1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/wait.h> 43 #include <linux/time.h> 44 #include <linux/sched/signal.h> 45 #include <linux/ip.h> 46 #include <linux/capability.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/file.h> 52 #include <linux/compat.h> 53 #include <linux/rhashtable.h> 54 55 #include <net/ip.h> 56 #include <net/icmp.h> 57 #include <net/route.h> 58 #include <net/ipv6.h> 59 #include <net/inet_common.h> 60 #include <net/busy_poll.h> 61 #include <trace/events/sock.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 #include <net/rps.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(const struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 75 struct sctp_transport *transport, 76 long *timeo_p, size_t msg_len); 77 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 78 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 79 static int sctp_wait_for_accept(struct sock *sk, long timeo); 80 static void sctp_wait_for_close(struct sock *sk, long timeo); 81 static void sctp_destruct_sock(struct sock *sk); 82 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 83 union sctp_addr *addr, int len); 84 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 85 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 88 static int sctp_send_asconf(struct sctp_association *asoc, 89 struct sctp_chunk *chunk); 90 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 91 static int sctp_autobind(struct sock *sk); 92 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 93 struct sctp_association *assoc, 94 enum sctp_socket_type type); 95 96 static unsigned long sctp_memory_pressure; 97 static atomic_long_t sctp_memory_allocated; 98 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 99 struct percpu_counter sctp_sockets_allocated; 100 101 static void sctp_enter_memory_pressure(struct sock *sk) 102 { 103 WRITE_ONCE(sctp_memory_pressure, 1); 104 } 105 106 107 /* Get the sndbuf space available at the time on the association. */ 108 static inline int sctp_wspace(struct sctp_association *asoc) 109 { 110 struct sock *sk = asoc->base.sk; 111 112 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 113 : sk_stream_wspace(sk); 114 } 115 116 /* Increment the used sndbuf space count of the corresponding association by 117 * the size of the outgoing data chunk. 118 * Also, set the skb destructor for sndbuf accounting later. 119 * 120 * Since it is always 1-1 between chunk and skb, and also a new skb is always 121 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 122 * destructor in the data chunk skb for the purpose of the sndbuf space 123 * tracking. 124 */ 125 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 126 { 127 struct sctp_association *asoc = chunk->asoc; 128 struct sock *sk = asoc->base.sk; 129 130 /* The sndbuf space is tracked per association. */ 131 sctp_association_hold(asoc); 132 133 if (chunk->shkey) 134 sctp_auth_shkey_hold(chunk->shkey); 135 136 skb_set_owner_w(chunk->skb, sk); 137 138 chunk->skb->destructor = sctp_wfree; 139 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 140 skb_shinfo(chunk->skb)->destructor_arg = chunk; 141 142 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 143 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 144 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 145 sk_mem_charge(sk, chunk->skb->truesize); 146 } 147 148 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 149 { 150 skb_orphan(chunk->skb); 151 } 152 153 #define traverse_and_process() \ 154 do { \ 155 msg = chunk->msg; \ 156 if (msg == prev_msg) \ 157 continue; \ 158 list_for_each_entry(c, &msg->chunks, frag_list) { \ 159 if ((clear && asoc->base.sk == c->skb->sk) || \ 160 (!clear && asoc->base.sk != c->skb->sk)) \ 161 cb(c); \ 162 } \ 163 prev_msg = msg; \ 164 } while (0) 165 166 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 167 bool clear, 168 void (*cb)(struct sctp_chunk *)) 169 170 { 171 struct sctp_datamsg *msg, *prev_msg = NULL; 172 struct sctp_outq *q = &asoc->outqueue; 173 struct sctp_chunk *chunk, *c; 174 struct sctp_transport *t; 175 176 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 177 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->sacked, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 187 traverse_and_process(); 188 189 list_for_each_entry(chunk, &q->out_chunk_list, list) 190 traverse_and_process(); 191 } 192 193 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 194 void (*cb)(struct sk_buff *, struct sock *)) 195 196 { 197 struct sk_buff *skb, *tmp; 198 199 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 203 cb(skb, sk); 204 205 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 206 cb(skb, sk); 207 } 208 209 /* Verify that this is a valid address. */ 210 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 211 int len) 212 { 213 struct sctp_af *af; 214 215 /* Verify basic sockaddr. */ 216 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 217 if (!af) 218 return -EINVAL; 219 220 /* Is this a valid SCTP address? */ 221 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 222 return -EINVAL; 223 224 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 /* Look up the association by its id. If this is not a UDP-style 231 * socket, the ID field is always ignored. 232 */ 233 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 234 { 235 struct sctp_association *asoc = NULL; 236 237 /* If this is not a UDP-style socket, assoc id should be ignored. */ 238 if (!sctp_style(sk, UDP)) { 239 /* Return NULL if the socket state is not ESTABLISHED. It 240 * could be a TCP-style listening socket or a socket which 241 * hasn't yet called connect() to establish an association. 242 */ 243 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 244 return NULL; 245 246 /* Get the first and the only association from the list. */ 247 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 248 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 249 struct sctp_association, asocs); 250 return asoc; 251 } 252 253 /* Otherwise this is a UDP-style socket. */ 254 if (id <= SCTP_ALL_ASSOC) 255 return NULL; 256 257 spin_lock_bh(&sctp_assocs_id_lock); 258 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 259 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 260 asoc = NULL; 261 spin_unlock_bh(&sctp_assocs_id_lock); 262 263 return asoc; 264 } 265 266 /* Look up the transport from an address and an assoc id. If both address and 267 * id are specified, the associations matching the address and the id should be 268 * the same. 269 */ 270 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 271 struct sockaddr_storage *addr, 272 sctp_assoc_t id) 273 { 274 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 275 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 276 union sctp_addr *laddr = (union sctp_addr *)addr; 277 struct sctp_transport *transport; 278 279 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 280 return NULL; 281 282 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 283 laddr, 284 &transport); 285 286 if (!addr_asoc) 287 return NULL; 288 289 id_asoc = sctp_id2assoc(sk, id); 290 if (id_asoc && (id_asoc != addr_asoc)) 291 return NULL; 292 293 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 294 (union sctp_addr *)addr); 295 296 return transport; 297 } 298 299 /* API 3.1.2 bind() - UDP Style Syntax 300 * The syntax of bind() is, 301 * 302 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 303 * 304 * sd - the socket descriptor returned by socket(). 305 * addr - the address structure (struct sockaddr_in or struct 306 * sockaddr_in6 [RFC 2553]), 307 * addr_len - the size of the address structure. 308 */ 309 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 310 { 311 int retval = 0; 312 313 lock_sock(sk); 314 315 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 316 addr, addr_len); 317 318 /* Disallow binding twice. */ 319 if (!sctp_sk(sk)->ep->base.bind_addr.port) 320 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 321 addr_len); 322 else 323 retval = -EINVAL; 324 325 release_sock(sk); 326 327 return retval; 328 } 329 330 static int sctp_get_port_local(struct sock *, union sctp_addr *); 331 332 /* Verify this is a valid sockaddr. */ 333 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 334 union sctp_addr *addr, int len) 335 { 336 struct sctp_af *af; 337 338 /* Check minimum size. */ 339 if (len < sizeof (struct sockaddr)) 340 return NULL; 341 342 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 343 return NULL; 344 345 if (addr->sa.sa_family == AF_INET6) { 346 if (len < SIN6_LEN_RFC2133) 347 return NULL; 348 /* V4 mapped address are really of AF_INET family */ 349 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 350 !opt->pf->af_supported(AF_INET, opt)) 351 return NULL; 352 } 353 354 /* If we get this far, af is valid. */ 355 af = sctp_get_af_specific(addr->sa.sa_family); 356 357 if (len < af->sockaddr_len) 358 return NULL; 359 360 return af; 361 } 362 363 static void sctp_auto_asconf_init(struct sctp_sock *sp) 364 { 365 struct net *net = sock_net(&sp->inet.sk); 366 367 if (net->sctp.default_auto_asconf) { 368 spin_lock_bh(&net->sctp.addr_wq_lock); 369 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 370 spin_unlock_bh(&net->sctp.addr_wq_lock); 371 sp->do_auto_asconf = 1; 372 } 373 } 374 375 /* Bind a local address either to an endpoint or to an association. */ 376 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 377 { 378 struct net *net = sock_net(sk); 379 struct sctp_sock *sp = sctp_sk(sk); 380 struct sctp_endpoint *ep = sp->ep; 381 struct sctp_bind_addr *bp = &ep->base.bind_addr; 382 struct sctp_af *af; 383 unsigned short snum; 384 int ret = 0; 385 386 /* Common sockaddr verification. */ 387 af = sctp_sockaddr_af(sp, addr, len); 388 if (!af) { 389 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 390 __func__, sk, addr, len); 391 return -EINVAL; 392 } 393 394 snum = ntohs(addr->v4.sin_port); 395 396 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 397 __func__, sk, &addr->sa, bp->port, snum, len); 398 399 /* PF specific bind() address verification. */ 400 if (!sp->pf->bind_verify(sp, addr)) 401 return -EADDRNOTAVAIL; 402 403 /* We must either be unbound, or bind to the same port. 404 * It's OK to allow 0 ports if we are already bound. 405 * We'll just inhert an already bound port in this case 406 */ 407 if (bp->port) { 408 if (!snum) 409 snum = bp->port; 410 else if (snum != bp->port) { 411 pr_debug("%s: new port %d doesn't match existing port " 412 "%d\n", __func__, snum, bp->port); 413 return -EINVAL; 414 } 415 } 416 417 if (snum && inet_port_requires_bind_service(net, snum) && 418 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 419 return -EACCES; 420 421 /* See if the address matches any of the addresses we may have 422 * already bound before checking against other endpoints. 423 */ 424 if (sctp_bind_addr_match(bp, addr, sp)) 425 return -EINVAL; 426 427 /* Make sure we are allowed to bind here. 428 * The function sctp_get_port_local() does duplicate address 429 * detection. 430 */ 431 addr->v4.sin_port = htons(snum); 432 if (sctp_get_port_local(sk, addr)) 433 return -EADDRINUSE; 434 435 /* Refresh ephemeral port. */ 436 if (!bp->port) { 437 bp->port = inet_sk(sk)->inet_num; 438 sctp_auto_asconf_init(sp); 439 } 440 441 /* Add the address to the bind address list. 442 * Use GFP_ATOMIC since BHs will be disabled. 443 */ 444 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 445 SCTP_ADDR_SRC, GFP_ATOMIC); 446 447 if (ret) { 448 sctp_put_port(sk); 449 return ret; 450 } 451 /* Copy back into socket for getsockname() use. */ 452 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 453 sp->pf->to_sk_saddr(addr, sk); 454 455 return ret; 456 } 457 458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 459 * 460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 461 * at any one time. If a sender, after sending an ASCONF chunk, decides 462 * it needs to transfer another ASCONF Chunk, it MUST wait until the 463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 464 * subsequent ASCONF. Note this restriction binds each side, so at any 465 * time two ASCONF may be in-transit on any given association (one sent 466 * from each endpoint). 467 */ 468 static int sctp_send_asconf(struct sctp_association *asoc, 469 struct sctp_chunk *chunk) 470 { 471 int retval = 0; 472 473 /* If there is an outstanding ASCONF chunk, queue it for later 474 * transmission. 475 */ 476 if (asoc->addip_last_asconf) { 477 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 478 goto out; 479 } 480 481 /* Hold the chunk until an ASCONF_ACK is received. */ 482 sctp_chunk_hold(chunk); 483 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 484 if (retval) 485 sctp_chunk_free(chunk); 486 else 487 asoc->addip_last_asconf = chunk; 488 489 out: 490 return retval; 491 } 492 493 /* Add a list of addresses as bind addresses to local endpoint or 494 * association. 495 * 496 * Basically run through each address specified in the addrs/addrcnt 497 * array/length pair, determine if it is IPv6 or IPv4 and call 498 * sctp_do_bind() on it. 499 * 500 * If any of them fails, then the operation will be reversed and the 501 * ones that were added will be removed. 502 * 503 * Only sctp_setsockopt_bindx() is supposed to call this function. 504 */ 505 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 506 { 507 int cnt; 508 int retval = 0; 509 void *addr_buf; 510 struct sockaddr *sa_addr; 511 struct sctp_af *af; 512 513 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 514 addrs, addrcnt); 515 516 addr_buf = addrs; 517 for (cnt = 0; cnt < addrcnt; cnt++) { 518 /* The list may contain either IPv4 or IPv6 address; 519 * determine the address length for walking thru the list. 520 */ 521 sa_addr = addr_buf; 522 af = sctp_get_af_specific(sa_addr->sa_family); 523 if (!af) { 524 retval = -EINVAL; 525 goto err_bindx_add; 526 } 527 528 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 529 af->sockaddr_len); 530 531 addr_buf += af->sockaddr_len; 532 533 err_bindx_add: 534 if (retval < 0) { 535 /* Failed. Cleanup the ones that have been added */ 536 if (cnt > 0) 537 sctp_bindx_rem(sk, addrs, cnt); 538 return retval; 539 } 540 } 541 542 return retval; 543 } 544 545 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 546 * associations that are part of the endpoint indicating that a list of local 547 * addresses are added to the endpoint. 548 * 549 * If any of the addresses is already in the bind address list of the 550 * association, we do not send the chunk for that association. But it will not 551 * affect other associations. 552 * 553 * Only sctp_setsockopt_bindx() is supposed to call this function. 554 */ 555 static int sctp_send_asconf_add_ip(struct sock *sk, 556 struct sockaddr *addrs, 557 int addrcnt) 558 { 559 struct sctp_sock *sp; 560 struct sctp_endpoint *ep; 561 struct sctp_association *asoc; 562 struct sctp_bind_addr *bp; 563 struct sctp_chunk *chunk; 564 struct sctp_sockaddr_entry *laddr; 565 union sctp_addr *addr; 566 union sctp_addr saveaddr; 567 void *addr_buf; 568 struct sctp_af *af; 569 struct list_head *p; 570 int i; 571 int retval = 0; 572 573 sp = sctp_sk(sk); 574 ep = sp->ep; 575 576 if (!ep->asconf_enable) 577 return retval; 578 579 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 580 __func__, sk, addrs, addrcnt); 581 582 list_for_each_entry(asoc, &ep->asocs, asocs) { 583 if (!asoc->peer.asconf_capable) 584 continue; 585 586 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 587 continue; 588 589 if (!sctp_state(asoc, ESTABLISHED)) 590 continue; 591 592 /* Check if any address in the packed array of addresses is 593 * in the bind address list of the association. If so, 594 * do not send the asconf chunk to its peer, but continue with 595 * other associations. 596 */ 597 addr_buf = addrs; 598 for (i = 0; i < addrcnt; i++) { 599 addr = addr_buf; 600 af = sctp_get_af_specific(addr->v4.sin_family); 601 if (!af) { 602 retval = -EINVAL; 603 goto out; 604 } 605 606 if (sctp_assoc_lookup_laddr(asoc, addr)) 607 break; 608 609 addr_buf += af->sockaddr_len; 610 } 611 if (i < addrcnt) 612 continue; 613 614 /* Use the first valid address in bind addr list of 615 * association as Address Parameter of ASCONF CHUNK. 616 */ 617 bp = &asoc->base.bind_addr; 618 p = bp->address_list.next; 619 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 620 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 621 addrcnt, SCTP_PARAM_ADD_IP); 622 if (!chunk) { 623 retval = -ENOMEM; 624 goto out; 625 } 626 627 /* Add the new addresses to the bind address list with 628 * use_as_src set to 0. 629 */ 630 addr_buf = addrs; 631 for (i = 0; i < addrcnt; i++) { 632 addr = addr_buf; 633 af = sctp_get_af_specific(addr->v4.sin_family); 634 memcpy(&saveaddr, addr, af->sockaddr_len); 635 retval = sctp_add_bind_addr(bp, &saveaddr, 636 sizeof(saveaddr), 637 SCTP_ADDR_NEW, GFP_ATOMIC); 638 addr_buf += af->sockaddr_len; 639 } 640 if (asoc->src_out_of_asoc_ok) { 641 struct sctp_transport *trans; 642 643 list_for_each_entry(trans, 644 &asoc->peer.transport_addr_list, transports) { 645 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 646 2*asoc->pathmtu, 4380)); 647 trans->ssthresh = asoc->peer.i.a_rwnd; 648 trans->rto = asoc->rto_initial; 649 sctp_max_rto(asoc, trans); 650 trans->rtt = trans->srtt = trans->rttvar = 0; 651 /* Clear the source and route cache */ 652 sctp_transport_route(trans, NULL, 653 sctp_sk(asoc->base.sk)); 654 } 655 } 656 retval = sctp_send_asconf(asoc, chunk); 657 } 658 659 out: 660 return retval; 661 } 662 663 /* Remove a list of addresses from bind addresses list. Do not remove the 664 * last address. 665 * 666 * Basically run through each address specified in the addrs/addrcnt 667 * array/length pair, determine if it is IPv6 or IPv4 and call 668 * sctp_del_bind() on it. 669 * 670 * If any of them fails, then the operation will be reversed and the 671 * ones that were removed will be added back. 672 * 673 * At least one address has to be left; if only one address is 674 * available, the operation will return -EBUSY. 675 * 676 * Only sctp_setsockopt_bindx() is supposed to call this function. 677 */ 678 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 679 { 680 struct sctp_sock *sp = sctp_sk(sk); 681 struct sctp_endpoint *ep = sp->ep; 682 int cnt; 683 struct sctp_bind_addr *bp = &ep->base.bind_addr; 684 int retval = 0; 685 void *addr_buf; 686 union sctp_addr *sa_addr; 687 struct sctp_af *af; 688 689 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 690 __func__, sk, addrs, addrcnt); 691 692 addr_buf = addrs; 693 for (cnt = 0; cnt < addrcnt; cnt++) { 694 /* If the bind address list is empty or if there is only one 695 * bind address, there is nothing more to be removed (we need 696 * at least one address here). 697 */ 698 if (list_empty(&bp->address_list) || 699 (sctp_list_single_entry(&bp->address_list))) { 700 retval = -EBUSY; 701 goto err_bindx_rem; 702 } 703 704 sa_addr = addr_buf; 705 af = sctp_get_af_specific(sa_addr->sa.sa_family); 706 if (!af) { 707 retval = -EINVAL; 708 goto err_bindx_rem; 709 } 710 711 if (!af->addr_valid(sa_addr, sp, NULL)) { 712 retval = -EADDRNOTAVAIL; 713 goto err_bindx_rem; 714 } 715 716 if (sa_addr->v4.sin_port && 717 sa_addr->v4.sin_port != htons(bp->port)) { 718 retval = -EINVAL; 719 goto err_bindx_rem; 720 } 721 722 if (!sa_addr->v4.sin_port) 723 sa_addr->v4.sin_port = htons(bp->port); 724 725 /* FIXME - There is probably a need to check if sk->sk_saddr and 726 * sk->sk_rcv_addr are currently set to one of the addresses to 727 * be removed. This is something which needs to be looked into 728 * when we are fixing the outstanding issues with multi-homing 729 * socket routing and failover schemes. Refer to comments in 730 * sctp_do_bind(). -daisy 731 */ 732 retval = sctp_del_bind_addr(bp, sa_addr); 733 734 addr_buf += af->sockaddr_len; 735 err_bindx_rem: 736 if (retval < 0) { 737 /* Failed. Add the ones that has been removed back */ 738 if (cnt > 0) 739 sctp_bindx_add(sk, addrs, cnt); 740 return retval; 741 } 742 } 743 744 return retval; 745 } 746 747 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 748 * the associations that are part of the endpoint indicating that a list of 749 * local addresses are removed from the endpoint. 750 * 751 * If any of the addresses is already in the bind address list of the 752 * association, we do not send the chunk for that association. But it will not 753 * affect other associations. 754 * 755 * Only sctp_setsockopt_bindx() is supposed to call this function. 756 */ 757 static int sctp_send_asconf_del_ip(struct sock *sk, 758 struct sockaddr *addrs, 759 int addrcnt) 760 { 761 struct sctp_sock *sp; 762 struct sctp_endpoint *ep; 763 struct sctp_association *asoc; 764 struct sctp_transport *transport; 765 struct sctp_bind_addr *bp; 766 struct sctp_chunk *chunk; 767 union sctp_addr *laddr; 768 void *addr_buf; 769 struct sctp_af *af; 770 struct sctp_sockaddr_entry *saddr; 771 int i; 772 int retval = 0; 773 int stored = 0; 774 775 chunk = NULL; 776 sp = sctp_sk(sk); 777 ep = sp->ep; 778 779 if (!ep->asconf_enable) 780 return retval; 781 782 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 783 __func__, sk, addrs, addrcnt); 784 785 list_for_each_entry(asoc, &ep->asocs, asocs) { 786 787 if (!asoc->peer.asconf_capable) 788 continue; 789 790 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 791 continue; 792 793 if (!sctp_state(asoc, ESTABLISHED)) 794 continue; 795 796 /* Check if any address in the packed array of addresses is 797 * not present in the bind address list of the association. 798 * If so, do not send the asconf chunk to its peer, but 799 * continue with other associations. 800 */ 801 addr_buf = addrs; 802 for (i = 0; i < addrcnt; i++) { 803 laddr = addr_buf; 804 af = sctp_get_af_specific(laddr->v4.sin_family); 805 if (!af) { 806 retval = -EINVAL; 807 goto out; 808 } 809 810 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 811 break; 812 813 addr_buf += af->sockaddr_len; 814 } 815 if (i < addrcnt) 816 continue; 817 818 /* Find one address in the association's bind address list 819 * that is not in the packed array of addresses. This is to 820 * make sure that we do not delete all the addresses in the 821 * association. 822 */ 823 bp = &asoc->base.bind_addr; 824 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 825 addrcnt, sp); 826 if ((laddr == NULL) && (addrcnt == 1)) { 827 if (asoc->asconf_addr_del_pending) 828 continue; 829 asoc->asconf_addr_del_pending = 830 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 831 if (asoc->asconf_addr_del_pending == NULL) { 832 retval = -ENOMEM; 833 goto out; 834 } 835 asoc->asconf_addr_del_pending->sa.sa_family = 836 addrs->sa_family; 837 asoc->asconf_addr_del_pending->v4.sin_port = 838 htons(bp->port); 839 if (addrs->sa_family == AF_INET) { 840 struct sockaddr_in *sin; 841 842 sin = (struct sockaddr_in *)addrs; 843 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 844 } else if (addrs->sa_family == AF_INET6) { 845 struct sockaddr_in6 *sin6; 846 847 sin6 = (struct sockaddr_in6 *)addrs; 848 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 849 } 850 851 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 852 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 853 asoc->asconf_addr_del_pending); 854 855 asoc->src_out_of_asoc_ok = 1; 856 stored = 1; 857 goto skip_mkasconf; 858 } 859 860 if (laddr == NULL) 861 return -EINVAL; 862 863 /* We do not need RCU protection throughout this loop 864 * because this is done under a socket lock from the 865 * setsockopt call. 866 */ 867 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 868 SCTP_PARAM_DEL_IP); 869 if (!chunk) { 870 retval = -ENOMEM; 871 goto out; 872 } 873 874 skip_mkasconf: 875 /* Reset use_as_src flag for the addresses in the bind address 876 * list that are to be deleted. 877 */ 878 addr_buf = addrs; 879 for (i = 0; i < addrcnt; i++) { 880 laddr = addr_buf; 881 af = sctp_get_af_specific(laddr->v4.sin_family); 882 list_for_each_entry(saddr, &bp->address_list, list) { 883 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 884 saddr->state = SCTP_ADDR_DEL; 885 } 886 addr_buf += af->sockaddr_len; 887 } 888 889 /* Update the route and saddr entries for all the transports 890 * as some of the addresses in the bind address list are 891 * about to be deleted and cannot be used as source addresses. 892 */ 893 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 894 transports) { 895 sctp_transport_route(transport, NULL, 896 sctp_sk(asoc->base.sk)); 897 } 898 899 if (stored) 900 /* We don't need to transmit ASCONF */ 901 continue; 902 retval = sctp_send_asconf(asoc, chunk); 903 } 904 out: 905 return retval; 906 } 907 908 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 909 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 910 { 911 struct sock *sk = sctp_opt2sk(sp); 912 union sctp_addr *addr; 913 struct sctp_af *af; 914 915 /* It is safe to write port space in caller. */ 916 addr = &addrw->a; 917 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 918 af = sctp_get_af_specific(addr->sa.sa_family); 919 if (!af) 920 return -EINVAL; 921 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 922 return -EINVAL; 923 924 if (addrw->state == SCTP_ADDR_NEW) 925 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 926 else 927 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 928 } 929 930 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 931 * 932 * API 8.1 933 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 934 * int flags); 935 * 936 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 937 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 938 * or IPv6 addresses. 939 * 940 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 941 * Section 3.1.2 for this usage. 942 * 943 * addrs is a pointer to an array of one or more socket addresses. Each 944 * address is contained in its appropriate structure (i.e. struct 945 * sockaddr_in or struct sockaddr_in6) the family of the address type 946 * must be used to distinguish the address length (note that this 947 * representation is termed a "packed array" of addresses). The caller 948 * specifies the number of addresses in the array with addrcnt. 949 * 950 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 951 * -1, and sets errno to the appropriate error code. 952 * 953 * For SCTP, the port given in each socket address must be the same, or 954 * sctp_bindx() will fail, setting errno to EINVAL. 955 * 956 * The flags parameter is formed from the bitwise OR of zero or more of 957 * the following currently defined flags: 958 * 959 * SCTP_BINDX_ADD_ADDR 960 * 961 * SCTP_BINDX_REM_ADDR 962 * 963 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 964 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 965 * addresses from the association. The two flags are mutually exclusive; 966 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 967 * not remove all addresses from an association; sctp_bindx() will 968 * reject such an attempt with EINVAL. 969 * 970 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 971 * additional addresses with an endpoint after calling bind(). Or use 972 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 973 * socket is associated with so that no new association accepted will be 974 * associated with those addresses. If the endpoint supports dynamic 975 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 976 * endpoint to send the appropriate message to the peer to change the 977 * peers address lists. 978 * 979 * Adding and removing addresses from a connected association is 980 * optional functionality. Implementations that do not support this 981 * functionality should return EOPNOTSUPP. 982 * 983 * Basically do nothing but copying the addresses from user to kernel 984 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 985 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 986 * from userspace. 987 * 988 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 989 * it. 990 * 991 * sk The sk of the socket 992 * addrs The pointer to the addresses 993 * addrssize Size of the addrs buffer 994 * op Operation to perform (add or remove, see the flags of 995 * sctp_bindx) 996 * 997 * Returns 0 if ok, <0 errno code on error. 998 */ 999 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 1000 int addrs_size, int op) 1001 { 1002 int err; 1003 int addrcnt = 0; 1004 int walk_size = 0; 1005 struct sockaddr *sa_addr; 1006 void *addr_buf = addrs; 1007 struct sctp_af *af; 1008 1009 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1010 __func__, sk, addr_buf, addrs_size, op); 1011 1012 if (unlikely(addrs_size <= 0)) 1013 return -EINVAL; 1014 1015 /* Walk through the addrs buffer and count the number of addresses. */ 1016 while (walk_size < addrs_size) { 1017 if (walk_size + sizeof(sa_family_t) > addrs_size) 1018 return -EINVAL; 1019 1020 sa_addr = addr_buf; 1021 af = sctp_get_af_specific(sa_addr->sa_family); 1022 1023 /* If the address family is not supported or if this address 1024 * causes the address buffer to overflow return EINVAL. 1025 */ 1026 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1027 return -EINVAL; 1028 addrcnt++; 1029 addr_buf += af->sockaddr_len; 1030 walk_size += af->sockaddr_len; 1031 } 1032 1033 /* Do the work. */ 1034 switch (op) { 1035 case SCTP_BINDX_ADD_ADDR: 1036 /* Allow security module to validate bindx addresses. */ 1037 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1038 addrs, addrs_size); 1039 if (err) 1040 return err; 1041 err = sctp_bindx_add(sk, addrs, addrcnt); 1042 if (err) 1043 return err; 1044 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1045 case SCTP_BINDX_REM_ADDR: 1046 err = sctp_bindx_rem(sk, addrs, addrcnt); 1047 if (err) 1048 return err; 1049 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1050 1051 default: 1052 return -EINVAL; 1053 } 1054 } 1055 1056 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1057 int addrlen) 1058 { 1059 int err; 1060 1061 lock_sock(sk); 1062 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1063 release_sock(sk); 1064 return err; 1065 } 1066 1067 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1068 const union sctp_addr *daddr, 1069 const struct sctp_initmsg *init, 1070 struct sctp_transport **tp) 1071 { 1072 struct sctp_association *asoc; 1073 struct sock *sk = ep->base.sk; 1074 struct net *net = sock_net(sk); 1075 enum sctp_scope scope; 1076 int err; 1077 1078 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1079 return -EADDRNOTAVAIL; 1080 1081 if (!ep->base.bind_addr.port) { 1082 if (sctp_autobind(sk)) 1083 return -EAGAIN; 1084 } else { 1085 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1086 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1087 return -EACCES; 1088 } 1089 1090 scope = sctp_scope(daddr); 1091 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1092 if (!asoc) 1093 return -ENOMEM; 1094 1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1096 if (err < 0) 1097 goto free; 1098 1099 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1100 if (!*tp) { 1101 err = -ENOMEM; 1102 goto free; 1103 } 1104 1105 if (!init) 1106 return 0; 1107 1108 if (init->sinit_num_ostreams) { 1109 __u16 outcnt = init->sinit_num_ostreams; 1110 1111 asoc->c.sinit_num_ostreams = outcnt; 1112 /* outcnt has been changed, need to re-init stream */ 1113 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1114 if (err) 1115 goto free; 1116 } 1117 1118 if (init->sinit_max_instreams) 1119 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1120 1121 if (init->sinit_max_attempts) 1122 asoc->max_init_attempts = init->sinit_max_attempts; 1123 1124 if (init->sinit_max_init_timeo) 1125 asoc->max_init_timeo = 1126 msecs_to_jiffies(init->sinit_max_init_timeo); 1127 1128 return 0; 1129 free: 1130 sctp_association_free(asoc); 1131 return err; 1132 } 1133 1134 static int sctp_connect_add_peer(struct sctp_association *asoc, 1135 union sctp_addr *daddr, int addr_len) 1136 { 1137 struct sctp_endpoint *ep = asoc->ep; 1138 struct sctp_association *old; 1139 struct sctp_transport *t; 1140 int err; 1141 1142 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1143 if (err) 1144 return err; 1145 1146 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1147 if (old && old != asoc) 1148 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1149 : -EALREADY; 1150 1151 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1152 return -EADDRNOTAVAIL; 1153 1154 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1155 if (!t) 1156 return -ENOMEM; 1157 1158 return 0; 1159 } 1160 1161 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1162 * 1163 * Common routine for handling connect() and sctp_connectx(). 1164 * Connect will come in with just a single address. 1165 */ 1166 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1167 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1168 { 1169 struct sctp_sock *sp = sctp_sk(sk); 1170 struct sctp_endpoint *ep = sp->ep; 1171 struct sctp_transport *transport; 1172 struct sctp_association *asoc; 1173 void *addr_buf = kaddrs; 1174 union sctp_addr *daddr; 1175 struct sctp_af *af; 1176 int walk_size, err; 1177 long timeo; 1178 1179 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1180 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1181 return -EISCONN; 1182 1183 daddr = addr_buf; 1184 af = sctp_get_af_specific(daddr->sa.sa_family); 1185 if (!af || af->sockaddr_len > addrs_size) 1186 return -EINVAL; 1187 1188 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1189 if (err) 1190 return err; 1191 1192 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1193 if (asoc) 1194 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1195 : -EALREADY; 1196 1197 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1198 if (err) 1199 return err; 1200 asoc = transport->asoc; 1201 1202 addr_buf += af->sockaddr_len; 1203 walk_size = af->sockaddr_len; 1204 while (walk_size < addrs_size) { 1205 err = -EINVAL; 1206 if (walk_size + sizeof(sa_family_t) > addrs_size) 1207 goto out_free; 1208 1209 daddr = addr_buf; 1210 af = sctp_get_af_specific(daddr->sa.sa_family); 1211 if (!af || af->sockaddr_len + walk_size > addrs_size) 1212 goto out_free; 1213 1214 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1215 goto out_free; 1216 1217 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1218 if (err) 1219 goto out_free; 1220 1221 addr_buf += af->sockaddr_len; 1222 walk_size += af->sockaddr_len; 1223 } 1224 1225 /* In case the user of sctp_connectx() wants an association 1226 * id back, assign one now. 1227 */ 1228 if (assoc_id) { 1229 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1230 if (err < 0) 1231 goto out_free; 1232 } 1233 1234 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1235 if (err < 0) 1236 goto out_free; 1237 1238 /* Initialize sk's dport and daddr for getpeername() */ 1239 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1240 sp->pf->to_sk_daddr(daddr, sk); 1241 sk->sk_err = 0; 1242 1243 if (assoc_id) 1244 *assoc_id = asoc->assoc_id; 1245 1246 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1247 return sctp_wait_for_connect(asoc, &timeo); 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 sctp_association_free(asoc); 1253 return err; 1254 } 1255 1256 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1257 * 1258 * API 8.9 1259 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1260 * sctp_assoc_t *asoc); 1261 * 1262 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1263 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1264 * or IPv6 addresses. 1265 * 1266 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1267 * Section 3.1.2 for this usage. 1268 * 1269 * addrs is a pointer to an array of one or more socket addresses. Each 1270 * address is contained in its appropriate structure (i.e. struct 1271 * sockaddr_in or struct sockaddr_in6) the family of the address type 1272 * must be used to distengish the address length (note that this 1273 * representation is termed a "packed array" of addresses). The caller 1274 * specifies the number of addresses in the array with addrcnt. 1275 * 1276 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1277 * the association id of the new association. On failure, sctp_connectx() 1278 * returns -1, and sets errno to the appropriate error code. The assoc_id 1279 * is not touched by the kernel. 1280 * 1281 * For SCTP, the port given in each socket address must be the same, or 1282 * sctp_connectx() will fail, setting errno to EINVAL. 1283 * 1284 * An application can use sctp_connectx to initiate an association with 1285 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1286 * allows a caller to specify multiple addresses at which a peer can be 1287 * reached. The way the SCTP stack uses the list of addresses to set up 1288 * the association is implementation dependent. This function only 1289 * specifies that the stack will try to make use of all the addresses in 1290 * the list when needed. 1291 * 1292 * Note that the list of addresses passed in is only used for setting up 1293 * the association. It does not necessarily equal the set of addresses 1294 * the peer uses for the resulting association. If the caller wants to 1295 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1296 * retrieve them after the association has been set up. 1297 * 1298 * Basically do nothing but copying the addresses from user to kernel 1299 * land and invoking either sctp_connectx(). This is used for tunneling 1300 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1301 * 1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1303 * it. 1304 * 1305 * sk The sk of the socket 1306 * addrs The pointer to the addresses 1307 * addrssize Size of the addrs buffer 1308 * 1309 * Returns >=0 if ok, <0 errno code on error. 1310 */ 1311 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1312 int addrs_size, sctp_assoc_t *assoc_id) 1313 { 1314 int err = 0, flags = 0; 1315 1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1317 __func__, sk, kaddrs, addrs_size); 1318 1319 /* make sure the 1st addr's sa_family is accessible later */ 1320 if (unlikely(addrs_size < sizeof(sa_family_t))) 1321 return -EINVAL; 1322 1323 /* Allow security module to validate connectx addresses. */ 1324 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1325 (struct sockaddr *)kaddrs, 1326 addrs_size); 1327 if (err) 1328 return err; 1329 1330 /* in-kernel sockets don't generally have a file allocated to them 1331 * if all they do is call sock_create_kern(). 1332 */ 1333 if (sk->sk_socket->file) 1334 flags = sk->sk_socket->file->f_flags; 1335 1336 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1337 } 1338 1339 /* 1340 * This is an older interface. It's kept for backward compatibility 1341 * to the option that doesn't provide association id. 1342 */ 1343 static int sctp_setsockopt_connectx_old(struct sock *sk, 1344 struct sockaddr *kaddrs, 1345 int addrs_size) 1346 { 1347 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1348 } 1349 1350 /* 1351 * New interface for the API. The since the API is done with a socket 1352 * option, to make it simple we feed back the association id is as a return 1353 * indication to the call. Error is always negative and association id is 1354 * always positive. 1355 */ 1356 static int sctp_setsockopt_connectx(struct sock *sk, 1357 struct sockaddr *kaddrs, 1358 int addrs_size) 1359 { 1360 sctp_assoc_t assoc_id = 0; 1361 int err = 0; 1362 1363 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1364 1365 if (err) 1366 return err; 1367 else 1368 return assoc_id; 1369 } 1370 1371 /* 1372 * New (hopefully final) interface for the API. 1373 * We use the sctp_getaddrs_old structure so that use-space library 1374 * can avoid any unnecessary allocations. The only different part 1375 * is that we store the actual length of the address buffer into the 1376 * addrs_num structure member. That way we can re-use the existing 1377 * code. 1378 */ 1379 #ifdef CONFIG_COMPAT 1380 struct compat_sctp_getaddrs_old { 1381 sctp_assoc_t assoc_id; 1382 s32 addr_num; 1383 compat_uptr_t addrs; /* struct sockaddr * */ 1384 }; 1385 #endif 1386 1387 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1388 char __user *optval, 1389 int __user *optlen) 1390 { 1391 struct sctp_getaddrs_old param; 1392 sctp_assoc_t assoc_id = 0; 1393 struct sockaddr *kaddrs; 1394 int err = 0; 1395 1396 #ifdef CONFIG_COMPAT 1397 if (in_compat_syscall()) { 1398 struct compat_sctp_getaddrs_old param32; 1399 1400 if (len < sizeof(param32)) 1401 return -EINVAL; 1402 if (copy_from_user(¶m32, optval, sizeof(param32))) 1403 return -EFAULT; 1404 1405 param.assoc_id = param32.assoc_id; 1406 param.addr_num = param32.addr_num; 1407 param.addrs = compat_ptr(param32.addrs); 1408 } else 1409 #endif 1410 { 1411 if (len < sizeof(param)) 1412 return -EINVAL; 1413 if (copy_from_user(¶m, optval, sizeof(param))) 1414 return -EFAULT; 1415 } 1416 1417 kaddrs = memdup_user(param.addrs, param.addr_num); 1418 if (IS_ERR(kaddrs)) 1419 return PTR_ERR(kaddrs); 1420 1421 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1422 kfree(kaddrs); 1423 if (err == 0 || err == -EINPROGRESS) { 1424 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1425 return -EFAULT; 1426 if (put_user(sizeof(assoc_id), optlen)) 1427 return -EFAULT; 1428 } 1429 1430 return err; 1431 } 1432 1433 /* API 3.1.4 close() - UDP Style Syntax 1434 * Applications use close() to perform graceful shutdown (as described in 1435 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1436 * by a UDP-style socket. 1437 * 1438 * The syntax is 1439 * 1440 * ret = close(int sd); 1441 * 1442 * sd - the socket descriptor of the associations to be closed. 1443 * 1444 * To gracefully shutdown a specific association represented by the 1445 * UDP-style socket, an application should use the sendmsg() call, 1446 * passing no user data, but including the appropriate flag in the 1447 * ancillary data (see Section xxxx). 1448 * 1449 * If sd in the close() call is a branched-off socket representing only 1450 * one association, the shutdown is performed on that association only. 1451 * 1452 * 4.1.6 close() - TCP Style Syntax 1453 * 1454 * Applications use close() to gracefully close down an association. 1455 * 1456 * The syntax is: 1457 * 1458 * int close(int sd); 1459 * 1460 * sd - the socket descriptor of the association to be closed. 1461 * 1462 * After an application calls close() on a socket descriptor, no further 1463 * socket operations will succeed on that descriptor. 1464 * 1465 * API 7.1.4 SO_LINGER 1466 * 1467 * An application using the TCP-style socket can use this option to 1468 * perform the SCTP ABORT primitive. The linger option structure is: 1469 * 1470 * struct linger { 1471 * int l_onoff; // option on/off 1472 * int l_linger; // linger time 1473 * }; 1474 * 1475 * To enable the option, set l_onoff to 1. If the l_linger value is set 1476 * to 0, calling close() is the same as the ABORT primitive. If the 1477 * value is set to a negative value, the setsockopt() call will return 1478 * an error. If the value is set to a positive value linger_time, the 1479 * close() can be blocked for at most linger_time ms. If the graceful 1480 * shutdown phase does not finish during this period, close() will 1481 * return but the graceful shutdown phase continues in the system. 1482 */ 1483 static void sctp_close(struct sock *sk, long timeout) 1484 { 1485 struct net *net = sock_net(sk); 1486 struct sctp_endpoint *ep; 1487 struct sctp_association *asoc; 1488 struct list_head *pos, *temp; 1489 unsigned int data_was_unread; 1490 1491 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1492 1493 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1494 sk->sk_shutdown = SHUTDOWN_MASK; 1495 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1496 1497 ep = sctp_sk(sk)->ep; 1498 1499 /* Clean up any skbs sitting on the receive queue. */ 1500 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1501 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1502 1503 /* Walk all associations on an endpoint. */ 1504 list_for_each_safe(pos, temp, &ep->asocs) { 1505 asoc = list_entry(pos, struct sctp_association, asocs); 1506 1507 if (sctp_style(sk, TCP)) { 1508 /* A closed association can still be in the list if 1509 * it belongs to a TCP-style listening socket that is 1510 * not yet accepted. If so, free it. If not, send an 1511 * ABORT or SHUTDOWN based on the linger options. 1512 */ 1513 if (sctp_state(asoc, CLOSED)) { 1514 sctp_association_free(asoc); 1515 continue; 1516 } 1517 } 1518 1519 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1520 !skb_queue_empty(&asoc->ulpq.reasm) || 1521 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1523 struct sctp_chunk *chunk; 1524 1525 chunk = sctp_make_abort_user(asoc, NULL, 0); 1526 sctp_primitive_ABORT(net, asoc, chunk); 1527 } else 1528 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1529 } 1530 1531 /* On a TCP-style socket, block for at most linger_time if set. */ 1532 if (sctp_style(sk, TCP) && timeout) 1533 sctp_wait_for_close(sk, timeout); 1534 1535 /* This will run the backlog queue. */ 1536 release_sock(sk); 1537 1538 /* Supposedly, no process has access to the socket, but 1539 * the net layers still may. 1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1541 * held and that should be grabbed before socket lock. 1542 */ 1543 spin_lock_bh(&net->sctp.addr_wq_lock); 1544 bh_lock_sock_nested(sk); 1545 1546 /* Hold the sock, since sk_common_release() will put sock_put() 1547 * and we have just a little more cleanup. 1548 */ 1549 sock_hold(sk); 1550 sk_common_release(sk); 1551 1552 bh_unlock_sock(sk); 1553 spin_unlock_bh(&net->sctp.addr_wq_lock); 1554 1555 sock_put(sk); 1556 } 1557 1558 /* Handle EPIPE error. */ 1559 static int sctp_error(struct sock *sk, int flags, int err) 1560 { 1561 if (err == -EPIPE) 1562 err = sock_error(sk) ? : -EPIPE; 1563 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1564 send_sig(SIGPIPE, current, 0); 1565 return err; 1566 } 1567 1568 /* API 3.1.3 sendmsg() - UDP Style Syntax 1569 * 1570 * An application uses sendmsg() and recvmsg() calls to transmit data to 1571 * and receive data from its peer. 1572 * 1573 * ssize_t sendmsg(int socket, const struct msghdr *message, 1574 * int flags); 1575 * 1576 * socket - the socket descriptor of the endpoint. 1577 * message - pointer to the msghdr structure which contains a single 1578 * user message and possibly some ancillary data. 1579 * 1580 * See Section 5 for complete description of the data 1581 * structures. 1582 * 1583 * flags - flags sent or received with the user message, see Section 1584 * 5 for complete description of the flags. 1585 * 1586 * Note: This function could use a rewrite especially when explicit 1587 * connect support comes in. 1588 */ 1589 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1590 1591 static int sctp_msghdr_parse(const struct msghdr *msg, 1592 struct sctp_cmsgs *cmsgs); 1593 1594 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1595 struct sctp_sndrcvinfo *srinfo, 1596 const struct msghdr *msg, size_t msg_len) 1597 { 1598 __u16 sflags; 1599 int err; 1600 1601 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1602 return -EPIPE; 1603 1604 if (msg_len > sk->sk_sndbuf) 1605 return -EMSGSIZE; 1606 1607 memset(cmsgs, 0, sizeof(*cmsgs)); 1608 err = sctp_msghdr_parse(msg, cmsgs); 1609 if (err) { 1610 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1611 return err; 1612 } 1613 1614 memset(srinfo, 0, sizeof(*srinfo)); 1615 if (cmsgs->srinfo) { 1616 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1617 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1618 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1619 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1620 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1621 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1622 } 1623 1624 if (cmsgs->sinfo) { 1625 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1626 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1627 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1628 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1629 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1630 } 1631 1632 if (cmsgs->prinfo) { 1633 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1634 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1635 cmsgs->prinfo->pr_policy); 1636 } 1637 1638 sflags = srinfo->sinfo_flags; 1639 if (!sflags && msg_len) 1640 return 0; 1641 1642 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1643 return -EINVAL; 1644 1645 if (((sflags & SCTP_EOF) && msg_len > 0) || 1646 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1647 return -EINVAL; 1648 1649 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1650 return -EINVAL; 1651 1652 return 0; 1653 } 1654 1655 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1656 struct sctp_cmsgs *cmsgs, 1657 union sctp_addr *daddr, 1658 struct sctp_transport **tp) 1659 { 1660 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1661 struct sctp_association *asoc; 1662 struct cmsghdr *cmsg; 1663 __be32 flowinfo = 0; 1664 struct sctp_af *af; 1665 int err; 1666 1667 *tp = NULL; 1668 1669 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1670 return -EINVAL; 1671 1672 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1673 sctp_sstate(sk, CLOSING))) 1674 return -EADDRNOTAVAIL; 1675 1676 /* Label connection socket for first association 1-to-many 1677 * style for client sequence socket()->sendmsg(). This 1678 * needs to be done before sctp_assoc_add_peer() as that will 1679 * set up the initial packet that needs to account for any 1680 * security ip options (CIPSO/CALIPSO) added to the packet. 1681 */ 1682 af = sctp_get_af_specific(daddr->sa.sa_family); 1683 if (!af) 1684 return -EINVAL; 1685 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1686 (struct sockaddr *)daddr, 1687 af->sockaddr_len); 1688 if (err < 0) 1689 return err; 1690 1691 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1692 if (err) 1693 return err; 1694 asoc = (*tp)->asoc; 1695 1696 if (!cmsgs->addrs_msg) 1697 return 0; 1698 1699 if (daddr->sa.sa_family == AF_INET6) 1700 flowinfo = daddr->v6.sin6_flowinfo; 1701 1702 /* sendv addr list parse */ 1703 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1704 union sctp_addr _daddr; 1705 int dlen; 1706 1707 if (cmsg->cmsg_level != IPPROTO_SCTP || 1708 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1709 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1710 continue; 1711 1712 daddr = &_daddr; 1713 memset(daddr, 0, sizeof(*daddr)); 1714 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1715 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1716 if (dlen < sizeof(struct in_addr)) { 1717 err = -EINVAL; 1718 goto free; 1719 } 1720 1721 dlen = sizeof(struct in_addr); 1722 daddr->v4.sin_family = AF_INET; 1723 daddr->v4.sin_port = htons(asoc->peer.port); 1724 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1725 } else { 1726 if (dlen < sizeof(struct in6_addr)) { 1727 err = -EINVAL; 1728 goto free; 1729 } 1730 1731 dlen = sizeof(struct in6_addr); 1732 daddr->v6.sin6_flowinfo = flowinfo; 1733 daddr->v6.sin6_family = AF_INET6; 1734 daddr->v6.sin6_port = htons(asoc->peer.port); 1735 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1736 } 1737 1738 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1739 if (err) 1740 goto free; 1741 } 1742 1743 return 0; 1744 1745 free: 1746 sctp_association_free(asoc); 1747 return err; 1748 } 1749 1750 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1751 __u16 sflags, struct msghdr *msg, 1752 size_t msg_len) 1753 { 1754 struct sock *sk = asoc->base.sk; 1755 struct net *net = sock_net(sk); 1756 1757 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1758 return -EPIPE; 1759 1760 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1761 !sctp_state(asoc, ESTABLISHED)) 1762 return 0; 1763 1764 if (sflags & SCTP_EOF) { 1765 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1766 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1767 1768 return 0; 1769 } 1770 1771 if (sflags & SCTP_ABORT) { 1772 struct sctp_chunk *chunk; 1773 1774 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1775 if (!chunk) 1776 return -ENOMEM; 1777 1778 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1779 sctp_primitive_ABORT(net, asoc, chunk); 1780 iov_iter_revert(&msg->msg_iter, msg_len); 1781 1782 return 0; 1783 } 1784 1785 return 1; 1786 } 1787 1788 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1789 struct msghdr *msg, size_t msg_len, 1790 struct sctp_transport *transport, 1791 struct sctp_sndrcvinfo *sinfo) 1792 { 1793 struct sock *sk = asoc->base.sk; 1794 struct sctp_sock *sp = sctp_sk(sk); 1795 struct net *net = sock_net(sk); 1796 struct sctp_datamsg *datamsg; 1797 bool wait_connect = false; 1798 struct sctp_chunk *chunk; 1799 long timeo; 1800 int err; 1801 1802 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1803 err = -EINVAL; 1804 goto err; 1805 } 1806 1807 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1808 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1809 if (err) 1810 goto err; 1811 } 1812 1813 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1814 err = -EMSGSIZE; 1815 goto err; 1816 } 1817 1818 if (asoc->pmtu_pending) { 1819 if (sp->param_flags & SPP_PMTUD_ENABLE) 1820 sctp_assoc_sync_pmtu(asoc); 1821 asoc->pmtu_pending = 0; 1822 } 1823 1824 if (sctp_wspace(asoc) < (int)msg_len) 1825 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1826 1827 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1828 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1829 err = sctp_wait_for_sndbuf(asoc, transport, &timeo, msg_len); 1830 if (err) 1831 goto err; 1832 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1833 err = -EINVAL; 1834 goto err; 1835 } 1836 } 1837 1838 if (sctp_state(asoc, CLOSED)) { 1839 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1840 if (err) 1841 goto err; 1842 1843 if (asoc->ep->intl_enable) { 1844 timeo = sock_sndtimeo(sk, 0); 1845 err = sctp_wait_for_connect(asoc, &timeo); 1846 if (err) { 1847 err = -ESRCH; 1848 goto err; 1849 } 1850 } else { 1851 wait_connect = true; 1852 } 1853 1854 pr_debug("%s: we associated primitively\n", __func__); 1855 } 1856 1857 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1858 if (IS_ERR(datamsg)) { 1859 err = PTR_ERR(datamsg); 1860 goto err; 1861 } 1862 1863 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1864 1865 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1866 sctp_chunk_hold(chunk); 1867 sctp_set_owner_w(chunk); 1868 chunk->transport = transport; 1869 } 1870 1871 err = sctp_primitive_SEND(net, asoc, datamsg); 1872 if (err) { 1873 sctp_datamsg_free(datamsg); 1874 goto err; 1875 } 1876 1877 pr_debug("%s: we sent primitively\n", __func__); 1878 1879 sctp_datamsg_put(datamsg); 1880 1881 if (unlikely(wait_connect)) { 1882 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1883 sctp_wait_for_connect(asoc, &timeo); 1884 } 1885 1886 err = msg_len; 1887 1888 err: 1889 return err; 1890 } 1891 1892 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1893 const struct msghdr *msg, 1894 struct sctp_cmsgs *cmsgs) 1895 { 1896 union sctp_addr *daddr = NULL; 1897 int err; 1898 1899 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1900 int len = msg->msg_namelen; 1901 1902 if (len > sizeof(*daddr)) 1903 len = sizeof(*daddr); 1904 1905 daddr = (union sctp_addr *)msg->msg_name; 1906 1907 err = sctp_verify_addr(sk, daddr, len); 1908 if (err) 1909 return ERR_PTR(err); 1910 } 1911 1912 return daddr; 1913 } 1914 1915 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1916 struct sctp_sndrcvinfo *sinfo, 1917 struct sctp_cmsgs *cmsgs) 1918 { 1919 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1920 sinfo->sinfo_stream = asoc->default_stream; 1921 sinfo->sinfo_ppid = asoc->default_ppid; 1922 sinfo->sinfo_context = asoc->default_context; 1923 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1924 1925 if (!cmsgs->prinfo) 1926 sinfo->sinfo_flags = asoc->default_flags; 1927 } 1928 1929 if (!cmsgs->srinfo && !cmsgs->prinfo) 1930 sinfo->sinfo_timetolive = asoc->default_timetolive; 1931 1932 if (cmsgs->authinfo) { 1933 /* Reuse sinfo_tsn to indicate that authinfo was set and 1934 * sinfo_ssn to save the keyid on tx path. 1935 */ 1936 sinfo->sinfo_tsn = 1; 1937 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1938 } 1939 } 1940 1941 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1942 { 1943 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1944 struct sctp_transport *transport = NULL; 1945 struct sctp_sndrcvinfo _sinfo, *sinfo; 1946 struct sctp_association *asoc, *tmp; 1947 struct sctp_cmsgs cmsgs; 1948 union sctp_addr *daddr; 1949 bool new = false; 1950 __u16 sflags; 1951 int err; 1952 1953 /* Parse and get snd_info */ 1954 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1955 if (err) 1956 goto out; 1957 1958 sinfo = &_sinfo; 1959 sflags = sinfo->sinfo_flags; 1960 1961 /* Get daddr from msg */ 1962 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1963 if (IS_ERR(daddr)) { 1964 err = PTR_ERR(daddr); 1965 goto out; 1966 } 1967 1968 lock_sock(sk); 1969 1970 /* SCTP_SENDALL process */ 1971 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1972 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1973 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1974 msg_len); 1975 if (err == 0) 1976 continue; 1977 if (err < 0) 1978 goto out_unlock; 1979 1980 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1981 1982 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1983 NULL, sinfo); 1984 if (err < 0) 1985 goto out_unlock; 1986 1987 iov_iter_revert(&msg->msg_iter, err); 1988 } 1989 1990 goto out_unlock; 1991 } 1992 1993 /* Get and check or create asoc */ 1994 if (daddr) { 1995 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1996 if (asoc) { 1997 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1998 msg_len); 1999 if (err <= 0) 2000 goto out_unlock; 2001 } else { 2002 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2003 &transport); 2004 if (err) 2005 goto out_unlock; 2006 2007 asoc = transport->asoc; 2008 new = true; 2009 } 2010 2011 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2012 transport = NULL; 2013 } else { 2014 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2015 if (!asoc) { 2016 err = -EPIPE; 2017 goto out_unlock; 2018 } 2019 2020 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2021 if (err <= 0) 2022 goto out_unlock; 2023 } 2024 2025 /* Update snd_info with the asoc */ 2026 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2027 2028 /* Send msg to the asoc */ 2029 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2030 if (err < 0 && err != -ESRCH && new) 2031 sctp_association_free(asoc); 2032 2033 out_unlock: 2034 release_sock(sk); 2035 out: 2036 return sctp_error(sk, msg->msg_flags, err); 2037 } 2038 2039 /* This is an extended version of skb_pull() that removes the data from the 2040 * start of a skb even when data is spread across the list of skb's in the 2041 * frag_list. len specifies the total amount of data that needs to be removed. 2042 * when 'len' bytes could be removed from the skb, it returns 0. 2043 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2044 * could not be removed. 2045 */ 2046 static int sctp_skb_pull(struct sk_buff *skb, int len) 2047 { 2048 struct sk_buff *list; 2049 int skb_len = skb_headlen(skb); 2050 int rlen; 2051 2052 if (len <= skb_len) { 2053 __skb_pull(skb, len); 2054 return 0; 2055 } 2056 len -= skb_len; 2057 __skb_pull(skb, skb_len); 2058 2059 skb_walk_frags(skb, list) { 2060 rlen = sctp_skb_pull(list, len); 2061 skb->len -= (len-rlen); 2062 skb->data_len -= (len-rlen); 2063 2064 if (!rlen) 2065 return 0; 2066 2067 len = rlen; 2068 } 2069 2070 return len; 2071 } 2072 2073 /* API 3.1.3 recvmsg() - UDP Style Syntax 2074 * 2075 * ssize_t recvmsg(int socket, struct msghdr *message, 2076 * int flags); 2077 * 2078 * socket - the socket descriptor of the endpoint. 2079 * message - pointer to the msghdr structure which contains a single 2080 * user message and possibly some ancillary data. 2081 * 2082 * See Section 5 for complete description of the data 2083 * structures. 2084 * 2085 * flags - flags sent or received with the user message, see Section 2086 * 5 for complete description of the flags. 2087 */ 2088 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2089 int flags, int *addr_len) 2090 { 2091 struct sctp_ulpevent *event = NULL; 2092 struct sctp_sock *sp = sctp_sk(sk); 2093 struct sk_buff *skb, *head_skb; 2094 int copied; 2095 int err = 0; 2096 int skb_len; 2097 2098 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2099 __func__, sk, msg, len, flags, addr_len); 2100 2101 if (unlikely(flags & MSG_ERRQUEUE)) 2102 return inet_recv_error(sk, msg, len, addr_len); 2103 2104 if (sk_can_busy_loop(sk) && 2105 skb_queue_empty_lockless(&sk->sk_receive_queue)) 2106 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2107 2108 lock_sock(sk); 2109 2110 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2111 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2112 err = -ENOTCONN; 2113 goto out; 2114 } 2115 2116 skb = sctp_skb_recv_datagram(sk, flags, &err); 2117 if (!skb) 2118 goto out; 2119 2120 /* Get the total length of the skb including any skb's in the 2121 * frag_list. 2122 */ 2123 skb_len = skb->len; 2124 2125 copied = skb_len; 2126 if (copied > len) 2127 copied = len; 2128 2129 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2130 2131 event = sctp_skb2event(skb); 2132 2133 if (err) 2134 goto out_free; 2135 2136 if (event->chunk && event->chunk->head_skb) 2137 head_skb = event->chunk->head_skb; 2138 else 2139 head_skb = skb; 2140 sock_recv_cmsgs(msg, sk, head_skb); 2141 if (sctp_ulpevent_is_notification(event)) { 2142 msg->msg_flags |= MSG_NOTIFICATION; 2143 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2144 } else { 2145 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2146 } 2147 2148 /* Check if we allow SCTP_NXTINFO. */ 2149 if (sp->recvnxtinfo) 2150 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2151 /* Check if we allow SCTP_RCVINFO. */ 2152 if (sp->recvrcvinfo) 2153 sctp_ulpevent_read_rcvinfo(event, msg); 2154 /* Check if we allow SCTP_SNDRCVINFO. */ 2155 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2156 sctp_ulpevent_read_sndrcvinfo(event, msg); 2157 2158 err = copied; 2159 2160 /* If skb's length exceeds the user's buffer, update the skb and 2161 * push it back to the receive_queue so that the next call to 2162 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2163 */ 2164 if (skb_len > copied) { 2165 msg->msg_flags &= ~MSG_EOR; 2166 if (flags & MSG_PEEK) 2167 goto out_free; 2168 sctp_skb_pull(skb, copied); 2169 skb_queue_head(&sk->sk_receive_queue, skb); 2170 2171 /* When only partial message is copied to the user, increase 2172 * rwnd by that amount. If all the data in the skb is read, 2173 * rwnd is updated when the event is freed. 2174 */ 2175 if (!sctp_ulpevent_is_notification(event)) 2176 sctp_assoc_rwnd_increase(event->asoc, copied); 2177 goto out; 2178 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2179 (event->msg_flags & MSG_EOR)) 2180 msg->msg_flags |= MSG_EOR; 2181 else 2182 msg->msg_flags &= ~MSG_EOR; 2183 2184 out_free: 2185 if (flags & MSG_PEEK) { 2186 /* Release the skb reference acquired after peeking the skb in 2187 * sctp_skb_recv_datagram(). 2188 */ 2189 kfree_skb(skb); 2190 } else { 2191 /* Free the event which includes releasing the reference to 2192 * the owner of the skb, freeing the skb and updating the 2193 * rwnd. 2194 */ 2195 sctp_ulpevent_free(event); 2196 } 2197 out: 2198 release_sock(sk); 2199 return err; 2200 } 2201 2202 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2203 * 2204 * This option is a on/off flag. If enabled no SCTP message 2205 * fragmentation will be performed. Instead if a message being sent 2206 * exceeds the current PMTU size, the message will NOT be sent and 2207 * instead a error will be indicated to the user. 2208 */ 2209 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2210 unsigned int optlen) 2211 { 2212 if (optlen < sizeof(int)) 2213 return -EINVAL; 2214 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2215 return 0; 2216 } 2217 2218 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2219 unsigned int optlen) 2220 { 2221 struct sctp_sock *sp = sctp_sk(sk); 2222 struct sctp_association *asoc; 2223 int i; 2224 2225 if (optlen > sizeof(struct sctp_event_subscribe)) 2226 return -EINVAL; 2227 2228 for (i = 0; i < optlen; i++) 2229 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2230 sn_type[i]); 2231 2232 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2233 asoc->subscribe = sctp_sk(sk)->subscribe; 2234 2235 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2236 * if there is no data to be sent or retransmit, the stack will 2237 * immediately send up this notification. 2238 */ 2239 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2240 struct sctp_ulpevent *event; 2241 2242 asoc = sctp_id2assoc(sk, 0); 2243 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2244 event = sctp_ulpevent_make_sender_dry_event(asoc, 2245 GFP_USER | __GFP_NOWARN); 2246 if (!event) 2247 return -ENOMEM; 2248 2249 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2250 } 2251 } 2252 2253 return 0; 2254 } 2255 2256 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2257 * 2258 * This socket option is applicable to the UDP-style socket only. When 2259 * set it will cause associations that are idle for more than the 2260 * specified number of seconds to automatically close. An association 2261 * being idle is defined an association that has NOT sent or received 2262 * user data. The special value of '0' indicates that no automatic 2263 * close of any associations should be performed. The option expects an 2264 * integer defining the number of seconds of idle time before an 2265 * association is closed. 2266 */ 2267 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2268 unsigned int optlen) 2269 { 2270 struct sctp_sock *sp = sctp_sk(sk); 2271 struct net *net = sock_net(sk); 2272 2273 /* Applicable to UDP-style socket only */ 2274 if (sctp_style(sk, TCP)) 2275 return -EOPNOTSUPP; 2276 if (optlen != sizeof(int)) 2277 return -EINVAL; 2278 2279 sp->autoclose = *optval; 2280 if (sp->autoclose > net->sctp.max_autoclose) 2281 sp->autoclose = net->sctp.max_autoclose; 2282 2283 return 0; 2284 } 2285 2286 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2287 * 2288 * Applications can enable or disable heartbeats for any peer address of 2289 * an association, modify an address's heartbeat interval, force a 2290 * heartbeat to be sent immediately, and adjust the address's maximum 2291 * number of retransmissions sent before an address is considered 2292 * unreachable. The following structure is used to access and modify an 2293 * address's parameters: 2294 * 2295 * struct sctp_paddrparams { 2296 * sctp_assoc_t spp_assoc_id; 2297 * struct sockaddr_storage spp_address; 2298 * uint32_t spp_hbinterval; 2299 * uint16_t spp_pathmaxrxt; 2300 * uint32_t spp_pathmtu; 2301 * uint32_t spp_sackdelay; 2302 * uint32_t spp_flags; 2303 * uint32_t spp_ipv6_flowlabel; 2304 * uint8_t spp_dscp; 2305 * }; 2306 * 2307 * spp_assoc_id - (one-to-many style socket) This is filled in the 2308 * application, and identifies the association for 2309 * this query. 2310 * spp_address - This specifies which address is of interest. 2311 * spp_hbinterval - This contains the value of the heartbeat interval, 2312 * in milliseconds. If a value of zero 2313 * is present in this field then no changes are to 2314 * be made to this parameter. 2315 * spp_pathmaxrxt - This contains the maximum number of 2316 * retransmissions before this address shall be 2317 * considered unreachable. If a value of zero 2318 * is present in this field then no changes are to 2319 * be made to this parameter. 2320 * spp_pathmtu - When Path MTU discovery is disabled the value 2321 * specified here will be the "fixed" path mtu. 2322 * Note that if the spp_address field is empty 2323 * then all associations on this address will 2324 * have this fixed path mtu set upon them. 2325 * 2326 * spp_sackdelay - When delayed sack is enabled, this value specifies 2327 * the number of milliseconds that sacks will be delayed 2328 * for. This value will apply to all addresses of an 2329 * association if the spp_address field is empty. Note 2330 * also, that if delayed sack is enabled and this 2331 * value is set to 0, no change is made to the last 2332 * recorded delayed sack timer value. 2333 * 2334 * spp_flags - These flags are used to control various features 2335 * on an association. The flag field may contain 2336 * zero or more of the following options. 2337 * 2338 * SPP_HB_ENABLE - Enable heartbeats on the 2339 * specified address. Note that if the address 2340 * field is empty all addresses for the association 2341 * have heartbeats enabled upon them. 2342 * 2343 * SPP_HB_DISABLE - Disable heartbeats on the 2344 * speicifed address. Note that if the address 2345 * field is empty all addresses for the association 2346 * will have their heartbeats disabled. Note also 2347 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2348 * mutually exclusive, only one of these two should 2349 * be specified. Enabling both fields will have 2350 * undetermined results. 2351 * 2352 * SPP_HB_DEMAND - Request a user initiated heartbeat 2353 * to be made immediately. 2354 * 2355 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2356 * heartbeat delayis to be set to the value of 0 2357 * milliseconds. 2358 * 2359 * SPP_PMTUD_ENABLE - This field will enable PMTU 2360 * discovery upon the specified address. Note that 2361 * if the address feild is empty then all addresses 2362 * on the association are effected. 2363 * 2364 * SPP_PMTUD_DISABLE - This field will disable PMTU 2365 * discovery upon the specified address. Note that 2366 * if the address feild is empty then all addresses 2367 * on the association are effected. Not also that 2368 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2369 * exclusive. Enabling both will have undetermined 2370 * results. 2371 * 2372 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2373 * on delayed sack. The time specified in spp_sackdelay 2374 * is used to specify the sack delay for this address. Note 2375 * that if spp_address is empty then all addresses will 2376 * enable delayed sack and take on the sack delay 2377 * value specified in spp_sackdelay. 2378 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2379 * off delayed sack. If the spp_address field is blank then 2380 * delayed sack is disabled for the entire association. Note 2381 * also that this field is mutually exclusive to 2382 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2383 * results. 2384 * 2385 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2386 * setting of the IPV6 flow label value. The value is 2387 * contained in the spp_ipv6_flowlabel field. 2388 * Upon retrieval, this flag will be set to indicate that 2389 * the spp_ipv6_flowlabel field has a valid value returned. 2390 * If a specific destination address is set (in the 2391 * spp_address field), then the value returned is that of 2392 * the address. If just an association is specified (and 2393 * no address), then the association's default flow label 2394 * is returned. If neither an association nor a destination 2395 * is specified, then the socket's default flow label is 2396 * returned. For non-IPv6 sockets, this flag will be left 2397 * cleared. 2398 * 2399 * SPP_DSCP: Setting this flag enables the setting of the 2400 * Differentiated Services Code Point (DSCP) value 2401 * associated with either the association or a specific 2402 * address. The value is obtained in the spp_dscp field. 2403 * Upon retrieval, this flag will be set to indicate that 2404 * the spp_dscp field has a valid value returned. If a 2405 * specific destination address is set when called (in the 2406 * spp_address field), then that specific destination 2407 * address's DSCP value is returned. If just an association 2408 * is specified, then the association's default DSCP is 2409 * returned. If neither an association nor a destination is 2410 * specified, then the socket's default DSCP is returned. 2411 * 2412 * spp_ipv6_flowlabel 2413 * - This field is used in conjunction with the 2414 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2415 * The 20 least significant bits are used for the flow 2416 * label. This setting has precedence over any IPv6-layer 2417 * setting. 2418 * 2419 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2420 * and contains the DSCP. The 6 most significant bits are 2421 * used for the DSCP. This setting has precedence over any 2422 * IPv4- or IPv6- layer setting. 2423 */ 2424 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2425 struct sctp_transport *trans, 2426 struct sctp_association *asoc, 2427 struct sctp_sock *sp, 2428 int hb_change, 2429 int pmtud_change, 2430 int sackdelay_change) 2431 { 2432 int error; 2433 2434 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2435 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2436 trans->asoc, trans); 2437 if (error) 2438 return error; 2439 } 2440 2441 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2442 * this field is ignored. Note also that a value of zero indicates 2443 * the current setting should be left unchanged. 2444 */ 2445 if (params->spp_flags & SPP_HB_ENABLE) { 2446 2447 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2448 * set. This lets us use 0 value when this flag 2449 * is set. 2450 */ 2451 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2452 params->spp_hbinterval = 0; 2453 2454 if (params->spp_hbinterval || 2455 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2456 if (trans) { 2457 trans->hbinterval = 2458 msecs_to_jiffies(params->spp_hbinterval); 2459 sctp_transport_reset_hb_timer(trans); 2460 } else if (asoc) { 2461 asoc->hbinterval = 2462 msecs_to_jiffies(params->spp_hbinterval); 2463 } else { 2464 sp->hbinterval = params->spp_hbinterval; 2465 } 2466 } 2467 } 2468 2469 if (hb_change) { 2470 if (trans) { 2471 trans->param_flags = 2472 (trans->param_flags & ~SPP_HB) | hb_change; 2473 } else if (asoc) { 2474 asoc->param_flags = 2475 (asoc->param_flags & ~SPP_HB) | hb_change; 2476 } else { 2477 sp->param_flags = 2478 (sp->param_flags & ~SPP_HB) | hb_change; 2479 } 2480 } 2481 2482 /* When Path MTU discovery is disabled the value specified here will 2483 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2484 * include the flag SPP_PMTUD_DISABLE for this field to have any 2485 * effect). 2486 */ 2487 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2488 if (trans) { 2489 trans->pathmtu = params->spp_pathmtu; 2490 sctp_assoc_sync_pmtu(asoc); 2491 } else if (asoc) { 2492 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2493 } else { 2494 sp->pathmtu = params->spp_pathmtu; 2495 } 2496 } 2497 2498 if (pmtud_change) { 2499 if (trans) { 2500 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2501 (params->spp_flags & SPP_PMTUD_ENABLE); 2502 trans->param_flags = 2503 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2504 if (update) { 2505 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2506 sctp_assoc_sync_pmtu(asoc); 2507 } 2508 sctp_transport_pl_reset(trans); 2509 } else if (asoc) { 2510 asoc->param_flags = 2511 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2512 } else { 2513 sp->param_flags = 2514 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2515 } 2516 } 2517 2518 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2519 * value of this field is ignored. Note also that a value of zero 2520 * indicates the current setting should be left unchanged. 2521 */ 2522 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2523 if (trans) { 2524 trans->sackdelay = 2525 msecs_to_jiffies(params->spp_sackdelay); 2526 } else if (asoc) { 2527 asoc->sackdelay = 2528 msecs_to_jiffies(params->spp_sackdelay); 2529 } else { 2530 sp->sackdelay = params->spp_sackdelay; 2531 } 2532 } 2533 2534 if (sackdelay_change) { 2535 if (trans) { 2536 trans->param_flags = 2537 (trans->param_flags & ~SPP_SACKDELAY) | 2538 sackdelay_change; 2539 } else if (asoc) { 2540 asoc->param_flags = 2541 (asoc->param_flags & ~SPP_SACKDELAY) | 2542 sackdelay_change; 2543 } else { 2544 sp->param_flags = 2545 (sp->param_flags & ~SPP_SACKDELAY) | 2546 sackdelay_change; 2547 } 2548 } 2549 2550 /* Note that a value of zero indicates the current setting should be 2551 left unchanged. 2552 */ 2553 if (params->spp_pathmaxrxt) { 2554 if (trans) { 2555 trans->pathmaxrxt = params->spp_pathmaxrxt; 2556 } else if (asoc) { 2557 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2558 } else { 2559 sp->pathmaxrxt = params->spp_pathmaxrxt; 2560 } 2561 } 2562 2563 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2564 if (trans) { 2565 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2566 trans->flowlabel = params->spp_ipv6_flowlabel & 2567 SCTP_FLOWLABEL_VAL_MASK; 2568 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2569 } 2570 } else if (asoc) { 2571 struct sctp_transport *t; 2572 2573 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2574 transports) { 2575 if (t->ipaddr.sa.sa_family != AF_INET6) 2576 continue; 2577 t->flowlabel = params->spp_ipv6_flowlabel & 2578 SCTP_FLOWLABEL_VAL_MASK; 2579 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2580 } 2581 asoc->flowlabel = params->spp_ipv6_flowlabel & 2582 SCTP_FLOWLABEL_VAL_MASK; 2583 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2584 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2585 sp->flowlabel = params->spp_ipv6_flowlabel & 2586 SCTP_FLOWLABEL_VAL_MASK; 2587 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2588 } 2589 } 2590 2591 if (params->spp_flags & SPP_DSCP) { 2592 if (trans) { 2593 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2594 trans->dscp |= SCTP_DSCP_SET_MASK; 2595 } else if (asoc) { 2596 struct sctp_transport *t; 2597 2598 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2599 transports) { 2600 t->dscp = params->spp_dscp & 2601 SCTP_DSCP_VAL_MASK; 2602 t->dscp |= SCTP_DSCP_SET_MASK; 2603 } 2604 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2605 asoc->dscp |= SCTP_DSCP_SET_MASK; 2606 } else { 2607 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2608 sp->dscp |= SCTP_DSCP_SET_MASK; 2609 } 2610 } 2611 2612 return 0; 2613 } 2614 2615 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2616 struct sctp_paddrparams *params, 2617 unsigned int optlen) 2618 { 2619 struct sctp_transport *trans = NULL; 2620 struct sctp_association *asoc = NULL; 2621 struct sctp_sock *sp = sctp_sk(sk); 2622 int error; 2623 int hb_change, pmtud_change, sackdelay_change; 2624 2625 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2626 spp_ipv6_flowlabel), 4)) { 2627 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2628 return -EINVAL; 2629 } else if (optlen != sizeof(*params)) { 2630 return -EINVAL; 2631 } 2632 2633 /* Validate flags and value parameters. */ 2634 hb_change = params->spp_flags & SPP_HB; 2635 pmtud_change = params->spp_flags & SPP_PMTUD; 2636 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2637 2638 if (hb_change == SPP_HB || 2639 pmtud_change == SPP_PMTUD || 2640 sackdelay_change == SPP_SACKDELAY || 2641 params->spp_sackdelay > 500 || 2642 (params->spp_pathmtu && 2643 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2644 return -EINVAL; 2645 2646 /* If an address other than INADDR_ANY is specified, and 2647 * no transport is found, then the request is invalid. 2648 */ 2649 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2650 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2651 params->spp_assoc_id); 2652 if (!trans) 2653 return -EINVAL; 2654 } 2655 2656 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2657 * socket is a one to many style socket, and an association 2658 * was not found, then the id was invalid. 2659 */ 2660 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2661 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2662 sctp_style(sk, UDP)) 2663 return -EINVAL; 2664 2665 /* Heartbeat demand can only be sent on a transport or 2666 * association, but not a socket. 2667 */ 2668 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2669 return -EINVAL; 2670 2671 /* Process parameters. */ 2672 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2673 hb_change, pmtud_change, 2674 sackdelay_change); 2675 2676 if (error) 2677 return error; 2678 2679 /* If changes are for association, also apply parameters to each 2680 * transport. 2681 */ 2682 if (!trans && asoc) { 2683 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2684 transports) { 2685 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2686 hb_change, pmtud_change, 2687 sackdelay_change); 2688 } 2689 } 2690 2691 return 0; 2692 } 2693 2694 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2695 { 2696 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2697 } 2698 2699 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2700 { 2701 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2702 } 2703 2704 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2705 struct sctp_association *asoc) 2706 { 2707 struct sctp_transport *trans; 2708 2709 if (params->sack_delay) { 2710 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2711 asoc->param_flags = 2712 sctp_spp_sackdelay_enable(asoc->param_flags); 2713 } 2714 if (params->sack_freq == 1) { 2715 asoc->param_flags = 2716 sctp_spp_sackdelay_disable(asoc->param_flags); 2717 } else if (params->sack_freq > 1) { 2718 asoc->sackfreq = params->sack_freq; 2719 asoc->param_flags = 2720 sctp_spp_sackdelay_enable(asoc->param_flags); 2721 } 2722 2723 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2724 transports) { 2725 if (params->sack_delay) { 2726 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2727 trans->param_flags = 2728 sctp_spp_sackdelay_enable(trans->param_flags); 2729 } 2730 if (params->sack_freq == 1) { 2731 trans->param_flags = 2732 sctp_spp_sackdelay_disable(trans->param_flags); 2733 } else if (params->sack_freq > 1) { 2734 trans->sackfreq = params->sack_freq; 2735 trans->param_flags = 2736 sctp_spp_sackdelay_enable(trans->param_flags); 2737 } 2738 } 2739 } 2740 2741 /* 2742 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2743 * 2744 * This option will effect the way delayed acks are performed. This 2745 * option allows you to get or set the delayed ack time, in 2746 * milliseconds. It also allows changing the delayed ack frequency. 2747 * Changing the frequency to 1 disables the delayed sack algorithm. If 2748 * the assoc_id is 0, then this sets or gets the endpoints default 2749 * values. If the assoc_id field is non-zero, then the set or get 2750 * effects the specified association for the one to many model (the 2751 * assoc_id field is ignored by the one to one model). Note that if 2752 * sack_delay or sack_freq are 0 when setting this option, then the 2753 * current values will remain unchanged. 2754 * 2755 * struct sctp_sack_info { 2756 * sctp_assoc_t sack_assoc_id; 2757 * uint32_t sack_delay; 2758 * uint32_t sack_freq; 2759 * }; 2760 * 2761 * sack_assoc_id - This parameter, indicates which association the user 2762 * is performing an action upon. Note that if this field's value is 2763 * zero then the endpoints default value is changed (effecting future 2764 * associations only). 2765 * 2766 * sack_delay - This parameter contains the number of milliseconds that 2767 * the user is requesting the delayed ACK timer be set to. Note that 2768 * this value is defined in the standard to be between 200 and 500 2769 * milliseconds. 2770 * 2771 * sack_freq - This parameter contains the number of packets that must 2772 * be received before a sack is sent without waiting for the delay 2773 * timer to expire. The default value for this is 2, setting this 2774 * value to 1 will disable the delayed sack algorithm. 2775 */ 2776 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2777 struct sctp_sack_info *params) 2778 { 2779 struct sctp_sock *sp = sctp_sk(sk); 2780 struct sctp_association *asoc; 2781 2782 /* Validate value parameter. */ 2783 if (params->sack_delay > 500) 2784 return -EINVAL; 2785 2786 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2787 * socket is a one to many style socket, and an association 2788 * was not found, then the id was invalid. 2789 */ 2790 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2791 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2792 sctp_style(sk, UDP)) 2793 return -EINVAL; 2794 2795 if (asoc) { 2796 sctp_apply_asoc_delayed_ack(params, asoc); 2797 2798 return 0; 2799 } 2800 2801 if (sctp_style(sk, TCP)) 2802 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2803 2804 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2805 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2806 if (params->sack_delay) { 2807 sp->sackdelay = params->sack_delay; 2808 sp->param_flags = 2809 sctp_spp_sackdelay_enable(sp->param_flags); 2810 } 2811 if (params->sack_freq == 1) { 2812 sp->param_flags = 2813 sctp_spp_sackdelay_disable(sp->param_flags); 2814 } else if (params->sack_freq > 1) { 2815 sp->sackfreq = params->sack_freq; 2816 sp->param_flags = 2817 sctp_spp_sackdelay_enable(sp->param_flags); 2818 } 2819 } 2820 2821 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2822 params->sack_assoc_id == SCTP_ALL_ASSOC) 2823 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2824 sctp_apply_asoc_delayed_ack(params, asoc); 2825 2826 return 0; 2827 } 2828 2829 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2830 struct sctp_sack_info *params, 2831 unsigned int optlen) 2832 { 2833 if (optlen == sizeof(struct sctp_assoc_value)) { 2834 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2835 struct sctp_sack_info p; 2836 2837 pr_warn_ratelimited(DEPRECATED 2838 "%s (pid %d) " 2839 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2840 "Use struct sctp_sack_info instead\n", 2841 current->comm, task_pid_nr(current)); 2842 2843 p.sack_assoc_id = v->assoc_id; 2844 p.sack_delay = v->assoc_value; 2845 p.sack_freq = v->assoc_value ? 0 : 1; 2846 return __sctp_setsockopt_delayed_ack(sk, &p); 2847 } 2848 2849 if (optlen != sizeof(struct sctp_sack_info)) 2850 return -EINVAL; 2851 if (params->sack_delay == 0 && params->sack_freq == 0) 2852 return 0; 2853 return __sctp_setsockopt_delayed_ack(sk, params); 2854 } 2855 2856 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2857 * 2858 * Applications can specify protocol parameters for the default association 2859 * initialization. The option name argument to setsockopt() and getsockopt() 2860 * is SCTP_INITMSG. 2861 * 2862 * Setting initialization parameters is effective only on an unconnected 2863 * socket (for UDP-style sockets only future associations are effected 2864 * by the change). With TCP-style sockets, this option is inherited by 2865 * sockets derived from a listener socket. 2866 */ 2867 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2868 unsigned int optlen) 2869 { 2870 struct sctp_sock *sp = sctp_sk(sk); 2871 2872 if (optlen != sizeof(struct sctp_initmsg)) 2873 return -EINVAL; 2874 2875 if (sinit->sinit_num_ostreams) 2876 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2877 if (sinit->sinit_max_instreams) 2878 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2879 if (sinit->sinit_max_attempts) 2880 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2881 if (sinit->sinit_max_init_timeo) 2882 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2883 2884 return 0; 2885 } 2886 2887 /* 2888 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2889 * 2890 * Applications that wish to use the sendto() system call may wish to 2891 * specify a default set of parameters that would normally be supplied 2892 * through the inclusion of ancillary data. This socket option allows 2893 * such an application to set the default sctp_sndrcvinfo structure. 2894 * The application that wishes to use this socket option simply passes 2895 * in to this call the sctp_sndrcvinfo structure defined in Section 2896 * 5.2.2) The input parameters accepted by this call include 2897 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2898 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2899 * to this call if the caller is using the UDP model. 2900 */ 2901 static int sctp_setsockopt_default_send_param(struct sock *sk, 2902 struct sctp_sndrcvinfo *info, 2903 unsigned int optlen) 2904 { 2905 struct sctp_sock *sp = sctp_sk(sk); 2906 struct sctp_association *asoc; 2907 2908 if (optlen != sizeof(*info)) 2909 return -EINVAL; 2910 if (info->sinfo_flags & 2911 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2912 SCTP_ABORT | SCTP_EOF)) 2913 return -EINVAL; 2914 2915 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2916 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2917 sctp_style(sk, UDP)) 2918 return -EINVAL; 2919 2920 if (asoc) { 2921 asoc->default_stream = info->sinfo_stream; 2922 asoc->default_flags = info->sinfo_flags; 2923 asoc->default_ppid = info->sinfo_ppid; 2924 asoc->default_context = info->sinfo_context; 2925 asoc->default_timetolive = info->sinfo_timetolive; 2926 2927 return 0; 2928 } 2929 2930 if (sctp_style(sk, TCP)) 2931 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2932 2933 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2934 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2935 sp->default_stream = info->sinfo_stream; 2936 sp->default_flags = info->sinfo_flags; 2937 sp->default_ppid = info->sinfo_ppid; 2938 sp->default_context = info->sinfo_context; 2939 sp->default_timetolive = info->sinfo_timetolive; 2940 } 2941 2942 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2943 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2944 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2945 asoc->default_stream = info->sinfo_stream; 2946 asoc->default_flags = info->sinfo_flags; 2947 asoc->default_ppid = info->sinfo_ppid; 2948 asoc->default_context = info->sinfo_context; 2949 asoc->default_timetolive = info->sinfo_timetolive; 2950 } 2951 } 2952 2953 return 0; 2954 } 2955 2956 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2957 * (SCTP_DEFAULT_SNDINFO) 2958 */ 2959 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2960 struct sctp_sndinfo *info, 2961 unsigned int optlen) 2962 { 2963 struct sctp_sock *sp = sctp_sk(sk); 2964 struct sctp_association *asoc; 2965 2966 if (optlen != sizeof(*info)) 2967 return -EINVAL; 2968 if (info->snd_flags & 2969 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2970 SCTP_ABORT | SCTP_EOF)) 2971 return -EINVAL; 2972 2973 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2974 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2975 sctp_style(sk, UDP)) 2976 return -EINVAL; 2977 2978 if (asoc) { 2979 asoc->default_stream = info->snd_sid; 2980 asoc->default_flags = info->snd_flags; 2981 asoc->default_ppid = info->snd_ppid; 2982 asoc->default_context = info->snd_context; 2983 2984 return 0; 2985 } 2986 2987 if (sctp_style(sk, TCP)) 2988 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2989 2990 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2991 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2992 sp->default_stream = info->snd_sid; 2993 sp->default_flags = info->snd_flags; 2994 sp->default_ppid = info->snd_ppid; 2995 sp->default_context = info->snd_context; 2996 } 2997 2998 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2999 info->snd_assoc_id == SCTP_ALL_ASSOC) { 3000 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3001 asoc->default_stream = info->snd_sid; 3002 asoc->default_flags = info->snd_flags; 3003 asoc->default_ppid = info->snd_ppid; 3004 asoc->default_context = info->snd_context; 3005 } 3006 } 3007 3008 return 0; 3009 } 3010 3011 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3012 * 3013 * Requests that the local SCTP stack use the enclosed peer address as 3014 * the association primary. The enclosed address must be one of the 3015 * association peer's addresses. 3016 */ 3017 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3018 unsigned int optlen) 3019 { 3020 struct sctp_transport *trans; 3021 struct sctp_af *af; 3022 int err; 3023 3024 if (optlen != sizeof(struct sctp_prim)) 3025 return -EINVAL; 3026 3027 /* Allow security module to validate address but need address len. */ 3028 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3029 if (!af) 3030 return -EINVAL; 3031 3032 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3033 (struct sockaddr *)&prim->ssp_addr, 3034 af->sockaddr_len); 3035 if (err) 3036 return err; 3037 3038 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3039 if (!trans) 3040 return -EINVAL; 3041 3042 sctp_assoc_set_primary(trans->asoc, trans); 3043 3044 return 0; 3045 } 3046 3047 /* 3048 * 7.1.5 SCTP_NODELAY 3049 * 3050 * Turn on/off any Nagle-like algorithm. This means that packets are 3051 * generally sent as soon as possible and no unnecessary delays are 3052 * introduced, at the cost of more packets in the network. Expects an 3053 * integer boolean flag. 3054 */ 3055 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3056 unsigned int optlen) 3057 { 3058 if (optlen < sizeof(int)) 3059 return -EINVAL; 3060 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3061 return 0; 3062 } 3063 3064 /* 3065 * 3066 * 7.1.1 SCTP_RTOINFO 3067 * 3068 * The protocol parameters used to initialize and bound retransmission 3069 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3070 * and modify these parameters. 3071 * All parameters are time values, in milliseconds. A value of 0, when 3072 * modifying the parameters, indicates that the current value should not 3073 * be changed. 3074 * 3075 */ 3076 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3077 struct sctp_rtoinfo *rtoinfo, 3078 unsigned int optlen) 3079 { 3080 struct sctp_association *asoc; 3081 unsigned long rto_min, rto_max; 3082 struct sctp_sock *sp = sctp_sk(sk); 3083 3084 if (optlen != sizeof (struct sctp_rtoinfo)) 3085 return -EINVAL; 3086 3087 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3088 3089 /* Set the values to the specific association */ 3090 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3091 sctp_style(sk, UDP)) 3092 return -EINVAL; 3093 3094 rto_max = rtoinfo->srto_max; 3095 rto_min = rtoinfo->srto_min; 3096 3097 if (rto_max) 3098 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3099 else 3100 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3101 3102 if (rto_min) 3103 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3104 else 3105 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3106 3107 if (rto_min > rto_max) 3108 return -EINVAL; 3109 3110 if (asoc) { 3111 if (rtoinfo->srto_initial != 0) 3112 asoc->rto_initial = 3113 msecs_to_jiffies(rtoinfo->srto_initial); 3114 asoc->rto_max = rto_max; 3115 asoc->rto_min = rto_min; 3116 } else { 3117 /* If there is no association or the association-id = 0 3118 * set the values to the endpoint. 3119 */ 3120 if (rtoinfo->srto_initial != 0) 3121 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3122 sp->rtoinfo.srto_max = rto_max; 3123 sp->rtoinfo.srto_min = rto_min; 3124 } 3125 3126 return 0; 3127 } 3128 3129 /* 3130 * 3131 * 7.1.2 SCTP_ASSOCINFO 3132 * 3133 * This option is used to tune the maximum retransmission attempts 3134 * of the association. 3135 * Returns an error if the new association retransmission value is 3136 * greater than the sum of the retransmission value of the peer. 3137 * See [SCTP] for more information. 3138 * 3139 */ 3140 static int sctp_setsockopt_associnfo(struct sock *sk, 3141 struct sctp_assocparams *assocparams, 3142 unsigned int optlen) 3143 { 3144 3145 struct sctp_association *asoc; 3146 3147 if (optlen != sizeof(struct sctp_assocparams)) 3148 return -EINVAL; 3149 3150 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3151 3152 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3153 sctp_style(sk, UDP)) 3154 return -EINVAL; 3155 3156 /* Set the values to the specific association */ 3157 if (asoc) { 3158 if (assocparams->sasoc_asocmaxrxt != 0) { 3159 __u32 path_sum = 0; 3160 int paths = 0; 3161 struct sctp_transport *peer_addr; 3162 3163 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3164 transports) { 3165 path_sum += peer_addr->pathmaxrxt; 3166 paths++; 3167 } 3168 3169 /* Only validate asocmaxrxt if we have more than 3170 * one path/transport. We do this because path 3171 * retransmissions are only counted when we have more 3172 * then one path. 3173 */ 3174 if (paths > 1 && 3175 assocparams->sasoc_asocmaxrxt > path_sum) 3176 return -EINVAL; 3177 3178 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3179 } 3180 3181 if (assocparams->sasoc_cookie_life != 0) 3182 asoc->cookie_life = 3183 ms_to_ktime(assocparams->sasoc_cookie_life); 3184 } else { 3185 /* Set the values to the endpoint */ 3186 struct sctp_sock *sp = sctp_sk(sk); 3187 3188 if (assocparams->sasoc_asocmaxrxt != 0) 3189 sp->assocparams.sasoc_asocmaxrxt = 3190 assocparams->sasoc_asocmaxrxt; 3191 if (assocparams->sasoc_cookie_life != 0) 3192 sp->assocparams.sasoc_cookie_life = 3193 assocparams->sasoc_cookie_life; 3194 } 3195 return 0; 3196 } 3197 3198 /* 3199 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3200 * 3201 * This socket option is a boolean flag which turns on or off mapped V4 3202 * addresses. If this option is turned on and the socket is type 3203 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3204 * If this option is turned off, then no mapping will be done of V4 3205 * addresses and a user will receive both PF_INET6 and PF_INET type 3206 * addresses on the socket. 3207 */ 3208 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3209 unsigned int optlen) 3210 { 3211 struct sctp_sock *sp = sctp_sk(sk); 3212 3213 if (optlen < sizeof(int)) 3214 return -EINVAL; 3215 if (*val) 3216 sp->v4mapped = 1; 3217 else 3218 sp->v4mapped = 0; 3219 3220 return 0; 3221 } 3222 3223 /* 3224 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3225 * This option will get or set the maximum size to put in any outgoing 3226 * SCTP DATA chunk. If a message is larger than this size it will be 3227 * fragmented by SCTP into the specified size. Note that the underlying 3228 * SCTP implementation may fragment into smaller sized chunks when the 3229 * PMTU of the underlying association is smaller than the value set by 3230 * the user. The default value for this option is '0' which indicates 3231 * the user is NOT limiting fragmentation and only the PMTU will effect 3232 * SCTP's choice of DATA chunk size. Note also that values set larger 3233 * than the maximum size of an IP datagram will effectively let SCTP 3234 * control fragmentation (i.e. the same as setting this option to 0). 3235 * 3236 * The following structure is used to access and modify this parameter: 3237 * 3238 * struct sctp_assoc_value { 3239 * sctp_assoc_t assoc_id; 3240 * uint32_t assoc_value; 3241 * }; 3242 * 3243 * assoc_id: This parameter is ignored for one-to-one style sockets. 3244 * For one-to-many style sockets this parameter indicates which 3245 * association the user is performing an action upon. Note that if 3246 * this field's value is zero then the endpoints default value is 3247 * changed (effecting future associations only). 3248 * assoc_value: This parameter specifies the maximum size in bytes. 3249 */ 3250 static int sctp_setsockopt_maxseg(struct sock *sk, 3251 struct sctp_assoc_value *params, 3252 unsigned int optlen) 3253 { 3254 struct sctp_sock *sp = sctp_sk(sk); 3255 struct sctp_association *asoc; 3256 sctp_assoc_t assoc_id; 3257 int val; 3258 3259 if (optlen == sizeof(int)) { 3260 pr_warn_ratelimited(DEPRECATED 3261 "%s (pid %d) " 3262 "Use of int in maxseg socket option.\n" 3263 "Use struct sctp_assoc_value instead\n", 3264 current->comm, task_pid_nr(current)); 3265 assoc_id = SCTP_FUTURE_ASSOC; 3266 val = *(int *)params; 3267 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3268 assoc_id = params->assoc_id; 3269 val = params->assoc_value; 3270 } else { 3271 return -EINVAL; 3272 } 3273 3274 asoc = sctp_id2assoc(sk, assoc_id); 3275 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3276 sctp_style(sk, UDP)) 3277 return -EINVAL; 3278 3279 if (val) { 3280 int min_len, max_len; 3281 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3282 sizeof(struct sctp_data_chunk); 3283 3284 min_len = sctp_min_frag_point(sp, datasize); 3285 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3286 3287 if (val < min_len || val > max_len) 3288 return -EINVAL; 3289 } 3290 3291 if (asoc) { 3292 asoc->user_frag = val; 3293 sctp_assoc_update_frag_point(asoc); 3294 } else { 3295 sp->user_frag = val; 3296 } 3297 3298 return 0; 3299 } 3300 3301 3302 /* 3303 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3304 * 3305 * Requests that the peer mark the enclosed address as the association 3306 * primary. The enclosed address must be one of the association's 3307 * locally bound addresses. The following structure is used to make a 3308 * set primary request: 3309 */ 3310 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3311 struct sctp_setpeerprim *prim, 3312 unsigned int optlen) 3313 { 3314 struct sctp_sock *sp; 3315 struct sctp_association *asoc = NULL; 3316 struct sctp_chunk *chunk; 3317 struct sctp_af *af; 3318 int err; 3319 3320 sp = sctp_sk(sk); 3321 3322 if (!sp->ep->asconf_enable) 3323 return -EPERM; 3324 3325 if (optlen != sizeof(struct sctp_setpeerprim)) 3326 return -EINVAL; 3327 3328 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3329 if (!asoc) 3330 return -EINVAL; 3331 3332 if (!asoc->peer.asconf_capable) 3333 return -EPERM; 3334 3335 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3336 return -EPERM; 3337 3338 if (!sctp_state(asoc, ESTABLISHED)) 3339 return -ENOTCONN; 3340 3341 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3342 if (!af) 3343 return -EINVAL; 3344 3345 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3346 return -EADDRNOTAVAIL; 3347 3348 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3349 return -EADDRNOTAVAIL; 3350 3351 /* Allow security module to validate address. */ 3352 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3353 (struct sockaddr *)&prim->sspp_addr, 3354 af->sockaddr_len); 3355 if (err) 3356 return err; 3357 3358 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3359 chunk = sctp_make_asconf_set_prim(asoc, 3360 (union sctp_addr *)&prim->sspp_addr); 3361 if (!chunk) 3362 return -ENOMEM; 3363 3364 err = sctp_send_asconf(asoc, chunk); 3365 3366 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3367 3368 return err; 3369 } 3370 3371 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3372 struct sctp_setadaptation *adapt, 3373 unsigned int optlen) 3374 { 3375 if (optlen != sizeof(struct sctp_setadaptation)) 3376 return -EINVAL; 3377 3378 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3379 3380 return 0; 3381 } 3382 3383 /* 3384 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3385 * 3386 * The context field in the sctp_sndrcvinfo structure is normally only 3387 * used when a failed message is retrieved holding the value that was 3388 * sent down on the actual send call. This option allows the setting of 3389 * a default context on an association basis that will be received on 3390 * reading messages from the peer. This is especially helpful in the 3391 * one-2-many model for an application to keep some reference to an 3392 * internal state machine that is processing messages on the 3393 * association. Note that the setting of this value only effects 3394 * received messages from the peer and does not effect the value that is 3395 * saved with outbound messages. 3396 */ 3397 static int sctp_setsockopt_context(struct sock *sk, 3398 struct sctp_assoc_value *params, 3399 unsigned int optlen) 3400 { 3401 struct sctp_sock *sp = sctp_sk(sk); 3402 struct sctp_association *asoc; 3403 3404 if (optlen != sizeof(struct sctp_assoc_value)) 3405 return -EINVAL; 3406 3407 asoc = sctp_id2assoc(sk, params->assoc_id); 3408 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3409 sctp_style(sk, UDP)) 3410 return -EINVAL; 3411 3412 if (asoc) { 3413 asoc->default_rcv_context = params->assoc_value; 3414 3415 return 0; 3416 } 3417 3418 if (sctp_style(sk, TCP)) 3419 params->assoc_id = SCTP_FUTURE_ASSOC; 3420 3421 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3422 params->assoc_id == SCTP_ALL_ASSOC) 3423 sp->default_rcv_context = params->assoc_value; 3424 3425 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3426 params->assoc_id == SCTP_ALL_ASSOC) 3427 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3428 asoc->default_rcv_context = params->assoc_value; 3429 3430 return 0; 3431 } 3432 3433 /* 3434 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3435 * 3436 * This options will at a minimum specify if the implementation is doing 3437 * fragmented interleave. Fragmented interleave, for a one to many 3438 * socket, is when subsequent calls to receive a message may return 3439 * parts of messages from different associations. Some implementations 3440 * may allow you to turn this value on or off. If so, when turned off, 3441 * no fragment interleave will occur (which will cause a head of line 3442 * blocking amongst multiple associations sharing the same one to many 3443 * socket). When this option is turned on, then each receive call may 3444 * come from a different association (thus the user must receive data 3445 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3446 * association each receive belongs to. 3447 * 3448 * This option takes a boolean value. A non-zero value indicates that 3449 * fragmented interleave is on. A value of zero indicates that 3450 * fragmented interleave is off. 3451 * 3452 * Note that it is important that an implementation that allows this 3453 * option to be turned on, have it off by default. Otherwise an unaware 3454 * application using the one to many model may become confused and act 3455 * incorrectly. 3456 */ 3457 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3458 unsigned int optlen) 3459 { 3460 if (optlen != sizeof(int)) 3461 return -EINVAL; 3462 3463 sctp_sk(sk)->frag_interleave = !!*val; 3464 3465 if (!sctp_sk(sk)->frag_interleave) 3466 sctp_sk(sk)->ep->intl_enable = 0; 3467 3468 return 0; 3469 } 3470 3471 /* 3472 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3473 * (SCTP_PARTIAL_DELIVERY_POINT) 3474 * 3475 * This option will set or get the SCTP partial delivery point. This 3476 * point is the size of a message where the partial delivery API will be 3477 * invoked to help free up rwnd space for the peer. Setting this to a 3478 * lower value will cause partial deliveries to happen more often. The 3479 * calls argument is an integer that sets or gets the partial delivery 3480 * point. Note also that the call will fail if the user attempts to set 3481 * this value larger than the socket receive buffer size. 3482 * 3483 * Note that any single message having a length smaller than or equal to 3484 * the SCTP partial delivery point will be delivered in one single read 3485 * call as long as the user provided buffer is large enough to hold the 3486 * message. 3487 */ 3488 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3489 unsigned int optlen) 3490 { 3491 if (optlen != sizeof(u32)) 3492 return -EINVAL; 3493 3494 /* Note: We double the receive buffer from what the user sets 3495 * it to be, also initial rwnd is based on rcvbuf/2. 3496 */ 3497 if (*val > (sk->sk_rcvbuf >> 1)) 3498 return -EINVAL; 3499 3500 sctp_sk(sk)->pd_point = *val; 3501 3502 return 0; /* is this the right error code? */ 3503 } 3504 3505 /* 3506 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3507 * 3508 * This option will allow a user to change the maximum burst of packets 3509 * that can be emitted by this association. Note that the default value 3510 * is 4, and some implementations may restrict this setting so that it 3511 * can only be lowered. 3512 * 3513 * NOTE: This text doesn't seem right. Do this on a socket basis with 3514 * future associations inheriting the socket value. 3515 */ 3516 static int sctp_setsockopt_maxburst(struct sock *sk, 3517 struct sctp_assoc_value *params, 3518 unsigned int optlen) 3519 { 3520 struct sctp_sock *sp = sctp_sk(sk); 3521 struct sctp_association *asoc; 3522 sctp_assoc_t assoc_id; 3523 u32 assoc_value; 3524 3525 if (optlen == sizeof(int)) { 3526 pr_warn_ratelimited(DEPRECATED 3527 "%s (pid %d) " 3528 "Use of int in max_burst socket option deprecated.\n" 3529 "Use struct sctp_assoc_value instead\n", 3530 current->comm, task_pid_nr(current)); 3531 assoc_id = SCTP_FUTURE_ASSOC; 3532 assoc_value = *((int *)params); 3533 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3534 assoc_id = params->assoc_id; 3535 assoc_value = params->assoc_value; 3536 } else 3537 return -EINVAL; 3538 3539 asoc = sctp_id2assoc(sk, assoc_id); 3540 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3541 return -EINVAL; 3542 3543 if (asoc) { 3544 asoc->max_burst = assoc_value; 3545 3546 return 0; 3547 } 3548 3549 if (sctp_style(sk, TCP)) 3550 assoc_id = SCTP_FUTURE_ASSOC; 3551 3552 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3553 sp->max_burst = assoc_value; 3554 3555 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3556 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3557 asoc->max_burst = assoc_value; 3558 3559 return 0; 3560 } 3561 3562 /* 3563 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3564 * 3565 * This set option adds a chunk type that the user is requesting to be 3566 * received only in an authenticated way. Changes to the list of chunks 3567 * will only effect future associations on the socket. 3568 */ 3569 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3570 struct sctp_authchunk *val, 3571 unsigned int optlen) 3572 { 3573 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3574 3575 if (!ep->auth_enable) 3576 return -EACCES; 3577 3578 if (optlen != sizeof(struct sctp_authchunk)) 3579 return -EINVAL; 3580 3581 switch (val->sauth_chunk) { 3582 case SCTP_CID_INIT: 3583 case SCTP_CID_INIT_ACK: 3584 case SCTP_CID_SHUTDOWN_COMPLETE: 3585 case SCTP_CID_AUTH: 3586 return -EINVAL; 3587 } 3588 3589 /* add this chunk id to the endpoint */ 3590 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3591 } 3592 3593 /* 3594 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3595 * 3596 * This option gets or sets the list of HMAC algorithms that the local 3597 * endpoint requires the peer to use. 3598 */ 3599 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3600 struct sctp_hmacalgo *hmacs, 3601 unsigned int optlen) 3602 { 3603 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3604 u32 idents; 3605 3606 if (!ep->auth_enable) 3607 return -EACCES; 3608 3609 if (optlen < sizeof(struct sctp_hmacalgo)) 3610 return -EINVAL; 3611 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3612 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3613 3614 idents = hmacs->shmac_num_idents; 3615 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3616 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3617 return -EINVAL; 3618 3619 return sctp_auth_ep_set_hmacs(ep, hmacs); 3620 } 3621 3622 /* 3623 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3624 * 3625 * This option will set a shared secret key which is used to build an 3626 * association shared key. 3627 */ 3628 static int sctp_setsockopt_auth_key(struct sock *sk, 3629 struct sctp_authkey *authkey, 3630 unsigned int optlen) 3631 { 3632 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3633 struct sctp_association *asoc; 3634 int ret = -EINVAL; 3635 3636 if (optlen <= sizeof(struct sctp_authkey)) 3637 return -EINVAL; 3638 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3639 * this. 3640 */ 3641 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3642 3643 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3644 goto out; 3645 3646 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3647 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3648 sctp_style(sk, UDP)) 3649 goto out; 3650 3651 if (asoc) { 3652 ret = sctp_auth_set_key(ep, asoc, authkey); 3653 goto out; 3654 } 3655 3656 if (sctp_style(sk, TCP)) 3657 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3658 3659 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3660 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3661 ret = sctp_auth_set_key(ep, asoc, authkey); 3662 if (ret) 3663 goto out; 3664 } 3665 3666 ret = 0; 3667 3668 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3669 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3670 list_for_each_entry(asoc, &ep->asocs, asocs) { 3671 int res = sctp_auth_set_key(ep, asoc, authkey); 3672 3673 if (res && !ret) 3674 ret = res; 3675 } 3676 } 3677 3678 out: 3679 memzero_explicit(authkey, optlen); 3680 return ret; 3681 } 3682 3683 /* 3684 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3685 * 3686 * This option will get or set the active shared key to be used to build 3687 * the association shared key. 3688 */ 3689 static int sctp_setsockopt_active_key(struct sock *sk, 3690 struct sctp_authkeyid *val, 3691 unsigned int optlen) 3692 { 3693 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3694 struct sctp_association *asoc; 3695 int ret = 0; 3696 3697 if (optlen != sizeof(struct sctp_authkeyid)) 3698 return -EINVAL; 3699 3700 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3701 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3702 sctp_style(sk, UDP)) 3703 return -EINVAL; 3704 3705 if (asoc) 3706 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3707 3708 if (sctp_style(sk, TCP)) 3709 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3710 3711 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3712 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3713 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3714 if (ret) 3715 return ret; 3716 } 3717 3718 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3719 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3720 list_for_each_entry(asoc, &ep->asocs, asocs) { 3721 int res = sctp_auth_set_active_key(ep, asoc, 3722 val->scact_keynumber); 3723 3724 if (res && !ret) 3725 ret = res; 3726 } 3727 } 3728 3729 return ret; 3730 } 3731 3732 /* 3733 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3734 * 3735 * This set option will delete a shared secret key from use. 3736 */ 3737 static int sctp_setsockopt_del_key(struct sock *sk, 3738 struct sctp_authkeyid *val, 3739 unsigned int optlen) 3740 { 3741 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3742 struct sctp_association *asoc; 3743 int ret = 0; 3744 3745 if (optlen != sizeof(struct sctp_authkeyid)) 3746 return -EINVAL; 3747 3748 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3749 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3750 sctp_style(sk, UDP)) 3751 return -EINVAL; 3752 3753 if (asoc) 3754 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3755 3756 if (sctp_style(sk, TCP)) 3757 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3758 3759 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3760 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3761 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3762 if (ret) 3763 return ret; 3764 } 3765 3766 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3767 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3768 list_for_each_entry(asoc, &ep->asocs, asocs) { 3769 int res = sctp_auth_del_key_id(ep, asoc, 3770 val->scact_keynumber); 3771 3772 if (res && !ret) 3773 ret = res; 3774 } 3775 } 3776 3777 return ret; 3778 } 3779 3780 /* 3781 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3782 * 3783 * This set option will deactivate a shared secret key. 3784 */ 3785 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3786 struct sctp_authkeyid *val, 3787 unsigned int optlen) 3788 { 3789 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3790 struct sctp_association *asoc; 3791 int ret = 0; 3792 3793 if (optlen != sizeof(struct sctp_authkeyid)) 3794 return -EINVAL; 3795 3796 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3797 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3798 sctp_style(sk, UDP)) 3799 return -EINVAL; 3800 3801 if (asoc) 3802 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3803 3804 if (sctp_style(sk, TCP)) 3805 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3806 3807 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3808 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3809 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3810 if (ret) 3811 return ret; 3812 } 3813 3814 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3815 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3816 list_for_each_entry(asoc, &ep->asocs, asocs) { 3817 int res = sctp_auth_deact_key_id(ep, asoc, 3818 val->scact_keynumber); 3819 3820 if (res && !ret) 3821 ret = res; 3822 } 3823 } 3824 3825 return ret; 3826 } 3827 3828 /* 3829 * 8.1.23 SCTP_AUTO_ASCONF 3830 * 3831 * This option will enable or disable the use of the automatic generation of 3832 * ASCONF chunks to add and delete addresses to an existing association. Note 3833 * that this option has two caveats namely: a) it only affects sockets that 3834 * are bound to all addresses available to the SCTP stack, and b) the system 3835 * administrator may have an overriding control that turns the ASCONF feature 3836 * off no matter what setting the socket option may have. 3837 * This option expects an integer boolean flag, where a non-zero value turns on 3838 * the option, and a zero value turns off the option. 3839 * Note. In this implementation, socket operation overrides default parameter 3840 * being set by sysctl as well as FreeBSD implementation 3841 */ 3842 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3843 unsigned int optlen) 3844 { 3845 struct sctp_sock *sp = sctp_sk(sk); 3846 3847 if (optlen < sizeof(int)) 3848 return -EINVAL; 3849 if (!sctp_is_ep_boundall(sk) && *val) 3850 return -EINVAL; 3851 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3852 return 0; 3853 3854 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3855 if (*val == 0 && sp->do_auto_asconf) { 3856 list_del(&sp->auto_asconf_list); 3857 sp->do_auto_asconf = 0; 3858 } else if (*val && !sp->do_auto_asconf) { 3859 list_add_tail(&sp->auto_asconf_list, 3860 &sock_net(sk)->sctp.auto_asconf_splist); 3861 sp->do_auto_asconf = 1; 3862 } 3863 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3864 return 0; 3865 } 3866 3867 /* 3868 * SCTP_PEER_ADDR_THLDS 3869 * 3870 * This option allows us to alter the partially failed threshold for one or all 3871 * transports in an association. See Section 6.1 of: 3872 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3873 */ 3874 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3875 struct sctp_paddrthlds_v2 *val, 3876 unsigned int optlen, bool v2) 3877 { 3878 struct sctp_transport *trans; 3879 struct sctp_association *asoc; 3880 int len; 3881 3882 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3883 if (optlen < len) 3884 return -EINVAL; 3885 3886 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3887 return -EINVAL; 3888 3889 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3890 trans = sctp_addr_id2transport(sk, &val->spt_address, 3891 val->spt_assoc_id); 3892 if (!trans) 3893 return -ENOENT; 3894 3895 if (val->spt_pathmaxrxt) 3896 trans->pathmaxrxt = val->spt_pathmaxrxt; 3897 if (v2) 3898 trans->ps_retrans = val->spt_pathcpthld; 3899 trans->pf_retrans = val->spt_pathpfthld; 3900 3901 return 0; 3902 } 3903 3904 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3905 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3906 sctp_style(sk, UDP)) 3907 return -EINVAL; 3908 3909 if (asoc) { 3910 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3911 transports) { 3912 if (val->spt_pathmaxrxt) 3913 trans->pathmaxrxt = val->spt_pathmaxrxt; 3914 if (v2) 3915 trans->ps_retrans = val->spt_pathcpthld; 3916 trans->pf_retrans = val->spt_pathpfthld; 3917 } 3918 3919 if (val->spt_pathmaxrxt) 3920 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3921 if (v2) 3922 asoc->ps_retrans = val->spt_pathcpthld; 3923 asoc->pf_retrans = val->spt_pathpfthld; 3924 } else { 3925 struct sctp_sock *sp = sctp_sk(sk); 3926 3927 if (val->spt_pathmaxrxt) 3928 sp->pathmaxrxt = val->spt_pathmaxrxt; 3929 if (v2) 3930 sp->ps_retrans = val->spt_pathcpthld; 3931 sp->pf_retrans = val->spt_pathpfthld; 3932 } 3933 3934 return 0; 3935 } 3936 3937 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3938 unsigned int optlen) 3939 { 3940 if (optlen < sizeof(int)) 3941 return -EINVAL; 3942 3943 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3944 3945 return 0; 3946 } 3947 3948 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3949 unsigned int optlen) 3950 { 3951 if (optlen < sizeof(int)) 3952 return -EINVAL; 3953 3954 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3955 3956 return 0; 3957 } 3958 3959 static int sctp_setsockopt_pr_supported(struct sock *sk, 3960 struct sctp_assoc_value *params, 3961 unsigned int optlen) 3962 { 3963 struct sctp_association *asoc; 3964 3965 if (optlen != sizeof(*params)) 3966 return -EINVAL; 3967 3968 asoc = sctp_id2assoc(sk, params->assoc_id); 3969 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3970 sctp_style(sk, UDP)) 3971 return -EINVAL; 3972 3973 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3974 3975 return 0; 3976 } 3977 3978 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3979 struct sctp_default_prinfo *info, 3980 unsigned int optlen) 3981 { 3982 struct sctp_sock *sp = sctp_sk(sk); 3983 struct sctp_association *asoc; 3984 int retval = -EINVAL; 3985 3986 if (optlen != sizeof(*info)) 3987 goto out; 3988 3989 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3990 goto out; 3991 3992 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3993 info->pr_value = 0; 3994 3995 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3996 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3997 sctp_style(sk, UDP)) 3998 goto out; 3999 4000 retval = 0; 4001 4002 if (asoc) { 4003 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4004 asoc->default_timetolive = info->pr_value; 4005 goto out; 4006 } 4007 4008 if (sctp_style(sk, TCP)) 4009 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4010 4011 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4012 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4013 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4014 sp->default_timetolive = info->pr_value; 4015 } 4016 4017 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4018 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4019 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4020 SCTP_PR_SET_POLICY(asoc->default_flags, 4021 info->pr_policy); 4022 asoc->default_timetolive = info->pr_value; 4023 } 4024 } 4025 4026 out: 4027 return retval; 4028 } 4029 4030 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4031 struct sctp_assoc_value *params, 4032 unsigned int optlen) 4033 { 4034 struct sctp_association *asoc; 4035 int retval = -EINVAL; 4036 4037 if (optlen != sizeof(*params)) 4038 goto out; 4039 4040 asoc = sctp_id2assoc(sk, params->assoc_id); 4041 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4042 sctp_style(sk, UDP)) 4043 goto out; 4044 4045 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4046 4047 retval = 0; 4048 4049 out: 4050 return retval; 4051 } 4052 4053 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4054 struct sctp_assoc_value *params, 4055 unsigned int optlen) 4056 { 4057 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4058 struct sctp_association *asoc; 4059 int retval = -EINVAL; 4060 4061 if (optlen != sizeof(*params)) 4062 goto out; 4063 4064 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4065 goto out; 4066 4067 asoc = sctp_id2assoc(sk, params->assoc_id); 4068 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4069 sctp_style(sk, UDP)) 4070 goto out; 4071 4072 retval = 0; 4073 4074 if (asoc) { 4075 asoc->strreset_enable = params->assoc_value; 4076 goto out; 4077 } 4078 4079 if (sctp_style(sk, TCP)) 4080 params->assoc_id = SCTP_FUTURE_ASSOC; 4081 4082 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4083 params->assoc_id == SCTP_ALL_ASSOC) 4084 ep->strreset_enable = params->assoc_value; 4085 4086 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4087 params->assoc_id == SCTP_ALL_ASSOC) 4088 list_for_each_entry(asoc, &ep->asocs, asocs) 4089 asoc->strreset_enable = params->assoc_value; 4090 4091 out: 4092 return retval; 4093 } 4094 4095 static int sctp_setsockopt_reset_streams(struct sock *sk, 4096 struct sctp_reset_streams *params, 4097 unsigned int optlen) 4098 { 4099 struct sctp_association *asoc; 4100 4101 if (optlen < sizeof(*params)) 4102 return -EINVAL; 4103 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4104 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4105 sizeof(__u16) * sizeof(*params)); 4106 4107 if (params->srs_number_streams * sizeof(__u16) > 4108 optlen - sizeof(*params)) 4109 return -EINVAL; 4110 4111 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4112 if (!asoc) 4113 return -EINVAL; 4114 4115 return sctp_send_reset_streams(asoc, params); 4116 } 4117 4118 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4119 unsigned int optlen) 4120 { 4121 struct sctp_association *asoc; 4122 4123 if (optlen != sizeof(*associd)) 4124 return -EINVAL; 4125 4126 asoc = sctp_id2assoc(sk, *associd); 4127 if (!asoc) 4128 return -EINVAL; 4129 4130 return sctp_send_reset_assoc(asoc); 4131 } 4132 4133 static int sctp_setsockopt_add_streams(struct sock *sk, 4134 struct sctp_add_streams *params, 4135 unsigned int optlen) 4136 { 4137 struct sctp_association *asoc; 4138 4139 if (optlen != sizeof(*params)) 4140 return -EINVAL; 4141 4142 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4143 if (!asoc) 4144 return -EINVAL; 4145 4146 return sctp_send_add_streams(asoc, params); 4147 } 4148 4149 static int sctp_setsockopt_scheduler(struct sock *sk, 4150 struct sctp_assoc_value *params, 4151 unsigned int optlen) 4152 { 4153 struct sctp_sock *sp = sctp_sk(sk); 4154 struct sctp_association *asoc; 4155 int retval = 0; 4156 4157 if (optlen < sizeof(*params)) 4158 return -EINVAL; 4159 4160 if (params->assoc_value > SCTP_SS_MAX) 4161 return -EINVAL; 4162 4163 asoc = sctp_id2assoc(sk, params->assoc_id); 4164 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4165 sctp_style(sk, UDP)) 4166 return -EINVAL; 4167 4168 if (asoc) 4169 return sctp_sched_set_sched(asoc, params->assoc_value); 4170 4171 if (sctp_style(sk, TCP)) 4172 params->assoc_id = SCTP_FUTURE_ASSOC; 4173 4174 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4175 params->assoc_id == SCTP_ALL_ASSOC) 4176 sp->default_ss = params->assoc_value; 4177 4178 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4179 params->assoc_id == SCTP_ALL_ASSOC) { 4180 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4181 int ret = sctp_sched_set_sched(asoc, 4182 params->assoc_value); 4183 4184 if (ret && !retval) 4185 retval = ret; 4186 } 4187 } 4188 4189 return retval; 4190 } 4191 4192 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4193 struct sctp_stream_value *params, 4194 unsigned int optlen) 4195 { 4196 struct sctp_association *asoc; 4197 int retval = -EINVAL; 4198 4199 if (optlen < sizeof(*params)) 4200 goto out; 4201 4202 asoc = sctp_id2assoc(sk, params->assoc_id); 4203 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4204 sctp_style(sk, UDP)) 4205 goto out; 4206 4207 if (asoc) { 4208 retval = sctp_sched_set_value(asoc, params->stream_id, 4209 params->stream_value, GFP_KERNEL); 4210 goto out; 4211 } 4212 4213 retval = 0; 4214 4215 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4216 int ret = sctp_sched_set_value(asoc, params->stream_id, 4217 params->stream_value, 4218 GFP_KERNEL); 4219 if (ret && !retval) /* try to return the 1st error. */ 4220 retval = ret; 4221 } 4222 4223 out: 4224 return retval; 4225 } 4226 4227 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4228 struct sctp_assoc_value *p, 4229 unsigned int optlen) 4230 { 4231 struct sctp_sock *sp = sctp_sk(sk); 4232 struct sctp_association *asoc; 4233 4234 if (optlen < sizeof(*p)) 4235 return -EINVAL; 4236 4237 asoc = sctp_id2assoc(sk, p->assoc_id); 4238 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4239 return -EINVAL; 4240 4241 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4242 return -EPERM; 4243 } 4244 4245 sp->ep->intl_enable = !!p->assoc_value; 4246 return 0; 4247 } 4248 4249 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4250 unsigned int optlen) 4251 { 4252 if (!sctp_style(sk, TCP)) 4253 return -EOPNOTSUPP; 4254 4255 if (sctp_sk(sk)->ep->base.bind_addr.port) 4256 return -EFAULT; 4257 4258 if (optlen < sizeof(int)) 4259 return -EINVAL; 4260 4261 sctp_sk(sk)->reuse = !!*val; 4262 4263 return 0; 4264 } 4265 4266 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4267 struct sctp_association *asoc) 4268 { 4269 struct sctp_ulpevent *event; 4270 4271 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4272 4273 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4274 if (sctp_outq_is_empty(&asoc->outqueue)) { 4275 event = sctp_ulpevent_make_sender_dry_event(asoc, 4276 GFP_USER | __GFP_NOWARN); 4277 if (!event) 4278 return -ENOMEM; 4279 4280 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4281 } 4282 } 4283 4284 return 0; 4285 } 4286 4287 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4288 unsigned int optlen) 4289 { 4290 struct sctp_sock *sp = sctp_sk(sk); 4291 struct sctp_association *asoc; 4292 int retval = 0; 4293 4294 if (optlen < sizeof(*param)) 4295 return -EINVAL; 4296 4297 if (param->se_type < SCTP_SN_TYPE_BASE || 4298 param->se_type > SCTP_SN_TYPE_MAX) 4299 return -EINVAL; 4300 4301 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4302 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4303 sctp_style(sk, UDP)) 4304 return -EINVAL; 4305 4306 if (asoc) 4307 return sctp_assoc_ulpevent_type_set(param, asoc); 4308 4309 if (sctp_style(sk, TCP)) 4310 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4311 4312 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4313 param->se_assoc_id == SCTP_ALL_ASSOC) 4314 sctp_ulpevent_type_set(&sp->subscribe, 4315 param->se_type, param->se_on); 4316 4317 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4318 param->se_assoc_id == SCTP_ALL_ASSOC) { 4319 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4320 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4321 4322 if (ret && !retval) 4323 retval = ret; 4324 } 4325 } 4326 4327 return retval; 4328 } 4329 4330 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4331 struct sctp_assoc_value *params, 4332 unsigned int optlen) 4333 { 4334 struct sctp_association *asoc; 4335 struct sctp_endpoint *ep; 4336 int retval = -EINVAL; 4337 4338 if (optlen != sizeof(*params)) 4339 goto out; 4340 4341 asoc = sctp_id2assoc(sk, params->assoc_id); 4342 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4343 sctp_style(sk, UDP)) 4344 goto out; 4345 4346 ep = sctp_sk(sk)->ep; 4347 ep->asconf_enable = !!params->assoc_value; 4348 4349 if (ep->asconf_enable && ep->auth_enable) { 4350 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4351 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4352 } 4353 4354 retval = 0; 4355 4356 out: 4357 return retval; 4358 } 4359 4360 static int sctp_setsockopt_auth_supported(struct sock *sk, 4361 struct sctp_assoc_value *params, 4362 unsigned int optlen) 4363 { 4364 struct sctp_association *asoc; 4365 struct sctp_endpoint *ep; 4366 int retval = -EINVAL; 4367 4368 if (optlen != sizeof(*params)) 4369 goto out; 4370 4371 asoc = sctp_id2assoc(sk, params->assoc_id); 4372 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4373 sctp_style(sk, UDP)) 4374 goto out; 4375 4376 ep = sctp_sk(sk)->ep; 4377 if (params->assoc_value) { 4378 retval = sctp_auth_init(ep, GFP_KERNEL); 4379 if (retval) 4380 goto out; 4381 if (ep->asconf_enable) { 4382 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4383 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4384 } 4385 } 4386 4387 ep->auth_enable = !!params->assoc_value; 4388 retval = 0; 4389 4390 out: 4391 return retval; 4392 } 4393 4394 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4395 struct sctp_assoc_value *params, 4396 unsigned int optlen) 4397 { 4398 struct sctp_association *asoc; 4399 int retval = -EINVAL; 4400 4401 if (optlen != sizeof(*params)) 4402 goto out; 4403 4404 asoc = sctp_id2assoc(sk, params->assoc_id); 4405 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4406 sctp_style(sk, UDP)) 4407 goto out; 4408 4409 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4410 retval = 0; 4411 4412 out: 4413 return retval; 4414 } 4415 4416 static int sctp_setsockopt_pf_expose(struct sock *sk, 4417 struct sctp_assoc_value *params, 4418 unsigned int optlen) 4419 { 4420 struct sctp_association *asoc; 4421 int retval = -EINVAL; 4422 4423 if (optlen != sizeof(*params)) 4424 goto out; 4425 4426 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4427 goto out; 4428 4429 asoc = sctp_id2assoc(sk, params->assoc_id); 4430 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4431 sctp_style(sk, UDP)) 4432 goto out; 4433 4434 if (asoc) 4435 asoc->pf_expose = params->assoc_value; 4436 else 4437 sctp_sk(sk)->pf_expose = params->assoc_value; 4438 retval = 0; 4439 4440 out: 4441 return retval; 4442 } 4443 4444 static int sctp_setsockopt_encap_port(struct sock *sk, 4445 struct sctp_udpencaps *encap, 4446 unsigned int optlen) 4447 { 4448 struct sctp_association *asoc; 4449 struct sctp_transport *t; 4450 __be16 encap_port; 4451 4452 if (optlen != sizeof(*encap)) 4453 return -EINVAL; 4454 4455 /* If an address other than INADDR_ANY is specified, and 4456 * no transport is found, then the request is invalid. 4457 */ 4458 encap_port = (__force __be16)encap->sue_port; 4459 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4460 t = sctp_addr_id2transport(sk, &encap->sue_address, 4461 encap->sue_assoc_id); 4462 if (!t) 4463 return -EINVAL; 4464 4465 t->encap_port = encap_port; 4466 return 0; 4467 } 4468 4469 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4470 * socket is a one to many style socket, and an association 4471 * was not found, then the id was invalid. 4472 */ 4473 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4474 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4475 sctp_style(sk, UDP)) 4476 return -EINVAL; 4477 4478 /* If changes are for association, also apply encap_port to 4479 * each transport. 4480 */ 4481 if (asoc) { 4482 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4483 transports) 4484 t->encap_port = encap_port; 4485 4486 asoc->encap_port = encap_port; 4487 return 0; 4488 } 4489 4490 sctp_sk(sk)->encap_port = encap_port; 4491 return 0; 4492 } 4493 4494 static int sctp_setsockopt_probe_interval(struct sock *sk, 4495 struct sctp_probeinterval *params, 4496 unsigned int optlen) 4497 { 4498 struct sctp_association *asoc; 4499 struct sctp_transport *t; 4500 __u32 probe_interval; 4501 4502 if (optlen != sizeof(*params)) 4503 return -EINVAL; 4504 4505 probe_interval = params->spi_interval; 4506 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4507 return -EINVAL; 4508 4509 /* If an address other than INADDR_ANY is specified, and 4510 * no transport is found, then the request is invalid. 4511 */ 4512 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4513 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4514 params->spi_assoc_id); 4515 if (!t) 4516 return -EINVAL; 4517 4518 t->probe_interval = msecs_to_jiffies(probe_interval); 4519 sctp_transport_pl_reset(t); 4520 return 0; 4521 } 4522 4523 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4524 * socket is a one to many style socket, and an association 4525 * was not found, then the id was invalid. 4526 */ 4527 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4528 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4529 sctp_style(sk, UDP)) 4530 return -EINVAL; 4531 4532 /* If changes are for association, also apply probe_interval to 4533 * each transport. 4534 */ 4535 if (asoc) { 4536 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4537 t->probe_interval = msecs_to_jiffies(probe_interval); 4538 sctp_transport_pl_reset(t); 4539 } 4540 4541 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4542 return 0; 4543 } 4544 4545 sctp_sk(sk)->probe_interval = probe_interval; 4546 return 0; 4547 } 4548 4549 /* API 6.2 setsockopt(), getsockopt() 4550 * 4551 * Applications use setsockopt() and getsockopt() to set or retrieve 4552 * socket options. Socket options are used to change the default 4553 * behavior of sockets calls. They are described in Section 7. 4554 * 4555 * The syntax is: 4556 * 4557 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4558 * int __user *optlen); 4559 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4560 * int optlen); 4561 * 4562 * sd - the socket descript. 4563 * level - set to IPPROTO_SCTP for all SCTP options. 4564 * optname - the option name. 4565 * optval - the buffer to store the value of the option. 4566 * optlen - the size of the buffer. 4567 */ 4568 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4569 sockptr_t optval, unsigned int optlen) 4570 { 4571 void *kopt = NULL; 4572 int retval = 0; 4573 4574 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4575 4576 /* I can hardly begin to describe how wrong this is. This is 4577 * so broken as to be worse than useless. The API draft 4578 * REALLY is NOT helpful here... I am not convinced that the 4579 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4580 * are at all well-founded. 4581 */ 4582 if (level != SOL_SCTP) { 4583 struct sctp_af *af = sctp_sk(sk)->pf->af; 4584 4585 return af->setsockopt(sk, level, optname, optval, optlen); 4586 } 4587 4588 if (optlen > 0) { 4589 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4590 optlen = min_t(unsigned int, optlen, 4591 PAGE_ALIGN(USHRT_MAX + 4592 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4593 kopt = memdup_sockptr(optval, optlen); 4594 if (IS_ERR(kopt)) 4595 return PTR_ERR(kopt); 4596 } 4597 4598 lock_sock(sk); 4599 4600 switch (optname) { 4601 case SCTP_SOCKOPT_BINDX_ADD: 4602 /* 'optlen' is the size of the addresses buffer. */ 4603 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4604 SCTP_BINDX_ADD_ADDR); 4605 break; 4606 4607 case SCTP_SOCKOPT_BINDX_REM: 4608 /* 'optlen' is the size of the addresses buffer. */ 4609 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4610 SCTP_BINDX_REM_ADDR); 4611 break; 4612 4613 case SCTP_SOCKOPT_CONNECTX_OLD: 4614 /* 'optlen' is the size of the addresses buffer. */ 4615 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4616 break; 4617 4618 case SCTP_SOCKOPT_CONNECTX: 4619 /* 'optlen' is the size of the addresses buffer. */ 4620 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4621 break; 4622 4623 case SCTP_DISABLE_FRAGMENTS: 4624 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4625 break; 4626 4627 case SCTP_EVENTS: 4628 retval = sctp_setsockopt_events(sk, kopt, optlen); 4629 break; 4630 4631 case SCTP_AUTOCLOSE: 4632 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4633 break; 4634 4635 case SCTP_PEER_ADDR_PARAMS: 4636 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4637 break; 4638 4639 case SCTP_DELAYED_SACK: 4640 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4641 break; 4642 case SCTP_PARTIAL_DELIVERY_POINT: 4643 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4644 break; 4645 4646 case SCTP_INITMSG: 4647 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4648 break; 4649 case SCTP_DEFAULT_SEND_PARAM: 4650 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4651 break; 4652 case SCTP_DEFAULT_SNDINFO: 4653 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4654 break; 4655 case SCTP_PRIMARY_ADDR: 4656 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4657 break; 4658 case SCTP_SET_PEER_PRIMARY_ADDR: 4659 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4660 break; 4661 case SCTP_NODELAY: 4662 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4663 break; 4664 case SCTP_RTOINFO: 4665 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4666 break; 4667 case SCTP_ASSOCINFO: 4668 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4669 break; 4670 case SCTP_I_WANT_MAPPED_V4_ADDR: 4671 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4672 break; 4673 case SCTP_MAXSEG: 4674 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4675 break; 4676 case SCTP_ADAPTATION_LAYER: 4677 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4678 break; 4679 case SCTP_CONTEXT: 4680 retval = sctp_setsockopt_context(sk, kopt, optlen); 4681 break; 4682 case SCTP_FRAGMENT_INTERLEAVE: 4683 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4684 break; 4685 case SCTP_MAX_BURST: 4686 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4687 break; 4688 case SCTP_AUTH_CHUNK: 4689 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4690 break; 4691 case SCTP_HMAC_IDENT: 4692 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4693 break; 4694 case SCTP_AUTH_KEY: 4695 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4696 break; 4697 case SCTP_AUTH_ACTIVE_KEY: 4698 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4699 break; 4700 case SCTP_AUTH_DELETE_KEY: 4701 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4702 break; 4703 case SCTP_AUTH_DEACTIVATE_KEY: 4704 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4705 break; 4706 case SCTP_AUTO_ASCONF: 4707 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4708 break; 4709 case SCTP_PEER_ADDR_THLDS: 4710 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4711 false); 4712 break; 4713 case SCTP_PEER_ADDR_THLDS_V2: 4714 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4715 true); 4716 break; 4717 case SCTP_RECVRCVINFO: 4718 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4719 break; 4720 case SCTP_RECVNXTINFO: 4721 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4722 break; 4723 case SCTP_PR_SUPPORTED: 4724 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4725 break; 4726 case SCTP_DEFAULT_PRINFO: 4727 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4728 break; 4729 case SCTP_RECONFIG_SUPPORTED: 4730 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4731 break; 4732 case SCTP_ENABLE_STREAM_RESET: 4733 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4734 break; 4735 case SCTP_RESET_STREAMS: 4736 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4737 break; 4738 case SCTP_RESET_ASSOC: 4739 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4740 break; 4741 case SCTP_ADD_STREAMS: 4742 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4743 break; 4744 case SCTP_STREAM_SCHEDULER: 4745 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4746 break; 4747 case SCTP_STREAM_SCHEDULER_VALUE: 4748 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4749 break; 4750 case SCTP_INTERLEAVING_SUPPORTED: 4751 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4752 optlen); 4753 break; 4754 case SCTP_REUSE_PORT: 4755 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4756 break; 4757 case SCTP_EVENT: 4758 retval = sctp_setsockopt_event(sk, kopt, optlen); 4759 break; 4760 case SCTP_ASCONF_SUPPORTED: 4761 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4762 break; 4763 case SCTP_AUTH_SUPPORTED: 4764 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4765 break; 4766 case SCTP_ECN_SUPPORTED: 4767 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4768 break; 4769 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4770 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4771 break; 4772 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4773 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4774 break; 4775 case SCTP_PLPMTUD_PROBE_INTERVAL: 4776 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4777 break; 4778 default: 4779 retval = -ENOPROTOOPT; 4780 break; 4781 } 4782 4783 release_sock(sk); 4784 kfree(kopt); 4785 return retval; 4786 } 4787 4788 /* API 3.1.6 connect() - UDP Style Syntax 4789 * 4790 * An application may use the connect() call in the UDP model to initiate an 4791 * association without sending data. 4792 * 4793 * The syntax is: 4794 * 4795 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4796 * 4797 * sd: the socket descriptor to have a new association added to. 4798 * 4799 * nam: the address structure (either struct sockaddr_in or struct 4800 * sockaddr_in6 defined in RFC2553 [7]). 4801 * 4802 * len: the size of the address. 4803 */ 4804 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4805 int addr_len, int flags) 4806 { 4807 struct sctp_af *af; 4808 int err = -EINVAL; 4809 4810 lock_sock(sk); 4811 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4812 addr, addr_len); 4813 4814 /* Validate addr_len before calling common connect/connectx routine. */ 4815 af = sctp_get_af_specific(addr->sa_family); 4816 if (af && addr_len >= af->sockaddr_len) 4817 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4818 4819 release_sock(sk); 4820 return err; 4821 } 4822 4823 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4824 int addr_len, int flags) 4825 { 4826 if (addr_len < sizeof(uaddr->sa_family)) 4827 return -EINVAL; 4828 4829 if (uaddr->sa_family == AF_UNSPEC) 4830 return -EOPNOTSUPP; 4831 4832 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4833 } 4834 4835 /* Only called when shutdown a listening SCTP socket. */ 4836 static int sctp_disconnect(struct sock *sk, int flags) 4837 { 4838 if (!sctp_style(sk, TCP)) 4839 return -EOPNOTSUPP; 4840 4841 sk->sk_shutdown |= RCV_SHUTDOWN; 4842 return 0; 4843 } 4844 4845 static struct sock *sctp_clone_sock(struct sock *sk, 4846 struct sctp_association *asoc, 4847 enum sctp_socket_type type) 4848 { 4849 struct sock *newsk = sk_clone(sk, GFP_KERNEL, false); 4850 struct inet_sock *newinet; 4851 struct sctp_sock *newsp; 4852 int err = -ENOMEM; 4853 4854 if (!newsk) 4855 return ERR_PTR(err); 4856 4857 /* sk_clone() sets refcnt to 2 */ 4858 sock_put(newsk); 4859 4860 newinet = inet_sk(newsk); 4861 newsp = sctp_sk(newsk); 4862 4863 newsp->pf->to_sk_daddr(&asoc->peer.primary_addr, newsk); 4864 newinet->inet_dport = htons(asoc->peer.port); 4865 4866 newsp->pf->copy_ip_options(sk, newsk); 4867 atomic_set(&newinet->inet_id, get_random_u16()); 4868 4869 inet_set_bit(MC_LOOP, newsk); 4870 newinet->mc_ttl = 1; 4871 newinet->mc_index = 0; 4872 newinet->mc_list = NULL; 4873 4874 #if IS_ENABLED(CONFIG_IPV6) 4875 if (sk->sk_family == AF_INET6) { 4876 struct ipv6_pinfo *newnp = inet6_sk(newsk); 4877 4878 newinet->pinet6 = &((struct sctp6_sock *)newsk)->inet6; 4879 newinet->ipv6_fl_list = NULL; 4880 4881 memcpy(newnp, inet6_sk(sk), sizeof(struct ipv6_pinfo)); 4882 newnp->ipv6_mc_list = NULL; 4883 newnp->ipv6_ac_list = NULL; 4884 } 4885 #endif 4886 4887 skb_queue_head_init(&newsp->pd_lobby); 4888 4889 newsp->ep = sctp_endpoint_new(newsk, GFP_KERNEL); 4890 if (!newsp->ep) 4891 goto out_release; 4892 4893 SCTP_DBG_OBJCNT_INC(sock); 4894 sk_sockets_allocated_inc(newsk); 4895 sock_prot_inuse_add(sock_net(sk), newsk->sk_prot, 1); 4896 4897 err = sctp_sock_migrate(sk, newsk, asoc, type); 4898 if (err) 4899 goto out_release; 4900 4901 /* Set newsk security attributes from original sk and connection 4902 * security attribute from asoc. 4903 */ 4904 security_sctp_sk_clone(asoc, sk, newsk); 4905 4906 return newsk; 4907 4908 out_release: 4909 sk_common_release(newsk); 4910 return ERR_PTR(err); 4911 } 4912 4913 /* 4.1.4 accept() - TCP Style Syntax 4914 * 4915 * Applications use accept() call to remove an established SCTP 4916 * association from the accept queue of the endpoint. A new socket 4917 * descriptor will be returned from accept() to represent the newly 4918 * formed association. 4919 */ 4920 static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg) 4921 { 4922 struct sctp_association *asoc; 4923 struct sock *newsk = NULL; 4924 int error = 0; 4925 long timeo; 4926 4927 lock_sock(sk); 4928 4929 if (!sctp_style(sk, TCP)) { 4930 error = -EOPNOTSUPP; 4931 goto out; 4932 } 4933 4934 if (!sctp_sstate(sk, LISTENING) || 4935 (sk->sk_shutdown & RCV_SHUTDOWN)) { 4936 error = -EINVAL; 4937 goto out; 4938 } 4939 4940 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 4941 4942 error = sctp_wait_for_accept(sk, timeo); 4943 if (error) 4944 goto out; 4945 4946 /* We treat the list of associations on the endpoint as the accept 4947 * queue and pick the first association on the list. 4948 */ 4949 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 4950 struct sctp_association, asocs); 4951 4952 newsk = sctp_clone_sock(sk, asoc, SCTP_SOCKET_TCP); 4953 if (IS_ERR(newsk)) { 4954 error = PTR_ERR(newsk); 4955 newsk = NULL; 4956 } 4957 4958 out: 4959 release_sock(sk); 4960 arg->err = error; 4961 return newsk; 4962 } 4963 4964 /* The SCTP ioctl handler. */ 4965 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4966 { 4967 int rc = -ENOTCONN; 4968 4969 lock_sock(sk); 4970 4971 /* 4972 * SEQPACKET-style sockets in LISTENING state are valid, for 4973 * SCTP, so only discard TCP-style sockets in LISTENING state. 4974 */ 4975 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4976 goto out; 4977 4978 switch (cmd) { 4979 case SIOCINQ: { 4980 struct sk_buff *skb; 4981 *karg = 0; 4982 4983 skb = skb_peek(&sk->sk_receive_queue); 4984 if (skb != NULL) { 4985 /* 4986 * We will only return the amount of this packet since 4987 * that is all that will be read. 4988 */ 4989 *karg = skb->len; 4990 } 4991 rc = 0; 4992 break; 4993 } 4994 default: 4995 rc = -ENOIOCTLCMD; 4996 break; 4997 } 4998 out: 4999 release_sock(sk); 5000 return rc; 5001 } 5002 5003 /* This is the function which gets called during socket creation to 5004 * initialized the SCTP-specific portion of the sock. 5005 * The sock structure should already be zero-filled memory. 5006 */ 5007 static int sctp_init_sock(struct sock *sk) 5008 { 5009 struct net *net = sock_net(sk); 5010 struct sctp_sock *sp; 5011 5012 pr_debug("%s: sk:%p\n", __func__, sk); 5013 5014 sp = sctp_sk(sk); 5015 5016 /* Initialize the SCTP per socket area. */ 5017 switch (sk->sk_type) { 5018 case SOCK_SEQPACKET: 5019 sp->type = SCTP_SOCKET_UDP; 5020 break; 5021 case SOCK_STREAM: 5022 sp->type = SCTP_SOCKET_TCP; 5023 break; 5024 default: 5025 return -ESOCKTNOSUPPORT; 5026 } 5027 5028 sk->sk_gso_type = SKB_GSO_SCTP; 5029 5030 /* Initialize default send parameters. These parameters can be 5031 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5032 */ 5033 sp->default_stream = 0; 5034 sp->default_ppid = 0; 5035 sp->default_flags = 0; 5036 sp->default_context = 0; 5037 sp->default_timetolive = 0; 5038 5039 sp->default_rcv_context = 0; 5040 sp->max_burst = net->sctp.max_burst; 5041 5042 sp->cookie_auth_enable = net->sctp.cookie_auth_enable; 5043 5044 /* Initialize default setup parameters. These parameters 5045 * can be modified with the SCTP_INITMSG socket option or 5046 * overridden by the SCTP_INIT CMSG. 5047 */ 5048 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5049 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5050 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5051 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5052 5053 /* Initialize default RTO related parameters. These parameters can 5054 * be modified for with the SCTP_RTOINFO socket option. 5055 */ 5056 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5057 sp->rtoinfo.srto_max = net->sctp.rto_max; 5058 sp->rtoinfo.srto_min = net->sctp.rto_min; 5059 5060 /* Initialize default association related parameters. These parameters 5061 * can be modified with the SCTP_ASSOCINFO socket option. 5062 */ 5063 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5064 sp->assocparams.sasoc_number_peer_destinations = 0; 5065 sp->assocparams.sasoc_peer_rwnd = 0; 5066 sp->assocparams.sasoc_local_rwnd = 0; 5067 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5068 5069 /* Initialize default event subscriptions. By default, all the 5070 * options are off. 5071 */ 5072 sp->subscribe = 0; 5073 5074 /* Default Peer Address Parameters. These defaults can 5075 * be modified via SCTP_PEER_ADDR_PARAMS 5076 */ 5077 sp->hbinterval = net->sctp.hb_interval; 5078 sp->udp_port = htons(net->sctp.udp_port); 5079 sp->encap_port = htons(net->sctp.encap_port); 5080 sp->pathmaxrxt = net->sctp.max_retrans_path; 5081 sp->pf_retrans = net->sctp.pf_retrans; 5082 sp->ps_retrans = net->sctp.ps_retrans; 5083 sp->pf_expose = net->sctp.pf_expose; 5084 sp->pathmtu = 0; /* allow default discovery */ 5085 sp->sackdelay = net->sctp.sack_timeout; 5086 sp->sackfreq = 2; 5087 sp->param_flags = SPP_HB_ENABLE | 5088 SPP_PMTUD_ENABLE | 5089 SPP_SACKDELAY_ENABLE; 5090 sp->default_ss = SCTP_SS_DEFAULT; 5091 5092 /* If enabled no SCTP message fragmentation will be performed. 5093 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5094 */ 5095 sp->disable_fragments = 0; 5096 5097 /* Enable Nagle algorithm by default. */ 5098 sp->nodelay = 0; 5099 5100 sp->recvrcvinfo = 0; 5101 sp->recvnxtinfo = 0; 5102 5103 /* Enable by default. */ 5104 sp->v4mapped = 1; 5105 5106 /* Auto-close idle associations after the configured 5107 * number of seconds. A value of 0 disables this 5108 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5109 * for UDP-style sockets only. 5110 */ 5111 sp->autoclose = 0; 5112 5113 /* User specified fragmentation limit. */ 5114 sp->user_frag = 0; 5115 5116 sp->adaptation_ind = 0; 5117 5118 sp->pf = sctp_get_pf_specific(sk->sk_family); 5119 5120 /* Control variables for partial data delivery. */ 5121 atomic_set(&sp->pd_mode, 0); 5122 skb_queue_head_init(&sp->pd_lobby); 5123 sp->frag_interleave = 0; 5124 sp->probe_interval = net->sctp.probe_interval; 5125 5126 /* Create a per socket endpoint structure. Even if we 5127 * change the data structure relationships, this may still 5128 * be useful for storing pre-connect address information. 5129 */ 5130 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5131 if (!sp->ep) 5132 return -ENOMEM; 5133 5134 sk->sk_destruct = sctp_destruct_sock; 5135 5136 SCTP_DBG_OBJCNT_INC(sock); 5137 5138 sk_sockets_allocated_inc(sk); 5139 sock_prot_inuse_add(net, sk->sk_prot, 1); 5140 5141 return 0; 5142 } 5143 5144 /* Cleanup any SCTP per socket resources. Must be called with 5145 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5146 */ 5147 static void sctp_destroy_sock(struct sock *sk) 5148 { 5149 struct sctp_sock *sp; 5150 5151 pr_debug("%s: sk:%p\n", __func__, sk); 5152 5153 /* Release our hold on the endpoint. */ 5154 sp = sctp_sk(sk); 5155 /* This could happen during socket init, thus we bail out 5156 * early, since the rest of the below is not setup either. 5157 */ 5158 if (sp->ep == NULL) 5159 return; 5160 5161 if (sp->do_auto_asconf) { 5162 sp->do_auto_asconf = 0; 5163 list_del(&sp->auto_asconf_list); 5164 } 5165 5166 sctp_endpoint_free(sp->ep); 5167 5168 sk_sockets_allocated_dec(sk); 5169 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5170 SCTP_DBG_OBJCNT_DEC(sock); 5171 } 5172 5173 static void sctp_destruct_sock(struct sock *sk) 5174 { 5175 inet_sock_destruct(sk); 5176 } 5177 5178 /* API 4.1.7 shutdown() - TCP Style Syntax 5179 * int shutdown(int socket, int how); 5180 * 5181 * sd - the socket descriptor of the association to be closed. 5182 * how - Specifies the type of shutdown. The values are 5183 * as follows: 5184 * SHUT_RD 5185 * Disables further receive operations. No SCTP 5186 * protocol action is taken. 5187 * SHUT_WR 5188 * Disables further send operations, and initiates 5189 * the SCTP shutdown sequence. 5190 * SHUT_RDWR 5191 * Disables further send and receive operations 5192 * and initiates the SCTP shutdown sequence. 5193 */ 5194 static void sctp_shutdown(struct sock *sk, int how) 5195 { 5196 struct net *net = sock_net(sk); 5197 struct sctp_endpoint *ep; 5198 5199 if (!sctp_style(sk, TCP)) 5200 return; 5201 5202 ep = sctp_sk(sk)->ep; 5203 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5204 struct sctp_association *asoc; 5205 5206 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5207 asoc = list_entry(ep->asocs.next, 5208 struct sctp_association, asocs); 5209 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5210 } 5211 } 5212 5213 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5214 struct sctp_info *info) 5215 { 5216 struct sctp_transport *prim; 5217 struct list_head *pos; 5218 int mask; 5219 5220 memset(info, 0, sizeof(*info)); 5221 if (!asoc) { 5222 struct sctp_sock *sp = sctp_sk(sk); 5223 5224 info->sctpi_s_autoclose = sp->autoclose; 5225 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5226 info->sctpi_s_pd_point = sp->pd_point; 5227 info->sctpi_s_nodelay = sp->nodelay; 5228 info->sctpi_s_disable_fragments = sp->disable_fragments; 5229 info->sctpi_s_v4mapped = sp->v4mapped; 5230 info->sctpi_s_frag_interleave = sp->frag_interleave; 5231 info->sctpi_s_type = sp->type; 5232 5233 return 0; 5234 } 5235 5236 info->sctpi_tag = asoc->c.my_vtag; 5237 info->sctpi_state = asoc->state; 5238 info->sctpi_rwnd = asoc->a_rwnd; 5239 info->sctpi_unackdata = asoc->unack_data; 5240 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5241 info->sctpi_instrms = asoc->stream.incnt; 5242 info->sctpi_outstrms = asoc->stream.outcnt; 5243 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5244 info->sctpi_inqueue++; 5245 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5246 info->sctpi_outqueue++; 5247 info->sctpi_overall_error = asoc->overall_error_count; 5248 info->sctpi_max_burst = asoc->max_burst; 5249 info->sctpi_maxseg = asoc->frag_point; 5250 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5251 info->sctpi_peer_tag = asoc->c.peer_vtag; 5252 5253 mask = asoc->peer.intl_capable << 1; 5254 mask = (mask | asoc->peer.ecn_capable) << 1; 5255 mask = (mask | asoc->peer.ipv4_address) << 1; 5256 mask = (mask | asoc->peer.ipv6_address) << 1; 5257 mask = (mask | asoc->peer.reconf_capable) << 1; 5258 mask = (mask | asoc->peer.asconf_capable) << 1; 5259 mask = (mask | asoc->peer.prsctp_capable) << 1; 5260 mask = (mask | asoc->peer.auth_capable); 5261 info->sctpi_peer_capable = mask; 5262 mask = asoc->peer.sack_needed << 1; 5263 mask = (mask | asoc->peer.sack_generation) << 1; 5264 mask = (mask | asoc->peer.zero_window_announced); 5265 info->sctpi_peer_sack = mask; 5266 5267 info->sctpi_isacks = asoc->stats.isacks; 5268 info->sctpi_osacks = asoc->stats.osacks; 5269 info->sctpi_opackets = asoc->stats.opackets; 5270 info->sctpi_ipackets = asoc->stats.ipackets; 5271 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5272 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5273 info->sctpi_idupchunks = asoc->stats.idupchunks; 5274 info->sctpi_gapcnt = asoc->stats.gapcnt; 5275 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5276 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5277 info->sctpi_oodchunks = asoc->stats.oodchunks; 5278 info->sctpi_iodchunks = asoc->stats.iodchunks; 5279 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5280 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5281 5282 prim = asoc->peer.primary_path; 5283 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5284 info->sctpi_p_state = prim->state; 5285 info->sctpi_p_cwnd = prim->cwnd; 5286 info->sctpi_p_srtt = prim->srtt; 5287 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5288 info->sctpi_p_hbinterval = prim->hbinterval; 5289 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5290 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5291 info->sctpi_p_ssthresh = prim->ssthresh; 5292 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5293 info->sctpi_p_flight_size = prim->flight_size; 5294 info->sctpi_p_error = prim->error_count; 5295 5296 return 0; 5297 } 5298 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5299 5300 /* use callback to avoid exporting the core structure */ 5301 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5302 { 5303 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5304 5305 rhashtable_walk_start(iter); 5306 } 5307 5308 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5309 { 5310 rhashtable_walk_stop(iter); 5311 rhashtable_walk_exit(iter); 5312 } 5313 5314 struct sctp_transport *sctp_transport_get_next(struct net *net, 5315 struct rhashtable_iter *iter) 5316 { 5317 struct sctp_transport *t; 5318 5319 t = rhashtable_walk_next(iter); 5320 for (; t; t = rhashtable_walk_next(iter)) { 5321 if (IS_ERR(t)) { 5322 if (PTR_ERR(t) == -EAGAIN) 5323 continue; 5324 break; 5325 } 5326 5327 if (!sctp_transport_hold(t)) 5328 continue; 5329 5330 if (net_eq(t->asoc->base.net, net) && 5331 t->asoc->peer.primary_path == t) 5332 break; 5333 5334 sctp_transport_put(t); 5335 } 5336 5337 return t; 5338 } 5339 5340 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5341 struct rhashtable_iter *iter, 5342 int pos) 5343 { 5344 struct sctp_transport *t; 5345 5346 if (!pos) 5347 return SEQ_START_TOKEN; 5348 5349 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5350 if (!--pos) 5351 break; 5352 sctp_transport_put(t); 5353 } 5354 5355 return t; 5356 } 5357 5358 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5359 void *p) { 5360 int err = 0; 5361 int hash = 0; 5362 struct sctp_endpoint *ep; 5363 struct sctp_hashbucket *head; 5364 5365 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5366 hash++, head++) { 5367 read_lock_bh(&head->lock); 5368 sctp_for_each_hentry(ep, &head->chain) { 5369 err = cb(ep, p); 5370 if (err) 5371 break; 5372 } 5373 read_unlock_bh(&head->lock); 5374 } 5375 5376 return err; 5377 } 5378 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5379 5380 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5381 const union sctp_addr *laddr, 5382 const union sctp_addr *paddr, void *p, int dif) 5383 { 5384 struct sctp_transport *transport; 5385 struct sctp_endpoint *ep; 5386 int err = -ENOENT; 5387 5388 rcu_read_lock(); 5389 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5390 if (!transport) { 5391 rcu_read_unlock(); 5392 return err; 5393 } 5394 ep = transport->asoc->ep; 5395 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5396 sctp_transport_put(transport); 5397 rcu_read_unlock(); 5398 return err; 5399 } 5400 rcu_read_unlock(); 5401 5402 err = cb(ep, transport, p); 5403 sctp_endpoint_put(ep); 5404 sctp_transport_put(transport); 5405 return err; 5406 } 5407 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5408 5409 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5410 struct net *net, int *pos, void *p) 5411 { 5412 struct rhashtable_iter hti; 5413 struct sctp_transport *tsp; 5414 struct sctp_endpoint *ep; 5415 int ret; 5416 5417 again: 5418 ret = 0; 5419 sctp_transport_walk_start(&hti); 5420 5421 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5422 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5423 ep = tsp->asoc->ep; 5424 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5425 ret = cb(ep, tsp, p); 5426 if (ret) 5427 break; 5428 sctp_endpoint_put(ep); 5429 } 5430 (*pos)++; 5431 sctp_transport_put(tsp); 5432 } 5433 sctp_transport_walk_stop(&hti); 5434 5435 if (ret) { 5436 if (cb_done && !cb_done(ep, tsp, p)) { 5437 (*pos)++; 5438 sctp_endpoint_put(ep); 5439 sctp_transport_put(tsp); 5440 goto again; 5441 } 5442 sctp_endpoint_put(ep); 5443 sctp_transport_put(tsp); 5444 } 5445 5446 return ret; 5447 } 5448 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5449 5450 /* 7.2.1 Association Status (SCTP_STATUS) 5451 5452 * Applications can retrieve current status information about an 5453 * association, including association state, peer receiver window size, 5454 * number of unacked data chunks, and number of data chunks pending 5455 * receipt. This information is read-only. 5456 */ 5457 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5458 char __user *optval, 5459 int __user *optlen) 5460 { 5461 struct sctp_status status; 5462 struct sctp_association *asoc = NULL; 5463 struct sctp_transport *transport; 5464 sctp_assoc_t associd; 5465 int retval = 0; 5466 5467 if (len < sizeof(status)) { 5468 retval = -EINVAL; 5469 goto out; 5470 } 5471 5472 len = sizeof(status); 5473 if (copy_from_user(&status, optval, len)) { 5474 retval = -EFAULT; 5475 goto out; 5476 } 5477 5478 associd = status.sstat_assoc_id; 5479 asoc = sctp_id2assoc(sk, associd); 5480 if (!asoc) { 5481 retval = -EINVAL; 5482 goto out; 5483 } 5484 5485 transport = asoc->peer.primary_path; 5486 5487 status.sstat_assoc_id = sctp_assoc2id(asoc); 5488 status.sstat_state = sctp_assoc_to_state(asoc); 5489 status.sstat_rwnd = asoc->peer.rwnd; 5490 status.sstat_unackdata = asoc->unack_data; 5491 5492 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5493 status.sstat_instrms = asoc->stream.incnt; 5494 status.sstat_outstrms = asoc->stream.outcnt; 5495 status.sstat_fragmentation_point = asoc->frag_point; 5496 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5497 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5498 transport->af_specific->sockaddr_len); 5499 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5500 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5501 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5502 status.sstat_primary.spinfo_state = transport->state; 5503 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5504 status.sstat_primary.spinfo_srtt = transport->srtt; 5505 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5506 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5507 5508 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5509 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5510 5511 if (put_user(len, optlen)) { 5512 retval = -EFAULT; 5513 goto out; 5514 } 5515 5516 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5517 __func__, len, status.sstat_state, status.sstat_rwnd, 5518 status.sstat_assoc_id); 5519 5520 if (copy_to_user(optval, &status, len)) { 5521 retval = -EFAULT; 5522 goto out; 5523 } 5524 5525 out: 5526 return retval; 5527 } 5528 5529 5530 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5531 * 5532 * Applications can retrieve information about a specific peer address 5533 * of an association, including its reachability state, congestion 5534 * window, and retransmission timer values. This information is 5535 * read-only. 5536 */ 5537 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5538 char __user *optval, 5539 int __user *optlen) 5540 { 5541 struct sctp_paddrinfo pinfo; 5542 struct sctp_transport *transport; 5543 int retval = 0; 5544 5545 if (len < sizeof(pinfo)) { 5546 retval = -EINVAL; 5547 goto out; 5548 } 5549 5550 len = sizeof(pinfo); 5551 if (copy_from_user(&pinfo, optval, len)) { 5552 retval = -EFAULT; 5553 goto out; 5554 } 5555 5556 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5557 pinfo.spinfo_assoc_id); 5558 if (!transport) { 5559 retval = -EINVAL; 5560 goto out; 5561 } 5562 5563 if (transport->state == SCTP_PF && 5564 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5565 retval = -EACCES; 5566 goto out; 5567 } 5568 5569 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5570 pinfo.spinfo_state = transport->state; 5571 pinfo.spinfo_cwnd = transport->cwnd; 5572 pinfo.spinfo_srtt = transport->srtt; 5573 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5574 pinfo.spinfo_mtu = transport->pathmtu; 5575 5576 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5577 pinfo.spinfo_state = SCTP_ACTIVE; 5578 5579 if (put_user(len, optlen)) { 5580 retval = -EFAULT; 5581 goto out; 5582 } 5583 5584 if (copy_to_user(optval, &pinfo, len)) { 5585 retval = -EFAULT; 5586 goto out; 5587 } 5588 5589 out: 5590 return retval; 5591 } 5592 5593 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5594 * 5595 * This option is a on/off flag. If enabled no SCTP message 5596 * fragmentation will be performed. Instead if a message being sent 5597 * exceeds the current PMTU size, the message will NOT be sent and 5598 * instead a error will be indicated to the user. 5599 */ 5600 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5601 char __user *optval, int __user *optlen) 5602 { 5603 int val; 5604 5605 if (len < sizeof(int)) 5606 return -EINVAL; 5607 5608 len = sizeof(int); 5609 val = (sctp_sk(sk)->disable_fragments == 1); 5610 if (put_user(len, optlen)) 5611 return -EFAULT; 5612 if (copy_to_user(optval, &val, len)) 5613 return -EFAULT; 5614 return 0; 5615 } 5616 5617 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5618 * 5619 * This socket option is used to specify various notifications and 5620 * ancillary data the user wishes to receive. 5621 */ 5622 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5623 int __user *optlen) 5624 { 5625 struct sctp_event_subscribe subscribe; 5626 __u8 *sn_type = (__u8 *)&subscribe; 5627 int i; 5628 5629 if (len == 0) 5630 return -EINVAL; 5631 if (len > sizeof(struct sctp_event_subscribe)) 5632 len = sizeof(struct sctp_event_subscribe); 5633 if (put_user(len, optlen)) 5634 return -EFAULT; 5635 5636 for (i = 0; i < len; i++) 5637 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5638 SCTP_SN_TYPE_BASE + i); 5639 5640 if (copy_to_user(optval, &subscribe, len)) 5641 return -EFAULT; 5642 5643 return 0; 5644 } 5645 5646 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5647 * 5648 * This socket option is applicable to the UDP-style socket only. When 5649 * set it will cause associations that are idle for more than the 5650 * specified number of seconds to automatically close. An association 5651 * being idle is defined an association that has NOT sent or received 5652 * user data. The special value of '0' indicates that no automatic 5653 * close of any associations should be performed. The option expects an 5654 * integer defining the number of seconds of idle time before an 5655 * association is closed. 5656 */ 5657 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5658 { 5659 /* Applicable to UDP-style socket only */ 5660 if (sctp_style(sk, TCP)) 5661 return -EOPNOTSUPP; 5662 if (len < sizeof(int)) 5663 return -EINVAL; 5664 len = sizeof(int); 5665 if (put_user(len, optlen)) 5666 return -EFAULT; 5667 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5668 return -EFAULT; 5669 return 0; 5670 } 5671 5672 /* Helper routine to branch off an association to a new socket. */ 5673 static int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, 5674 struct socket **sockp) 5675 { 5676 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5677 struct socket *sock; 5678 struct sock *newsk; 5679 int err = 0; 5680 5681 /* Do not peel off from one netns to another one. */ 5682 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5683 return -EINVAL; 5684 5685 if (!asoc) 5686 return -EINVAL; 5687 5688 /* An association cannot be branched off from an already peeled-off 5689 * socket, nor is this supported for tcp style sockets. 5690 */ 5691 if (!sctp_style(sk, UDP)) 5692 return -EINVAL; 5693 5694 err = sock_create_lite(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5695 if (err) 5696 return err; 5697 5698 newsk = sctp_clone_sock(sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5699 if (IS_ERR(newsk)) { 5700 sock_release(sock); 5701 *sockp = NULL; 5702 return PTR_ERR(newsk); 5703 } 5704 5705 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 5706 __inet_accept(sk->sk_socket, sock, newsk); 5707 release_sock(newsk); 5708 5709 sock->ops = sk->sk_socket->ops; 5710 __module_get(sock->ops->owner); 5711 5712 *sockp = sock; 5713 5714 return err; 5715 } 5716 5717 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5718 struct file **newfile, unsigned flags) 5719 { 5720 struct socket *newsock; 5721 int retval; 5722 5723 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5724 if (retval < 0) 5725 goto out; 5726 5727 /* Map the socket to an unused fd that can be returned to the user. */ 5728 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5729 if (retval < 0) { 5730 sock_release(newsock); 5731 goto out; 5732 } 5733 5734 *newfile = sock_alloc_file(newsock, 0, NULL); 5735 if (IS_ERR(*newfile)) { 5736 put_unused_fd(retval); 5737 retval = PTR_ERR(*newfile); 5738 *newfile = NULL; 5739 return retval; 5740 } 5741 5742 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5743 retval); 5744 5745 peeloff->sd = retval; 5746 5747 if (flags & SOCK_NONBLOCK) 5748 (*newfile)->f_flags |= O_NONBLOCK; 5749 out: 5750 return retval; 5751 } 5752 5753 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5754 { 5755 sctp_peeloff_arg_t peeloff; 5756 struct file *newfile = NULL; 5757 int retval = 0; 5758 5759 if (len < sizeof(sctp_peeloff_arg_t)) 5760 return -EINVAL; 5761 len = sizeof(sctp_peeloff_arg_t); 5762 if (copy_from_user(&peeloff, optval, len)) 5763 return -EFAULT; 5764 5765 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5766 if (retval < 0) 5767 goto out; 5768 5769 /* Return the fd mapped to the new socket. */ 5770 if (put_user(len, optlen)) { 5771 fput(newfile); 5772 put_unused_fd(retval); 5773 return -EFAULT; 5774 } 5775 5776 if (copy_to_user(optval, &peeloff, len)) { 5777 fput(newfile); 5778 put_unused_fd(retval); 5779 return -EFAULT; 5780 } 5781 fd_install(retval, newfile); 5782 out: 5783 return retval; 5784 } 5785 5786 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5787 char __user *optval, int __user *optlen) 5788 { 5789 sctp_peeloff_flags_arg_t peeloff; 5790 struct file *newfile = NULL; 5791 int retval = 0; 5792 5793 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5794 return -EINVAL; 5795 len = sizeof(sctp_peeloff_flags_arg_t); 5796 if (copy_from_user(&peeloff, optval, len)) 5797 return -EFAULT; 5798 5799 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5800 &newfile, peeloff.flags); 5801 if (retval < 0) 5802 goto out; 5803 5804 /* Return the fd mapped to the new socket. */ 5805 if (put_user(len, optlen)) { 5806 fput(newfile); 5807 put_unused_fd(retval); 5808 return -EFAULT; 5809 } 5810 5811 if (copy_to_user(optval, &peeloff, len)) { 5812 fput(newfile); 5813 put_unused_fd(retval); 5814 return -EFAULT; 5815 } 5816 fd_install(retval, newfile); 5817 out: 5818 return retval; 5819 } 5820 5821 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5822 * 5823 * Applications can enable or disable heartbeats for any peer address of 5824 * an association, modify an address's heartbeat interval, force a 5825 * heartbeat to be sent immediately, and adjust the address's maximum 5826 * number of retransmissions sent before an address is considered 5827 * unreachable. The following structure is used to access and modify an 5828 * address's parameters: 5829 * 5830 * struct sctp_paddrparams { 5831 * sctp_assoc_t spp_assoc_id; 5832 * struct sockaddr_storage spp_address; 5833 * uint32_t spp_hbinterval; 5834 * uint16_t spp_pathmaxrxt; 5835 * uint32_t spp_pathmtu; 5836 * uint32_t spp_sackdelay; 5837 * uint32_t spp_flags; 5838 * }; 5839 * 5840 * spp_assoc_id - (one-to-many style socket) This is filled in the 5841 * application, and identifies the association for 5842 * this query. 5843 * spp_address - This specifies which address is of interest. 5844 * spp_hbinterval - This contains the value of the heartbeat interval, 5845 * in milliseconds. If a value of zero 5846 * is present in this field then no changes are to 5847 * be made to this parameter. 5848 * spp_pathmaxrxt - This contains the maximum number of 5849 * retransmissions before this address shall be 5850 * considered unreachable. If a value of zero 5851 * is present in this field then no changes are to 5852 * be made to this parameter. 5853 * spp_pathmtu - When Path MTU discovery is disabled the value 5854 * specified here will be the "fixed" path mtu. 5855 * Note that if the spp_address field is empty 5856 * then all associations on this address will 5857 * have this fixed path mtu set upon them. 5858 * 5859 * spp_sackdelay - When delayed sack is enabled, this value specifies 5860 * the number of milliseconds that sacks will be delayed 5861 * for. This value will apply to all addresses of an 5862 * association if the spp_address field is empty. Note 5863 * also, that if delayed sack is enabled and this 5864 * value is set to 0, no change is made to the last 5865 * recorded delayed sack timer value. 5866 * 5867 * spp_flags - These flags are used to control various features 5868 * on an association. The flag field may contain 5869 * zero or more of the following options. 5870 * 5871 * SPP_HB_ENABLE - Enable heartbeats on the 5872 * specified address. Note that if the address 5873 * field is empty all addresses for the association 5874 * have heartbeats enabled upon them. 5875 * 5876 * SPP_HB_DISABLE - Disable heartbeats on the 5877 * speicifed address. Note that if the address 5878 * field is empty all addresses for the association 5879 * will have their heartbeats disabled. Note also 5880 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5881 * mutually exclusive, only one of these two should 5882 * be specified. Enabling both fields will have 5883 * undetermined results. 5884 * 5885 * SPP_HB_DEMAND - Request a user initiated heartbeat 5886 * to be made immediately. 5887 * 5888 * SPP_PMTUD_ENABLE - This field will enable PMTU 5889 * discovery upon the specified address. Note that 5890 * if the address feild is empty then all addresses 5891 * on the association are effected. 5892 * 5893 * SPP_PMTUD_DISABLE - This field will disable PMTU 5894 * discovery upon the specified address. Note that 5895 * if the address feild is empty then all addresses 5896 * on the association are effected. Not also that 5897 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5898 * exclusive. Enabling both will have undetermined 5899 * results. 5900 * 5901 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5902 * on delayed sack. The time specified in spp_sackdelay 5903 * is used to specify the sack delay for this address. Note 5904 * that if spp_address is empty then all addresses will 5905 * enable delayed sack and take on the sack delay 5906 * value specified in spp_sackdelay. 5907 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5908 * off delayed sack. If the spp_address field is blank then 5909 * delayed sack is disabled for the entire association. Note 5910 * also that this field is mutually exclusive to 5911 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5912 * results. 5913 * 5914 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5915 * setting of the IPV6 flow label value. The value is 5916 * contained in the spp_ipv6_flowlabel field. 5917 * Upon retrieval, this flag will be set to indicate that 5918 * the spp_ipv6_flowlabel field has a valid value returned. 5919 * If a specific destination address is set (in the 5920 * spp_address field), then the value returned is that of 5921 * the address. If just an association is specified (and 5922 * no address), then the association's default flow label 5923 * is returned. If neither an association nor a destination 5924 * is specified, then the socket's default flow label is 5925 * returned. For non-IPv6 sockets, this flag will be left 5926 * cleared. 5927 * 5928 * SPP_DSCP: Setting this flag enables the setting of the 5929 * Differentiated Services Code Point (DSCP) value 5930 * associated with either the association or a specific 5931 * address. The value is obtained in the spp_dscp field. 5932 * Upon retrieval, this flag will be set to indicate that 5933 * the spp_dscp field has a valid value returned. If a 5934 * specific destination address is set when called (in the 5935 * spp_address field), then that specific destination 5936 * address's DSCP value is returned. If just an association 5937 * is specified, then the association's default DSCP is 5938 * returned. If neither an association nor a destination is 5939 * specified, then the socket's default DSCP is returned. 5940 * 5941 * spp_ipv6_flowlabel 5942 * - This field is used in conjunction with the 5943 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5944 * The 20 least significant bits are used for the flow 5945 * label. This setting has precedence over any IPv6-layer 5946 * setting. 5947 * 5948 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5949 * and contains the DSCP. The 6 most significant bits are 5950 * used for the DSCP. This setting has precedence over any 5951 * IPv4- or IPv6- layer setting. 5952 */ 5953 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5954 char __user *optval, int __user *optlen) 5955 { 5956 struct sctp_paddrparams params; 5957 struct sctp_transport *trans = NULL; 5958 struct sctp_association *asoc = NULL; 5959 struct sctp_sock *sp = sctp_sk(sk); 5960 5961 if (len >= sizeof(params)) 5962 len = sizeof(params); 5963 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5964 spp_ipv6_flowlabel), 4)) 5965 len = ALIGN(offsetof(struct sctp_paddrparams, 5966 spp_ipv6_flowlabel), 4); 5967 else 5968 return -EINVAL; 5969 5970 if (copy_from_user(¶ms, optval, len)) 5971 return -EFAULT; 5972 5973 /* If an address other than INADDR_ANY is specified, and 5974 * no transport is found, then the request is invalid. 5975 */ 5976 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5977 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5978 params.spp_assoc_id); 5979 if (!trans) { 5980 pr_debug("%s: failed no transport\n", __func__); 5981 return -EINVAL; 5982 } 5983 } 5984 5985 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5986 * socket is a one to many style socket, and an association 5987 * was not found, then the id was invalid. 5988 */ 5989 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5990 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5991 sctp_style(sk, UDP)) { 5992 pr_debug("%s: failed no association\n", __func__); 5993 return -EINVAL; 5994 } 5995 5996 if (trans) { 5997 /* Fetch transport values. */ 5998 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5999 params.spp_pathmtu = trans->pathmtu; 6000 params.spp_pathmaxrxt = trans->pathmaxrxt; 6001 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6002 6003 /*draft-11 doesn't say what to return in spp_flags*/ 6004 params.spp_flags = trans->param_flags; 6005 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6006 params.spp_ipv6_flowlabel = trans->flowlabel & 6007 SCTP_FLOWLABEL_VAL_MASK; 6008 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6009 } 6010 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6011 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6012 params.spp_flags |= SPP_DSCP; 6013 } 6014 } else if (asoc) { 6015 /* Fetch association values. */ 6016 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6017 params.spp_pathmtu = asoc->pathmtu; 6018 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6019 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6020 6021 /*draft-11 doesn't say what to return in spp_flags*/ 6022 params.spp_flags = asoc->param_flags; 6023 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6024 params.spp_ipv6_flowlabel = asoc->flowlabel & 6025 SCTP_FLOWLABEL_VAL_MASK; 6026 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6027 } 6028 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6029 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6030 params.spp_flags |= SPP_DSCP; 6031 } 6032 } else { 6033 /* Fetch socket values. */ 6034 params.spp_hbinterval = sp->hbinterval; 6035 params.spp_pathmtu = sp->pathmtu; 6036 params.spp_sackdelay = sp->sackdelay; 6037 params.spp_pathmaxrxt = sp->pathmaxrxt; 6038 6039 /*draft-11 doesn't say what to return in spp_flags*/ 6040 params.spp_flags = sp->param_flags; 6041 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6042 params.spp_ipv6_flowlabel = sp->flowlabel & 6043 SCTP_FLOWLABEL_VAL_MASK; 6044 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6045 } 6046 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6047 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6048 params.spp_flags |= SPP_DSCP; 6049 } 6050 } 6051 6052 if (copy_to_user(optval, ¶ms, len)) 6053 return -EFAULT; 6054 6055 if (put_user(len, optlen)) 6056 return -EFAULT; 6057 6058 return 0; 6059 } 6060 6061 /* 6062 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6063 * 6064 * This option will effect the way delayed acks are performed. This 6065 * option allows you to get or set the delayed ack time, in 6066 * milliseconds. It also allows changing the delayed ack frequency. 6067 * Changing the frequency to 1 disables the delayed sack algorithm. If 6068 * the assoc_id is 0, then this sets or gets the endpoints default 6069 * values. If the assoc_id field is non-zero, then the set or get 6070 * effects the specified association for the one to many model (the 6071 * assoc_id field is ignored by the one to one model). Note that if 6072 * sack_delay or sack_freq are 0 when setting this option, then the 6073 * current values will remain unchanged. 6074 * 6075 * struct sctp_sack_info { 6076 * sctp_assoc_t sack_assoc_id; 6077 * uint32_t sack_delay; 6078 * uint32_t sack_freq; 6079 * }; 6080 * 6081 * sack_assoc_id - This parameter, indicates which association the user 6082 * is performing an action upon. Note that if this field's value is 6083 * zero then the endpoints default value is changed (effecting future 6084 * associations only). 6085 * 6086 * sack_delay - This parameter contains the number of milliseconds that 6087 * the user is requesting the delayed ACK timer be set to. Note that 6088 * this value is defined in the standard to be between 200 and 500 6089 * milliseconds. 6090 * 6091 * sack_freq - This parameter contains the number of packets that must 6092 * be received before a sack is sent without waiting for the delay 6093 * timer to expire. The default value for this is 2, setting this 6094 * value to 1 will disable the delayed sack algorithm. 6095 */ 6096 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6097 char __user *optval, 6098 int __user *optlen) 6099 { 6100 struct sctp_sack_info params; 6101 struct sctp_association *asoc = NULL; 6102 struct sctp_sock *sp = sctp_sk(sk); 6103 6104 if (len >= sizeof(struct sctp_sack_info)) { 6105 len = sizeof(struct sctp_sack_info); 6106 6107 if (copy_from_user(¶ms, optval, len)) 6108 return -EFAULT; 6109 } else if (len == sizeof(struct sctp_assoc_value)) { 6110 pr_warn_ratelimited(DEPRECATED 6111 "%s (pid %d) " 6112 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6113 "Use struct sctp_sack_info instead\n", 6114 current->comm, task_pid_nr(current)); 6115 if (copy_from_user(¶ms, optval, len)) 6116 return -EFAULT; 6117 } else 6118 return -EINVAL; 6119 6120 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6121 * socket is a one to many style socket, and an association 6122 * was not found, then the id was invalid. 6123 */ 6124 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6125 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6126 sctp_style(sk, UDP)) 6127 return -EINVAL; 6128 6129 if (asoc) { 6130 /* Fetch association values. */ 6131 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6132 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6133 params.sack_freq = asoc->sackfreq; 6134 6135 } else { 6136 params.sack_delay = 0; 6137 params.sack_freq = 1; 6138 } 6139 } else { 6140 /* Fetch socket values. */ 6141 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6142 params.sack_delay = sp->sackdelay; 6143 params.sack_freq = sp->sackfreq; 6144 } else { 6145 params.sack_delay = 0; 6146 params.sack_freq = 1; 6147 } 6148 } 6149 6150 if (copy_to_user(optval, ¶ms, len)) 6151 return -EFAULT; 6152 6153 if (put_user(len, optlen)) 6154 return -EFAULT; 6155 6156 return 0; 6157 } 6158 6159 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6160 * 6161 * Applications can specify protocol parameters for the default association 6162 * initialization. The option name argument to setsockopt() and getsockopt() 6163 * is SCTP_INITMSG. 6164 * 6165 * Setting initialization parameters is effective only on an unconnected 6166 * socket (for UDP-style sockets only future associations are effected 6167 * by the change). With TCP-style sockets, this option is inherited by 6168 * sockets derived from a listener socket. 6169 */ 6170 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6171 { 6172 if (len < sizeof(struct sctp_initmsg)) 6173 return -EINVAL; 6174 len = sizeof(struct sctp_initmsg); 6175 if (put_user(len, optlen)) 6176 return -EFAULT; 6177 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6178 return -EFAULT; 6179 return 0; 6180 } 6181 6182 6183 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6184 char __user *optval, int __user *optlen) 6185 { 6186 struct sctp_association *asoc; 6187 int cnt = 0; 6188 struct sctp_getaddrs getaddrs; 6189 struct sctp_transport *from; 6190 void __user *to; 6191 union sctp_addr temp; 6192 struct sctp_sock *sp = sctp_sk(sk); 6193 int addrlen; 6194 size_t space_left; 6195 int bytes_copied; 6196 6197 if (len < sizeof(struct sctp_getaddrs)) 6198 return -EINVAL; 6199 6200 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6201 return -EFAULT; 6202 6203 /* For UDP-style sockets, id specifies the association to query. */ 6204 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6205 if (!asoc) 6206 return -EINVAL; 6207 6208 to = optval + offsetof(struct sctp_getaddrs, addrs); 6209 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6210 6211 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6212 transports) { 6213 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6214 addrlen = sctp_get_pf_specific(sk->sk_family) 6215 ->addr_to_user(sp, &temp); 6216 if (space_left < addrlen) 6217 return -ENOMEM; 6218 if (copy_to_user(to, &temp, addrlen)) 6219 return -EFAULT; 6220 to += addrlen; 6221 cnt++; 6222 space_left -= addrlen; 6223 } 6224 6225 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6226 return -EFAULT; 6227 bytes_copied = ((char __user *)to) - optval; 6228 if (put_user(bytes_copied, optlen)) 6229 return -EFAULT; 6230 6231 return 0; 6232 } 6233 6234 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6235 size_t space_left, int *bytes_copied) 6236 { 6237 struct sctp_sockaddr_entry *addr; 6238 union sctp_addr temp; 6239 int cnt = 0; 6240 int addrlen; 6241 struct net *net = sock_net(sk); 6242 6243 rcu_read_lock(); 6244 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6245 if (!addr->valid) 6246 continue; 6247 6248 if ((PF_INET == sk->sk_family) && 6249 (AF_INET6 == addr->a.sa.sa_family)) 6250 continue; 6251 if ((PF_INET6 == sk->sk_family) && 6252 inet_v6_ipv6only(sk) && 6253 (AF_INET == addr->a.sa.sa_family)) 6254 continue; 6255 memcpy(&temp, &addr->a, sizeof(temp)); 6256 if (!temp.v4.sin_port) 6257 temp.v4.sin_port = htons(port); 6258 6259 addrlen = sctp_get_pf_specific(sk->sk_family) 6260 ->addr_to_user(sctp_sk(sk), &temp); 6261 6262 if (space_left < addrlen) { 6263 cnt = -ENOMEM; 6264 break; 6265 } 6266 memcpy(to, &temp, addrlen); 6267 6268 to += addrlen; 6269 cnt++; 6270 space_left -= addrlen; 6271 *bytes_copied += addrlen; 6272 } 6273 rcu_read_unlock(); 6274 6275 return cnt; 6276 } 6277 6278 6279 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6280 char __user *optval, int __user *optlen) 6281 { 6282 struct sctp_bind_addr *bp; 6283 struct sctp_association *asoc; 6284 int cnt = 0; 6285 struct sctp_getaddrs getaddrs; 6286 struct sctp_sockaddr_entry *addr; 6287 void __user *to; 6288 union sctp_addr temp; 6289 struct sctp_sock *sp = sctp_sk(sk); 6290 int addrlen; 6291 int err = 0; 6292 size_t space_left; 6293 int bytes_copied = 0; 6294 void *addrs; 6295 void *buf; 6296 6297 if (len < sizeof(struct sctp_getaddrs)) 6298 return -EINVAL; 6299 6300 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6301 return -EFAULT; 6302 6303 /* 6304 * For UDP-style sockets, id specifies the association to query. 6305 * If the id field is set to the value '0' then the locally bound 6306 * addresses are returned without regard to any particular 6307 * association. 6308 */ 6309 if (0 == getaddrs.assoc_id) { 6310 bp = &sctp_sk(sk)->ep->base.bind_addr; 6311 } else { 6312 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6313 if (!asoc) 6314 return -EINVAL; 6315 bp = &asoc->base.bind_addr; 6316 } 6317 6318 to = optval + offsetof(struct sctp_getaddrs, addrs); 6319 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6320 6321 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6322 if (!addrs) 6323 return -ENOMEM; 6324 6325 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6326 * addresses from the global local address list. 6327 */ 6328 if (sctp_list_single_entry(&bp->address_list)) { 6329 addr = list_entry(bp->address_list.next, 6330 struct sctp_sockaddr_entry, list); 6331 if (sctp_is_any(sk, &addr->a)) { 6332 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6333 space_left, &bytes_copied); 6334 if (cnt < 0) { 6335 err = cnt; 6336 goto out; 6337 } 6338 goto copy_getaddrs; 6339 } 6340 } 6341 6342 buf = addrs; 6343 /* Protection on the bound address list is not needed since 6344 * in the socket option context we hold a socket lock and 6345 * thus the bound address list can't change. 6346 */ 6347 list_for_each_entry(addr, &bp->address_list, list) { 6348 memcpy(&temp, &addr->a, sizeof(temp)); 6349 addrlen = sctp_get_pf_specific(sk->sk_family) 6350 ->addr_to_user(sp, &temp); 6351 if (space_left < addrlen) { 6352 err = -ENOMEM; /*fixme: right error?*/ 6353 goto out; 6354 } 6355 memcpy(buf, &temp, addrlen); 6356 buf += addrlen; 6357 bytes_copied += addrlen; 6358 cnt++; 6359 space_left -= addrlen; 6360 } 6361 6362 copy_getaddrs: 6363 if (copy_to_user(to, addrs, bytes_copied)) { 6364 err = -EFAULT; 6365 goto out; 6366 } 6367 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6368 err = -EFAULT; 6369 goto out; 6370 } 6371 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6372 * but we can't change it anymore. 6373 */ 6374 if (put_user(bytes_copied, optlen)) 6375 err = -EFAULT; 6376 out: 6377 kfree(addrs); 6378 return err; 6379 } 6380 6381 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6382 * 6383 * Requests that the local SCTP stack use the enclosed peer address as 6384 * the association primary. The enclosed address must be one of the 6385 * association peer's addresses. 6386 */ 6387 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6388 char __user *optval, int __user *optlen) 6389 { 6390 struct sctp_prim prim; 6391 struct sctp_association *asoc; 6392 struct sctp_sock *sp = sctp_sk(sk); 6393 6394 if (len < sizeof(struct sctp_prim)) 6395 return -EINVAL; 6396 6397 len = sizeof(struct sctp_prim); 6398 6399 if (copy_from_user(&prim, optval, len)) 6400 return -EFAULT; 6401 6402 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6403 if (!asoc) 6404 return -EINVAL; 6405 6406 if (!asoc->peer.primary_path) 6407 return -ENOTCONN; 6408 6409 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6410 asoc->peer.primary_path->af_specific->sockaddr_len); 6411 6412 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6413 (union sctp_addr *)&prim.ssp_addr); 6414 6415 if (put_user(len, optlen)) 6416 return -EFAULT; 6417 if (copy_to_user(optval, &prim, len)) 6418 return -EFAULT; 6419 6420 return 0; 6421 } 6422 6423 /* 6424 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6425 * 6426 * Requests that the local endpoint set the specified Adaptation Layer 6427 * Indication parameter for all future INIT and INIT-ACK exchanges. 6428 */ 6429 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6430 char __user *optval, int __user *optlen) 6431 { 6432 struct sctp_setadaptation adaptation; 6433 6434 if (len < sizeof(struct sctp_setadaptation)) 6435 return -EINVAL; 6436 6437 len = sizeof(struct sctp_setadaptation); 6438 6439 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6440 6441 if (put_user(len, optlen)) 6442 return -EFAULT; 6443 if (copy_to_user(optval, &adaptation, len)) 6444 return -EFAULT; 6445 6446 return 0; 6447 } 6448 6449 /* 6450 * 6451 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6452 * 6453 * Applications that wish to use the sendto() system call may wish to 6454 * specify a default set of parameters that would normally be supplied 6455 * through the inclusion of ancillary data. This socket option allows 6456 * such an application to set the default sctp_sndrcvinfo structure. 6457 6458 6459 * The application that wishes to use this socket option simply passes 6460 * in to this call the sctp_sndrcvinfo structure defined in Section 6461 * 5.2.2) The input parameters accepted by this call include 6462 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6463 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6464 * to this call if the caller is using the UDP model. 6465 * 6466 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6467 */ 6468 static int sctp_getsockopt_default_send_param(struct sock *sk, 6469 int len, char __user *optval, 6470 int __user *optlen) 6471 { 6472 struct sctp_sock *sp = sctp_sk(sk); 6473 struct sctp_association *asoc; 6474 struct sctp_sndrcvinfo info; 6475 6476 if (len < sizeof(info)) 6477 return -EINVAL; 6478 6479 len = sizeof(info); 6480 6481 if (copy_from_user(&info, optval, len)) 6482 return -EFAULT; 6483 6484 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6485 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6486 sctp_style(sk, UDP)) 6487 return -EINVAL; 6488 6489 if (asoc) { 6490 info.sinfo_stream = asoc->default_stream; 6491 info.sinfo_flags = asoc->default_flags; 6492 info.sinfo_ppid = asoc->default_ppid; 6493 info.sinfo_context = asoc->default_context; 6494 info.sinfo_timetolive = asoc->default_timetolive; 6495 } else { 6496 info.sinfo_stream = sp->default_stream; 6497 info.sinfo_flags = sp->default_flags; 6498 info.sinfo_ppid = sp->default_ppid; 6499 info.sinfo_context = sp->default_context; 6500 info.sinfo_timetolive = sp->default_timetolive; 6501 } 6502 6503 if (put_user(len, optlen)) 6504 return -EFAULT; 6505 if (copy_to_user(optval, &info, len)) 6506 return -EFAULT; 6507 6508 return 0; 6509 } 6510 6511 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6512 * (SCTP_DEFAULT_SNDINFO) 6513 */ 6514 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6515 char __user *optval, 6516 int __user *optlen) 6517 { 6518 struct sctp_sock *sp = sctp_sk(sk); 6519 struct sctp_association *asoc; 6520 struct sctp_sndinfo info; 6521 6522 if (len < sizeof(info)) 6523 return -EINVAL; 6524 6525 len = sizeof(info); 6526 6527 if (copy_from_user(&info, optval, len)) 6528 return -EFAULT; 6529 6530 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6531 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6532 sctp_style(sk, UDP)) 6533 return -EINVAL; 6534 6535 if (asoc) { 6536 info.snd_sid = asoc->default_stream; 6537 info.snd_flags = asoc->default_flags; 6538 info.snd_ppid = asoc->default_ppid; 6539 info.snd_context = asoc->default_context; 6540 } else { 6541 info.snd_sid = sp->default_stream; 6542 info.snd_flags = sp->default_flags; 6543 info.snd_ppid = sp->default_ppid; 6544 info.snd_context = sp->default_context; 6545 } 6546 6547 if (put_user(len, optlen)) 6548 return -EFAULT; 6549 if (copy_to_user(optval, &info, len)) 6550 return -EFAULT; 6551 6552 return 0; 6553 } 6554 6555 /* 6556 * 6557 * 7.1.5 SCTP_NODELAY 6558 * 6559 * Turn on/off any Nagle-like algorithm. This means that packets are 6560 * generally sent as soon as possible and no unnecessary delays are 6561 * introduced, at the cost of more packets in the network. Expects an 6562 * integer boolean flag. 6563 */ 6564 6565 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6566 char __user *optval, int __user *optlen) 6567 { 6568 int val; 6569 6570 if (len < sizeof(int)) 6571 return -EINVAL; 6572 6573 len = sizeof(int); 6574 val = (sctp_sk(sk)->nodelay == 1); 6575 if (put_user(len, optlen)) 6576 return -EFAULT; 6577 if (copy_to_user(optval, &val, len)) 6578 return -EFAULT; 6579 return 0; 6580 } 6581 6582 /* 6583 * 6584 * 7.1.1 SCTP_RTOINFO 6585 * 6586 * The protocol parameters used to initialize and bound retransmission 6587 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6588 * and modify these parameters. 6589 * All parameters are time values, in milliseconds. A value of 0, when 6590 * modifying the parameters, indicates that the current value should not 6591 * be changed. 6592 * 6593 */ 6594 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6595 char __user *optval, 6596 int __user *optlen) { 6597 struct sctp_rtoinfo rtoinfo; 6598 struct sctp_association *asoc; 6599 6600 if (len < sizeof (struct sctp_rtoinfo)) 6601 return -EINVAL; 6602 6603 len = sizeof(struct sctp_rtoinfo); 6604 6605 if (copy_from_user(&rtoinfo, optval, len)) 6606 return -EFAULT; 6607 6608 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6609 6610 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6611 sctp_style(sk, UDP)) 6612 return -EINVAL; 6613 6614 /* Values corresponding to the specific association. */ 6615 if (asoc) { 6616 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6617 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6618 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6619 } else { 6620 /* Values corresponding to the endpoint. */ 6621 struct sctp_sock *sp = sctp_sk(sk); 6622 6623 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6624 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6625 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6626 } 6627 6628 if (put_user(len, optlen)) 6629 return -EFAULT; 6630 6631 if (copy_to_user(optval, &rtoinfo, len)) 6632 return -EFAULT; 6633 6634 return 0; 6635 } 6636 6637 /* 6638 * 6639 * 7.1.2 SCTP_ASSOCINFO 6640 * 6641 * This option is used to tune the maximum retransmission attempts 6642 * of the association. 6643 * Returns an error if the new association retransmission value is 6644 * greater than the sum of the retransmission value of the peer. 6645 * See [SCTP] for more information. 6646 * 6647 */ 6648 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6649 char __user *optval, 6650 int __user *optlen) 6651 { 6652 6653 struct sctp_assocparams assocparams; 6654 struct sctp_association *asoc; 6655 struct list_head *pos; 6656 int cnt = 0; 6657 6658 if (len < sizeof (struct sctp_assocparams)) 6659 return -EINVAL; 6660 6661 len = sizeof(struct sctp_assocparams); 6662 6663 if (copy_from_user(&assocparams, optval, len)) 6664 return -EFAULT; 6665 6666 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6667 6668 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6669 sctp_style(sk, UDP)) 6670 return -EINVAL; 6671 6672 /* Values correspoinding to the specific association */ 6673 if (asoc) { 6674 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6675 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6676 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6677 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6678 6679 list_for_each(pos, &asoc->peer.transport_addr_list) { 6680 cnt++; 6681 } 6682 6683 assocparams.sasoc_number_peer_destinations = cnt; 6684 } else { 6685 /* Values corresponding to the endpoint */ 6686 struct sctp_sock *sp = sctp_sk(sk); 6687 6688 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6689 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6690 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6691 assocparams.sasoc_cookie_life = 6692 sp->assocparams.sasoc_cookie_life; 6693 assocparams.sasoc_number_peer_destinations = 6694 sp->assocparams. 6695 sasoc_number_peer_destinations; 6696 } 6697 6698 if (put_user(len, optlen)) 6699 return -EFAULT; 6700 6701 if (copy_to_user(optval, &assocparams, len)) 6702 return -EFAULT; 6703 6704 return 0; 6705 } 6706 6707 /* 6708 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6709 * 6710 * This socket option is a boolean flag which turns on or off mapped V4 6711 * addresses. If this option is turned on and the socket is type 6712 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6713 * If this option is turned off, then no mapping will be done of V4 6714 * addresses and a user will receive both PF_INET6 and PF_INET type 6715 * addresses on the socket. 6716 */ 6717 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6718 char __user *optval, int __user *optlen) 6719 { 6720 int val; 6721 struct sctp_sock *sp = sctp_sk(sk); 6722 6723 if (len < sizeof(int)) 6724 return -EINVAL; 6725 6726 len = sizeof(int); 6727 val = sp->v4mapped; 6728 if (put_user(len, optlen)) 6729 return -EFAULT; 6730 if (copy_to_user(optval, &val, len)) 6731 return -EFAULT; 6732 6733 return 0; 6734 } 6735 6736 /* 6737 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6738 * (chapter and verse is quoted at sctp_setsockopt_context()) 6739 */ 6740 static int sctp_getsockopt_context(struct sock *sk, int len, 6741 char __user *optval, int __user *optlen) 6742 { 6743 struct sctp_assoc_value params; 6744 struct sctp_association *asoc; 6745 6746 if (len < sizeof(struct sctp_assoc_value)) 6747 return -EINVAL; 6748 6749 len = sizeof(struct sctp_assoc_value); 6750 6751 if (copy_from_user(¶ms, optval, len)) 6752 return -EFAULT; 6753 6754 asoc = sctp_id2assoc(sk, params.assoc_id); 6755 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6756 sctp_style(sk, UDP)) 6757 return -EINVAL; 6758 6759 params.assoc_value = asoc ? asoc->default_rcv_context 6760 : sctp_sk(sk)->default_rcv_context; 6761 6762 if (put_user(len, optlen)) 6763 return -EFAULT; 6764 if (copy_to_user(optval, ¶ms, len)) 6765 return -EFAULT; 6766 6767 return 0; 6768 } 6769 6770 /* 6771 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6772 * This option will get or set the maximum size to put in any outgoing 6773 * SCTP DATA chunk. If a message is larger than this size it will be 6774 * fragmented by SCTP into the specified size. Note that the underlying 6775 * SCTP implementation may fragment into smaller sized chunks when the 6776 * PMTU of the underlying association is smaller than the value set by 6777 * the user. The default value for this option is '0' which indicates 6778 * the user is NOT limiting fragmentation and only the PMTU will effect 6779 * SCTP's choice of DATA chunk size. Note also that values set larger 6780 * than the maximum size of an IP datagram will effectively let SCTP 6781 * control fragmentation (i.e. the same as setting this option to 0). 6782 * 6783 * The following structure is used to access and modify this parameter: 6784 * 6785 * struct sctp_assoc_value { 6786 * sctp_assoc_t assoc_id; 6787 * uint32_t assoc_value; 6788 * }; 6789 * 6790 * assoc_id: This parameter is ignored for one-to-one style sockets. 6791 * For one-to-many style sockets this parameter indicates which 6792 * association the user is performing an action upon. Note that if 6793 * this field's value is zero then the endpoints default value is 6794 * changed (effecting future associations only). 6795 * assoc_value: This parameter specifies the maximum size in bytes. 6796 */ 6797 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6798 char __user *optval, int __user *optlen) 6799 { 6800 struct sctp_assoc_value params; 6801 struct sctp_association *asoc; 6802 6803 if (len == sizeof(int)) { 6804 pr_warn_ratelimited(DEPRECATED 6805 "%s (pid %d) " 6806 "Use of int in maxseg socket option.\n" 6807 "Use struct sctp_assoc_value instead\n", 6808 current->comm, task_pid_nr(current)); 6809 params.assoc_id = SCTP_FUTURE_ASSOC; 6810 } else if (len >= sizeof(struct sctp_assoc_value)) { 6811 len = sizeof(struct sctp_assoc_value); 6812 if (copy_from_user(¶ms, optval, len)) 6813 return -EFAULT; 6814 } else 6815 return -EINVAL; 6816 6817 asoc = sctp_id2assoc(sk, params.assoc_id); 6818 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6819 sctp_style(sk, UDP)) 6820 return -EINVAL; 6821 6822 if (asoc) 6823 params.assoc_value = asoc->frag_point; 6824 else 6825 params.assoc_value = sctp_sk(sk)->user_frag; 6826 6827 if (put_user(len, optlen)) 6828 return -EFAULT; 6829 if (len == sizeof(int)) { 6830 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6831 return -EFAULT; 6832 } else { 6833 if (copy_to_user(optval, ¶ms, len)) 6834 return -EFAULT; 6835 } 6836 6837 return 0; 6838 } 6839 6840 /* 6841 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6842 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6843 */ 6844 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6845 char __user *optval, int __user *optlen) 6846 { 6847 int val; 6848 6849 if (len < sizeof(int)) 6850 return -EINVAL; 6851 6852 len = sizeof(int); 6853 6854 val = sctp_sk(sk)->frag_interleave; 6855 if (put_user(len, optlen)) 6856 return -EFAULT; 6857 if (copy_to_user(optval, &val, len)) 6858 return -EFAULT; 6859 6860 return 0; 6861 } 6862 6863 /* 6864 * 7.1.25. Set or Get the sctp partial delivery point 6865 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6866 */ 6867 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6868 char __user *optval, 6869 int __user *optlen) 6870 { 6871 u32 val; 6872 6873 if (len < sizeof(u32)) 6874 return -EINVAL; 6875 6876 len = sizeof(u32); 6877 6878 val = sctp_sk(sk)->pd_point; 6879 if (put_user(len, optlen)) 6880 return -EFAULT; 6881 if (copy_to_user(optval, &val, len)) 6882 return -EFAULT; 6883 6884 return 0; 6885 } 6886 6887 /* 6888 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6889 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6890 */ 6891 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6892 char __user *optval, 6893 int __user *optlen) 6894 { 6895 struct sctp_assoc_value params; 6896 struct sctp_association *asoc; 6897 6898 if (len == sizeof(int)) { 6899 pr_warn_ratelimited(DEPRECATED 6900 "%s (pid %d) " 6901 "Use of int in max_burst socket option.\n" 6902 "Use struct sctp_assoc_value instead\n", 6903 current->comm, task_pid_nr(current)); 6904 params.assoc_id = SCTP_FUTURE_ASSOC; 6905 } else if (len >= sizeof(struct sctp_assoc_value)) { 6906 len = sizeof(struct sctp_assoc_value); 6907 if (copy_from_user(¶ms, optval, len)) 6908 return -EFAULT; 6909 } else 6910 return -EINVAL; 6911 6912 asoc = sctp_id2assoc(sk, params.assoc_id); 6913 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6914 sctp_style(sk, UDP)) 6915 return -EINVAL; 6916 6917 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6918 6919 if (len == sizeof(int)) { 6920 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6921 return -EFAULT; 6922 } else { 6923 if (copy_to_user(optval, ¶ms, len)) 6924 return -EFAULT; 6925 } 6926 6927 return 0; 6928 6929 } 6930 6931 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6932 char __user *optval, int __user *optlen) 6933 { 6934 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6935 struct sctp_hmacalgo __user *p = (void __user *)optval; 6936 struct sctp_hmac_algo_param *hmacs; 6937 __u16 data_len = 0; 6938 u32 num_idents; 6939 int i; 6940 6941 if (!ep->auth_enable) 6942 return -EACCES; 6943 6944 hmacs = ep->auth_hmacs_list; 6945 data_len = ntohs(hmacs->param_hdr.length) - 6946 sizeof(struct sctp_paramhdr); 6947 6948 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6949 return -EINVAL; 6950 6951 len = sizeof(struct sctp_hmacalgo) + data_len; 6952 num_idents = data_len / sizeof(u16); 6953 6954 if (put_user(len, optlen)) 6955 return -EFAULT; 6956 if (put_user(num_idents, &p->shmac_num_idents)) 6957 return -EFAULT; 6958 for (i = 0; i < num_idents; i++) { 6959 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6960 6961 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6962 return -EFAULT; 6963 } 6964 return 0; 6965 } 6966 6967 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6968 char __user *optval, int __user *optlen) 6969 { 6970 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6971 struct sctp_authkeyid val; 6972 struct sctp_association *asoc; 6973 6974 if (len < sizeof(struct sctp_authkeyid)) 6975 return -EINVAL; 6976 6977 len = sizeof(struct sctp_authkeyid); 6978 if (copy_from_user(&val, optval, len)) 6979 return -EFAULT; 6980 6981 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6982 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6983 return -EINVAL; 6984 6985 if (asoc) { 6986 if (!asoc->peer.auth_capable) 6987 return -EACCES; 6988 val.scact_keynumber = asoc->active_key_id; 6989 } else { 6990 if (!ep->auth_enable) 6991 return -EACCES; 6992 val.scact_keynumber = ep->active_key_id; 6993 } 6994 6995 if (put_user(len, optlen)) 6996 return -EFAULT; 6997 if (copy_to_user(optval, &val, len)) 6998 return -EFAULT; 6999 7000 return 0; 7001 } 7002 7003 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7004 char __user *optval, int __user *optlen) 7005 { 7006 struct sctp_authchunks __user *p = (void __user *)optval; 7007 struct sctp_authchunks val; 7008 struct sctp_association *asoc; 7009 struct sctp_chunks_param *ch; 7010 u32 num_chunks = 0; 7011 char __user *to; 7012 7013 if (len < sizeof(struct sctp_authchunks)) 7014 return -EINVAL; 7015 7016 if (copy_from_user(&val, optval, sizeof(val))) 7017 return -EFAULT; 7018 7019 to = p->gauth_chunks; 7020 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7021 if (!asoc) 7022 return -EINVAL; 7023 7024 if (!asoc->peer.auth_capable) 7025 return -EACCES; 7026 7027 ch = asoc->peer.peer_chunks; 7028 if (!ch) 7029 goto num; 7030 7031 /* See if the user provided enough room for all the data */ 7032 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7033 if (len < num_chunks) 7034 return -EINVAL; 7035 7036 if (copy_to_user(to, ch->chunks, num_chunks)) 7037 return -EFAULT; 7038 num: 7039 len = sizeof(struct sctp_authchunks) + num_chunks; 7040 if (put_user(len, optlen)) 7041 return -EFAULT; 7042 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7043 return -EFAULT; 7044 return 0; 7045 } 7046 7047 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7048 char __user *optval, int __user *optlen) 7049 { 7050 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7051 struct sctp_authchunks __user *p = (void __user *)optval; 7052 struct sctp_authchunks val; 7053 struct sctp_association *asoc; 7054 struct sctp_chunks_param *ch; 7055 u32 num_chunks = 0; 7056 char __user *to; 7057 7058 if (len < sizeof(struct sctp_authchunks)) 7059 return -EINVAL; 7060 7061 if (copy_from_user(&val, optval, sizeof(val))) 7062 return -EFAULT; 7063 7064 to = p->gauth_chunks; 7065 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7066 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7067 sctp_style(sk, UDP)) 7068 return -EINVAL; 7069 7070 if (asoc) { 7071 if (!asoc->peer.auth_capable) 7072 return -EACCES; 7073 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7074 } else { 7075 if (!ep->auth_enable) 7076 return -EACCES; 7077 ch = ep->auth_chunk_list; 7078 } 7079 if (!ch) 7080 goto num; 7081 7082 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7083 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7084 return -EINVAL; 7085 7086 if (copy_to_user(to, ch->chunks, num_chunks)) 7087 return -EFAULT; 7088 num: 7089 len = sizeof(struct sctp_authchunks) + num_chunks; 7090 if (put_user(len, optlen)) 7091 return -EFAULT; 7092 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7093 return -EFAULT; 7094 7095 return 0; 7096 } 7097 7098 /* 7099 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7100 * This option gets the current number of associations that are attached 7101 * to a one-to-many style socket. The option value is an uint32_t. 7102 */ 7103 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7104 char __user *optval, int __user *optlen) 7105 { 7106 struct sctp_sock *sp = sctp_sk(sk); 7107 struct sctp_association *asoc; 7108 u32 val = 0; 7109 7110 if (sctp_style(sk, TCP)) 7111 return -EOPNOTSUPP; 7112 7113 if (len < sizeof(u32)) 7114 return -EINVAL; 7115 7116 len = sizeof(u32); 7117 7118 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7119 val++; 7120 } 7121 7122 if (put_user(len, optlen)) 7123 return -EFAULT; 7124 if (copy_to_user(optval, &val, len)) 7125 return -EFAULT; 7126 7127 return 0; 7128 } 7129 7130 /* 7131 * 8.1.23 SCTP_AUTO_ASCONF 7132 * See the corresponding setsockopt entry as description 7133 */ 7134 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7135 char __user *optval, int __user *optlen) 7136 { 7137 int val = 0; 7138 7139 if (len < sizeof(int)) 7140 return -EINVAL; 7141 7142 len = sizeof(int); 7143 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7144 val = 1; 7145 if (put_user(len, optlen)) 7146 return -EFAULT; 7147 if (copy_to_user(optval, &val, len)) 7148 return -EFAULT; 7149 return 0; 7150 } 7151 7152 /* 7153 * 8.2.6. Get the Current Identifiers of Associations 7154 * (SCTP_GET_ASSOC_ID_LIST) 7155 * 7156 * This option gets the current list of SCTP association identifiers of 7157 * the SCTP associations handled by a one-to-many style socket. 7158 */ 7159 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7160 char __user *optval, int __user *optlen) 7161 { 7162 struct sctp_sock *sp = sctp_sk(sk); 7163 struct sctp_association *asoc; 7164 struct sctp_assoc_ids *ids; 7165 size_t ids_size; 7166 u32 num = 0; 7167 7168 if (sctp_style(sk, TCP)) 7169 return -EOPNOTSUPP; 7170 7171 if (len < sizeof(struct sctp_assoc_ids)) 7172 return -EINVAL; 7173 7174 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7175 num++; 7176 } 7177 7178 ids_size = struct_size(ids, gaids_assoc_id, num); 7179 if (len < ids_size) 7180 return -EINVAL; 7181 7182 len = ids_size; 7183 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7184 if (unlikely(!ids)) 7185 return -ENOMEM; 7186 7187 ids->gaids_number_of_ids = num; 7188 num = 0; 7189 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7190 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7191 } 7192 7193 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7194 kfree(ids); 7195 return -EFAULT; 7196 } 7197 7198 kfree(ids); 7199 return 0; 7200 } 7201 7202 /* 7203 * SCTP_PEER_ADDR_THLDS 7204 * 7205 * This option allows us to fetch the partially failed threshold for one or all 7206 * transports in an association. See Section 6.1 of: 7207 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7208 */ 7209 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7210 char __user *optval, int len, 7211 int __user *optlen, bool v2) 7212 { 7213 struct sctp_paddrthlds_v2 val; 7214 struct sctp_transport *trans; 7215 struct sctp_association *asoc; 7216 int min; 7217 7218 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7219 if (len < min) 7220 return -EINVAL; 7221 len = min; 7222 if (copy_from_user(&val, optval, len)) 7223 return -EFAULT; 7224 7225 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7226 trans = sctp_addr_id2transport(sk, &val.spt_address, 7227 val.spt_assoc_id); 7228 if (!trans) 7229 return -ENOENT; 7230 7231 val.spt_pathmaxrxt = trans->pathmaxrxt; 7232 val.spt_pathpfthld = trans->pf_retrans; 7233 val.spt_pathcpthld = trans->ps_retrans; 7234 7235 goto out; 7236 } 7237 7238 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7239 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7240 sctp_style(sk, UDP)) 7241 return -EINVAL; 7242 7243 if (asoc) { 7244 val.spt_pathpfthld = asoc->pf_retrans; 7245 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7246 val.spt_pathcpthld = asoc->ps_retrans; 7247 } else { 7248 struct sctp_sock *sp = sctp_sk(sk); 7249 7250 val.spt_pathpfthld = sp->pf_retrans; 7251 val.spt_pathmaxrxt = sp->pathmaxrxt; 7252 val.spt_pathcpthld = sp->ps_retrans; 7253 } 7254 7255 out: 7256 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7257 return -EFAULT; 7258 7259 return 0; 7260 } 7261 7262 /* 7263 * SCTP_GET_ASSOC_STATS 7264 * 7265 * This option retrieves local per endpoint statistics. It is modeled 7266 * after OpenSolaris' implementation 7267 */ 7268 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7269 char __user *optval, 7270 int __user *optlen) 7271 { 7272 struct sctp_assoc_stats sas; 7273 struct sctp_association *asoc = NULL; 7274 7275 /* User must provide at least the assoc id */ 7276 if (len < sizeof(sctp_assoc_t)) 7277 return -EINVAL; 7278 7279 /* Allow the struct to grow and fill in as much as possible */ 7280 len = min_t(size_t, len, sizeof(sas)); 7281 7282 if (copy_from_user(&sas, optval, len)) 7283 return -EFAULT; 7284 7285 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7286 if (!asoc) 7287 return -EINVAL; 7288 7289 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7290 sas.sas_gapcnt = asoc->stats.gapcnt; 7291 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7292 sas.sas_osacks = asoc->stats.osacks; 7293 sas.sas_isacks = asoc->stats.isacks; 7294 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7295 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7296 sas.sas_oodchunks = asoc->stats.oodchunks; 7297 sas.sas_iodchunks = asoc->stats.iodchunks; 7298 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7299 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7300 sas.sas_idupchunks = asoc->stats.idupchunks; 7301 sas.sas_opackets = asoc->stats.opackets; 7302 sas.sas_ipackets = asoc->stats.ipackets; 7303 7304 /* New high max rto observed, will return 0 if not a single 7305 * RTO update took place. obs_rto_ipaddr will be bogus 7306 * in such a case 7307 */ 7308 sas.sas_maxrto = asoc->stats.max_obs_rto; 7309 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7310 sizeof(struct sockaddr_storage)); 7311 7312 /* Mark beginning of a new observation period */ 7313 asoc->stats.max_obs_rto = asoc->rto_min; 7314 7315 if (put_user(len, optlen)) 7316 return -EFAULT; 7317 7318 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7319 7320 if (copy_to_user(optval, &sas, len)) 7321 return -EFAULT; 7322 7323 return 0; 7324 } 7325 7326 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7327 char __user *optval, 7328 int __user *optlen) 7329 { 7330 int val = 0; 7331 7332 if (len < sizeof(int)) 7333 return -EINVAL; 7334 7335 len = sizeof(int); 7336 if (sctp_sk(sk)->recvrcvinfo) 7337 val = 1; 7338 if (put_user(len, optlen)) 7339 return -EFAULT; 7340 if (copy_to_user(optval, &val, len)) 7341 return -EFAULT; 7342 7343 return 0; 7344 } 7345 7346 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7347 char __user *optval, 7348 int __user *optlen) 7349 { 7350 int val = 0; 7351 7352 if (len < sizeof(int)) 7353 return -EINVAL; 7354 7355 len = sizeof(int); 7356 if (sctp_sk(sk)->recvnxtinfo) 7357 val = 1; 7358 if (put_user(len, optlen)) 7359 return -EFAULT; 7360 if (copy_to_user(optval, &val, len)) 7361 return -EFAULT; 7362 7363 return 0; 7364 } 7365 7366 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7367 char __user *optval, 7368 int __user *optlen) 7369 { 7370 struct sctp_assoc_value params; 7371 struct sctp_association *asoc; 7372 int retval = -EFAULT; 7373 7374 if (len < sizeof(params)) { 7375 retval = -EINVAL; 7376 goto out; 7377 } 7378 7379 len = sizeof(params); 7380 if (copy_from_user(¶ms, optval, len)) 7381 goto out; 7382 7383 asoc = sctp_id2assoc(sk, params.assoc_id); 7384 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7385 sctp_style(sk, UDP)) { 7386 retval = -EINVAL; 7387 goto out; 7388 } 7389 7390 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7391 : sctp_sk(sk)->ep->prsctp_enable; 7392 7393 if (put_user(len, optlen)) 7394 goto out; 7395 7396 if (copy_to_user(optval, ¶ms, len)) 7397 goto out; 7398 7399 retval = 0; 7400 7401 out: 7402 return retval; 7403 } 7404 7405 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7406 char __user *optval, 7407 int __user *optlen) 7408 { 7409 struct sctp_default_prinfo info; 7410 struct sctp_association *asoc; 7411 int retval = -EFAULT; 7412 7413 if (len < sizeof(info)) { 7414 retval = -EINVAL; 7415 goto out; 7416 } 7417 7418 len = sizeof(info); 7419 if (copy_from_user(&info, optval, len)) 7420 goto out; 7421 7422 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7423 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7424 sctp_style(sk, UDP)) { 7425 retval = -EINVAL; 7426 goto out; 7427 } 7428 7429 if (asoc) { 7430 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7431 info.pr_value = asoc->default_timetolive; 7432 } else { 7433 struct sctp_sock *sp = sctp_sk(sk); 7434 7435 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7436 info.pr_value = sp->default_timetolive; 7437 } 7438 7439 if (put_user(len, optlen)) 7440 goto out; 7441 7442 if (copy_to_user(optval, &info, len)) 7443 goto out; 7444 7445 retval = 0; 7446 7447 out: 7448 return retval; 7449 } 7450 7451 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7452 char __user *optval, 7453 int __user *optlen) 7454 { 7455 struct sctp_prstatus params; 7456 struct sctp_association *asoc; 7457 int policy; 7458 int retval = -EINVAL; 7459 7460 if (len < sizeof(params)) 7461 goto out; 7462 7463 len = sizeof(params); 7464 if (copy_from_user(¶ms, optval, len)) { 7465 retval = -EFAULT; 7466 goto out; 7467 } 7468 7469 policy = params.sprstat_policy; 7470 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7471 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7472 goto out; 7473 7474 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7475 if (!asoc) 7476 goto out; 7477 7478 if (policy == SCTP_PR_SCTP_ALL) { 7479 params.sprstat_abandoned_unsent = 0; 7480 params.sprstat_abandoned_sent = 0; 7481 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7482 params.sprstat_abandoned_unsent += 7483 asoc->abandoned_unsent[policy]; 7484 params.sprstat_abandoned_sent += 7485 asoc->abandoned_sent[policy]; 7486 } 7487 } else { 7488 params.sprstat_abandoned_unsent = 7489 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7490 params.sprstat_abandoned_sent = 7491 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7492 } 7493 7494 if (put_user(len, optlen)) { 7495 retval = -EFAULT; 7496 goto out; 7497 } 7498 7499 if (copy_to_user(optval, ¶ms, len)) { 7500 retval = -EFAULT; 7501 goto out; 7502 } 7503 7504 retval = 0; 7505 7506 out: 7507 return retval; 7508 } 7509 7510 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7511 char __user *optval, 7512 int __user *optlen) 7513 { 7514 struct sctp_stream_out_ext *streamoute; 7515 struct sctp_association *asoc; 7516 struct sctp_prstatus params; 7517 int retval = -EINVAL; 7518 int policy; 7519 7520 if (len < sizeof(params)) 7521 goto out; 7522 7523 len = sizeof(params); 7524 if (copy_from_user(¶ms, optval, len)) { 7525 retval = -EFAULT; 7526 goto out; 7527 } 7528 7529 policy = params.sprstat_policy; 7530 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7531 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7532 goto out; 7533 7534 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7535 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7536 goto out; 7537 7538 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7539 if (!streamoute) { 7540 /* Not allocated yet, means all stats are 0 */ 7541 params.sprstat_abandoned_unsent = 0; 7542 params.sprstat_abandoned_sent = 0; 7543 retval = 0; 7544 goto out; 7545 } 7546 7547 if (policy == SCTP_PR_SCTP_ALL) { 7548 params.sprstat_abandoned_unsent = 0; 7549 params.sprstat_abandoned_sent = 0; 7550 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7551 params.sprstat_abandoned_unsent += 7552 streamoute->abandoned_unsent[policy]; 7553 params.sprstat_abandoned_sent += 7554 streamoute->abandoned_sent[policy]; 7555 } 7556 } else { 7557 params.sprstat_abandoned_unsent = 7558 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7559 params.sprstat_abandoned_sent = 7560 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7561 } 7562 7563 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7564 retval = -EFAULT; 7565 goto out; 7566 } 7567 7568 retval = 0; 7569 7570 out: 7571 return retval; 7572 } 7573 7574 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7575 char __user *optval, 7576 int __user *optlen) 7577 { 7578 struct sctp_assoc_value params; 7579 struct sctp_association *asoc; 7580 int retval = -EFAULT; 7581 7582 if (len < sizeof(params)) { 7583 retval = -EINVAL; 7584 goto out; 7585 } 7586 7587 len = sizeof(params); 7588 if (copy_from_user(¶ms, optval, len)) 7589 goto out; 7590 7591 asoc = sctp_id2assoc(sk, params.assoc_id); 7592 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7593 sctp_style(sk, UDP)) { 7594 retval = -EINVAL; 7595 goto out; 7596 } 7597 7598 params.assoc_value = asoc ? asoc->peer.reconf_capable 7599 : sctp_sk(sk)->ep->reconf_enable; 7600 7601 if (put_user(len, optlen)) 7602 goto out; 7603 7604 if (copy_to_user(optval, ¶ms, len)) 7605 goto out; 7606 7607 retval = 0; 7608 7609 out: 7610 return retval; 7611 } 7612 7613 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7614 char __user *optval, 7615 int __user *optlen) 7616 { 7617 struct sctp_assoc_value params; 7618 struct sctp_association *asoc; 7619 int retval = -EFAULT; 7620 7621 if (len < sizeof(params)) { 7622 retval = -EINVAL; 7623 goto out; 7624 } 7625 7626 len = sizeof(params); 7627 if (copy_from_user(¶ms, optval, len)) 7628 goto out; 7629 7630 asoc = sctp_id2assoc(sk, params.assoc_id); 7631 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7632 sctp_style(sk, UDP)) { 7633 retval = -EINVAL; 7634 goto out; 7635 } 7636 7637 params.assoc_value = asoc ? asoc->strreset_enable 7638 : sctp_sk(sk)->ep->strreset_enable; 7639 7640 if (put_user(len, optlen)) 7641 goto out; 7642 7643 if (copy_to_user(optval, ¶ms, len)) 7644 goto out; 7645 7646 retval = 0; 7647 7648 out: 7649 return retval; 7650 } 7651 7652 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7653 char __user *optval, 7654 int __user *optlen) 7655 { 7656 struct sctp_assoc_value params; 7657 struct sctp_association *asoc; 7658 int retval = -EFAULT; 7659 7660 if (len < sizeof(params)) { 7661 retval = -EINVAL; 7662 goto out; 7663 } 7664 7665 len = sizeof(params); 7666 if (copy_from_user(¶ms, optval, len)) 7667 goto out; 7668 7669 asoc = sctp_id2assoc(sk, params.assoc_id); 7670 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7671 sctp_style(sk, UDP)) { 7672 retval = -EINVAL; 7673 goto out; 7674 } 7675 7676 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7677 : sctp_sk(sk)->default_ss; 7678 7679 if (put_user(len, optlen)) 7680 goto out; 7681 7682 if (copy_to_user(optval, ¶ms, len)) 7683 goto out; 7684 7685 retval = 0; 7686 7687 out: 7688 return retval; 7689 } 7690 7691 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7692 char __user *optval, 7693 int __user *optlen) 7694 { 7695 struct sctp_stream_value params; 7696 struct sctp_association *asoc; 7697 int retval = -EFAULT; 7698 7699 if (len < sizeof(params)) { 7700 retval = -EINVAL; 7701 goto out; 7702 } 7703 7704 len = sizeof(params); 7705 if (copy_from_user(¶ms, optval, len)) 7706 goto out; 7707 7708 asoc = sctp_id2assoc(sk, params.assoc_id); 7709 if (!asoc) { 7710 retval = -EINVAL; 7711 goto out; 7712 } 7713 7714 retval = sctp_sched_get_value(asoc, params.stream_id, 7715 ¶ms.stream_value); 7716 if (retval) 7717 goto out; 7718 7719 if (put_user(len, optlen)) { 7720 retval = -EFAULT; 7721 goto out; 7722 } 7723 7724 if (copy_to_user(optval, ¶ms, len)) { 7725 retval = -EFAULT; 7726 goto out; 7727 } 7728 7729 out: 7730 return retval; 7731 } 7732 7733 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7734 char __user *optval, 7735 int __user *optlen) 7736 { 7737 struct sctp_assoc_value params; 7738 struct sctp_association *asoc; 7739 int retval = -EFAULT; 7740 7741 if (len < sizeof(params)) { 7742 retval = -EINVAL; 7743 goto out; 7744 } 7745 7746 len = sizeof(params); 7747 if (copy_from_user(¶ms, optval, len)) 7748 goto out; 7749 7750 asoc = sctp_id2assoc(sk, params.assoc_id); 7751 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7752 sctp_style(sk, UDP)) { 7753 retval = -EINVAL; 7754 goto out; 7755 } 7756 7757 params.assoc_value = asoc ? asoc->peer.intl_capable 7758 : sctp_sk(sk)->ep->intl_enable; 7759 7760 if (put_user(len, optlen)) 7761 goto out; 7762 7763 if (copy_to_user(optval, ¶ms, len)) 7764 goto out; 7765 7766 retval = 0; 7767 7768 out: 7769 return retval; 7770 } 7771 7772 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7773 char __user *optval, 7774 int __user *optlen) 7775 { 7776 int val; 7777 7778 if (len < sizeof(int)) 7779 return -EINVAL; 7780 7781 len = sizeof(int); 7782 val = sctp_sk(sk)->reuse; 7783 if (put_user(len, optlen)) 7784 return -EFAULT; 7785 7786 if (copy_to_user(optval, &val, len)) 7787 return -EFAULT; 7788 7789 return 0; 7790 } 7791 7792 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7793 int __user *optlen) 7794 { 7795 struct sctp_association *asoc; 7796 struct sctp_event param; 7797 __u16 subscribe; 7798 7799 if (len < sizeof(param)) 7800 return -EINVAL; 7801 7802 len = sizeof(param); 7803 if (copy_from_user(¶m, optval, len)) 7804 return -EFAULT; 7805 7806 if (param.se_type < SCTP_SN_TYPE_BASE || 7807 param.se_type > SCTP_SN_TYPE_MAX) 7808 return -EINVAL; 7809 7810 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7811 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7812 sctp_style(sk, UDP)) 7813 return -EINVAL; 7814 7815 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7816 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7817 7818 if (put_user(len, optlen)) 7819 return -EFAULT; 7820 7821 if (copy_to_user(optval, ¶m, len)) 7822 return -EFAULT; 7823 7824 return 0; 7825 } 7826 7827 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7828 char __user *optval, 7829 int __user *optlen) 7830 { 7831 struct sctp_assoc_value params; 7832 struct sctp_association *asoc; 7833 int retval = -EFAULT; 7834 7835 if (len < sizeof(params)) { 7836 retval = -EINVAL; 7837 goto out; 7838 } 7839 7840 len = sizeof(params); 7841 if (copy_from_user(¶ms, optval, len)) 7842 goto out; 7843 7844 asoc = sctp_id2assoc(sk, params.assoc_id); 7845 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7846 sctp_style(sk, UDP)) { 7847 retval = -EINVAL; 7848 goto out; 7849 } 7850 7851 params.assoc_value = asoc ? asoc->peer.asconf_capable 7852 : sctp_sk(sk)->ep->asconf_enable; 7853 7854 if (put_user(len, optlen)) 7855 goto out; 7856 7857 if (copy_to_user(optval, ¶ms, len)) 7858 goto out; 7859 7860 retval = 0; 7861 7862 out: 7863 return retval; 7864 } 7865 7866 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7867 char __user *optval, 7868 int __user *optlen) 7869 { 7870 struct sctp_assoc_value params; 7871 struct sctp_association *asoc; 7872 int retval = -EFAULT; 7873 7874 if (len < sizeof(params)) { 7875 retval = -EINVAL; 7876 goto out; 7877 } 7878 7879 len = sizeof(params); 7880 if (copy_from_user(¶ms, optval, len)) 7881 goto out; 7882 7883 asoc = sctp_id2assoc(sk, params.assoc_id); 7884 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7885 sctp_style(sk, UDP)) { 7886 retval = -EINVAL; 7887 goto out; 7888 } 7889 7890 params.assoc_value = asoc ? asoc->peer.auth_capable 7891 : sctp_sk(sk)->ep->auth_enable; 7892 7893 if (put_user(len, optlen)) 7894 goto out; 7895 7896 if (copy_to_user(optval, ¶ms, len)) 7897 goto out; 7898 7899 retval = 0; 7900 7901 out: 7902 return retval; 7903 } 7904 7905 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7906 char __user *optval, 7907 int __user *optlen) 7908 { 7909 struct sctp_assoc_value params; 7910 struct sctp_association *asoc; 7911 int retval = -EFAULT; 7912 7913 if (len < sizeof(params)) { 7914 retval = -EINVAL; 7915 goto out; 7916 } 7917 7918 len = sizeof(params); 7919 if (copy_from_user(¶ms, optval, len)) 7920 goto out; 7921 7922 asoc = sctp_id2assoc(sk, params.assoc_id); 7923 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7924 sctp_style(sk, UDP)) { 7925 retval = -EINVAL; 7926 goto out; 7927 } 7928 7929 params.assoc_value = asoc ? asoc->peer.ecn_capable 7930 : sctp_sk(sk)->ep->ecn_enable; 7931 7932 if (put_user(len, optlen)) 7933 goto out; 7934 7935 if (copy_to_user(optval, ¶ms, len)) 7936 goto out; 7937 7938 retval = 0; 7939 7940 out: 7941 return retval; 7942 } 7943 7944 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7945 char __user *optval, 7946 int __user *optlen) 7947 { 7948 struct sctp_assoc_value params; 7949 struct sctp_association *asoc; 7950 int retval = -EFAULT; 7951 7952 if (len < sizeof(params)) { 7953 retval = -EINVAL; 7954 goto out; 7955 } 7956 7957 len = sizeof(params); 7958 if (copy_from_user(¶ms, optval, len)) 7959 goto out; 7960 7961 asoc = sctp_id2assoc(sk, params.assoc_id); 7962 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7963 sctp_style(sk, UDP)) { 7964 retval = -EINVAL; 7965 goto out; 7966 } 7967 7968 params.assoc_value = asoc ? asoc->pf_expose 7969 : sctp_sk(sk)->pf_expose; 7970 7971 if (put_user(len, optlen)) 7972 goto out; 7973 7974 if (copy_to_user(optval, ¶ms, len)) 7975 goto out; 7976 7977 retval = 0; 7978 7979 out: 7980 return retval; 7981 } 7982 7983 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7984 char __user *optval, int __user *optlen) 7985 { 7986 struct sctp_association *asoc; 7987 struct sctp_udpencaps encap; 7988 struct sctp_transport *t; 7989 __be16 encap_port; 7990 7991 if (len < sizeof(encap)) 7992 return -EINVAL; 7993 7994 len = sizeof(encap); 7995 if (copy_from_user(&encap, optval, len)) 7996 return -EFAULT; 7997 7998 /* If an address other than INADDR_ANY is specified, and 7999 * no transport is found, then the request is invalid. 8000 */ 8001 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 8002 t = sctp_addr_id2transport(sk, &encap.sue_address, 8003 encap.sue_assoc_id); 8004 if (!t) { 8005 pr_debug("%s: failed no transport\n", __func__); 8006 return -EINVAL; 8007 } 8008 8009 encap_port = t->encap_port; 8010 goto out; 8011 } 8012 8013 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8014 * socket is a one to many style socket, and an association 8015 * was not found, then the id was invalid. 8016 */ 8017 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 8018 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 8019 sctp_style(sk, UDP)) { 8020 pr_debug("%s: failed no association\n", __func__); 8021 return -EINVAL; 8022 } 8023 8024 if (asoc) { 8025 encap_port = asoc->encap_port; 8026 goto out; 8027 } 8028 8029 encap_port = sctp_sk(sk)->encap_port; 8030 8031 out: 8032 encap.sue_port = (__force uint16_t)encap_port; 8033 if (copy_to_user(optval, &encap, len)) 8034 return -EFAULT; 8035 8036 if (put_user(len, optlen)) 8037 return -EFAULT; 8038 8039 return 0; 8040 } 8041 8042 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 8043 char __user *optval, 8044 int __user *optlen) 8045 { 8046 struct sctp_probeinterval params; 8047 struct sctp_association *asoc; 8048 struct sctp_transport *t; 8049 __u32 probe_interval; 8050 8051 if (len < sizeof(params)) 8052 return -EINVAL; 8053 8054 len = sizeof(params); 8055 if (copy_from_user(¶ms, optval, len)) 8056 return -EFAULT; 8057 8058 /* If an address other than INADDR_ANY is specified, and 8059 * no transport is found, then the request is invalid. 8060 */ 8061 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8062 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8063 params.spi_assoc_id); 8064 if (!t) { 8065 pr_debug("%s: failed no transport\n", __func__); 8066 return -EINVAL; 8067 } 8068 8069 probe_interval = jiffies_to_msecs(t->probe_interval); 8070 goto out; 8071 } 8072 8073 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8074 * socket is a one to many style socket, and an association 8075 * was not found, then the id was invalid. 8076 */ 8077 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8078 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8079 sctp_style(sk, UDP)) { 8080 pr_debug("%s: failed no association\n", __func__); 8081 return -EINVAL; 8082 } 8083 8084 if (asoc) { 8085 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8086 goto out; 8087 } 8088 8089 probe_interval = sctp_sk(sk)->probe_interval; 8090 8091 out: 8092 params.spi_interval = probe_interval; 8093 if (copy_to_user(optval, ¶ms, len)) 8094 return -EFAULT; 8095 8096 if (put_user(len, optlen)) 8097 return -EFAULT; 8098 8099 return 0; 8100 } 8101 8102 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8103 char __user *optval, int __user *optlen) 8104 { 8105 int retval = 0; 8106 int len; 8107 8108 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8109 8110 /* I can hardly begin to describe how wrong this is. This is 8111 * so broken as to be worse than useless. The API draft 8112 * REALLY is NOT helpful here... I am not convinced that the 8113 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8114 * are at all well-founded. 8115 */ 8116 if (level != SOL_SCTP) { 8117 struct sctp_af *af = sctp_sk(sk)->pf->af; 8118 8119 retval = af->getsockopt(sk, level, optname, optval, optlen); 8120 return retval; 8121 } 8122 8123 if (get_user(len, optlen)) 8124 return -EFAULT; 8125 8126 if (len < 0) 8127 return -EINVAL; 8128 8129 lock_sock(sk); 8130 8131 switch (optname) { 8132 case SCTP_STATUS: 8133 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8134 break; 8135 case SCTP_DISABLE_FRAGMENTS: 8136 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8137 optlen); 8138 break; 8139 case SCTP_EVENTS: 8140 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8141 break; 8142 case SCTP_AUTOCLOSE: 8143 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8144 break; 8145 case SCTP_SOCKOPT_PEELOFF: 8146 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8147 break; 8148 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8149 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8150 break; 8151 case SCTP_PEER_ADDR_PARAMS: 8152 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8153 optlen); 8154 break; 8155 case SCTP_DELAYED_SACK: 8156 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8157 optlen); 8158 break; 8159 case SCTP_INITMSG: 8160 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8161 break; 8162 case SCTP_GET_PEER_ADDRS: 8163 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8164 optlen); 8165 break; 8166 case SCTP_GET_LOCAL_ADDRS: 8167 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8168 optlen); 8169 break; 8170 case SCTP_SOCKOPT_CONNECTX3: 8171 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8172 break; 8173 case SCTP_DEFAULT_SEND_PARAM: 8174 retval = sctp_getsockopt_default_send_param(sk, len, 8175 optval, optlen); 8176 break; 8177 case SCTP_DEFAULT_SNDINFO: 8178 retval = sctp_getsockopt_default_sndinfo(sk, len, 8179 optval, optlen); 8180 break; 8181 case SCTP_PRIMARY_ADDR: 8182 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8183 break; 8184 case SCTP_NODELAY: 8185 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8186 break; 8187 case SCTP_RTOINFO: 8188 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8189 break; 8190 case SCTP_ASSOCINFO: 8191 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8192 break; 8193 case SCTP_I_WANT_MAPPED_V4_ADDR: 8194 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8195 break; 8196 case SCTP_MAXSEG: 8197 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8198 break; 8199 case SCTP_GET_PEER_ADDR_INFO: 8200 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8201 optlen); 8202 break; 8203 case SCTP_ADAPTATION_LAYER: 8204 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8205 optlen); 8206 break; 8207 case SCTP_CONTEXT: 8208 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8209 break; 8210 case SCTP_FRAGMENT_INTERLEAVE: 8211 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8212 optlen); 8213 break; 8214 case SCTP_PARTIAL_DELIVERY_POINT: 8215 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8216 optlen); 8217 break; 8218 case SCTP_MAX_BURST: 8219 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8220 break; 8221 case SCTP_AUTH_KEY: 8222 case SCTP_AUTH_CHUNK: 8223 case SCTP_AUTH_DELETE_KEY: 8224 case SCTP_AUTH_DEACTIVATE_KEY: 8225 retval = -EOPNOTSUPP; 8226 break; 8227 case SCTP_HMAC_IDENT: 8228 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8229 break; 8230 case SCTP_AUTH_ACTIVE_KEY: 8231 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8232 break; 8233 case SCTP_PEER_AUTH_CHUNKS: 8234 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8235 optlen); 8236 break; 8237 case SCTP_LOCAL_AUTH_CHUNKS: 8238 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8239 optlen); 8240 break; 8241 case SCTP_GET_ASSOC_NUMBER: 8242 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8243 break; 8244 case SCTP_GET_ASSOC_ID_LIST: 8245 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8246 break; 8247 case SCTP_AUTO_ASCONF: 8248 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8249 break; 8250 case SCTP_PEER_ADDR_THLDS: 8251 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8252 optlen, false); 8253 break; 8254 case SCTP_PEER_ADDR_THLDS_V2: 8255 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8256 optlen, true); 8257 break; 8258 case SCTP_GET_ASSOC_STATS: 8259 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8260 break; 8261 case SCTP_RECVRCVINFO: 8262 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8263 break; 8264 case SCTP_RECVNXTINFO: 8265 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8266 break; 8267 case SCTP_PR_SUPPORTED: 8268 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8269 break; 8270 case SCTP_DEFAULT_PRINFO: 8271 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8272 optlen); 8273 break; 8274 case SCTP_PR_ASSOC_STATUS: 8275 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8276 optlen); 8277 break; 8278 case SCTP_PR_STREAM_STATUS: 8279 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8280 optlen); 8281 break; 8282 case SCTP_RECONFIG_SUPPORTED: 8283 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8284 optlen); 8285 break; 8286 case SCTP_ENABLE_STREAM_RESET: 8287 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8288 optlen); 8289 break; 8290 case SCTP_STREAM_SCHEDULER: 8291 retval = sctp_getsockopt_scheduler(sk, len, optval, 8292 optlen); 8293 break; 8294 case SCTP_STREAM_SCHEDULER_VALUE: 8295 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8296 optlen); 8297 break; 8298 case SCTP_INTERLEAVING_SUPPORTED: 8299 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8300 optlen); 8301 break; 8302 case SCTP_REUSE_PORT: 8303 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8304 break; 8305 case SCTP_EVENT: 8306 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8307 break; 8308 case SCTP_ASCONF_SUPPORTED: 8309 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8310 optlen); 8311 break; 8312 case SCTP_AUTH_SUPPORTED: 8313 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8314 optlen); 8315 break; 8316 case SCTP_ECN_SUPPORTED: 8317 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8318 break; 8319 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8320 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8321 break; 8322 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8323 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8324 break; 8325 case SCTP_PLPMTUD_PROBE_INTERVAL: 8326 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8327 break; 8328 default: 8329 retval = -ENOPROTOOPT; 8330 break; 8331 } 8332 8333 release_sock(sk); 8334 return retval; 8335 } 8336 8337 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8338 { 8339 if (level == SOL_SCTP) { 8340 switch (optname) { 8341 case SCTP_SOCKOPT_PEELOFF: 8342 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8343 case SCTP_SOCKOPT_CONNECTX3: 8344 return true; 8345 default: 8346 return false; 8347 } 8348 } 8349 8350 return false; 8351 } 8352 8353 static int sctp_hash(struct sock *sk) 8354 { 8355 /* STUB */ 8356 return 0; 8357 } 8358 8359 static void sctp_unhash(struct sock *sk) 8360 { 8361 sock_rps_delete_flow(sk); 8362 } 8363 8364 /* Check if port is acceptable. Possibly find first available port. 8365 * 8366 * The port hash table (contained in the 'global' SCTP protocol storage 8367 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8368 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8369 * list (the list number is the port number hashed out, so as you 8370 * would expect from a hash function, all the ports in a given list have 8371 * such a number that hashes out to the same list number; you were 8372 * expecting that, right?); so each list has a set of ports, with a 8373 * link to the socket (struct sock) that uses it, the port number and 8374 * a fastreuse flag (FIXME: NPI ipg). 8375 */ 8376 static struct sctp_bind_bucket *sctp_bucket_create( 8377 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8378 8379 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8380 { 8381 struct sctp_sock *sp = sctp_sk(sk); 8382 bool reuse = (sk->sk_reuse || sp->reuse); 8383 struct sctp_bind_hashbucket *head; /* hash list */ 8384 struct net *net = sock_net(sk); 8385 struct sctp_bind_bucket *pp; 8386 kuid_t uid = sk_uid(sk); 8387 unsigned short snum; 8388 int ret; 8389 8390 snum = ntohs(addr->v4.sin_port); 8391 8392 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8393 8394 if (snum == 0) { 8395 /* Search for an available port. */ 8396 int low, high, remaining, index; 8397 unsigned int rover; 8398 8399 inet_sk_get_local_port_range(sk, &low, &high); 8400 remaining = (high - low) + 1; 8401 rover = get_random_u32_below(remaining) + low; 8402 8403 do { 8404 rover++; 8405 if ((rover < low) || (rover > high)) 8406 rover = low; 8407 if (inet_is_local_reserved_port(net, rover)) 8408 continue; 8409 index = sctp_phashfn(net, rover); 8410 head = &sctp_port_hashtable[index]; 8411 spin_lock_bh(&head->lock); 8412 sctp_for_each_hentry(pp, &head->chain) 8413 if ((pp->port == rover) && 8414 net_eq(net, pp->net)) 8415 goto next; 8416 break; 8417 next: 8418 spin_unlock_bh(&head->lock); 8419 cond_resched(); 8420 } while (--remaining > 0); 8421 8422 /* Exhausted local port range during search? */ 8423 ret = 1; 8424 if (remaining <= 0) 8425 return ret; 8426 8427 /* OK, here is the one we will use. HEAD (the port 8428 * hash table list entry) is non-NULL and we hold it's 8429 * mutex. 8430 */ 8431 snum = rover; 8432 } else { 8433 /* We are given an specific port number; we verify 8434 * that it is not being used. If it is used, we will 8435 * exahust the search in the hash list corresponding 8436 * to the port number (snum) - we detect that with the 8437 * port iterator, pp being NULL. 8438 */ 8439 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8440 spin_lock_bh(&head->lock); 8441 sctp_for_each_hentry(pp, &head->chain) { 8442 if ((pp->port == snum) && net_eq(pp->net, net)) 8443 goto pp_found; 8444 } 8445 } 8446 pp = NULL; 8447 goto pp_not_found; 8448 pp_found: 8449 if (!hlist_empty(&pp->owner)) { 8450 /* We had a port hash table hit - there is an 8451 * available port (pp != NULL) and it is being 8452 * used by other socket (pp->owner not empty); that other 8453 * socket is going to be sk2. 8454 */ 8455 struct sock *sk2; 8456 8457 pr_debug("%s: found a possible match\n", __func__); 8458 8459 if ((pp->fastreuse && reuse && 8460 sk->sk_state != SCTP_SS_LISTENING) || 8461 (pp->fastreuseport && sk->sk_reuseport && 8462 uid_eq(pp->fastuid, uid))) 8463 goto success; 8464 8465 /* Run through the list of sockets bound to the port 8466 * (pp->port) [via the pointers bind_next and 8467 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8468 * we get the endpoint they describe and run through 8469 * the endpoint's list of IP (v4 or v6) addresses, 8470 * comparing each of the addresses with the address of 8471 * the socket sk. If we find a match, then that means 8472 * that this port/socket (sk) combination are already 8473 * in an endpoint. 8474 */ 8475 sk_for_each_bound(sk2, &pp->owner) { 8476 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8477 struct sctp_sock *sp2 = sctp_sk(sk2); 8478 struct sctp_endpoint *ep2 = sp2->ep; 8479 8480 if (sk == sk2 || 8481 (reuse && (sk2->sk_reuse || sp2->reuse) && 8482 sk2->sk_state != SCTP_SS_LISTENING) || 8483 (sk->sk_reuseport && sk2->sk_reuseport && 8484 uid_eq(uid, sk_uid(sk2)))) 8485 continue; 8486 8487 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8488 sk->sk_bound_dev_if == bound_dev_if2) && 8489 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8490 addr, sp2, sp)) { 8491 ret = 1; 8492 goto fail_unlock; 8493 } 8494 } 8495 8496 pr_debug("%s: found a match\n", __func__); 8497 } 8498 pp_not_found: 8499 /* If there was a hash table miss, create a new port. */ 8500 ret = 1; 8501 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8502 goto fail_unlock; 8503 8504 /* In either case (hit or miss), make sure fastreuse is 1 only 8505 * if sk->sk_reuse is too (that is, if the caller requested 8506 * SO_REUSEADDR on this socket -sk-). 8507 */ 8508 if (hlist_empty(&pp->owner)) { 8509 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8510 pp->fastreuse = 1; 8511 else 8512 pp->fastreuse = 0; 8513 8514 if (sk->sk_reuseport) { 8515 pp->fastreuseport = 1; 8516 pp->fastuid = uid; 8517 } else { 8518 pp->fastreuseport = 0; 8519 } 8520 } else { 8521 if (pp->fastreuse && 8522 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8523 pp->fastreuse = 0; 8524 8525 if (pp->fastreuseport && 8526 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8527 pp->fastreuseport = 0; 8528 } 8529 8530 /* We are set, so fill up all the data in the hash table 8531 * entry, tie the socket list information with the rest of the 8532 * sockets FIXME: Blurry, NPI (ipg). 8533 */ 8534 success: 8535 if (!sp->bind_hash) { 8536 inet_sk(sk)->inet_num = snum; 8537 sk_add_bind_node(sk, &pp->owner); 8538 sp->bind_hash = pp; 8539 } 8540 ret = 0; 8541 8542 fail_unlock: 8543 spin_unlock_bh(&head->lock); 8544 return ret; 8545 } 8546 8547 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8548 * port is requested. 8549 */ 8550 static int sctp_get_port(struct sock *sk, unsigned short snum) 8551 { 8552 union sctp_addr addr; 8553 struct sctp_af *af = sctp_sk(sk)->pf->af; 8554 8555 /* Set up a dummy address struct from the sk. */ 8556 af->from_sk(&addr, sk); 8557 addr.v4.sin_port = htons(snum); 8558 8559 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8560 return sctp_get_port_local(sk, &addr); 8561 } 8562 8563 /* 8564 * Move a socket to LISTENING state. 8565 */ 8566 static int sctp_listen_start(struct sock *sk, int backlog) 8567 { 8568 struct sctp_sock *sp = sctp_sk(sk); 8569 struct sctp_endpoint *ep = sp->ep; 8570 int err; 8571 8572 /* 8573 * If a bind() or sctp_bindx() is not called prior to a listen() 8574 * call that allows new associations to be accepted, the system 8575 * picks an ephemeral port and will choose an address set equivalent 8576 * to binding with a wildcard address. 8577 * 8578 * This is not currently spelled out in the SCTP sockets 8579 * extensions draft, but follows the practice as seen in TCP 8580 * sockets. 8581 * 8582 */ 8583 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8584 if (!ep->base.bind_addr.port) { 8585 if (sctp_autobind(sk)) { 8586 err = -EAGAIN; 8587 goto err; 8588 } 8589 } else { 8590 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8591 err = -EADDRINUSE; 8592 goto err; 8593 } 8594 } 8595 8596 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8597 err = sctp_hash_endpoint(ep); 8598 if (err) 8599 goto err; 8600 8601 return 0; 8602 err: 8603 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8604 return err; 8605 } 8606 8607 /* 8608 * 4.1.3 / 5.1.3 listen() 8609 * 8610 * By default, new associations are not accepted for UDP style sockets. 8611 * An application uses listen() to mark a socket as being able to 8612 * accept new associations. 8613 * 8614 * On TCP style sockets, applications use listen() to ready the SCTP 8615 * endpoint for accepting inbound associations. 8616 * 8617 * On both types of endpoints a backlog of '0' disables listening. 8618 * 8619 * Move a socket to LISTENING state. 8620 */ 8621 int sctp_inet_listen(struct socket *sock, int backlog) 8622 { 8623 struct sock *sk = sock->sk; 8624 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8625 int err = -EINVAL; 8626 8627 if (unlikely(backlog < 0)) 8628 return err; 8629 8630 lock_sock(sk); 8631 8632 /* Peeled-off sockets are not allowed to listen(). */ 8633 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8634 goto out; 8635 8636 if (sock->state != SS_UNCONNECTED) 8637 goto out; 8638 8639 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8640 goto out; 8641 8642 /* If backlog is zero, disable listening. */ 8643 if (!backlog) { 8644 if (sctp_sstate(sk, CLOSED)) 8645 goto out; 8646 8647 err = 0; 8648 sctp_unhash_endpoint(ep); 8649 sk->sk_state = SCTP_SS_CLOSED; 8650 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8651 sctp_sk(sk)->bind_hash->fastreuse = 1; 8652 goto out; 8653 } 8654 8655 /* If we are already listening, just update the backlog */ 8656 if (sctp_sstate(sk, LISTENING)) 8657 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8658 else { 8659 err = sctp_listen_start(sk, backlog); 8660 if (err) 8661 goto out; 8662 } 8663 8664 err = 0; 8665 out: 8666 release_sock(sk); 8667 return err; 8668 } 8669 8670 /* 8671 * This function is done by modeling the current datagram_poll() and the 8672 * tcp_poll(). Note that, based on these implementations, we don't 8673 * lock the socket in this function, even though it seems that, 8674 * ideally, locking or some other mechanisms can be used to ensure 8675 * the integrity of the counters (sndbuf and wmem_alloc) used 8676 * in this place. We assume that we don't need locks either until proven 8677 * otherwise. 8678 * 8679 * Another thing to note is that we include the Async I/O support 8680 * here, again, by modeling the current TCP/UDP code. We don't have 8681 * a good way to test with it yet. 8682 */ 8683 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8684 { 8685 struct sock *sk = sock->sk; 8686 struct sctp_sock *sp = sctp_sk(sk); 8687 __poll_t mask; 8688 8689 poll_wait(file, sk_sleep(sk), wait); 8690 8691 sock_rps_record_flow(sk); 8692 8693 /* A TCP-style listening socket becomes readable when the accept queue 8694 * is not empty. 8695 */ 8696 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8697 return (!list_empty(&sp->ep->asocs)) ? 8698 (EPOLLIN | EPOLLRDNORM) : 0; 8699 8700 mask = 0; 8701 8702 /* Is there any exceptional events? */ 8703 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8704 mask |= EPOLLERR | 8705 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8706 if (sk->sk_shutdown & RCV_SHUTDOWN) 8707 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8708 if (sk->sk_shutdown == SHUTDOWN_MASK) 8709 mask |= EPOLLHUP; 8710 8711 /* Is it readable? Reconsider this code with TCP-style support. */ 8712 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8713 mask |= EPOLLIN | EPOLLRDNORM; 8714 8715 /* The association is either gone or not ready. */ 8716 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8717 return mask; 8718 8719 /* Is it writable? */ 8720 if (sctp_writeable(sk)) { 8721 mask |= EPOLLOUT | EPOLLWRNORM; 8722 } else { 8723 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8724 /* 8725 * Since the socket is not locked, the buffer 8726 * might be made available after the writeable check and 8727 * before the bit is set. This could cause a lost I/O 8728 * signal. tcp_poll() has a race breaker for this race 8729 * condition. Based on their implementation, we put 8730 * in the following code to cover it as well. 8731 */ 8732 if (sctp_writeable(sk)) 8733 mask |= EPOLLOUT | EPOLLWRNORM; 8734 } 8735 return mask; 8736 } 8737 8738 /******************************************************************** 8739 * 2nd Level Abstractions 8740 ********************************************************************/ 8741 8742 static struct sctp_bind_bucket *sctp_bucket_create( 8743 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8744 { 8745 struct sctp_bind_bucket *pp; 8746 8747 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8748 if (pp) { 8749 SCTP_DBG_OBJCNT_INC(bind_bucket); 8750 pp->port = snum; 8751 pp->fastreuse = 0; 8752 INIT_HLIST_HEAD(&pp->owner); 8753 pp->net = net; 8754 hlist_add_head(&pp->node, &head->chain); 8755 } 8756 return pp; 8757 } 8758 8759 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8760 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8761 { 8762 if (pp && hlist_empty(&pp->owner)) { 8763 __hlist_del(&pp->node); 8764 kmem_cache_free(sctp_bucket_cachep, pp); 8765 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8766 } 8767 } 8768 8769 /* Release this socket's reference to a local port. */ 8770 static inline void __sctp_put_port(struct sock *sk) 8771 { 8772 struct sctp_bind_hashbucket *head = 8773 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8774 inet_sk(sk)->inet_num)]; 8775 struct sctp_bind_bucket *pp; 8776 8777 spin_lock(&head->lock); 8778 pp = sctp_sk(sk)->bind_hash; 8779 __sk_del_bind_node(sk); 8780 sctp_sk(sk)->bind_hash = NULL; 8781 inet_sk(sk)->inet_num = 0; 8782 sctp_bucket_destroy(pp); 8783 spin_unlock(&head->lock); 8784 } 8785 8786 void sctp_put_port(struct sock *sk) 8787 { 8788 local_bh_disable(); 8789 __sctp_put_port(sk); 8790 local_bh_enable(); 8791 } 8792 8793 /* 8794 * The system picks an ephemeral port and choose an address set equivalent 8795 * to binding with a wildcard address. 8796 * One of those addresses will be the primary address for the association. 8797 * This automatically enables the multihoming capability of SCTP. 8798 */ 8799 static int sctp_autobind(struct sock *sk) 8800 { 8801 union sctp_addr autoaddr; 8802 struct sctp_af *af; 8803 __be16 port; 8804 8805 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8806 af = sctp_sk(sk)->pf->af; 8807 8808 port = htons(inet_sk(sk)->inet_num); 8809 af->inaddr_any(&autoaddr, port); 8810 8811 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8812 } 8813 8814 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8815 * 8816 * From RFC 2292 8817 * 4.2 The cmsghdr Structure * 8818 * 8819 * When ancillary data is sent or received, any number of ancillary data 8820 * objects can be specified by the msg_control and msg_controllen members of 8821 * the msghdr structure, because each object is preceded by 8822 * a cmsghdr structure defining the object's length (the cmsg_len member). 8823 * Historically Berkeley-derived implementations have passed only one object 8824 * at a time, but this API allows multiple objects to be 8825 * passed in a single call to sendmsg() or recvmsg(). The following example 8826 * shows two ancillary data objects in a control buffer. 8827 * 8828 * |<--------------------------- msg_controllen -------------------------->| 8829 * | | 8830 * 8831 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8832 * 8833 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8834 * | | | 8835 * 8836 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8837 * 8838 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8839 * | | | | | 8840 * 8841 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8842 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8843 * 8844 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8845 * 8846 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8847 * ^ 8848 * | 8849 * 8850 * msg_control 8851 * points here 8852 */ 8853 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8854 { 8855 struct msghdr *my_msg = (struct msghdr *)msg; 8856 struct cmsghdr *cmsg; 8857 8858 for_each_cmsghdr(cmsg, my_msg) { 8859 if (!CMSG_OK(my_msg, cmsg)) 8860 return -EINVAL; 8861 8862 /* Should we parse this header or ignore? */ 8863 if (cmsg->cmsg_level != IPPROTO_SCTP) 8864 continue; 8865 8866 /* Strictly check lengths following example in SCM code. */ 8867 switch (cmsg->cmsg_type) { 8868 case SCTP_INIT: 8869 /* SCTP Socket API Extension 8870 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8871 * 8872 * This cmsghdr structure provides information for 8873 * initializing new SCTP associations with sendmsg(). 8874 * The SCTP_INITMSG socket option uses this same data 8875 * structure. This structure is not used for 8876 * recvmsg(). 8877 * 8878 * cmsg_level cmsg_type cmsg_data[] 8879 * ------------ ------------ ---------------------- 8880 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8881 */ 8882 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8883 return -EINVAL; 8884 8885 cmsgs->init = CMSG_DATA(cmsg); 8886 break; 8887 8888 case SCTP_SNDRCV: 8889 /* SCTP Socket API Extension 8890 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8891 * 8892 * This cmsghdr structure specifies SCTP options for 8893 * sendmsg() and describes SCTP header information 8894 * about a received message through recvmsg(). 8895 * 8896 * cmsg_level cmsg_type cmsg_data[] 8897 * ------------ ------------ ---------------------- 8898 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8899 */ 8900 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8901 return -EINVAL; 8902 8903 cmsgs->srinfo = CMSG_DATA(cmsg); 8904 8905 if (cmsgs->srinfo->sinfo_flags & 8906 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8907 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8908 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8909 return -EINVAL; 8910 break; 8911 8912 case SCTP_SNDINFO: 8913 /* SCTP Socket API Extension 8914 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8915 * 8916 * This cmsghdr structure specifies SCTP options for 8917 * sendmsg(). This structure and SCTP_RCVINFO replaces 8918 * SCTP_SNDRCV which has been deprecated. 8919 * 8920 * cmsg_level cmsg_type cmsg_data[] 8921 * ------------ ------------ --------------------- 8922 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8923 */ 8924 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8925 return -EINVAL; 8926 8927 cmsgs->sinfo = CMSG_DATA(cmsg); 8928 8929 if (cmsgs->sinfo->snd_flags & 8930 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8931 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8932 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8933 return -EINVAL; 8934 break; 8935 case SCTP_PRINFO: 8936 /* SCTP Socket API Extension 8937 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8938 * 8939 * This cmsghdr structure specifies SCTP options for sendmsg(). 8940 * 8941 * cmsg_level cmsg_type cmsg_data[] 8942 * ------------ ------------ --------------------- 8943 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8944 */ 8945 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8946 return -EINVAL; 8947 8948 cmsgs->prinfo = CMSG_DATA(cmsg); 8949 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8950 return -EINVAL; 8951 8952 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8953 cmsgs->prinfo->pr_value = 0; 8954 break; 8955 case SCTP_AUTHINFO: 8956 /* SCTP Socket API Extension 8957 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8958 * 8959 * This cmsghdr structure specifies SCTP options for sendmsg(). 8960 * 8961 * cmsg_level cmsg_type cmsg_data[] 8962 * ------------ ------------ --------------------- 8963 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8964 */ 8965 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8966 return -EINVAL; 8967 8968 cmsgs->authinfo = CMSG_DATA(cmsg); 8969 break; 8970 case SCTP_DSTADDRV4: 8971 case SCTP_DSTADDRV6: 8972 /* SCTP Socket API Extension 8973 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8974 * 8975 * This cmsghdr structure specifies SCTP options for sendmsg(). 8976 * 8977 * cmsg_level cmsg_type cmsg_data[] 8978 * ------------ ------------ --------------------- 8979 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8980 * ------------ ------------ --------------------- 8981 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8982 */ 8983 cmsgs->addrs_msg = my_msg; 8984 break; 8985 default: 8986 return -EINVAL; 8987 } 8988 } 8989 8990 return 0; 8991 } 8992 8993 /* 8994 * Wait for a packet.. 8995 * Note: This function is the same function as in core/datagram.c 8996 * with a few modifications to make lksctp work. 8997 */ 8998 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8999 { 9000 int error; 9001 DEFINE_WAIT(wait); 9002 9003 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9004 9005 /* Socket errors? */ 9006 error = sock_error(sk); 9007 if (error) 9008 goto out; 9009 9010 if (!skb_queue_empty(&sk->sk_receive_queue)) 9011 goto ready; 9012 9013 /* Socket shut down? */ 9014 if (sk->sk_shutdown & RCV_SHUTDOWN) 9015 goto out; 9016 9017 /* Sequenced packets can come disconnected. If so we report the 9018 * problem. 9019 */ 9020 error = -ENOTCONN; 9021 9022 /* Is there a good reason to think that we may receive some data? */ 9023 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 9024 goto out; 9025 9026 /* Handle signals. */ 9027 if (signal_pending(current)) 9028 goto interrupted; 9029 9030 /* Let another process have a go. Since we are going to sleep 9031 * anyway. Note: This may cause odd behaviors if the message 9032 * does not fit in the user's buffer, but this seems to be the 9033 * only way to honor MSG_DONTWAIT realistically. 9034 */ 9035 release_sock(sk); 9036 *timeo_p = schedule_timeout(*timeo_p); 9037 lock_sock(sk); 9038 9039 ready: 9040 finish_wait(sk_sleep(sk), &wait); 9041 return 0; 9042 9043 interrupted: 9044 error = sock_intr_errno(*timeo_p); 9045 9046 out: 9047 finish_wait(sk_sleep(sk), &wait); 9048 *err = error; 9049 return error; 9050 } 9051 9052 /* Receive a datagram. 9053 * Note: This is pretty much the same routine as in core/datagram.c 9054 * with a few changes to make lksctp work. 9055 */ 9056 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9057 { 9058 int error; 9059 struct sk_buff *skb; 9060 long timeo; 9061 9062 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9063 9064 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9065 MAX_SCHEDULE_TIMEOUT); 9066 9067 do { 9068 /* Again only user level code calls this function, 9069 * so nothing interrupt level 9070 * will suddenly eat the receive_queue. 9071 * 9072 * Look at current nfs client by the way... 9073 * However, this function was correct in any case. 8) 9074 */ 9075 if (flags & MSG_PEEK) { 9076 skb = skb_peek(&sk->sk_receive_queue); 9077 if (skb) 9078 refcount_inc(&skb->users); 9079 } else { 9080 skb = __skb_dequeue(&sk->sk_receive_queue); 9081 } 9082 9083 if (skb) 9084 return skb; 9085 9086 /* Caller is allowed not to check sk->sk_err before calling. */ 9087 error = sock_error(sk); 9088 if (error) 9089 goto no_packet; 9090 9091 if (sk->sk_shutdown & RCV_SHUTDOWN) 9092 break; 9093 9094 9095 /* User doesn't want to wait. */ 9096 error = -EAGAIN; 9097 if (!timeo) 9098 goto no_packet; 9099 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9100 9101 return NULL; 9102 9103 no_packet: 9104 *err = error; 9105 return NULL; 9106 } 9107 9108 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9109 static void __sctp_write_space(struct sctp_association *asoc) 9110 { 9111 struct sock *sk = asoc->base.sk; 9112 9113 if (sctp_wspace(asoc) <= 0) 9114 return; 9115 9116 if (waitqueue_active(&asoc->wait)) 9117 wake_up_interruptible(&asoc->wait); 9118 9119 if (sctp_writeable(sk)) { 9120 struct socket_wq *wq; 9121 9122 rcu_read_lock(); 9123 wq = rcu_dereference(sk->sk_wq); 9124 if (wq) { 9125 if (waitqueue_active(&wq->wait)) 9126 wake_up_interruptible_poll(&wq->wait, EPOLLOUT | 9127 EPOLLWRNORM | EPOLLWRBAND); 9128 9129 /* Note that we try to include the Async I/O support 9130 * here by modeling from the current TCP/UDP code. 9131 * We have not tested with it yet. 9132 */ 9133 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9134 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9135 } 9136 rcu_read_unlock(); 9137 } 9138 } 9139 9140 static void sctp_wake_up_waiters(struct sock *sk, 9141 struct sctp_association *asoc) 9142 { 9143 struct sctp_association *tmp = asoc; 9144 9145 /* We do accounting for the sndbuf space per association, 9146 * so we only need to wake our own association. 9147 */ 9148 if (asoc->ep->sndbuf_policy) 9149 return __sctp_write_space(asoc); 9150 9151 /* If association goes down and is just flushing its 9152 * outq, then just normally notify others. 9153 */ 9154 if (asoc->base.dead) 9155 return sctp_write_space(sk); 9156 9157 /* Accounting for the sndbuf space is per socket, so we 9158 * need to wake up others, try to be fair and in case of 9159 * other associations, let them have a go first instead 9160 * of just doing a sctp_write_space() call. 9161 * 9162 * Note that we reach sctp_wake_up_waiters() only when 9163 * associations free up queued chunks, thus we are under 9164 * lock and the list of associations on a socket is 9165 * guaranteed not to change. 9166 */ 9167 for (tmp = list_next_entry(tmp, asocs); 1; 9168 tmp = list_next_entry(tmp, asocs)) { 9169 /* Manually skip the head element. */ 9170 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9171 continue; 9172 /* Wake up association. */ 9173 __sctp_write_space(tmp); 9174 /* We've reached the end. */ 9175 if (tmp == asoc) 9176 break; 9177 } 9178 } 9179 9180 /* Do accounting for the sndbuf space. 9181 * Decrement the used sndbuf space of the corresponding association by the 9182 * data size which was just transmitted(freed). 9183 */ 9184 static void sctp_wfree(struct sk_buff *skb) 9185 { 9186 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9187 struct sctp_association *asoc = chunk->asoc; 9188 struct sock *sk = asoc->base.sk; 9189 9190 sk_mem_uncharge(sk, skb->truesize); 9191 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9192 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9193 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9194 &sk->sk_wmem_alloc)); 9195 9196 if (chunk->shkey) { 9197 struct sctp_shared_key *shkey = chunk->shkey; 9198 9199 /* refcnt == 2 and !list_empty mean after this release, it's 9200 * not being used anywhere, and it's time to notify userland 9201 * that this shkey can be freed if it's been deactivated. 9202 */ 9203 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9204 refcount_read(&shkey->refcnt) == 2) { 9205 struct sctp_ulpevent *ev; 9206 9207 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9208 SCTP_AUTH_FREE_KEY, 9209 GFP_KERNEL); 9210 if (ev) 9211 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9212 } 9213 sctp_auth_shkey_release(chunk->shkey); 9214 } 9215 9216 sock_wfree(skb); 9217 sctp_wake_up_waiters(sk, asoc); 9218 9219 sctp_association_put(asoc); 9220 } 9221 9222 /* Do accounting for the receive space on the socket. 9223 * Accounting for the association is done in ulpevent.c 9224 * We set this as a destructor for the cloned data skbs so that 9225 * accounting is done at the correct time. 9226 */ 9227 void sctp_sock_rfree(struct sk_buff *skb) 9228 { 9229 struct sock *sk = skb->sk; 9230 struct sctp_ulpevent *event = sctp_skb2event(skb); 9231 9232 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9233 9234 /* 9235 * Mimic the behavior of sock_rfree 9236 */ 9237 sk_mem_uncharge(sk, event->rmem_len); 9238 } 9239 9240 9241 /* Helper function to wait for space in the sndbuf. */ 9242 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 9243 struct sctp_transport *transport, 9244 long *timeo_p, size_t msg_len) 9245 { 9246 struct sock *sk = asoc->base.sk; 9247 long current_timeo = *timeo_p; 9248 DEFINE_WAIT(wait); 9249 int err = 0; 9250 9251 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9252 *timeo_p, msg_len); 9253 9254 /* Increment the transport and association's refcnt. */ 9255 if (transport) 9256 sctp_transport_hold(transport); 9257 sctp_association_hold(asoc); 9258 9259 /* Wait on the association specific sndbuf space. */ 9260 for (;;) { 9261 prepare_to_wait_exclusive(&asoc->wait, &wait, 9262 TASK_INTERRUPTIBLE); 9263 if (asoc->base.dead) 9264 goto do_dead; 9265 if ((!*timeo_p) || (transport && transport->dead)) 9266 goto do_nonblock; 9267 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9268 goto do_error; 9269 if (signal_pending(current)) 9270 goto do_interrupted; 9271 if ((int)msg_len <= sctp_wspace(asoc) && 9272 sk_wmem_schedule(sk, msg_len)) 9273 break; 9274 9275 /* Let another process have a go. Since we are going 9276 * to sleep anyway. 9277 */ 9278 release_sock(sk); 9279 current_timeo = schedule_timeout(current_timeo); 9280 lock_sock(sk); 9281 if (sk != asoc->base.sk) 9282 goto do_error; 9283 9284 *timeo_p = current_timeo; 9285 } 9286 9287 out: 9288 finish_wait(&asoc->wait, &wait); 9289 9290 /* Release the transport and association's refcnt. */ 9291 if (transport) 9292 sctp_transport_put(transport); 9293 sctp_association_put(asoc); 9294 9295 return err; 9296 9297 do_dead: 9298 err = -ESRCH; 9299 goto out; 9300 9301 do_error: 9302 err = -EPIPE; 9303 goto out; 9304 9305 do_interrupted: 9306 err = sock_intr_errno(*timeo_p); 9307 goto out; 9308 9309 do_nonblock: 9310 err = -EAGAIN; 9311 goto out; 9312 } 9313 9314 void sctp_data_ready(struct sock *sk) 9315 { 9316 struct socket_wq *wq; 9317 9318 trace_sk_data_ready(sk); 9319 9320 rcu_read_lock(); 9321 wq = rcu_dereference(sk->sk_wq); 9322 if (skwq_has_sleeper(wq)) 9323 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9324 EPOLLRDNORM | EPOLLRDBAND); 9325 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 9326 rcu_read_unlock(); 9327 } 9328 9329 /* If socket sndbuf has changed, wake up all per association waiters. */ 9330 void sctp_write_space(struct sock *sk) 9331 { 9332 struct sctp_association *asoc; 9333 9334 /* Wake up the tasks in each wait queue. */ 9335 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9336 __sctp_write_space(asoc); 9337 } 9338 } 9339 9340 /* Is there any sndbuf space available on the socket? 9341 * 9342 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9343 * associations on the same socket. For a UDP-style socket with 9344 * multiple associations, it is possible for it to be "unwriteable" 9345 * prematurely. I assume that this is acceptable because 9346 * a premature "unwriteable" is better than an accidental "writeable" which 9347 * would cause an unwanted block under certain circumstances. For the 1-1 9348 * UDP-style sockets or TCP-style sockets, this code should work. 9349 * - Daisy 9350 */ 9351 static bool sctp_writeable(const struct sock *sk) 9352 { 9353 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9354 } 9355 9356 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9357 * returns immediately with EINPROGRESS. 9358 */ 9359 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9360 { 9361 struct sock *sk = asoc->base.sk; 9362 int err = 0; 9363 long current_timeo = *timeo_p; 9364 DEFINE_WAIT(wait); 9365 9366 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9367 9368 /* Increment the association's refcnt. */ 9369 sctp_association_hold(asoc); 9370 9371 for (;;) { 9372 prepare_to_wait_exclusive(&asoc->wait, &wait, 9373 TASK_INTERRUPTIBLE); 9374 if (!*timeo_p) 9375 goto do_nonblock; 9376 if (sk->sk_shutdown & RCV_SHUTDOWN) 9377 break; 9378 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9379 asoc->base.dead) 9380 goto do_error; 9381 if (signal_pending(current)) 9382 goto do_interrupted; 9383 9384 if (sctp_state(asoc, ESTABLISHED)) 9385 break; 9386 9387 /* Let another process have a go. Since we are going 9388 * to sleep anyway. 9389 */ 9390 release_sock(sk); 9391 current_timeo = schedule_timeout(current_timeo); 9392 lock_sock(sk); 9393 9394 *timeo_p = current_timeo; 9395 } 9396 9397 out: 9398 finish_wait(&asoc->wait, &wait); 9399 9400 /* Release the association's refcnt. */ 9401 sctp_association_put(asoc); 9402 9403 return err; 9404 9405 do_error: 9406 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9407 err = -ETIMEDOUT; 9408 else 9409 err = -ECONNREFUSED; 9410 goto out; 9411 9412 do_interrupted: 9413 err = sock_intr_errno(*timeo_p); 9414 goto out; 9415 9416 do_nonblock: 9417 err = -EINPROGRESS; 9418 goto out; 9419 } 9420 9421 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9422 { 9423 struct sctp_endpoint *ep; 9424 int err = 0; 9425 DEFINE_WAIT(wait); 9426 9427 ep = sctp_sk(sk)->ep; 9428 9429 9430 for (;;) { 9431 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9432 TASK_INTERRUPTIBLE); 9433 9434 if (list_empty(&ep->asocs)) { 9435 release_sock(sk); 9436 timeo = schedule_timeout(timeo); 9437 lock_sock(sk); 9438 } 9439 9440 err = -EINVAL; 9441 if (!sctp_sstate(sk, LISTENING) || 9442 (sk->sk_shutdown & RCV_SHUTDOWN)) 9443 break; 9444 9445 err = 0; 9446 if (!list_empty(&ep->asocs)) 9447 break; 9448 9449 err = sock_intr_errno(timeo); 9450 if (signal_pending(current)) 9451 break; 9452 9453 err = -EAGAIN; 9454 if (!timeo) 9455 break; 9456 } 9457 9458 finish_wait(sk_sleep(sk), &wait); 9459 9460 return err; 9461 } 9462 9463 static void sctp_wait_for_close(struct sock *sk, long timeout) 9464 { 9465 DEFINE_WAIT(wait); 9466 9467 do { 9468 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9469 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9470 break; 9471 release_sock(sk); 9472 timeout = schedule_timeout(timeout); 9473 lock_sock(sk); 9474 } while (!signal_pending(current) && timeout); 9475 9476 finish_wait(sk_sleep(sk), &wait); 9477 } 9478 9479 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9480 { 9481 struct sk_buff *frag; 9482 9483 if (!skb->data_len) 9484 goto done; 9485 9486 /* Don't forget the fragments. */ 9487 skb_walk_frags(skb, frag) 9488 sctp_skb_set_owner_r_frag(frag, sk); 9489 9490 done: 9491 sctp_skb_set_owner_r(skb, sk); 9492 } 9493 9494 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9495 * and its messages to the newsk. 9496 */ 9497 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9498 struct sctp_association *assoc, 9499 enum sctp_socket_type type) 9500 { 9501 struct sctp_sock *oldsp = sctp_sk(oldsk); 9502 struct sctp_sock *newsp = sctp_sk(newsk); 9503 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9504 struct sctp_endpoint *newep = newsp->ep; 9505 struct sk_buff *skb, *tmp; 9506 struct sctp_ulpevent *event; 9507 struct sctp_bind_hashbucket *head; 9508 int err; 9509 9510 /* Restore the ep value that was overwritten with the above structure 9511 * copy. 9512 */ 9513 newsp->ep = newep; 9514 9515 /* Hook this new socket in to the bind_hash list. */ 9516 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9517 inet_sk(oldsk)->inet_num)]; 9518 spin_lock_bh(&head->lock); 9519 pp = sctp_sk(oldsk)->bind_hash; 9520 sk_add_bind_node(newsk, &pp->owner); 9521 sctp_sk(newsk)->bind_hash = pp; 9522 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9523 spin_unlock_bh(&head->lock); 9524 9525 /* Copy the bind_addr list from the original endpoint to the new 9526 * endpoint so that we can handle restarts properly 9527 */ 9528 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9529 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9530 if (err) 9531 return err; 9532 9533 sctp_auto_asconf_init(newsp); 9534 9535 /* Move any messages in the old socket's receive queue that are for the 9536 * peeled off association to the new socket's receive queue. 9537 */ 9538 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9539 event = sctp_skb2event(skb); 9540 if (event->asoc == assoc) { 9541 __skb_unlink(skb, &oldsk->sk_receive_queue); 9542 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9543 sctp_skb_set_owner_r_frag(skb, newsk); 9544 } 9545 } 9546 9547 /* Clean up any messages pending delivery due to partial 9548 * delivery. Three cases: 9549 * 1) No partial deliver; no work. 9550 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9551 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9552 */ 9553 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9554 9555 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9556 struct sk_buff_head *queue; 9557 9558 /* Decide which queue to move pd_lobby skbs to. */ 9559 if (assoc->ulpq.pd_mode) { 9560 queue = &newsp->pd_lobby; 9561 } else 9562 queue = &newsk->sk_receive_queue; 9563 9564 /* Walk through the pd_lobby, looking for skbs that 9565 * need moved to the new socket. 9566 */ 9567 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9568 event = sctp_skb2event(skb); 9569 if (event->asoc == assoc) { 9570 __skb_unlink(skb, &oldsp->pd_lobby); 9571 __skb_queue_tail(queue, skb); 9572 sctp_skb_set_owner_r_frag(skb, newsk); 9573 } 9574 } 9575 9576 /* Clear up any skbs waiting for the partial 9577 * delivery to finish. 9578 */ 9579 if (assoc->ulpq.pd_mode) 9580 sctp_clear_pd(oldsk, NULL); 9581 9582 } 9583 9584 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9585 9586 /* Set the type of socket to indicate that it is peeled off from the 9587 * original UDP-style socket or created with the accept() call on a 9588 * TCP-style socket.. 9589 */ 9590 newsp->type = type; 9591 9592 /* Mark the new socket "in-use" by the user so that any packets 9593 * that may arrive on the association after we've moved it are 9594 * queued to the backlog. This prevents a potential race between 9595 * backlog processing on the old socket and new-packet processing 9596 * on the new socket. 9597 * 9598 * The caller has just allocated newsk so we can guarantee that other 9599 * paths won't try to lock it and then oldsk. 9600 */ 9601 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9602 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9603 sctp_assoc_migrate(assoc, newsk); 9604 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9605 9606 /* If the association on the newsk is already closed before accept() 9607 * is called, set RCV_SHUTDOWN flag. 9608 */ 9609 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9610 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9611 newsk->sk_shutdown |= RCV_SHUTDOWN; 9612 } else { 9613 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9614 } 9615 9616 release_sock(newsk); 9617 9618 return 0; 9619 } 9620 9621 9622 /* This proto struct describes the ULP interface for SCTP. */ 9623 struct proto sctp_prot = { 9624 .name = "SCTP", 9625 .owner = THIS_MODULE, 9626 .close = sctp_close, 9627 .disconnect = sctp_disconnect, 9628 .accept = sctp_accept, 9629 .ioctl = sctp_ioctl, 9630 .init = sctp_init_sock, 9631 .destroy = sctp_destroy_sock, 9632 .shutdown = sctp_shutdown, 9633 .setsockopt = sctp_setsockopt, 9634 .getsockopt = sctp_getsockopt, 9635 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9636 .sendmsg = sctp_sendmsg, 9637 .recvmsg = sctp_recvmsg, 9638 .bind = sctp_bind, 9639 .bind_add = sctp_bind_add, 9640 .backlog_rcv = sctp_backlog_rcv, 9641 .hash = sctp_hash, 9642 .unhash = sctp_unhash, 9643 .no_autobind = true, 9644 .obj_size = sizeof(struct sctp_sock), 9645 .useroffset = offsetof(struct sctp_sock, subscribe), 9646 .usersize = offsetof(struct sctp_sock, initmsg) - 9647 offsetof(struct sctp_sock, subscribe) + 9648 sizeof_field(struct sctp_sock, initmsg), 9649 .sysctl_mem = sysctl_sctp_mem, 9650 .sysctl_rmem = sysctl_sctp_rmem, 9651 .sysctl_wmem = sysctl_sctp_wmem, 9652 .memory_pressure = &sctp_memory_pressure, 9653 .enter_memory_pressure = sctp_enter_memory_pressure, 9654 9655 .memory_allocated = &sctp_memory_allocated, 9656 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9657 9658 .sockets_allocated = &sctp_sockets_allocated, 9659 }; 9660 9661 #if IS_ENABLED(CONFIG_IPV6) 9662 9663 static void sctp_v6_destruct_sock(struct sock *sk) 9664 { 9665 inet6_sock_destruct(sk); 9666 } 9667 9668 static int sctp_v6_init_sock(struct sock *sk) 9669 { 9670 int ret = sctp_init_sock(sk); 9671 9672 if (!ret) 9673 sk->sk_destruct = sctp_v6_destruct_sock; 9674 9675 return ret; 9676 } 9677 9678 struct proto sctpv6_prot = { 9679 .name = "SCTPv6", 9680 .owner = THIS_MODULE, 9681 .close = sctp_close, 9682 .disconnect = sctp_disconnect, 9683 .accept = sctp_accept, 9684 .ioctl = sctp_ioctl, 9685 .init = sctp_v6_init_sock, 9686 .destroy = sctp_destroy_sock, 9687 .shutdown = sctp_shutdown, 9688 .setsockopt = sctp_setsockopt, 9689 .getsockopt = sctp_getsockopt, 9690 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9691 .sendmsg = sctp_sendmsg, 9692 .recvmsg = sctp_recvmsg, 9693 .bind = sctp_bind, 9694 .bind_add = sctp_bind_add, 9695 .backlog_rcv = sctp_backlog_rcv, 9696 .hash = sctp_hash, 9697 .unhash = sctp_unhash, 9698 .no_autobind = true, 9699 .obj_size = sizeof(struct sctp6_sock), 9700 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9701 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9702 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9703 offsetof(struct sctp6_sock, sctp.subscribe) + 9704 sizeof_field(struct sctp6_sock, sctp.initmsg), 9705 .sysctl_mem = sysctl_sctp_mem, 9706 .sysctl_rmem = sysctl_sctp_rmem, 9707 .sysctl_wmem = sysctl_sctp_wmem, 9708 .memory_pressure = &sctp_memory_pressure, 9709 .enter_memory_pressure = sctp_enter_memory_pressure, 9710 9711 .memory_allocated = &sctp_memory_allocated, 9712 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9713 9714 .sockets_allocated = &sctp_sockets_allocated, 9715 }; 9716 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9717