newsk->sk_sndbuf = sk->sk_sndbuf;
6686 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6687 	newsk->sk_lingertime = sk->sk_lingertime;
6688 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6689 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6690 
6691 	newinet = inet_sk(newsk);
6692 
6693 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6694 	 * getsockname() and getpeername()
6695 	 */
6696 	newinet->sport = inet->sport;
6697 	newinet->saddr = inet->saddr;
6698 	newinet->rcv_saddr = inet->rcv_saddr;
6699 	newinet->dport = htons(asoc->peer.port);
6700 	newinet->pmtudisc = inet->pmtudisc;
6701 	newinet->id = asoc->next_tsn ^ jiffies;
6702 
6703 	newinet->uc_ttl = inet->uc_ttl;
6704 	newinet->mc_loop = 1;
6705 	newinet->mc_ttl = 1;
6706 	newinet->mc_index = 0;
6707 	newinet->mc_list = NULL;
6708 }
6709 
6710 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6711  * and its messages to the newsk.
6712  */
6713 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6714 			      struct sctp_association *assoc,
6715 			      sctp_socket_type_t type)
6716 {
6717 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6718 	struct sctp_sock *newsp = sctp_sk(newsk);
6719 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6720 	struct sctp_endpoint *newep = newsp->ep;
6721 	struct sk_buff *skb, *tmp;
6722 	struct sctp_ulpevent *event;
6723 	struct sctp_bind_hashbucket *head;
6724 
6725 	/* Migrate socket buffer sizes and all the socket level options to the
6726 	 * new socket.
6727 	 */
6728 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6729 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6730 	/* Brute force copy old sctp opt. */
6731 	inet_sk_copy_descendant(newsk, oldsk);
6732 
6733 	/* Restore the ep value that was overwritten with the above structure
6734 	 * copy.
6735 	 */
6736 	newsp->ep = newep;
6737 	newsp->hmac = NULL;
6738 
6739 	/* Hook this new socket in to the bind_hash list. */
6740 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6741 	sctp_local_bh_disable();
6742 	sctp_spin_lock(&head->lock);
6743 	pp = sctp_sk(oldsk)->bind_hash;
6744 	sk_add_bind_node(newsk, &pp->owner);
6745 	sctp_sk(newsk)->bind_hash = pp;
6746 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6747 	sctp_spin_unlock(&head->lock);
6748 	sctp_local_bh_enable();
6749 
6750 	/* Copy the bind_addr list from the original endpoint to the new
6751 	 * endpoint so that we can handle restarts properly
6752 	 */
6753 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6754 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6755 
6756 	/* Move any messages in the old socket's receive queue that are for the
6757 	 * peeled off association to the new socket's receive queue.
6758 	 */
6759 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6760 		event = sctp_skb2event(skb);
6761 		if (event->asoc == assoc) {
6762 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6763 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6764 			sctp_skb_set_owner_r_frag(skb, newsk);
6765 		}
6766 	}
6767 
6768 	/* Clean up any messages pending delivery due to partial
6769 	 * delivery.   Three cases:
6770 	 * 1) No partial deliver;  no work.
6771 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6772 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6773 	 */
6774 	skb_queue_head_init(&newsp->pd_lobby);
6775 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6776 
6777 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6778 		struct sk_buff_head *queue;
6779 
6780 		/* Decide which queue to move pd_lobby skbs to. */
6781 		if (assoc->ulpq.pd_mode) {
6782 			queue = &newsp->pd_lobby;
6783 		} else
6784 			queue = &newsk->sk_receive_queue;
6785 
6786 		/* Walk through the pd_lobby, looking for skbs that
6787 		 * need moved to the new socket.
6788 		 */
6789 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6790 			event = sctp_skb2event(skb);
6791 			if (event->asoc == assoc) {
6792 				__skb_unlink(skb, &oldsp->pd_lobby);
6793 				__skb_queue_tail(queue, skb);
6794 				sctp_skb_set_owner_r_frag(skb, newsk);
6795 			}
6796 		}
6797 
6798 		/* Clear up any skbs waiting for the partial
6799 		 * delivery to finish.
6800 		 */
6801 		if (assoc->ulpq.pd_mode)
6802 			sctp_clear_pd(oldsk, NULL);
6803 
6804 	}
6805 
6806 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6807 		sctp_skb_set_owner_r_frag(skb, newsk);
6808 
6809 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6810 		sctp_skb_set_owner_r_frag(skb, newsk);
6811 
6812 	/* Set the type of socket to indicate that it is peeled off from the
6813 	 * original UDP-style socket or created with the accept() call on a
6814 	 * TCP-style socket..
6815 	 */
6816 	newsp->type = type;
6817 
6818 	/* Mark the new socket "in-use" by the user so that any packets
6819 	 * that may arrive on the association after we've moved it are
6820 	 * queued to the backlog.  This prevents a potential race between
6821 	 * backlog processing on the old socket and new-packet processing
6822 	 * on the new socket.
6823 	 *
6824 	 * The caller has just allocated newsk so we can guarantee that other
6825 	 * paths won't try to lock it and then oldsk.
6826 	 */
6827 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6828 	sctp_assoc_migrate(assoc, newsk);
6829 
6830 	/* If the association on the newsk is already closed before accept()
6831 	 * is called, set RCV_SHUTDOWN flag.
6832 	 */
6833 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6834 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6835 
6836 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6837 	sctp_release_sock(newsk);
6838 }
6839 
6840 
6841 /* This proto struct describes the ULP interface for SCTP.  */
6842 struct proto sctp_prot = {
6843 	.name        =	"SCTP",
6844 	.owner       =	THIS_MODULE,
6845 	.close       =	sctp_close,
6846 	.connect     =	sctp_connect,
6847 	.disconnect  =	sctp_disconnect,
6848 	.accept      =	sctp_accept,
6849 	.ioctl       =	sctp_ioctl,
6850 	.init        =	sctp_init_sock,
6851 	.destroy     =	sctp_destroy_sock,
6852 	.shutdown    =	sctp_shutdown,
6853 	.setsockopt  =	sctp_setsockopt,
6854 	.getsockopt  =	sctp_getsockopt,
6855 	.sendmsg     =	sctp_sendmsg,
6856 	.recvmsg     =	sctp_recvmsg,
6857 	.bind        =	sctp_bind,
6858 	.backlog_rcv =	sctp_backlog_rcv,
6859 	.hash        =	sctp_hash,
6860 	.unhash      =	sctp_unhash,
6861 	.get_port    =	sctp_get_port,
6862 	.obj_size    =  sizeof(struct sctp_sock),
6863 	.sysctl_mem  =  sysctl_sctp_mem,
6864 	.sysctl_rmem =  sysctl_sctp_rmem,
6865 	.sysctl_wmem =  sysctl_sctp_wmem,
6866 	.memory_pressure = &sctp_memory_pressure,
6867 	.enter_memory_pressure = sctp_enter_memory_pressure,
6868 	.memory_allocated = &sctp_memory_allocated,
6869 	.sockets_allocated = &sctp_sockets_allocated,
6870 };
6871 
6872 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6873 
6874 struct proto sctpv6_prot = {
6875 	.name		= "SCTPv6",
6876 	.owner		= THIS_MODULE,
6877 	.close		= sctp_close,
6878 	.connect	= sctp_connect,
6879 	.disconnect	= sctp_disconnect,
6880 	.accept		= sctp_accept,
6881 	.ioctl		= sctp_ioctl,
6882 	.init		= sctp_init_sock,
6883 	.destroy	= sctp_destroy_sock,
6884 	.shutdown	= sctp_shutdown,
6885 	.setsockopt	= sctp_setsockopt,
6886 	.getsockopt	= sctp_getsockopt,
6887 	.sendmsg	= sctp_sendmsg,
6888 	.recvmsg	= sctp_recvmsg,
6889 	.bind		= sctp_bind,
6890 	.backlog_rcv	= sctp_backlog_rcv,
6891 	.hash		= sctp_hash,
6892 	.unhash		= sctp_unhash,
6893 	.get_port	= sctp_get_port,
6894 	.obj_size	= sizeof(struct sctp6_sock),
6895 	.sysctl_mem	= sysctl_sctp_mem,
6896 	.sysctl_rmem	= sysctl_sctp_rmem,
6897 	.sysctl_wmem	= sysctl_sctp_wmem,
6898 	.memory_pressure = &sctp_memory_pressure,
6899 	.enter_memory_pressure = sctp_enter_memory_pressure,
6900 	.memory_allocated = &sctp_memory_allocated,
6901 	.sockets_allocated = &sctp_sockets_allocated,
6902 };
6903 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6904