xref: /linux/net/sctp/socket.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern kmem_cache_t *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
233 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
234 					       (union sctp_addr *)addr,
235 					       &transport);
236 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
237 
238 	if (!addr_asoc)
239 		return NULL;
240 
241 	id_asoc = sctp_id2assoc(sk, id);
242 	if (id_asoc && (id_asoc != addr_asoc))
243 		return NULL;
244 
245 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 						(union sctp_addr *)addr);
247 
248 	return transport;
249 }
250 
251 /* API 3.1.2 bind() - UDP Style Syntax
252  * The syntax of bind() is,
253  *
254  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
255  *
256  *   sd      - the socket descriptor returned by socket().
257  *   addr    - the address structure (struct sockaddr_in or struct
258  *             sockaddr_in6 [RFC 2553]),
259  *   addr_len - the size of the address structure.
260  */
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
262 {
263 	int retval = 0;
264 
265 	sctp_lock_sock(sk);
266 
267 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 			  sk, addr, addr_len);
269 
270 	/* Disallow binding twice. */
271 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 				      addr_len);
274 	else
275 		retval = -EINVAL;
276 
277 	sctp_release_sock(sk);
278 
279 	return retval;
280 }
281 
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
283 
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 					union sctp_addr *addr, int len)
287 {
288 	struct sctp_af *af;
289 
290 	/* Check minimum size.  */
291 	if (len < sizeof (struct sockaddr))
292 		return NULL;
293 
294 	/* Does this PF support this AF? */
295 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 		return NULL;
297 
298 	/* If we get this far, af is valid. */
299 	af = sctp_get_af_specific(addr->sa.sa_family);
300 
301 	if (len < af->sockaddr_len)
302 		return NULL;
303 
304 	return af;
305 }
306 
307 /* Bind a local address either to an endpoint or to an association.  */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
309 {
310 	struct sctp_sock *sp = sctp_sk(sk);
311 	struct sctp_endpoint *ep = sp->ep;
312 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 	struct sctp_af *af;
314 	unsigned short snum;
315 	int ret = 0;
316 
317 	/* Common sockaddr verification. */
318 	af = sctp_sockaddr_af(sp, addr, len);
319 	if (!af) {
320 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
321 				  sk, addr, len);
322 		return -EINVAL;
323 	}
324 
325 	snum = ntohs(addr->v4.sin_port);
326 
327 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
328 				 ", port: %d, new port: %d, len: %d)\n",
329 				 sk,
330 				 addr,
331 				 bp->port, snum,
332 				 len);
333 
334 	/* PF specific bind() address verification. */
335 	if (!sp->pf->bind_verify(sp, addr))
336 		return -EADDRNOTAVAIL;
337 
338 	/* We must either be unbound, or bind to the same port.  */
339 	if (bp->port && (snum != bp->port)) {
340 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 				  " New port %d does not match existing port "
342 				  "%d.\n", snum, bp->port);
343 		return -EINVAL;
344 	}
345 
346 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 		return -EACCES;
348 
349 	/* Make sure we are allowed to bind here.
350 	 * The function sctp_get_port_local() does duplicate address
351 	 * detection.
352 	 */
353 	if ((ret = sctp_get_port_local(sk, addr))) {
354 		if (ret == (long) sk) {
355 			/* This endpoint has a conflicting address. */
356 			return -EINVAL;
357 		} else {
358 			return -EADDRINUSE;
359 		}
360 	}
361 
362 	/* Refresh ephemeral port.  */
363 	if (!bp->port)
364 		bp->port = inet_sk(sk)->num;
365 
366 	/* Add the address to the bind address list.  */
367 	sctp_local_bh_disable();
368 	sctp_write_lock(&ep->base.addr_lock);
369 
370 	/* Use GFP_ATOMIC since BHs are disabled.  */
371 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 	ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
373 	addr->v4.sin_port = htons(addr->v4.sin_port);
374 	sctp_write_unlock(&ep->base.addr_lock);
375 	sctp_local_bh_enable();
376 
377 	/* Copy back into socket for getsockname() use. */
378 	if (!ret) {
379 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 		af->to_sk_saddr(addr, sk);
381 	}
382 
383 	return ret;
384 }
385 
386  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
387  *
388  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389  * at any one time.  If a sender, after sending an ASCONF chunk, decides
390  * it needs to transfer another ASCONF Chunk, it MUST wait until the
391  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392  * subsequent ASCONF. Note this restriction binds each side, so at any
393  * time two ASCONF may be in-transit on any given association (one sent
394  * from each endpoint).
395  */
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 			    struct sctp_chunk *chunk)
398 {
399 	int		retval = 0;
400 
401 	/* If there is an outstanding ASCONF chunk, queue it for later
402 	 * transmission.
403 	 */
404 	if (asoc->addip_last_asconf) {
405 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 		goto out;
407 	}
408 
409 	/* Hold the chunk until an ASCONF_ACK is received. */
410 	sctp_chunk_hold(chunk);
411 	retval = sctp_primitive_ASCONF(asoc, chunk);
412 	if (retval)
413 		sctp_chunk_free(chunk);
414 	else
415 		asoc->addip_last_asconf = chunk;
416 
417 out:
418 	return retval;
419 }
420 
421 /* Add a list of addresses as bind addresses to local endpoint or
422  * association.
423  *
424  * Basically run through each address specified in the addrs/addrcnt
425  * array/length pair, determine if it is IPv6 or IPv4 and call
426  * sctp_do_bind() on it.
427  *
428  * If any of them fails, then the operation will be reversed and the
429  * ones that were added will be removed.
430  *
431  * Only sctp_setsockopt_bindx() is supposed to call this function.
432  */
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
434 {
435 	int cnt;
436 	int retval = 0;
437 	void *addr_buf;
438 	struct sockaddr *sa_addr;
439 	struct sctp_af *af;
440 
441 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 			  sk, addrs, addrcnt);
443 
444 	addr_buf = addrs;
445 	for (cnt = 0; cnt < addrcnt; cnt++) {
446 		/* The list may contain either IPv4 or IPv6 address;
447 		 * determine the address length for walking thru the list.
448 		 */
449 		sa_addr = (struct sockaddr *)addr_buf;
450 		af = sctp_get_af_specific(sa_addr->sa_family);
451 		if (!af) {
452 			retval = -EINVAL;
453 			goto err_bindx_add;
454 		}
455 
456 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 				      af->sockaddr_len);
458 
459 		addr_buf += af->sockaddr_len;
460 
461 err_bindx_add:
462 		if (retval < 0) {
463 			/* Failed. Cleanup the ones that have been added */
464 			if (cnt > 0)
465 				sctp_bindx_rem(sk, addrs, cnt);
466 			return retval;
467 		}
468 	}
469 
470 	return retval;
471 }
472 
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474  * associations that are part of the endpoint indicating that a list of local
475  * addresses are added to the endpoint.
476  *
477  * If any of the addresses is already in the bind address list of the
478  * association, we do not send the chunk for that association.  But it will not
479  * affect other associations.
480  *
481  * Only sctp_setsockopt_bindx() is supposed to call this function.
482  */
483 static int sctp_send_asconf_add_ip(struct sock		*sk,
484 				   struct sockaddr	*addrs,
485 				   int 			addrcnt)
486 {
487 	struct sctp_sock		*sp;
488 	struct sctp_endpoint		*ep;
489 	struct sctp_association		*asoc;
490 	struct sctp_bind_addr		*bp;
491 	struct sctp_chunk		*chunk;
492 	struct sctp_sockaddr_entry	*laddr;
493 	union sctp_addr			*addr;
494 	void				*addr_buf;
495 	struct sctp_af			*af;
496 	struct list_head		*pos;
497 	struct list_head		*p;
498 	int 				i;
499 	int 				retval = 0;
500 
501 	if (!sctp_addip_enable)
502 		return retval;
503 
504 	sp = sctp_sk(sk);
505 	ep = sp->ep;
506 
507 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
508 			  __FUNCTION__, sk, addrs, addrcnt);
509 
510 	list_for_each(pos, &ep->asocs) {
511 		asoc = list_entry(pos, struct sctp_association, asocs);
512 
513 		if (!asoc->peer.asconf_capable)
514 			continue;
515 
516 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
517 			continue;
518 
519 		if (!sctp_state(asoc, ESTABLISHED))
520 			continue;
521 
522 		/* Check if any address in the packed array of addresses is
523 	         * in the bind address list of the association. If so,
524 		 * do not send the asconf chunk to its peer, but continue with
525 		 * other associations.
526 		 */
527 		addr_buf = addrs;
528 		for (i = 0; i < addrcnt; i++) {
529 			addr = (union sctp_addr *)addr_buf;
530 			af = sctp_get_af_specific(addr->v4.sin_family);
531 			if (!af) {
532 				retval = -EINVAL;
533 				goto out;
534 			}
535 
536 			if (sctp_assoc_lookup_laddr(asoc, addr))
537 				break;
538 
539 			addr_buf += af->sockaddr_len;
540 		}
541 		if (i < addrcnt)
542 			continue;
543 
544 		/* Use the first address in bind addr list of association as
545 		 * Address Parameter of ASCONF CHUNK.
546 		 */
547 		sctp_read_lock(&asoc->base.addr_lock);
548 		bp = &asoc->base.bind_addr;
549 		p = bp->address_list.next;
550 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
551 		sctp_read_unlock(&asoc->base.addr_lock);
552 
553 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
554 						   addrcnt, SCTP_PARAM_ADD_IP);
555 		if (!chunk) {
556 			retval = -ENOMEM;
557 			goto out;
558 		}
559 
560 		retval = sctp_send_asconf(asoc, chunk);
561 
562 		/* FIXME: After sending the add address ASCONF chunk, we
563 		 * cannot append the address to the association's binding
564 		 * address list, because the new address may be used as the
565 		 * source of a message sent to the peer before the ASCONF
566 		 * chunk is received by the peer.  So we should wait until
567 		 * ASCONF_ACK is received.
568 		 */
569 	}
570 
571 out:
572 	return retval;
573 }
574 
575 /* Remove a list of addresses from bind addresses list.  Do not remove the
576  * last address.
577  *
578  * Basically run through each address specified in the addrs/addrcnt
579  * array/length pair, determine if it is IPv6 or IPv4 and call
580  * sctp_del_bind() on it.
581  *
582  * If any of them fails, then the operation will be reversed and the
583  * ones that were removed will be added back.
584  *
585  * At least one address has to be left; if only one address is
586  * available, the operation will return -EBUSY.
587  *
588  * Only sctp_setsockopt_bindx() is supposed to call this function.
589  */
590 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
591 {
592 	struct sctp_sock *sp = sctp_sk(sk);
593 	struct sctp_endpoint *ep = sp->ep;
594 	int cnt;
595 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
596 	int retval = 0;
597 	union sctp_addr saveaddr;
598 	void *addr_buf;
599 	struct sockaddr *sa_addr;
600 	struct sctp_af *af;
601 
602 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
603 			  sk, addrs, addrcnt);
604 
605 	addr_buf = addrs;
606 	for (cnt = 0; cnt < addrcnt; cnt++) {
607 		/* If the bind address list is empty or if there is only one
608 		 * bind address, there is nothing more to be removed (we need
609 		 * at least one address here).
610 		 */
611 		if (list_empty(&bp->address_list) ||
612 		    (sctp_list_single_entry(&bp->address_list))) {
613 			retval = -EBUSY;
614 			goto err_bindx_rem;
615 		}
616 
617 		/* The list may contain either IPv4 or IPv6 address;
618 		 * determine the address length to copy the address to
619 		 * saveaddr.
620 		 */
621 		sa_addr = (struct sockaddr *)addr_buf;
622 		af = sctp_get_af_specific(sa_addr->sa_family);
623 		if (!af) {
624 			retval = -EINVAL;
625 			goto err_bindx_rem;
626 		}
627 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
628 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
629 		if (saveaddr.v4.sin_port != bp->port) {
630 			retval = -EINVAL;
631 			goto err_bindx_rem;
632 		}
633 
634 		/* FIXME - There is probably a need to check if sk->sk_saddr and
635 		 * sk->sk_rcv_addr are currently set to one of the addresses to
636 		 * be removed. This is something which needs to be looked into
637 		 * when we are fixing the outstanding issues with multi-homing
638 		 * socket routing and failover schemes. Refer to comments in
639 		 * sctp_do_bind(). -daisy
640 		 */
641 		sctp_local_bh_disable();
642 		sctp_write_lock(&ep->base.addr_lock);
643 
644 		retval = sctp_del_bind_addr(bp, &saveaddr);
645 
646 		sctp_write_unlock(&ep->base.addr_lock);
647 		sctp_local_bh_enable();
648 
649 		addr_buf += af->sockaddr_len;
650 err_bindx_rem:
651 		if (retval < 0) {
652 			/* Failed. Add the ones that has been removed back */
653 			if (cnt > 0)
654 				sctp_bindx_add(sk, addrs, cnt);
655 			return retval;
656 		}
657 	}
658 
659 	return retval;
660 }
661 
662 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
663  * the associations that are part of the endpoint indicating that a list of
664  * local addresses are removed from the endpoint.
665  *
666  * If any of the addresses is already in the bind address list of the
667  * association, we do not send the chunk for that association.  But it will not
668  * affect other associations.
669  *
670  * Only sctp_setsockopt_bindx() is supposed to call this function.
671  */
672 static int sctp_send_asconf_del_ip(struct sock		*sk,
673 				   struct sockaddr	*addrs,
674 				   int			addrcnt)
675 {
676 	struct sctp_sock	*sp;
677 	struct sctp_endpoint	*ep;
678 	struct sctp_association	*asoc;
679 	struct sctp_bind_addr	*bp;
680 	struct sctp_chunk	*chunk;
681 	union sctp_addr		*laddr;
682 	void			*addr_buf;
683 	struct sctp_af		*af;
684 	struct list_head	*pos;
685 	int 			i;
686 	int 			retval = 0;
687 
688 	if (!sctp_addip_enable)
689 		return retval;
690 
691 	sp = sctp_sk(sk);
692 	ep = sp->ep;
693 
694 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
695 			  __FUNCTION__, sk, addrs, addrcnt);
696 
697 	list_for_each(pos, &ep->asocs) {
698 		asoc = list_entry(pos, struct sctp_association, asocs);
699 
700 		if (!asoc->peer.asconf_capable)
701 			continue;
702 
703 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
704 			continue;
705 
706 		if (!sctp_state(asoc, ESTABLISHED))
707 			continue;
708 
709 		/* Check if any address in the packed array of addresses is
710 	         * not present in the bind address list of the association.
711 		 * If so, do not send the asconf chunk to its peer, but
712 		 * continue with other associations.
713 		 */
714 		addr_buf = addrs;
715 		for (i = 0; i < addrcnt; i++) {
716 			laddr = (union sctp_addr *)addr_buf;
717 			af = sctp_get_af_specific(laddr->v4.sin_family);
718 			if (!af) {
719 				retval = -EINVAL;
720 				goto out;
721 			}
722 
723 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
724 				break;
725 
726 			addr_buf += af->sockaddr_len;
727 		}
728 		if (i < addrcnt)
729 			continue;
730 
731 		/* Find one address in the association's bind address list
732 		 * that is not in the packed array of addresses. This is to
733 		 * make sure that we do not delete all the addresses in the
734 		 * association.
735 		 */
736 		sctp_read_lock(&asoc->base.addr_lock);
737 		bp = &asoc->base.bind_addr;
738 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
739 					       addrcnt, sp);
740 		sctp_read_unlock(&asoc->base.addr_lock);
741 		if (!laddr)
742 			continue;
743 
744 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
745 						   SCTP_PARAM_DEL_IP);
746 		if (!chunk) {
747 			retval = -ENOMEM;
748 			goto out;
749 		}
750 
751 		retval = sctp_send_asconf(asoc, chunk);
752 
753 		/* FIXME: After sending the delete address ASCONF chunk, we
754 		 * cannot remove the addresses from the association's bind
755 		 * address list, because there maybe some packet send to
756 		 * the delete addresses, so we should wait until ASCONF_ACK
757 		 * packet is received.
758 		 */
759 	}
760 out:
761 	return retval;
762 }
763 
764 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
765  *
766  * API 8.1
767  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
768  *                int flags);
769  *
770  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
771  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
772  * or IPv6 addresses.
773  *
774  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
775  * Section 3.1.2 for this usage.
776  *
777  * addrs is a pointer to an array of one or more socket addresses. Each
778  * address is contained in its appropriate structure (i.e. struct
779  * sockaddr_in or struct sockaddr_in6) the family of the address type
780  * must be used to distengish the address length (note that this
781  * representation is termed a "packed array" of addresses). The caller
782  * specifies the number of addresses in the array with addrcnt.
783  *
784  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
785  * -1, and sets errno to the appropriate error code.
786  *
787  * For SCTP, the port given in each socket address must be the same, or
788  * sctp_bindx() will fail, setting errno to EINVAL.
789  *
790  * The flags parameter is formed from the bitwise OR of zero or more of
791  * the following currently defined flags:
792  *
793  * SCTP_BINDX_ADD_ADDR
794  *
795  * SCTP_BINDX_REM_ADDR
796  *
797  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
798  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
799  * addresses from the association. The two flags are mutually exclusive;
800  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
801  * not remove all addresses from an association; sctp_bindx() will
802  * reject such an attempt with EINVAL.
803  *
804  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
805  * additional addresses with an endpoint after calling bind().  Or use
806  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
807  * socket is associated with so that no new association accepted will be
808  * associated with those addresses. If the endpoint supports dynamic
809  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
810  * endpoint to send the appropriate message to the peer to change the
811  * peers address lists.
812  *
813  * Adding and removing addresses from a connected association is
814  * optional functionality. Implementations that do not support this
815  * functionality should return EOPNOTSUPP.
816  *
817  * Basically do nothing but copying the addresses from user to kernel
818  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
819  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
820  * from userspace.
821  *
822  * We don't use copy_from_user() for optimization: we first do the
823  * sanity checks (buffer size -fast- and access check-healthy
824  * pointer); if all of those succeed, then we can alloc the memory
825  * (expensive operation) needed to copy the data to kernel. Then we do
826  * the copying without checking the user space area
827  * (__copy_from_user()).
828  *
829  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
830  * it.
831  *
832  * sk        The sk of the socket
833  * addrs     The pointer to the addresses in user land
834  * addrssize Size of the addrs buffer
835  * op        Operation to perform (add or remove, see the flags of
836  *           sctp_bindx)
837  *
838  * Returns 0 if ok, <0 errno code on error.
839  */
840 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
841 				      struct sockaddr __user *addrs,
842 				      int addrs_size, int op)
843 {
844 	struct sockaddr *kaddrs;
845 	int err;
846 	int addrcnt = 0;
847 	int walk_size = 0;
848 	struct sockaddr *sa_addr;
849 	void *addr_buf;
850 	struct sctp_af *af;
851 
852 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
853 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
854 
855 	if (unlikely(addrs_size <= 0))
856 		return -EINVAL;
857 
858 	/* Check the user passed a healthy pointer.  */
859 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
860 		return -EFAULT;
861 
862 	/* Alloc space for the address array in kernel memory.  */
863 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
864 	if (unlikely(!kaddrs))
865 		return -ENOMEM;
866 
867 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
868 		kfree(kaddrs);
869 		return -EFAULT;
870 	}
871 
872 	/* Walk through the addrs buffer and count the number of addresses. */
873 	addr_buf = kaddrs;
874 	while (walk_size < addrs_size) {
875 		sa_addr = (struct sockaddr *)addr_buf;
876 		af = sctp_get_af_specific(sa_addr->sa_family);
877 
878 		/* If the address family is not supported or if this address
879 		 * causes the address buffer to overflow return EINVAL.
880 		 */
881 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
882 			kfree(kaddrs);
883 			return -EINVAL;
884 		}
885 		addrcnt++;
886 		addr_buf += af->sockaddr_len;
887 		walk_size += af->sockaddr_len;
888 	}
889 
890 	/* Do the work. */
891 	switch (op) {
892 	case SCTP_BINDX_ADD_ADDR:
893 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
894 		if (err)
895 			goto out;
896 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
897 		break;
898 
899 	case SCTP_BINDX_REM_ADDR:
900 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
901 		if (err)
902 			goto out;
903 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
904 		break;
905 
906 	default:
907 		err = -EINVAL;
908 		break;
909         };
910 
911 out:
912 	kfree(kaddrs);
913 
914 	return err;
915 }
916 
917 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
918  *
919  * Common routine for handling connect() and sctp_connectx().
920  * Connect will come in with just a single address.
921  */
922 static int __sctp_connect(struct sock* sk,
923 			  struct sockaddr *kaddrs,
924 			  int addrs_size)
925 {
926 	struct sctp_sock *sp;
927 	struct sctp_endpoint *ep;
928 	struct sctp_association *asoc = NULL;
929 	struct sctp_association *asoc2;
930 	struct sctp_transport *transport;
931 	union sctp_addr to;
932 	struct sctp_af *af;
933 	sctp_scope_t scope;
934 	long timeo;
935 	int err = 0;
936 	int addrcnt = 0;
937 	int walk_size = 0;
938 	struct sockaddr *sa_addr;
939 	void *addr_buf;
940 
941 	sp = sctp_sk(sk);
942 	ep = sp->ep;
943 
944 	/* connect() cannot be done on a socket that is already in ESTABLISHED
945 	 * state - UDP-style peeled off socket or a TCP-style socket that
946 	 * is already connected.
947 	 * It cannot be done even on a TCP-style listening socket.
948 	 */
949 	if (sctp_sstate(sk, ESTABLISHED) ||
950 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
951 		err = -EISCONN;
952 		goto out_free;
953 	}
954 
955 	/* Walk through the addrs buffer and count the number of addresses. */
956 	addr_buf = kaddrs;
957 	while (walk_size < addrs_size) {
958 		sa_addr = (struct sockaddr *)addr_buf;
959 		af = sctp_get_af_specific(sa_addr->sa_family);
960 
961 		/* If the address family is not supported or if this address
962 		 * causes the address buffer to overflow return EINVAL.
963 		 */
964 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
965 			err = -EINVAL;
966 			goto out_free;
967 		}
968 
969 		err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
970 				       af->sockaddr_len);
971 		if (err)
972 			goto out_free;
973 
974 		memcpy(&to, sa_addr, af->sockaddr_len);
975 		to.v4.sin_port = ntohs(to.v4.sin_port);
976 
977 		/* Check if there already is a matching association on the
978 		 * endpoint (other than the one created here).
979 		 */
980 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
981 		if (asoc2 && asoc2 != asoc) {
982 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
983 				err = -EISCONN;
984 			else
985 				err = -EALREADY;
986 			goto out_free;
987 		}
988 
989 		/* If we could not find a matching association on the endpoint,
990 		 * make sure that there is no peeled-off association matching
991 		 * the peer address even on another socket.
992 		 */
993 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
994 			err = -EADDRNOTAVAIL;
995 			goto out_free;
996 		}
997 
998 		if (!asoc) {
999 			/* If a bind() or sctp_bindx() is not called prior to
1000 			 * an sctp_connectx() call, the system picks an
1001 			 * ephemeral port and will choose an address set
1002 			 * equivalent to binding with a wildcard address.
1003 			 */
1004 			if (!ep->base.bind_addr.port) {
1005 				if (sctp_autobind(sk)) {
1006 					err = -EAGAIN;
1007 					goto out_free;
1008 				}
1009 			} else {
1010 				/*
1011 				 * If an unprivileged user inherits a 1-many
1012 				 * style socket with open associations on a
1013 				 * privileged port, it MAY be permitted to
1014 				 * accept new associations, but it SHOULD NOT
1015 				 * be permitted to open new associations.
1016 				 */
1017 				if (ep->base.bind_addr.port < PROT_SOCK &&
1018 				    !capable(CAP_NET_BIND_SERVICE)) {
1019 					err = -EACCES;
1020 					goto out_free;
1021 				}
1022 			}
1023 
1024 			scope = sctp_scope(&to);
1025 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1026 			if (!asoc) {
1027 				err = -ENOMEM;
1028 				goto out_free;
1029 			}
1030 		}
1031 
1032 		/* Prime the peer's transport structures.  */
1033 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1034 						SCTP_UNKNOWN);
1035 		if (!transport) {
1036 			err = -ENOMEM;
1037 			goto out_free;
1038 		}
1039 
1040 		addrcnt++;
1041 		addr_buf += af->sockaddr_len;
1042 		walk_size += af->sockaddr_len;
1043 	}
1044 
1045 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1046 	if (err < 0) {
1047 		goto out_free;
1048 	}
1049 
1050 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1051 	if (err < 0) {
1052 		goto out_free;
1053 	}
1054 
1055 	/* Initialize sk's dport and daddr for getpeername() */
1056 	inet_sk(sk)->dport = htons(asoc->peer.port);
1057 	af = sctp_get_af_specific(to.sa.sa_family);
1058 	af->to_sk_daddr(&to, sk);
1059 	sk->sk_err = 0;
1060 
1061 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1062 	err = sctp_wait_for_connect(asoc, &timeo);
1063 
1064 	/* Don't free association on exit. */
1065 	asoc = NULL;
1066 
1067 out_free:
1068 
1069 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1070 		          " kaddrs: %p err: %d\n",
1071 	                  asoc, kaddrs, err);
1072 	if (asoc)
1073 		sctp_association_free(asoc);
1074 	return err;
1075 }
1076 
1077 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1078  *
1079  * API 8.9
1080  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1081  *
1082  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1083  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1084  * or IPv6 addresses.
1085  *
1086  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1087  * Section 3.1.2 for this usage.
1088  *
1089  * addrs is a pointer to an array of one or more socket addresses. Each
1090  * address is contained in its appropriate structure (i.e. struct
1091  * sockaddr_in or struct sockaddr_in6) the family of the address type
1092  * must be used to distengish the address length (note that this
1093  * representation is termed a "packed array" of addresses). The caller
1094  * specifies the number of addresses in the array with addrcnt.
1095  *
1096  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1097  * -1, and sets errno to the appropriate error code.
1098  *
1099  * For SCTP, the port given in each socket address must be the same, or
1100  * sctp_connectx() will fail, setting errno to EINVAL.
1101  *
1102  * An application can use sctp_connectx to initiate an association with
1103  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1104  * allows a caller to specify multiple addresses at which a peer can be
1105  * reached.  The way the SCTP stack uses the list of addresses to set up
1106  * the association is implementation dependant.  This function only
1107  * specifies that the stack will try to make use of all the addresses in
1108  * the list when needed.
1109  *
1110  * Note that the list of addresses passed in is only used for setting up
1111  * the association.  It does not necessarily equal the set of addresses
1112  * the peer uses for the resulting association.  If the caller wants to
1113  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1114  * retrieve them after the association has been set up.
1115  *
1116  * Basically do nothing but copying the addresses from user to kernel
1117  * land and invoking either sctp_connectx(). This is used for tunneling
1118  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1119  *
1120  * We don't use copy_from_user() for optimization: we first do the
1121  * sanity checks (buffer size -fast- and access check-healthy
1122  * pointer); if all of those succeed, then we can alloc the memory
1123  * (expensive operation) needed to copy the data to kernel. Then we do
1124  * the copying without checking the user space area
1125  * (__copy_from_user()).
1126  *
1127  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1128  * it.
1129  *
1130  * sk        The sk of the socket
1131  * addrs     The pointer to the addresses in user land
1132  * addrssize Size of the addrs buffer
1133  *
1134  * Returns 0 if ok, <0 errno code on error.
1135  */
1136 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1137 				      struct sockaddr __user *addrs,
1138 				      int addrs_size)
1139 {
1140 	int err = 0;
1141 	struct sockaddr *kaddrs;
1142 
1143 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1144 			  __FUNCTION__, sk, addrs, addrs_size);
1145 
1146 	if (unlikely(addrs_size <= 0))
1147 		return -EINVAL;
1148 
1149 	/* Check the user passed a healthy pointer.  */
1150 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1151 		return -EFAULT;
1152 
1153 	/* Alloc space for the address array in kernel memory.  */
1154 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1155 	if (unlikely(!kaddrs))
1156 		return -ENOMEM;
1157 
1158 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1159 		err = -EFAULT;
1160 	} else {
1161 		err = __sctp_connect(sk, kaddrs, addrs_size);
1162 	}
1163 
1164 	kfree(kaddrs);
1165 	return err;
1166 }
1167 
1168 /* API 3.1.4 close() - UDP Style Syntax
1169  * Applications use close() to perform graceful shutdown (as described in
1170  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1171  * by a UDP-style socket.
1172  *
1173  * The syntax is
1174  *
1175  *   ret = close(int sd);
1176  *
1177  *   sd      - the socket descriptor of the associations to be closed.
1178  *
1179  * To gracefully shutdown a specific association represented by the
1180  * UDP-style socket, an application should use the sendmsg() call,
1181  * passing no user data, but including the appropriate flag in the
1182  * ancillary data (see Section xxxx).
1183  *
1184  * If sd in the close() call is a branched-off socket representing only
1185  * one association, the shutdown is performed on that association only.
1186  *
1187  * 4.1.6 close() - TCP Style Syntax
1188  *
1189  * Applications use close() to gracefully close down an association.
1190  *
1191  * The syntax is:
1192  *
1193  *    int close(int sd);
1194  *
1195  *      sd      - the socket descriptor of the association to be closed.
1196  *
1197  * After an application calls close() on a socket descriptor, no further
1198  * socket operations will succeed on that descriptor.
1199  *
1200  * API 7.1.4 SO_LINGER
1201  *
1202  * An application using the TCP-style socket can use this option to
1203  * perform the SCTP ABORT primitive.  The linger option structure is:
1204  *
1205  *  struct  linger {
1206  *     int     l_onoff;                // option on/off
1207  *     int     l_linger;               // linger time
1208  * };
1209  *
1210  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1211  * to 0, calling close() is the same as the ABORT primitive.  If the
1212  * value is set to a negative value, the setsockopt() call will return
1213  * an error.  If the value is set to a positive value linger_time, the
1214  * close() can be blocked for at most linger_time ms.  If the graceful
1215  * shutdown phase does not finish during this period, close() will
1216  * return but the graceful shutdown phase continues in the system.
1217  */
1218 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1219 {
1220 	struct sctp_endpoint *ep;
1221 	struct sctp_association *asoc;
1222 	struct list_head *pos, *temp;
1223 
1224 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1225 
1226 	sctp_lock_sock(sk);
1227 	sk->sk_shutdown = SHUTDOWN_MASK;
1228 
1229 	ep = sctp_sk(sk)->ep;
1230 
1231 	/* Walk all associations on an endpoint.  */
1232 	list_for_each_safe(pos, temp, &ep->asocs) {
1233 		asoc = list_entry(pos, struct sctp_association, asocs);
1234 
1235 		if (sctp_style(sk, TCP)) {
1236 			/* A closed association can still be in the list if
1237 			 * it belongs to a TCP-style listening socket that is
1238 			 * not yet accepted. If so, free it. If not, send an
1239 			 * ABORT or SHUTDOWN based on the linger options.
1240 			 */
1241 			if (sctp_state(asoc, CLOSED)) {
1242 				sctp_unhash_established(asoc);
1243 				sctp_association_free(asoc);
1244 				continue;
1245 			}
1246 		}
1247 
1248 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)
1249 			sctp_primitive_ABORT(asoc, NULL);
1250 		else
1251 			sctp_primitive_SHUTDOWN(asoc, NULL);
1252 	}
1253 
1254 	/* Clean up any skbs sitting on the receive queue.  */
1255 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1256 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1257 
1258 	/* On a TCP-style socket, block for at most linger_time if set. */
1259 	if (sctp_style(sk, TCP) && timeout)
1260 		sctp_wait_for_close(sk, timeout);
1261 
1262 	/* This will run the backlog queue.  */
1263 	sctp_release_sock(sk);
1264 
1265 	/* Supposedly, no process has access to the socket, but
1266 	 * the net layers still may.
1267 	 */
1268 	sctp_local_bh_disable();
1269 	sctp_bh_lock_sock(sk);
1270 
1271 	/* Hold the sock, since sk_common_release() will put sock_put()
1272 	 * and we have just a little more cleanup.
1273 	 */
1274 	sock_hold(sk);
1275 	sk_common_release(sk);
1276 
1277 	sctp_bh_unlock_sock(sk);
1278 	sctp_local_bh_enable();
1279 
1280 	sock_put(sk);
1281 
1282 	SCTP_DBG_OBJCNT_DEC(sock);
1283 }
1284 
1285 /* Handle EPIPE error. */
1286 static int sctp_error(struct sock *sk, int flags, int err)
1287 {
1288 	if (err == -EPIPE)
1289 		err = sock_error(sk) ? : -EPIPE;
1290 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1291 		send_sig(SIGPIPE, current, 0);
1292 	return err;
1293 }
1294 
1295 /* API 3.1.3 sendmsg() - UDP Style Syntax
1296  *
1297  * An application uses sendmsg() and recvmsg() calls to transmit data to
1298  * and receive data from its peer.
1299  *
1300  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1301  *                  int flags);
1302  *
1303  *  socket  - the socket descriptor of the endpoint.
1304  *  message - pointer to the msghdr structure which contains a single
1305  *            user message and possibly some ancillary data.
1306  *
1307  *            See Section 5 for complete description of the data
1308  *            structures.
1309  *
1310  *  flags   - flags sent or received with the user message, see Section
1311  *            5 for complete description of the flags.
1312  *
1313  * Note:  This function could use a rewrite especially when explicit
1314  * connect support comes in.
1315  */
1316 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1317 
1318 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1319 
1320 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1321 			     struct msghdr *msg, size_t msg_len)
1322 {
1323 	struct sctp_sock *sp;
1324 	struct sctp_endpoint *ep;
1325 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1326 	struct sctp_transport *transport, *chunk_tp;
1327 	struct sctp_chunk *chunk;
1328 	union sctp_addr to;
1329 	struct sockaddr *msg_name = NULL;
1330 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1331 	struct sctp_sndrcvinfo *sinfo;
1332 	struct sctp_initmsg *sinit;
1333 	sctp_assoc_t associd = 0;
1334 	sctp_cmsgs_t cmsgs = { NULL };
1335 	int err;
1336 	sctp_scope_t scope;
1337 	long timeo;
1338 	__u16 sinfo_flags = 0;
1339 	struct sctp_datamsg *datamsg;
1340 	struct list_head *pos;
1341 	int msg_flags = msg->msg_flags;
1342 
1343 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1344 			  sk, msg, msg_len);
1345 
1346 	err = 0;
1347 	sp = sctp_sk(sk);
1348 	ep = sp->ep;
1349 
1350 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1351 
1352 	/* We cannot send a message over a TCP-style listening socket. */
1353 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1354 		err = -EPIPE;
1355 		goto out_nounlock;
1356 	}
1357 
1358 	/* Parse out the SCTP CMSGs.  */
1359 	err = sctp_msghdr_parse(msg, &cmsgs);
1360 
1361 	if (err) {
1362 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1363 		goto out_nounlock;
1364 	}
1365 
1366 	/* Fetch the destination address for this packet.  This
1367 	 * address only selects the association--it is not necessarily
1368 	 * the address we will send to.
1369 	 * For a peeled-off socket, msg_name is ignored.
1370 	 */
1371 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1372 		int msg_namelen = msg->msg_namelen;
1373 
1374 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1375 				       msg_namelen);
1376 		if (err)
1377 			return err;
1378 
1379 		if (msg_namelen > sizeof(to))
1380 			msg_namelen = sizeof(to);
1381 		memcpy(&to, msg->msg_name, msg_namelen);
1382 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1383 				  "0x%x:%u.\n",
1384 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1385 
1386 		to.v4.sin_port = ntohs(to.v4.sin_port);
1387 		msg_name = msg->msg_name;
1388 	}
1389 
1390 	sinfo = cmsgs.info;
1391 	sinit = cmsgs.init;
1392 
1393 	/* Did the user specify SNDRCVINFO?  */
1394 	if (sinfo) {
1395 		sinfo_flags = sinfo->sinfo_flags;
1396 		associd = sinfo->sinfo_assoc_id;
1397 	}
1398 
1399 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1400 			  msg_len, sinfo_flags);
1401 
1402 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1403 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1404 		err = -EINVAL;
1405 		goto out_nounlock;
1406 	}
1407 
1408 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1409 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1410 	 * If SCTP_ABORT is set, the message length could be non zero with
1411 	 * the msg_iov set to the user abort reason.
1412  	 */
1413 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1414 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1415 		err = -EINVAL;
1416 		goto out_nounlock;
1417 	}
1418 
1419 	/* If SCTP_ADDR_OVER is set, there must be an address
1420 	 * specified in msg_name.
1421 	 */
1422 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1423 		err = -EINVAL;
1424 		goto out_nounlock;
1425 	}
1426 
1427 	transport = NULL;
1428 
1429 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1430 
1431 	sctp_lock_sock(sk);
1432 
1433 	/* If a msg_name has been specified, assume this is to be used.  */
1434 	if (msg_name) {
1435 		/* Look for a matching association on the endpoint. */
1436 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1437 		if (!asoc) {
1438 			/* If we could not find a matching association on the
1439 			 * endpoint, make sure that it is not a TCP-style
1440 			 * socket that already has an association or there is
1441 			 * no peeled-off association on another socket.
1442 			 */
1443 			if ((sctp_style(sk, TCP) &&
1444 			     sctp_sstate(sk, ESTABLISHED)) ||
1445 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1446 				err = -EADDRNOTAVAIL;
1447 				goto out_unlock;
1448 			}
1449 		}
1450 	} else {
1451 		asoc = sctp_id2assoc(sk, associd);
1452 		if (!asoc) {
1453 			err = -EPIPE;
1454 			goto out_unlock;
1455 		}
1456 	}
1457 
1458 	if (asoc) {
1459 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1460 
1461 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1462 		 * socket that has an association in CLOSED state. This can
1463 		 * happen when an accepted socket has an association that is
1464 		 * already CLOSED.
1465 		 */
1466 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1467 			err = -EPIPE;
1468 			goto out_unlock;
1469 		}
1470 
1471 		if (sinfo_flags & SCTP_EOF) {
1472 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1473 					  asoc);
1474 			sctp_primitive_SHUTDOWN(asoc, NULL);
1475 			err = 0;
1476 			goto out_unlock;
1477 		}
1478 		if (sinfo_flags & SCTP_ABORT) {
1479 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1480 			sctp_primitive_ABORT(asoc, msg);
1481 			err = 0;
1482 			goto out_unlock;
1483 		}
1484 	}
1485 
1486 	/* Do we need to create the association?  */
1487 	if (!asoc) {
1488 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1489 
1490 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1491 			err = -EINVAL;
1492 			goto out_unlock;
1493 		}
1494 
1495 		/* Check for invalid stream against the stream counts,
1496 		 * either the default or the user specified stream counts.
1497 		 */
1498 		if (sinfo) {
1499 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1500 				/* Check against the defaults. */
1501 				if (sinfo->sinfo_stream >=
1502 				    sp->initmsg.sinit_num_ostreams) {
1503 					err = -EINVAL;
1504 					goto out_unlock;
1505 				}
1506 			} else {
1507 				/* Check against the requested.  */
1508 				if (sinfo->sinfo_stream >=
1509 				    sinit->sinit_num_ostreams) {
1510 					err = -EINVAL;
1511 					goto out_unlock;
1512 				}
1513 			}
1514 		}
1515 
1516 		/*
1517 		 * API 3.1.2 bind() - UDP Style Syntax
1518 		 * If a bind() or sctp_bindx() is not called prior to a
1519 		 * sendmsg() call that initiates a new association, the
1520 		 * system picks an ephemeral port and will choose an address
1521 		 * set equivalent to binding with a wildcard address.
1522 		 */
1523 		if (!ep->base.bind_addr.port) {
1524 			if (sctp_autobind(sk)) {
1525 				err = -EAGAIN;
1526 				goto out_unlock;
1527 			}
1528 		} else {
1529 			/*
1530 			 * If an unprivileged user inherits a one-to-many
1531 			 * style socket with open associations on a privileged
1532 			 * port, it MAY be permitted to accept new associations,
1533 			 * but it SHOULD NOT be permitted to open new
1534 			 * associations.
1535 			 */
1536 			if (ep->base.bind_addr.port < PROT_SOCK &&
1537 			    !capable(CAP_NET_BIND_SERVICE)) {
1538 				err = -EACCES;
1539 				goto out_unlock;
1540 			}
1541 		}
1542 
1543 		scope = sctp_scope(&to);
1544 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1545 		if (!new_asoc) {
1546 			err = -ENOMEM;
1547 			goto out_unlock;
1548 		}
1549 		asoc = new_asoc;
1550 
1551 		/* If the SCTP_INIT ancillary data is specified, set all
1552 		 * the association init values accordingly.
1553 		 */
1554 		if (sinit) {
1555 			if (sinit->sinit_num_ostreams) {
1556 				asoc->c.sinit_num_ostreams =
1557 					sinit->sinit_num_ostreams;
1558 			}
1559 			if (sinit->sinit_max_instreams) {
1560 				asoc->c.sinit_max_instreams =
1561 					sinit->sinit_max_instreams;
1562 			}
1563 			if (sinit->sinit_max_attempts) {
1564 				asoc->max_init_attempts
1565 					= sinit->sinit_max_attempts;
1566 			}
1567 			if (sinit->sinit_max_init_timeo) {
1568 				asoc->max_init_timeo =
1569 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1570 			}
1571 		}
1572 
1573 		/* Prime the peer's transport structures.  */
1574 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1575 		if (!transport) {
1576 			err = -ENOMEM;
1577 			goto out_free;
1578 		}
1579 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1580 		if (err < 0) {
1581 			err = -ENOMEM;
1582 			goto out_free;
1583 		}
1584 	}
1585 
1586 	/* ASSERT: we have a valid association at this point.  */
1587 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1588 
1589 	if (!sinfo) {
1590 		/* If the user didn't specify SNDRCVINFO, make up one with
1591 		 * some defaults.
1592 		 */
1593 		default_sinfo.sinfo_stream = asoc->default_stream;
1594 		default_sinfo.sinfo_flags = asoc->default_flags;
1595 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1596 		default_sinfo.sinfo_context = asoc->default_context;
1597 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1598 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1599 		sinfo = &default_sinfo;
1600 	}
1601 
1602 	/* API 7.1.7, the sndbuf size per association bounds the
1603 	 * maximum size of data that can be sent in a single send call.
1604 	 */
1605 	if (msg_len > sk->sk_sndbuf) {
1606 		err = -EMSGSIZE;
1607 		goto out_free;
1608 	}
1609 
1610 	/* If fragmentation is disabled and the message length exceeds the
1611 	 * association fragmentation point, return EMSGSIZE.  The I-D
1612 	 * does not specify what this error is, but this looks like
1613 	 * a great fit.
1614 	 */
1615 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1616 		err = -EMSGSIZE;
1617 		goto out_free;
1618 	}
1619 
1620 	if (sinfo) {
1621 		/* Check for invalid stream. */
1622 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1623 			err = -EINVAL;
1624 			goto out_free;
1625 		}
1626 	}
1627 
1628 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1629 	if (!sctp_wspace(asoc)) {
1630 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1631 		if (err)
1632 			goto out_free;
1633 	}
1634 
1635 	/* If an address is passed with the sendto/sendmsg call, it is used
1636 	 * to override the primary destination address in the TCP model, or
1637 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1638 	 */
1639 	if ((sctp_style(sk, TCP) && msg_name) ||
1640 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1641 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1642 		if (!chunk_tp) {
1643 			err = -EINVAL;
1644 			goto out_free;
1645 		}
1646 	} else
1647 		chunk_tp = NULL;
1648 
1649 	/* Auto-connect, if we aren't connected already. */
1650 	if (sctp_state(asoc, CLOSED)) {
1651 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1652 		if (err < 0)
1653 			goto out_free;
1654 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1655 	}
1656 
1657 	/* Break the message into multiple chunks of maximum size. */
1658 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1659 	if (!datamsg) {
1660 		err = -ENOMEM;
1661 		goto out_free;
1662 	}
1663 
1664 	/* Now send the (possibly) fragmented message. */
1665 	list_for_each(pos, &datamsg->chunks) {
1666 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1667 		sctp_datamsg_track(chunk);
1668 
1669 		/* Do accounting for the write space.  */
1670 		sctp_set_owner_w(chunk);
1671 
1672 		chunk->transport = chunk_tp;
1673 
1674 		/* Send it to the lower layers.  Note:  all chunks
1675 		 * must either fail or succeed.   The lower layer
1676 		 * works that way today.  Keep it that way or this
1677 		 * breaks.
1678 		 */
1679 		err = sctp_primitive_SEND(asoc, chunk);
1680 		/* Did the lower layer accept the chunk? */
1681 		if (err)
1682 			sctp_chunk_free(chunk);
1683 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1684 	}
1685 
1686 	sctp_datamsg_free(datamsg);
1687 	if (err)
1688 		goto out_free;
1689 	else
1690 		err = msg_len;
1691 
1692 	/* If we are already past ASSOCIATE, the lower
1693 	 * layers are responsible for association cleanup.
1694 	 */
1695 	goto out_unlock;
1696 
1697 out_free:
1698 	if (new_asoc)
1699 		sctp_association_free(asoc);
1700 out_unlock:
1701 	sctp_release_sock(sk);
1702 
1703 out_nounlock:
1704 	return sctp_error(sk, msg_flags, err);
1705 
1706 #if 0
1707 do_sock_err:
1708 	if (msg_len)
1709 		err = msg_len;
1710 	else
1711 		err = sock_error(sk);
1712 	goto out;
1713 
1714 do_interrupted:
1715 	if (msg_len)
1716 		err = msg_len;
1717 	goto out;
1718 #endif /* 0 */
1719 }
1720 
1721 /* This is an extended version of skb_pull() that removes the data from the
1722  * start of a skb even when data is spread across the list of skb's in the
1723  * frag_list. len specifies the total amount of data that needs to be removed.
1724  * when 'len' bytes could be removed from the skb, it returns 0.
1725  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1726  * could not be removed.
1727  */
1728 static int sctp_skb_pull(struct sk_buff *skb, int len)
1729 {
1730 	struct sk_buff *list;
1731 	int skb_len = skb_headlen(skb);
1732 	int rlen;
1733 
1734 	if (len <= skb_len) {
1735 		__skb_pull(skb, len);
1736 		return 0;
1737 	}
1738 	len -= skb_len;
1739 	__skb_pull(skb, skb_len);
1740 
1741 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1742 		rlen = sctp_skb_pull(list, len);
1743 		skb->len -= (len-rlen);
1744 		skb->data_len -= (len-rlen);
1745 
1746 		if (!rlen)
1747 			return 0;
1748 
1749 		len = rlen;
1750 	}
1751 
1752 	return len;
1753 }
1754 
1755 /* API 3.1.3  recvmsg() - UDP Style Syntax
1756  *
1757  *  ssize_t recvmsg(int socket, struct msghdr *message,
1758  *                    int flags);
1759  *
1760  *  socket  - the socket descriptor of the endpoint.
1761  *  message - pointer to the msghdr structure which contains a single
1762  *            user message and possibly some ancillary data.
1763  *
1764  *            See Section 5 for complete description of the data
1765  *            structures.
1766  *
1767  *  flags   - flags sent or received with the user message, see Section
1768  *            5 for complete description of the flags.
1769  */
1770 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1771 
1772 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1773 			     struct msghdr *msg, size_t len, int noblock,
1774 			     int flags, int *addr_len)
1775 {
1776 	struct sctp_ulpevent *event = NULL;
1777 	struct sctp_sock *sp = sctp_sk(sk);
1778 	struct sk_buff *skb;
1779 	int copied;
1780 	int err = 0;
1781 	int skb_len;
1782 
1783 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1784 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1785 			  "len", len, "knoblauch", noblock,
1786 			  "flags", flags, "addr_len", addr_len);
1787 
1788 	sctp_lock_sock(sk);
1789 
1790 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1791 		err = -ENOTCONN;
1792 		goto out;
1793 	}
1794 
1795 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1796 	if (!skb)
1797 		goto out;
1798 
1799 	/* Get the total length of the skb including any skb's in the
1800 	 * frag_list.
1801 	 */
1802 	skb_len = skb->len;
1803 
1804 	copied = skb_len;
1805 	if (copied > len)
1806 		copied = len;
1807 
1808 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1809 
1810 	event = sctp_skb2event(skb);
1811 
1812 	if (err)
1813 		goto out_free;
1814 
1815 	sock_recv_timestamp(msg, sk, skb);
1816 	if (sctp_ulpevent_is_notification(event)) {
1817 		msg->msg_flags |= MSG_NOTIFICATION;
1818 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1819 	} else {
1820 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1821 	}
1822 
1823 	/* Check if we allow SCTP_SNDRCVINFO. */
1824 	if (sp->subscribe.sctp_data_io_event)
1825 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1826 #if 0
1827 	/* FIXME: we should be calling IP/IPv6 layers.  */
1828 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1829 		ip_cmsg_recv(msg, skb);
1830 #endif
1831 
1832 	err = copied;
1833 
1834 	/* If skb's length exceeds the user's buffer, update the skb and
1835 	 * push it back to the receive_queue so that the next call to
1836 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1837 	 */
1838 	if (skb_len > copied) {
1839 		msg->msg_flags &= ~MSG_EOR;
1840 		if (flags & MSG_PEEK)
1841 			goto out_free;
1842 		sctp_skb_pull(skb, copied);
1843 		skb_queue_head(&sk->sk_receive_queue, skb);
1844 
1845 		/* When only partial message is copied to the user, increase
1846 		 * rwnd by that amount. If all the data in the skb is read,
1847 		 * rwnd is updated when the event is freed.
1848 		 */
1849 		sctp_assoc_rwnd_increase(event->asoc, copied);
1850 		goto out;
1851 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1852 		   (event->msg_flags & MSG_EOR))
1853 		msg->msg_flags |= MSG_EOR;
1854 	else
1855 		msg->msg_flags &= ~MSG_EOR;
1856 
1857 out_free:
1858 	if (flags & MSG_PEEK) {
1859 		/* Release the skb reference acquired after peeking the skb in
1860 		 * sctp_skb_recv_datagram().
1861 		 */
1862 		kfree_skb(skb);
1863 	} else {
1864 		/* Free the event which includes releasing the reference to
1865 		 * the owner of the skb, freeing the skb and updating the
1866 		 * rwnd.
1867 		 */
1868 		sctp_ulpevent_free(event);
1869 	}
1870 out:
1871 	sctp_release_sock(sk);
1872 	return err;
1873 }
1874 
1875 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1876  *
1877  * This option is a on/off flag.  If enabled no SCTP message
1878  * fragmentation will be performed.  Instead if a message being sent
1879  * exceeds the current PMTU size, the message will NOT be sent and
1880  * instead a error will be indicated to the user.
1881  */
1882 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1883 					    char __user *optval, int optlen)
1884 {
1885 	int val;
1886 
1887 	if (optlen < sizeof(int))
1888 		return -EINVAL;
1889 
1890 	if (get_user(val, (int __user *)optval))
1891 		return -EFAULT;
1892 
1893 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1894 
1895 	return 0;
1896 }
1897 
1898 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1899 					int optlen)
1900 {
1901 	if (optlen != sizeof(struct sctp_event_subscribe))
1902 		return -EINVAL;
1903 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1904 		return -EFAULT;
1905 	return 0;
1906 }
1907 
1908 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1909  *
1910  * This socket option is applicable to the UDP-style socket only.  When
1911  * set it will cause associations that are idle for more than the
1912  * specified number of seconds to automatically close.  An association
1913  * being idle is defined an association that has NOT sent or received
1914  * user data.  The special value of '0' indicates that no automatic
1915  * close of any associations should be performed.  The option expects an
1916  * integer defining the number of seconds of idle time before an
1917  * association is closed.
1918  */
1919 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1920 					    int optlen)
1921 {
1922 	struct sctp_sock *sp = sctp_sk(sk);
1923 
1924 	/* Applicable to UDP-style socket only */
1925 	if (sctp_style(sk, TCP))
1926 		return -EOPNOTSUPP;
1927 	if (optlen != sizeof(int))
1928 		return -EINVAL;
1929 	if (copy_from_user(&sp->autoclose, optval, optlen))
1930 		return -EFAULT;
1931 
1932 	return 0;
1933 }
1934 
1935 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1936  *
1937  * Applications can enable or disable heartbeats for any peer address of
1938  * an association, modify an address's heartbeat interval, force a
1939  * heartbeat to be sent immediately, and adjust the address's maximum
1940  * number of retransmissions sent before an address is considered
1941  * unreachable.  The following structure is used to access and modify an
1942  * address's parameters:
1943  *
1944  *  struct sctp_paddrparams {
1945  *     sctp_assoc_t            spp_assoc_id;
1946  *     struct sockaddr_storage spp_address;
1947  *     uint32_t                spp_hbinterval;
1948  *     uint16_t                spp_pathmaxrxt;
1949  *     uint32_t                spp_pathmtu;
1950  *     uint32_t                spp_sackdelay;
1951  *     uint32_t                spp_flags;
1952  * };
1953  *
1954  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1955  *                     application, and identifies the association for
1956  *                     this query.
1957  *   spp_address     - This specifies which address is of interest.
1958  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1959  *                     in milliseconds.  If a  value of zero
1960  *                     is present in this field then no changes are to
1961  *                     be made to this parameter.
1962  *   spp_pathmaxrxt  - This contains the maximum number of
1963  *                     retransmissions before this address shall be
1964  *                     considered unreachable. If a  value of zero
1965  *                     is present in this field then no changes are to
1966  *                     be made to this parameter.
1967  *   spp_pathmtu     - When Path MTU discovery is disabled the value
1968  *                     specified here will be the "fixed" path mtu.
1969  *                     Note that if the spp_address field is empty
1970  *                     then all associations on this address will
1971  *                     have this fixed path mtu set upon them.
1972  *
1973  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
1974  *                     the number of milliseconds that sacks will be delayed
1975  *                     for. This value will apply to all addresses of an
1976  *                     association if the spp_address field is empty. Note
1977  *                     also, that if delayed sack is enabled and this
1978  *                     value is set to 0, no change is made to the last
1979  *                     recorded delayed sack timer value.
1980  *
1981  *   spp_flags       - These flags are used to control various features
1982  *                     on an association. The flag field may contain
1983  *                     zero or more of the following options.
1984  *
1985  *                     SPP_HB_ENABLE  - Enable heartbeats on the
1986  *                     specified address. Note that if the address
1987  *                     field is empty all addresses for the association
1988  *                     have heartbeats enabled upon them.
1989  *
1990  *                     SPP_HB_DISABLE - Disable heartbeats on the
1991  *                     speicifed address. Note that if the address
1992  *                     field is empty all addresses for the association
1993  *                     will have their heartbeats disabled. Note also
1994  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
1995  *                     mutually exclusive, only one of these two should
1996  *                     be specified. Enabling both fields will have
1997  *                     undetermined results.
1998  *
1999  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2000  *                     to be made immediately.
2001  *
2002  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2003  *                     discovery upon the specified address. Note that
2004  *                     if the address feild is empty then all addresses
2005  *                     on the association are effected.
2006  *
2007  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2008  *                     discovery upon the specified address. Note that
2009  *                     if the address feild is empty then all addresses
2010  *                     on the association are effected. Not also that
2011  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2012  *                     exclusive. Enabling both will have undetermined
2013  *                     results.
2014  *
2015  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2016  *                     on delayed sack. The time specified in spp_sackdelay
2017  *                     is used to specify the sack delay for this address. Note
2018  *                     that if spp_address is empty then all addresses will
2019  *                     enable delayed sack and take on the sack delay
2020  *                     value specified in spp_sackdelay.
2021  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2022  *                     off delayed sack. If the spp_address field is blank then
2023  *                     delayed sack is disabled for the entire association. Note
2024  *                     also that this field is mutually exclusive to
2025  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2026  *                     results.
2027  */
2028 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2029 				struct sctp_transport   *trans,
2030 				struct sctp_association *asoc,
2031 				struct sctp_sock        *sp,
2032 				int                      hb_change,
2033 				int                      pmtud_change,
2034 				int                      sackdelay_change)
2035 {
2036 	int error;
2037 
2038 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2039 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2040 		if (error)
2041 			return error;
2042 	}
2043 
2044 	if (params->spp_hbinterval) {
2045 		if (trans) {
2046 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2047 		} else if (asoc) {
2048 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2049 		} else {
2050 			sp->hbinterval = params->spp_hbinterval;
2051 		}
2052 	}
2053 
2054 	if (hb_change) {
2055 		if (trans) {
2056 			trans->param_flags =
2057 				(trans->param_flags & ~SPP_HB) | hb_change;
2058 		} else if (asoc) {
2059 			asoc->param_flags =
2060 				(asoc->param_flags & ~SPP_HB) | hb_change;
2061 		} else {
2062 			sp->param_flags =
2063 				(sp->param_flags & ~SPP_HB) | hb_change;
2064 		}
2065 	}
2066 
2067 	if (params->spp_pathmtu) {
2068 		if (trans) {
2069 			trans->pathmtu = params->spp_pathmtu;
2070 			sctp_assoc_sync_pmtu(asoc);
2071 		} else if (asoc) {
2072 			asoc->pathmtu = params->spp_pathmtu;
2073 			sctp_frag_point(sp, params->spp_pathmtu);
2074 		} else {
2075 			sp->pathmtu = params->spp_pathmtu;
2076 		}
2077 	}
2078 
2079 	if (pmtud_change) {
2080 		if (trans) {
2081 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2082 				(params->spp_flags & SPP_PMTUD_ENABLE);
2083 			trans->param_flags =
2084 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2085 			if (update) {
2086 				sctp_transport_pmtu(trans);
2087 				sctp_assoc_sync_pmtu(asoc);
2088 			}
2089 		} else if (asoc) {
2090 			asoc->param_flags =
2091 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2092 		} else {
2093 			sp->param_flags =
2094 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2095 		}
2096 	}
2097 
2098 	if (params->spp_sackdelay) {
2099 		if (trans) {
2100 			trans->sackdelay =
2101 				msecs_to_jiffies(params->spp_sackdelay);
2102 		} else if (asoc) {
2103 			asoc->sackdelay =
2104 				msecs_to_jiffies(params->spp_sackdelay);
2105 		} else {
2106 			sp->sackdelay = params->spp_sackdelay;
2107 		}
2108 	}
2109 
2110 	if (sackdelay_change) {
2111 		if (trans) {
2112 			trans->param_flags =
2113 				(trans->param_flags & ~SPP_SACKDELAY) |
2114 				sackdelay_change;
2115 		} else if (asoc) {
2116 			asoc->param_flags =
2117 				(asoc->param_flags & ~SPP_SACKDELAY) |
2118 				sackdelay_change;
2119 		} else {
2120 			sp->param_flags =
2121 				(sp->param_flags & ~SPP_SACKDELAY) |
2122 				sackdelay_change;
2123 		}
2124 	}
2125 
2126 	if (params->spp_pathmaxrxt) {
2127 		if (trans) {
2128 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2129 		} else if (asoc) {
2130 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2131 		} else {
2132 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2133 		}
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2140 					    char __user *optval, int optlen)
2141 {
2142 	struct sctp_paddrparams  params;
2143 	struct sctp_transport   *trans = NULL;
2144 	struct sctp_association *asoc = NULL;
2145 	struct sctp_sock        *sp = sctp_sk(sk);
2146 	int error;
2147 	int hb_change, pmtud_change, sackdelay_change;
2148 
2149 	if (optlen != sizeof(struct sctp_paddrparams))
2150 		return - EINVAL;
2151 
2152 	if (copy_from_user(&params, optval, optlen))
2153 		return -EFAULT;
2154 
2155 	/* Validate flags and value parameters. */
2156 	hb_change        = params.spp_flags & SPP_HB;
2157 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2158 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2159 
2160 	if (hb_change        == SPP_HB ||
2161 	    pmtud_change     == SPP_PMTUD ||
2162 	    sackdelay_change == SPP_SACKDELAY ||
2163 	    params.spp_sackdelay > 500 ||
2164 	    (params.spp_pathmtu
2165 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2166 		return -EINVAL;
2167 
2168 	/* If an address other than INADDR_ANY is specified, and
2169 	 * no transport is found, then the request is invalid.
2170 	 */
2171 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2172 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2173 					       params.spp_assoc_id);
2174 		if (!trans)
2175 			return -EINVAL;
2176 	}
2177 
2178 	/* Get association, if assoc_id != 0 and the socket is a one
2179 	 * to many style socket, and an association was not found, then
2180 	 * the id was invalid.
2181 	 */
2182 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2183 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2184 		return -EINVAL;
2185 
2186 	/* Heartbeat demand can only be sent on a transport or
2187 	 * association, but not a socket.
2188 	 */
2189 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2190 		return -EINVAL;
2191 
2192 	/* Process parameters. */
2193 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2194 					    hb_change, pmtud_change,
2195 					    sackdelay_change);
2196 
2197 	if (error)
2198 		return error;
2199 
2200 	/* If changes are for association, also apply parameters to each
2201 	 * transport.
2202 	 */
2203 	if (!trans && asoc) {
2204 		struct list_head *pos;
2205 
2206 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2207 			trans = list_entry(pos, struct sctp_transport,
2208 					   transports);
2209 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2210 						    hb_change, pmtud_change,
2211 						    sackdelay_change);
2212 		}
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2219  *
2220  *   This options will get or set the delayed ack timer.  The time is set
2221  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2222  *   endpoints default delayed ack timer value.  If the assoc_id field is
2223  *   non-zero, then the set or get effects the specified association.
2224  *
2225  *   struct sctp_assoc_value {
2226  *       sctp_assoc_t            assoc_id;
2227  *       uint32_t                assoc_value;
2228  *   };
2229  *
2230  *     assoc_id    - This parameter, indicates which association the
2231  *                   user is preforming an action upon. Note that if
2232  *                   this field's value is zero then the endpoints
2233  *                   default value is changed (effecting future
2234  *                   associations only).
2235  *
2236  *     assoc_value - This parameter contains the number of milliseconds
2237  *                   that the user is requesting the delayed ACK timer
2238  *                   be set to. Note that this value is defined in
2239  *                   the standard to be between 200 and 500 milliseconds.
2240  *
2241  *                   Note: a value of zero will leave the value alone,
2242  *                   but disable SACK delay. A non-zero value will also
2243  *                   enable SACK delay.
2244  */
2245 
2246 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2247 					    char __user *optval, int optlen)
2248 {
2249 	struct sctp_assoc_value  params;
2250 	struct sctp_transport   *trans = NULL;
2251 	struct sctp_association *asoc = NULL;
2252 	struct sctp_sock        *sp = sctp_sk(sk);
2253 
2254 	if (optlen != sizeof(struct sctp_assoc_value))
2255 		return - EINVAL;
2256 
2257 	if (copy_from_user(&params, optval, optlen))
2258 		return -EFAULT;
2259 
2260 	/* Validate value parameter. */
2261 	if (params.assoc_value > 500)
2262 		return -EINVAL;
2263 
2264 	/* Get association, if assoc_id != 0 and the socket is a one
2265 	 * to many style socket, and an association was not found, then
2266 	 * the id was invalid.
2267  	 */
2268 	asoc = sctp_id2assoc(sk, params.assoc_id);
2269 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2270 		return -EINVAL;
2271 
2272 	if (params.assoc_value) {
2273 		if (asoc) {
2274 			asoc->sackdelay =
2275 				msecs_to_jiffies(params.assoc_value);
2276 			asoc->param_flags =
2277 				(asoc->param_flags & ~SPP_SACKDELAY) |
2278 				SPP_SACKDELAY_ENABLE;
2279 		} else {
2280 			sp->sackdelay = params.assoc_value;
2281 			sp->param_flags =
2282 				(sp->param_flags & ~SPP_SACKDELAY) |
2283 				SPP_SACKDELAY_ENABLE;
2284 		}
2285 	} else {
2286 		if (asoc) {
2287 			asoc->param_flags =
2288 				(asoc->param_flags & ~SPP_SACKDELAY) |
2289 				SPP_SACKDELAY_DISABLE;
2290 		} else {
2291 			sp->param_flags =
2292 				(sp->param_flags & ~SPP_SACKDELAY) |
2293 				SPP_SACKDELAY_DISABLE;
2294 		}
2295 	}
2296 
2297 	/* If change is for association, also apply to each transport. */
2298 	if (asoc) {
2299 		struct list_head *pos;
2300 
2301 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2302 			trans = list_entry(pos, struct sctp_transport,
2303 					   transports);
2304 			if (params.assoc_value) {
2305 				trans->sackdelay =
2306 					msecs_to_jiffies(params.assoc_value);
2307 				trans->param_flags =
2308 					(trans->param_flags & ~SPP_SACKDELAY) |
2309 					SPP_SACKDELAY_ENABLE;
2310 			} else {
2311 				trans->param_flags =
2312 					(trans->param_flags & ~SPP_SACKDELAY) |
2313 					SPP_SACKDELAY_DISABLE;
2314 			}
2315 		}
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2322  *
2323  * Applications can specify protocol parameters for the default association
2324  * initialization.  The option name argument to setsockopt() and getsockopt()
2325  * is SCTP_INITMSG.
2326  *
2327  * Setting initialization parameters is effective only on an unconnected
2328  * socket (for UDP-style sockets only future associations are effected
2329  * by the change).  With TCP-style sockets, this option is inherited by
2330  * sockets derived from a listener socket.
2331  */
2332 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2333 {
2334 	struct sctp_initmsg sinit;
2335 	struct sctp_sock *sp = sctp_sk(sk);
2336 
2337 	if (optlen != sizeof(struct sctp_initmsg))
2338 		return -EINVAL;
2339 	if (copy_from_user(&sinit, optval, optlen))
2340 		return -EFAULT;
2341 
2342 	if (sinit.sinit_num_ostreams)
2343 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2344 	if (sinit.sinit_max_instreams)
2345 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2346 	if (sinit.sinit_max_attempts)
2347 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2348 	if (sinit.sinit_max_init_timeo)
2349 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2350 
2351 	return 0;
2352 }
2353 
2354 /*
2355  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2356  *
2357  *   Applications that wish to use the sendto() system call may wish to
2358  *   specify a default set of parameters that would normally be supplied
2359  *   through the inclusion of ancillary data.  This socket option allows
2360  *   such an application to set the default sctp_sndrcvinfo structure.
2361  *   The application that wishes to use this socket option simply passes
2362  *   in to this call the sctp_sndrcvinfo structure defined in Section
2363  *   5.2.2) The input parameters accepted by this call include
2364  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2365  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2366  *   to this call if the caller is using the UDP model.
2367  */
2368 static int sctp_setsockopt_default_send_param(struct sock *sk,
2369 						char __user *optval, int optlen)
2370 {
2371 	struct sctp_sndrcvinfo info;
2372 	struct sctp_association *asoc;
2373 	struct sctp_sock *sp = sctp_sk(sk);
2374 
2375 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2376 		return -EINVAL;
2377 	if (copy_from_user(&info, optval, optlen))
2378 		return -EFAULT;
2379 
2380 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2381 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2382 		return -EINVAL;
2383 
2384 	if (asoc) {
2385 		asoc->default_stream = info.sinfo_stream;
2386 		asoc->default_flags = info.sinfo_flags;
2387 		asoc->default_ppid = info.sinfo_ppid;
2388 		asoc->default_context = info.sinfo_context;
2389 		asoc->default_timetolive = info.sinfo_timetolive;
2390 	} else {
2391 		sp->default_stream = info.sinfo_stream;
2392 		sp->default_flags = info.sinfo_flags;
2393 		sp->default_ppid = info.sinfo_ppid;
2394 		sp->default_context = info.sinfo_context;
2395 		sp->default_timetolive = info.sinfo_timetolive;
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2402  *
2403  * Requests that the local SCTP stack use the enclosed peer address as
2404  * the association primary.  The enclosed address must be one of the
2405  * association peer's addresses.
2406  */
2407 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2408 					int optlen)
2409 {
2410 	struct sctp_prim prim;
2411 	struct sctp_transport *trans;
2412 
2413 	if (optlen != sizeof(struct sctp_prim))
2414 		return -EINVAL;
2415 
2416 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2417 		return -EFAULT;
2418 
2419 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2420 	if (!trans)
2421 		return -EINVAL;
2422 
2423 	sctp_assoc_set_primary(trans->asoc, trans);
2424 
2425 	return 0;
2426 }
2427 
2428 /*
2429  * 7.1.5 SCTP_NODELAY
2430  *
2431  * Turn on/off any Nagle-like algorithm.  This means that packets are
2432  * generally sent as soon as possible and no unnecessary delays are
2433  * introduced, at the cost of more packets in the network.  Expects an
2434  *  integer boolean flag.
2435  */
2436 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2437 					int optlen)
2438 {
2439 	int val;
2440 
2441 	if (optlen < sizeof(int))
2442 		return -EINVAL;
2443 	if (get_user(val, (int __user *)optval))
2444 		return -EFAULT;
2445 
2446 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2447 	return 0;
2448 }
2449 
2450 /*
2451  *
2452  * 7.1.1 SCTP_RTOINFO
2453  *
2454  * The protocol parameters used to initialize and bound retransmission
2455  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2456  * and modify these parameters.
2457  * All parameters are time values, in milliseconds.  A value of 0, when
2458  * modifying the parameters, indicates that the current value should not
2459  * be changed.
2460  *
2461  */
2462 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2463 	struct sctp_rtoinfo rtoinfo;
2464 	struct sctp_association *asoc;
2465 
2466 	if (optlen != sizeof (struct sctp_rtoinfo))
2467 		return -EINVAL;
2468 
2469 	if (copy_from_user(&rtoinfo, optval, optlen))
2470 		return -EFAULT;
2471 
2472 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2473 
2474 	/* Set the values to the specific association */
2475 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2476 		return -EINVAL;
2477 
2478 	if (asoc) {
2479 		if (rtoinfo.srto_initial != 0)
2480 			asoc->rto_initial =
2481 				msecs_to_jiffies(rtoinfo.srto_initial);
2482 		if (rtoinfo.srto_max != 0)
2483 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2484 		if (rtoinfo.srto_min != 0)
2485 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2486 	} else {
2487 		/* If there is no association or the association-id = 0
2488 		 * set the values to the endpoint.
2489 		 */
2490 		struct sctp_sock *sp = sctp_sk(sk);
2491 
2492 		if (rtoinfo.srto_initial != 0)
2493 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2494 		if (rtoinfo.srto_max != 0)
2495 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2496 		if (rtoinfo.srto_min != 0)
2497 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 /*
2504  *
2505  * 7.1.2 SCTP_ASSOCINFO
2506  *
2507  * This option is used to tune the the maximum retransmission attempts
2508  * of the association.
2509  * Returns an error if the new association retransmission value is
2510  * greater than the sum of the retransmission value  of the peer.
2511  * See [SCTP] for more information.
2512  *
2513  */
2514 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2515 {
2516 
2517 	struct sctp_assocparams assocparams;
2518 	struct sctp_association *asoc;
2519 
2520 	if (optlen != sizeof(struct sctp_assocparams))
2521 		return -EINVAL;
2522 	if (copy_from_user(&assocparams, optval, optlen))
2523 		return -EFAULT;
2524 
2525 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2526 
2527 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2528 		return -EINVAL;
2529 
2530 	/* Set the values to the specific association */
2531 	if (asoc) {
2532 		if (assocparams.sasoc_asocmaxrxt != 0) {
2533 			__u32 path_sum = 0;
2534 			int   paths = 0;
2535 			struct list_head *pos;
2536 			struct sctp_transport *peer_addr;
2537 
2538 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2539 				peer_addr = list_entry(pos,
2540 						struct sctp_transport,
2541 						transports);
2542 				path_sum += peer_addr->pathmaxrxt;
2543 				paths++;
2544 			}
2545 
2546 			/* Only validate asocmaxrxt if we have more then
2547 			 * one path/transport.  We do this because path
2548 			 * retransmissions are only counted when we have more
2549 			 * then one path.
2550 			 */
2551 			if (paths > 1 &&
2552 			    assocparams.sasoc_asocmaxrxt > path_sum)
2553 				return -EINVAL;
2554 
2555 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2556 		}
2557 
2558 		if (assocparams.sasoc_cookie_life != 0) {
2559 			asoc->cookie_life.tv_sec =
2560 					assocparams.sasoc_cookie_life / 1000;
2561 			asoc->cookie_life.tv_usec =
2562 					(assocparams.sasoc_cookie_life % 1000)
2563 					* 1000;
2564 		}
2565 	} else {
2566 		/* Set the values to the endpoint */
2567 		struct sctp_sock *sp = sctp_sk(sk);
2568 
2569 		if (assocparams.sasoc_asocmaxrxt != 0)
2570 			sp->assocparams.sasoc_asocmaxrxt =
2571 						assocparams.sasoc_asocmaxrxt;
2572 		if (assocparams.sasoc_cookie_life != 0)
2573 			sp->assocparams.sasoc_cookie_life =
2574 						assocparams.sasoc_cookie_life;
2575 	}
2576 	return 0;
2577 }
2578 
2579 /*
2580  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2581  *
2582  * This socket option is a boolean flag which turns on or off mapped V4
2583  * addresses.  If this option is turned on and the socket is type
2584  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2585  * If this option is turned off, then no mapping will be done of V4
2586  * addresses and a user will receive both PF_INET6 and PF_INET type
2587  * addresses on the socket.
2588  */
2589 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2590 {
2591 	int val;
2592 	struct sctp_sock *sp = sctp_sk(sk);
2593 
2594 	if (optlen < sizeof(int))
2595 		return -EINVAL;
2596 	if (get_user(val, (int __user *)optval))
2597 		return -EFAULT;
2598 	if (val)
2599 		sp->v4mapped = 1;
2600 	else
2601 		sp->v4mapped = 0;
2602 
2603 	return 0;
2604 }
2605 
2606 /*
2607  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2608  *
2609  * This socket option specifies the maximum size to put in any outgoing
2610  * SCTP chunk.  If a message is larger than this size it will be
2611  * fragmented by SCTP into the specified size.  Note that the underlying
2612  * SCTP implementation may fragment into smaller sized chunks when the
2613  * PMTU of the underlying association is smaller than the value set by
2614  * the user.
2615  */
2616 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2617 {
2618 	struct sctp_association *asoc;
2619 	struct list_head *pos;
2620 	struct sctp_sock *sp = sctp_sk(sk);
2621 	int val;
2622 
2623 	if (optlen < sizeof(int))
2624 		return -EINVAL;
2625 	if (get_user(val, (int __user *)optval))
2626 		return -EFAULT;
2627 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2628 		return -EINVAL;
2629 	sp->user_frag = val;
2630 
2631 	/* Update the frag_point of the existing associations. */
2632 	list_for_each(pos, &(sp->ep->asocs)) {
2633 		asoc = list_entry(pos, struct sctp_association, asocs);
2634 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 
2641 /*
2642  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2643  *
2644  *   Requests that the peer mark the enclosed address as the association
2645  *   primary. The enclosed address must be one of the association's
2646  *   locally bound addresses. The following structure is used to make a
2647  *   set primary request:
2648  */
2649 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2650 					     int optlen)
2651 {
2652 	struct sctp_sock	*sp;
2653 	struct sctp_endpoint	*ep;
2654 	struct sctp_association	*asoc = NULL;
2655 	struct sctp_setpeerprim	prim;
2656 	struct sctp_chunk	*chunk;
2657 	int 			err;
2658 
2659 	sp = sctp_sk(sk);
2660 	ep = sp->ep;
2661 
2662 	if (!sctp_addip_enable)
2663 		return -EPERM;
2664 
2665 	if (optlen != sizeof(struct sctp_setpeerprim))
2666 		return -EINVAL;
2667 
2668 	if (copy_from_user(&prim, optval, optlen))
2669 		return -EFAULT;
2670 
2671 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2672 	if (!asoc)
2673 		return -EINVAL;
2674 
2675 	if (!asoc->peer.asconf_capable)
2676 		return -EPERM;
2677 
2678 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2679 		return -EPERM;
2680 
2681 	if (!sctp_state(asoc, ESTABLISHED))
2682 		return -ENOTCONN;
2683 
2684 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2685 		return -EADDRNOTAVAIL;
2686 
2687 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2688 	chunk = sctp_make_asconf_set_prim(asoc,
2689 					  (union sctp_addr *)&prim.sspp_addr);
2690 	if (!chunk)
2691 		return -ENOMEM;
2692 
2693 	err = sctp_send_asconf(asoc, chunk);
2694 
2695 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2696 
2697 	return err;
2698 }
2699 
2700 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2701 					  int optlen)
2702 {
2703 	struct sctp_setadaption adaption;
2704 
2705 	if (optlen != sizeof(struct sctp_setadaption))
2706 		return -EINVAL;
2707 	if (copy_from_user(&adaption, optval, optlen))
2708 		return -EFAULT;
2709 
2710 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2711 
2712 	return 0;
2713 }
2714 
2715 /* API 6.2 setsockopt(), getsockopt()
2716  *
2717  * Applications use setsockopt() and getsockopt() to set or retrieve
2718  * socket options.  Socket options are used to change the default
2719  * behavior of sockets calls.  They are described in Section 7.
2720  *
2721  * The syntax is:
2722  *
2723  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2724  *                    int __user *optlen);
2725  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2726  *                    int optlen);
2727  *
2728  *   sd      - the socket descript.
2729  *   level   - set to IPPROTO_SCTP for all SCTP options.
2730  *   optname - the option name.
2731  *   optval  - the buffer to store the value of the option.
2732  *   optlen  - the size of the buffer.
2733  */
2734 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2735 				char __user *optval, int optlen)
2736 {
2737 	int retval = 0;
2738 
2739 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2740 			  sk, optname);
2741 
2742 	/* I can hardly begin to describe how wrong this is.  This is
2743 	 * so broken as to be worse than useless.  The API draft
2744 	 * REALLY is NOT helpful here...  I am not convinced that the
2745 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2746 	 * are at all well-founded.
2747 	 */
2748 	if (level != SOL_SCTP) {
2749 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2750 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2751 		goto out_nounlock;
2752 	}
2753 
2754 	sctp_lock_sock(sk);
2755 
2756 	switch (optname) {
2757 	case SCTP_SOCKOPT_BINDX_ADD:
2758 		/* 'optlen' is the size of the addresses buffer. */
2759 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2760 					       optlen, SCTP_BINDX_ADD_ADDR);
2761 		break;
2762 
2763 	case SCTP_SOCKOPT_BINDX_REM:
2764 		/* 'optlen' is the size of the addresses buffer. */
2765 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2766 					       optlen, SCTP_BINDX_REM_ADDR);
2767 		break;
2768 
2769 	case SCTP_SOCKOPT_CONNECTX:
2770 		/* 'optlen' is the size of the addresses buffer. */
2771 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2772 					       optlen);
2773 		break;
2774 
2775 	case SCTP_DISABLE_FRAGMENTS:
2776 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2777 		break;
2778 
2779 	case SCTP_EVENTS:
2780 		retval = sctp_setsockopt_events(sk, optval, optlen);
2781 		break;
2782 
2783 	case SCTP_AUTOCLOSE:
2784 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2785 		break;
2786 
2787 	case SCTP_PEER_ADDR_PARAMS:
2788 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2789 		break;
2790 
2791 	case SCTP_DELAYED_ACK_TIME:
2792 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2793 		break;
2794 
2795 	case SCTP_INITMSG:
2796 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2797 		break;
2798 	case SCTP_DEFAULT_SEND_PARAM:
2799 		retval = sctp_setsockopt_default_send_param(sk, optval,
2800 							    optlen);
2801 		break;
2802 	case SCTP_PRIMARY_ADDR:
2803 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2804 		break;
2805 	case SCTP_SET_PEER_PRIMARY_ADDR:
2806 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2807 		break;
2808 	case SCTP_NODELAY:
2809 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2810 		break;
2811 	case SCTP_RTOINFO:
2812 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2813 		break;
2814 	case SCTP_ASSOCINFO:
2815 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2816 		break;
2817 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2818 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2819 		break;
2820 	case SCTP_MAXSEG:
2821 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2822 		break;
2823 	case SCTP_ADAPTION_LAYER:
2824 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2825 		break;
2826 
2827 	default:
2828 		retval = -ENOPROTOOPT;
2829 		break;
2830 	};
2831 
2832 	sctp_release_sock(sk);
2833 
2834 out_nounlock:
2835 	return retval;
2836 }
2837 
2838 /* API 3.1.6 connect() - UDP Style Syntax
2839  *
2840  * An application may use the connect() call in the UDP model to initiate an
2841  * association without sending data.
2842  *
2843  * The syntax is:
2844  *
2845  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2846  *
2847  * sd: the socket descriptor to have a new association added to.
2848  *
2849  * nam: the address structure (either struct sockaddr_in or struct
2850  *    sockaddr_in6 defined in RFC2553 [7]).
2851  *
2852  * len: the size of the address.
2853  */
2854 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2855 			     int addr_len)
2856 {
2857 	int err = 0;
2858 	struct sctp_af *af;
2859 
2860 	sctp_lock_sock(sk);
2861 
2862 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2863 			  __FUNCTION__, sk, addr, addr_len);
2864 
2865 	/* Validate addr_len before calling common connect/connectx routine. */
2866 	af = sctp_get_af_specific(addr->sa_family);
2867 	if (!af || addr_len < af->sockaddr_len) {
2868 		err = -EINVAL;
2869 	} else {
2870 		/* Pass correct addr len to common routine (so it knows there
2871 		 * is only one address being passed.
2872 		 */
2873 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2874 	}
2875 
2876 	sctp_release_sock(sk);
2877 	return err;
2878 }
2879 
2880 /* FIXME: Write comments. */
2881 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2882 {
2883 	return -EOPNOTSUPP; /* STUB */
2884 }
2885 
2886 /* 4.1.4 accept() - TCP Style Syntax
2887  *
2888  * Applications use accept() call to remove an established SCTP
2889  * association from the accept queue of the endpoint.  A new socket
2890  * descriptor will be returned from accept() to represent the newly
2891  * formed association.
2892  */
2893 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2894 {
2895 	struct sctp_sock *sp;
2896 	struct sctp_endpoint *ep;
2897 	struct sock *newsk = NULL;
2898 	struct sctp_association *asoc;
2899 	long timeo;
2900 	int error = 0;
2901 
2902 	sctp_lock_sock(sk);
2903 
2904 	sp = sctp_sk(sk);
2905 	ep = sp->ep;
2906 
2907 	if (!sctp_style(sk, TCP)) {
2908 		error = -EOPNOTSUPP;
2909 		goto out;
2910 	}
2911 
2912 	if (!sctp_sstate(sk, LISTENING)) {
2913 		error = -EINVAL;
2914 		goto out;
2915 	}
2916 
2917 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2918 
2919 	error = sctp_wait_for_accept(sk, timeo);
2920 	if (error)
2921 		goto out;
2922 
2923 	/* We treat the list of associations on the endpoint as the accept
2924 	 * queue and pick the first association on the list.
2925 	 */
2926 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2927 
2928 	newsk = sp->pf->create_accept_sk(sk, asoc);
2929 	if (!newsk) {
2930 		error = -ENOMEM;
2931 		goto out;
2932 	}
2933 
2934 	/* Populate the fields of the newsk from the oldsk and migrate the
2935 	 * asoc to the newsk.
2936 	 */
2937 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2938 
2939 out:
2940 	sctp_release_sock(sk);
2941  	*err = error;
2942 	return newsk;
2943 }
2944 
2945 /* The SCTP ioctl handler. */
2946 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2947 {
2948 	return -ENOIOCTLCMD;
2949 }
2950 
2951 /* This is the function which gets called during socket creation to
2952  * initialized the SCTP-specific portion of the sock.
2953  * The sock structure should already be zero-filled memory.
2954  */
2955 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2956 {
2957 	struct sctp_endpoint *ep;
2958 	struct sctp_sock *sp;
2959 
2960 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2961 
2962 	sp = sctp_sk(sk);
2963 
2964 	/* Initialize the SCTP per socket area.  */
2965 	switch (sk->sk_type) {
2966 	case SOCK_SEQPACKET:
2967 		sp->type = SCTP_SOCKET_UDP;
2968 		break;
2969 	case SOCK_STREAM:
2970 		sp->type = SCTP_SOCKET_TCP;
2971 		break;
2972 	default:
2973 		return -ESOCKTNOSUPPORT;
2974 	}
2975 
2976 	/* Initialize default send parameters. These parameters can be
2977 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2978 	 */
2979 	sp->default_stream = 0;
2980 	sp->default_ppid = 0;
2981 	sp->default_flags = 0;
2982 	sp->default_context = 0;
2983 	sp->default_timetolive = 0;
2984 
2985 	/* Initialize default setup parameters. These parameters
2986 	 * can be modified with the SCTP_INITMSG socket option or
2987 	 * overridden by the SCTP_INIT CMSG.
2988 	 */
2989 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
2990 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
2991 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
2992 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2993 
2994 	/* Initialize default RTO related parameters.  These parameters can
2995 	 * be modified for with the SCTP_RTOINFO socket option.
2996 	 */
2997 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2998 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
2999 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
3000 
3001 	/* Initialize default association related parameters. These parameters
3002 	 * can be modified with the SCTP_ASSOCINFO socket option.
3003 	 */
3004 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3005 	sp->assocparams.sasoc_number_peer_destinations = 0;
3006 	sp->assocparams.sasoc_peer_rwnd = 0;
3007 	sp->assocparams.sasoc_local_rwnd = 0;
3008 	sp->assocparams.sasoc_cookie_life =
3009 		jiffies_to_msecs(sctp_valid_cookie_life);
3010 
3011 	/* Initialize default event subscriptions. By default, all the
3012 	 * options are off.
3013 	 */
3014 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3015 
3016 	/* Default Peer Address Parameters.  These defaults can
3017 	 * be modified via SCTP_PEER_ADDR_PARAMS
3018 	 */
3019 	sp->hbinterval  = jiffies_to_msecs(sctp_hb_interval);
3020 	sp->pathmaxrxt  = sctp_max_retrans_path;
3021 	sp->pathmtu     = 0; // allow default discovery
3022 	sp->sackdelay   = jiffies_to_msecs(sctp_sack_timeout);
3023 	sp->param_flags = SPP_HB_ENABLE |
3024 	                  SPP_PMTUD_ENABLE |
3025 	                  SPP_SACKDELAY_ENABLE;
3026 
3027 	/* If enabled no SCTP message fragmentation will be performed.
3028 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3029 	 */
3030 	sp->disable_fragments = 0;
3031 
3032 	/* Turn on/off any Nagle-like algorithm.  */
3033 	sp->nodelay           = 1;
3034 
3035 	/* Enable by default. */
3036 	sp->v4mapped          = 1;
3037 
3038 	/* Auto-close idle associations after the configured
3039 	 * number of seconds.  A value of 0 disables this
3040 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3041 	 * for UDP-style sockets only.
3042 	 */
3043 	sp->autoclose         = 0;
3044 
3045 	/* User specified fragmentation limit. */
3046 	sp->user_frag         = 0;
3047 
3048 	sp->adaption_ind = 0;
3049 
3050 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3051 
3052 	/* Control variables for partial data delivery. */
3053 	sp->pd_mode           = 0;
3054 	skb_queue_head_init(&sp->pd_lobby);
3055 
3056 	/* Create a per socket endpoint structure.  Even if we
3057 	 * change the data structure relationships, this may still
3058 	 * be useful for storing pre-connect address information.
3059 	 */
3060 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3061 	if (!ep)
3062 		return -ENOMEM;
3063 
3064 	sp->ep = ep;
3065 	sp->hmac = NULL;
3066 
3067 	SCTP_DBG_OBJCNT_INC(sock);
3068 	return 0;
3069 }
3070 
3071 /* Cleanup any SCTP per socket resources.  */
3072 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3073 {
3074 	struct sctp_endpoint *ep;
3075 
3076 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3077 
3078 	/* Release our hold on the endpoint. */
3079 	ep = sctp_sk(sk)->ep;
3080 	sctp_endpoint_free(ep);
3081 
3082 	return 0;
3083 }
3084 
3085 /* API 4.1.7 shutdown() - TCP Style Syntax
3086  *     int shutdown(int socket, int how);
3087  *
3088  *     sd      - the socket descriptor of the association to be closed.
3089  *     how     - Specifies the type of shutdown.  The  values  are
3090  *               as follows:
3091  *               SHUT_RD
3092  *                     Disables further receive operations. No SCTP
3093  *                     protocol action is taken.
3094  *               SHUT_WR
3095  *                     Disables further send operations, and initiates
3096  *                     the SCTP shutdown sequence.
3097  *               SHUT_RDWR
3098  *                     Disables further send  and  receive  operations
3099  *                     and initiates the SCTP shutdown sequence.
3100  */
3101 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3102 {
3103 	struct sctp_endpoint *ep;
3104 	struct sctp_association *asoc;
3105 
3106 	if (!sctp_style(sk, TCP))
3107 		return;
3108 
3109 	if (how & SEND_SHUTDOWN) {
3110 		ep = sctp_sk(sk)->ep;
3111 		if (!list_empty(&ep->asocs)) {
3112 			asoc = list_entry(ep->asocs.next,
3113 					  struct sctp_association, asocs);
3114 			sctp_primitive_SHUTDOWN(asoc, NULL);
3115 		}
3116 	}
3117 }
3118 
3119 /* 7.2.1 Association Status (SCTP_STATUS)
3120 
3121  * Applications can retrieve current status information about an
3122  * association, including association state, peer receiver window size,
3123  * number of unacked data chunks, and number of data chunks pending
3124  * receipt.  This information is read-only.
3125  */
3126 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3127 				       char __user *optval,
3128 				       int __user *optlen)
3129 {
3130 	struct sctp_status status;
3131 	struct sctp_association *asoc = NULL;
3132 	struct sctp_transport *transport;
3133 	sctp_assoc_t associd;
3134 	int retval = 0;
3135 
3136 	if (len != sizeof(status)) {
3137 		retval = -EINVAL;
3138 		goto out;
3139 	}
3140 
3141 	if (copy_from_user(&status, optval, sizeof(status))) {
3142 		retval = -EFAULT;
3143 		goto out;
3144 	}
3145 
3146 	associd = status.sstat_assoc_id;
3147 	asoc = sctp_id2assoc(sk, associd);
3148 	if (!asoc) {
3149 		retval = -EINVAL;
3150 		goto out;
3151 	}
3152 
3153 	transport = asoc->peer.primary_path;
3154 
3155 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3156 	status.sstat_state = asoc->state;
3157 	status.sstat_rwnd =  asoc->peer.rwnd;
3158 	status.sstat_unackdata = asoc->unack_data;
3159 
3160 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3161 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3162 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3163 	status.sstat_fragmentation_point = asoc->frag_point;
3164 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3165 	memcpy(&status.sstat_primary.spinfo_address,
3166 	       &(transport->ipaddr), sizeof(union sctp_addr));
3167 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3168 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3169 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3170 	status.sstat_primary.spinfo_state = transport->state;
3171 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3172 	status.sstat_primary.spinfo_srtt = transport->srtt;
3173 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3174 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3175 
3176 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3177 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3178 
3179 	if (put_user(len, optlen)) {
3180 		retval = -EFAULT;
3181 		goto out;
3182 	}
3183 
3184 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3185 			  len, status.sstat_state, status.sstat_rwnd,
3186 			  status.sstat_assoc_id);
3187 
3188 	if (copy_to_user(optval, &status, len)) {
3189 		retval = -EFAULT;
3190 		goto out;
3191 	}
3192 
3193 out:
3194 	return (retval);
3195 }
3196 
3197 
3198 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3199  *
3200  * Applications can retrieve information about a specific peer address
3201  * of an association, including its reachability state, congestion
3202  * window, and retransmission timer values.  This information is
3203  * read-only.
3204  */
3205 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3206 					  char __user *optval,
3207 					  int __user *optlen)
3208 {
3209 	struct sctp_paddrinfo pinfo;
3210 	struct sctp_transport *transport;
3211 	int retval = 0;
3212 
3213 	if (len != sizeof(pinfo)) {
3214 		retval = -EINVAL;
3215 		goto out;
3216 	}
3217 
3218 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3219 		retval = -EFAULT;
3220 		goto out;
3221 	}
3222 
3223 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3224 					   pinfo.spinfo_assoc_id);
3225 	if (!transport)
3226 		return -EINVAL;
3227 
3228 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3229 	pinfo.spinfo_state = transport->state;
3230 	pinfo.spinfo_cwnd = transport->cwnd;
3231 	pinfo.spinfo_srtt = transport->srtt;
3232 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3233 	pinfo.spinfo_mtu = transport->pathmtu;
3234 
3235 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3236 		pinfo.spinfo_state = SCTP_ACTIVE;
3237 
3238 	if (put_user(len, optlen)) {
3239 		retval = -EFAULT;
3240 		goto out;
3241 	}
3242 
3243 	if (copy_to_user(optval, &pinfo, len)) {
3244 		retval = -EFAULT;
3245 		goto out;
3246 	}
3247 
3248 out:
3249 	return (retval);
3250 }
3251 
3252 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3253  *
3254  * This option is a on/off flag.  If enabled no SCTP message
3255  * fragmentation will be performed.  Instead if a message being sent
3256  * exceeds the current PMTU size, the message will NOT be sent and
3257  * instead a error will be indicated to the user.
3258  */
3259 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3260 					char __user *optval, int __user *optlen)
3261 {
3262 	int val;
3263 
3264 	if (len < sizeof(int))
3265 		return -EINVAL;
3266 
3267 	len = sizeof(int);
3268 	val = (sctp_sk(sk)->disable_fragments == 1);
3269 	if (put_user(len, optlen))
3270 		return -EFAULT;
3271 	if (copy_to_user(optval, &val, len))
3272 		return -EFAULT;
3273 	return 0;
3274 }
3275 
3276 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3277  *
3278  * This socket option is used to specify various notifications and
3279  * ancillary data the user wishes to receive.
3280  */
3281 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3282 				  int __user *optlen)
3283 {
3284 	if (len != sizeof(struct sctp_event_subscribe))
3285 		return -EINVAL;
3286 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3287 		return -EFAULT;
3288 	return 0;
3289 }
3290 
3291 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3292  *
3293  * This socket option is applicable to the UDP-style socket only.  When
3294  * set it will cause associations that are idle for more than the
3295  * specified number of seconds to automatically close.  An association
3296  * being idle is defined an association that has NOT sent or received
3297  * user data.  The special value of '0' indicates that no automatic
3298  * close of any associations should be performed.  The option expects an
3299  * integer defining the number of seconds of idle time before an
3300  * association is closed.
3301  */
3302 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3303 {
3304 	/* Applicable to UDP-style socket only */
3305 	if (sctp_style(sk, TCP))
3306 		return -EOPNOTSUPP;
3307 	if (len != sizeof(int))
3308 		return -EINVAL;
3309 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3310 		return -EFAULT;
3311 	return 0;
3312 }
3313 
3314 /* Helper routine to branch off an association to a new socket.  */
3315 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3316 				struct socket **sockp)
3317 {
3318 	struct sock *sk = asoc->base.sk;
3319 	struct socket *sock;
3320 	int err = 0;
3321 
3322 	/* An association cannot be branched off from an already peeled-off
3323 	 * socket, nor is this supported for tcp style sockets.
3324 	 */
3325 	if (!sctp_style(sk, UDP))
3326 		return -EINVAL;
3327 
3328 	/* Create a new socket.  */
3329 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3330 	if (err < 0)
3331 		return err;
3332 
3333 	/* Populate the fields of the newsk from the oldsk and migrate the
3334 	 * asoc to the newsk.
3335 	 */
3336 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3337 	*sockp = sock;
3338 
3339 	return err;
3340 }
3341 
3342 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3343 {
3344 	sctp_peeloff_arg_t peeloff;
3345 	struct socket *newsock;
3346 	int retval = 0;
3347 	struct sctp_association *asoc;
3348 
3349 	if (len != sizeof(sctp_peeloff_arg_t))
3350 		return -EINVAL;
3351 	if (copy_from_user(&peeloff, optval, len))
3352 		return -EFAULT;
3353 
3354 	asoc = sctp_id2assoc(sk, peeloff.associd);
3355 	if (!asoc) {
3356 		retval = -EINVAL;
3357 		goto out;
3358 	}
3359 
3360 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3361 
3362 	retval = sctp_do_peeloff(asoc, &newsock);
3363 	if (retval < 0)
3364 		goto out;
3365 
3366 	/* Map the socket to an unused fd that can be returned to the user.  */
3367 	retval = sock_map_fd(newsock);
3368 	if (retval < 0) {
3369 		sock_release(newsock);
3370 		goto out;
3371 	}
3372 
3373 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3374 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3375 
3376 	/* Return the fd mapped to the new socket.  */
3377 	peeloff.sd = retval;
3378 	if (copy_to_user(optval, &peeloff, len))
3379 		retval = -EFAULT;
3380 
3381 out:
3382 	return retval;
3383 }
3384 
3385 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3386  *
3387  * Applications can enable or disable heartbeats for any peer address of
3388  * an association, modify an address's heartbeat interval, force a
3389  * heartbeat to be sent immediately, and adjust the address's maximum
3390  * number of retransmissions sent before an address is considered
3391  * unreachable.  The following structure is used to access and modify an
3392  * address's parameters:
3393  *
3394  *  struct sctp_paddrparams {
3395  *     sctp_assoc_t            spp_assoc_id;
3396  *     struct sockaddr_storage spp_address;
3397  *     uint32_t                spp_hbinterval;
3398  *     uint16_t                spp_pathmaxrxt;
3399  *     uint32_t                spp_pathmtu;
3400  *     uint32_t                spp_sackdelay;
3401  *     uint32_t                spp_flags;
3402  * };
3403  *
3404  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3405  *                     application, and identifies the association for
3406  *                     this query.
3407  *   spp_address     - This specifies which address is of interest.
3408  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3409  *                     in milliseconds.  If a  value of zero
3410  *                     is present in this field then no changes are to
3411  *                     be made to this parameter.
3412  *   spp_pathmaxrxt  - This contains the maximum number of
3413  *                     retransmissions before this address shall be
3414  *                     considered unreachable. If a  value of zero
3415  *                     is present in this field then no changes are to
3416  *                     be made to this parameter.
3417  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3418  *                     specified here will be the "fixed" path mtu.
3419  *                     Note that if the spp_address field is empty
3420  *                     then all associations on this address will
3421  *                     have this fixed path mtu set upon them.
3422  *
3423  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3424  *                     the number of milliseconds that sacks will be delayed
3425  *                     for. This value will apply to all addresses of an
3426  *                     association if the spp_address field is empty. Note
3427  *                     also, that if delayed sack is enabled and this
3428  *                     value is set to 0, no change is made to the last
3429  *                     recorded delayed sack timer value.
3430  *
3431  *   spp_flags       - These flags are used to control various features
3432  *                     on an association. The flag field may contain
3433  *                     zero or more of the following options.
3434  *
3435  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3436  *                     specified address. Note that if the address
3437  *                     field is empty all addresses for the association
3438  *                     have heartbeats enabled upon them.
3439  *
3440  *                     SPP_HB_DISABLE - Disable heartbeats on the
3441  *                     speicifed address. Note that if the address
3442  *                     field is empty all addresses for the association
3443  *                     will have their heartbeats disabled. Note also
3444  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3445  *                     mutually exclusive, only one of these two should
3446  *                     be specified. Enabling both fields will have
3447  *                     undetermined results.
3448  *
3449  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3450  *                     to be made immediately.
3451  *
3452  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3453  *                     discovery upon the specified address. Note that
3454  *                     if the address feild is empty then all addresses
3455  *                     on the association are effected.
3456  *
3457  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3458  *                     discovery upon the specified address. Note that
3459  *                     if the address feild is empty then all addresses
3460  *                     on the association are effected. Not also that
3461  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3462  *                     exclusive. Enabling both will have undetermined
3463  *                     results.
3464  *
3465  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3466  *                     on delayed sack. The time specified in spp_sackdelay
3467  *                     is used to specify the sack delay for this address. Note
3468  *                     that if spp_address is empty then all addresses will
3469  *                     enable delayed sack and take on the sack delay
3470  *                     value specified in spp_sackdelay.
3471  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3472  *                     off delayed sack. If the spp_address field is blank then
3473  *                     delayed sack is disabled for the entire association. Note
3474  *                     also that this field is mutually exclusive to
3475  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3476  *                     results.
3477  */
3478 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3479 					    char __user *optval, int __user *optlen)
3480 {
3481 	struct sctp_paddrparams  params;
3482 	struct sctp_transport   *trans = NULL;
3483 	struct sctp_association *asoc = NULL;
3484 	struct sctp_sock        *sp = sctp_sk(sk);
3485 
3486 	if (len != sizeof(struct sctp_paddrparams))
3487 		return -EINVAL;
3488 
3489 	if (copy_from_user(&params, optval, len))
3490 		return -EFAULT;
3491 
3492 	/* If an address other than INADDR_ANY is specified, and
3493 	 * no transport is found, then the request is invalid.
3494 	 */
3495 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3496 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3497 					       params.spp_assoc_id);
3498 		if (!trans) {
3499 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3500 			return -EINVAL;
3501 		}
3502 	}
3503 
3504 	/* Get association, if assoc_id != 0 and the socket is a one
3505 	 * to many style socket, and an association was not found, then
3506 	 * the id was invalid.
3507 	 */
3508 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3509 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3510 		SCTP_DEBUG_PRINTK("Failed no association\n");
3511 		return -EINVAL;
3512 	}
3513 
3514 	if (trans) {
3515 		/* Fetch transport values. */
3516 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3517 		params.spp_pathmtu    = trans->pathmtu;
3518 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3519 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3520 
3521 		/*draft-11 doesn't say what to return in spp_flags*/
3522 		params.spp_flags      = trans->param_flags;
3523 	} else if (asoc) {
3524 		/* Fetch association values. */
3525 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3526 		params.spp_pathmtu    = asoc->pathmtu;
3527 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3528 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3529 
3530 		/*draft-11 doesn't say what to return in spp_flags*/
3531 		params.spp_flags      = asoc->param_flags;
3532 	} else {
3533 		/* Fetch socket values. */
3534 		params.spp_hbinterval = sp->hbinterval;
3535 		params.spp_pathmtu    = sp->pathmtu;
3536 		params.spp_sackdelay  = sp->sackdelay;
3537 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3538 
3539 		/*draft-11 doesn't say what to return in spp_flags*/
3540 		params.spp_flags      = sp->param_flags;
3541 	}
3542 
3543 	if (copy_to_user(optval, &params, len))
3544 		return -EFAULT;
3545 
3546 	if (put_user(len, optlen))
3547 		return -EFAULT;
3548 
3549 	return 0;
3550 }
3551 
3552 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3553  *
3554  *   This options will get or set the delayed ack timer.  The time is set
3555  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3556  *   endpoints default delayed ack timer value.  If the assoc_id field is
3557  *   non-zero, then the set or get effects the specified association.
3558  *
3559  *   struct sctp_assoc_value {
3560  *       sctp_assoc_t            assoc_id;
3561  *       uint32_t                assoc_value;
3562  *   };
3563  *
3564  *     assoc_id    - This parameter, indicates which association the
3565  *                   user is preforming an action upon. Note that if
3566  *                   this field's value is zero then the endpoints
3567  *                   default value is changed (effecting future
3568  *                   associations only).
3569  *
3570  *     assoc_value - This parameter contains the number of milliseconds
3571  *                   that the user is requesting the delayed ACK timer
3572  *                   be set to. Note that this value is defined in
3573  *                   the standard to be between 200 and 500 milliseconds.
3574  *
3575  *                   Note: a value of zero will leave the value alone,
3576  *                   but disable SACK delay. A non-zero value will also
3577  *                   enable SACK delay.
3578  */
3579 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3580 					    char __user *optval,
3581 					    int __user *optlen)
3582 {
3583 	struct sctp_assoc_value  params;
3584 	struct sctp_association *asoc = NULL;
3585 	struct sctp_sock        *sp = sctp_sk(sk);
3586 
3587 	if (len != sizeof(struct sctp_assoc_value))
3588 		return - EINVAL;
3589 
3590 	if (copy_from_user(&params, optval, len))
3591 		return -EFAULT;
3592 
3593 	/* Get association, if assoc_id != 0 and the socket is a one
3594 	 * to many style socket, and an association was not found, then
3595 	 * the id was invalid.
3596  	 */
3597 	asoc = sctp_id2assoc(sk, params.assoc_id);
3598 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3599 		return -EINVAL;
3600 
3601 	if (asoc) {
3602 		/* Fetch association values. */
3603 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3604 			params.assoc_value = jiffies_to_msecs(
3605 				asoc->sackdelay);
3606 		else
3607 			params.assoc_value = 0;
3608 	} else {
3609 		/* Fetch socket values. */
3610 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3611 			params.assoc_value  = sp->sackdelay;
3612 		else
3613 			params.assoc_value  = 0;
3614 	}
3615 
3616 	if (copy_to_user(optval, &params, len))
3617 		return -EFAULT;
3618 
3619 	if (put_user(len, optlen))
3620 		return -EFAULT;
3621 
3622 	return 0;
3623 }
3624 
3625 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3626  *
3627  * Applications can specify protocol parameters for the default association
3628  * initialization.  The option name argument to setsockopt() and getsockopt()
3629  * is SCTP_INITMSG.
3630  *
3631  * Setting initialization parameters is effective only on an unconnected
3632  * socket (for UDP-style sockets only future associations are effected
3633  * by the change).  With TCP-style sockets, this option is inherited by
3634  * sockets derived from a listener socket.
3635  */
3636 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3637 {
3638 	if (len != sizeof(struct sctp_initmsg))
3639 		return -EINVAL;
3640 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3641 		return -EFAULT;
3642 	return 0;
3643 }
3644 
3645 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3646 					      char __user *optval,
3647 					      int __user *optlen)
3648 {
3649 	sctp_assoc_t id;
3650 	struct sctp_association *asoc;
3651 	struct list_head *pos;
3652 	int cnt = 0;
3653 
3654 	if (len != sizeof(sctp_assoc_t))
3655 		return -EINVAL;
3656 
3657 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3658 		return -EFAULT;
3659 
3660 	/* For UDP-style sockets, id specifies the association to query.  */
3661 	asoc = sctp_id2assoc(sk, id);
3662 	if (!asoc)
3663 		return -EINVAL;
3664 
3665 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3666 		cnt ++;
3667 	}
3668 
3669 	return cnt;
3670 }
3671 
3672 /*
3673  * Old API for getting list of peer addresses. Does not work for 32-bit
3674  * programs running on a 64-bit kernel
3675  */
3676 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3677 					  char __user *optval,
3678 					  int __user *optlen)
3679 {
3680 	struct sctp_association *asoc;
3681 	struct list_head *pos;
3682 	int cnt = 0;
3683 	struct sctp_getaddrs_old getaddrs;
3684 	struct sctp_transport *from;
3685 	void __user *to;
3686 	union sctp_addr temp;
3687 	struct sctp_sock *sp = sctp_sk(sk);
3688 	int addrlen;
3689 
3690 	if (len != sizeof(struct sctp_getaddrs_old))
3691 		return -EINVAL;
3692 
3693 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3694 		return -EFAULT;
3695 
3696 	if (getaddrs.addr_num <= 0) return -EINVAL;
3697 
3698 	/* For UDP-style sockets, id specifies the association to query.  */
3699 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3700 	if (!asoc)
3701 		return -EINVAL;
3702 
3703 	to = (void __user *)getaddrs.addrs;
3704 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3705 		from = list_entry(pos, struct sctp_transport, transports);
3706 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3707 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3708 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3709 		temp.v4.sin_port = htons(temp.v4.sin_port);
3710 		if (copy_to_user(to, &temp, addrlen))
3711 			return -EFAULT;
3712 		to += addrlen ;
3713 		cnt ++;
3714 		if (cnt >= getaddrs.addr_num) break;
3715 	}
3716 	getaddrs.addr_num = cnt;
3717 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3718 		return -EFAULT;
3719 
3720 	return 0;
3721 }
3722 
3723 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3724 				      char __user *optval, int __user *optlen)
3725 {
3726 	struct sctp_association *asoc;
3727 	struct list_head *pos;
3728 	int cnt = 0;
3729 	struct sctp_getaddrs getaddrs;
3730 	struct sctp_transport *from;
3731 	void __user *to;
3732 	union sctp_addr temp;
3733 	struct sctp_sock *sp = sctp_sk(sk);
3734 	int addrlen;
3735 	size_t space_left;
3736 	int bytes_copied;
3737 
3738 	if (len < sizeof(struct sctp_getaddrs))
3739 		return -EINVAL;
3740 
3741 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3742 		return -EFAULT;
3743 
3744 	/* For UDP-style sockets, id specifies the association to query.  */
3745 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3746 	if (!asoc)
3747 		return -EINVAL;
3748 
3749 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3750 	space_left = len - sizeof(struct sctp_getaddrs) -
3751 			offsetof(struct sctp_getaddrs,addrs);
3752 
3753 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3754 		from = list_entry(pos, struct sctp_transport, transports);
3755 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3756 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3757 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3758 		if(space_left < addrlen)
3759 			return -ENOMEM;
3760 		temp.v4.sin_port = htons(temp.v4.sin_port);
3761 		if (copy_to_user(to, &temp, addrlen))
3762 			return -EFAULT;
3763 		to += addrlen;
3764 		cnt++;
3765 		space_left -= addrlen;
3766 	}
3767 
3768 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3769 		return -EFAULT;
3770 	bytes_copied = ((char __user *)to) - optval;
3771 	if (put_user(bytes_copied, optlen))
3772 		return -EFAULT;
3773 
3774 	return 0;
3775 }
3776 
3777 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3778 					       char __user *optval,
3779 					       int __user *optlen)
3780 {
3781 	sctp_assoc_t id;
3782 	struct sctp_bind_addr *bp;
3783 	struct sctp_association *asoc;
3784 	struct list_head *pos;
3785 	struct sctp_sockaddr_entry *addr;
3786 	rwlock_t *addr_lock;
3787 	unsigned long flags;
3788 	int cnt = 0;
3789 
3790 	if (len != sizeof(sctp_assoc_t))
3791 		return -EINVAL;
3792 
3793 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3794 		return -EFAULT;
3795 
3796 	/*
3797 	 *  For UDP-style sockets, id specifies the association to query.
3798 	 *  If the id field is set to the value '0' then the locally bound
3799 	 *  addresses are returned without regard to any particular
3800 	 *  association.
3801 	 */
3802 	if (0 == id) {
3803 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3804 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3805 	} else {
3806 		asoc = sctp_id2assoc(sk, id);
3807 		if (!asoc)
3808 			return -EINVAL;
3809 		bp = &asoc->base.bind_addr;
3810 		addr_lock = &asoc->base.addr_lock;
3811 	}
3812 
3813 	sctp_read_lock(addr_lock);
3814 
3815 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3816 	 * addresses from the global local address list.
3817 	 */
3818 	if (sctp_list_single_entry(&bp->address_list)) {
3819 		addr = list_entry(bp->address_list.next,
3820 				  struct sctp_sockaddr_entry, list);
3821 		if (sctp_is_any(&addr->a)) {
3822 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3823 			list_for_each(pos, &sctp_local_addr_list) {
3824 				addr = list_entry(pos,
3825 						  struct sctp_sockaddr_entry,
3826 						  list);
3827 				if ((PF_INET == sk->sk_family) &&
3828 				    (AF_INET6 == addr->a.sa.sa_family))
3829 					continue;
3830 				cnt++;
3831 			}
3832 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3833 						    flags);
3834 		} else {
3835 			cnt = 1;
3836 		}
3837 		goto done;
3838 	}
3839 
3840 	list_for_each(pos, &bp->address_list) {
3841 		cnt ++;
3842 	}
3843 
3844 done:
3845 	sctp_read_unlock(addr_lock);
3846 	return cnt;
3847 }
3848 
3849 /* Helper function that copies local addresses to user and returns the number
3850  * of addresses copied.
3851  */
3852 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3853 					void __user *to)
3854 {
3855 	struct list_head *pos;
3856 	struct sctp_sockaddr_entry *addr;
3857 	unsigned long flags;
3858 	union sctp_addr temp;
3859 	int cnt = 0;
3860 	int addrlen;
3861 
3862 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3863 	list_for_each(pos, &sctp_local_addr_list) {
3864 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3865 		if ((PF_INET == sk->sk_family) &&
3866 		    (AF_INET6 == addr->a.sa.sa_family))
3867 			continue;
3868 		memcpy(&temp, &addr->a, sizeof(temp));
3869 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3870 								&temp);
3871 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3872 		temp.v4.sin_port = htons(port);
3873 		if (copy_to_user(to, &temp, addrlen)) {
3874 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3875 						    flags);
3876 			return -EFAULT;
3877 		}
3878 		to += addrlen;
3879 		cnt ++;
3880 		if (cnt >= max_addrs) break;
3881 	}
3882 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3883 
3884 	return cnt;
3885 }
3886 
3887 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3888 				    void __user **to, size_t space_left)
3889 {
3890 	struct list_head *pos;
3891 	struct sctp_sockaddr_entry *addr;
3892 	unsigned long flags;
3893 	union sctp_addr temp;
3894 	int cnt = 0;
3895 	int addrlen;
3896 
3897 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3898 	list_for_each(pos, &sctp_local_addr_list) {
3899 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3900 		if ((PF_INET == sk->sk_family) &&
3901 		    (AF_INET6 == addr->a.sa.sa_family))
3902 			continue;
3903 		memcpy(&temp, &addr->a, sizeof(temp));
3904 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3905 								&temp);
3906 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3907 		if(space_left<addrlen)
3908 			return -ENOMEM;
3909 		temp.v4.sin_port = htons(port);
3910 		if (copy_to_user(*to, &temp, addrlen)) {
3911 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3912 						    flags);
3913 			return -EFAULT;
3914 		}
3915 		*to += addrlen;
3916 		cnt ++;
3917 		space_left -= addrlen;
3918 	}
3919 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3920 
3921 	return cnt;
3922 }
3923 
3924 /* Old API for getting list of local addresses. Does not work for 32-bit
3925  * programs running on a 64-bit kernel
3926  */
3927 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3928 					   char __user *optval, int __user *optlen)
3929 {
3930 	struct sctp_bind_addr *bp;
3931 	struct sctp_association *asoc;
3932 	struct list_head *pos;
3933 	int cnt = 0;
3934 	struct sctp_getaddrs_old getaddrs;
3935 	struct sctp_sockaddr_entry *addr;
3936 	void __user *to;
3937 	union sctp_addr temp;
3938 	struct sctp_sock *sp = sctp_sk(sk);
3939 	int addrlen;
3940 	rwlock_t *addr_lock;
3941 	int err = 0;
3942 
3943 	if (len != sizeof(struct sctp_getaddrs_old))
3944 		return -EINVAL;
3945 
3946 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3947 		return -EFAULT;
3948 
3949 	if (getaddrs.addr_num <= 0) return -EINVAL;
3950 	/*
3951 	 *  For UDP-style sockets, id specifies the association to query.
3952 	 *  If the id field is set to the value '0' then the locally bound
3953 	 *  addresses are returned without regard to any particular
3954 	 *  association.
3955 	 */
3956 	if (0 == getaddrs.assoc_id) {
3957 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3958 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3959 	} else {
3960 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3961 		if (!asoc)
3962 			return -EINVAL;
3963 		bp = &asoc->base.bind_addr;
3964 		addr_lock = &asoc->base.addr_lock;
3965 	}
3966 
3967 	to = getaddrs.addrs;
3968 
3969 	sctp_read_lock(addr_lock);
3970 
3971 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3972 	 * addresses from the global local address list.
3973 	 */
3974 	if (sctp_list_single_entry(&bp->address_list)) {
3975 		addr = list_entry(bp->address_list.next,
3976 				  struct sctp_sockaddr_entry, list);
3977 		if (sctp_is_any(&addr->a)) {
3978 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3979 							   getaddrs.addr_num,
3980 							   to);
3981 			if (cnt < 0) {
3982 				err = cnt;
3983 				goto unlock;
3984 			}
3985 			goto copy_getaddrs;
3986 		}
3987 	}
3988 
3989 	list_for_each(pos, &bp->address_list) {
3990 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3991 		memcpy(&temp, &addr->a, sizeof(temp));
3992 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3993 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3994 		temp.v4.sin_port = htons(temp.v4.sin_port);
3995 		if (copy_to_user(to, &temp, addrlen)) {
3996 			err = -EFAULT;
3997 			goto unlock;
3998 		}
3999 		to += addrlen;
4000 		cnt ++;
4001 		if (cnt >= getaddrs.addr_num) break;
4002 	}
4003 
4004 copy_getaddrs:
4005 	getaddrs.addr_num = cnt;
4006 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4007 		err = -EFAULT;
4008 
4009 unlock:
4010 	sctp_read_unlock(addr_lock);
4011 	return err;
4012 }
4013 
4014 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4015 				       char __user *optval, int __user *optlen)
4016 {
4017 	struct sctp_bind_addr *bp;
4018 	struct sctp_association *asoc;
4019 	struct list_head *pos;
4020 	int cnt = 0;
4021 	struct sctp_getaddrs getaddrs;
4022 	struct sctp_sockaddr_entry *addr;
4023 	void __user *to;
4024 	union sctp_addr temp;
4025 	struct sctp_sock *sp = sctp_sk(sk);
4026 	int addrlen;
4027 	rwlock_t *addr_lock;
4028 	int err = 0;
4029 	size_t space_left;
4030 	int bytes_copied;
4031 
4032 	if (len <= sizeof(struct sctp_getaddrs))
4033 		return -EINVAL;
4034 
4035 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4036 		return -EFAULT;
4037 
4038 	/*
4039 	 *  For UDP-style sockets, id specifies the association to query.
4040 	 *  If the id field is set to the value '0' then the locally bound
4041 	 *  addresses are returned without regard to any particular
4042 	 *  association.
4043 	 */
4044 	if (0 == getaddrs.assoc_id) {
4045 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4046 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4047 	} else {
4048 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4049 		if (!asoc)
4050 			return -EINVAL;
4051 		bp = &asoc->base.bind_addr;
4052 		addr_lock = &asoc->base.addr_lock;
4053 	}
4054 
4055 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4056 	space_left = len - sizeof(struct sctp_getaddrs) -
4057 			 offsetof(struct sctp_getaddrs,addrs);
4058 
4059 	sctp_read_lock(addr_lock);
4060 
4061 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4062 	 * addresses from the global local address list.
4063 	 */
4064 	if (sctp_list_single_entry(&bp->address_list)) {
4065 		addr = list_entry(bp->address_list.next,
4066 				  struct sctp_sockaddr_entry, list);
4067 		if (sctp_is_any(&addr->a)) {
4068 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4069 						       &to, space_left);
4070 			if (cnt < 0) {
4071 				err = cnt;
4072 				goto unlock;
4073 			}
4074 			goto copy_getaddrs;
4075 		}
4076 	}
4077 
4078 	list_for_each(pos, &bp->address_list) {
4079 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4080 		memcpy(&temp, &addr->a, sizeof(temp));
4081 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4082 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4083 		if(space_left < addrlen)
4084 			return -ENOMEM; /*fixme: right error?*/
4085 		temp.v4.sin_port = htons(temp.v4.sin_port);
4086 		if (copy_to_user(to, &temp, addrlen)) {
4087 			err = -EFAULT;
4088 			goto unlock;
4089 		}
4090 		to += addrlen;
4091 		cnt ++;
4092 		space_left -= addrlen;
4093 	}
4094 
4095 copy_getaddrs:
4096 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4097 		return -EFAULT;
4098 	bytes_copied = ((char __user *)to) - optval;
4099 	if (put_user(bytes_copied, optlen))
4100 		return -EFAULT;
4101 
4102 unlock:
4103 	sctp_read_unlock(addr_lock);
4104 	return err;
4105 }
4106 
4107 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4108  *
4109  * Requests that the local SCTP stack use the enclosed peer address as
4110  * the association primary.  The enclosed address must be one of the
4111  * association peer's addresses.
4112  */
4113 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4114 					char __user *optval, int __user *optlen)
4115 {
4116 	struct sctp_prim prim;
4117 	struct sctp_association *asoc;
4118 	struct sctp_sock *sp = sctp_sk(sk);
4119 
4120 	if (len != sizeof(struct sctp_prim))
4121 		return -EINVAL;
4122 
4123 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4124 		return -EFAULT;
4125 
4126 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4127 	if (!asoc)
4128 		return -EINVAL;
4129 
4130 	if (!asoc->peer.primary_path)
4131 		return -ENOTCONN;
4132 
4133 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4134 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4135 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4136 	       sizeof(union sctp_addr));
4137 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4138 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4139 
4140 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4141 			(union sctp_addr *)&prim.ssp_addr);
4142 
4143 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4144 		return -EFAULT;
4145 
4146 	return 0;
4147 }
4148 
4149 /*
4150  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4151  *
4152  * Requests that the local endpoint set the specified Adaption Layer
4153  * Indication parameter for all future INIT and INIT-ACK exchanges.
4154  */
4155 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4156 				  char __user *optval, int __user *optlen)
4157 {
4158 	struct sctp_setadaption adaption;
4159 
4160 	if (len != sizeof(struct sctp_setadaption))
4161 		return -EINVAL;
4162 
4163 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4164 	if (copy_to_user(optval, &adaption, len))
4165 		return -EFAULT;
4166 
4167 	return 0;
4168 }
4169 
4170 /*
4171  *
4172  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4173  *
4174  *   Applications that wish to use the sendto() system call may wish to
4175  *   specify a default set of parameters that would normally be supplied
4176  *   through the inclusion of ancillary data.  This socket option allows
4177  *   such an application to set the default sctp_sndrcvinfo structure.
4178 
4179 
4180  *   The application that wishes to use this socket option simply passes
4181  *   in to this call the sctp_sndrcvinfo structure defined in Section
4182  *   5.2.2) The input parameters accepted by this call include
4183  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4184  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4185  *   to this call if the caller is using the UDP model.
4186  *
4187  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4188  */
4189 static int sctp_getsockopt_default_send_param(struct sock *sk,
4190 					int len, char __user *optval,
4191 					int __user *optlen)
4192 {
4193 	struct sctp_sndrcvinfo info;
4194 	struct sctp_association *asoc;
4195 	struct sctp_sock *sp = sctp_sk(sk);
4196 
4197 	if (len != sizeof(struct sctp_sndrcvinfo))
4198 		return -EINVAL;
4199 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4200 		return -EFAULT;
4201 
4202 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4203 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4204 		return -EINVAL;
4205 
4206 	if (asoc) {
4207 		info.sinfo_stream = asoc->default_stream;
4208 		info.sinfo_flags = asoc->default_flags;
4209 		info.sinfo_ppid = asoc->default_ppid;
4210 		info.sinfo_context = asoc->default_context;
4211 		info.sinfo_timetolive = asoc->default_timetolive;
4212 	} else {
4213 		info.sinfo_stream = sp->default_stream;
4214 		info.sinfo_flags = sp->default_flags;
4215 		info.sinfo_ppid = sp->default_ppid;
4216 		info.sinfo_context = sp->default_context;
4217 		info.sinfo_timetolive = sp->default_timetolive;
4218 	}
4219 
4220 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4221 		return -EFAULT;
4222 
4223 	return 0;
4224 }
4225 
4226 /*
4227  *
4228  * 7.1.5 SCTP_NODELAY
4229  *
4230  * Turn on/off any Nagle-like algorithm.  This means that packets are
4231  * generally sent as soon as possible and no unnecessary delays are
4232  * introduced, at the cost of more packets in the network.  Expects an
4233  * integer boolean flag.
4234  */
4235 
4236 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4237 				   char __user *optval, int __user *optlen)
4238 {
4239 	int val;
4240 
4241 	if (len < sizeof(int))
4242 		return -EINVAL;
4243 
4244 	len = sizeof(int);
4245 	val = (sctp_sk(sk)->nodelay == 1);
4246 	if (put_user(len, optlen))
4247 		return -EFAULT;
4248 	if (copy_to_user(optval, &val, len))
4249 		return -EFAULT;
4250 	return 0;
4251 }
4252 
4253 /*
4254  *
4255  * 7.1.1 SCTP_RTOINFO
4256  *
4257  * The protocol parameters used to initialize and bound retransmission
4258  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4259  * and modify these parameters.
4260  * All parameters are time values, in milliseconds.  A value of 0, when
4261  * modifying the parameters, indicates that the current value should not
4262  * be changed.
4263  *
4264  */
4265 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4266 				char __user *optval,
4267 				int __user *optlen) {
4268 	struct sctp_rtoinfo rtoinfo;
4269 	struct sctp_association *asoc;
4270 
4271 	if (len != sizeof (struct sctp_rtoinfo))
4272 		return -EINVAL;
4273 
4274 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4275 		return -EFAULT;
4276 
4277 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4278 
4279 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4280 		return -EINVAL;
4281 
4282 	/* Values corresponding to the specific association. */
4283 	if (asoc) {
4284 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4285 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4286 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4287 	} else {
4288 		/* Values corresponding to the endpoint. */
4289 		struct sctp_sock *sp = sctp_sk(sk);
4290 
4291 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4292 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4293 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4294 	}
4295 
4296 	if (put_user(len, optlen))
4297 		return -EFAULT;
4298 
4299 	if (copy_to_user(optval, &rtoinfo, len))
4300 		return -EFAULT;
4301 
4302 	return 0;
4303 }
4304 
4305 /*
4306  *
4307  * 7.1.2 SCTP_ASSOCINFO
4308  *
4309  * This option is used to tune the the maximum retransmission attempts
4310  * of the association.
4311  * Returns an error if the new association retransmission value is
4312  * greater than the sum of the retransmission value  of the peer.
4313  * See [SCTP] for more information.
4314  *
4315  */
4316 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4317 				     char __user *optval,
4318 				     int __user *optlen)
4319 {
4320 
4321 	struct sctp_assocparams assocparams;
4322 	struct sctp_association *asoc;
4323 	struct list_head *pos;
4324 	int cnt = 0;
4325 
4326 	if (len != sizeof (struct sctp_assocparams))
4327 		return -EINVAL;
4328 
4329 	if (copy_from_user(&assocparams, optval,
4330 			sizeof (struct sctp_assocparams)))
4331 		return -EFAULT;
4332 
4333 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4334 
4335 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4336 		return -EINVAL;
4337 
4338 	/* Values correspoinding to the specific association */
4339 	if (asoc) {
4340 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4341 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4342 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4343 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4344 						* 1000) +
4345 						(asoc->cookie_life.tv_usec
4346 						/ 1000);
4347 
4348 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4349 			cnt ++;
4350 		}
4351 
4352 		assocparams.sasoc_number_peer_destinations = cnt;
4353 	} else {
4354 		/* Values corresponding to the endpoint */
4355 		struct sctp_sock *sp = sctp_sk(sk);
4356 
4357 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4358 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4359 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4360 		assocparams.sasoc_cookie_life =
4361 					sp->assocparams.sasoc_cookie_life;
4362 		assocparams.sasoc_number_peer_destinations =
4363 					sp->assocparams.
4364 					sasoc_number_peer_destinations;
4365 	}
4366 
4367 	if (put_user(len, optlen))
4368 		return -EFAULT;
4369 
4370 	if (copy_to_user(optval, &assocparams, len))
4371 		return -EFAULT;
4372 
4373 	return 0;
4374 }
4375 
4376 /*
4377  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4378  *
4379  * This socket option is a boolean flag which turns on or off mapped V4
4380  * addresses.  If this option is turned on and the socket is type
4381  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4382  * If this option is turned off, then no mapping will be done of V4
4383  * addresses and a user will receive both PF_INET6 and PF_INET type
4384  * addresses on the socket.
4385  */
4386 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4387 				    char __user *optval, int __user *optlen)
4388 {
4389 	int val;
4390 	struct sctp_sock *sp = sctp_sk(sk);
4391 
4392 	if (len < sizeof(int))
4393 		return -EINVAL;
4394 
4395 	len = sizeof(int);
4396 	val = sp->v4mapped;
4397 	if (put_user(len, optlen))
4398 		return -EFAULT;
4399 	if (copy_to_user(optval, &val, len))
4400 		return -EFAULT;
4401 
4402 	return 0;
4403 }
4404 
4405 /*
4406  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4407  *
4408  * This socket option specifies the maximum size to put in any outgoing
4409  * SCTP chunk.  If a message is larger than this size it will be
4410  * fragmented by SCTP into the specified size.  Note that the underlying
4411  * SCTP implementation may fragment into smaller sized chunks when the
4412  * PMTU of the underlying association is smaller than the value set by
4413  * the user.
4414  */
4415 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4416 				  char __user *optval, int __user *optlen)
4417 {
4418 	int val;
4419 
4420 	if (len < sizeof(int))
4421 		return -EINVAL;
4422 
4423 	len = sizeof(int);
4424 
4425 	val = sctp_sk(sk)->user_frag;
4426 	if (put_user(len, optlen))
4427 		return -EFAULT;
4428 	if (copy_to_user(optval, &val, len))
4429 		return -EFAULT;
4430 
4431 	return 0;
4432 }
4433 
4434 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4435 				char __user *optval, int __user *optlen)
4436 {
4437 	int retval = 0;
4438 	int len;
4439 
4440 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4441 			  sk, optname);
4442 
4443 	/* I can hardly begin to describe how wrong this is.  This is
4444 	 * so broken as to be worse than useless.  The API draft
4445 	 * REALLY is NOT helpful here...  I am not convinced that the
4446 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4447 	 * are at all well-founded.
4448 	 */
4449 	if (level != SOL_SCTP) {
4450 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4451 
4452 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4453 		return retval;
4454 	}
4455 
4456 	if (get_user(len, optlen))
4457 		return -EFAULT;
4458 
4459 	sctp_lock_sock(sk);
4460 
4461 	switch (optname) {
4462 	case SCTP_STATUS:
4463 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4464 		break;
4465 	case SCTP_DISABLE_FRAGMENTS:
4466 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4467 							   optlen);
4468 		break;
4469 	case SCTP_EVENTS:
4470 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4471 		break;
4472 	case SCTP_AUTOCLOSE:
4473 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4474 		break;
4475 	case SCTP_SOCKOPT_PEELOFF:
4476 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4477 		break;
4478 	case SCTP_PEER_ADDR_PARAMS:
4479 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4480 							  optlen);
4481 		break;
4482 	case SCTP_DELAYED_ACK_TIME:
4483 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4484 							  optlen);
4485 		break;
4486 	case SCTP_INITMSG:
4487 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4488 		break;
4489 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4490 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4491 							    optlen);
4492 		break;
4493 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4494 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4495 							     optlen);
4496 		break;
4497 	case SCTP_GET_PEER_ADDRS_OLD:
4498 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4499 							optlen);
4500 		break;
4501 	case SCTP_GET_LOCAL_ADDRS_OLD:
4502 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4503 							 optlen);
4504 		break;
4505 	case SCTP_GET_PEER_ADDRS:
4506 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4507 						    optlen);
4508 		break;
4509 	case SCTP_GET_LOCAL_ADDRS:
4510 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4511 						     optlen);
4512 		break;
4513 	case SCTP_DEFAULT_SEND_PARAM:
4514 		retval = sctp_getsockopt_default_send_param(sk, len,
4515 							    optval, optlen);
4516 		break;
4517 	case SCTP_PRIMARY_ADDR:
4518 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4519 		break;
4520 	case SCTP_NODELAY:
4521 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4522 		break;
4523 	case SCTP_RTOINFO:
4524 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4525 		break;
4526 	case SCTP_ASSOCINFO:
4527 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4528 		break;
4529 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4530 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4531 		break;
4532 	case SCTP_MAXSEG:
4533 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4534 		break;
4535 	case SCTP_GET_PEER_ADDR_INFO:
4536 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4537 							optlen);
4538 		break;
4539 	case SCTP_ADAPTION_LAYER:
4540 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4541 							optlen);
4542 		break;
4543 	default:
4544 		retval = -ENOPROTOOPT;
4545 		break;
4546 	};
4547 
4548 	sctp_release_sock(sk);
4549 	return retval;
4550 }
4551 
4552 static void sctp_hash(struct sock *sk)
4553 {
4554 	/* STUB */
4555 }
4556 
4557 static void sctp_unhash(struct sock *sk)
4558 {
4559 	/* STUB */
4560 }
4561 
4562 /* Check if port is acceptable.  Possibly find first available port.
4563  *
4564  * The port hash table (contained in the 'global' SCTP protocol storage
4565  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4566  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4567  * list (the list number is the port number hashed out, so as you
4568  * would expect from a hash function, all the ports in a given list have
4569  * such a number that hashes out to the same list number; you were
4570  * expecting that, right?); so each list has a set of ports, with a
4571  * link to the socket (struct sock) that uses it, the port number and
4572  * a fastreuse flag (FIXME: NPI ipg).
4573  */
4574 static struct sctp_bind_bucket *sctp_bucket_create(
4575 	struct sctp_bind_hashbucket *head, unsigned short snum);
4576 
4577 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4578 {
4579 	struct sctp_bind_hashbucket *head; /* hash list */
4580 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4581 	unsigned short snum;
4582 	int ret;
4583 
4584 	/* NOTE:  Remember to put this back to net order. */
4585 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
4586 	snum = addr->v4.sin_port;
4587 
4588 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4589 	sctp_local_bh_disable();
4590 
4591 	if (snum == 0) {
4592 		/* Search for an available port.
4593 		 *
4594 		 * 'sctp_port_rover' was the last port assigned, so
4595 		 * we start to search from 'sctp_port_rover +
4596 		 * 1'. What we do is first check if port 'rover' is
4597 		 * already in the hash table; if not, we use that; if
4598 		 * it is, we try next.
4599 		 */
4600 		int low = sysctl_local_port_range[0];
4601 		int high = sysctl_local_port_range[1];
4602 		int remaining = (high - low) + 1;
4603 		int rover;
4604 		int index;
4605 
4606 		sctp_spin_lock(&sctp_port_alloc_lock);
4607 		rover = sctp_port_rover;
4608 		do {
4609 			rover++;
4610 			if ((rover < low) || (rover > high))
4611 				rover = low;
4612 			index = sctp_phashfn(rover);
4613 			head = &sctp_port_hashtable[index];
4614 			sctp_spin_lock(&head->lock);
4615 			for (pp = head->chain; pp; pp = pp->next)
4616 				if (pp->port == rover)
4617 					goto next;
4618 			break;
4619 		next:
4620 			sctp_spin_unlock(&head->lock);
4621 		} while (--remaining > 0);
4622 		sctp_port_rover = rover;
4623 		sctp_spin_unlock(&sctp_port_alloc_lock);
4624 
4625 		/* Exhausted local port range during search? */
4626 		ret = 1;
4627 		if (remaining <= 0)
4628 			goto fail;
4629 
4630 		/* OK, here is the one we will use.  HEAD (the port
4631 		 * hash table list entry) is non-NULL and we hold it's
4632 		 * mutex.
4633 		 */
4634 		snum = rover;
4635 	} else {
4636 		/* We are given an specific port number; we verify
4637 		 * that it is not being used. If it is used, we will
4638 		 * exahust the search in the hash list corresponding
4639 		 * to the port number (snum) - we detect that with the
4640 		 * port iterator, pp being NULL.
4641 		 */
4642 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4643 		sctp_spin_lock(&head->lock);
4644 		for (pp = head->chain; pp; pp = pp->next) {
4645 			if (pp->port == snum)
4646 				goto pp_found;
4647 		}
4648 	}
4649 	pp = NULL;
4650 	goto pp_not_found;
4651 pp_found:
4652 	if (!hlist_empty(&pp->owner)) {
4653 		/* We had a port hash table hit - there is an
4654 		 * available port (pp != NULL) and it is being
4655 		 * used by other socket (pp->owner not empty); that other
4656 		 * socket is going to be sk2.
4657 		 */
4658 		int reuse = sk->sk_reuse;
4659 		struct sock *sk2;
4660 		struct hlist_node *node;
4661 
4662 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4663 		if (pp->fastreuse && sk->sk_reuse)
4664 			goto success;
4665 
4666 		/* Run through the list of sockets bound to the port
4667 		 * (pp->port) [via the pointers bind_next and
4668 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4669 		 * we get the endpoint they describe and run through
4670 		 * the endpoint's list of IP (v4 or v6) addresses,
4671 		 * comparing each of the addresses with the address of
4672 		 * the socket sk. If we find a match, then that means
4673 		 * that this port/socket (sk) combination are already
4674 		 * in an endpoint.
4675 		 */
4676 		sk_for_each_bound(sk2, node, &pp->owner) {
4677 			struct sctp_endpoint *ep2;
4678 			ep2 = sctp_sk(sk2)->ep;
4679 
4680 			if (reuse && sk2->sk_reuse)
4681 				continue;
4682 
4683 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4684 						 sctp_sk(sk))) {
4685 				ret = (long)sk2;
4686 				goto fail_unlock;
4687 			}
4688 		}
4689 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4690 	}
4691 pp_not_found:
4692 	/* If there was a hash table miss, create a new port.  */
4693 	ret = 1;
4694 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4695 		goto fail_unlock;
4696 
4697 	/* In either case (hit or miss), make sure fastreuse is 1 only
4698 	 * if sk->sk_reuse is too (that is, if the caller requested
4699 	 * SO_REUSEADDR on this socket -sk-).
4700 	 */
4701 	if (hlist_empty(&pp->owner))
4702 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4703 	else if (pp->fastreuse && !sk->sk_reuse)
4704 		pp->fastreuse = 0;
4705 
4706 	/* We are set, so fill up all the data in the hash table
4707 	 * entry, tie the socket list information with the rest of the
4708 	 * sockets FIXME: Blurry, NPI (ipg).
4709 	 */
4710 success:
4711 	inet_sk(sk)->num = snum;
4712 	if (!sctp_sk(sk)->bind_hash) {
4713 		sk_add_bind_node(sk, &pp->owner);
4714 		sctp_sk(sk)->bind_hash = pp;
4715 	}
4716 	ret = 0;
4717 
4718 fail_unlock:
4719 	sctp_spin_unlock(&head->lock);
4720 
4721 fail:
4722 	sctp_local_bh_enable();
4723 	addr->v4.sin_port = htons(addr->v4.sin_port);
4724 	return ret;
4725 }
4726 
4727 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4728  * port is requested.
4729  */
4730 static int sctp_get_port(struct sock *sk, unsigned short snum)
4731 {
4732 	long ret;
4733 	union sctp_addr addr;
4734 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4735 
4736 	/* Set up a dummy address struct from the sk. */
4737 	af->from_sk(&addr, sk);
4738 	addr.v4.sin_port = htons(snum);
4739 
4740 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4741 	ret = sctp_get_port_local(sk, &addr);
4742 
4743 	return (ret ? 1 : 0);
4744 }
4745 
4746 /*
4747  * 3.1.3 listen() - UDP Style Syntax
4748  *
4749  *   By default, new associations are not accepted for UDP style sockets.
4750  *   An application uses listen() to mark a socket as being able to
4751  *   accept new associations.
4752  */
4753 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4754 {
4755 	struct sctp_sock *sp = sctp_sk(sk);
4756 	struct sctp_endpoint *ep = sp->ep;
4757 
4758 	/* Only UDP style sockets that are not peeled off are allowed to
4759 	 * listen().
4760 	 */
4761 	if (!sctp_style(sk, UDP))
4762 		return -EINVAL;
4763 
4764 	/* If backlog is zero, disable listening. */
4765 	if (!backlog) {
4766 		if (sctp_sstate(sk, CLOSED))
4767 			return 0;
4768 
4769 		sctp_unhash_endpoint(ep);
4770 		sk->sk_state = SCTP_SS_CLOSED;
4771 	}
4772 
4773 	/* Return if we are already listening. */
4774 	if (sctp_sstate(sk, LISTENING))
4775 		return 0;
4776 
4777 	/*
4778 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4779 	 * call that allows new associations to be accepted, the system
4780 	 * picks an ephemeral port and will choose an address set equivalent
4781 	 * to binding with a wildcard address.
4782 	 *
4783 	 * This is not currently spelled out in the SCTP sockets
4784 	 * extensions draft, but follows the practice as seen in TCP
4785 	 * sockets.
4786 	 */
4787 	if (!ep->base.bind_addr.port) {
4788 		if (sctp_autobind(sk))
4789 			return -EAGAIN;
4790 	}
4791 	sk->sk_state = SCTP_SS_LISTENING;
4792 	sctp_hash_endpoint(ep);
4793 	return 0;
4794 }
4795 
4796 /*
4797  * 4.1.3 listen() - TCP Style Syntax
4798  *
4799  *   Applications uses listen() to ready the SCTP endpoint for accepting
4800  *   inbound associations.
4801  */
4802 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4803 {
4804 	struct sctp_sock *sp = sctp_sk(sk);
4805 	struct sctp_endpoint *ep = sp->ep;
4806 
4807 	/* If backlog is zero, disable listening. */
4808 	if (!backlog) {
4809 		if (sctp_sstate(sk, CLOSED))
4810 			return 0;
4811 
4812 		sctp_unhash_endpoint(ep);
4813 		sk->sk_state = SCTP_SS_CLOSED;
4814 	}
4815 
4816 	if (sctp_sstate(sk, LISTENING))
4817 		return 0;
4818 
4819 	/*
4820 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4821 	 * call that allows new associations to be accepted, the system
4822 	 * picks an ephemeral port and will choose an address set equivalent
4823 	 * to binding with a wildcard address.
4824 	 *
4825 	 * This is not currently spelled out in the SCTP sockets
4826 	 * extensions draft, but follows the practice as seen in TCP
4827 	 * sockets.
4828 	 */
4829 	if (!ep->base.bind_addr.port) {
4830 		if (sctp_autobind(sk))
4831 			return -EAGAIN;
4832 	}
4833 	sk->sk_state = SCTP_SS_LISTENING;
4834 	sk->sk_max_ack_backlog = backlog;
4835 	sctp_hash_endpoint(ep);
4836 	return 0;
4837 }
4838 
4839 /*
4840  *  Move a socket to LISTENING state.
4841  */
4842 int sctp_inet_listen(struct socket *sock, int backlog)
4843 {
4844 	struct sock *sk = sock->sk;
4845 	struct crypto_tfm *tfm=NULL;
4846 	int err = -EINVAL;
4847 
4848 	if (unlikely(backlog < 0))
4849 		goto out;
4850 
4851 	sctp_lock_sock(sk);
4852 
4853 	if (sock->state != SS_UNCONNECTED)
4854 		goto out;
4855 
4856 	/* Allocate HMAC for generating cookie. */
4857 	if (sctp_hmac_alg) {
4858 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4859 		if (!tfm) {
4860 			err = -ENOSYS;
4861 			goto out;
4862 		}
4863 	}
4864 
4865 	switch (sock->type) {
4866 	case SOCK_SEQPACKET:
4867 		err = sctp_seqpacket_listen(sk, backlog);
4868 		break;
4869 	case SOCK_STREAM:
4870 		err = sctp_stream_listen(sk, backlog);
4871 		break;
4872 	default:
4873 		break;
4874 	};
4875 	if (err)
4876 		goto cleanup;
4877 
4878 	/* Store away the transform reference. */
4879 	sctp_sk(sk)->hmac = tfm;
4880 out:
4881 	sctp_release_sock(sk);
4882 	return err;
4883 cleanup:
4884 	sctp_crypto_free_tfm(tfm);
4885 	goto out;
4886 }
4887 
4888 /*
4889  * This function is done by modeling the current datagram_poll() and the
4890  * tcp_poll().  Note that, based on these implementations, we don't
4891  * lock the socket in this function, even though it seems that,
4892  * ideally, locking or some other mechanisms can be used to ensure
4893  * the integrity of the counters (sndbuf and wmem_alloc) used
4894  * in this place.  We assume that we don't need locks either until proven
4895  * otherwise.
4896  *
4897  * Another thing to note is that we include the Async I/O support
4898  * here, again, by modeling the current TCP/UDP code.  We don't have
4899  * a good way to test with it yet.
4900  */
4901 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4902 {
4903 	struct sock *sk = sock->sk;
4904 	struct sctp_sock *sp = sctp_sk(sk);
4905 	unsigned int mask;
4906 
4907 	poll_wait(file, sk->sk_sleep, wait);
4908 
4909 	/* A TCP-style listening socket becomes readable when the accept queue
4910 	 * is not empty.
4911 	 */
4912 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4913 		return (!list_empty(&sp->ep->asocs)) ?
4914 		       	(POLLIN | POLLRDNORM) : 0;
4915 
4916 	mask = 0;
4917 
4918 	/* Is there any exceptional events?  */
4919 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4920 		mask |= POLLERR;
4921 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4922 		mask |= POLLRDHUP;
4923 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4924 		mask |= POLLHUP;
4925 
4926 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4927 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4928 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4929 		mask |= POLLIN | POLLRDNORM;
4930 
4931 	/* The association is either gone or not ready.  */
4932 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4933 		return mask;
4934 
4935 	/* Is it writable?  */
4936 	if (sctp_writeable(sk)) {
4937 		mask |= POLLOUT | POLLWRNORM;
4938 	} else {
4939 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4940 		/*
4941 		 * Since the socket is not locked, the buffer
4942 		 * might be made available after the writeable check and
4943 		 * before the bit is set.  This could cause a lost I/O
4944 		 * signal.  tcp_poll() has a race breaker for this race
4945 		 * condition.  Based on their implementation, we put
4946 		 * in the following code to cover it as well.
4947 		 */
4948 		if (sctp_writeable(sk))
4949 			mask |= POLLOUT | POLLWRNORM;
4950 	}
4951 	return mask;
4952 }
4953 
4954 /********************************************************************
4955  * 2nd Level Abstractions
4956  ********************************************************************/
4957 
4958 static struct sctp_bind_bucket *sctp_bucket_create(
4959 	struct sctp_bind_hashbucket *head, unsigned short snum)
4960 {
4961 	struct sctp_bind_bucket *pp;
4962 
4963 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4964 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4965 	if (pp) {
4966 		pp->port = snum;
4967 		pp->fastreuse = 0;
4968 		INIT_HLIST_HEAD(&pp->owner);
4969 		if ((pp->next = head->chain) != NULL)
4970 			pp->next->pprev = &pp->next;
4971 		head->chain = pp;
4972 		pp->pprev = &head->chain;
4973 	}
4974 	return pp;
4975 }
4976 
4977 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4978 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4979 {
4980 	if (hlist_empty(&pp->owner)) {
4981 		if (pp->next)
4982 			pp->next->pprev = pp->pprev;
4983 		*(pp->pprev) = pp->next;
4984 		kmem_cache_free(sctp_bucket_cachep, pp);
4985 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
4986 	}
4987 }
4988 
4989 /* Release this socket's reference to a local port.  */
4990 static inline void __sctp_put_port(struct sock *sk)
4991 {
4992 	struct sctp_bind_hashbucket *head =
4993 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4994 	struct sctp_bind_bucket *pp;
4995 
4996 	sctp_spin_lock(&head->lock);
4997 	pp = sctp_sk(sk)->bind_hash;
4998 	__sk_del_bind_node(sk);
4999 	sctp_sk(sk)->bind_hash = NULL;
5000 	inet_sk(sk)->num = 0;
5001 	sctp_bucket_destroy(pp);
5002 	sctp_spin_unlock(&head->lock);
5003 }
5004 
5005 void sctp_put_port(struct sock *sk)
5006 {
5007 	sctp_local_bh_disable();
5008 	__sctp_put_port(sk);
5009 	sctp_local_bh_enable();
5010 }
5011 
5012 /*
5013  * The system picks an ephemeral port and choose an address set equivalent
5014  * to binding with a wildcard address.
5015  * One of those addresses will be the primary address for the association.
5016  * This automatically enables the multihoming capability of SCTP.
5017  */
5018 static int sctp_autobind(struct sock *sk)
5019 {
5020 	union sctp_addr autoaddr;
5021 	struct sctp_af *af;
5022 	unsigned short port;
5023 
5024 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5025 	af = sctp_sk(sk)->pf->af;
5026 
5027 	port = htons(inet_sk(sk)->num);
5028 	af->inaddr_any(&autoaddr, port);
5029 
5030 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5031 }
5032 
5033 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5034  *
5035  * From RFC 2292
5036  * 4.2 The cmsghdr Structure *
5037  *
5038  * When ancillary data is sent or received, any number of ancillary data
5039  * objects can be specified by the msg_control and msg_controllen members of
5040  * the msghdr structure, because each object is preceded by
5041  * a cmsghdr structure defining the object's length (the cmsg_len member).
5042  * Historically Berkeley-derived implementations have passed only one object
5043  * at a time, but this API allows multiple objects to be
5044  * passed in a single call to sendmsg() or recvmsg(). The following example
5045  * shows two ancillary data objects in a control buffer.
5046  *
5047  *   |<--------------------------- msg_controllen -------------------------->|
5048  *   |                                                                       |
5049  *
5050  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5051  *
5052  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5053  *   |                                   |                                   |
5054  *
5055  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5056  *
5057  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5058  *   |                                |  |                                |  |
5059  *
5060  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5061  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5062  *
5063  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5064  *
5065  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5066  *    ^
5067  *    |
5068  *
5069  * msg_control
5070  * points here
5071  */
5072 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5073 				  sctp_cmsgs_t *cmsgs)
5074 {
5075 	struct cmsghdr *cmsg;
5076 
5077 	for (cmsg = CMSG_FIRSTHDR(msg);
5078 	     cmsg != NULL;
5079 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5080 		if (!CMSG_OK(msg, cmsg))
5081 			return -EINVAL;
5082 
5083 		/* Should we parse this header or ignore?  */
5084 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5085 			continue;
5086 
5087 		/* Strictly check lengths following example in SCM code.  */
5088 		switch (cmsg->cmsg_type) {
5089 		case SCTP_INIT:
5090 			/* SCTP Socket API Extension
5091 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5092 			 *
5093 			 * This cmsghdr structure provides information for
5094 			 * initializing new SCTP associations with sendmsg().
5095 			 * The SCTP_INITMSG socket option uses this same data
5096 			 * structure.  This structure is not used for
5097 			 * recvmsg().
5098 			 *
5099 			 * cmsg_level    cmsg_type      cmsg_data[]
5100 			 * ------------  ------------   ----------------------
5101 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5102 			 */
5103 			if (cmsg->cmsg_len !=
5104 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5105 				return -EINVAL;
5106 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5107 			break;
5108 
5109 		case SCTP_SNDRCV:
5110 			/* SCTP Socket API Extension
5111 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5112 			 *
5113 			 * This cmsghdr structure specifies SCTP options for
5114 			 * sendmsg() and describes SCTP header information
5115 			 * about a received message through recvmsg().
5116 			 *
5117 			 * cmsg_level    cmsg_type      cmsg_data[]
5118 			 * ------------  ------------   ----------------------
5119 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5120 			 */
5121 			if (cmsg->cmsg_len !=
5122 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5123 				return -EINVAL;
5124 
5125 			cmsgs->info =
5126 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5127 
5128 			/* Minimally, validate the sinfo_flags. */
5129 			if (cmsgs->info->sinfo_flags &
5130 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5131 			      SCTP_ABORT | SCTP_EOF))
5132 				return -EINVAL;
5133 			break;
5134 
5135 		default:
5136 			return -EINVAL;
5137 		};
5138 	}
5139 	return 0;
5140 }
5141 
5142 /*
5143  * Wait for a packet..
5144  * Note: This function is the same function as in core/datagram.c
5145  * with a few modifications to make lksctp work.
5146  */
5147 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5148 {
5149 	int error;
5150 	DEFINE_WAIT(wait);
5151 
5152 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5153 
5154 	/* Socket errors? */
5155 	error = sock_error(sk);
5156 	if (error)
5157 		goto out;
5158 
5159 	if (!skb_queue_empty(&sk->sk_receive_queue))
5160 		goto ready;
5161 
5162 	/* Socket shut down?  */
5163 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5164 		goto out;
5165 
5166 	/* Sequenced packets can come disconnected.  If so we report the
5167 	 * problem.
5168 	 */
5169 	error = -ENOTCONN;
5170 
5171 	/* Is there a good reason to think that we may receive some data?  */
5172 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5173 		goto out;
5174 
5175 	/* Handle signals.  */
5176 	if (signal_pending(current))
5177 		goto interrupted;
5178 
5179 	/* Let another process have a go.  Since we are going to sleep
5180 	 * anyway.  Note: This may cause odd behaviors if the message
5181 	 * does not fit in the user's buffer, but this seems to be the
5182 	 * only way to honor MSG_DONTWAIT realistically.
5183 	 */
5184 	sctp_release_sock(sk);
5185 	*timeo_p = schedule_timeout(*timeo_p);
5186 	sctp_lock_sock(sk);
5187 
5188 ready:
5189 	finish_wait(sk->sk_sleep, &wait);
5190 	return 0;
5191 
5192 interrupted:
5193 	error = sock_intr_errno(*timeo_p);
5194 
5195 out:
5196 	finish_wait(sk->sk_sleep, &wait);
5197 	*err = error;
5198 	return error;
5199 }
5200 
5201 /* Receive a datagram.
5202  * Note: This is pretty much the same routine as in core/datagram.c
5203  * with a few changes to make lksctp work.
5204  */
5205 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5206 					      int noblock, int *err)
5207 {
5208 	int error;
5209 	struct sk_buff *skb;
5210 	long timeo;
5211 
5212 	timeo = sock_rcvtimeo(sk, noblock);
5213 
5214 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5215 			  timeo, MAX_SCHEDULE_TIMEOUT);
5216 
5217 	do {
5218 		/* Again only user level code calls this function,
5219 		 * so nothing interrupt level
5220 		 * will suddenly eat the receive_queue.
5221 		 *
5222 		 *  Look at current nfs client by the way...
5223 		 *  However, this function was corrent in any case. 8)
5224 		 */
5225 		if (flags & MSG_PEEK) {
5226 			spin_lock_bh(&sk->sk_receive_queue.lock);
5227 			skb = skb_peek(&sk->sk_receive_queue);
5228 			if (skb)
5229 				atomic_inc(&skb->users);
5230 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5231 		} else {
5232 			skb = skb_dequeue(&sk->sk_receive_queue);
5233 		}
5234 
5235 		if (skb)
5236 			return skb;
5237 
5238 		/* Caller is allowed not to check sk->sk_err before calling. */
5239 		error = sock_error(sk);
5240 		if (error)
5241 			goto no_packet;
5242 
5243 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5244 			break;
5245 
5246 		/* User doesn't want to wait.  */
5247 		error = -EAGAIN;
5248 		if (!timeo)
5249 			goto no_packet;
5250 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5251 
5252 	return NULL;
5253 
5254 no_packet:
5255 	*err = error;
5256 	return NULL;
5257 }
5258 
5259 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5260 static void __sctp_write_space(struct sctp_association *asoc)
5261 {
5262 	struct sock *sk = asoc->base.sk;
5263 	struct socket *sock = sk->sk_socket;
5264 
5265 	if ((sctp_wspace(asoc) > 0) && sock) {
5266 		if (waitqueue_active(&asoc->wait))
5267 			wake_up_interruptible(&asoc->wait);
5268 
5269 		if (sctp_writeable(sk)) {
5270 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5271 				wake_up_interruptible(sk->sk_sleep);
5272 
5273 			/* Note that we try to include the Async I/O support
5274 			 * here by modeling from the current TCP/UDP code.
5275 			 * We have not tested with it yet.
5276 			 */
5277 			if (sock->fasync_list &&
5278 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5279 				sock_wake_async(sock, 2, POLL_OUT);
5280 		}
5281 	}
5282 }
5283 
5284 /* Do accounting for the sndbuf space.
5285  * Decrement the used sndbuf space of the corresponding association by the
5286  * data size which was just transmitted(freed).
5287  */
5288 static void sctp_wfree(struct sk_buff *skb)
5289 {
5290 	struct sctp_association *asoc;
5291 	struct sctp_chunk *chunk;
5292 	struct sock *sk;
5293 
5294 	/* Get the saved chunk pointer.  */
5295 	chunk = *((struct sctp_chunk **)(skb->cb));
5296 	asoc = chunk->asoc;
5297 	sk = asoc->base.sk;
5298 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5299 				sizeof(struct sk_buff) +
5300 				sizeof(struct sctp_chunk);
5301 
5302 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5303 
5304 	sock_wfree(skb);
5305 	__sctp_write_space(asoc);
5306 
5307 	sctp_association_put(asoc);
5308 }
5309 
5310 /* Helper function to wait for space in the sndbuf.  */
5311 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5312 				size_t msg_len)
5313 {
5314 	struct sock *sk = asoc->base.sk;
5315 	int err = 0;
5316 	long current_timeo = *timeo_p;
5317 	DEFINE_WAIT(wait);
5318 
5319 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5320 	                  asoc, (long)(*timeo_p), msg_len);
5321 
5322 	/* Increment the association's refcnt.  */
5323 	sctp_association_hold(asoc);
5324 
5325 	/* Wait on the association specific sndbuf space. */
5326 	for (;;) {
5327 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5328 					  TASK_INTERRUPTIBLE);
5329 		if (!*timeo_p)
5330 			goto do_nonblock;
5331 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5332 		    asoc->base.dead)
5333 			goto do_error;
5334 		if (signal_pending(current))
5335 			goto do_interrupted;
5336 		if (msg_len <= sctp_wspace(asoc))
5337 			break;
5338 
5339 		/* Let another process have a go.  Since we are going
5340 		 * to sleep anyway.
5341 		 */
5342 		sctp_release_sock(sk);
5343 		current_timeo = schedule_timeout(current_timeo);
5344 		BUG_ON(sk != asoc->base.sk);
5345 		sctp_lock_sock(sk);
5346 
5347 		*timeo_p = current_timeo;
5348 	}
5349 
5350 out:
5351 	finish_wait(&asoc->wait, &wait);
5352 
5353 	/* Release the association's refcnt.  */
5354 	sctp_association_put(asoc);
5355 
5356 	return err;
5357 
5358 do_error:
5359 	err = -EPIPE;
5360 	goto out;
5361 
5362 do_interrupted:
5363 	err = sock_intr_errno(*timeo_p);
5364 	goto out;
5365 
5366 do_nonblock:
5367 	err = -EAGAIN;
5368 	goto out;
5369 }
5370 
5371 /* If socket sndbuf has changed, wake up all per association waiters.  */
5372 void sctp_write_space(struct sock *sk)
5373 {
5374 	struct sctp_association *asoc;
5375 	struct list_head *pos;
5376 
5377 	/* Wake up the tasks in each wait queue.  */
5378 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5379 		asoc = list_entry(pos, struct sctp_association, asocs);
5380 		__sctp_write_space(asoc);
5381 	}
5382 }
5383 
5384 /* Is there any sndbuf space available on the socket?
5385  *
5386  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5387  * associations on the same socket.  For a UDP-style socket with
5388  * multiple associations, it is possible for it to be "unwriteable"
5389  * prematurely.  I assume that this is acceptable because
5390  * a premature "unwriteable" is better than an accidental "writeable" which
5391  * would cause an unwanted block under certain circumstances.  For the 1-1
5392  * UDP-style sockets or TCP-style sockets, this code should work.
5393  *  - Daisy
5394  */
5395 static int sctp_writeable(struct sock *sk)
5396 {
5397 	int amt = 0;
5398 
5399 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5400 	if (amt < 0)
5401 		amt = 0;
5402 	return amt;
5403 }
5404 
5405 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5406  * returns immediately with EINPROGRESS.
5407  */
5408 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5409 {
5410 	struct sock *sk = asoc->base.sk;
5411 	int err = 0;
5412 	long current_timeo = *timeo_p;
5413 	DEFINE_WAIT(wait);
5414 
5415 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5416 			  (long)(*timeo_p));
5417 
5418 	/* Increment the association's refcnt.  */
5419 	sctp_association_hold(asoc);
5420 
5421 	for (;;) {
5422 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5423 					  TASK_INTERRUPTIBLE);
5424 		if (!*timeo_p)
5425 			goto do_nonblock;
5426 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5427 			break;
5428 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5429 		    asoc->base.dead)
5430 			goto do_error;
5431 		if (signal_pending(current))
5432 			goto do_interrupted;
5433 
5434 		if (sctp_state(asoc, ESTABLISHED))
5435 			break;
5436 
5437 		/* Let another process have a go.  Since we are going
5438 		 * to sleep anyway.
5439 		 */
5440 		sctp_release_sock(sk);
5441 		current_timeo = schedule_timeout(current_timeo);
5442 		sctp_lock_sock(sk);
5443 
5444 		*timeo_p = current_timeo;
5445 	}
5446 
5447 out:
5448 	finish_wait(&asoc->wait, &wait);
5449 
5450 	/* Release the association's refcnt.  */
5451 	sctp_association_put(asoc);
5452 
5453 	return err;
5454 
5455 do_error:
5456 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5457 		err = -ETIMEDOUT;
5458 	else
5459 		err = -ECONNREFUSED;
5460 	goto out;
5461 
5462 do_interrupted:
5463 	err = sock_intr_errno(*timeo_p);
5464 	goto out;
5465 
5466 do_nonblock:
5467 	err = -EINPROGRESS;
5468 	goto out;
5469 }
5470 
5471 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5472 {
5473 	struct sctp_endpoint *ep;
5474 	int err = 0;
5475 	DEFINE_WAIT(wait);
5476 
5477 	ep = sctp_sk(sk)->ep;
5478 
5479 
5480 	for (;;) {
5481 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5482 					  TASK_INTERRUPTIBLE);
5483 
5484 		if (list_empty(&ep->asocs)) {
5485 			sctp_release_sock(sk);
5486 			timeo = schedule_timeout(timeo);
5487 			sctp_lock_sock(sk);
5488 		}
5489 
5490 		err = -EINVAL;
5491 		if (!sctp_sstate(sk, LISTENING))
5492 			break;
5493 
5494 		err = 0;
5495 		if (!list_empty(&ep->asocs))
5496 			break;
5497 
5498 		err = sock_intr_errno(timeo);
5499 		if (signal_pending(current))
5500 			break;
5501 
5502 		err = -EAGAIN;
5503 		if (!timeo)
5504 			break;
5505 	}
5506 
5507 	finish_wait(sk->sk_sleep, &wait);
5508 
5509 	return err;
5510 }
5511 
5512 void sctp_wait_for_close(struct sock *sk, long timeout)
5513 {
5514 	DEFINE_WAIT(wait);
5515 
5516 	do {
5517 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5518 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5519 			break;
5520 		sctp_release_sock(sk);
5521 		timeout = schedule_timeout(timeout);
5522 		sctp_lock_sock(sk);
5523 	} while (!signal_pending(current) && timeout);
5524 
5525 	finish_wait(sk->sk_sleep, &wait);
5526 }
5527 
5528 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5529  * and its messages to the newsk.
5530  */
5531 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5532 			      struct sctp_association *assoc,
5533 			      sctp_socket_type_t type)
5534 {
5535 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5536 	struct sctp_sock *newsp = sctp_sk(newsk);
5537 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5538 	struct sctp_endpoint *newep = newsp->ep;
5539 	struct sk_buff *skb, *tmp;
5540 	struct sctp_ulpevent *event;
5541 	int flags = 0;
5542 
5543 	/* Migrate socket buffer sizes and all the socket level options to the
5544 	 * new socket.
5545 	 */
5546 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5547 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5548 	/* Brute force copy old sctp opt. */
5549 	inet_sk_copy_descendant(newsk, oldsk);
5550 
5551 	/* Restore the ep value that was overwritten with the above structure
5552 	 * copy.
5553 	 */
5554 	newsp->ep = newep;
5555 	newsp->hmac = NULL;
5556 
5557 	/* Hook this new socket in to the bind_hash list. */
5558 	pp = sctp_sk(oldsk)->bind_hash;
5559 	sk_add_bind_node(newsk, &pp->owner);
5560 	sctp_sk(newsk)->bind_hash = pp;
5561 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5562 
5563 	/* Copy the bind_addr list from the original endpoint to the new
5564 	 * endpoint so that we can handle restarts properly
5565 	 */
5566 	if (assoc->peer.ipv4_address)
5567 		flags |= SCTP_ADDR4_PEERSUPP;
5568 	if (assoc->peer.ipv6_address)
5569 		flags |= SCTP_ADDR6_PEERSUPP;
5570 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5571 			     &oldsp->ep->base.bind_addr,
5572 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5573 
5574 	/* Move any messages in the old socket's receive queue that are for the
5575 	 * peeled off association to the new socket's receive queue.
5576 	 */
5577 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5578 		event = sctp_skb2event(skb);
5579 		if (event->asoc == assoc) {
5580 			sock_rfree(skb);
5581 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5582 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5583 			skb_set_owner_r(skb, newsk);
5584 		}
5585 	}
5586 
5587 	/* Clean up any messages pending delivery due to partial
5588 	 * delivery.   Three cases:
5589 	 * 1) No partial deliver;  no work.
5590 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5591 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5592 	 */
5593 	skb_queue_head_init(&newsp->pd_lobby);
5594 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5595 
5596 	if (sctp_sk(oldsk)->pd_mode) {
5597 		struct sk_buff_head *queue;
5598 
5599 		/* Decide which queue to move pd_lobby skbs to. */
5600 		if (assoc->ulpq.pd_mode) {
5601 			queue = &newsp->pd_lobby;
5602 		} else
5603 			queue = &newsk->sk_receive_queue;
5604 
5605 		/* Walk through the pd_lobby, looking for skbs that
5606 		 * need moved to the new socket.
5607 		 */
5608 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5609 			event = sctp_skb2event(skb);
5610 			if (event->asoc == assoc) {
5611 				sock_rfree(skb);
5612 				__skb_unlink(skb, &oldsp->pd_lobby);
5613 				__skb_queue_tail(queue, skb);
5614 				skb_set_owner_r(skb, newsk);
5615 			}
5616 		}
5617 
5618 		/* Clear up any skbs waiting for the partial
5619 		 * delivery to finish.
5620 		 */
5621 		if (assoc->ulpq.pd_mode)
5622 			sctp_clear_pd(oldsk);
5623 
5624 	}
5625 
5626 	/* Set the type of socket to indicate that it is peeled off from the
5627 	 * original UDP-style socket or created with the accept() call on a
5628 	 * TCP-style socket..
5629 	 */
5630 	newsp->type = type;
5631 
5632 	/* Mark the new socket "in-use" by the user so that any packets
5633 	 * that may arrive on the association after we've moved it are
5634 	 * queued to the backlog.  This prevents a potential race between
5635 	 * backlog processing on the old socket and new-packet processing
5636 	 * on the new socket.
5637 	 */
5638 	sctp_lock_sock(newsk);
5639 	sctp_assoc_migrate(assoc, newsk);
5640 
5641 	/* If the association on the newsk is already closed before accept()
5642 	 * is called, set RCV_SHUTDOWN flag.
5643 	 */
5644 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5645 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5646 
5647 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5648 	sctp_release_sock(newsk);
5649 }
5650 
5651 /* This proto struct describes the ULP interface for SCTP.  */
5652 struct proto sctp_prot = {
5653 	.name        =	"SCTP",
5654 	.owner       =	THIS_MODULE,
5655 	.close       =	sctp_close,
5656 	.connect     =	sctp_connect,
5657 	.disconnect  =	sctp_disconnect,
5658 	.accept      =	sctp_accept,
5659 	.ioctl       =	sctp_ioctl,
5660 	.init        =	sctp_init_sock,
5661 	.destroy     =	sctp_destroy_sock,
5662 	.shutdown    =	sctp_shutdown,
5663 	.setsockopt  =	sctp_setsockopt,
5664 	.getsockopt  =	sctp_getsockopt,
5665 	.sendmsg     =	sctp_sendmsg,
5666 	.recvmsg     =	sctp_recvmsg,
5667 	.bind        =	sctp_bind,
5668 	.backlog_rcv =	sctp_backlog_rcv,
5669 	.hash        =	sctp_hash,
5670 	.unhash      =	sctp_unhash,
5671 	.get_port    =	sctp_get_port,
5672 	.obj_size    =  sizeof(struct sctp_sock),
5673 };
5674 
5675 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5676 struct proto sctpv6_prot = {
5677 	.name		= "SCTPv6",
5678 	.owner		= THIS_MODULE,
5679 	.close		= sctp_close,
5680 	.connect	= sctp_connect,
5681 	.disconnect	= sctp_disconnect,
5682 	.accept		= sctp_accept,
5683 	.ioctl		= sctp_ioctl,
5684 	.init		= sctp_init_sock,
5685 	.destroy	= sctp_destroy_sock,
5686 	.shutdown	= sctp_shutdown,
5687 	.setsockopt	= sctp_setsockopt,
5688 	.getsockopt	= sctp_getsockopt,
5689 	.sendmsg	= sctp_sendmsg,
5690 	.recvmsg	= sctp_recvmsg,
5691 	.bind		= sctp_bind,
5692 	.backlog_rcv	= sctp_backlog_rcv,
5693 	.hash		= sctp_hash,
5694 	.unhash		= sctp_unhash,
5695 	.get_port	= sctp_get_port,
5696 	.obj_size	= sizeof(struct sctp6_sock),
5697 };
5698 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5699