1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 #include <trace/events/sock.h> 63 64 #include <linux/socket.h> /* for sa_family_t */ 65 #include <linux/export.h> 66 #include <net/sock.h> 67 #include <net/sctp/sctp.h> 68 #include <net/sctp/sm.h> 69 #include <net/sctp/stream_sched.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(const struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 75 size_t msg_len); 76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 78 static int sctp_wait_for_accept(struct sock *sk, long timeo); 79 static void sctp_wait_for_close(struct sock *sk, long timeo); 80 static void sctp_destruct_sock(struct sock *sk); 81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 82 union sctp_addr *addr, int len); 83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf(struct sctp_association *asoc, 88 struct sctp_chunk *chunk); 89 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 90 static int sctp_autobind(struct sock *sk); 91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 92 struct sctp_association *assoc, 93 enum sctp_socket_type type); 94 95 static unsigned long sctp_memory_pressure; 96 static atomic_long_t sctp_memory_allocated; 97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 98 struct percpu_counter sctp_sockets_allocated; 99 100 static void sctp_enter_memory_pressure(struct sock *sk) 101 { 102 WRITE_ONCE(sctp_memory_pressure, 1); 103 } 104 105 106 /* Get the sndbuf space available at the time on the association. */ 107 static inline int sctp_wspace(struct sctp_association *asoc) 108 { 109 struct sock *sk = asoc->base.sk; 110 111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 112 : sk_stream_wspace(sk); 113 } 114 115 /* Increment the used sndbuf space count of the corresponding association by 116 * the size of the outgoing data chunk. 117 * Also, set the skb destructor for sndbuf accounting later. 118 * 119 * Since it is always 1-1 between chunk and skb, and also a new skb is always 120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 121 * destructor in the data chunk skb for the purpose of the sndbuf space 122 * tracking. 123 */ 124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 125 { 126 struct sctp_association *asoc = chunk->asoc; 127 struct sock *sk = asoc->base.sk; 128 129 /* The sndbuf space is tracked per association. */ 130 sctp_association_hold(asoc); 131 132 if (chunk->shkey) 133 sctp_auth_shkey_hold(chunk->shkey); 134 135 skb_set_owner_w(chunk->skb, sk); 136 137 chunk->skb->destructor = sctp_wfree; 138 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 139 skb_shinfo(chunk->skb)->destructor_arg = chunk; 140 141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 143 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 144 sk_mem_charge(sk, chunk->skb->truesize); 145 } 146 147 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 148 { 149 skb_orphan(chunk->skb); 150 } 151 152 #define traverse_and_process() \ 153 do { \ 154 msg = chunk->msg; \ 155 if (msg == prev_msg) \ 156 continue; \ 157 list_for_each_entry(c, &msg->chunks, frag_list) { \ 158 if ((clear && asoc->base.sk == c->skb->sk) || \ 159 (!clear && asoc->base.sk != c->skb->sk)) \ 160 cb(c); \ 161 } \ 162 prev_msg = msg; \ 163 } while (0) 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 bool clear, 167 void (*cb)(struct sctp_chunk *)) 168 169 { 170 struct sctp_datamsg *msg, *prev_msg = NULL; 171 struct sctp_outq *q = &asoc->outqueue; 172 struct sctp_chunk *chunk, *c; 173 struct sctp_transport *t; 174 175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 176 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 177 traverse_and_process(); 178 179 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 180 traverse_and_process(); 181 182 list_for_each_entry(chunk, &q->sacked, transmitted_list) 183 traverse_and_process(); 184 185 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 186 traverse_and_process(); 187 188 list_for_each_entry(chunk, &q->out_chunk_list, list) 189 traverse_and_process(); 190 } 191 192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 193 void (*cb)(struct sk_buff *, struct sock *)) 194 195 { 196 struct sk_buff *skb, *tmp; 197 198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 199 cb(skb, sk); 200 201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 202 cb(skb, sk); 203 204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 205 cb(skb, sk); 206 } 207 208 /* Verify that this is a valid address. */ 209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 210 int len) 211 { 212 struct sctp_af *af; 213 214 /* Verify basic sockaddr. */ 215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 216 if (!af) 217 return -EINVAL; 218 219 /* Is this a valid SCTP address? */ 220 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 221 return -EINVAL; 222 223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 224 return -EINVAL; 225 226 return 0; 227 } 228 229 /* Look up the association by its id. If this is not a UDP-style 230 * socket, the ID field is always ignored. 231 */ 232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 233 { 234 struct sctp_association *asoc = NULL; 235 236 /* If this is not a UDP-style socket, assoc id should be ignored. */ 237 if (!sctp_style(sk, UDP)) { 238 /* Return NULL if the socket state is not ESTABLISHED. It 239 * could be a TCP-style listening socket or a socket which 240 * hasn't yet called connect() to establish an association. 241 */ 242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 243 return NULL; 244 245 /* Get the first and the only association from the list. */ 246 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 248 struct sctp_association, asocs); 249 return asoc; 250 } 251 252 /* Otherwise this is a UDP-style socket. */ 253 if (id <= SCTP_ALL_ASSOC) 254 return NULL; 255 256 spin_lock_bh(&sctp_assocs_id_lock); 257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 258 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 259 asoc = NULL; 260 spin_unlock_bh(&sctp_assocs_id_lock); 261 262 return asoc; 263 } 264 265 /* Look up the transport from an address and an assoc id. If both address and 266 * id are specified, the associations matching the address and the id should be 267 * the same. 268 */ 269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 270 struct sockaddr_storage *addr, 271 sctp_assoc_t id) 272 { 273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 275 union sctp_addr *laddr = (union sctp_addr *)addr; 276 struct sctp_transport *transport; 277 278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 279 return NULL; 280 281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 282 laddr, 283 &transport); 284 285 if (!addr_asoc) 286 return NULL; 287 288 id_asoc = sctp_id2assoc(sk, id); 289 if (id_asoc && (id_asoc != addr_asoc)) 290 return NULL; 291 292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 293 (union sctp_addr *)addr); 294 295 return transport; 296 } 297 298 /* API 3.1.2 bind() - UDP Style Syntax 299 * The syntax of bind() is, 300 * 301 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 302 * 303 * sd - the socket descriptor returned by socket(). 304 * addr - the address structure (struct sockaddr_in or struct 305 * sockaddr_in6 [RFC 2553]), 306 * addr_len - the size of the address structure. 307 */ 308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 309 { 310 int retval = 0; 311 312 lock_sock(sk); 313 314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 315 addr, addr_len); 316 317 /* Disallow binding twice. */ 318 if (!sctp_sk(sk)->ep->base.bind_addr.port) 319 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 320 addr_len); 321 else 322 retval = -EINVAL; 323 324 release_sock(sk); 325 326 return retval; 327 } 328 329 static int sctp_get_port_local(struct sock *, union sctp_addr *); 330 331 /* Verify this is a valid sockaddr. */ 332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 333 union sctp_addr *addr, int len) 334 { 335 struct sctp_af *af; 336 337 /* Check minimum size. */ 338 if (len < sizeof (struct sockaddr)) 339 return NULL; 340 341 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 342 return NULL; 343 344 if (addr->sa.sa_family == AF_INET6) { 345 if (len < SIN6_LEN_RFC2133) 346 return NULL; 347 /* V4 mapped address are really of AF_INET family */ 348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 349 !opt->pf->af_supported(AF_INET, opt)) 350 return NULL; 351 } 352 353 /* If we get this far, af is valid. */ 354 af = sctp_get_af_specific(addr->sa.sa_family); 355 356 if (len < af->sockaddr_len) 357 return NULL; 358 359 return af; 360 } 361 362 static void sctp_auto_asconf_init(struct sctp_sock *sp) 363 { 364 struct net *net = sock_net(&sp->inet.sk); 365 366 if (net->sctp.default_auto_asconf) { 367 spin_lock_bh(&net->sctp.addr_wq_lock); 368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 369 spin_unlock_bh(&net->sctp.addr_wq_lock); 370 sp->do_auto_asconf = 1; 371 } 372 } 373 374 /* Bind a local address either to an endpoint or to an association. */ 375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 376 { 377 struct net *net = sock_net(sk); 378 struct sctp_sock *sp = sctp_sk(sk); 379 struct sctp_endpoint *ep = sp->ep; 380 struct sctp_bind_addr *bp = &ep->base.bind_addr; 381 struct sctp_af *af; 382 unsigned short snum; 383 int ret = 0; 384 385 /* Common sockaddr verification. */ 386 af = sctp_sockaddr_af(sp, addr, len); 387 if (!af) { 388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 389 __func__, sk, addr, len); 390 return -EINVAL; 391 } 392 393 snum = ntohs(addr->v4.sin_port); 394 395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 396 __func__, sk, &addr->sa, bp->port, snum, len); 397 398 /* PF specific bind() address verification. */ 399 if (!sp->pf->bind_verify(sp, addr)) 400 return -EADDRNOTAVAIL; 401 402 /* We must either be unbound, or bind to the same port. 403 * It's OK to allow 0 ports if we are already bound. 404 * We'll just inhert an already bound port in this case 405 */ 406 if (bp->port) { 407 if (!snum) 408 snum = bp->port; 409 else if (snum != bp->port) { 410 pr_debug("%s: new port %d doesn't match existing port " 411 "%d\n", __func__, snum, bp->port); 412 return -EINVAL; 413 } 414 } 415 416 if (snum && inet_port_requires_bind_service(net, snum) && 417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 418 return -EACCES; 419 420 /* See if the address matches any of the addresses we may have 421 * already bound before checking against other endpoints. 422 */ 423 if (sctp_bind_addr_match(bp, addr, sp)) 424 return -EINVAL; 425 426 /* Make sure we are allowed to bind here. 427 * The function sctp_get_port_local() does duplicate address 428 * detection. 429 */ 430 addr->v4.sin_port = htons(snum); 431 if (sctp_get_port_local(sk, addr)) 432 return -EADDRINUSE; 433 434 /* Refresh ephemeral port. */ 435 if (!bp->port) { 436 bp->port = inet_sk(sk)->inet_num; 437 sctp_auto_asconf_init(sp); 438 } 439 440 /* Add the address to the bind address list. 441 * Use GFP_ATOMIC since BHs will be disabled. 442 */ 443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 444 SCTP_ADDR_SRC, GFP_ATOMIC); 445 446 if (ret) { 447 sctp_put_port(sk); 448 return ret; 449 } 450 /* Copy back into socket for getsockname() use. */ 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 454 return ret; 455 } 456 457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 458 * 459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 460 * at any one time. If a sender, after sending an ASCONF chunk, decides 461 * it needs to transfer another ASCONF Chunk, it MUST wait until the 462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 463 * subsequent ASCONF. Note this restriction binds each side, so at any 464 * time two ASCONF may be in-transit on any given association (one sent 465 * from each endpoint). 466 */ 467 static int sctp_send_asconf(struct sctp_association *asoc, 468 struct sctp_chunk *chunk) 469 { 470 int retval = 0; 471 472 /* If there is an outstanding ASCONF chunk, queue it for later 473 * transmission. 474 */ 475 if (asoc->addip_last_asconf) { 476 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 477 goto out; 478 } 479 480 /* Hold the chunk until an ASCONF_ACK is received. */ 481 sctp_chunk_hold(chunk); 482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 483 if (retval) 484 sctp_chunk_free(chunk); 485 else 486 asoc->addip_last_asconf = chunk; 487 488 out: 489 return retval; 490 } 491 492 /* Add a list of addresses as bind addresses to local endpoint or 493 * association. 494 * 495 * Basically run through each address specified in the addrs/addrcnt 496 * array/length pair, determine if it is IPv6 or IPv4 and call 497 * sctp_do_bind() on it. 498 * 499 * If any of them fails, then the operation will be reversed and the 500 * ones that were added will be removed. 501 * 502 * Only sctp_setsockopt_bindx() is supposed to call this function. 503 */ 504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 505 { 506 int cnt; 507 int retval = 0; 508 void *addr_buf; 509 struct sockaddr *sa_addr; 510 struct sctp_af *af; 511 512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 513 addrs, addrcnt); 514 515 addr_buf = addrs; 516 for (cnt = 0; cnt < addrcnt; cnt++) { 517 /* The list may contain either IPv4 or IPv6 address; 518 * determine the address length for walking thru the list. 519 */ 520 sa_addr = addr_buf; 521 af = sctp_get_af_specific(sa_addr->sa_family); 522 if (!af) { 523 retval = -EINVAL; 524 goto err_bindx_add; 525 } 526 527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 528 af->sockaddr_len); 529 530 addr_buf += af->sockaddr_len; 531 532 err_bindx_add: 533 if (retval < 0) { 534 /* Failed. Cleanup the ones that have been added */ 535 if (cnt > 0) 536 sctp_bindx_rem(sk, addrs, cnt); 537 return retval; 538 } 539 } 540 541 return retval; 542 } 543 544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 545 * associations that are part of the endpoint indicating that a list of local 546 * addresses are added to the endpoint. 547 * 548 * If any of the addresses is already in the bind address list of the 549 * association, we do not send the chunk for that association. But it will not 550 * affect other associations. 551 * 552 * Only sctp_setsockopt_bindx() is supposed to call this function. 553 */ 554 static int sctp_send_asconf_add_ip(struct sock *sk, 555 struct sockaddr *addrs, 556 int addrcnt) 557 { 558 struct sctp_sock *sp; 559 struct sctp_endpoint *ep; 560 struct sctp_association *asoc; 561 struct sctp_bind_addr *bp; 562 struct sctp_chunk *chunk; 563 struct sctp_sockaddr_entry *laddr; 564 union sctp_addr *addr; 565 union sctp_addr saveaddr; 566 void *addr_buf; 567 struct sctp_af *af; 568 struct list_head *p; 569 int i; 570 int retval = 0; 571 572 sp = sctp_sk(sk); 573 ep = sp->ep; 574 575 if (!ep->asconf_enable) 576 return retval; 577 578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 579 __func__, sk, addrs, addrcnt); 580 581 list_for_each_entry(asoc, &ep->asocs, asocs) { 582 if (!asoc->peer.asconf_capable) 583 continue; 584 585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 586 continue; 587 588 if (!sctp_state(asoc, ESTABLISHED)) 589 continue; 590 591 /* Check if any address in the packed array of addresses is 592 * in the bind address list of the association. If so, 593 * do not send the asconf chunk to its peer, but continue with 594 * other associations. 595 */ 596 addr_buf = addrs; 597 for (i = 0; i < addrcnt; i++) { 598 addr = addr_buf; 599 af = sctp_get_af_specific(addr->v4.sin_family); 600 if (!af) { 601 retval = -EINVAL; 602 goto out; 603 } 604 605 if (sctp_assoc_lookup_laddr(asoc, addr)) 606 break; 607 608 addr_buf += af->sockaddr_len; 609 } 610 if (i < addrcnt) 611 continue; 612 613 /* Use the first valid address in bind addr list of 614 * association as Address Parameter of ASCONF CHUNK. 615 */ 616 bp = &asoc->base.bind_addr; 617 p = bp->address_list.next; 618 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 620 addrcnt, SCTP_PARAM_ADD_IP); 621 if (!chunk) { 622 retval = -ENOMEM; 623 goto out; 624 } 625 626 /* Add the new addresses to the bind address list with 627 * use_as_src set to 0. 628 */ 629 addr_buf = addrs; 630 for (i = 0; i < addrcnt; i++) { 631 addr = addr_buf; 632 af = sctp_get_af_specific(addr->v4.sin_family); 633 memcpy(&saveaddr, addr, af->sockaddr_len); 634 retval = sctp_add_bind_addr(bp, &saveaddr, 635 sizeof(saveaddr), 636 SCTP_ADDR_NEW, GFP_ATOMIC); 637 addr_buf += af->sockaddr_len; 638 } 639 if (asoc->src_out_of_asoc_ok) { 640 struct sctp_transport *trans; 641 642 list_for_each_entry(trans, 643 &asoc->peer.transport_addr_list, transports) { 644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 645 2*asoc->pathmtu, 4380)); 646 trans->ssthresh = asoc->peer.i.a_rwnd; 647 trans->rto = asoc->rto_initial; 648 sctp_max_rto(asoc, trans); 649 trans->rtt = trans->srtt = trans->rttvar = 0; 650 /* Clear the source and route cache */ 651 sctp_transport_route(trans, NULL, 652 sctp_sk(asoc->base.sk)); 653 } 654 } 655 retval = sctp_send_asconf(asoc, chunk); 656 } 657 658 out: 659 return retval; 660 } 661 662 /* Remove a list of addresses from bind addresses list. Do not remove the 663 * last address. 664 * 665 * Basically run through each address specified in the addrs/addrcnt 666 * array/length pair, determine if it is IPv6 or IPv4 and call 667 * sctp_del_bind() on it. 668 * 669 * If any of them fails, then the operation will be reversed and the 670 * ones that were removed will be added back. 671 * 672 * At least one address has to be left; if only one address is 673 * available, the operation will return -EBUSY. 674 * 675 * Only sctp_setsockopt_bindx() is supposed to call this function. 676 */ 677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 678 { 679 struct sctp_sock *sp = sctp_sk(sk); 680 struct sctp_endpoint *ep = sp->ep; 681 int cnt; 682 struct sctp_bind_addr *bp = &ep->base.bind_addr; 683 int retval = 0; 684 void *addr_buf; 685 union sctp_addr *sa_addr; 686 struct sctp_af *af; 687 688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 689 __func__, sk, addrs, addrcnt); 690 691 addr_buf = addrs; 692 for (cnt = 0; cnt < addrcnt; cnt++) { 693 /* If the bind address list is empty or if there is only one 694 * bind address, there is nothing more to be removed (we need 695 * at least one address here). 696 */ 697 if (list_empty(&bp->address_list) || 698 (sctp_list_single_entry(&bp->address_list))) { 699 retval = -EBUSY; 700 goto err_bindx_rem; 701 } 702 703 sa_addr = addr_buf; 704 af = sctp_get_af_specific(sa_addr->sa.sa_family); 705 if (!af) { 706 retval = -EINVAL; 707 goto err_bindx_rem; 708 } 709 710 if (!af->addr_valid(sa_addr, sp, NULL)) { 711 retval = -EADDRNOTAVAIL; 712 goto err_bindx_rem; 713 } 714 715 if (sa_addr->v4.sin_port && 716 sa_addr->v4.sin_port != htons(bp->port)) { 717 retval = -EINVAL; 718 goto err_bindx_rem; 719 } 720 721 if (!sa_addr->v4.sin_port) 722 sa_addr->v4.sin_port = htons(bp->port); 723 724 /* FIXME - There is probably a need to check if sk->sk_saddr and 725 * sk->sk_rcv_addr are currently set to one of the addresses to 726 * be removed. This is something which needs to be looked into 727 * when we are fixing the outstanding issues with multi-homing 728 * socket routing and failover schemes. Refer to comments in 729 * sctp_do_bind(). -daisy 730 */ 731 retval = sctp_del_bind_addr(bp, sa_addr); 732 733 addr_buf += af->sockaddr_len; 734 err_bindx_rem: 735 if (retval < 0) { 736 /* Failed. Add the ones that has been removed back */ 737 if (cnt > 0) 738 sctp_bindx_add(sk, addrs, cnt); 739 return retval; 740 } 741 } 742 743 return retval; 744 } 745 746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 747 * the associations that are part of the endpoint indicating that a list of 748 * local addresses are removed from the endpoint. 749 * 750 * If any of the addresses is already in the bind address list of the 751 * association, we do not send the chunk for that association. But it will not 752 * affect other associations. 753 * 754 * Only sctp_setsockopt_bindx() is supposed to call this function. 755 */ 756 static int sctp_send_asconf_del_ip(struct sock *sk, 757 struct sockaddr *addrs, 758 int addrcnt) 759 { 760 struct sctp_sock *sp; 761 struct sctp_endpoint *ep; 762 struct sctp_association *asoc; 763 struct sctp_transport *transport; 764 struct sctp_bind_addr *bp; 765 struct sctp_chunk *chunk; 766 union sctp_addr *laddr; 767 void *addr_buf; 768 struct sctp_af *af; 769 struct sctp_sockaddr_entry *saddr; 770 int i; 771 int retval = 0; 772 int stored = 0; 773 774 chunk = NULL; 775 sp = sctp_sk(sk); 776 ep = sp->ep; 777 778 if (!ep->asconf_enable) 779 return retval; 780 781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 782 __func__, sk, addrs, addrcnt); 783 784 list_for_each_entry(asoc, &ep->asocs, asocs) { 785 786 if (!asoc->peer.asconf_capable) 787 continue; 788 789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 790 continue; 791 792 if (!sctp_state(asoc, ESTABLISHED)) 793 continue; 794 795 /* Check if any address in the packed array of addresses is 796 * not present in the bind address list of the association. 797 * If so, do not send the asconf chunk to its peer, but 798 * continue with other associations. 799 */ 800 addr_buf = addrs; 801 for (i = 0; i < addrcnt; i++) { 802 laddr = addr_buf; 803 af = sctp_get_af_specific(laddr->v4.sin_family); 804 if (!af) { 805 retval = -EINVAL; 806 goto out; 807 } 808 809 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 810 break; 811 812 addr_buf += af->sockaddr_len; 813 } 814 if (i < addrcnt) 815 continue; 816 817 /* Find one address in the association's bind address list 818 * that is not in the packed array of addresses. This is to 819 * make sure that we do not delete all the addresses in the 820 * association. 821 */ 822 bp = &asoc->base.bind_addr; 823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 824 addrcnt, sp); 825 if ((laddr == NULL) && (addrcnt == 1)) { 826 if (asoc->asconf_addr_del_pending) 827 continue; 828 asoc->asconf_addr_del_pending = 829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 830 if (asoc->asconf_addr_del_pending == NULL) { 831 retval = -ENOMEM; 832 goto out; 833 } 834 asoc->asconf_addr_del_pending->sa.sa_family = 835 addrs->sa_family; 836 asoc->asconf_addr_del_pending->v4.sin_port = 837 htons(bp->port); 838 if (addrs->sa_family == AF_INET) { 839 struct sockaddr_in *sin; 840 841 sin = (struct sockaddr_in *)addrs; 842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 843 } else if (addrs->sa_family == AF_INET6) { 844 struct sockaddr_in6 *sin6; 845 846 sin6 = (struct sockaddr_in6 *)addrs; 847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 848 } 849 850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 851 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 852 asoc->asconf_addr_del_pending); 853 854 asoc->src_out_of_asoc_ok = 1; 855 stored = 1; 856 goto skip_mkasconf; 857 } 858 859 if (laddr == NULL) 860 return -EINVAL; 861 862 /* We do not need RCU protection throughout this loop 863 * because this is done under a socket lock from the 864 * setsockopt call. 865 */ 866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 867 SCTP_PARAM_DEL_IP); 868 if (!chunk) { 869 retval = -ENOMEM; 870 goto out; 871 } 872 873 skip_mkasconf: 874 /* Reset use_as_src flag for the addresses in the bind address 875 * list that are to be deleted. 876 */ 877 addr_buf = addrs; 878 for (i = 0; i < addrcnt; i++) { 879 laddr = addr_buf; 880 af = sctp_get_af_specific(laddr->v4.sin_family); 881 list_for_each_entry(saddr, &bp->address_list, list) { 882 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 883 saddr->state = SCTP_ADDR_DEL; 884 } 885 addr_buf += af->sockaddr_len; 886 } 887 888 /* Update the route and saddr entries for all the transports 889 * as some of the addresses in the bind address list are 890 * about to be deleted and cannot be used as source addresses. 891 */ 892 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 893 transports) { 894 sctp_transport_route(transport, NULL, 895 sctp_sk(asoc->base.sk)); 896 } 897 898 if (stored) 899 /* We don't need to transmit ASCONF */ 900 continue; 901 retval = sctp_send_asconf(asoc, chunk); 902 } 903 out: 904 return retval; 905 } 906 907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 909 { 910 struct sock *sk = sctp_opt2sk(sp); 911 union sctp_addr *addr; 912 struct sctp_af *af; 913 914 /* It is safe to write port space in caller. */ 915 addr = &addrw->a; 916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 917 af = sctp_get_af_specific(addr->sa.sa_family); 918 if (!af) 919 return -EINVAL; 920 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 921 return -EINVAL; 922 923 if (addrw->state == SCTP_ADDR_NEW) 924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 925 else 926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 927 } 928 929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 930 * 931 * API 8.1 932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 933 * int flags); 934 * 935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 937 * or IPv6 addresses. 938 * 939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 940 * Section 3.1.2 for this usage. 941 * 942 * addrs is a pointer to an array of one or more socket addresses. Each 943 * address is contained in its appropriate structure (i.e. struct 944 * sockaddr_in or struct sockaddr_in6) the family of the address type 945 * must be used to distinguish the address length (note that this 946 * representation is termed a "packed array" of addresses). The caller 947 * specifies the number of addresses in the array with addrcnt. 948 * 949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 950 * -1, and sets errno to the appropriate error code. 951 * 952 * For SCTP, the port given in each socket address must be the same, or 953 * sctp_bindx() will fail, setting errno to EINVAL. 954 * 955 * The flags parameter is formed from the bitwise OR of zero or more of 956 * the following currently defined flags: 957 * 958 * SCTP_BINDX_ADD_ADDR 959 * 960 * SCTP_BINDX_REM_ADDR 961 * 962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 964 * addresses from the association. The two flags are mutually exclusive; 965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 966 * not remove all addresses from an association; sctp_bindx() will 967 * reject such an attempt with EINVAL. 968 * 969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 970 * additional addresses with an endpoint after calling bind(). Or use 971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 972 * socket is associated with so that no new association accepted will be 973 * associated with those addresses. If the endpoint supports dynamic 974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 975 * endpoint to send the appropriate message to the peer to change the 976 * peers address lists. 977 * 978 * Adding and removing addresses from a connected association is 979 * optional functionality. Implementations that do not support this 980 * functionality should return EOPNOTSUPP. 981 * 982 * Basically do nothing but copying the addresses from user to kernel 983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 985 * from userspace. 986 * 987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 988 * it. 989 * 990 * sk The sk of the socket 991 * addrs The pointer to the addresses 992 * addrssize Size of the addrs buffer 993 * op Operation to perform (add or remove, see the flags of 994 * sctp_bindx) 995 * 996 * Returns 0 if ok, <0 errno code on error. 997 */ 998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 999 int addrs_size, int op) 1000 { 1001 int err; 1002 int addrcnt = 0; 1003 int walk_size = 0; 1004 struct sockaddr *sa_addr; 1005 void *addr_buf = addrs; 1006 struct sctp_af *af; 1007 1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1009 __func__, sk, addr_buf, addrs_size, op); 1010 1011 if (unlikely(addrs_size <= 0)) 1012 return -EINVAL; 1013 1014 /* Walk through the addrs buffer and count the number of addresses. */ 1015 while (walk_size < addrs_size) { 1016 if (walk_size + sizeof(sa_family_t) > addrs_size) 1017 return -EINVAL; 1018 1019 sa_addr = addr_buf; 1020 af = sctp_get_af_specific(sa_addr->sa_family); 1021 1022 /* If the address family is not supported or if this address 1023 * causes the address buffer to overflow return EINVAL. 1024 */ 1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1026 return -EINVAL; 1027 addrcnt++; 1028 addr_buf += af->sockaddr_len; 1029 walk_size += af->sockaddr_len; 1030 } 1031 1032 /* Do the work. */ 1033 switch (op) { 1034 case SCTP_BINDX_ADD_ADDR: 1035 /* Allow security module to validate bindx addresses. */ 1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1037 addrs, addrs_size); 1038 if (err) 1039 return err; 1040 err = sctp_bindx_add(sk, addrs, addrcnt); 1041 if (err) 1042 return err; 1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, addrs, addrcnt); 1046 if (err) 1047 return err; 1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1049 1050 default: 1051 return -EINVAL; 1052 } 1053 } 1054 1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1056 int addrlen) 1057 { 1058 int err; 1059 1060 lock_sock(sk); 1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1062 release_sock(sk); 1063 return err; 1064 } 1065 1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1067 const union sctp_addr *daddr, 1068 const struct sctp_initmsg *init, 1069 struct sctp_transport **tp) 1070 { 1071 struct sctp_association *asoc; 1072 struct sock *sk = ep->base.sk; 1073 struct net *net = sock_net(sk); 1074 enum sctp_scope scope; 1075 int err; 1076 1077 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1078 return -EADDRNOTAVAIL; 1079 1080 if (!ep->base.bind_addr.port) { 1081 if (sctp_autobind(sk)) 1082 return -EAGAIN; 1083 } else { 1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1086 return -EACCES; 1087 } 1088 1089 scope = sctp_scope(daddr); 1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1091 if (!asoc) 1092 return -ENOMEM; 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1095 if (err < 0) 1096 goto free; 1097 1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1099 if (!*tp) { 1100 err = -ENOMEM; 1101 goto free; 1102 } 1103 1104 if (!init) 1105 return 0; 1106 1107 if (init->sinit_num_ostreams) { 1108 __u16 outcnt = init->sinit_num_ostreams; 1109 1110 asoc->c.sinit_num_ostreams = outcnt; 1111 /* outcnt has been changed, need to re-init stream */ 1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1113 if (err) 1114 goto free; 1115 } 1116 1117 if (init->sinit_max_instreams) 1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1119 1120 if (init->sinit_max_attempts) 1121 asoc->max_init_attempts = init->sinit_max_attempts; 1122 1123 if (init->sinit_max_init_timeo) 1124 asoc->max_init_timeo = 1125 msecs_to_jiffies(init->sinit_max_init_timeo); 1126 1127 return 0; 1128 free: 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 static int sctp_connect_add_peer(struct sctp_association *asoc, 1134 union sctp_addr *daddr, int addr_len) 1135 { 1136 struct sctp_endpoint *ep = asoc->ep; 1137 struct sctp_association *old; 1138 struct sctp_transport *t; 1139 int err; 1140 1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1142 if (err) 1143 return err; 1144 1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1146 if (old && old != asoc) 1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1148 : -EALREADY; 1149 1150 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1151 return -EADDRNOTAVAIL; 1152 1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1154 if (!t) 1155 return -ENOMEM; 1156 1157 return 0; 1158 } 1159 1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1161 * 1162 * Common routine for handling connect() and sctp_connectx(). 1163 * Connect will come in with just a single address. 1164 */ 1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1166 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1167 { 1168 struct sctp_sock *sp = sctp_sk(sk); 1169 struct sctp_endpoint *ep = sp->ep; 1170 struct sctp_transport *transport; 1171 struct sctp_association *asoc; 1172 void *addr_buf = kaddrs; 1173 union sctp_addr *daddr; 1174 struct sctp_af *af; 1175 int walk_size, err; 1176 long timeo; 1177 1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1180 return -EISCONN; 1181 1182 daddr = addr_buf; 1183 af = sctp_get_af_specific(daddr->sa.sa_family); 1184 if (!af || af->sockaddr_len > addrs_size) 1185 return -EINVAL; 1186 1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1188 if (err) 1189 return err; 1190 1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1192 if (asoc) 1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1194 : -EALREADY; 1195 1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1197 if (err) 1198 return err; 1199 asoc = transport->asoc; 1200 1201 addr_buf += af->sockaddr_len; 1202 walk_size = af->sockaddr_len; 1203 while (walk_size < addrs_size) { 1204 err = -EINVAL; 1205 if (walk_size + sizeof(sa_family_t) > addrs_size) 1206 goto out_free; 1207 1208 daddr = addr_buf; 1209 af = sctp_get_af_specific(daddr->sa.sa_family); 1210 if (!af || af->sockaddr_len + walk_size > addrs_size) 1211 goto out_free; 1212 1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1214 goto out_free; 1215 1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1217 if (err) 1218 goto out_free; 1219 1220 addr_buf += af->sockaddr_len; 1221 walk_size += af->sockaddr_len; 1222 } 1223 1224 /* In case the user of sctp_connectx() wants an association 1225 * id back, assign one now. 1226 */ 1227 if (assoc_id) { 1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1229 if (err < 0) 1230 goto out_free; 1231 } 1232 1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1234 if (err < 0) 1235 goto out_free; 1236 1237 /* Initialize sk's dport and daddr for getpeername() */ 1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1239 sp->pf->to_sk_daddr(daddr, sk); 1240 sk->sk_err = 0; 1241 1242 if (assoc_id) 1243 *assoc_id = asoc->assoc_id; 1244 1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1246 return sctp_wait_for_connect(asoc, &timeo); 1247 1248 out_free: 1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1250 __func__, asoc, kaddrs, err); 1251 sctp_association_free(asoc); 1252 return err; 1253 } 1254 1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1256 * 1257 * API 8.9 1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1259 * sctp_assoc_t *asoc); 1260 * 1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1263 * or IPv6 addresses. 1264 * 1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1266 * Section 3.1.2 for this usage. 1267 * 1268 * addrs is a pointer to an array of one or more socket addresses. Each 1269 * address is contained in its appropriate structure (i.e. struct 1270 * sockaddr_in or struct sockaddr_in6) the family of the address type 1271 * must be used to distengish the address length (note that this 1272 * representation is termed a "packed array" of addresses). The caller 1273 * specifies the number of addresses in the array with addrcnt. 1274 * 1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1276 * the association id of the new association. On failure, sctp_connectx() 1277 * returns -1, and sets errno to the appropriate error code. The assoc_id 1278 * is not touched by the kernel. 1279 * 1280 * For SCTP, the port given in each socket address must be the same, or 1281 * sctp_connectx() will fail, setting errno to EINVAL. 1282 * 1283 * An application can use sctp_connectx to initiate an association with 1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1285 * allows a caller to specify multiple addresses at which a peer can be 1286 * reached. The way the SCTP stack uses the list of addresses to set up 1287 * the association is implementation dependent. This function only 1288 * specifies that the stack will try to make use of all the addresses in 1289 * the list when needed. 1290 * 1291 * Note that the list of addresses passed in is only used for setting up 1292 * the association. It does not necessarily equal the set of addresses 1293 * the peer uses for the resulting association. If the caller wants to 1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1295 * retrieve them after the association has been set up. 1296 * 1297 * Basically do nothing but copying the addresses from user to kernel 1298 * land and invoking either sctp_connectx(). This is used for tunneling 1299 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1300 * 1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1302 * it. 1303 * 1304 * sk The sk of the socket 1305 * addrs The pointer to the addresses 1306 * addrssize Size of the addrs buffer 1307 * 1308 * Returns >=0 if ok, <0 errno code on error. 1309 */ 1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1311 int addrs_size, sctp_assoc_t *assoc_id) 1312 { 1313 int err = 0, flags = 0; 1314 1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1316 __func__, sk, kaddrs, addrs_size); 1317 1318 /* make sure the 1st addr's sa_family is accessible later */ 1319 if (unlikely(addrs_size < sizeof(sa_family_t))) 1320 return -EINVAL; 1321 1322 /* Allow security module to validate connectx addresses. */ 1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1324 (struct sockaddr *)kaddrs, 1325 addrs_size); 1326 if (err) 1327 return err; 1328 1329 /* in-kernel sockets don't generally have a file allocated to them 1330 * if all they do is call sock_create_kern(). 1331 */ 1332 if (sk->sk_socket->file) 1333 flags = sk->sk_socket->file->f_flags; 1334 1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1336 } 1337 1338 /* 1339 * This is an older interface. It's kept for backward compatibility 1340 * to the option that doesn't provide association id. 1341 */ 1342 static int sctp_setsockopt_connectx_old(struct sock *sk, 1343 struct sockaddr *kaddrs, 1344 int addrs_size) 1345 { 1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1347 } 1348 1349 /* 1350 * New interface for the API. The since the API is done with a socket 1351 * option, to make it simple we feed back the association id is as a return 1352 * indication to the call. Error is always negative and association id is 1353 * always positive. 1354 */ 1355 static int sctp_setsockopt_connectx(struct sock *sk, 1356 struct sockaddr *kaddrs, 1357 int addrs_size) 1358 { 1359 sctp_assoc_t assoc_id = 0; 1360 int err = 0; 1361 1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1363 1364 if (err) 1365 return err; 1366 else 1367 return assoc_id; 1368 } 1369 1370 /* 1371 * New (hopefully final) interface for the API. 1372 * We use the sctp_getaddrs_old structure so that use-space library 1373 * can avoid any unnecessary allocations. The only different part 1374 * is that we store the actual length of the address buffer into the 1375 * addrs_num structure member. That way we can re-use the existing 1376 * code. 1377 */ 1378 #ifdef CONFIG_COMPAT 1379 struct compat_sctp_getaddrs_old { 1380 sctp_assoc_t assoc_id; 1381 s32 addr_num; 1382 compat_uptr_t addrs; /* struct sockaddr * */ 1383 }; 1384 #endif 1385 1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1387 char __user *optval, 1388 int __user *optlen) 1389 { 1390 struct sctp_getaddrs_old param; 1391 sctp_assoc_t assoc_id = 0; 1392 struct sockaddr *kaddrs; 1393 int err = 0; 1394 1395 #ifdef CONFIG_COMPAT 1396 if (in_compat_syscall()) { 1397 struct compat_sctp_getaddrs_old param32; 1398 1399 if (len < sizeof(param32)) 1400 return -EINVAL; 1401 if (copy_from_user(¶m32, optval, sizeof(param32))) 1402 return -EFAULT; 1403 1404 param.assoc_id = param32.assoc_id; 1405 param.addr_num = param32.addr_num; 1406 param.addrs = compat_ptr(param32.addrs); 1407 } else 1408 #endif 1409 { 1410 if (len < sizeof(param)) 1411 return -EINVAL; 1412 if (copy_from_user(¶m, optval, sizeof(param))) 1413 return -EFAULT; 1414 } 1415 1416 kaddrs = memdup_user(param.addrs, param.addr_num); 1417 if (IS_ERR(kaddrs)) 1418 return PTR_ERR(kaddrs); 1419 1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1421 kfree(kaddrs); 1422 if (err == 0 || err == -EINPROGRESS) { 1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1424 return -EFAULT; 1425 if (put_user(sizeof(assoc_id), optlen)) 1426 return -EFAULT; 1427 } 1428 1429 return err; 1430 } 1431 1432 /* API 3.1.4 close() - UDP Style Syntax 1433 * Applications use close() to perform graceful shutdown (as described in 1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1435 * by a UDP-style socket. 1436 * 1437 * The syntax is 1438 * 1439 * ret = close(int sd); 1440 * 1441 * sd - the socket descriptor of the associations to be closed. 1442 * 1443 * To gracefully shutdown a specific association represented by the 1444 * UDP-style socket, an application should use the sendmsg() call, 1445 * passing no user data, but including the appropriate flag in the 1446 * ancillary data (see Section xxxx). 1447 * 1448 * If sd in the close() call is a branched-off socket representing only 1449 * one association, the shutdown is performed on that association only. 1450 * 1451 * 4.1.6 close() - TCP Style Syntax 1452 * 1453 * Applications use close() to gracefully close down an association. 1454 * 1455 * The syntax is: 1456 * 1457 * int close(int sd); 1458 * 1459 * sd - the socket descriptor of the association to be closed. 1460 * 1461 * After an application calls close() on a socket descriptor, no further 1462 * socket operations will succeed on that descriptor. 1463 * 1464 * API 7.1.4 SO_LINGER 1465 * 1466 * An application using the TCP-style socket can use this option to 1467 * perform the SCTP ABORT primitive. The linger option structure is: 1468 * 1469 * struct linger { 1470 * int l_onoff; // option on/off 1471 * int l_linger; // linger time 1472 * }; 1473 * 1474 * To enable the option, set l_onoff to 1. If the l_linger value is set 1475 * to 0, calling close() is the same as the ABORT primitive. If the 1476 * value is set to a negative value, the setsockopt() call will return 1477 * an error. If the value is set to a positive value linger_time, the 1478 * close() can be blocked for at most linger_time ms. If the graceful 1479 * shutdown phase does not finish during this period, close() will 1480 * return but the graceful shutdown phase continues in the system. 1481 */ 1482 static void sctp_close(struct sock *sk, long timeout) 1483 { 1484 struct net *net = sock_net(sk); 1485 struct sctp_endpoint *ep; 1486 struct sctp_association *asoc; 1487 struct list_head *pos, *temp; 1488 unsigned int data_was_unread; 1489 1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1491 1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1493 sk->sk_shutdown = SHUTDOWN_MASK; 1494 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1495 1496 ep = sctp_sk(sk)->ep; 1497 1498 /* Clean up any skbs sitting on the receive queue. */ 1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1501 1502 /* Walk all associations on an endpoint. */ 1503 list_for_each_safe(pos, temp, &ep->asocs) { 1504 asoc = list_entry(pos, struct sctp_association, asocs); 1505 1506 if (sctp_style(sk, TCP)) { 1507 /* A closed association can still be in the list if 1508 * it belongs to a TCP-style listening socket that is 1509 * not yet accepted. If so, free it. If not, send an 1510 * ABORT or SHUTDOWN based on the linger options. 1511 */ 1512 if (sctp_state(asoc, CLOSED)) { 1513 sctp_association_free(asoc); 1514 continue; 1515 } 1516 } 1517 1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1519 !skb_queue_empty(&asoc->ulpq.reasm) || 1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1522 struct sctp_chunk *chunk; 1523 1524 chunk = sctp_make_abort_user(asoc, NULL, 0); 1525 sctp_primitive_ABORT(net, asoc, chunk); 1526 } else 1527 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1528 } 1529 1530 /* On a TCP-style socket, block for at most linger_time if set. */ 1531 if (sctp_style(sk, TCP) && timeout) 1532 sctp_wait_for_close(sk, timeout); 1533 1534 /* This will run the backlog queue. */ 1535 release_sock(sk); 1536 1537 /* Supposedly, no process has access to the socket, but 1538 * the net layers still may. 1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1540 * held and that should be grabbed before socket lock. 1541 */ 1542 spin_lock_bh(&net->sctp.addr_wq_lock); 1543 bh_lock_sock_nested(sk); 1544 1545 /* Hold the sock, since sk_common_release() will put sock_put() 1546 * and we have just a little more cleanup. 1547 */ 1548 sock_hold(sk); 1549 sk_common_release(sk); 1550 1551 bh_unlock_sock(sk); 1552 spin_unlock_bh(&net->sctp.addr_wq_lock); 1553 1554 sock_put(sk); 1555 1556 SCTP_DBG_OBJCNT_DEC(sock); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct sctp_association *asoc; 1663 struct cmsghdr *cmsg; 1664 __be32 flowinfo = 0; 1665 struct sctp_af *af; 1666 int err; 1667 1668 *tp = NULL; 1669 1670 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1671 return -EINVAL; 1672 1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1674 sctp_sstate(sk, CLOSING))) 1675 return -EADDRNOTAVAIL; 1676 1677 /* Label connection socket for first association 1-to-many 1678 * style for client sequence socket()->sendmsg(). This 1679 * needs to be done before sctp_assoc_add_peer() as that will 1680 * set up the initial packet that needs to account for any 1681 * security ip options (CIPSO/CALIPSO) added to the packet. 1682 */ 1683 af = sctp_get_af_specific(daddr->sa.sa_family); 1684 if (!af) 1685 return -EINVAL; 1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1687 (struct sockaddr *)daddr, 1688 af->sockaddr_len); 1689 if (err < 0) 1690 return err; 1691 1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1693 if (err) 1694 return err; 1695 asoc = (*tp)->asoc; 1696 1697 if (!cmsgs->addrs_msg) 1698 return 0; 1699 1700 if (daddr->sa.sa_family == AF_INET6) 1701 flowinfo = daddr->v6.sin6_flowinfo; 1702 1703 /* sendv addr list parse */ 1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1705 union sctp_addr _daddr; 1706 int dlen; 1707 1708 if (cmsg->cmsg_level != IPPROTO_SCTP || 1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1710 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1711 continue; 1712 1713 daddr = &_daddr; 1714 memset(daddr, 0, sizeof(*daddr)); 1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1717 if (dlen < sizeof(struct in_addr)) { 1718 err = -EINVAL; 1719 goto free; 1720 } 1721 1722 dlen = sizeof(struct in_addr); 1723 daddr->v4.sin_family = AF_INET; 1724 daddr->v4.sin_port = htons(asoc->peer.port); 1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1726 } else { 1727 if (dlen < sizeof(struct in6_addr)) { 1728 err = -EINVAL; 1729 goto free; 1730 } 1731 1732 dlen = sizeof(struct in6_addr); 1733 daddr->v6.sin6_flowinfo = flowinfo; 1734 daddr->v6.sin6_family = AF_INET6; 1735 daddr->v6.sin6_port = htons(asoc->peer.port); 1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1737 } 1738 1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1740 if (err) 1741 goto free; 1742 } 1743 1744 return 0; 1745 1746 free: 1747 sctp_association_free(asoc); 1748 return err; 1749 } 1750 1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1752 __u16 sflags, struct msghdr *msg, 1753 size_t msg_len) 1754 { 1755 struct sock *sk = asoc->base.sk; 1756 struct net *net = sock_net(sk); 1757 1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1759 return -EPIPE; 1760 1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1762 !sctp_state(asoc, ESTABLISHED)) 1763 return 0; 1764 1765 if (sflags & SCTP_EOF) { 1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1768 1769 return 0; 1770 } 1771 1772 if (sflags & SCTP_ABORT) { 1773 struct sctp_chunk *chunk; 1774 1775 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1776 if (!chunk) 1777 return -ENOMEM; 1778 1779 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1780 sctp_primitive_ABORT(net, asoc, chunk); 1781 iov_iter_revert(&msg->msg_iter, msg_len); 1782 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1790 struct msghdr *msg, size_t msg_len, 1791 struct sctp_transport *transport, 1792 struct sctp_sndrcvinfo *sinfo) 1793 { 1794 struct sock *sk = asoc->base.sk; 1795 struct sctp_sock *sp = sctp_sk(sk); 1796 struct net *net = sock_net(sk); 1797 struct sctp_datamsg *datamsg; 1798 bool wait_connect = false; 1799 struct sctp_chunk *chunk; 1800 long timeo; 1801 int err; 1802 1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1804 err = -EINVAL; 1805 goto err; 1806 } 1807 1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1810 if (err) 1811 goto err; 1812 } 1813 1814 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1815 err = -EMSGSIZE; 1816 goto err; 1817 } 1818 1819 if (asoc->pmtu_pending) { 1820 if (sp->param_flags & SPP_PMTUD_ENABLE) 1821 sctp_assoc_sync_pmtu(asoc); 1822 asoc->pmtu_pending = 0; 1823 } 1824 1825 if (sctp_wspace(asoc) < (int)msg_len) 1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1827 1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1831 if (err) 1832 goto err; 1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1834 err = -EINVAL; 1835 goto err; 1836 } 1837 } 1838 1839 if (sctp_state(asoc, CLOSED)) { 1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1841 if (err) 1842 goto err; 1843 1844 if (asoc->ep->intl_enable) { 1845 timeo = sock_sndtimeo(sk, 0); 1846 err = sctp_wait_for_connect(asoc, &timeo); 1847 if (err) { 1848 err = -ESRCH; 1849 goto err; 1850 } 1851 } else { 1852 wait_connect = true; 1853 } 1854 1855 pr_debug("%s: we associated primitively\n", __func__); 1856 } 1857 1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1859 if (IS_ERR(datamsg)) { 1860 err = PTR_ERR(datamsg); 1861 goto err; 1862 } 1863 1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1865 1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1867 sctp_chunk_hold(chunk); 1868 sctp_set_owner_w(chunk); 1869 chunk->transport = transport; 1870 } 1871 1872 err = sctp_primitive_SEND(net, asoc, datamsg); 1873 if (err) { 1874 sctp_datamsg_free(datamsg); 1875 goto err; 1876 } 1877 1878 pr_debug("%s: we sent primitively\n", __func__); 1879 1880 sctp_datamsg_put(datamsg); 1881 1882 if (unlikely(wait_connect)) { 1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1884 sctp_wait_for_connect(asoc, &timeo); 1885 } 1886 1887 err = msg_len; 1888 1889 err: 1890 return err; 1891 } 1892 1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1894 const struct msghdr *msg, 1895 struct sctp_cmsgs *cmsgs) 1896 { 1897 union sctp_addr *daddr = NULL; 1898 int err; 1899 1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1901 int len = msg->msg_namelen; 1902 1903 if (len > sizeof(*daddr)) 1904 len = sizeof(*daddr); 1905 1906 daddr = (union sctp_addr *)msg->msg_name; 1907 1908 err = sctp_verify_addr(sk, daddr, len); 1909 if (err) 1910 return ERR_PTR(err); 1911 } 1912 1913 return daddr; 1914 } 1915 1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1917 struct sctp_sndrcvinfo *sinfo, 1918 struct sctp_cmsgs *cmsgs) 1919 { 1920 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1921 sinfo->sinfo_stream = asoc->default_stream; 1922 sinfo->sinfo_ppid = asoc->default_ppid; 1923 sinfo->sinfo_context = asoc->default_context; 1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1925 1926 if (!cmsgs->prinfo) 1927 sinfo->sinfo_flags = asoc->default_flags; 1928 } 1929 1930 if (!cmsgs->srinfo && !cmsgs->prinfo) 1931 sinfo->sinfo_timetolive = asoc->default_timetolive; 1932 1933 if (cmsgs->authinfo) { 1934 /* Reuse sinfo_tsn to indicate that authinfo was set and 1935 * sinfo_ssn to save the keyid on tx path. 1936 */ 1937 sinfo->sinfo_tsn = 1; 1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1939 } 1940 } 1941 1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1943 { 1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1945 struct sctp_transport *transport = NULL; 1946 struct sctp_sndrcvinfo _sinfo, *sinfo; 1947 struct sctp_association *asoc, *tmp; 1948 struct sctp_cmsgs cmsgs; 1949 union sctp_addr *daddr; 1950 bool new = false; 1951 __u16 sflags; 1952 int err; 1953 1954 /* Parse and get snd_info */ 1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1956 if (err) 1957 goto out; 1958 1959 sinfo = &_sinfo; 1960 sflags = sinfo->sinfo_flags; 1961 1962 /* Get daddr from msg */ 1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1964 if (IS_ERR(daddr)) { 1965 err = PTR_ERR(daddr); 1966 goto out; 1967 } 1968 1969 lock_sock(sk); 1970 1971 /* SCTP_SENDALL process */ 1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1975 msg_len); 1976 if (err == 0) 1977 continue; 1978 if (err < 0) 1979 goto out_unlock; 1980 1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1982 1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1984 NULL, sinfo); 1985 if (err < 0) 1986 goto out_unlock; 1987 1988 iov_iter_revert(&msg->msg_iter, err); 1989 } 1990 1991 goto out_unlock; 1992 } 1993 1994 /* Get and check or create asoc */ 1995 if (daddr) { 1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1997 if (asoc) { 1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1999 msg_len); 2000 if (err <= 0) 2001 goto out_unlock; 2002 } else { 2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2004 &transport); 2005 if (err) 2006 goto out_unlock; 2007 2008 asoc = transport->asoc; 2009 new = true; 2010 } 2011 2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2013 transport = NULL; 2014 } else { 2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2016 if (!asoc) { 2017 err = -EPIPE; 2018 goto out_unlock; 2019 } 2020 2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2022 if (err <= 0) 2023 goto out_unlock; 2024 } 2025 2026 /* Update snd_info with the asoc */ 2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2028 2029 /* Send msg to the asoc */ 2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2031 if (err < 0 && err != -ESRCH && new) 2032 sctp_association_free(asoc); 2033 2034 out_unlock: 2035 release_sock(sk); 2036 out: 2037 return sctp_error(sk, msg->msg_flags, err); 2038 } 2039 2040 /* This is an extended version of skb_pull() that removes the data from the 2041 * start of a skb even when data is spread across the list of skb's in the 2042 * frag_list. len specifies the total amount of data that needs to be removed. 2043 * when 'len' bytes could be removed from the skb, it returns 0. 2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2045 * could not be removed. 2046 */ 2047 static int sctp_skb_pull(struct sk_buff *skb, int len) 2048 { 2049 struct sk_buff *list; 2050 int skb_len = skb_headlen(skb); 2051 int rlen; 2052 2053 if (len <= skb_len) { 2054 __skb_pull(skb, len); 2055 return 0; 2056 } 2057 len -= skb_len; 2058 __skb_pull(skb, skb_len); 2059 2060 skb_walk_frags(skb, list) { 2061 rlen = sctp_skb_pull(list, len); 2062 skb->len -= (len-rlen); 2063 skb->data_len -= (len-rlen); 2064 2065 if (!rlen) 2066 return 0; 2067 2068 len = rlen; 2069 } 2070 2071 return len; 2072 } 2073 2074 /* API 3.1.3 recvmsg() - UDP Style Syntax 2075 * 2076 * ssize_t recvmsg(int socket, struct msghdr *message, 2077 * int flags); 2078 * 2079 * socket - the socket descriptor of the endpoint. 2080 * message - pointer to the msghdr structure which contains a single 2081 * user message and possibly some ancillary data. 2082 * 2083 * See Section 5 for complete description of the data 2084 * structures. 2085 * 2086 * flags - flags sent or received with the user message, see Section 2087 * 5 for complete description of the flags. 2088 */ 2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2090 int flags, int *addr_len) 2091 { 2092 struct sctp_ulpevent *event = NULL; 2093 struct sctp_sock *sp = sctp_sk(sk); 2094 struct sk_buff *skb, *head_skb; 2095 int copied; 2096 int err = 0; 2097 int skb_len; 2098 2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2100 __func__, sk, msg, len, flags, addr_len); 2101 2102 if (unlikely(flags & MSG_ERRQUEUE)) 2103 return inet_recv_error(sk, msg, len, addr_len); 2104 2105 lock_sock(sk); 2106 2107 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2108 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2109 err = -ENOTCONN; 2110 goto out; 2111 } 2112 2113 skb = sctp_skb_recv_datagram(sk, flags, &err); 2114 if (!skb) 2115 goto out; 2116 2117 /* Get the total length of the skb including any skb's in the 2118 * frag_list. 2119 */ 2120 skb_len = skb->len; 2121 2122 copied = skb_len; 2123 if (copied > len) 2124 copied = len; 2125 2126 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2127 2128 event = sctp_skb2event(skb); 2129 2130 if (err) 2131 goto out_free; 2132 2133 if (event->chunk && event->chunk->head_skb) 2134 head_skb = event->chunk->head_skb; 2135 else 2136 head_skb = skb; 2137 sock_recv_cmsgs(msg, sk, head_skb); 2138 if (sctp_ulpevent_is_notification(event)) { 2139 msg->msg_flags |= MSG_NOTIFICATION; 2140 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2141 } else { 2142 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2143 } 2144 2145 /* Check if we allow SCTP_NXTINFO. */ 2146 if (sp->recvnxtinfo) 2147 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2148 /* Check if we allow SCTP_RCVINFO. */ 2149 if (sp->recvrcvinfo) 2150 sctp_ulpevent_read_rcvinfo(event, msg); 2151 /* Check if we allow SCTP_SNDRCVINFO. */ 2152 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2153 sctp_ulpevent_read_sndrcvinfo(event, msg); 2154 2155 err = copied; 2156 2157 /* If skb's length exceeds the user's buffer, update the skb and 2158 * push it back to the receive_queue so that the next call to 2159 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2160 */ 2161 if (skb_len > copied) { 2162 msg->msg_flags &= ~MSG_EOR; 2163 if (flags & MSG_PEEK) 2164 goto out_free; 2165 sctp_skb_pull(skb, copied); 2166 skb_queue_head(&sk->sk_receive_queue, skb); 2167 2168 /* When only partial message is copied to the user, increase 2169 * rwnd by that amount. If all the data in the skb is read, 2170 * rwnd is updated when the event is freed. 2171 */ 2172 if (!sctp_ulpevent_is_notification(event)) 2173 sctp_assoc_rwnd_increase(event->asoc, copied); 2174 goto out; 2175 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2176 (event->msg_flags & MSG_EOR)) 2177 msg->msg_flags |= MSG_EOR; 2178 else 2179 msg->msg_flags &= ~MSG_EOR; 2180 2181 out_free: 2182 if (flags & MSG_PEEK) { 2183 /* Release the skb reference acquired after peeking the skb in 2184 * sctp_skb_recv_datagram(). 2185 */ 2186 kfree_skb(skb); 2187 } else { 2188 /* Free the event which includes releasing the reference to 2189 * the owner of the skb, freeing the skb and updating the 2190 * rwnd. 2191 */ 2192 sctp_ulpevent_free(event); 2193 } 2194 out: 2195 release_sock(sk); 2196 return err; 2197 } 2198 2199 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2200 * 2201 * This option is a on/off flag. If enabled no SCTP message 2202 * fragmentation will be performed. Instead if a message being sent 2203 * exceeds the current PMTU size, the message will NOT be sent and 2204 * instead a error will be indicated to the user. 2205 */ 2206 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2207 unsigned int optlen) 2208 { 2209 if (optlen < sizeof(int)) 2210 return -EINVAL; 2211 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2212 return 0; 2213 } 2214 2215 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2216 unsigned int optlen) 2217 { 2218 struct sctp_sock *sp = sctp_sk(sk); 2219 struct sctp_association *asoc; 2220 int i; 2221 2222 if (optlen > sizeof(struct sctp_event_subscribe)) 2223 return -EINVAL; 2224 2225 for (i = 0; i < optlen; i++) 2226 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2227 sn_type[i]); 2228 2229 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2230 asoc->subscribe = sctp_sk(sk)->subscribe; 2231 2232 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2233 * if there is no data to be sent or retransmit, the stack will 2234 * immediately send up this notification. 2235 */ 2236 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2237 struct sctp_ulpevent *event; 2238 2239 asoc = sctp_id2assoc(sk, 0); 2240 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2241 event = sctp_ulpevent_make_sender_dry_event(asoc, 2242 GFP_USER | __GFP_NOWARN); 2243 if (!event) 2244 return -ENOMEM; 2245 2246 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2247 } 2248 } 2249 2250 return 0; 2251 } 2252 2253 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2254 * 2255 * This socket option is applicable to the UDP-style socket only. When 2256 * set it will cause associations that are idle for more than the 2257 * specified number of seconds to automatically close. An association 2258 * being idle is defined an association that has NOT sent or received 2259 * user data. The special value of '0' indicates that no automatic 2260 * close of any associations should be performed. The option expects an 2261 * integer defining the number of seconds of idle time before an 2262 * association is closed. 2263 */ 2264 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2265 unsigned int optlen) 2266 { 2267 struct sctp_sock *sp = sctp_sk(sk); 2268 struct net *net = sock_net(sk); 2269 2270 /* Applicable to UDP-style socket only */ 2271 if (sctp_style(sk, TCP)) 2272 return -EOPNOTSUPP; 2273 if (optlen != sizeof(int)) 2274 return -EINVAL; 2275 2276 sp->autoclose = *optval; 2277 if (sp->autoclose > net->sctp.max_autoclose) 2278 sp->autoclose = net->sctp.max_autoclose; 2279 2280 return 0; 2281 } 2282 2283 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2284 * 2285 * Applications can enable or disable heartbeats for any peer address of 2286 * an association, modify an address's heartbeat interval, force a 2287 * heartbeat to be sent immediately, and adjust the address's maximum 2288 * number of retransmissions sent before an address is considered 2289 * unreachable. The following structure is used to access and modify an 2290 * address's parameters: 2291 * 2292 * struct sctp_paddrparams { 2293 * sctp_assoc_t spp_assoc_id; 2294 * struct sockaddr_storage spp_address; 2295 * uint32_t spp_hbinterval; 2296 * uint16_t spp_pathmaxrxt; 2297 * uint32_t spp_pathmtu; 2298 * uint32_t spp_sackdelay; 2299 * uint32_t spp_flags; 2300 * uint32_t spp_ipv6_flowlabel; 2301 * uint8_t spp_dscp; 2302 * }; 2303 * 2304 * spp_assoc_id - (one-to-many style socket) This is filled in the 2305 * application, and identifies the association for 2306 * this query. 2307 * spp_address - This specifies which address is of interest. 2308 * spp_hbinterval - This contains the value of the heartbeat interval, 2309 * in milliseconds. If a value of zero 2310 * is present in this field then no changes are to 2311 * be made to this parameter. 2312 * spp_pathmaxrxt - This contains the maximum number of 2313 * retransmissions before this address shall be 2314 * considered unreachable. If a value of zero 2315 * is present in this field then no changes are to 2316 * be made to this parameter. 2317 * spp_pathmtu - When Path MTU discovery is disabled the value 2318 * specified here will be the "fixed" path mtu. 2319 * Note that if the spp_address field is empty 2320 * then all associations on this address will 2321 * have this fixed path mtu set upon them. 2322 * 2323 * spp_sackdelay - When delayed sack is enabled, this value specifies 2324 * the number of milliseconds that sacks will be delayed 2325 * for. This value will apply to all addresses of an 2326 * association if the spp_address field is empty. Note 2327 * also, that if delayed sack is enabled and this 2328 * value is set to 0, no change is made to the last 2329 * recorded delayed sack timer value. 2330 * 2331 * spp_flags - These flags are used to control various features 2332 * on an association. The flag field may contain 2333 * zero or more of the following options. 2334 * 2335 * SPP_HB_ENABLE - Enable heartbeats on the 2336 * specified address. Note that if the address 2337 * field is empty all addresses for the association 2338 * have heartbeats enabled upon them. 2339 * 2340 * SPP_HB_DISABLE - Disable heartbeats on the 2341 * speicifed address. Note that if the address 2342 * field is empty all addresses for the association 2343 * will have their heartbeats disabled. Note also 2344 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2345 * mutually exclusive, only one of these two should 2346 * be specified. Enabling both fields will have 2347 * undetermined results. 2348 * 2349 * SPP_HB_DEMAND - Request a user initiated heartbeat 2350 * to be made immediately. 2351 * 2352 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2353 * heartbeat delayis to be set to the value of 0 2354 * milliseconds. 2355 * 2356 * SPP_PMTUD_ENABLE - This field will enable PMTU 2357 * discovery upon the specified address. Note that 2358 * if the address feild is empty then all addresses 2359 * on the association are effected. 2360 * 2361 * SPP_PMTUD_DISABLE - This field will disable PMTU 2362 * discovery upon the specified address. Note that 2363 * if the address feild is empty then all addresses 2364 * on the association are effected. Not also that 2365 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2366 * exclusive. Enabling both will have undetermined 2367 * results. 2368 * 2369 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2370 * on delayed sack. The time specified in spp_sackdelay 2371 * is used to specify the sack delay for this address. Note 2372 * that if spp_address is empty then all addresses will 2373 * enable delayed sack and take on the sack delay 2374 * value specified in spp_sackdelay. 2375 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2376 * off delayed sack. If the spp_address field is blank then 2377 * delayed sack is disabled for the entire association. Note 2378 * also that this field is mutually exclusive to 2379 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2380 * results. 2381 * 2382 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2383 * setting of the IPV6 flow label value. The value is 2384 * contained in the spp_ipv6_flowlabel field. 2385 * Upon retrieval, this flag will be set to indicate that 2386 * the spp_ipv6_flowlabel field has a valid value returned. 2387 * If a specific destination address is set (in the 2388 * spp_address field), then the value returned is that of 2389 * the address. If just an association is specified (and 2390 * no address), then the association's default flow label 2391 * is returned. If neither an association nor a destination 2392 * is specified, then the socket's default flow label is 2393 * returned. For non-IPv6 sockets, this flag will be left 2394 * cleared. 2395 * 2396 * SPP_DSCP: Setting this flag enables the setting of the 2397 * Differentiated Services Code Point (DSCP) value 2398 * associated with either the association or a specific 2399 * address. The value is obtained in the spp_dscp field. 2400 * Upon retrieval, this flag will be set to indicate that 2401 * the spp_dscp field has a valid value returned. If a 2402 * specific destination address is set when called (in the 2403 * spp_address field), then that specific destination 2404 * address's DSCP value is returned. If just an association 2405 * is specified, then the association's default DSCP is 2406 * returned. If neither an association nor a destination is 2407 * specified, then the socket's default DSCP is returned. 2408 * 2409 * spp_ipv6_flowlabel 2410 * - This field is used in conjunction with the 2411 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2412 * The 20 least significant bits are used for the flow 2413 * label. This setting has precedence over any IPv6-layer 2414 * setting. 2415 * 2416 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2417 * and contains the DSCP. The 6 most significant bits are 2418 * used for the DSCP. This setting has precedence over any 2419 * IPv4- or IPv6- layer setting. 2420 */ 2421 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2422 struct sctp_transport *trans, 2423 struct sctp_association *asoc, 2424 struct sctp_sock *sp, 2425 int hb_change, 2426 int pmtud_change, 2427 int sackdelay_change) 2428 { 2429 int error; 2430 2431 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2432 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2433 trans->asoc, trans); 2434 if (error) 2435 return error; 2436 } 2437 2438 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2439 * this field is ignored. Note also that a value of zero indicates 2440 * the current setting should be left unchanged. 2441 */ 2442 if (params->spp_flags & SPP_HB_ENABLE) { 2443 2444 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2445 * set. This lets us use 0 value when this flag 2446 * is set. 2447 */ 2448 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2449 params->spp_hbinterval = 0; 2450 2451 if (params->spp_hbinterval || 2452 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2453 if (trans) { 2454 trans->hbinterval = 2455 msecs_to_jiffies(params->spp_hbinterval); 2456 sctp_transport_reset_hb_timer(trans); 2457 } else if (asoc) { 2458 asoc->hbinterval = 2459 msecs_to_jiffies(params->spp_hbinterval); 2460 } else { 2461 sp->hbinterval = params->spp_hbinterval; 2462 } 2463 } 2464 } 2465 2466 if (hb_change) { 2467 if (trans) { 2468 trans->param_flags = 2469 (trans->param_flags & ~SPP_HB) | hb_change; 2470 } else if (asoc) { 2471 asoc->param_flags = 2472 (asoc->param_flags & ~SPP_HB) | hb_change; 2473 } else { 2474 sp->param_flags = 2475 (sp->param_flags & ~SPP_HB) | hb_change; 2476 } 2477 } 2478 2479 /* When Path MTU discovery is disabled the value specified here will 2480 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2481 * include the flag SPP_PMTUD_DISABLE for this field to have any 2482 * effect). 2483 */ 2484 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2485 if (trans) { 2486 trans->pathmtu = params->spp_pathmtu; 2487 sctp_assoc_sync_pmtu(asoc); 2488 } else if (asoc) { 2489 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2490 } else { 2491 sp->pathmtu = params->spp_pathmtu; 2492 } 2493 } 2494 2495 if (pmtud_change) { 2496 if (trans) { 2497 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2498 (params->spp_flags & SPP_PMTUD_ENABLE); 2499 trans->param_flags = 2500 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2501 if (update) { 2502 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2503 sctp_assoc_sync_pmtu(asoc); 2504 } 2505 sctp_transport_pl_reset(trans); 2506 } else if (asoc) { 2507 asoc->param_flags = 2508 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2509 } else { 2510 sp->param_flags = 2511 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2512 } 2513 } 2514 2515 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2516 * value of this field is ignored. Note also that a value of zero 2517 * indicates the current setting should be left unchanged. 2518 */ 2519 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2520 if (trans) { 2521 trans->sackdelay = 2522 msecs_to_jiffies(params->spp_sackdelay); 2523 } else if (asoc) { 2524 asoc->sackdelay = 2525 msecs_to_jiffies(params->spp_sackdelay); 2526 } else { 2527 sp->sackdelay = params->spp_sackdelay; 2528 } 2529 } 2530 2531 if (sackdelay_change) { 2532 if (trans) { 2533 trans->param_flags = 2534 (trans->param_flags & ~SPP_SACKDELAY) | 2535 sackdelay_change; 2536 } else if (asoc) { 2537 asoc->param_flags = 2538 (asoc->param_flags & ~SPP_SACKDELAY) | 2539 sackdelay_change; 2540 } else { 2541 sp->param_flags = 2542 (sp->param_flags & ~SPP_SACKDELAY) | 2543 sackdelay_change; 2544 } 2545 } 2546 2547 /* Note that a value of zero indicates the current setting should be 2548 left unchanged. 2549 */ 2550 if (params->spp_pathmaxrxt) { 2551 if (trans) { 2552 trans->pathmaxrxt = params->spp_pathmaxrxt; 2553 } else if (asoc) { 2554 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2555 } else { 2556 sp->pathmaxrxt = params->spp_pathmaxrxt; 2557 } 2558 } 2559 2560 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2561 if (trans) { 2562 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2563 trans->flowlabel = params->spp_ipv6_flowlabel & 2564 SCTP_FLOWLABEL_VAL_MASK; 2565 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2566 } 2567 } else if (asoc) { 2568 struct sctp_transport *t; 2569 2570 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2571 transports) { 2572 if (t->ipaddr.sa.sa_family != AF_INET6) 2573 continue; 2574 t->flowlabel = params->spp_ipv6_flowlabel & 2575 SCTP_FLOWLABEL_VAL_MASK; 2576 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2577 } 2578 asoc->flowlabel = params->spp_ipv6_flowlabel & 2579 SCTP_FLOWLABEL_VAL_MASK; 2580 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2581 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2582 sp->flowlabel = params->spp_ipv6_flowlabel & 2583 SCTP_FLOWLABEL_VAL_MASK; 2584 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2585 } 2586 } 2587 2588 if (params->spp_flags & SPP_DSCP) { 2589 if (trans) { 2590 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2591 trans->dscp |= SCTP_DSCP_SET_MASK; 2592 } else if (asoc) { 2593 struct sctp_transport *t; 2594 2595 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2596 transports) { 2597 t->dscp = params->spp_dscp & 2598 SCTP_DSCP_VAL_MASK; 2599 t->dscp |= SCTP_DSCP_SET_MASK; 2600 } 2601 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2602 asoc->dscp |= SCTP_DSCP_SET_MASK; 2603 } else { 2604 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2605 sp->dscp |= SCTP_DSCP_SET_MASK; 2606 } 2607 } 2608 2609 return 0; 2610 } 2611 2612 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2613 struct sctp_paddrparams *params, 2614 unsigned int optlen) 2615 { 2616 struct sctp_transport *trans = NULL; 2617 struct sctp_association *asoc = NULL; 2618 struct sctp_sock *sp = sctp_sk(sk); 2619 int error; 2620 int hb_change, pmtud_change, sackdelay_change; 2621 2622 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2623 spp_ipv6_flowlabel), 4)) { 2624 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2625 return -EINVAL; 2626 } else if (optlen != sizeof(*params)) { 2627 return -EINVAL; 2628 } 2629 2630 /* Validate flags and value parameters. */ 2631 hb_change = params->spp_flags & SPP_HB; 2632 pmtud_change = params->spp_flags & SPP_PMTUD; 2633 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2634 2635 if (hb_change == SPP_HB || 2636 pmtud_change == SPP_PMTUD || 2637 sackdelay_change == SPP_SACKDELAY || 2638 params->spp_sackdelay > 500 || 2639 (params->spp_pathmtu && 2640 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2641 return -EINVAL; 2642 2643 /* If an address other than INADDR_ANY is specified, and 2644 * no transport is found, then the request is invalid. 2645 */ 2646 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2647 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2648 params->spp_assoc_id); 2649 if (!trans) 2650 return -EINVAL; 2651 } 2652 2653 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2654 * socket is a one to many style socket, and an association 2655 * was not found, then the id was invalid. 2656 */ 2657 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2658 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2659 sctp_style(sk, UDP)) 2660 return -EINVAL; 2661 2662 /* Heartbeat demand can only be sent on a transport or 2663 * association, but not a socket. 2664 */ 2665 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2666 return -EINVAL; 2667 2668 /* Process parameters. */ 2669 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2670 hb_change, pmtud_change, 2671 sackdelay_change); 2672 2673 if (error) 2674 return error; 2675 2676 /* If changes are for association, also apply parameters to each 2677 * transport. 2678 */ 2679 if (!trans && asoc) { 2680 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2681 transports) { 2682 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2683 hb_change, pmtud_change, 2684 sackdelay_change); 2685 } 2686 } 2687 2688 return 0; 2689 } 2690 2691 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2692 { 2693 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2694 } 2695 2696 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2697 { 2698 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2699 } 2700 2701 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2702 struct sctp_association *asoc) 2703 { 2704 struct sctp_transport *trans; 2705 2706 if (params->sack_delay) { 2707 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2708 asoc->param_flags = 2709 sctp_spp_sackdelay_enable(asoc->param_flags); 2710 } 2711 if (params->sack_freq == 1) { 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_disable(asoc->param_flags); 2714 } else if (params->sack_freq > 1) { 2715 asoc->sackfreq = params->sack_freq; 2716 asoc->param_flags = 2717 sctp_spp_sackdelay_enable(asoc->param_flags); 2718 } 2719 2720 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2721 transports) { 2722 if (params->sack_delay) { 2723 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2724 trans->param_flags = 2725 sctp_spp_sackdelay_enable(trans->param_flags); 2726 } 2727 if (params->sack_freq == 1) { 2728 trans->param_flags = 2729 sctp_spp_sackdelay_disable(trans->param_flags); 2730 } else if (params->sack_freq > 1) { 2731 trans->sackfreq = params->sack_freq; 2732 trans->param_flags = 2733 sctp_spp_sackdelay_enable(trans->param_flags); 2734 } 2735 } 2736 } 2737 2738 /* 2739 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2740 * 2741 * This option will effect the way delayed acks are performed. This 2742 * option allows you to get or set the delayed ack time, in 2743 * milliseconds. It also allows changing the delayed ack frequency. 2744 * Changing the frequency to 1 disables the delayed sack algorithm. If 2745 * the assoc_id is 0, then this sets or gets the endpoints default 2746 * values. If the assoc_id field is non-zero, then the set or get 2747 * effects the specified association for the one to many model (the 2748 * assoc_id field is ignored by the one to one model). Note that if 2749 * sack_delay or sack_freq are 0 when setting this option, then the 2750 * current values will remain unchanged. 2751 * 2752 * struct sctp_sack_info { 2753 * sctp_assoc_t sack_assoc_id; 2754 * uint32_t sack_delay; 2755 * uint32_t sack_freq; 2756 * }; 2757 * 2758 * sack_assoc_id - This parameter, indicates which association the user 2759 * is performing an action upon. Note that if this field's value is 2760 * zero then the endpoints default value is changed (effecting future 2761 * associations only). 2762 * 2763 * sack_delay - This parameter contains the number of milliseconds that 2764 * the user is requesting the delayed ACK timer be set to. Note that 2765 * this value is defined in the standard to be between 200 and 500 2766 * milliseconds. 2767 * 2768 * sack_freq - This parameter contains the number of packets that must 2769 * be received before a sack is sent without waiting for the delay 2770 * timer to expire. The default value for this is 2, setting this 2771 * value to 1 will disable the delayed sack algorithm. 2772 */ 2773 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2774 struct sctp_sack_info *params) 2775 { 2776 struct sctp_sock *sp = sctp_sk(sk); 2777 struct sctp_association *asoc; 2778 2779 /* Validate value parameter. */ 2780 if (params->sack_delay > 500) 2781 return -EINVAL; 2782 2783 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2784 * socket is a one to many style socket, and an association 2785 * was not found, then the id was invalid. 2786 */ 2787 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2788 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2789 sctp_style(sk, UDP)) 2790 return -EINVAL; 2791 2792 if (asoc) { 2793 sctp_apply_asoc_delayed_ack(params, asoc); 2794 2795 return 0; 2796 } 2797 2798 if (sctp_style(sk, TCP)) 2799 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2800 2801 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2802 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2803 if (params->sack_delay) { 2804 sp->sackdelay = params->sack_delay; 2805 sp->param_flags = 2806 sctp_spp_sackdelay_enable(sp->param_flags); 2807 } 2808 if (params->sack_freq == 1) { 2809 sp->param_flags = 2810 sctp_spp_sackdelay_disable(sp->param_flags); 2811 } else if (params->sack_freq > 1) { 2812 sp->sackfreq = params->sack_freq; 2813 sp->param_flags = 2814 sctp_spp_sackdelay_enable(sp->param_flags); 2815 } 2816 } 2817 2818 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2819 params->sack_assoc_id == SCTP_ALL_ASSOC) 2820 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2821 sctp_apply_asoc_delayed_ack(params, asoc); 2822 2823 return 0; 2824 } 2825 2826 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2827 struct sctp_sack_info *params, 2828 unsigned int optlen) 2829 { 2830 if (optlen == sizeof(struct sctp_assoc_value)) { 2831 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2832 struct sctp_sack_info p; 2833 2834 pr_warn_ratelimited(DEPRECATED 2835 "%s (pid %d) " 2836 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2837 "Use struct sctp_sack_info instead\n", 2838 current->comm, task_pid_nr(current)); 2839 2840 p.sack_assoc_id = v->assoc_id; 2841 p.sack_delay = v->assoc_value; 2842 p.sack_freq = v->assoc_value ? 0 : 1; 2843 return __sctp_setsockopt_delayed_ack(sk, &p); 2844 } 2845 2846 if (optlen != sizeof(struct sctp_sack_info)) 2847 return -EINVAL; 2848 if (params->sack_delay == 0 && params->sack_freq == 0) 2849 return 0; 2850 return __sctp_setsockopt_delayed_ack(sk, params); 2851 } 2852 2853 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2854 * 2855 * Applications can specify protocol parameters for the default association 2856 * initialization. The option name argument to setsockopt() and getsockopt() 2857 * is SCTP_INITMSG. 2858 * 2859 * Setting initialization parameters is effective only on an unconnected 2860 * socket (for UDP-style sockets only future associations are effected 2861 * by the change). With TCP-style sockets, this option is inherited by 2862 * sockets derived from a listener socket. 2863 */ 2864 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2865 unsigned int optlen) 2866 { 2867 struct sctp_sock *sp = sctp_sk(sk); 2868 2869 if (optlen != sizeof(struct sctp_initmsg)) 2870 return -EINVAL; 2871 2872 if (sinit->sinit_num_ostreams) 2873 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2874 if (sinit->sinit_max_instreams) 2875 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2876 if (sinit->sinit_max_attempts) 2877 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2878 if (sinit->sinit_max_init_timeo) 2879 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2880 2881 return 0; 2882 } 2883 2884 /* 2885 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2886 * 2887 * Applications that wish to use the sendto() system call may wish to 2888 * specify a default set of parameters that would normally be supplied 2889 * through the inclusion of ancillary data. This socket option allows 2890 * such an application to set the default sctp_sndrcvinfo structure. 2891 * The application that wishes to use this socket option simply passes 2892 * in to this call the sctp_sndrcvinfo structure defined in Section 2893 * 5.2.2) The input parameters accepted by this call include 2894 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2895 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2896 * to this call if the caller is using the UDP model. 2897 */ 2898 static int sctp_setsockopt_default_send_param(struct sock *sk, 2899 struct sctp_sndrcvinfo *info, 2900 unsigned int optlen) 2901 { 2902 struct sctp_sock *sp = sctp_sk(sk); 2903 struct sctp_association *asoc; 2904 2905 if (optlen != sizeof(*info)) 2906 return -EINVAL; 2907 if (info->sinfo_flags & 2908 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2909 SCTP_ABORT | SCTP_EOF)) 2910 return -EINVAL; 2911 2912 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2913 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2914 sctp_style(sk, UDP)) 2915 return -EINVAL; 2916 2917 if (asoc) { 2918 asoc->default_stream = info->sinfo_stream; 2919 asoc->default_flags = info->sinfo_flags; 2920 asoc->default_ppid = info->sinfo_ppid; 2921 asoc->default_context = info->sinfo_context; 2922 asoc->default_timetolive = info->sinfo_timetolive; 2923 2924 return 0; 2925 } 2926 2927 if (sctp_style(sk, TCP)) 2928 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2929 2930 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2931 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2932 sp->default_stream = info->sinfo_stream; 2933 sp->default_flags = info->sinfo_flags; 2934 sp->default_ppid = info->sinfo_ppid; 2935 sp->default_context = info->sinfo_context; 2936 sp->default_timetolive = info->sinfo_timetolive; 2937 } 2938 2939 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2940 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2941 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2942 asoc->default_stream = info->sinfo_stream; 2943 asoc->default_flags = info->sinfo_flags; 2944 asoc->default_ppid = info->sinfo_ppid; 2945 asoc->default_context = info->sinfo_context; 2946 asoc->default_timetolive = info->sinfo_timetolive; 2947 } 2948 } 2949 2950 return 0; 2951 } 2952 2953 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2954 * (SCTP_DEFAULT_SNDINFO) 2955 */ 2956 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2957 struct sctp_sndinfo *info, 2958 unsigned int optlen) 2959 { 2960 struct sctp_sock *sp = sctp_sk(sk); 2961 struct sctp_association *asoc; 2962 2963 if (optlen != sizeof(*info)) 2964 return -EINVAL; 2965 if (info->snd_flags & 2966 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2967 SCTP_ABORT | SCTP_EOF)) 2968 return -EINVAL; 2969 2970 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2971 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2972 sctp_style(sk, UDP)) 2973 return -EINVAL; 2974 2975 if (asoc) { 2976 asoc->default_stream = info->snd_sid; 2977 asoc->default_flags = info->snd_flags; 2978 asoc->default_ppid = info->snd_ppid; 2979 asoc->default_context = info->snd_context; 2980 2981 return 0; 2982 } 2983 2984 if (sctp_style(sk, TCP)) 2985 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2986 2987 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2988 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2989 sp->default_stream = info->snd_sid; 2990 sp->default_flags = info->snd_flags; 2991 sp->default_ppid = info->snd_ppid; 2992 sp->default_context = info->snd_context; 2993 } 2994 2995 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2996 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2997 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2998 asoc->default_stream = info->snd_sid; 2999 asoc->default_flags = info->snd_flags; 3000 asoc->default_ppid = info->snd_ppid; 3001 asoc->default_context = info->snd_context; 3002 } 3003 } 3004 3005 return 0; 3006 } 3007 3008 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3009 * 3010 * Requests that the local SCTP stack use the enclosed peer address as 3011 * the association primary. The enclosed address must be one of the 3012 * association peer's addresses. 3013 */ 3014 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3015 unsigned int optlen) 3016 { 3017 struct sctp_transport *trans; 3018 struct sctp_af *af; 3019 int err; 3020 3021 if (optlen != sizeof(struct sctp_prim)) 3022 return -EINVAL; 3023 3024 /* Allow security module to validate address but need address len. */ 3025 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3026 if (!af) 3027 return -EINVAL; 3028 3029 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3030 (struct sockaddr *)&prim->ssp_addr, 3031 af->sockaddr_len); 3032 if (err) 3033 return err; 3034 3035 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3036 if (!trans) 3037 return -EINVAL; 3038 3039 sctp_assoc_set_primary(trans->asoc, trans); 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * 7.1.5 SCTP_NODELAY 3046 * 3047 * Turn on/off any Nagle-like algorithm. This means that packets are 3048 * generally sent as soon as possible and no unnecessary delays are 3049 * introduced, at the cost of more packets in the network. Expects an 3050 * integer boolean flag. 3051 */ 3052 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3053 unsigned int optlen) 3054 { 3055 if (optlen < sizeof(int)) 3056 return -EINVAL; 3057 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3058 return 0; 3059 } 3060 3061 /* 3062 * 3063 * 7.1.1 SCTP_RTOINFO 3064 * 3065 * The protocol parameters used to initialize and bound retransmission 3066 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3067 * and modify these parameters. 3068 * All parameters are time values, in milliseconds. A value of 0, when 3069 * modifying the parameters, indicates that the current value should not 3070 * be changed. 3071 * 3072 */ 3073 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3074 struct sctp_rtoinfo *rtoinfo, 3075 unsigned int optlen) 3076 { 3077 struct sctp_association *asoc; 3078 unsigned long rto_min, rto_max; 3079 struct sctp_sock *sp = sctp_sk(sk); 3080 3081 if (optlen != sizeof (struct sctp_rtoinfo)) 3082 return -EINVAL; 3083 3084 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3085 3086 /* Set the values to the specific association */ 3087 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3088 sctp_style(sk, UDP)) 3089 return -EINVAL; 3090 3091 rto_max = rtoinfo->srto_max; 3092 rto_min = rtoinfo->srto_min; 3093 3094 if (rto_max) 3095 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3096 else 3097 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3098 3099 if (rto_min) 3100 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3101 else 3102 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3103 3104 if (rto_min > rto_max) 3105 return -EINVAL; 3106 3107 if (asoc) { 3108 if (rtoinfo->srto_initial != 0) 3109 asoc->rto_initial = 3110 msecs_to_jiffies(rtoinfo->srto_initial); 3111 asoc->rto_max = rto_max; 3112 asoc->rto_min = rto_min; 3113 } else { 3114 /* If there is no association or the association-id = 0 3115 * set the values to the endpoint. 3116 */ 3117 if (rtoinfo->srto_initial != 0) 3118 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3119 sp->rtoinfo.srto_max = rto_max; 3120 sp->rtoinfo.srto_min = rto_min; 3121 } 3122 3123 return 0; 3124 } 3125 3126 /* 3127 * 3128 * 7.1.2 SCTP_ASSOCINFO 3129 * 3130 * This option is used to tune the maximum retransmission attempts 3131 * of the association. 3132 * Returns an error if the new association retransmission value is 3133 * greater than the sum of the retransmission value of the peer. 3134 * See [SCTP] for more information. 3135 * 3136 */ 3137 static int sctp_setsockopt_associnfo(struct sock *sk, 3138 struct sctp_assocparams *assocparams, 3139 unsigned int optlen) 3140 { 3141 3142 struct sctp_association *asoc; 3143 3144 if (optlen != sizeof(struct sctp_assocparams)) 3145 return -EINVAL; 3146 3147 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3148 3149 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3150 sctp_style(sk, UDP)) 3151 return -EINVAL; 3152 3153 /* Set the values to the specific association */ 3154 if (asoc) { 3155 if (assocparams->sasoc_asocmaxrxt != 0) { 3156 __u32 path_sum = 0; 3157 int paths = 0; 3158 struct sctp_transport *peer_addr; 3159 3160 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3161 transports) { 3162 path_sum += peer_addr->pathmaxrxt; 3163 paths++; 3164 } 3165 3166 /* Only validate asocmaxrxt if we have more than 3167 * one path/transport. We do this because path 3168 * retransmissions are only counted when we have more 3169 * then one path. 3170 */ 3171 if (paths > 1 && 3172 assocparams->sasoc_asocmaxrxt > path_sum) 3173 return -EINVAL; 3174 3175 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3176 } 3177 3178 if (assocparams->sasoc_cookie_life != 0) 3179 asoc->cookie_life = 3180 ms_to_ktime(assocparams->sasoc_cookie_life); 3181 } else { 3182 /* Set the values to the endpoint */ 3183 struct sctp_sock *sp = sctp_sk(sk); 3184 3185 if (assocparams->sasoc_asocmaxrxt != 0) 3186 sp->assocparams.sasoc_asocmaxrxt = 3187 assocparams->sasoc_asocmaxrxt; 3188 if (assocparams->sasoc_cookie_life != 0) 3189 sp->assocparams.sasoc_cookie_life = 3190 assocparams->sasoc_cookie_life; 3191 } 3192 return 0; 3193 } 3194 3195 /* 3196 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3197 * 3198 * This socket option is a boolean flag which turns on or off mapped V4 3199 * addresses. If this option is turned on and the socket is type 3200 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3201 * If this option is turned off, then no mapping will be done of V4 3202 * addresses and a user will receive both PF_INET6 and PF_INET type 3203 * addresses on the socket. 3204 */ 3205 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3206 unsigned int optlen) 3207 { 3208 struct sctp_sock *sp = sctp_sk(sk); 3209 3210 if (optlen < sizeof(int)) 3211 return -EINVAL; 3212 if (*val) 3213 sp->v4mapped = 1; 3214 else 3215 sp->v4mapped = 0; 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3222 * This option will get or set the maximum size to put in any outgoing 3223 * SCTP DATA chunk. If a message is larger than this size it will be 3224 * fragmented by SCTP into the specified size. Note that the underlying 3225 * SCTP implementation may fragment into smaller sized chunks when the 3226 * PMTU of the underlying association is smaller than the value set by 3227 * the user. The default value for this option is '0' which indicates 3228 * the user is NOT limiting fragmentation and only the PMTU will effect 3229 * SCTP's choice of DATA chunk size. Note also that values set larger 3230 * than the maximum size of an IP datagram will effectively let SCTP 3231 * control fragmentation (i.e. the same as setting this option to 0). 3232 * 3233 * The following structure is used to access and modify this parameter: 3234 * 3235 * struct sctp_assoc_value { 3236 * sctp_assoc_t assoc_id; 3237 * uint32_t assoc_value; 3238 * }; 3239 * 3240 * assoc_id: This parameter is ignored for one-to-one style sockets. 3241 * For one-to-many style sockets this parameter indicates which 3242 * association the user is performing an action upon. Note that if 3243 * this field's value is zero then the endpoints default value is 3244 * changed (effecting future associations only). 3245 * assoc_value: This parameter specifies the maximum size in bytes. 3246 */ 3247 static int sctp_setsockopt_maxseg(struct sock *sk, 3248 struct sctp_assoc_value *params, 3249 unsigned int optlen) 3250 { 3251 struct sctp_sock *sp = sctp_sk(sk); 3252 struct sctp_association *asoc; 3253 sctp_assoc_t assoc_id; 3254 int val; 3255 3256 if (optlen == sizeof(int)) { 3257 pr_warn_ratelimited(DEPRECATED 3258 "%s (pid %d) " 3259 "Use of int in maxseg socket option.\n" 3260 "Use struct sctp_assoc_value instead\n", 3261 current->comm, task_pid_nr(current)); 3262 assoc_id = SCTP_FUTURE_ASSOC; 3263 val = *(int *)params; 3264 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3265 assoc_id = params->assoc_id; 3266 val = params->assoc_value; 3267 } else { 3268 return -EINVAL; 3269 } 3270 3271 asoc = sctp_id2assoc(sk, assoc_id); 3272 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3273 sctp_style(sk, UDP)) 3274 return -EINVAL; 3275 3276 if (val) { 3277 int min_len, max_len; 3278 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3279 sizeof(struct sctp_data_chunk); 3280 3281 min_len = sctp_min_frag_point(sp, datasize); 3282 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3283 3284 if (val < min_len || val > max_len) 3285 return -EINVAL; 3286 } 3287 3288 if (asoc) { 3289 asoc->user_frag = val; 3290 sctp_assoc_update_frag_point(asoc); 3291 } else { 3292 sp->user_frag = val; 3293 } 3294 3295 return 0; 3296 } 3297 3298 3299 /* 3300 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3301 * 3302 * Requests that the peer mark the enclosed address as the association 3303 * primary. The enclosed address must be one of the association's 3304 * locally bound addresses. The following structure is used to make a 3305 * set primary request: 3306 */ 3307 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3308 struct sctp_setpeerprim *prim, 3309 unsigned int optlen) 3310 { 3311 struct sctp_sock *sp; 3312 struct sctp_association *asoc = NULL; 3313 struct sctp_chunk *chunk; 3314 struct sctp_af *af; 3315 int err; 3316 3317 sp = sctp_sk(sk); 3318 3319 if (!sp->ep->asconf_enable) 3320 return -EPERM; 3321 3322 if (optlen != sizeof(struct sctp_setpeerprim)) 3323 return -EINVAL; 3324 3325 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3326 if (!asoc) 3327 return -EINVAL; 3328 3329 if (!asoc->peer.asconf_capable) 3330 return -EPERM; 3331 3332 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3333 return -EPERM; 3334 3335 if (!sctp_state(asoc, ESTABLISHED)) 3336 return -ENOTCONN; 3337 3338 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3339 if (!af) 3340 return -EINVAL; 3341 3342 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3343 return -EADDRNOTAVAIL; 3344 3345 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3346 return -EADDRNOTAVAIL; 3347 3348 /* Allow security module to validate address. */ 3349 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3350 (struct sockaddr *)&prim->sspp_addr, 3351 af->sockaddr_len); 3352 if (err) 3353 return err; 3354 3355 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3356 chunk = sctp_make_asconf_set_prim(asoc, 3357 (union sctp_addr *)&prim->sspp_addr); 3358 if (!chunk) 3359 return -ENOMEM; 3360 3361 err = sctp_send_asconf(asoc, chunk); 3362 3363 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3364 3365 return err; 3366 } 3367 3368 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3369 struct sctp_setadaptation *adapt, 3370 unsigned int optlen) 3371 { 3372 if (optlen != sizeof(struct sctp_setadaptation)) 3373 return -EINVAL; 3374 3375 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3382 * 3383 * The context field in the sctp_sndrcvinfo structure is normally only 3384 * used when a failed message is retrieved holding the value that was 3385 * sent down on the actual send call. This option allows the setting of 3386 * a default context on an association basis that will be received on 3387 * reading messages from the peer. This is especially helpful in the 3388 * one-2-many model for an application to keep some reference to an 3389 * internal state machine that is processing messages on the 3390 * association. Note that the setting of this value only effects 3391 * received messages from the peer and does not effect the value that is 3392 * saved with outbound messages. 3393 */ 3394 static int sctp_setsockopt_context(struct sock *sk, 3395 struct sctp_assoc_value *params, 3396 unsigned int optlen) 3397 { 3398 struct sctp_sock *sp = sctp_sk(sk); 3399 struct sctp_association *asoc; 3400 3401 if (optlen != sizeof(struct sctp_assoc_value)) 3402 return -EINVAL; 3403 3404 asoc = sctp_id2assoc(sk, params->assoc_id); 3405 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3406 sctp_style(sk, UDP)) 3407 return -EINVAL; 3408 3409 if (asoc) { 3410 asoc->default_rcv_context = params->assoc_value; 3411 3412 return 0; 3413 } 3414 3415 if (sctp_style(sk, TCP)) 3416 params->assoc_id = SCTP_FUTURE_ASSOC; 3417 3418 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3419 params->assoc_id == SCTP_ALL_ASSOC) 3420 sp->default_rcv_context = params->assoc_value; 3421 3422 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3423 params->assoc_id == SCTP_ALL_ASSOC) 3424 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3425 asoc->default_rcv_context = params->assoc_value; 3426 3427 return 0; 3428 } 3429 3430 /* 3431 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3432 * 3433 * This options will at a minimum specify if the implementation is doing 3434 * fragmented interleave. Fragmented interleave, for a one to many 3435 * socket, is when subsequent calls to receive a message may return 3436 * parts of messages from different associations. Some implementations 3437 * may allow you to turn this value on or off. If so, when turned off, 3438 * no fragment interleave will occur (which will cause a head of line 3439 * blocking amongst multiple associations sharing the same one to many 3440 * socket). When this option is turned on, then each receive call may 3441 * come from a different association (thus the user must receive data 3442 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3443 * association each receive belongs to. 3444 * 3445 * This option takes a boolean value. A non-zero value indicates that 3446 * fragmented interleave is on. A value of zero indicates that 3447 * fragmented interleave is off. 3448 * 3449 * Note that it is important that an implementation that allows this 3450 * option to be turned on, have it off by default. Otherwise an unaware 3451 * application using the one to many model may become confused and act 3452 * incorrectly. 3453 */ 3454 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3455 unsigned int optlen) 3456 { 3457 if (optlen != sizeof(int)) 3458 return -EINVAL; 3459 3460 sctp_sk(sk)->frag_interleave = !!*val; 3461 3462 if (!sctp_sk(sk)->frag_interleave) 3463 sctp_sk(sk)->ep->intl_enable = 0; 3464 3465 return 0; 3466 } 3467 3468 /* 3469 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3470 * (SCTP_PARTIAL_DELIVERY_POINT) 3471 * 3472 * This option will set or get the SCTP partial delivery point. This 3473 * point is the size of a message where the partial delivery API will be 3474 * invoked to help free up rwnd space for the peer. Setting this to a 3475 * lower value will cause partial deliveries to happen more often. The 3476 * calls argument is an integer that sets or gets the partial delivery 3477 * point. Note also that the call will fail if the user attempts to set 3478 * this value larger than the socket receive buffer size. 3479 * 3480 * Note that any single message having a length smaller than or equal to 3481 * the SCTP partial delivery point will be delivered in one single read 3482 * call as long as the user provided buffer is large enough to hold the 3483 * message. 3484 */ 3485 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3486 unsigned int optlen) 3487 { 3488 if (optlen != sizeof(u32)) 3489 return -EINVAL; 3490 3491 /* Note: We double the receive buffer from what the user sets 3492 * it to be, also initial rwnd is based on rcvbuf/2. 3493 */ 3494 if (*val > (sk->sk_rcvbuf >> 1)) 3495 return -EINVAL; 3496 3497 sctp_sk(sk)->pd_point = *val; 3498 3499 return 0; /* is this the right error code? */ 3500 } 3501 3502 /* 3503 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3504 * 3505 * This option will allow a user to change the maximum burst of packets 3506 * that can be emitted by this association. Note that the default value 3507 * is 4, and some implementations may restrict this setting so that it 3508 * can only be lowered. 3509 * 3510 * NOTE: This text doesn't seem right. Do this on a socket basis with 3511 * future associations inheriting the socket value. 3512 */ 3513 static int sctp_setsockopt_maxburst(struct sock *sk, 3514 struct sctp_assoc_value *params, 3515 unsigned int optlen) 3516 { 3517 struct sctp_sock *sp = sctp_sk(sk); 3518 struct sctp_association *asoc; 3519 sctp_assoc_t assoc_id; 3520 u32 assoc_value; 3521 3522 if (optlen == sizeof(int)) { 3523 pr_warn_ratelimited(DEPRECATED 3524 "%s (pid %d) " 3525 "Use of int in max_burst socket option deprecated.\n" 3526 "Use struct sctp_assoc_value instead\n", 3527 current->comm, task_pid_nr(current)); 3528 assoc_id = SCTP_FUTURE_ASSOC; 3529 assoc_value = *((int *)params); 3530 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3531 assoc_id = params->assoc_id; 3532 assoc_value = params->assoc_value; 3533 } else 3534 return -EINVAL; 3535 3536 asoc = sctp_id2assoc(sk, assoc_id); 3537 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3538 return -EINVAL; 3539 3540 if (asoc) { 3541 asoc->max_burst = assoc_value; 3542 3543 return 0; 3544 } 3545 3546 if (sctp_style(sk, TCP)) 3547 assoc_id = SCTP_FUTURE_ASSOC; 3548 3549 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3550 sp->max_burst = assoc_value; 3551 3552 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3553 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3554 asoc->max_burst = assoc_value; 3555 3556 return 0; 3557 } 3558 3559 /* 3560 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3561 * 3562 * This set option adds a chunk type that the user is requesting to be 3563 * received only in an authenticated way. Changes to the list of chunks 3564 * will only effect future associations on the socket. 3565 */ 3566 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3567 struct sctp_authchunk *val, 3568 unsigned int optlen) 3569 { 3570 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3571 3572 if (!ep->auth_enable) 3573 return -EACCES; 3574 3575 if (optlen != sizeof(struct sctp_authchunk)) 3576 return -EINVAL; 3577 3578 switch (val->sauth_chunk) { 3579 case SCTP_CID_INIT: 3580 case SCTP_CID_INIT_ACK: 3581 case SCTP_CID_SHUTDOWN_COMPLETE: 3582 case SCTP_CID_AUTH: 3583 return -EINVAL; 3584 } 3585 3586 /* add this chunk id to the endpoint */ 3587 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3588 } 3589 3590 /* 3591 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3592 * 3593 * This option gets or sets the list of HMAC algorithms that the local 3594 * endpoint requires the peer to use. 3595 */ 3596 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3597 struct sctp_hmacalgo *hmacs, 3598 unsigned int optlen) 3599 { 3600 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3601 u32 idents; 3602 3603 if (!ep->auth_enable) 3604 return -EACCES; 3605 3606 if (optlen < sizeof(struct sctp_hmacalgo)) 3607 return -EINVAL; 3608 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3609 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3610 3611 idents = hmacs->shmac_num_idents; 3612 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3613 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3614 return -EINVAL; 3615 3616 return sctp_auth_ep_set_hmacs(ep, hmacs); 3617 } 3618 3619 /* 3620 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3621 * 3622 * This option will set a shared secret key which is used to build an 3623 * association shared key. 3624 */ 3625 static int sctp_setsockopt_auth_key(struct sock *sk, 3626 struct sctp_authkey *authkey, 3627 unsigned int optlen) 3628 { 3629 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3630 struct sctp_association *asoc; 3631 int ret = -EINVAL; 3632 3633 if (optlen <= sizeof(struct sctp_authkey)) 3634 return -EINVAL; 3635 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3636 * this. 3637 */ 3638 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3639 3640 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3641 goto out; 3642 3643 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3644 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3645 sctp_style(sk, UDP)) 3646 goto out; 3647 3648 if (asoc) { 3649 ret = sctp_auth_set_key(ep, asoc, authkey); 3650 goto out; 3651 } 3652 3653 if (sctp_style(sk, TCP)) 3654 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3655 3656 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3657 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3658 ret = sctp_auth_set_key(ep, asoc, authkey); 3659 if (ret) 3660 goto out; 3661 } 3662 3663 ret = 0; 3664 3665 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3666 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3667 list_for_each_entry(asoc, &ep->asocs, asocs) { 3668 int res = sctp_auth_set_key(ep, asoc, authkey); 3669 3670 if (res && !ret) 3671 ret = res; 3672 } 3673 } 3674 3675 out: 3676 memzero_explicit(authkey, optlen); 3677 return ret; 3678 } 3679 3680 /* 3681 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3682 * 3683 * This option will get or set the active shared key to be used to build 3684 * the association shared key. 3685 */ 3686 static int sctp_setsockopt_active_key(struct sock *sk, 3687 struct sctp_authkeyid *val, 3688 unsigned int optlen) 3689 { 3690 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3691 struct sctp_association *asoc; 3692 int ret = 0; 3693 3694 if (optlen != sizeof(struct sctp_authkeyid)) 3695 return -EINVAL; 3696 3697 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3698 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3699 sctp_style(sk, UDP)) 3700 return -EINVAL; 3701 3702 if (asoc) 3703 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3704 3705 if (sctp_style(sk, TCP)) 3706 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3707 3708 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3709 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3710 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3711 if (ret) 3712 return ret; 3713 } 3714 3715 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3716 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3717 list_for_each_entry(asoc, &ep->asocs, asocs) { 3718 int res = sctp_auth_set_active_key(ep, asoc, 3719 val->scact_keynumber); 3720 3721 if (res && !ret) 3722 ret = res; 3723 } 3724 } 3725 3726 return ret; 3727 } 3728 3729 /* 3730 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3731 * 3732 * This set option will delete a shared secret key from use. 3733 */ 3734 static int sctp_setsockopt_del_key(struct sock *sk, 3735 struct sctp_authkeyid *val, 3736 unsigned int optlen) 3737 { 3738 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3739 struct sctp_association *asoc; 3740 int ret = 0; 3741 3742 if (optlen != sizeof(struct sctp_authkeyid)) 3743 return -EINVAL; 3744 3745 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3746 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3747 sctp_style(sk, UDP)) 3748 return -EINVAL; 3749 3750 if (asoc) 3751 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3752 3753 if (sctp_style(sk, TCP)) 3754 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3755 3756 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3757 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3758 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3759 if (ret) 3760 return ret; 3761 } 3762 3763 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3764 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3765 list_for_each_entry(asoc, &ep->asocs, asocs) { 3766 int res = sctp_auth_del_key_id(ep, asoc, 3767 val->scact_keynumber); 3768 3769 if (res && !ret) 3770 ret = res; 3771 } 3772 } 3773 3774 return ret; 3775 } 3776 3777 /* 3778 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3779 * 3780 * This set option will deactivate a shared secret key. 3781 */ 3782 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3783 struct sctp_authkeyid *val, 3784 unsigned int optlen) 3785 { 3786 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3787 struct sctp_association *asoc; 3788 int ret = 0; 3789 3790 if (optlen != sizeof(struct sctp_authkeyid)) 3791 return -EINVAL; 3792 3793 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3794 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3795 sctp_style(sk, UDP)) 3796 return -EINVAL; 3797 3798 if (asoc) 3799 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3800 3801 if (sctp_style(sk, TCP)) 3802 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3803 3804 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3805 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3806 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3807 if (ret) 3808 return ret; 3809 } 3810 3811 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3812 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3813 list_for_each_entry(asoc, &ep->asocs, asocs) { 3814 int res = sctp_auth_deact_key_id(ep, asoc, 3815 val->scact_keynumber); 3816 3817 if (res && !ret) 3818 ret = res; 3819 } 3820 } 3821 3822 return ret; 3823 } 3824 3825 /* 3826 * 8.1.23 SCTP_AUTO_ASCONF 3827 * 3828 * This option will enable or disable the use of the automatic generation of 3829 * ASCONF chunks to add and delete addresses to an existing association. Note 3830 * that this option has two caveats namely: a) it only affects sockets that 3831 * are bound to all addresses available to the SCTP stack, and b) the system 3832 * administrator may have an overriding control that turns the ASCONF feature 3833 * off no matter what setting the socket option may have. 3834 * This option expects an integer boolean flag, where a non-zero value turns on 3835 * the option, and a zero value turns off the option. 3836 * Note. In this implementation, socket operation overrides default parameter 3837 * being set by sysctl as well as FreeBSD implementation 3838 */ 3839 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3840 unsigned int optlen) 3841 { 3842 struct sctp_sock *sp = sctp_sk(sk); 3843 3844 if (optlen < sizeof(int)) 3845 return -EINVAL; 3846 if (!sctp_is_ep_boundall(sk) && *val) 3847 return -EINVAL; 3848 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3849 return 0; 3850 3851 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3852 if (*val == 0 && sp->do_auto_asconf) { 3853 list_del(&sp->auto_asconf_list); 3854 sp->do_auto_asconf = 0; 3855 } else if (*val && !sp->do_auto_asconf) { 3856 list_add_tail(&sp->auto_asconf_list, 3857 &sock_net(sk)->sctp.auto_asconf_splist); 3858 sp->do_auto_asconf = 1; 3859 } 3860 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3861 return 0; 3862 } 3863 3864 /* 3865 * SCTP_PEER_ADDR_THLDS 3866 * 3867 * This option allows us to alter the partially failed threshold for one or all 3868 * transports in an association. See Section 6.1 of: 3869 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3870 */ 3871 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3872 struct sctp_paddrthlds_v2 *val, 3873 unsigned int optlen, bool v2) 3874 { 3875 struct sctp_transport *trans; 3876 struct sctp_association *asoc; 3877 int len; 3878 3879 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3880 if (optlen < len) 3881 return -EINVAL; 3882 3883 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3884 return -EINVAL; 3885 3886 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3887 trans = sctp_addr_id2transport(sk, &val->spt_address, 3888 val->spt_assoc_id); 3889 if (!trans) 3890 return -ENOENT; 3891 3892 if (val->spt_pathmaxrxt) 3893 trans->pathmaxrxt = val->spt_pathmaxrxt; 3894 if (v2) 3895 trans->ps_retrans = val->spt_pathcpthld; 3896 trans->pf_retrans = val->spt_pathpfthld; 3897 3898 return 0; 3899 } 3900 3901 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3902 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3903 sctp_style(sk, UDP)) 3904 return -EINVAL; 3905 3906 if (asoc) { 3907 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3908 transports) { 3909 if (val->spt_pathmaxrxt) 3910 trans->pathmaxrxt = val->spt_pathmaxrxt; 3911 if (v2) 3912 trans->ps_retrans = val->spt_pathcpthld; 3913 trans->pf_retrans = val->spt_pathpfthld; 3914 } 3915 3916 if (val->spt_pathmaxrxt) 3917 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3918 if (v2) 3919 asoc->ps_retrans = val->spt_pathcpthld; 3920 asoc->pf_retrans = val->spt_pathpfthld; 3921 } else { 3922 struct sctp_sock *sp = sctp_sk(sk); 3923 3924 if (val->spt_pathmaxrxt) 3925 sp->pathmaxrxt = val->spt_pathmaxrxt; 3926 if (v2) 3927 sp->ps_retrans = val->spt_pathcpthld; 3928 sp->pf_retrans = val->spt_pathpfthld; 3929 } 3930 3931 return 0; 3932 } 3933 3934 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3935 unsigned int optlen) 3936 { 3937 if (optlen < sizeof(int)) 3938 return -EINVAL; 3939 3940 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3941 3942 return 0; 3943 } 3944 3945 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3946 unsigned int optlen) 3947 { 3948 if (optlen < sizeof(int)) 3949 return -EINVAL; 3950 3951 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3952 3953 return 0; 3954 } 3955 3956 static int sctp_setsockopt_pr_supported(struct sock *sk, 3957 struct sctp_assoc_value *params, 3958 unsigned int optlen) 3959 { 3960 struct sctp_association *asoc; 3961 3962 if (optlen != sizeof(*params)) 3963 return -EINVAL; 3964 3965 asoc = sctp_id2assoc(sk, params->assoc_id); 3966 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3967 sctp_style(sk, UDP)) 3968 return -EINVAL; 3969 3970 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3971 3972 return 0; 3973 } 3974 3975 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3976 struct sctp_default_prinfo *info, 3977 unsigned int optlen) 3978 { 3979 struct sctp_sock *sp = sctp_sk(sk); 3980 struct sctp_association *asoc; 3981 int retval = -EINVAL; 3982 3983 if (optlen != sizeof(*info)) 3984 goto out; 3985 3986 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3987 goto out; 3988 3989 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3990 info->pr_value = 0; 3991 3992 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3993 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3994 sctp_style(sk, UDP)) 3995 goto out; 3996 3997 retval = 0; 3998 3999 if (asoc) { 4000 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4001 asoc->default_timetolive = info->pr_value; 4002 goto out; 4003 } 4004 4005 if (sctp_style(sk, TCP)) 4006 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4007 4008 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4009 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4010 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4011 sp->default_timetolive = info->pr_value; 4012 } 4013 4014 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4015 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4016 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4017 SCTP_PR_SET_POLICY(asoc->default_flags, 4018 info->pr_policy); 4019 asoc->default_timetolive = info->pr_value; 4020 } 4021 } 4022 4023 out: 4024 return retval; 4025 } 4026 4027 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4028 struct sctp_assoc_value *params, 4029 unsigned int optlen) 4030 { 4031 struct sctp_association *asoc; 4032 int retval = -EINVAL; 4033 4034 if (optlen != sizeof(*params)) 4035 goto out; 4036 4037 asoc = sctp_id2assoc(sk, params->assoc_id); 4038 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4039 sctp_style(sk, UDP)) 4040 goto out; 4041 4042 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4043 4044 retval = 0; 4045 4046 out: 4047 return retval; 4048 } 4049 4050 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4051 struct sctp_assoc_value *params, 4052 unsigned int optlen) 4053 { 4054 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4055 struct sctp_association *asoc; 4056 int retval = -EINVAL; 4057 4058 if (optlen != sizeof(*params)) 4059 goto out; 4060 4061 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4062 goto out; 4063 4064 asoc = sctp_id2assoc(sk, params->assoc_id); 4065 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4066 sctp_style(sk, UDP)) 4067 goto out; 4068 4069 retval = 0; 4070 4071 if (asoc) { 4072 asoc->strreset_enable = params->assoc_value; 4073 goto out; 4074 } 4075 4076 if (sctp_style(sk, TCP)) 4077 params->assoc_id = SCTP_FUTURE_ASSOC; 4078 4079 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4080 params->assoc_id == SCTP_ALL_ASSOC) 4081 ep->strreset_enable = params->assoc_value; 4082 4083 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4084 params->assoc_id == SCTP_ALL_ASSOC) 4085 list_for_each_entry(asoc, &ep->asocs, asocs) 4086 asoc->strreset_enable = params->assoc_value; 4087 4088 out: 4089 return retval; 4090 } 4091 4092 static int sctp_setsockopt_reset_streams(struct sock *sk, 4093 struct sctp_reset_streams *params, 4094 unsigned int optlen) 4095 { 4096 struct sctp_association *asoc; 4097 4098 if (optlen < sizeof(*params)) 4099 return -EINVAL; 4100 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4101 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4102 sizeof(__u16) * sizeof(*params)); 4103 4104 if (params->srs_number_streams * sizeof(__u16) > 4105 optlen - sizeof(*params)) 4106 return -EINVAL; 4107 4108 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4109 if (!asoc) 4110 return -EINVAL; 4111 4112 return sctp_send_reset_streams(asoc, params); 4113 } 4114 4115 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4116 unsigned int optlen) 4117 { 4118 struct sctp_association *asoc; 4119 4120 if (optlen != sizeof(*associd)) 4121 return -EINVAL; 4122 4123 asoc = sctp_id2assoc(sk, *associd); 4124 if (!asoc) 4125 return -EINVAL; 4126 4127 return sctp_send_reset_assoc(asoc); 4128 } 4129 4130 static int sctp_setsockopt_add_streams(struct sock *sk, 4131 struct sctp_add_streams *params, 4132 unsigned int optlen) 4133 { 4134 struct sctp_association *asoc; 4135 4136 if (optlen != sizeof(*params)) 4137 return -EINVAL; 4138 4139 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4140 if (!asoc) 4141 return -EINVAL; 4142 4143 return sctp_send_add_streams(asoc, params); 4144 } 4145 4146 static int sctp_setsockopt_scheduler(struct sock *sk, 4147 struct sctp_assoc_value *params, 4148 unsigned int optlen) 4149 { 4150 struct sctp_sock *sp = sctp_sk(sk); 4151 struct sctp_association *asoc; 4152 int retval = 0; 4153 4154 if (optlen < sizeof(*params)) 4155 return -EINVAL; 4156 4157 if (params->assoc_value > SCTP_SS_MAX) 4158 return -EINVAL; 4159 4160 asoc = sctp_id2assoc(sk, params->assoc_id); 4161 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4162 sctp_style(sk, UDP)) 4163 return -EINVAL; 4164 4165 if (asoc) 4166 return sctp_sched_set_sched(asoc, params->assoc_value); 4167 4168 if (sctp_style(sk, TCP)) 4169 params->assoc_id = SCTP_FUTURE_ASSOC; 4170 4171 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4172 params->assoc_id == SCTP_ALL_ASSOC) 4173 sp->default_ss = params->assoc_value; 4174 4175 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4176 params->assoc_id == SCTP_ALL_ASSOC) { 4177 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4178 int ret = sctp_sched_set_sched(asoc, 4179 params->assoc_value); 4180 4181 if (ret && !retval) 4182 retval = ret; 4183 } 4184 } 4185 4186 return retval; 4187 } 4188 4189 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4190 struct sctp_stream_value *params, 4191 unsigned int optlen) 4192 { 4193 struct sctp_association *asoc; 4194 int retval = -EINVAL; 4195 4196 if (optlen < sizeof(*params)) 4197 goto out; 4198 4199 asoc = sctp_id2assoc(sk, params->assoc_id); 4200 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4201 sctp_style(sk, UDP)) 4202 goto out; 4203 4204 if (asoc) { 4205 retval = sctp_sched_set_value(asoc, params->stream_id, 4206 params->stream_value, GFP_KERNEL); 4207 goto out; 4208 } 4209 4210 retval = 0; 4211 4212 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4213 int ret = sctp_sched_set_value(asoc, params->stream_id, 4214 params->stream_value, 4215 GFP_KERNEL); 4216 if (ret && !retval) /* try to return the 1st error. */ 4217 retval = ret; 4218 } 4219 4220 out: 4221 return retval; 4222 } 4223 4224 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4225 struct sctp_assoc_value *p, 4226 unsigned int optlen) 4227 { 4228 struct sctp_sock *sp = sctp_sk(sk); 4229 struct sctp_association *asoc; 4230 4231 if (optlen < sizeof(*p)) 4232 return -EINVAL; 4233 4234 asoc = sctp_id2assoc(sk, p->assoc_id); 4235 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4236 return -EINVAL; 4237 4238 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4239 return -EPERM; 4240 } 4241 4242 sp->ep->intl_enable = !!p->assoc_value; 4243 return 0; 4244 } 4245 4246 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4247 unsigned int optlen) 4248 { 4249 if (!sctp_style(sk, TCP)) 4250 return -EOPNOTSUPP; 4251 4252 if (sctp_sk(sk)->ep->base.bind_addr.port) 4253 return -EFAULT; 4254 4255 if (optlen < sizeof(int)) 4256 return -EINVAL; 4257 4258 sctp_sk(sk)->reuse = !!*val; 4259 4260 return 0; 4261 } 4262 4263 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4264 struct sctp_association *asoc) 4265 { 4266 struct sctp_ulpevent *event; 4267 4268 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4269 4270 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4271 if (sctp_outq_is_empty(&asoc->outqueue)) { 4272 event = sctp_ulpevent_make_sender_dry_event(asoc, 4273 GFP_USER | __GFP_NOWARN); 4274 if (!event) 4275 return -ENOMEM; 4276 4277 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4278 } 4279 } 4280 4281 return 0; 4282 } 4283 4284 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4285 unsigned int optlen) 4286 { 4287 struct sctp_sock *sp = sctp_sk(sk); 4288 struct sctp_association *asoc; 4289 int retval = 0; 4290 4291 if (optlen < sizeof(*param)) 4292 return -EINVAL; 4293 4294 if (param->se_type < SCTP_SN_TYPE_BASE || 4295 param->se_type > SCTP_SN_TYPE_MAX) 4296 return -EINVAL; 4297 4298 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4299 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4300 sctp_style(sk, UDP)) 4301 return -EINVAL; 4302 4303 if (asoc) 4304 return sctp_assoc_ulpevent_type_set(param, asoc); 4305 4306 if (sctp_style(sk, TCP)) 4307 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4308 4309 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4310 param->se_assoc_id == SCTP_ALL_ASSOC) 4311 sctp_ulpevent_type_set(&sp->subscribe, 4312 param->se_type, param->se_on); 4313 4314 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4315 param->se_assoc_id == SCTP_ALL_ASSOC) { 4316 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4317 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4318 4319 if (ret && !retval) 4320 retval = ret; 4321 } 4322 } 4323 4324 return retval; 4325 } 4326 4327 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4328 struct sctp_assoc_value *params, 4329 unsigned int optlen) 4330 { 4331 struct sctp_association *asoc; 4332 struct sctp_endpoint *ep; 4333 int retval = -EINVAL; 4334 4335 if (optlen != sizeof(*params)) 4336 goto out; 4337 4338 asoc = sctp_id2assoc(sk, params->assoc_id); 4339 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4340 sctp_style(sk, UDP)) 4341 goto out; 4342 4343 ep = sctp_sk(sk)->ep; 4344 ep->asconf_enable = !!params->assoc_value; 4345 4346 if (ep->asconf_enable && ep->auth_enable) { 4347 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4348 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4349 } 4350 4351 retval = 0; 4352 4353 out: 4354 return retval; 4355 } 4356 4357 static int sctp_setsockopt_auth_supported(struct sock *sk, 4358 struct sctp_assoc_value *params, 4359 unsigned int optlen) 4360 { 4361 struct sctp_association *asoc; 4362 struct sctp_endpoint *ep; 4363 int retval = -EINVAL; 4364 4365 if (optlen != sizeof(*params)) 4366 goto out; 4367 4368 asoc = sctp_id2assoc(sk, params->assoc_id); 4369 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4370 sctp_style(sk, UDP)) 4371 goto out; 4372 4373 ep = sctp_sk(sk)->ep; 4374 if (params->assoc_value) { 4375 retval = sctp_auth_init(ep, GFP_KERNEL); 4376 if (retval) 4377 goto out; 4378 if (ep->asconf_enable) { 4379 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4380 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4381 } 4382 } 4383 4384 ep->auth_enable = !!params->assoc_value; 4385 retval = 0; 4386 4387 out: 4388 return retval; 4389 } 4390 4391 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4392 struct sctp_assoc_value *params, 4393 unsigned int optlen) 4394 { 4395 struct sctp_association *asoc; 4396 int retval = -EINVAL; 4397 4398 if (optlen != sizeof(*params)) 4399 goto out; 4400 4401 asoc = sctp_id2assoc(sk, params->assoc_id); 4402 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4403 sctp_style(sk, UDP)) 4404 goto out; 4405 4406 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4407 retval = 0; 4408 4409 out: 4410 return retval; 4411 } 4412 4413 static int sctp_setsockopt_pf_expose(struct sock *sk, 4414 struct sctp_assoc_value *params, 4415 unsigned int optlen) 4416 { 4417 struct sctp_association *asoc; 4418 int retval = -EINVAL; 4419 4420 if (optlen != sizeof(*params)) 4421 goto out; 4422 4423 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4424 goto out; 4425 4426 asoc = sctp_id2assoc(sk, params->assoc_id); 4427 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4428 sctp_style(sk, UDP)) 4429 goto out; 4430 4431 if (asoc) 4432 asoc->pf_expose = params->assoc_value; 4433 else 4434 sctp_sk(sk)->pf_expose = params->assoc_value; 4435 retval = 0; 4436 4437 out: 4438 return retval; 4439 } 4440 4441 static int sctp_setsockopt_encap_port(struct sock *sk, 4442 struct sctp_udpencaps *encap, 4443 unsigned int optlen) 4444 { 4445 struct sctp_association *asoc; 4446 struct sctp_transport *t; 4447 __be16 encap_port; 4448 4449 if (optlen != sizeof(*encap)) 4450 return -EINVAL; 4451 4452 /* If an address other than INADDR_ANY is specified, and 4453 * no transport is found, then the request is invalid. 4454 */ 4455 encap_port = (__force __be16)encap->sue_port; 4456 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4457 t = sctp_addr_id2transport(sk, &encap->sue_address, 4458 encap->sue_assoc_id); 4459 if (!t) 4460 return -EINVAL; 4461 4462 t->encap_port = encap_port; 4463 return 0; 4464 } 4465 4466 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4467 * socket is a one to many style socket, and an association 4468 * was not found, then the id was invalid. 4469 */ 4470 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4471 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4472 sctp_style(sk, UDP)) 4473 return -EINVAL; 4474 4475 /* If changes are for association, also apply encap_port to 4476 * each transport. 4477 */ 4478 if (asoc) { 4479 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4480 transports) 4481 t->encap_port = encap_port; 4482 4483 asoc->encap_port = encap_port; 4484 return 0; 4485 } 4486 4487 sctp_sk(sk)->encap_port = encap_port; 4488 return 0; 4489 } 4490 4491 static int sctp_setsockopt_probe_interval(struct sock *sk, 4492 struct sctp_probeinterval *params, 4493 unsigned int optlen) 4494 { 4495 struct sctp_association *asoc; 4496 struct sctp_transport *t; 4497 __u32 probe_interval; 4498 4499 if (optlen != sizeof(*params)) 4500 return -EINVAL; 4501 4502 probe_interval = params->spi_interval; 4503 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4504 return -EINVAL; 4505 4506 /* If an address other than INADDR_ANY is specified, and 4507 * no transport is found, then the request is invalid. 4508 */ 4509 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4510 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4511 params->spi_assoc_id); 4512 if (!t) 4513 return -EINVAL; 4514 4515 t->probe_interval = msecs_to_jiffies(probe_interval); 4516 sctp_transport_pl_reset(t); 4517 return 0; 4518 } 4519 4520 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4521 * socket is a one to many style socket, and an association 4522 * was not found, then the id was invalid. 4523 */ 4524 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4525 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4526 sctp_style(sk, UDP)) 4527 return -EINVAL; 4528 4529 /* If changes are for association, also apply probe_interval to 4530 * each transport. 4531 */ 4532 if (asoc) { 4533 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4534 t->probe_interval = msecs_to_jiffies(probe_interval); 4535 sctp_transport_pl_reset(t); 4536 } 4537 4538 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4539 return 0; 4540 } 4541 4542 sctp_sk(sk)->probe_interval = probe_interval; 4543 return 0; 4544 } 4545 4546 /* API 6.2 setsockopt(), getsockopt() 4547 * 4548 * Applications use setsockopt() and getsockopt() to set or retrieve 4549 * socket options. Socket options are used to change the default 4550 * behavior of sockets calls. They are described in Section 7. 4551 * 4552 * The syntax is: 4553 * 4554 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4555 * int __user *optlen); 4556 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4557 * int optlen); 4558 * 4559 * sd - the socket descript. 4560 * level - set to IPPROTO_SCTP for all SCTP options. 4561 * optname - the option name. 4562 * optval - the buffer to store the value of the option. 4563 * optlen - the size of the buffer. 4564 */ 4565 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4566 sockptr_t optval, unsigned int optlen) 4567 { 4568 void *kopt = NULL; 4569 int retval = 0; 4570 4571 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4572 4573 /* I can hardly begin to describe how wrong this is. This is 4574 * so broken as to be worse than useless. The API draft 4575 * REALLY is NOT helpful here... I am not convinced that the 4576 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4577 * are at all well-founded. 4578 */ 4579 if (level != SOL_SCTP) { 4580 struct sctp_af *af = sctp_sk(sk)->pf->af; 4581 4582 return af->setsockopt(sk, level, optname, optval, optlen); 4583 } 4584 4585 if (optlen > 0) { 4586 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4587 optlen = min_t(unsigned int, optlen, 4588 PAGE_ALIGN(USHRT_MAX + 4589 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4590 kopt = memdup_sockptr(optval, optlen); 4591 if (IS_ERR(kopt)) 4592 return PTR_ERR(kopt); 4593 } 4594 4595 lock_sock(sk); 4596 4597 switch (optname) { 4598 case SCTP_SOCKOPT_BINDX_ADD: 4599 /* 'optlen' is the size of the addresses buffer. */ 4600 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4601 SCTP_BINDX_ADD_ADDR); 4602 break; 4603 4604 case SCTP_SOCKOPT_BINDX_REM: 4605 /* 'optlen' is the size of the addresses buffer. */ 4606 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4607 SCTP_BINDX_REM_ADDR); 4608 break; 4609 4610 case SCTP_SOCKOPT_CONNECTX_OLD: 4611 /* 'optlen' is the size of the addresses buffer. */ 4612 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4613 break; 4614 4615 case SCTP_SOCKOPT_CONNECTX: 4616 /* 'optlen' is the size of the addresses buffer. */ 4617 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4618 break; 4619 4620 case SCTP_DISABLE_FRAGMENTS: 4621 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4622 break; 4623 4624 case SCTP_EVENTS: 4625 retval = sctp_setsockopt_events(sk, kopt, optlen); 4626 break; 4627 4628 case SCTP_AUTOCLOSE: 4629 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4630 break; 4631 4632 case SCTP_PEER_ADDR_PARAMS: 4633 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4634 break; 4635 4636 case SCTP_DELAYED_SACK: 4637 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4638 break; 4639 case SCTP_PARTIAL_DELIVERY_POINT: 4640 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4641 break; 4642 4643 case SCTP_INITMSG: 4644 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4645 break; 4646 case SCTP_DEFAULT_SEND_PARAM: 4647 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4648 break; 4649 case SCTP_DEFAULT_SNDINFO: 4650 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4651 break; 4652 case SCTP_PRIMARY_ADDR: 4653 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4654 break; 4655 case SCTP_SET_PEER_PRIMARY_ADDR: 4656 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4657 break; 4658 case SCTP_NODELAY: 4659 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4660 break; 4661 case SCTP_RTOINFO: 4662 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4663 break; 4664 case SCTP_ASSOCINFO: 4665 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4666 break; 4667 case SCTP_I_WANT_MAPPED_V4_ADDR: 4668 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4669 break; 4670 case SCTP_MAXSEG: 4671 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4672 break; 4673 case SCTP_ADAPTATION_LAYER: 4674 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4675 break; 4676 case SCTP_CONTEXT: 4677 retval = sctp_setsockopt_context(sk, kopt, optlen); 4678 break; 4679 case SCTP_FRAGMENT_INTERLEAVE: 4680 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4681 break; 4682 case SCTP_MAX_BURST: 4683 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4684 break; 4685 case SCTP_AUTH_CHUNK: 4686 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4687 break; 4688 case SCTP_HMAC_IDENT: 4689 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4690 break; 4691 case SCTP_AUTH_KEY: 4692 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4693 break; 4694 case SCTP_AUTH_ACTIVE_KEY: 4695 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4696 break; 4697 case SCTP_AUTH_DELETE_KEY: 4698 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4699 break; 4700 case SCTP_AUTH_DEACTIVATE_KEY: 4701 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4702 break; 4703 case SCTP_AUTO_ASCONF: 4704 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4705 break; 4706 case SCTP_PEER_ADDR_THLDS: 4707 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4708 false); 4709 break; 4710 case SCTP_PEER_ADDR_THLDS_V2: 4711 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4712 true); 4713 break; 4714 case SCTP_RECVRCVINFO: 4715 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4716 break; 4717 case SCTP_RECVNXTINFO: 4718 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4719 break; 4720 case SCTP_PR_SUPPORTED: 4721 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4722 break; 4723 case SCTP_DEFAULT_PRINFO: 4724 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4725 break; 4726 case SCTP_RECONFIG_SUPPORTED: 4727 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4728 break; 4729 case SCTP_ENABLE_STREAM_RESET: 4730 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4731 break; 4732 case SCTP_RESET_STREAMS: 4733 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4734 break; 4735 case SCTP_RESET_ASSOC: 4736 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4737 break; 4738 case SCTP_ADD_STREAMS: 4739 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4740 break; 4741 case SCTP_STREAM_SCHEDULER: 4742 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4743 break; 4744 case SCTP_STREAM_SCHEDULER_VALUE: 4745 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4746 break; 4747 case SCTP_INTERLEAVING_SUPPORTED: 4748 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4749 optlen); 4750 break; 4751 case SCTP_REUSE_PORT: 4752 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4753 break; 4754 case SCTP_EVENT: 4755 retval = sctp_setsockopt_event(sk, kopt, optlen); 4756 break; 4757 case SCTP_ASCONF_SUPPORTED: 4758 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4759 break; 4760 case SCTP_AUTH_SUPPORTED: 4761 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4762 break; 4763 case SCTP_ECN_SUPPORTED: 4764 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4765 break; 4766 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4767 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4768 break; 4769 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4770 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4771 break; 4772 case SCTP_PLPMTUD_PROBE_INTERVAL: 4773 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4774 break; 4775 default: 4776 retval = -ENOPROTOOPT; 4777 break; 4778 } 4779 4780 release_sock(sk); 4781 kfree(kopt); 4782 return retval; 4783 } 4784 4785 /* API 3.1.6 connect() - UDP Style Syntax 4786 * 4787 * An application may use the connect() call in the UDP model to initiate an 4788 * association without sending data. 4789 * 4790 * The syntax is: 4791 * 4792 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4793 * 4794 * sd: the socket descriptor to have a new association added to. 4795 * 4796 * nam: the address structure (either struct sockaddr_in or struct 4797 * sockaddr_in6 defined in RFC2553 [7]). 4798 * 4799 * len: the size of the address. 4800 */ 4801 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4802 int addr_len, int flags) 4803 { 4804 struct sctp_af *af; 4805 int err = -EINVAL; 4806 4807 lock_sock(sk); 4808 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4809 addr, addr_len); 4810 4811 /* Validate addr_len before calling common connect/connectx routine. */ 4812 af = sctp_get_af_specific(addr->sa_family); 4813 if (af && addr_len >= af->sockaddr_len) 4814 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4815 4816 release_sock(sk); 4817 return err; 4818 } 4819 4820 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4821 int addr_len, int flags) 4822 { 4823 if (addr_len < sizeof(uaddr->sa_family)) 4824 return -EINVAL; 4825 4826 if (uaddr->sa_family == AF_UNSPEC) 4827 return -EOPNOTSUPP; 4828 4829 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4830 } 4831 4832 /* FIXME: Write comments. */ 4833 static int sctp_disconnect(struct sock *sk, int flags) 4834 { 4835 return -EOPNOTSUPP; /* STUB */ 4836 } 4837 4838 /* 4.1.4 accept() - TCP Style Syntax 4839 * 4840 * Applications use accept() call to remove an established SCTP 4841 * association from the accept queue of the endpoint. A new socket 4842 * descriptor will be returned from accept() to represent the newly 4843 * formed association. 4844 */ 4845 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4846 { 4847 struct sctp_sock *sp; 4848 struct sctp_endpoint *ep; 4849 struct sock *newsk = NULL; 4850 struct sctp_association *asoc; 4851 long timeo; 4852 int error = 0; 4853 4854 lock_sock(sk); 4855 4856 sp = sctp_sk(sk); 4857 ep = sp->ep; 4858 4859 if (!sctp_style(sk, TCP)) { 4860 error = -EOPNOTSUPP; 4861 goto out; 4862 } 4863 4864 if (!sctp_sstate(sk, LISTENING)) { 4865 error = -EINVAL; 4866 goto out; 4867 } 4868 4869 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4870 4871 error = sctp_wait_for_accept(sk, timeo); 4872 if (error) 4873 goto out; 4874 4875 /* We treat the list of associations on the endpoint as the accept 4876 * queue and pick the first association on the list. 4877 */ 4878 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4879 4880 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4881 if (!newsk) { 4882 error = -ENOMEM; 4883 goto out; 4884 } 4885 4886 /* Populate the fields of the newsk from the oldsk and migrate the 4887 * asoc to the newsk. 4888 */ 4889 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4890 if (error) { 4891 sk_common_release(newsk); 4892 newsk = NULL; 4893 } 4894 4895 out: 4896 release_sock(sk); 4897 *err = error; 4898 return newsk; 4899 } 4900 4901 /* The SCTP ioctl handler. */ 4902 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4903 { 4904 int rc = -ENOTCONN; 4905 4906 lock_sock(sk); 4907 4908 /* 4909 * SEQPACKET-style sockets in LISTENING state are valid, for 4910 * SCTP, so only discard TCP-style sockets in LISTENING state. 4911 */ 4912 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4913 goto out; 4914 4915 switch (cmd) { 4916 case SIOCINQ: { 4917 struct sk_buff *skb; 4918 *karg = 0; 4919 4920 skb = skb_peek(&sk->sk_receive_queue); 4921 if (skb != NULL) { 4922 /* 4923 * We will only return the amount of this packet since 4924 * that is all that will be read. 4925 */ 4926 *karg = skb->len; 4927 } 4928 rc = 0; 4929 break; 4930 } 4931 default: 4932 rc = -ENOIOCTLCMD; 4933 break; 4934 } 4935 out: 4936 release_sock(sk); 4937 return rc; 4938 } 4939 4940 /* This is the function which gets called during socket creation to 4941 * initialized the SCTP-specific portion of the sock. 4942 * The sock structure should already be zero-filled memory. 4943 */ 4944 static int sctp_init_sock(struct sock *sk) 4945 { 4946 struct net *net = sock_net(sk); 4947 struct sctp_sock *sp; 4948 4949 pr_debug("%s: sk:%p\n", __func__, sk); 4950 4951 sp = sctp_sk(sk); 4952 4953 /* Initialize the SCTP per socket area. */ 4954 switch (sk->sk_type) { 4955 case SOCK_SEQPACKET: 4956 sp->type = SCTP_SOCKET_UDP; 4957 break; 4958 case SOCK_STREAM: 4959 sp->type = SCTP_SOCKET_TCP; 4960 break; 4961 default: 4962 return -ESOCKTNOSUPPORT; 4963 } 4964 4965 sk->sk_gso_type = SKB_GSO_SCTP; 4966 4967 /* Initialize default send parameters. These parameters can be 4968 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4969 */ 4970 sp->default_stream = 0; 4971 sp->default_ppid = 0; 4972 sp->default_flags = 0; 4973 sp->default_context = 0; 4974 sp->default_timetolive = 0; 4975 4976 sp->default_rcv_context = 0; 4977 sp->max_burst = net->sctp.max_burst; 4978 4979 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4980 4981 /* Initialize default setup parameters. These parameters 4982 * can be modified with the SCTP_INITMSG socket option or 4983 * overridden by the SCTP_INIT CMSG. 4984 */ 4985 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4986 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4987 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4988 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4989 4990 /* Initialize default RTO related parameters. These parameters can 4991 * be modified for with the SCTP_RTOINFO socket option. 4992 */ 4993 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4994 sp->rtoinfo.srto_max = net->sctp.rto_max; 4995 sp->rtoinfo.srto_min = net->sctp.rto_min; 4996 4997 /* Initialize default association related parameters. These parameters 4998 * can be modified with the SCTP_ASSOCINFO socket option. 4999 */ 5000 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5001 sp->assocparams.sasoc_number_peer_destinations = 0; 5002 sp->assocparams.sasoc_peer_rwnd = 0; 5003 sp->assocparams.sasoc_local_rwnd = 0; 5004 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5005 5006 /* Initialize default event subscriptions. By default, all the 5007 * options are off. 5008 */ 5009 sp->subscribe = 0; 5010 5011 /* Default Peer Address Parameters. These defaults can 5012 * be modified via SCTP_PEER_ADDR_PARAMS 5013 */ 5014 sp->hbinterval = net->sctp.hb_interval; 5015 sp->udp_port = htons(net->sctp.udp_port); 5016 sp->encap_port = htons(net->sctp.encap_port); 5017 sp->pathmaxrxt = net->sctp.max_retrans_path; 5018 sp->pf_retrans = net->sctp.pf_retrans; 5019 sp->ps_retrans = net->sctp.ps_retrans; 5020 sp->pf_expose = net->sctp.pf_expose; 5021 sp->pathmtu = 0; /* allow default discovery */ 5022 sp->sackdelay = net->sctp.sack_timeout; 5023 sp->sackfreq = 2; 5024 sp->param_flags = SPP_HB_ENABLE | 5025 SPP_PMTUD_ENABLE | 5026 SPP_SACKDELAY_ENABLE; 5027 sp->default_ss = SCTP_SS_DEFAULT; 5028 5029 /* If enabled no SCTP message fragmentation will be performed. 5030 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5031 */ 5032 sp->disable_fragments = 0; 5033 5034 /* Enable Nagle algorithm by default. */ 5035 sp->nodelay = 0; 5036 5037 sp->recvrcvinfo = 0; 5038 sp->recvnxtinfo = 0; 5039 5040 /* Enable by default. */ 5041 sp->v4mapped = 1; 5042 5043 /* Auto-close idle associations after the configured 5044 * number of seconds. A value of 0 disables this 5045 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5046 * for UDP-style sockets only. 5047 */ 5048 sp->autoclose = 0; 5049 5050 /* User specified fragmentation limit. */ 5051 sp->user_frag = 0; 5052 5053 sp->adaptation_ind = 0; 5054 5055 sp->pf = sctp_get_pf_specific(sk->sk_family); 5056 5057 /* Control variables for partial data delivery. */ 5058 atomic_set(&sp->pd_mode, 0); 5059 skb_queue_head_init(&sp->pd_lobby); 5060 sp->frag_interleave = 0; 5061 sp->probe_interval = net->sctp.probe_interval; 5062 5063 /* Create a per socket endpoint structure. Even if we 5064 * change the data structure relationships, this may still 5065 * be useful for storing pre-connect address information. 5066 */ 5067 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5068 if (!sp->ep) 5069 return -ENOMEM; 5070 5071 sp->hmac = NULL; 5072 5073 sk->sk_destruct = sctp_destruct_sock; 5074 5075 SCTP_DBG_OBJCNT_INC(sock); 5076 5077 sk_sockets_allocated_inc(sk); 5078 sock_prot_inuse_add(net, sk->sk_prot, 1); 5079 5080 return 0; 5081 } 5082 5083 /* Cleanup any SCTP per socket resources. Must be called with 5084 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5085 */ 5086 static void sctp_destroy_sock(struct sock *sk) 5087 { 5088 struct sctp_sock *sp; 5089 5090 pr_debug("%s: sk:%p\n", __func__, sk); 5091 5092 /* Release our hold on the endpoint. */ 5093 sp = sctp_sk(sk); 5094 /* This could happen during socket init, thus we bail out 5095 * early, since the rest of the below is not setup either. 5096 */ 5097 if (sp->ep == NULL) 5098 return; 5099 5100 if (sp->do_auto_asconf) { 5101 sp->do_auto_asconf = 0; 5102 list_del(&sp->auto_asconf_list); 5103 } 5104 sctp_endpoint_free(sp->ep); 5105 sk_sockets_allocated_dec(sk); 5106 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5107 } 5108 5109 /* Triggered when there are no references on the socket anymore */ 5110 static void sctp_destruct_common(struct sock *sk) 5111 { 5112 struct sctp_sock *sp = sctp_sk(sk); 5113 5114 /* Free up the HMAC transform. */ 5115 crypto_free_shash(sp->hmac); 5116 } 5117 5118 static void sctp_destruct_sock(struct sock *sk) 5119 { 5120 sctp_destruct_common(sk); 5121 inet_sock_destruct(sk); 5122 } 5123 5124 /* API 4.1.7 shutdown() - TCP Style Syntax 5125 * int shutdown(int socket, int how); 5126 * 5127 * sd - the socket descriptor of the association to be closed. 5128 * how - Specifies the type of shutdown. The values are 5129 * as follows: 5130 * SHUT_RD 5131 * Disables further receive operations. No SCTP 5132 * protocol action is taken. 5133 * SHUT_WR 5134 * Disables further send operations, and initiates 5135 * the SCTP shutdown sequence. 5136 * SHUT_RDWR 5137 * Disables further send and receive operations 5138 * and initiates the SCTP shutdown sequence. 5139 */ 5140 static void sctp_shutdown(struct sock *sk, int how) 5141 { 5142 struct net *net = sock_net(sk); 5143 struct sctp_endpoint *ep; 5144 5145 if (!sctp_style(sk, TCP)) 5146 return; 5147 5148 ep = sctp_sk(sk)->ep; 5149 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5150 struct sctp_association *asoc; 5151 5152 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5153 asoc = list_entry(ep->asocs.next, 5154 struct sctp_association, asocs); 5155 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5156 } 5157 } 5158 5159 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5160 struct sctp_info *info) 5161 { 5162 struct sctp_transport *prim; 5163 struct list_head *pos; 5164 int mask; 5165 5166 memset(info, 0, sizeof(*info)); 5167 if (!asoc) { 5168 struct sctp_sock *sp = sctp_sk(sk); 5169 5170 info->sctpi_s_autoclose = sp->autoclose; 5171 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5172 info->sctpi_s_pd_point = sp->pd_point; 5173 info->sctpi_s_nodelay = sp->nodelay; 5174 info->sctpi_s_disable_fragments = sp->disable_fragments; 5175 info->sctpi_s_v4mapped = sp->v4mapped; 5176 info->sctpi_s_frag_interleave = sp->frag_interleave; 5177 info->sctpi_s_type = sp->type; 5178 5179 return 0; 5180 } 5181 5182 info->sctpi_tag = asoc->c.my_vtag; 5183 info->sctpi_state = asoc->state; 5184 info->sctpi_rwnd = asoc->a_rwnd; 5185 info->sctpi_unackdata = asoc->unack_data; 5186 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5187 info->sctpi_instrms = asoc->stream.incnt; 5188 info->sctpi_outstrms = asoc->stream.outcnt; 5189 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5190 info->sctpi_inqueue++; 5191 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5192 info->sctpi_outqueue++; 5193 info->sctpi_overall_error = asoc->overall_error_count; 5194 info->sctpi_max_burst = asoc->max_burst; 5195 info->sctpi_maxseg = asoc->frag_point; 5196 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5197 info->sctpi_peer_tag = asoc->c.peer_vtag; 5198 5199 mask = asoc->peer.intl_capable << 1; 5200 mask = (mask | asoc->peer.ecn_capable) << 1; 5201 mask = (mask | asoc->peer.ipv4_address) << 1; 5202 mask = (mask | asoc->peer.ipv6_address) << 1; 5203 mask = (mask | asoc->peer.reconf_capable) << 1; 5204 mask = (mask | asoc->peer.asconf_capable) << 1; 5205 mask = (mask | asoc->peer.prsctp_capable) << 1; 5206 mask = (mask | asoc->peer.auth_capable); 5207 info->sctpi_peer_capable = mask; 5208 mask = asoc->peer.sack_needed << 1; 5209 mask = (mask | asoc->peer.sack_generation) << 1; 5210 mask = (mask | asoc->peer.zero_window_announced); 5211 info->sctpi_peer_sack = mask; 5212 5213 info->sctpi_isacks = asoc->stats.isacks; 5214 info->sctpi_osacks = asoc->stats.osacks; 5215 info->sctpi_opackets = asoc->stats.opackets; 5216 info->sctpi_ipackets = asoc->stats.ipackets; 5217 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5218 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5219 info->sctpi_idupchunks = asoc->stats.idupchunks; 5220 info->sctpi_gapcnt = asoc->stats.gapcnt; 5221 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5222 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5223 info->sctpi_oodchunks = asoc->stats.oodchunks; 5224 info->sctpi_iodchunks = asoc->stats.iodchunks; 5225 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5226 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5227 5228 prim = asoc->peer.primary_path; 5229 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5230 info->sctpi_p_state = prim->state; 5231 info->sctpi_p_cwnd = prim->cwnd; 5232 info->sctpi_p_srtt = prim->srtt; 5233 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5234 info->sctpi_p_hbinterval = prim->hbinterval; 5235 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5236 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5237 info->sctpi_p_ssthresh = prim->ssthresh; 5238 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5239 info->sctpi_p_flight_size = prim->flight_size; 5240 info->sctpi_p_error = prim->error_count; 5241 5242 return 0; 5243 } 5244 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5245 5246 /* use callback to avoid exporting the core structure */ 5247 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5248 { 5249 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5250 5251 rhashtable_walk_start(iter); 5252 } 5253 5254 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5255 { 5256 rhashtable_walk_stop(iter); 5257 rhashtable_walk_exit(iter); 5258 } 5259 5260 struct sctp_transport *sctp_transport_get_next(struct net *net, 5261 struct rhashtable_iter *iter) 5262 { 5263 struct sctp_transport *t; 5264 5265 t = rhashtable_walk_next(iter); 5266 for (; t; t = rhashtable_walk_next(iter)) { 5267 if (IS_ERR(t)) { 5268 if (PTR_ERR(t) == -EAGAIN) 5269 continue; 5270 break; 5271 } 5272 5273 if (!sctp_transport_hold(t)) 5274 continue; 5275 5276 if (net_eq(t->asoc->base.net, net) && 5277 t->asoc->peer.primary_path == t) 5278 break; 5279 5280 sctp_transport_put(t); 5281 } 5282 5283 return t; 5284 } 5285 5286 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5287 struct rhashtable_iter *iter, 5288 int pos) 5289 { 5290 struct sctp_transport *t; 5291 5292 if (!pos) 5293 return SEQ_START_TOKEN; 5294 5295 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5296 if (!--pos) 5297 break; 5298 sctp_transport_put(t); 5299 } 5300 5301 return t; 5302 } 5303 5304 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5305 void *p) { 5306 int err = 0; 5307 int hash = 0; 5308 struct sctp_endpoint *ep; 5309 struct sctp_hashbucket *head; 5310 5311 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5312 hash++, head++) { 5313 read_lock_bh(&head->lock); 5314 sctp_for_each_hentry(ep, &head->chain) { 5315 err = cb(ep, p); 5316 if (err) 5317 break; 5318 } 5319 read_unlock_bh(&head->lock); 5320 } 5321 5322 return err; 5323 } 5324 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5325 5326 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5327 const union sctp_addr *laddr, 5328 const union sctp_addr *paddr, void *p, int dif) 5329 { 5330 struct sctp_transport *transport; 5331 struct sctp_endpoint *ep; 5332 int err = -ENOENT; 5333 5334 rcu_read_lock(); 5335 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5336 if (!transport) { 5337 rcu_read_unlock(); 5338 return err; 5339 } 5340 ep = transport->asoc->ep; 5341 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5342 sctp_transport_put(transport); 5343 rcu_read_unlock(); 5344 return err; 5345 } 5346 rcu_read_unlock(); 5347 5348 err = cb(ep, transport, p); 5349 sctp_endpoint_put(ep); 5350 sctp_transport_put(transport); 5351 return err; 5352 } 5353 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5354 5355 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5356 struct net *net, int *pos, void *p) 5357 { 5358 struct rhashtable_iter hti; 5359 struct sctp_transport *tsp; 5360 struct sctp_endpoint *ep; 5361 int ret; 5362 5363 again: 5364 ret = 0; 5365 sctp_transport_walk_start(&hti); 5366 5367 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5368 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5369 ep = tsp->asoc->ep; 5370 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5371 ret = cb(ep, tsp, p); 5372 if (ret) 5373 break; 5374 sctp_endpoint_put(ep); 5375 } 5376 (*pos)++; 5377 sctp_transport_put(tsp); 5378 } 5379 sctp_transport_walk_stop(&hti); 5380 5381 if (ret) { 5382 if (cb_done && !cb_done(ep, tsp, p)) { 5383 (*pos)++; 5384 sctp_endpoint_put(ep); 5385 sctp_transport_put(tsp); 5386 goto again; 5387 } 5388 sctp_endpoint_put(ep); 5389 sctp_transport_put(tsp); 5390 } 5391 5392 return ret; 5393 } 5394 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5395 5396 /* 7.2.1 Association Status (SCTP_STATUS) 5397 5398 * Applications can retrieve current status information about an 5399 * association, including association state, peer receiver window size, 5400 * number of unacked data chunks, and number of data chunks pending 5401 * receipt. This information is read-only. 5402 */ 5403 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5404 char __user *optval, 5405 int __user *optlen) 5406 { 5407 struct sctp_status status; 5408 struct sctp_association *asoc = NULL; 5409 struct sctp_transport *transport; 5410 sctp_assoc_t associd; 5411 int retval = 0; 5412 5413 if (len < sizeof(status)) { 5414 retval = -EINVAL; 5415 goto out; 5416 } 5417 5418 len = sizeof(status); 5419 if (copy_from_user(&status, optval, len)) { 5420 retval = -EFAULT; 5421 goto out; 5422 } 5423 5424 associd = status.sstat_assoc_id; 5425 asoc = sctp_id2assoc(sk, associd); 5426 if (!asoc) { 5427 retval = -EINVAL; 5428 goto out; 5429 } 5430 5431 transport = asoc->peer.primary_path; 5432 5433 status.sstat_assoc_id = sctp_assoc2id(asoc); 5434 status.sstat_state = sctp_assoc_to_state(asoc); 5435 status.sstat_rwnd = asoc->peer.rwnd; 5436 status.sstat_unackdata = asoc->unack_data; 5437 5438 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5439 status.sstat_instrms = asoc->stream.incnt; 5440 status.sstat_outstrms = asoc->stream.outcnt; 5441 status.sstat_fragmentation_point = asoc->frag_point; 5442 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5443 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5444 transport->af_specific->sockaddr_len); 5445 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5446 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5447 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5448 status.sstat_primary.spinfo_state = transport->state; 5449 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5450 status.sstat_primary.spinfo_srtt = transport->srtt; 5451 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5452 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5453 5454 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5455 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5456 5457 if (put_user(len, optlen)) { 5458 retval = -EFAULT; 5459 goto out; 5460 } 5461 5462 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5463 __func__, len, status.sstat_state, status.sstat_rwnd, 5464 status.sstat_assoc_id); 5465 5466 if (copy_to_user(optval, &status, len)) { 5467 retval = -EFAULT; 5468 goto out; 5469 } 5470 5471 out: 5472 return retval; 5473 } 5474 5475 5476 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5477 * 5478 * Applications can retrieve information about a specific peer address 5479 * of an association, including its reachability state, congestion 5480 * window, and retransmission timer values. This information is 5481 * read-only. 5482 */ 5483 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5484 char __user *optval, 5485 int __user *optlen) 5486 { 5487 struct sctp_paddrinfo pinfo; 5488 struct sctp_transport *transport; 5489 int retval = 0; 5490 5491 if (len < sizeof(pinfo)) { 5492 retval = -EINVAL; 5493 goto out; 5494 } 5495 5496 len = sizeof(pinfo); 5497 if (copy_from_user(&pinfo, optval, len)) { 5498 retval = -EFAULT; 5499 goto out; 5500 } 5501 5502 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5503 pinfo.spinfo_assoc_id); 5504 if (!transport) { 5505 retval = -EINVAL; 5506 goto out; 5507 } 5508 5509 if (transport->state == SCTP_PF && 5510 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5511 retval = -EACCES; 5512 goto out; 5513 } 5514 5515 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5516 pinfo.spinfo_state = transport->state; 5517 pinfo.spinfo_cwnd = transport->cwnd; 5518 pinfo.spinfo_srtt = transport->srtt; 5519 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5520 pinfo.spinfo_mtu = transport->pathmtu; 5521 5522 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5523 pinfo.spinfo_state = SCTP_ACTIVE; 5524 5525 if (put_user(len, optlen)) { 5526 retval = -EFAULT; 5527 goto out; 5528 } 5529 5530 if (copy_to_user(optval, &pinfo, len)) { 5531 retval = -EFAULT; 5532 goto out; 5533 } 5534 5535 out: 5536 return retval; 5537 } 5538 5539 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5540 * 5541 * This option is a on/off flag. If enabled no SCTP message 5542 * fragmentation will be performed. Instead if a message being sent 5543 * exceeds the current PMTU size, the message will NOT be sent and 5544 * instead a error will be indicated to the user. 5545 */ 5546 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5547 char __user *optval, int __user *optlen) 5548 { 5549 int val; 5550 5551 if (len < sizeof(int)) 5552 return -EINVAL; 5553 5554 len = sizeof(int); 5555 val = (sctp_sk(sk)->disable_fragments == 1); 5556 if (put_user(len, optlen)) 5557 return -EFAULT; 5558 if (copy_to_user(optval, &val, len)) 5559 return -EFAULT; 5560 return 0; 5561 } 5562 5563 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5564 * 5565 * This socket option is used to specify various notifications and 5566 * ancillary data the user wishes to receive. 5567 */ 5568 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5569 int __user *optlen) 5570 { 5571 struct sctp_event_subscribe subscribe; 5572 __u8 *sn_type = (__u8 *)&subscribe; 5573 int i; 5574 5575 if (len == 0) 5576 return -EINVAL; 5577 if (len > sizeof(struct sctp_event_subscribe)) 5578 len = sizeof(struct sctp_event_subscribe); 5579 if (put_user(len, optlen)) 5580 return -EFAULT; 5581 5582 for (i = 0; i < len; i++) 5583 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5584 SCTP_SN_TYPE_BASE + i); 5585 5586 if (copy_to_user(optval, &subscribe, len)) 5587 return -EFAULT; 5588 5589 return 0; 5590 } 5591 5592 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5593 * 5594 * This socket option is applicable to the UDP-style socket only. When 5595 * set it will cause associations that are idle for more than the 5596 * specified number of seconds to automatically close. An association 5597 * being idle is defined an association that has NOT sent or received 5598 * user data. The special value of '0' indicates that no automatic 5599 * close of any associations should be performed. The option expects an 5600 * integer defining the number of seconds of idle time before an 5601 * association is closed. 5602 */ 5603 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5604 { 5605 /* Applicable to UDP-style socket only */ 5606 if (sctp_style(sk, TCP)) 5607 return -EOPNOTSUPP; 5608 if (len < sizeof(int)) 5609 return -EINVAL; 5610 len = sizeof(int); 5611 if (put_user(len, optlen)) 5612 return -EFAULT; 5613 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5614 return -EFAULT; 5615 return 0; 5616 } 5617 5618 /* Helper routine to branch off an association to a new socket. */ 5619 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5620 { 5621 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5622 struct sctp_sock *sp = sctp_sk(sk); 5623 struct socket *sock; 5624 int err = 0; 5625 5626 /* Do not peel off from one netns to another one. */ 5627 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5628 return -EINVAL; 5629 5630 if (!asoc) 5631 return -EINVAL; 5632 5633 /* An association cannot be branched off from an already peeled-off 5634 * socket, nor is this supported for tcp style sockets. 5635 */ 5636 if (!sctp_style(sk, UDP)) 5637 return -EINVAL; 5638 5639 /* Create a new socket. */ 5640 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5641 if (err < 0) 5642 return err; 5643 5644 sctp_copy_sock(sock->sk, sk, asoc); 5645 5646 /* Make peeled-off sockets more like 1-1 accepted sockets. 5647 * Set the daddr and initialize id to something more random and also 5648 * copy over any ip options. 5649 */ 5650 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5651 sp->pf->copy_ip_options(sk, sock->sk); 5652 5653 /* Populate the fields of the newsk from the oldsk and migrate the 5654 * asoc to the newsk. 5655 */ 5656 err = sctp_sock_migrate(sk, sock->sk, asoc, 5657 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5658 if (err) { 5659 sock_release(sock); 5660 sock = NULL; 5661 } 5662 5663 *sockp = sock; 5664 5665 return err; 5666 } 5667 EXPORT_SYMBOL(sctp_do_peeloff); 5668 5669 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5670 struct file **newfile, unsigned flags) 5671 { 5672 struct socket *newsock; 5673 int retval; 5674 5675 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5676 if (retval < 0) 5677 goto out; 5678 5679 /* Map the socket to an unused fd that can be returned to the user. */ 5680 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5681 if (retval < 0) { 5682 sock_release(newsock); 5683 goto out; 5684 } 5685 5686 *newfile = sock_alloc_file(newsock, 0, NULL); 5687 if (IS_ERR(*newfile)) { 5688 put_unused_fd(retval); 5689 retval = PTR_ERR(*newfile); 5690 *newfile = NULL; 5691 return retval; 5692 } 5693 5694 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5695 retval); 5696 5697 peeloff->sd = retval; 5698 5699 if (flags & SOCK_NONBLOCK) 5700 (*newfile)->f_flags |= O_NONBLOCK; 5701 out: 5702 return retval; 5703 } 5704 5705 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5706 { 5707 sctp_peeloff_arg_t peeloff; 5708 struct file *newfile = NULL; 5709 int retval = 0; 5710 5711 if (len < sizeof(sctp_peeloff_arg_t)) 5712 return -EINVAL; 5713 len = sizeof(sctp_peeloff_arg_t); 5714 if (copy_from_user(&peeloff, optval, len)) 5715 return -EFAULT; 5716 5717 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5718 if (retval < 0) 5719 goto out; 5720 5721 /* Return the fd mapped to the new socket. */ 5722 if (put_user(len, optlen)) { 5723 fput(newfile); 5724 put_unused_fd(retval); 5725 return -EFAULT; 5726 } 5727 5728 if (copy_to_user(optval, &peeloff, len)) { 5729 fput(newfile); 5730 put_unused_fd(retval); 5731 return -EFAULT; 5732 } 5733 fd_install(retval, newfile); 5734 out: 5735 return retval; 5736 } 5737 5738 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5739 char __user *optval, int __user *optlen) 5740 { 5741 sctp_peeloff_flags_arg_t peeloff; 5742 struct file *newfile = NULL; 5743 int retval = 0; 5744 5745 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5746 return -EINVAL; 5747 len = sizeof(sctp_peeloff_flags_arg_t); 5748 if (copy_from_user(&peeloff, optval, len)) 5749 return -EFAULT; 5750 5751 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5752 &newfile, peeloff.flags); 5753 if (retval < 0) 5754 goto out; 5755 5756 /* Return the fd mapped to the new socket. */ 5757 if (put_user(len, optlen)) { 5758 fput(newfile); 5759 put_unused_fd(retval); 5760 return -EFAULT; 5761 } 5762 5763 if (copy_to_user(optval, &peeloff, len)) { 5764 fput(newfile); 5765 put_unused_fd(retval); 5766 return -EFAULT; 5767 } 5768 fd_install(retval, newfile); 5769 out: 5770 return retval; 5771 } 5772 5773 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5774 * 5775 * Applications can enable or disable heartbeats for any peer address of 5776 * an association, modify an address's heartbeat interval, force a 5777 * heartbeat to be sent immediately, and adjust the address's maximum 5778 * number of retransmissions sent before an address is considered 5779 * unreachable. The following structure is used to access and modify an 5780 * address's parameters: 5781 * 5782 * struct sctp_paddrparams { 5783 * sctp_assoc_t spp_assoc_id; 5784 * struct sockaddr_storage spp_address; 5785 * uint32_t spp_hbinterval; 5786 * uint16_t spp_pathmaxrxt; 5787 * uint32_t spp_pathmtu; 5788 * uint32_t spp_sackdelay; 5789 * uint32_t spp_flags; 5790 * }; 5791 * 5792 * spp_assoc_id - (one-to-many style socket) This is filled in the 5793 * application, and identifies the association for 5794 * this query. 5795 * spp_address - This specifies which address is of interest. 5796 * spp_hbinterval - This contains the value of the heartbeat interval, 5797 * in milliseconds. If a value of zero 5798 * is present in this field then no changes are to 5799 * be made to this parameter. 5800 * spp_pathmaxrxt - This contains the maximum number of 5801 * retransmissions before this address shall be 5802 * considered unreachable. If a value of zero 5803 * is present in this field then no changes are to 5804 * be made to this parameter. 5805 * spp_pathmtu - When Path MTU discovery is disabled the value 5806 * specified here will be the "fixed" path mtu. 5807 * Note that if the spp_address field is empty 5808 * then all associations on this address will 5809 * have this fixed path mtu set upon them. 5810 * 5811 * spp_sackdelay - When delayed sack is enabled, this value specifies 5812 * the number of milliseconds that sacks will be delayed 5813 * for. This value will apply to all addresses of an 5814 * association if the spp_address field is empty. Note 5815 * also, that if delayed sack is enabled and this 5816 * value is set to 0, no change is made to the last 5817 * recorded delayed sack timer value. 5818 * 5819 * spp_flags - These flags are used to control various features 5820 * on an association. The flag field may contain 5821 * zero or more of the following options. 5822 * 5823 * SPP_HB_ENABLE - Enable heartbeats on the 5824 * specified address. Note that if the address 5825 * field is empty all addresses for the association 5826 * have heartbeats enabled upon them. 5827 * 5828 * SPP_HB_DISABLE - Disable heartbeats on the 5829 * speicifed address. Note that if the address 5830 * field is empty all addresses for the association 5831 * will have their heartbeats disabled. Note also 5832 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5833 * mutually exclusive, only one of these two should 5834 * be specified. Enabling both fields will have 5835 * undetermined results. 5836 * 5837 * SPP_HB_DEMAND - Request a user initiated heartbeat 5838 * to be made immediately. 5839 * 5840 * SPP_PMTUD_ENABLE - This field will enable PMTU 5841 * discovery upon the specified address. Note that 5842 * if the address feild is empty then all addresses 5843 * on the association are effected. 5844 * 5845 * SPP_PMTUD_DISABLE - This field will disable PMTU 5846 * discovery upon the specified address. Note that 5847 * if the address feild is empty then all addresses 5848 * on the association are effected. Not also that 5849 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5850 * exclusive. Enabling both will have undetermined 5851 * results. 5852 * 5853 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5854 * on delayed sack. The time specified in spp_sackdelay 5855 * is used to specify the sack delay for this address. Note 5856 * that if spp_address is empty then all addresses will 5857 * enable delayed sack and take on the sack delay 5858 * value specified in spp_sackdelay. 5859 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5860 * off delayed sack. If the spp_address field is blank then 5861 * delayed sack is disabled for the entire association. Note 5862 * also that this field is mutually exclusive to 5863 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5864 * results. 5865 * 5866 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5867 * setting of the IPV6 flow label value. The value is 5868 * contained in the spp_ipv6_flowlabel field. 5869 * Upon retrieval, this flag will be set to indicate that 5870 * the spp_ipv6_flowlabel field has a valid value returned. 5871 * If a specific destination address is set (in the 5872 * spp_address field), then the value returned is that of 5873 * the address. If just an association is specified (and 5874 * no address), then the association's default flow label 5875 * is returned. If neither an association nor a destination 5876 * is specified, then the socket's default flow label is 5877 * returned. For non-IPv6 sockets, this flag will be left 5878 * cleared. 5879 * 5880 * SPP_DSCP: Setting this flag enables the setting of the 5881 * Differentiated Services Code Point (DSCP) value 5882 * associated with either the association or a specific 5883 * address. The value is obtained in the spp_dscp field. 5884 * Upon retrieval, this flag will be set to indicate that 5885 * the spp_dscp field has a valid value returned. If a 5886 * specific destination address is set when called (in the 5887 * spp_address field), then that specific destination 5888 * address's DSCP value is returned. If just an association 5889 * is specified, then the association's default DSCP is 5890 * returned. If neither an association nor a destination is 5891 * specified, then the socket's default DSCP is returned. 5892 * 5893 * spp_ipv6_flowlabel 5894 * - This field is used in conjunction with the 5895 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5896 * The 20 least significant bits are used for the flow 5897 * label. This setting has precedence over any IPv6-layer 5898 * setting. 5899 * 5900 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5901 * and contains the DSCP. The 6 most significant bits are 5902 * used for the DSCP. This setting has precedence over any 5903 * IPv4- or IPv6- layer setting. 5904 */ 5905 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5906 char __user *optval, int __user *optlen) 5907 { 5908 struct sctp_paddrparams params; 5909 struct sctp_transport *trans = NULL; 5910 struct sctp_association *asoc = NULL; 5911 struct sctp_sock *sp = sctp_sk(sk); 5912 5913 if (len >= sizeof(params)) 5914 len = sizeof(params); 5915 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5916 spp_ipv6_flowlabel), 4)) 5917 len = ALIGN(offsetof(struct sctp_paddrparams, 5918 spp_ipv6_flowlabel), 4); 5919 else 5920 return -EINVAL; 5921 5922 if (copy_from_user(¶ms, optval, len)) 5923 return -EFAULT; 5924 5925 /* If an address other than INADDR_ANY is specified, and 5926 * no transport is found, then the request is invalid. 5927 */ 5928 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5929 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5930 params.spp_assoc_id); 5931 if (!trans) { 5932 pr_debug("%s: failed no transport\n", __func__); 5933 return -EINVAL; 5934 } 5935 } 5936 5937 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5938 * socket is a one to many style socket, and an association 5939 * was not found, then the id was invalid. 5940 */ 5941 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5942 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5943 sctp_style(sk, UDP)) { 5944 pr_debug("%s: failed no association\n", __func__); 5945 return -EINVAL; 5946 } 5947 5948 if (trans) { 5949 /* Fetch transport values. */ 5950 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5951 params.spp_pathmtu = trans->pathmtu; 5952 params.spp_pathmaxrxt = trans->pathmaxrxt; 5953 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5954 5955 /*draft-11 doesn't say what to return in spp_flags*/ 5956 params.spp_flags = trans->param_flags; 5957 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5958 params.spp_ipv6_flowlabel = trans->flowlabel & 5959 SCTP_FLOWLABEL_VAL_MASK; 5960 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5961 } 5962 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5963 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5964 params.spp_flags |= SPP_DSCP; 5965 } 5966 } else if (asoc) { 5967 /* Fetch association values. */ 5968 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5969 params.spp_pathmtu = asoc->pathmtu; 5970 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5971 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5972 5973 /*draft-11 doesn't say what to return in spp_flags*/ 5974 params.spp_flags = asoc->param_flags; 5975 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5976 params.spp_ipv6_flowlabel = asoc->flowlabel & 5977 SCTP_FLOWLABEL_VAL_MASK; 5978 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5979 } 5980 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5981 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5982 params.spp_flags |= SPP_DSCP; 5983 } 5984 } else { 5985 /* Fetch socket values. */ 5986 params.spp_hbinterval = sp->hbinterval; 5987 params.spp_pathmtu = sp->pathmtu; 5988 params.spp_sackdelay = sp->sackdelay; 5989 params.spp_pathmaxrxt = sp->pathmaxrxt; 5990 5991 /*draft-11 doesn't say what to return in spp_flags*/ 5992 params.spp_flags = sp->param_flags; 5993 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5994 params.spp_ipv6_flowlabel = sp->flowlabel & 5995 SCTP_FLOWLABEL_VAL_MASK; 5996 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5997 } 5998 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5999 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6000 params.spp_flags |= SPP_DSCP; 6001 } 6002 } 6003 6004 if (copy_to_user(optval, ¶ms, len)) 6005 return -EFAULT; 6006 6007 if (put_user(len, optlen)) 6008 return -EFAULT; 6009 6010 return 0; 6011 } 6012 6013 /* 6014 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6015 * 6016 * This option will effect the way delayed acks are performed. This 6017 * option allows you to get or set the delayed ack time, in 6018 * milliseconds. It also allows changing the delayed ack frequency. 6019 * Changing the frequency to 1 disables the delayed sack algorithm. If 6020 * the assoc_id is 0, then this sets or gets the endpoints default 6021 * values. If the assoc_id field is non-zero, then the set or get 6022 * effects the specified association for the one to many model (the 6023 * assoc_id field is ignored by the one to one model). Note that if 6024 * sack_delay or sack_freq are 0 when setting this option, then the 6025 * current values will remain unchanged. 6026 * 6027 * struct sctp_sack_info { 6028 * sctp_assoc_t sack_assoc_id; 6029 * uint32_t sack_delay; 6030 * uint32_t sack_freq; 6031 * }; 6032 * 6033 * sack_assoc_id - This parameter, indicates which association the user 6034 * is performing an action upon. Note that if this field's value is 6035 * zero then the endpoints default value is changed (effecting future 6036 * associations only). 6037 * 6038 * sack_delay - This parameter contains the number of milliseconds that 6039 * the user is requesting the delayed ACK timer be set to. Note that 6040 * this value is defined in the standard to be between 200 and 500 6041 * milliseconds. 6042 * 6043 * sack_freq - This parameter contains the number of packets that must 6044 * be received before a sack is sent without waiting for the delay 6045 * timer to expire. The default value for this is 2, setting this 6046 * value to 1 will disable the delayed sack algorithm. 6047 */ 6048 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6049 char __user *optval, 6050 int __user *optlen) 6051 { 6052 struct sctp_sack_info params; 6053 struct sctp_association *asoc = NULL; 6054 struct sctp_sock *sp = sctp_sk(sk); 6055 6056 if (len >= sizeof(struct sctp_sack_info)) { 6057 len = sizeof(struct sctp_sack_info); 6058 6059 if (copy_from_user(¶ms, optval, len)) 6060 return -EFAULT; 6061 } else if (len == sizeof(struct sctp_assoc_value)) { 6062 pr_warn_ratelimited(DEPRECATED 6063 "%s (pid %d) " 6064 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6065 "Use struct sctp_sack_info instead\n", 6066 current->comm, task_pid_nr(current)); 6067 if (copy_from_user(¶ms, optval, len)) 6068 return -EFAULT; 6069 } else 6070 return -EINVAL; 6071 6072 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6073 * socket is a one to many style socket, and an association 6074 * was not found, then the id was invalid. 6075 */ 6076 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6077 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6078 sctp_style(sk, UDP)) 6079 return -EINVAL; 6080 6081 if (asoc) { 6082 /* Fetch association values. */ 6083 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6084 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6085 params.sack_freq = asoc->sackfreq; 6086 6087 } else { 6088 params.sack_delay = 0; 6089 params.sack_freq = 1; 6090 } 6091 } else { 6092 /* Fetch socket values. */ 6093 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6094 params.sack_delay = sp->sackdelay; 6095 params.sack_freq = sp->sackfreq; 6096 } else { 6097 params.sack_delay = 0; 6098 params.sack_freq = 1; 6099 } 6100 } 6101 6102 if (copy_to_user(optval, ¶ms, len)) 6103 return -EFAULT; 6104 6105 if (put_user(len, optlen)) 6106 return -EFAULT; 6107 6108 return 0; 6109 } 6110 6111 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6112 * 6113 * Applications can specify protocol parameters for the default association 6114 * initialization. The option name argument to setsockopt() and getsockopt() 6115 * is SCTP_INITMSG. 6116 * 6117 * Setting initialization parameters is effective only on an unconnected 6118 * socket (for UDP-style sockets only future associations are effected 6119 * by the change). With TCP-style sockets, this option is inherited by 6120 * sockets derived from a listener socket. 6121 */ 6122 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6123 { 6124 if (len < sizeof(struct sctp_initmsg)) 6125 return -EINVAL; 6126 len = sizeof(struct sctp_initmsg); 6127 if (put_user(len, optlen)) 6128 return -EFAULT; 6129 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6130 return -EFAULT; 6131 return 0; 6132 } 6133 6134 6135 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6136 char __user *optval, int __user *optlen) 6137 { 6138 struct sctp_association *asoc; 6139 int cnt = 0; 6140 struct sctp_getaddrs getaddrs; 6141 struct sctp_transport *from; 6142 void __user *to; 6143 union sctp_addr temp; 6144 struct sctp_sock *sp = sctp_sk(sk); 6145 int addrlen; 6146 size_t space_left; 6147 int bytes_copied; 6148 6149 if (len < sizeof(struct sctp_getaddrs)) 6150 return -EINVAL; 6151 6152 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6153 return -EFAULT; 6154 6155 /* For UDP-style sockets, id specifies the association to query. */ 6156 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6157 if (!asoc) 6158 return -EINVAL; 6159 6160 to = optval + offsetof(struct sctp_getaddrs, addrs); 6161 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6162 6163 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6164 transports) { 6165 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6166 addrlen = sctp_get_pf_specific(sk->sk_family) 6167 ->addr_to_user(sp, &temp); 6168 if (space_left < addrlen) 6169 return -ENOMEM; 6170 if (copy_to_user(to, &temp, addrlen)) 6171 return -EFAULT; 6172 to += addrlen; 6173 cnt++; 6174 space_left -= addrlen; 6175 } 6176 6177 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6178 return -EFAULT; 6179 bytes_copied = ((char __user *)to) - optval; 6180 if (put_user(bytes_copied, optlen)) 6181 return -EFAULT; 6182 6183 return 0; 6184 } 6185 6186 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6187 size_t space_left, int *bytes_copied) 6188 { 6189 struct sctp_sockaddr_entry *addr; 6190 union sctp_addr temp; 6191 int cnt = 0; 6192 int addrlen; 6193 struct net *net = sock_net(sk); 6194 6195 rcu_read_lock(); 6196 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6197 if (!addr->valid) 6198 continue; 6199 6200 if ((PF_INET == sk->sk_family) && 6201 (AF_INET6 == addr->a.sa.sa_family)) 6202 continue; 6203 if ((PF_INET6 == sk->sk_family) && 6204 inet_v6_ipv6only(sk) && 6205 (AF_INET == addr->a.sa.sa_family)) 6206 continue; 6207 memcpy(&temp, &addr->a, sizeof(temp)); 6208 if (!temp.v4.sin_port) 6209 temp.v4.sin_port = htons(port); 6210 6211 addrlen = sctp_get_pf_specific(sk->sk_family) 6212 ->addr_to_user(sctp_sk(sk), &temp); 6213 6214 if (space_left < addrlen) { 6215 cnt = -ENOMEM; 6216 break; 6217 } 6218 memcpy(to, &temp, addrlen); 6219 6220 to += addrlen; 6221 cnt++; 6222 space_left -= addrlen; 6223 *bytes_copied += addrlen; 6224 } 6225 rcu_read_unlock(); 6226 6227 return cnt; 6228 } 6229 6230 6231 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6232 char __user *optval, int __user *optlen) 6233 { 6234 struct sctp_bind_addr *bp; 6235 struct sctp_association *asoc; 6236 int cnt = 0; 6237 struct sctp_getaddrs getaddrs; 6238 struct sctp_sockaddr_entry *addr; 6239 void __user *to; 6240 union sctp_addr temp; 6241 struct sctp_sock *sp = sctp_sk(sk); 6242 int addrlen; 6243 int err = 0; 6244 size_t space_left; 6245 int bytes_copied = 0; 6246 void *addrs; 6247 void *buf; 6248 6249 if (len < sizeof(struct sctp_getaddrs)) 6250 return -EINVAL; 6251 6252 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6253 return -EFAULT; 6254 6255 /* 6256 * For UDP-style sockets, id specifies the association to query. 6257 * If the id field is set to the value '0' then the locally bound 6258 * addresses are returned without regard to any particular 6259 * association. 6260 */ 6261 if (0 == getaddrs.assoc_id) { 6262 bp = &sctp_sk(sk)->ep->base.bind_addr; 6263 } else { 6264 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6265 if (!asoc) 6266 return -EINVAL; 6267 bp = &asoc->base.bind_addr; 6268 } 6269 6270 to = optval + offsetof(struct sctp_getaddrs, addrs); 6271 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6272 6273 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6274 if (!addrs) 6275 return -ENOMEM; 6276 6277 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6278 * addresses from the global local address list. 6279 */ 6280 if (sctp_list_single_entry(&bp->address_list)) { 6281 addr = list_entry(bp->address_list.next, 6282 struct sctp_sockaddr_entry, list); 6283 if (sctp_is_any(sk, &addr->a)) { 6284 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6285 space_left, &bytes_copied); 6286 if (cnt < 0) { 6287 err = cnt; 6288 goto out; 6289 } 6290 goto copy_getaddrs; 6291 } 6292 } 6293 6294 buf = addrs; 6295 /* Protection on the bound address list is not needed since 6296 * in the socket option context we hold a socket lock and 6297 * thus the bound address list can't change. 6298 */ 6299 list_for_each_entry(addr, &bp->address_list, list) { 6300 memcpy(&temp, &addr->a, sizeof(temp)); 6301 addrlen = sctp_get_pf_specific(sk->sk_family) 6302 ->addr_to_user(sp, &temp); 6303 if (space_left < addrlen) { 6304 err = -ENOMEM; /*fixme: right error?*/ 6305 goto out; 6306 } 6307 memcpy(buf, &temp, addrlen); 6308 buf += addrlen; 6309 bytes_copied += addrlen; 6310 cnt++; 6311 space_left -= addrlen; 6312 } 6313 6314 copy_getaddrs: 6315 if (copy_to_user(to, addrs, bytes_copied)) { 6316 err = -EFAULT; 6317 goto out; 6318 } 6319 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6320 err = -EFAULT; 6321 goto out; 6322 } 6323 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6324 * but we can't change it anymore. 6325 */ 6326 if (put_user(bytes_copied, optlen)) 6327 err = -EFAULT; 6328 out: 6329 kfree(addrs); 6330 return err; 6331 } 6332 6333 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6334 * 6335 * Requests that the local SCTP stack use the enclosed peer address as 6336 * the association primary. The enclosed address must be one of the 6337 * association peer's addresses. 6338 */ 6339 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6340 char __user *optval, int __user *optlen) 6341 { 6342 struct sctp_prim prim; 6343 struct sctp_association *asoc; 6344 struct sctp_sock *sp = sctp_sk(sk); 6345 6346 if (len < sizeof(struct sctp_prim)) 6347 return -EINVAL; 6348 6349 len = sizeof(struct sctp_prim); 6350 6351 if (copy_from_user(&prim, optval, len)) 6352 return -EFAULT; 6353 6354 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6355 if (!asoc) 6356 return -EINVAL; 6357 6358 if (!asoc->peer.primary_path) 6359 return -ENOTCONN; 6360 6361 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6362 asoc->peer.primary_path->af_specific->sockaddr_len); 6363 6364 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6365 (union sctp_addr *)&prim.ssp_addr); 6366 6367 if (put_user(len, optlen)) 6368 return -EFAULT; 6369 if (copy_to_user(optval, &prim, len)) 6370 return -EFAULT; 6371 6372 return 0; 6373 } 6374 6375 /* 6376 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6377 * 6378 * Requests that the local endpoint set the specified Adaptation Layer 6379 * Indication parameter for all future INIT and INIT-ACK exchanges. 6380 */ 6381 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6382 char __user *optval, int __user *optlen) 6383 { 6384 struct sctp_setadaptation adaptation; 6385 6386 if (len < sizeof(struct sctp_setadaptation)) 6387 return -EINVAL; 6388 6389 len = sizeof(struct sctp_setadaptation); 6390 6391 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6392 6393 if (put_user(len, optlen)) 6394 return -EFAULT; 6395 if (copy_to_user(optval, &adaptation, len)) 6396 return -EFAULT; 6397 6398 return 0; 6399 } 6400 6401 /* 6402 * 6403 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6404 * 6405 * Applications that wish to use the sendto() system call may wish to 6406 * specify a default set of parameters that would normally be supplied 6407 * through the inclusion of ancillary data. This socket option allows 6408 * such an application to set the default sctp_sndrcvinfo structure. 6409 6410 6411 * The application that wishes to use this socket option simply passes 6412 * in to this call the sctp_sndrcvinfo structure defined in Section 6413 * 5.2.2) The input parameters accepted by this call include 6414 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6415 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6416 * to this call if the caller is using the UDP model. 6417 * 6418 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6419 */ 6420 static int sctp_getsockopt_default_send_param(struct sock *sk, 6421 int len, char __user *optval, 6422 int __user *optlen) 6423 { 6424 struct sctp_sock *sp = sctp_sk(sk); 6425 struct sctp_association *asoc; 6426 struct sctp_sndrcvinfo info; 6427 6428 if (len < sizeof(info)) 6429 return -EINVAL; 6430 6431 len = sizeof(info); 6432 6433 if (copy_from_user(&info, optval, len)) 6434 return -EFAULT; 6435 6436 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6437 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6438 sctp_style(sk, UDP)) 6439 return -EINVAL; 6440 6441 if (asoc) { 6442 info.sinfo_stream = asoc->default_stream; 6443 info.sinfo_flags = asoc->default_flags; 6444 info.sinfo_ppid = asoc->default_ppid; 6445 info.sinfo_context = asoc->default_context; 6446 info.sinfo_timetolive = asoc->default_timetolive; 6447 } else { 6448 info.sinfo_stream = sp->default_stream; 6449 info.sinfo_flags = sp->default_flags; 6450 info.sinfo_ppid = sp->default_ppid; 6451 info.sinfo_context = sp->default_context; 6452 info.sinfo_timetolive = sp->default_timetolive; 6453 } 6454 6455 if (put_user(len, optlen)) 6456 return -EFAULT; 6457 if (copy_to_user(optval, &info, len)) 6458 return -EFAULT; 6459 6460 return 0; 6461 } 6462 6463 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6464 * (SCTP_DEFAULT_SNDINFO) 6465 */ 6466 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6467 char __user *optval, 6468 int __user *optlen) 6469 { 6470 struct sctp_sock *sp = sctp_sk(sk); 6471 struct sctp_association *asoc; 6472 struct sctp_sndinfo info; 6473 6474 if (len < sizeof(info)) 6475 return -EINVAL; 6476 6477 len = sizeof(info); 6478 6479 if (copy_from_user(&info, optval, len)) 6480 return -EFAULT; 6481 6482 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6483 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6484 sctp_style(sk, UDP)) 6485 return -EINVAL; 6486 6487 if (asoc) { 6488 info.snd_sid = asoc->default_stream; 6489 info.snd_flags = asoc->default_flags; 6490 info.snd_ppid = asoc->default_ppid; 6491 info.snd_context = asoc->default_context; 6492 } else { 6493 info.snd_sid = sp->default_stream; 6494 info.snd_flags = sp->default_flags; 6495 info.snd_ppid = sp->default_ppid; 6496 info.snd_context = sp->default_context; 6497 } 6498 6499 if (put_user(len, optlen)) 6500 return -EFAULT; 6501 if (copy_to_user(optval, &info, len)) 6502 return -EFAULT; 6503 6504 return 0; 6505 } 6506 6507 /* 6508 * 6509 * 7.1.5 SCTP_NODELAY 6510 * 6511 * Turn on/off any Nagle-like algorithm. This means that packets are 6512 * generally sent as soon as possible and no unnecessary delays are 6513 * introduced, at the cost of more packets in the network. Expects an 6514 * integer boolean flag. 6515 */ 6516 6517 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6518 char __user *optval, int __user *optlen) 6519 { 6520 int val; 6521 6522 if (len < sizeof(int)) 6523 return -EINVAL; 6524 6525 len = sizeof(int); 6526 val = (sctp_sk(sk)->nodelay == 1); 6527 if (put_user(len, optlen)) 6528 return -EFAULT; 6529 if (copy_to_user(optval, &val, len)) 6530 return -EFAULT; 6531 return 0; 6532 } 6533 6534 /* 6535 * 6536 * 7.1.1 SCTP_RTOINFO 6537 * 6538 * The protocol parameters used to initialize and bound retransmission 6539 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6540 * and modify these parameters. 6541 * All parameters are time values, in milliseconds. A value of 0, when 6542 * modifying the parameters, indicates that the current value should not 6543 * be changed. 6544 * 6545 */ 6546 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6547 char __user *optval, 6548 int __user *optlen) { 6549 struct sctp_rtoinfo rtoinfo; 6550 struct sctp_association *asoc; 6551 6552 if (len < sizeof (struct sctp_rtoinfo)) 6553 return -EINVAL; 6554 6555 len = sizeof(struct sctp_rtoinfo); 6556 6557 if (copy_from_user(&rtoinfo, optval, len)) 6558 return -EFAULT; 6559 6560 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6561 6562 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6563 sctp_style(sk, UDP)) 6564 return -EINVAL; 6565 6566 /* Values corresponding to the specific association. */ 6567 if (asoc) { 6568 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6569 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6570 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6571 } else { 6572 /* Values corresponding to the endpoint. */ 6573 struct sctp_sock *sp = sctp_sk(sk); 6574 6575 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6576 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6577 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6578 } 6579 6580 if (put_user(len, optlen)) 6581 return -EFAULT; 6582 6583 if (copy_to_user(optval, &rtoinfo, len)) 6584 return -EFAULT; 6585 6586 return 0; 6587 } 6588 6589 /* 6590 * 6591 * 7.1.2 SCTP_ASSOCINFO 6592 * 6593 * This option is used to tune the maximum retransmission attempts 6594 * of the association. 6595 * Returns an error if the new association retransmission value is 6596 * greater than the sum of the retransmission value of the peer. 6597 * See [SCTP] for more information. 6598 * 6599 */ 6600 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6601 char __user *optval, 6602 int __user *optlen) 6603 { 6604 6605 struct sctp_assocparams assocparams; 6606 struct sctp_association *asoc; 6607 struct list_head *pos; 6608 int cnt = 0; 6609 6610 if (len < sizeof (struct sctp_assocparams)) 6611 return -EINVAL; 6612 6613 len = sizeof(struct sctp_assocparams); 6614 6615 if (copy_from_user(&assocparams, optval, len)) 6616 return -EFAULT; 6617 6618 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6619 6620 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6621 sctp_style(sk, UDP)) 6622 return -EINVAL; 6623 6624 /* Values correspoinding to the specific association */ 6625 if (asoc) { 6626 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6627 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6628 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6629 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6630 6631 list_for_each(pos, &asoc->peer.transport_addr_list) { 6632 cnt++; 6633 } 6634 6635 assocparams.sasoc_number_peer_destinations = cnt; 6636 } else { 6637 /* Values corresponding to the endpoint */ 6638 struct sctp_sock *sp = sctp_sk(sk); 6639 6640 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6641 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6642 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6643 assocparams.sasoc_cookie_life = 6644 sp->assocparams.sasoc_cookie_life; 6645 assocparams.sasoc_number_peer_destinations = 6646 sp->assocparams. 6647 sasoc_number_peer_destinations; 6648 } 6649 6650 if (put_user(len, optlen)) 6651 return -EFAULT; 6652 6653 if (copy_to_user(optval, &assocparams, len)) 6654 return -EFAULT; 6655 6656 return 0; 6657 } 6658 6659 /* 6660 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6661 * 6662 * This socket option is a boolean flag which turns on or off mapped V4 6663 * addresses. If this option is turned on and the socket is type 6664 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6665 * If this option is turned off, then no mapping will be done of V4 6666 * addresses and a user will receive both PF_INET6 and PF_INET type 6667 * addresses on the socket. 6668 */ 6669 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6670 char __user *optval, int __user *optlen) 6671 { 6672 int val; 6673 struct sctp_sock *sp = sctp_sk(sk); 6674 6675 if (len < sizeof(int)) 6676 return -EINVAL; 6677 6678 len = sizeof(int); 6679 val = sp->v4mapped; 6680 if (put_user(len, optlen)) 6681 return -EFAULT; 6682 if (copy_to_user(optval, &val, len)) 6683 return -EFAULT; 6684 6685 return 0; 6686 } 6687 6688 /* 6689 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6690 * (chapter and verse is quoted at sctp_setsockopt_context()) 6691 */ 6692 static int sctp_getsockopt_context(struct sock *sk, int len, 6693 char __user *optval, int __user *optlen) 6694 { 6695 struct sctp_assoc_value params; 6696 struct sctp_association *asoc; 6697 6698 if (len < sizeof(struct sctp_assoc_value)) 6699 return -EINVAL; 6700 6701 len = sizeof(struct sctp_assoc_value); 6702 6703 if (copy_from_user(¶ms, optval, len)) 6704 return -EFAULT; 6705 6706 asoc = sctp_id2assoc(sk, params.assoc_id); 6707 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6708 sctp_style(sk, UDP)) 6709 return -EINVAL; 6710 6711 params.assoc_value = asoc ? asoc->default_rcv_context 6712 : sctp_sk(sk)->default_rcv_context; 6713 6714 if (put_user(len, optlen)) 6715 return -EFAULT; 6716 if (copy_to_user(optval, ¶ms, len)) 6717 return -EFAULT; 6718 6719 return 0; 6720 } 6721 6722 /* 6723 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6724 * This option will get or set the maximum size to put in any outgoing 6725 * SCTP DATA chunk. If a message is larger than this size it will be 6726 * fragmented by SCTP into the specified size. Note that the underlying 6727 * SCTP implementation may fragment into smaller sized chunks when the 6728 * PMTU of the underlying association is smaller than the value set by 6729 * the user. The default value for this option is '0' which indicates 6730 * the user is NOT limiting fragmentation and only the PMTU will effect 6731 * SCTP's choice of DATA chunk size. Note also that values set larger 6732 * than the maximum size of an IP datagram will effectively let SCTP 6733 * control fragmentation (i.e. the same as setting this option to 0). 6734 * 6735 * The following structure is used to access and modify this parameter: 6736 * 6737 * struct sctp_assoc_value { 6738 * sctp_assoc_t assoc_id; 6739 * uint32_t assoc_value; 6740 * }; 6741 * 6742 * assoc_id: This parameter is ignored for one-to-one style sockets. 6743 * For one-to-many style sockets this parameter indicates which 6744 * association the user is performing an action upon. Note that if 6745 * this field's value is zero then the endpoints default value is 6746 * changed (effecting future associations only). 6747 * assoc_value: This parameter specifies the maximum size in bytes. 6748 */ 6749 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6750 char __user *optval, int __user *optlen) 6751 { 6752 struct sctp_assoc_value params; 6753 struct sctp_association *asoc; 6754 6755 if (len == sizeof(int)) { 6756 pr_warn_ratelimited(DEPRECATED 6757 "%s (pid %d) " 6758 "Use of int in maxseg socket option.\n" 6759 "Use struct sctp_assoc_value instead\n", 6760 current->comm, task_pid_nr(current)); 6761 params.assoc_id = SCTP_FUTURE_ASSOC; 6762 } else if (len >= sizeof(struct sctp_assoc_value)) { 6763 len = sizeof(struct sctp_assoc_value); 6764 if (copy_from_user(¶ms, optval, len)) 6765 return -EFAULT; 6766 } else 6767 return -EINVAL; 6768 6769 asoc = sctp_id2assoc(sk, params.assoc_id); 6770 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6771 sctp_style(sk, UDP)) 6772 return -EINVAL; 6773 6774 if (asoc) 6775 params.assoc_value = asoc->frag_point; 6776 else 6777 params.assoc_value = sctp_sk(sk)->user_frag; 6778 6779 if (put_user(len, optlen)) 6780 return -EFAULT; 6781 if (len == sizeof(int)) { 6782 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6783 return -EFAULT; 6784 } else { 6785 if (copy_to_user(optval, ¶ms, len)) 6786 return -EFAULT; 6787 } 6788 6789 return 0; 6790 } 6791 6792 /* 6793 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6794 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6795 */ 6796 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6797 char __user *optval, int __user *optlen) 6798 { 6799 int val; 6800 6801 if (len < sizeof(int)) 6802 return -EINVAL; 6803 6804 len = sizeof(int); 6805 6806 val = sctp_sk(sk)->frag_interleave; 6807 if (put_user(len, optlen)) 6808 return -EFAULT; 6809 if (copy_to_user(optval, &val, len)) 6810 return -EFAULT; 6811 6812 return 0; 6813 } 6814 6815 /* 6816 * 7.1.25. Set or Get the sctp partial delivery point 6817 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6818 */ 6819 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6820 char __user *optval, 6821 int __user *optlen) 6822 { 6823 u32 val; 6824 6825 if (len < sizeof(u32)) 6826 return -EINVAL; 6827 6828 len = sizeof(u32); 6829 6830 val = sctp_sk(sk)->pd_point; 6831 if (put_user(len, optlen)) 6832 return -EFAULT; 6833 if (copy_to_user(optval, &val, len)) 6834 return -EFAULT; 6835 6836 return 0; 6837 } 6838 6839 /* 6840 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6841 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6842 */ 6843 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6844 char __user *optval, 6845 int __user *optlen) 6846 { 6847 struct sctp_assoc_value params; 6848 struct sctp_association *asoc; 6849 6850 if (len == sizeof(int)) { 6851 pr_warn_ratelimited(DEPRECATED 6852 "%s (pid %d) " 6853 "Use of int in max_burst socket option.\n" 6854 "Use struct sctp_assoc_value instead\n", 6855 current->comm, task_pid_nr(current)); 6856 params.assoc_id = SCTP_FUTURE_ASSOC; 6857 } else if (len >= sizeof(struct sctp_assoc_value)) { 6858 len = sizeof(struct sctp_assoc_value); 6859 if (copy_from_user(¶ms, optval, len)) 6860 return -EFAULT; 6861 } else 6862 return -EINVAL; 6863 6864 asoc = sctp_id2assoc(sk, params.assoc_id); 6865 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6866 sctp_style(sk, UDP)) 6867 return -EINVAL; 6868 6869 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6870 6871 if (len == sizeof(int)) { 6872 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6873 return -EFAULT; 6874 } else { 6875 if (copy_to_user(optval, ¶ms, len)) 6876 return -EFAULT; 6877 } 6878 6879 return 0; 6880 6881 } 6882 6883 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6884 char __user *optval, int __user *optlen) 6885 { 6886 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6887 struct sctp_hmacalgo __user *p = (void __user *)optval; 6888 struct sctp_hmac_algo_param *hmacs; 6889 __u16 data_len = 0; 6890 u32 num_idents; 6891 int i; 6892 6893 if (!ep->auth_enable) 6894 return -EACCES; 6895 6896 hmacs = ep->auth_hmacs_list; 6897 data_len = ntohs(hmacs->param_hdr.length) - 6898 sizeof(struct sctp_paramhdr); 6899 6900 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6901 return -EINVAL; 6902 6903 len = sizeof(struct sctp_hmacalgo) + data_len; 6904 num_idents = data_len / sizeof(u16); 6905 6906 if (put_user(len, optlen)) 6907 return -EFAULT; 6908 if (put_user(num_idents, &p->shmac_num_idents)) 6909 return -EFAULT; 6910 for (i = 0; i < num_idents; i++) { 6911 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6912 6913 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6914 return -EFAULT; 6915 } 6916 return 0; 6917 } 6918 6919 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6920 char __user *optval, int __user *optlen) 6921 { 6922 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6923 struct sctp_authkeyid val; 6924 struct sctp_association *asoc; 6925 6926 if (len < sizeof(struct sctp_authkeyid)) 6927 return -EINVAL; 6928 6929 len = sizeof(struct sctp_authkeyid); 6930 if (copy_from_user(&val, optval, len)) 6931 return -EFAULT; 6932 6933 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6934 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6935 return -EINVAL; 6936 6937 if (asoc) { 6938 if (!asoc->peer.auth_capable) 6939 return -EACCES; 6940 val.scact_keynumber = asoc->active_key_id; 6941 } else { 6942 if (!ep->auth_enable) 6943 return -EACCES; 6944 val.scact_keynumber = ep->active_key_id; 6945 } 6946 6947 if (put_user(len, optlen)) 6948 return -EFAULT; 6949 if (copy_to_user(optval, &val, len)) 6950 return -EFAULT; 6951 6952 return 0; 6953 } 6954 6955 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6956 char __user *optval, int __user *optlen) 6957 { 6958 struct sctp_authchunks __user *p = (void __user *)optval; 6959 struct sctp_authchunks val; 6960 struct sctp_association *asoc; 6961 struct sctp_chunks_param *ch; 6962 u32 num_chunks = 0; 6963 char __user *to; 6964 6965 if (len < sizeof(struct sctp_authchunks)) 6966 return -EINVAL; 6967 6968 if (copy_from_user(&val, optval, sizeof(val))) 6969 return -EFAULT; 6970 6971 to = p->gauth_chunks; 6972 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6973 if (!asoc) 6974 return -EINVAL; 6975 6976 if (!asoc->peer.auth_capable) 6977 return -EACCES; 6978 6979 ch = asoc->peer.peer_chunks; 6980 if (!ch) 6981 goto num; 6982 6983 /* See if the user provided enough room for all the data */ 6984 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6985 if (len < num_chunks) 6986 return -EINVAL; 6987 6988 if (copy_to_user(to, ch->chunks, num_chunks)) 6989 return -EFAULT; 6990 num: 6991 len = sizeof(struct sctp_authchunks) + num_chunks; 6992 if (put_user(len, optlen)) 6993 return -EFAULT; 6994 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6995 return -EFAULT; 6996 return 0; 6997 } 6998 6999 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7000 char __user *optval, int __user *optlen) 7001 { 7002 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7003 struct sctp_authchunks __user *p = (void __user *)optval; 7004 struct sctp_authchunks val; 7005 struct sctp_association *asoc; 7006 struct sctp_chunks_param *ch; 7007 u32 num_chunks = 0; 7008 char __user *to; 7009 7010 if (len < sizeof(struct sctp_authchunks)) 7011 return -EINVAL; 7012 7013 if (copy_from_user(&val, optval, sizeof(val))) 7014 return -EFAULT; 7015 7016 to = p->gauth_chunks; 7017 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7018 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7019 sctp_style(sk, UDP)) 7020 return -EINVAL; 7021 7022 if (asoc) { 7023 if (!asoc->peer.auth_capable) 7024 return -EACCES; 7025 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7026 } else { 7027 if (!ep->auth_enable) 7028 return -EACCES; 7029 ch = ep->auth_chunk_list; 7030 } 7031 if (!ch) 7032 goto num; 7033 7034 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7035 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7036 return -EINVAL; 7037 7038 if (copy_to_user(to, ch->chunks, num_chunks)) 7039 return -EFAULT; 7040 num: 7041 len = sizeof(struct sctp_authchunks) + num_chunks; 7042 if (put_user(len, optlen)) 7043 return -EFAULT; 7044 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7045 return -EFAULT; 7046 7047 return 0; 7048 } 7049 7050 /* 7051 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7052 * This option gets the current number of associations that are attached 7053 * to a one-to-many style socket. The option value is an uint32_t. 7054 */ 7055 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7056 char __user *optval, int __user *optlen) 7057 { 7058 struct sctp_sock *sp = sctp_sk(sk); 7059 struct sctp_association *asoc; 7060 u32 val = 0; 7061 7062 if (sctp_style(sk, TCP)) 7063 return -EOPNOTSUPP; 7064 7065 if (len < sizeof(u32)) 7066 return -EINVAL; 7067 7068 len = sizeof(u32); 7069 7070 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7071 val++; 7072 } 7073 7074 if (put_user(len, optlen)) 7075 return -EFAULT; 7076 if (copy_to_user(optval, &val, len)) 7077 return -EFAULT; 7078 7079 return 0; 7080 } 7081 7082 /* 7083 * 8.1.23 SCTP_AUTO_ASCONF 7084 * See the corresponding setsockopt entry as description 7085 */ 7086 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7087 char __user *optval, int __user *optlen) 7088 { 7089 int val = 0; 7090 7091 if (len < sizeof(int)) 7092 return -EINVAL; 7093 7094 len = sizeof(int); 7095 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7096 val = 1; 7097 if (put_user(len, optlen)) 7098 return -EFAULT; 7099 if (copy_to_user(optval, &val, len)) 7100 return -EFAULT; 7101 return 0; 7102 } 7103 7104 /* 7105 * 8.2.6. Get the Current Identifiers of Associations 7106 * (SCTP_GET_ASSOC_ID_LIST) 7107 * 7108 * This option gets the current list of SCTP association identifiers of 7109 * the SCTP associations handled by a one-to-many style socket. 7110 */ 7111 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7112 char __user *optval, int __user *optlen) 7113 { 7114 struct sctp_sock *sp = sctp_sk(sk); 7115 struct sctp_association *asoc; 7116 struct sctp_assoc_ids *ids; 7117 u32 num = 0; 7118 7119 if (sctp_style(sk, TCP)) 7120 return -EOPNOTSUPP; 7121 7122 if (len < sizeof(struct sctp_assoc_ids)) 7123 return -EINVAL; 7124 7125 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7126 num++; 7127 } 7128 7129 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7130 return -EINVAL; 7131 7132 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7133 7134 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7135 if (unlikely(!ids)) 7136 return -ENOMEM; 7137 7138 ids->gaids_number_of_ids = num; 7139 num = 0; 7140 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7141 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7142 } 7143 7144 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7145 kfree(ids); 7146 return -EFAULT; 7147 } 7148 7149 kfree(ids); 7150 return 0; 7151 } 7152 7153 /* 7154 * SCTP_PEER_ADDR_THLDS 7155 * 7156 * This option allows us to fetch the partially failed threshold for one or all 7157 * transports in an association. See Section 6.1 of: 7158 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7159 */ 7160 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7161 char __user *optval, int len, 7162 int __user *optlen, bool v2) 7163 { 7164 struct sctp_paddrthlds_v2 val; 7165 struct sctp_transport *trans; 7166 struct sctp_association *asoc; 7167 int min; 7168 7169 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7170 if (len < min) 7171 return -EINVAL; 7172 len = min; 7173 if (copy_from_user(&val, optval, len)) 7174 return -EFAULT; 7175 7176 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7177 trans = sctp_addr_id2transport(sk, &val.spt_address, 7178 val.spt_assoc_id); 7179 if (!trans) 7180 return -ENOENT; 7181 7182 val.spt_pathmaxrxt = trans->pathmaxrxt; 7183 val.spt_pathpfthld = trans->pf_retrans; 7184 val.spt_pathcpthld = trans->ps_retrans; 7185 7186 goto out; 7187 } 7188 7189 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7190 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7191 sctp_style(sk, UDP)) 7192 return -EINVAL; 7193 7194 if (asoc) { 7195 val.spt_pathpfthld = asoc->pf_retrans; 7196 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7197 val.spt_pathcpthld = asoc->ps_retrans; 7198 } else { 7199 struct sctp_sock *sp = sctp_sk(sk); 7200 7201 val.spt_pathpfthld = sp->pf_retrans; 7202 val.spt_pathmaxrxt = sp->pathmaxrxt; 7203 val.spt_pathcpthld = sp->ps_retrans; 7204 } 7205 7206 out: 7207 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7208 return -EFAULT; 7209 7210 return 0; 7211 } 7212 7213 /* 7214 * SCTP_GET_ASSOC_STATS 7215 * 7216 * This option retrieves local per endpoint statistics. It is modeled 7217 * after OpenSolaris' implementation 7218 */ 7219 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7220 char __user *optval, 7221 int __user *optlen) 7222 { 7223 struct sctp_assoc_stats sas; 7224 struct sctp_association *asoc = NULL; 7225 7226 /* User must provide at least the assoc id */ 7227 if (len < sizeof(sctp_assoc_t)) 7228 return -EINVAL; 7229 7230 /* Allow the struct to grow and fill in as much as possible */ 7231 len = min_t(size_t, len, sizeof(sas)); 7232 7233 if (copy_from_user(&sas, optval, len)) 7234 return -EFAULT; 7235 7236 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7237 if (!asoc) 7238 return -EINVAL; 7239 7240 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7241 sas.sas_gapcnt = asoc->stats.gapcnt; 7242 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7243 sas.sas_osacks = asoc->stats.osacks; 7244 sas.sas_isacks = asoc->stats.isacks; 7245 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7246 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7247 sas.sas_oodchunks = asoc->stats.oodchunks; 7248 sas.sas_iodchunks = asoc->stats.iodchunks; 7249 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7250 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7251 sas.sas_idupchunks = asoc->stats.idupchunks; 7252 sas.sas_opackets = asoc->stats.opackets; 7253 sas.sas_ipackets = asoc->stats.ipackets; 7254 7255 /* New high max rto observed, will return 0 if not a single 7256 * RTO update took place. obs_rto_ipaddr will be bogus 7257 * in such a case 7258 */ 7259 sas.sas_maxrto = asoc->stats.max_obs_rto; 7260 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7261 sizeof(struct sockaddr_storage)); 7262 7263 /* Mark beginning of a new observation period */ 7264 asoc->stats.max_obs_rto = asoc->rto_min; 7265 7266 if (put_user(len, optlen)) 7267 return -EFAULT; 7268 7269 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7270 7271 if (copy_to_user(optval, &sas, len)) 7272 return -EFAULT; 7273 7274 return 0; 7275 } 7276 7277 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7278 char __user *optval, 7279 int __user *optlen) 7280 { 7281 int val = 0; 7282 7283 if (len < sizeof(int)) 7284 return -EINVAL; 7285 7286 len = sizeof(int); 7287 if (sctp_sk(sk)->recvrcvinfo) 7288 val = 1; 7289 if (put_user(len, optlen)) 7290 return -EFAULT; 7291 if (copy_to_user(optval, &val, len)) 7292 return -EFAULT; 7293 7294 return 0; 7295 } 7296 7297 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7298 char __user *optval, 7299 int __user *optlen) 7300 { 7301 int val = 0; 7302 7303 if (len < sizeof(int)) 7304 return -EINVAL; 7305 7306 len = sizeof(int); 7307 if (sctp_sk(sk)->recvnxtinfo) 7308 val = 1; 7309 if (put_user(len, optlen)) 7310 return -EFAULT; 7311 if (copy_to_user(optval, &val, len)) 7312 return -EFAULT; 7313 7314 return 0; 7315 } 7316 7317 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7318 char __user *optval, 7319 int __user *optlen) 7320 { 7321 struct sctp_assoc_value params; 7322 struct sctp_association *asoc; 7323 int retval = -EFAULT; 7324 7325 if (len < sizeof(params)) { 7326 retval = -EINVAL; 7327 goto out; 7328 } 7329 7330 len = sizeof(params); 7331 if (copy_from_user(¶ms, optval, len)) 7332 goto out; 7333 7334 asoc = sctp_id2assoc(sk, params.assoc_id); 7335 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7336 sctp_style(sk, UDP)) { 7337 retval = -EINVAL; 7338 goto out; 7339 } 7340 7341 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7342 : sctp_sk(sk)->ep->prsctp_enable; 7343 7344 if (put_user(len, optlen)) 7345 goto out; 7346 7347 if (copy_to_user(optval, ¶ms, len)) 7348 goto out; 7349 7350 retval = 0; 7351 7352 out: 7353 return retval; 7354 } 7355 7356 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7357 char __user *optval, 7358 int __user *optlen) 7359 { 7360 struct sctp_default_prinfo info; 7361 struct sctp_association *asoc; 7362 int retval = -EFAULT; 7363 7364 if (len < sizeof(info)) { 7365 retval = -EINVAL; 7366 goto out; 7367 } 7368 7369 len = sizeof(info); 7370 if (copy_from_user(&info, optval, len)) 7371 goto out; 7372 7373 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7374 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7375 sctp_style(sk, UDP)) { 7376 retval = -EINVAL; 7377 goto out; 7378 } 7379 7380 if (asoc) { 7381 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7382 info.pr_value = asoc->default_timetolive; 7383 } else { 7384 struct sctp_sock *sp = sctp_sk(sk); 7385 7386 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7387 info.pr_value = sp->default_timetolive; 7388 } 7389 7390 if (put_user(len, optlen)) 7391 goto out; 7392 7393 if (copy_to_user(optval, &info, len)) 7394 goto out; 7395 7396 retval = 0; 7397 7398 out: 7399 return retval; 7400 } 7401 7402 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7403 char __user *optval, 7404 int __user *optlen) 7405 { 7406 struct sctp_prstatus params; 7407 struct sctp_association *asoc; 7408 int policy; 7409 int retval = -EINVAL; 7410 7411 if (len < sizeof(params)) 7412 goto out; 7413 7414 len = sizeof(params); 7415 if (copy_from_user(¶ms, optval, len)) { 7416 retval = -EFAULT; 7417 goto out; 7418 } 7419 7420 policy = params.sprstat_policy; 7421 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7422 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7423 goto out; 7424 7425 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7426 if (!asoc) 7427 goto out; 7428 7429 if (policy == SCTP_PR_SCTP_ALL) { 7430 params.sprstat_abandoned_unsent = 0; 7431 params.sprstat_abandoned_sent = 0; 7432 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7433 params.sprstat_abandoned_unsent += 7434 asoc->abandoned_unsent[policy]; 7435 params.sprstat_abandoned_sent += 7436 asoc->abandoned_sent[policy]; 7437 } 7438 } else { 7439 params.sprstat_abandoned_unsent = 7440 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7441 params.sprstat_abandoned_sent = 7442 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7443 } 7444 7445 if (put_user(len, optlen)) { 7446 retval = -EFAULT; 7447 goto out; 7448 } 7449 7450 if (copy_to_user(optval, ¶ms, len)) { 7451 retval = -EFAULT; 7452 goto out; 7453 } 7454 7455 retval = 0; 7456 7457 out: 7458 return retval; 7459 } 7460 7461 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7462 char __user *optval, 7463 int __user *optlen) 7464 { 7465 struct sctp_stream_out_ext *streamoute; 7466 struct sctp_association *asoc; 7467 struct sctp_prstatus params; 7468 int retval = -EINVAL; 7469 int policy; 7470 7471 if (len < sizeof(params)) 7472 goto out; 7473 7474 len = sizeof(params); 7475 if (copy_from_user(¶ms, optval, len)) { 7476 retval = -EFAULT; 7477 goto out; 7478 } 7479 7480 policy = params.sprstat_policy; 7481 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7482 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7483 goto out; 7484 7485 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7486 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7487 goto out; 7488 7489 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7490 if (!streamoute) { 7491 /* Not allocated yet, means all stats are 0 */ 7492 params.sprstat_abandoned_unsent = 0; 7493 params.sprstat_abandoned_sent = 0; 7494 retval = 0; 7495 goto out; 7496 } 7497 7498 if (policy == SCTP_PR_SCTP_ALL) { 7499 params.sprstat_abandoned_unsent = 0; 7500 params.sprstat_abandoned_sent = 0; 7501 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7502 params.sprstat_abandoned_unsent += 7503 streamoute->abandoned_unsent[policy]; 7504 params.sprstat_abandoned_sent += 7505 streamoute->abandoned_sent[policy]; 7506 } 7507 } else { 7508 params.sprstat_abandoned_unsent = 7509 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7510 params.sprstat_abandoned_sent = 7511 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7512 } 7513 7514 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7515 retval = -EFAULT; 7516 goto out; 7517 } 7518 7519 retval = 0; 7520 7521 out: 7522 return retval; 7523 } 7524 7525 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7526 char __user *optval, 7527 int __user *optlen) 7528 { 7529 struct sctp_assoc_value params; 7530 struct sctp_association *asoc; 7531 int retval = -EFAULT; 7532 7533 if (len < sizeof(params)) { 7534 retval = -EINVAL; 7535 goto out; 7536 } 7537 7538 len = sizeof(params); 7539 if (copy_from_user(¶ms, optval, len)) 7540 goto out; 7541 7542 asoc = sctp_id2assoc(sk, params.assoc_id); 7543 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7544 sctp_style(sk, UDP)) { 7545 retval = -EINVAL; 7546 goto out; 7547 } 7548 7549 params.assoc_value = asoc ? asoc->peer.reconf_capable 7550 : sctp_sk(sk)->ep->reconf_enable; 7551 7552 if (put_user(len, optlen)) 7553 goto out; 7554 7555 if (copy_to_user(optval, ¶ms, len)) 7556 goto out; 7557 7558 retval = 0; 7559 7560 out: 7561 return retval; 7562 } 7563 7564 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7565 char __user *optval, 7566 int __user *optlen) 7567 { 7568 struct sctp_assoc_value params; 7569 struct sctp_association *asoc; 7570 int retval = -EFAULT; 7571 7572 if (len < sizeof(params)) { 7573 retval = -EINVAL; 7574 goto out; 7575 } 7576 7577 len = sizeof(params); 7578 if (copy_from_user(¶ms, optval, len)) 7579 goto out; 7580 7581 asoc = sctp_id2assoc(sk, params.assoc_id); 7582 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7583 sctp_style(sk, UDP)) { 7584 retval = -EINVAL; 7585 goto out; 7586 } 7587 7588 params.assoc_value = asoc ? asoc->strreset_enable 7589 : sctp_sk(sk)->ep->strreset_enable; 7590 7591 if (put_user(len, optlen)) 7592 goto out; 7593 7594 if (copy_to_user(optval, ¶ms, len)) 7595 goto out; 7596 7597 retval = 0; 7598 7599 out: 7600 return retval; 7601 } 7602 7603 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7604 char __user *optval, 7605 int __user *optlen) 7606 { 7607 struct sctp_assoc_value params; 7608 struct sctp_association *asoc; 7609 int retval = -EFAULT; 7610 7611 if (len < sizeof(params)) { 7612 retval = -EINVAL; 7613 goto out; 7614 } 7615 7616 len = sizeof(params); 7617 if (copy_from_user(¶ms, optval, len)) 7618 goto out; 7619 7620 asoc = sctp_id2assoc(sk, params.assoc_id); 7621 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7622 sctp_style(sk, UDP)) { 7623 retval = -EINVAL; 7624 goto out; 7625 } 7626 7627 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7628 : sctp_sk(sk)->default_ss; 7629 7630 if (put_user(len, optlen)) 7631 goto out; 7632 7633 if (copy_to_user(optval, ¶ms, len)) 7634 goto out; 7635 7636 retval = 0; 7637 7638 out: 7639 return retval; 7640 } 7641 7642 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7643 char __user *optval, 7644 int __user *optlen) 7645 { 7646 struct sctp_stream_value params; 7647 struct sctp_association *asoc; 7648 int retval = -EFAULT; 7649 7650 if (len < sizeof(params)) { 7651 retval = -EINVAL; 7652 goto out; 7653 } 7654 7655 len = sizeof(params); 7656 if (copy_from_user(¶ms, optval, len)) 7657 goto out; 7658 7659 asoc = sctp_id2assoc(sk, params.assoc_id); 7660 if (!asoc) { 7661 retval = -EINVAL; 7662 goto out; 7663 } 7664 7665 retval = sctp_sched_get_value(asoc, params.stream_id, 7666 ¶ms.stream_value); 7667 if (retval) 7668 goto out; 7669 7670 if (put_user(len, optlen)) { 7671 retval = -EFAULT; 7672 goto out; 7673 } 7674 7675 if (copy_to_user(optval, ¶ms, len)) { 7676 retval = -EFAULT; 7677 goto out; 7678 } 7679 7680 out: 7681 return retval; 7682 } 7683 7684 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7685 char __user *optval, 7686 int __user *optlen) 7687 { 7688 struct sctp_assoc_value params; 7689 struct sctp_association *asoc; 7690 int retval = -EFAULT; 7691 7692 if (len < sizeof(params)) { 7693 retval = -EINVAL; 7694 goto out; 7695 } 7696 7697 len = sizeof(params); 7698 if (copy_from_user(¶ms, optval, len)) 7699 goto out; 7700 7701 asoc = sctp_id2assoc(sk, params.assoc_id); 7702 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7703 sctp_style(sk, UDP)) { 7704 retval = -EINVAL; 7705 goto out; 7706 } 7707 7708 params.assoc_value = asoc ? asoc->peer.intl_capable 7709 : sctp_sk(sk)->ep->intl_enable; 7710 7711 if (put_user(len, optlen)) 7712 goto out; 7713 7714 if (copy_to_user(optval, ¶ms, len)) 7715 goto out; 7716 7717 retval = 0; 7718 7719 out: 7720 return retval; 7721 } 7722 7723 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7724 char __user *optval, 7725 int __user *optlen) 7726 { 7727 int val; 7728 7729 if (len < sizeof(int)) 7730 return -EINVAL; 7731 7732 len = sizeof(int); 7733 val = sctp_sk(sk)->reuse; 7734 if (put_user(len, optlen)) 7735 return -EFAULT; 7736 7737 if (copy_to_user(optval, &val, len)) 7738 return -EFAULT; 7739 7740 return 0; 7741 } 7742 7743 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7744 int __user *optlen) 7745 { 7746 struct sctp_association *asoc; 7747 struct sctp_event param; 7748 __u16 subscribe; 7749 7750 if (len < sizeof(param)) 7751 return -EINVAL; 7752 7753 len = sizeof(param); 7754 if (copy_from_user(¶m, optval, len)) 7755 return -EFAULT; 7756 7757 if (param.se_type < SCTP_SN_TYPE_BASE || 7758 param.se_type > SCTP_SN_TYPE_MAX) 7759 return -EINVAL; 7760 7761 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7762 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7763 sctp_style(sk, UDP)) 7764 return -EINVAL; 7765 7766 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7767 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7768 7769 if (put_user(len, optlen)) 7770 return -EFAULT; 7771 7772 if (copy_to_user(optval, ¶m, len)) 7773 return -EFAULT; 7774 7775 return 0; 7776 } 7777 7778 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7779 char __user *optval, 7780 int __user *optlen) 7781 { 7782 struct sctp_assoc_value params; 7783 struct sctp_association *asoc; 7784 int retval = -EFAULT; 7785 7786 if (len < sizeof(params)) { 7787 retval = -EINVAL; 7788 goto out; 7789 } 7790 7791 len = sizeof(params); 7792 if (copy_from_user(¶ms, optval, len)) 7793 goto out; 7794 7795 asoc = sctp_id2assoc(sk, params.assoc_id); 7796 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7797 sctp_style(sk, UDP)) { 7798 retval = -EINVAL; 7799 goto out; 7800 } 7801 7802 params.assoc_value = asoc ? asoc->peer.asconf_capable 7803 : sctp_sk(sk)->ep->asconf_enable; 7804 7805 if (put_user(len, optlen)) 7806 goto out; 7807 7808 if (copy_to_user(optval, ¶ms, len)) 7809 goto out; 7810 7811 retval = 0; 7812 7813 out: 7814 return retval; 7815 } 7816 7817 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7818 char __user *optval, 7819 int __user *optlen) 7820 { 7821 struct sctp_assoc_value params; 7822 struct sctp_association *asoc; 7823 int retval = -EFAULT; 7824 7825 if (len < sizeof(params)) { 7826 retval = -EINVAL; 7827 goto out; 7828 } 7829 7830 len = sizeof(params); 7831 if (copy_from_user(¶ms, optval, len)) 7832 goto out; 7833 7834 asoc = sctp_id2assoc(sk, params.assoc_id); 7835 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7836 sctp_style(sk, UDP)) { 7837 retval = -EINVAL; 7838 goto out; 7839 } 7840 7841 params.assoc_value = asoc ? asoc->peer.auth_capable 7842 : sctp_sk(sk)->ep->auth_enable; 7843 7844 if (put_user(len, optlen)) 7845 goto out; 7846 7847 if (copy_to_user(optval, ¶ms, len)) 7848 goto out; 7849 7850 retval = 0; 7851 7852 out: 7853 return retval; 7854 } 7855 7856 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7857 char __user *optval, 7858 int __user *optlen) 7859 { 7860 struct sctp_assoc_value params; 7861 struct sctp_association *asoc; 7862 int retval = -EFAULT; 7863 7864 if (len < sizeof(params)) { 7865 retval = -EINVAL; 7866 goto out; 7867 } 7868 7869 len = sizeof(params); 7870 if (copy_from_user(¶ms, optval, len)) 7871 goto out; 7872 7873 asoc = sctp_id2assoc(sk, params.assoc_id); 7874 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7875 sctp_style(sk, UDP)) { 7876 retval = -EINVAL; 7877 goto out; 7878 } 7879 7880 params.assoc_value = asoc ? asoc->peer.ecn_capable 7881 : sctp_sk(sk)->ep->ecn_enable; 7882 7883 if (put_user(len, optlen)) 7884 goto out; 7885 7886 if (copy_to_user(optval, ¶ms, len)) 7887 goto out; 7888 7889 retval = 0; 7890 7891 out: 7892 return retval; 7893 } 7894 7895 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7896 char __user *optval, 7897 int __user *optlen) 7898 { 7899 struct sctp_assoc_value params; 7900 struct sctp_association *asoc; 7901 int retval = -EFAULT; 7902 7903 if (len < sizeof(params)) { 7904 retval = -EINVAL; 7905 goto out; 7906 } 7907 7908 len = sizeof(params); 7909 if (copy_from_user(¶ms, optval, len)) 7910 goto out; 7911 7912 asoc = sctp_id2assoc(sk, params.assoc_id); 7913 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7914 sctp_style(sk, UDP)) { 7915 retval = -EINVAL; 7916 goto out; 7917 } 7918 7919 params.assoc_value = asoc ? asoc->pf_expose 7920 : sctp_sk(sk)->pf_expose; 7921 7922 if (put_user(len, optlen)) 7923 goto out; 7924 7925 if (copy_to_user(optval, ¶ms, len)) 7926 goto out; 7927 7928 retval = 0; 7929 7930 out: 7931 return retval; 7932 } 7933 7934 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7935 char __user *optval, int __user *optlen) 7936 { 7937 struct sctp_association *asoc; 7938 struct sctp_udpencaps encap; 7939 struct sctp_transport *t; 7940 __be16 encap_port; 7941 7942 if (len < sizeof(encap)) 7943 return -EINVAL; 7944 7945 len = sizeof(encap); 7946 if (copy_from_user(&encap, optval, len)) 7947 return -EFAULT; 7948 7949 /* If an address other than INADDR_ANY is specified, and 7950 * no transport is found, then the request is invalid. 7951 */ 7952 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7953 t = sctp_addr_id2transport(sk, &encap.sue_address, 7954 encap.sue_assoc_id); 7955 if (!t) { 7956 pr_debug("%s: failed no transport\n", __func__); 7957 return -EINVAL; 7958 } 7959 7960 encap_port = t->encap_port; 7961 goto out; 7962 } 7963 7964 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7965 * socket is a one to many style socket, and an association 7966 * was not found, then the id was invalid. 7967 */ 7968 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7969 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7970 sctp_style(sk, UDP)) { 7971 pr_debug("%s: failed no association\n", __func__); 7972 return -EINVAL; 7973 } 7974 7975 if (asoc) { 7976 encap_port = asoc->encap_port; 7977 goto out; 7978 } 7979 7980 encap_port = sctp_sk(sk)->encap_port; 7981 7982 out: 7983 encap.sue_port = (__force uint16_t)encap_port; 7984 if (copy_to_user(optval, &encap, len)) 7985 return -EFAULT; 7986 7987 if (put_user(len, optlen)) 7988 return -EFAULT; 7989 7990 return 0; 7991 } 7992 7993 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7994 char __user *optval, 7995 int __user *optlen) 7996 { 7997 struct sctp_probeinterval params; 7998 struct sctp_association *asoc; 7999 struct sctp_transport *t; 8000 __u32 probe_interval; 8001 8002 if (len < sizeof(params)) 8003 return -EINVAL; 8004 8005 len = sizeof(params); 8006 if (copy_from_user(¶ms, optval, len)) 8007 return -EFAULT; 8008 8009 /* If an address other than INADDR_ANY is specified, and 8010 * no transport is found, then the request is invalid. 8011 */ 8012 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8013 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8014 params.spi_assoc_id); 8015 if (!t) { 8016 pr_debug("%s: failed no transport\n", __func__); 8017 return -EINVAL; 8018 } 8019 8020 probe_interval = jiffies_to_msecs(t->probe_interval); 8021 goto out; 8022 } 8023 8024 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8025 * socket is a one to many style socket, and an association 8026 * was not found, then the id was invalid. 8027 */ 8028 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8029 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8030 sctp_style(sk, UDP)) { 8031 pr_debug("%s: failed no association\n", __func__); 8032 return -EINVAL; 8033 } 8034 8035 if (asoc) { 8036 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8037 goto out; 8038 } 8039 8040 probe_interval = sctp_sk(sk)->probe_interval; 8041 8042 out: 8043 params.spi_interval = probe_interval; 8044 if (copy_to_user(optval, ¶ms, len)) 8045 return -EFAULT; 8046 8047 if (put_user(len, optlen)) 8048 return -EFAULT; 8049 8050 return 0; 8051 } 8052 8053 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8054 char __user *optval, int __user *optlen) 8055 { 8056 int retval = 0; 8057 int len; 8058 8059 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8060 8061 /* I can hardly begin to describe how wrong this is. This is 8062 * so broken as to be worse than useless. The API draft 8063 * REALLY is NOT helpful here... I am not convinced that the 8064 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8065 * are at all well-founded. 8066 */ 8067 if (level != SOL_SCTP) { 8068 struct sctp_af *af = sctp_sk(sk)->pf->af; 8069 8070 retval = af->getsockopt(sk, level, optname, optval, optlen); 8071 return retval; 8072 } 8073 8074 if (get_user(len, optlen)) 8075 return -EFAULT; 8076 8077 if (len < 0) 8078 return -EINVAL; 8079 8080 lock_sock(sk); 8081 8082 switch (optname) { 8083 case SCTP_STATUS: 8084 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8085 break; 8086 case SCTP_DISABLE_FRAGMENTS: 8087 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8088 optlen); 8089 break; 8090 case SCTP_EVENTS: 8091 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8092 break; 8093 case SCTP_AUTOCLOSE: 8094 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8095 break; 8096 case SCTP_SOCKOPT_PEELOFF: 8097 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8098 break; 8099 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8100 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8101 break; 8102 case SCTP_PEER_ADDR_PARAMS: 8103 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8104 optlen); 8105 break; 8106 case SCTP_DELAYED_SACK: 8107 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8108 optlen); 8109 break; 8110 case SCTP_INITMSG: 8111 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8112 break; 8113 case SCTP_GET_PEER_ADDRS: 8114 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8115 optlen); 8116 break; 8117 case SCTP_GET_LOCAL_ADDRS: 8118 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8119 optlen); 8120 break; 8121 case SCTP_SOCKOPT_CONNECTX3: 8122 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8123 break; 8124 case SCTP_DEFAULT_SEND_PARAM: 8125 retval = sctp_getsockopt_default_send_param(sk, len, 8126 optval, optlen); 8127 break; 8128 case SCTP_DEFAULT_SNDINFO: 8129 retval = sctp_getsockopt_default_sndinfo(sk, len, 8130 optval, optlen); 8131 break; 8132 case SCTP_PRIMARY_ADDR: 8133 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8134 break; 8135 case SCTP_NODELAY: 8136 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8137 break; 8138 case SCTP_RTOINFO: 8139 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8140 break; 8141 case SCTP_ASSOCINFO: 8142 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8143 break; 8144 case SCTP_I_WANT_MAPPED_V4_ADDR: 8145 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8146 break; 8147 case SCTP_MAXSEG: 8148 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8149 break; 8150 case SCTP_GET_PEER_ADDR_INFO: 8151 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8152 optlen); 8153 break; 8154 case SCTP_ADAPTATION_LAYER: 8155 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8156 optlen); 8157 break; 8158 case SCTP_CONTEXT: 8159 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8160 break; 8161 case SCTP_FRAGMENT_INTERLEAVE: 8162 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8163 optlen); 8164 break; 8165 case SCTP_PARTIAL_DELIVERY_POINT: 8166 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8167 optlen); 8168 break; 8169 case SCTP_MAX_BURST: 8170 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8171 break; 8172 case SCTP_AUTH_KEY: 8173 case SCTP_AUTH_CHUNK: 8174 case SCTP_AUTH_DELETE_KEY: 8175 case SCTP_AUTH_DEACTIVATE_KEY: 8176 retval = -EOPNOTSUPP; 8177 break; 8178 case SCTP_HMAC_IDENT: 8179 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8180 break; 8181 case SCTP_AUTH_ACTIVE_KEY: 8182 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8183 break; 8184 case SCTP_PEER_AUTH_CHUNKS: 8185 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8186 optlen); 8187 break; 8188 case SCTP_LOCAL_AUTH_CHUNKS: 8189 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8190 optlen); 8191 break; 8192 case SCTP_GET_ASSOC_NUMBER: 8193 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8194 break; 8195 case SCTP_GET_ASSOC_ID_LIST: 8196 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8197 break; 8198 case SCTP_AUTO_ASCONF: 8199 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8200 break; 8201 case SCTP_PEER_ADDR_THLDS: 8202 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8203 optlen, false); 8204 break; 8205 case SCTP_PEER_ADDR_THLDS_V2: 8206 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8207 optlen, true); 8208 break; 8209 case SCTP_GET_ASSOC_STATS: 8210 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8211 break; 8212 case SCTP_RECVRCVINFO: 8213 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8214 break; 8215 case SCTP_RECVNXTINFO: 8216 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8217 break; 8218 case SCTP_PR_SUPPORTED: 8219 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8220 break; 8221 case SCTP_DEFAULT_PRINFO: 8222 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8223 optlen); 8224 break; 8225 case SCTP_PR_ASSOC_STATUS: 8226 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8227 optlen); 8228 break; 8229 case SCTP_PR_STREAM_STATUS: 8230 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8231 optlen); 8232 break; 8233 case SCTP_RECONFIG_SUPPORTED: 8234 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8235 optlen); 8236 break; 8237 case SCTP_ENABLE_STREAM_RESET: 8238 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8239 optlen); 8240 break; 8241 case SCTP_STREAM_SCHEDULER: 8242 retval = sctp_getsockopt_scheduler(sk, len, optval, 8243 optlen); 8244 break; 8245 case SCTP_STREAM_SCHEDULER_VALUE: 8246 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8247 optlen); 8248 break; 8249 case SCTP_INTERLEAVING_SUPPORTED: 8250 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8251 optlen); 8252 break; 8253 case SCTP_REUSE_PORT: 8254 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8255 break; 8256 case SCTP_EVENT: 8257 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8258 break; 8259 case SCTP_ASCONF_SUPPORTED: 8260 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8261 optlen); 8262 break; 8263 case SCTP_AUTH_SUPPORTED: 8264 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8265 optlen); 8266 break; 8267 case SCTP_ECN_SUPPORTED: 8268 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8269 break; 8270 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8271 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8272 break; 8273 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8274 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8275 break; 8276 case SCTP_PLPMTUD_PROBE_INTERVAL: 8277 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8278 break; 8279 default: 8280 retval = -ENOPROTOOPT; 8281 break; 8282 } 8283 8284 release_sock(sk); 8285 return retval; 8286 } 8287 8288 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8289 { 8290 if (level == SOL_SCTP) { 8291 switch (optname) { 8292 case SCTP_SOCKOPT_PEELOFF: 8293 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8294 case SCTP_SOCKOPT_CONNECTX3: 8295 return true; 8296 default: 8297 return false; 8298 } 8299 } 8300 8301 return false; 8302 } 8303 8304 static int sctp_hash(struct sock *sk) 8305 { 8306 /* STUB */ 8307 return 0; 8308 } 8309 8310 static void sctp_unhash(struct sock *sk) 8311 { 8312 /* STUB */ 8313 } 8314 8315 /* Check if port is acceptable. Possibly find first available port. 8316 * 8317 * The port hash table (contained in the 'global' SCTP protocol storage 8318 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8319 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8320 * list (the list number is the port number hashed out, so as you 8321 * would expect from a hash function, all the ports in a given list have 8322 * such a number that hashes out to the same list number; you were 8323 * expecting that, right?); so each list has a set of ports, with a 8324 * link to the socket (struct sock) that uses it, the port number and 8325 * a fastreuse flag (FIXME: NPI ipg). 8326 */ 8327 static struct sctp_bind_bucket *sctp_bucket_create( 8328 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8329 8330 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8331 { 8332 struct sctp_sock *sp = sctp_sk(sk); 8333 bool reuse = (sk->sk_reuse || sp->reuse); 8334 struct sctp_bind_hashbucket *head; /* hash list */ 8335 struct net *net = sock_net(sk); 8336 kuid_t uid = sock_i_uid(sk); 8337 struct sctp_bind_bucket *pp; 8338 unsigned short snum; 8339 int ret; 8340 8341 snum = ntohs(addr->v4.sin_port); 8342 8343 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8344 8345 if (snum == 0) { 8346 /* Search for an available port. */ 8347 int low, high, remaining, index; 8348 unsigned int rover; 8349 8350 inet_sk_get_local_port_range(sk, &low, &high); 8351 remaining = (high - low) + 1; 8352 rover = get_random_u32_below(remaining) + low; 8353 8354 do { 8355 rover++; 8356 if ((rover < low) || (rover > high)) 8357 rover = low; 8358 if (inet_is_local_reserved_port(net, rover)) 8359 continue; 8360 index = sctp_phashfn(net, rover); 8361 head = &sctp_port_hashtable[index]; 8362 spin_lock_bh(&head->lock); 8363 sctp_for_each_hentry(pp, &head->chain) 8364 if ((pp->port == rover) && 8365 net_eq(net, pp->net)) 8366 goto next; 8367 break; 8368 next: 8369 spin_unlock_bh(&head->lock); 8370 cond_resched(); 8371 } while (--remaining > 0); 8372 8373 /* Exhausted local port range during search? */ 8374 ret = 1; 8375 if (remaining <= 0) 8376 return ret; 8377 8378 /* OK, here is the one we will use. HEAD (the port 8379 * hash table list entry) is non-NULL and we hold it's 8380 * mutex. 8381 */ 8382 snum = rover; 8383 } else { 8384 /* We are given an specific port number; we verify 8385 * that it is not being used. If it is used, we will 8386 * exahust the search in the hash list corresponding 8387 * to the port number (snum) - we detect that with the 8388 * port iterator, pp being NULL. 8389 */ 8390 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8391 spin_lock_bh(&head->lock); 8392 sctp_for_each_hentry(pp, &head->chain) { 8393 if ((pp->port == snum) && net_eq(pp->net, net)) 8394 goto pp_found; 8395 } 8396 } 8397 pp = NULL; 8398 goto pp_not_found; 8399 pp_found: 8400 if (!hlist_empty(&pp->owner)) { 8401 /* We had a port hash table hit - there is an 8402 * available port (pp != NULL) and it is being 8403 * used by other socket (pp->owner not empty); that other 8404 * socket is going to be sk2. 8405 */ 8406 struct sock *sk2; 8407 8408 pr_debug("%s: found a possible match\n", __func__); 8409 8410 if ((pp->fastreuse && reuse && 8411 sk->sk_state != SCTP_SS_LISTENING) || 8412 (pp->fastreuseport && sk->sk_reuseport && 8413 uid_eq(pp->fastuid, uid))) 8414 goto success; 8415 8416 /* Run through the list of sockets bound to the port 8417 * (pp->port) [via the pointers bind_next and 8418 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8419 * we get the endpoint they describe and run through 8420 * the endpoint's list of IP (v4 or v6) addresses, 8421 * comparing each of the addresses with the address of 8422 * the socket sk. If we find a match, then that means 8423 * that this port/socket (sk) combination are already 8424 * in an endpoint. 8425 */ 8426 sk_for_each_bound(sk2, &pp->owner) { 8427 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8428 struct sctp_sock *sp2 = sctp_sk(sk2); 8429 struct sctp_endpoint *ep2 = sp2->ep; 8430 8431 if (sk == sk2 || 8432 (reuse && (sk2->sk_reuse || sp2->reuse) && 8433 sk2->sk_state != SCTP_SS_LISTENING) || 8434 (sk->sk_reuseport && sk2->sk_reuseport && 8435 uid_eq(uid, sock_i_uid(sk2)))) 8436 continue; 8437 8438 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8439 sk->sk_bound_dev_if == bound_dev_if2) && 8440 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8441 addr, sp2, sp)) { 8442 ret = 1; 8443 goto fail_unlock; 8444 } 8445 } 8446 8447 pr_debug("%s: found a match\n", __func__); 8448 } 8449 pp_not_found: 8450 /* If there was a hash table miss, create a new port. */ 8451 ret = 1; 8452 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8453 goto fail_unlock; 8454 8455 /* In either case (hit or miss), make sure fastreuse is 1 only 8456 * if sk->sk_reuse is too (that is, if the caller requested 8457 * SO_REUSEADDR on this socket -sk-). 8458 */ 8459 if (hlist_empty(&pp->owner)) { 8460 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8461 pp->fastreuse = 1; 8462 else 8463 pp->fastreuse = 0; 8464 8465 if (sk->sk_reuseport) { 8466 pp->fastreuseport = 1; 8467 pp->fastuid = uid; 8468 } else { 8469 pp->fastreuseport = 0; 8470 } 8471 } else { 8472 if (pp->fastreuse && 8473 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8474 pp->fastreuse = 0; 8475 8476 if (pp->fastreuseport && 8477 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8478 pp->fastreuseport = 0; 8479 } 8480 8481 /* We are set, so fill up all the data in the hash table 8482 * entry, tie the socket list information with the rest of the 8483 * sockets FIXME: Blurry, NPI (ipg). 8484 */ 8485 success: 8486 if (!sp->bind_hash) { 8487 inet_sk(sk)->inet_num = snum; 8488 sk_add_bind_node(sk, &pp->owner); 8489 sp->bind_hash = pp; 8490 } 8491 ret = 0; 8492 8493 fail_unlock: 8494 spin_unlock_bh(&head->lock); 8495 return ret; 8496 } 8497 8498 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8499 * port is requested. 8500 */ 8501 static int sctp_get_port(struct sock *sk, unsigned short snum) 8502 { 8503 union sctp_addr addr; 8504 struct sctp_af *af = sctp_sk(sk)->pf->af; 8505 8506 /* Set up a dummy address struct from the sk. */ 8507 af->from_sk(&addr, sk); 8508 addr.v4.sin_port = htons(snum); 8509 8510 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8511 return sctp_get_port_local(sk, &addr); 8512 } 8513 8514 /* 8515 * Move a socket to LISTENING state. 8516 */ 8517 static int sctp_listen_start(struct sock *sk, int backlog) 8518 { 8519 struct sctp_sock *sp = sctp_sk(sk); 8520 struct sctp_endpoint *ep = sp->ep; 8521 struct crypto_shash *tfm = NULL; 8522 char alg[32]; 8523 8524 /* Allocate HMAC for generating cookie. */ 8525 if (!sp->hmac && sp->sctp_hmac_alg) { 8526 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8527 tfm = crypto_alloc_shash(alg, 0, 0); 8528 if (IS_ERR(tfm)) { 8529 net_info_ratelimited("failed to load transform for %s: %ld\n", 8530 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8531 return -ENOSYS; 8532 } 8533 sctp_sk(sk)->hmac = tfm; 8534 } 8535 8536 /* 8537 * If a bind() or sctp_bindx() is not called prior to a listen() 8538 * call that allows new associations to be accepted, the system 8539 * picks an ephemeral port and will choose an address set equivalent 8540 * to binding with a wildcard address. 8541 * 8542 * This is not currently spelled out in the SCTP sockets 8543 * extensions draft, but follows the practice as seen in TCP 8544 * sockets. 8545 * 8546 */ 8547 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8548 if (!ep->base.bind_addr.port) { 8549 if (sctp_autobind(sk)) 8550 return -EAGAIN; 8551 } else { 8552 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8553 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8554 return -EADDRINUSE; 8555 } 8556 } 8557 8558 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8559 return sctp_hash_endpoint(ep); 8560 } 8561 8562 /* 8563 * 4.1.3 / 5.1.3 listen() 8564 * 8565 * By default, new associations are not accepted for UDP style sockets. 8566 * An application uses listen() to mark a socket as being able to 8567 * accept new associations. 8568 * 8569 * On TCP style sockets, applications use listen() to ready the SCTP 8570 * endpoint for accepting inbound associations. 8571 * 8572 * On both types of endpoints a backlog of '0' disables listening. 8573 * 8574 * Move a socket to LISTENING state. 8575 */ 8576 int sctp_inet_listen(struct socket *sock, int backlog) 8577 { 8578 struct sock *sk = sock->sk; 8579 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8580 int err = -EINVAL; 8581 8582 if (unlikely(backlog < 0)) 8583 return err; 8584 8585 lock_sock(sk); 8586 8587 /* Peeled-off sockets are not allowed to listen(). */ 8588 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8589 goto out; 8590 8591 if (sock->state != SS_UNCONNECTED) 8592 goto out; 8593 8594 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8595 goto out; 8596 8597 /* If backlog is zero, disable listening. */ 8598 if (!backlog) { 8599 if (sctp_sstate(sk, CLOSED)) 8600 goto out; 8601 8602 err = 0; 8603 sctp_unhash_endpoint(ep); 8604 sk->sk_state = SCTP_SS_CLOSED; 8605 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8606 sctp_sk(sk)->bind_hash->fastreuse = 1; 8607 goto out; 8608 } 8609 8610 /* If we are already listening, just update the backlog */ 8611 if (sctp_sstate(sk, LISTENING)) 8612 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8613 else { 8614 err = sctp_listen_start(sk, backlog); 8615 if (err) 8616 goto out; 8617 } 8618 8619 err = 0; 8620 out: 8621 release_sock(sk); 8622 return err; 8623 } 8624 8625 /* 8626 * This function is done by modeling the current datagram_poll() and the 8627 * tcp_poll(). Note that, based on these implementations, we don't 8628 * lock the socket in this function, even though it seems that, 8629 * ideally, locking or some other mechanisms can be used to ensure 8630 * the integrity of the counters (sndbuf and wmem_alloc) used 8631 * in this place. We assume that we don't need locks either until proven 8632 * otherwise. 8633 * 8634 * Another thing to note is that we include the Async I/O support 8635 * here, again, by modeling the current TCP/UDP code. We don't have 8636 * a good way to test with it yet. 8637 */ 8638 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8639 { 8640 struct sock *sk = sock->sk; 8641 struct sctp_sock *sp = sctp_sk(sk); 8642 __poll_t mask; 8643 8644 poll_wait(file, sk_sleep(sk), wait); 8645 8646 sock_rps_record_flow(sk); 8647 8648 /* A TCP-style listening socket becomes readable when the accept queue 8649 * is not empty. 8650 */ 8651 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8652 return (!list_empty(&sp->ep->asocs)) ? 8653 (EPOLLIN | EPOLLRDNORM) : 0; 8654 8655 mask = 0; 8656 8657 /* Is there any exceptional events? */ 8658 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8659 mask |= EPOLLERR | 8660 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8661 if (sk->sk_shutdown & RCV_SHUTDOWN) 8662 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8663 if (sk->sk_shutdown == SHUTDOWN_MASK) 8664 mask |= EPOLLHUP; 8665 8666 /* Is it readable? Reconsider this code with TCP-style support. */ 8667 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8668 mask |= EPOLLIN | EPOLLRDNORM; 8669 8670 /* The association is either gone or not ready. */ 8671 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8672 return mask; 8673 8674 /* Is it writable? */ 8675 if (sctp_writeable(sk)) { 8676 mask |= EPOLLOUT | EPOLLWRNORM; 8677 } else { 8678 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8679 /* 8680 * Since the socket is not locked, the buffer 8681 * might be made available after the writeable check and 8682 * before the bit is set. This could cause a lost I/O 8683 * signal. tcp_poll() has a race breaker for this race 8684 * condition. Based on their implementation, we put 8685 * in the following code to cover it as well. 8686 */ 8687 if (sctp_writeable(sk)) 8688 mask |= EPOLLOUT | EPOLLWRNORM; 8689 } 8690 return mask; 8691 } 8692 8693 /******************************************************************** 8694 * 2nd Level Abstractions 8695 ********************************************************************/ 8696 8697 static struct sctp_bind_bucket *sctp_bucket_create( 8698 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8699 { 8700 struct sctp_bind_bucket *pp; 8701 8702 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8703 if (pp) { 8704 SCTP_DBG_OBJCNT_INC(bind_bucket); 8705 pp->port = snum; 8706 pp->fastreuse = 0; 8707 INIT_HLIST_HEAD(&pp->owner); 8708 pp->net = net; 8709 hlist_add_head(&pp->node, &head->chain); 8710 } 8711 return pp; 8712 } 8713 8714 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8715 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8716 { 8717 if (pp && hlist_empty(&pp->owner)) { 8718 __hlist_del(&pp->node); 8719 kmem_cache_free(sctp_bucket_cachep, pp); 8720 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8721 } 8722 } 8723 8724 /* Release this socket's reference to a local port. */ 8725 static inline void __sctp_put_port(struct sock *sk) 8726 { 8727 struct sctp_bind_hashbucket *head = 8728 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8729 inet_sk(sk)->inet_num)]; 8730 struct sctp_bind_bucket *pp; 8731 8732 spin_lock(&head->lock); 8733 pp = sctp_sk(sk)->bind_hash; 8734 __sk_del_bind_node(sk); 8735 sctp_sk(sk)->bind_hash = NULL; 8736 inet_sk(sk)->inet_num = 0; 8737 sctp_bucket_destroy(pp); 8738 spin_unlock(&head->lock); 8739 } 8740 8741 void sctp_put_port(struct sock *sk) 8742 { 8743 local_bh_disable(); 8744 __sctp_put_port(sk); 8745 local_bh_enable(); 8746 } 8747 8748 /* 8749 * The system picks an ephemeral port and choose an address set equivalent 8750 * to binding with a wildcard address. 8751 * One of those addresses will be the primary address for the association. 8752 * This automatically enables the multihoming capability of SCTP. 8753 */ 8754 static int sctp_autobind(struct sock *sk) 8755 { 8756 union sctp_addr autoaddr; 8757 struct sctp_af *af; 8758 __be16 port; 8759 8760 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8761 af = sctp_sk(sk)->pf->af; 8762 8763 port = htons(inet_sk(sk)->inet_num); 8764 af->inaddr_any(&autoaddr, port); 8765 8766 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8767 } 8768 8769 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8770 * 8771 * From RFC 2292 8772 * 4.2 The cmsghdr Structure * 8773 * 8774 * When ancillary data is sent or received, any number of ancillary data 8775 * objects can be specified by the msg_control and msg_controllen members of 8776 * the msghdr structure, because each object is preceded by 8777 * a cmsghdr structure defining the object's length (the cmsg_len member). 8778 * Historically Berkeley-derived implementations have passed only one object 8779 * at a time, but this API allows multiple objects to be 8780 * passed in a single call to sendmsg() or recvmsg(). The following example 8781 * shows two ancillary data objects in a control buffer. 8782 * 8783 * |<--------------------------- msg_controllen -------------------------->| 8784 * | | 8785 * 8786 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8787 * 8788 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8789 * | | | 8790 * 8791 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8792 * 8793 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8794 * | | | | | 8795 * 8796 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8797 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8798 * 8799 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8800 * 8801 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8802 * ^ 8803 * | 8804 * 8805 * msg_control 8806 * points here 8807 */ 8808 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8809 { 8810 struct msghdr *my_msg = (struct msghdr *)msg; 8811 struct cmsghdr *cmsg; 8812 8813 for_each_cmsghdr(cmsg, my_msg) { 8814 if (!CMSG_OK(my_msg, cmsg)) 8815 return -EINVAL; 8816 8817 /* Should we parse this header or ignore? */ 8818 if (cmsg->cmsg_level != IPPROTO_SCTP) 8819 continue; 8820 8821 /* Strictly check lengths following example in SCM code. */ 8822 switch (cmsg->cmsg_type) { 8823 case SCTP_INIT: 8824 /* SCTP Socket API Extension 8825 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8826 * 8827 * This cmsghdr structure provides information for 8828 * initializing new SCTP associations with sendmsg(). 8829 * The SCTP_INITMSG socket option uses this same data 8830 * structure. This structure is not used for 8831 * recvmsg(). 8832 * 8833 * cmsg_level cmsg_type cmsg_data[] 8834 * ------------ ------------ ---------------------- 8835 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8836 */ 8837 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8838 return -EINVAL; 8839 8840 cmsgs->init = CMSG_DATA(cmsg); 8841 break; 8842 8843 case SCTP_SNDRCV: 8844 /* SCTP Socket API Extension 8845 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8846 * 8847 * This cmsghdr structure specifies SCTP options for 8848 * sendmsg() and describes SCTP header information 8849 * about a received message through recvmsg(). 8850 * 8851 * cmsg_level cmsg_type cmsg_data[] 8852 * ------------ ------------ ---------------------- 8853 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8854 */ 8855 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8856 return -EINVAL; 8857 8858 cmsgs->srinfo = CMSG_DATA(cmsg); 8859 8860 if (cmsgs->srinfo->sinfo_flags & 8861 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8862 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8863 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8864 return -EINVAL; 8865 break; 8866 8867 case SCTP_SNDINFO: 8868 /* SCTP Socket API Extension 8869 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8870 * 8871 * This cmsghdr structure specifies SCTP options for 8872 * sendmsg(). This structure and SCTP_RCVINFO replaces 8873 * SCTP_SNDRCV which has been deprecated. 8874 * 8875 * cmsg_level cmsg_type cmsg_data[] 8876 * ------------ ------------ --------------------- 8877 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8878 */ 8879 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8880 return -EINVAL; 8881 8882 cmsgs->sinfo = CMSG_DATA(cmsg); 8883 8884 if (cmsgs->sinfo->snd_flags & 8885 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8886 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8887 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8888 return -EINVAL; 8889 break; 8890 case SCTP_PRINFO: 8891 /* SCTP Socket API Extension 8892 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8893 * 8894 * This cmsghdr structure specifies SCTP options for sendmsg(). 8895 * 8896 * cmsg_level cmsg_type cmsg_data[] 8897 * ------------ ------------ --------------------- 8898 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8899 */ 8900 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8901 return -EINVAL; 8902 8903 cmsgs->prinfo = CMSG_DATA(cmsg); 8904 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8905 return -EINVAL; 8906 8907 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8908 cmsgs->prinfo->pr_value = 0; 8909 break; 8910 case SCTP_AUTHINFO: 8911 /* SCTP Socket API Extension 8912 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8913 * 8914 * This cmsghdr structure specifies SCTP options for sendmsg(). 8915 * 8916 * cmsg_level cmsg_type cmsg_data[] 8917 * ------------ ------------ --------------------- 8918 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8919 */ 8920 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8921 return -EINVAL; 8922 8923 cmsgs->authinfo = CMSG_DATA(cmsg); 8924 break; 8925 case SCTP_DSTADDRV4: 8926 case SCTP_DSTADDRV6: 8927 /* SCTP Socket API Extension 8928 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8929 * 8930 * This cmsghdr structure specifies SCTP options for sendmsg(). 8931 * 8932 * cmsg_level cmsg_type cmsg_data[] 8933 * ------------ ------------ --------------------- 8934 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8935 * ------------ ------------ --------------------- 8936 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8937 */ 8938 cmsgs->addrs_msg = my_msg; 8939 break; 8940 default: 8941 return -EINVAL; 8942 } 8943 } 8944 8945 return 0; 8946 } 8947 8948 /* 8949 * Wait for a packet.. 8950 * Note: This function is the same function as in core/datagram.c 8951 * with a few modifications to make lksctp work. 8952 */ 8953 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8954 { 8955 int error; 8956 DEFINE_WAIT(wait); 8957 8958 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8959 8960 /* Socket errors? */ 8961 error = sock_error(sk); 8962 if (error) 8963 goto out; 8964 8965 if (!skb_queue_empty(&sk->sk_receive_queue)) 8966 goto ready; 8967 8968 /* Socket shut down? */ 8969 if (sk->sk_shutdown & RCV_SHUTDOWN) 8970 goto out; 8971 8972 /* Sequenced packets can come disconnected. If so we report the 8973 * problem. 8974 */ 8975 error = -ENOTCONN; 8976 8977 /* Is there a good reason to think that we may receive some data? */ 8978 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8979 goto out; 8980 8981 /* Handle signals. */ 8982 if (signal_pending(current)) 8983 goto interrupted; 8984 8985 /* Let another process have a go. Since we are going to sleep 8986 * anyway. Note: This may cause odd behaviors if the message 8987 * does not fit in the user's buffer, but this seems to be the 8988 * only way to honor MSG_DONTWAIT realistically. 8989 */ 8990 release_sock(sk); 8991 *timeo_p = schedule_timeout(*timeo_p); 8992 lock_sock(sk); 8993 8994 ready: 8995 finish_wait(sk_sleep(sk), &wait); 8996 return 0; 8997 8998 interrupted: 8999 error = sock_intr_errno(*timeo_p); 9000 9001 out: 9002 finish_wait(sk_sleep(sk), &wait); 9003 *err = error; 9004 return error; 9005 } 9006 9007 /* Receive a datagram. 9008 * Note: This is pretty much the same routine as in core/datagram.c 9009 * with a few changes to make lksctp work. 9010 */ 9011 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9012 { 9013 int error; 9014 struct sk_buff *skb; 9015 long timeo; 9016 9017 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9018 9019 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9020 MAX_SCHEDULE_TIMEOUT); 9021 9022 do { 9023 /* Again only user level code calls this function, 9024 * so nothing interrupt level 9025 * will suddenly eat the receive_queue. 9026 * 9027 * Look at current nfs client by the way... 9028 * However, this function was correct in any case. 8) 9029 */ 9030 if (flags & MSG_PEEK) { 9031 skb = skb_peek(&sk->sk_receive_queue); 9032 if (skb) 9033 refcount_inc(&skb->users); 9034 } else { 9035 skb = __skb_dequeue(&sk->sk_receive_queue); 9036 } 9037 9038 if (skb) 9039 return skb; 9040 9041 /* Caller is allowed not to check sk->sk_err before calling. */ 9042 error = sock_error(sk); 9043 if (error) 9044 goto no_packet; 9045 9046 if (sk->sk_shutdown & RCV_SHUTDOWN) 9047 break; 9048 9049 if (sk_can_busy_loop(sk)) { 9050 sk_busy_loop(sk, flags & MSG_DONTWAIT); 9051 9052 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9053 continue; 9054 } 9055 9056 /* User doesn't want to wait. */ 9057 error = -EAGAIN; 9058 if (!timeo) 9059 goto no_packet; 9060 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9061 9062 return NULL; 9063 9064 no_packet: 9065 *err = error; 9066 return NULL; 9067 } 9068 9069 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9070 static void __sctp_write_space(struct sctp_association *asoc) 9071 { 9072 struct sock *sk = asoc->base.sk; 9073 9074 if (sctp_wspace(asoc) <= 0) 9075 return; 9076 9077 if (waitqueue_active(&asoc->wait)) 9078 wake_up_interruptible(&asoc->wait); 9079 9080 if (sctp_writeable(sk)) { 9081 struct socket_wq *wq; 9082 9083 rcu_read_lock(); 9084 wq = rcu_dereference(sk->sk_wq); 9085 if (wq) { 9086 if (waitqueue_active(&wq->wait)) 9087 wake_up_interruptible(&wq->wait); 9088 9089 /* Note that we try to include the Async I/O support 9090 * here by modeling from the current TCP/UDP code. 9091 * We have not tested with it yet. 9092 */ 9093 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9094 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9095 } 9096 rcu_read_unlock(); 9097 } 9098 } 9099 9100 static void sctp_wake_up_waiters(struct sock *sk, 9101 struct sctp_association *asoc) 9102 { 9103 struct sctp_association *tmp = asoc; 9104 9105 /* We do accounting for the sndbuf space per association, 9106 * so we only need to wake our own association. 9107 */ 9108 if (asoc->ep->sndbuf_policy) 9109 return __sctp_write_space(asoc); 9110 9111 /* If association goes down and is just flushing its 9112 * outq, then just normally notify others. 9113 */ 9114 if (asoc->base.dead) 9115 return sctp_write_space(sk); 9116 9117 /* Accounting for the sndbuf space is per socket, so we 9118 * need to wake up others, try to be fair and in case of 9119 * other associations, let them have a go first instead 9120 * of just doing a sctp_write_space() call. 9121 * 9122 * Note that we reach sctp_wake_up_waiters() only when 9123 * associations free up queued chunks, thus we are under 9124 * lock and the list of associations on a socket is 9125 * guaranteed not to change. 9126 */ 9127 for (tmp = list_next_entry(tmp, asocs); 1; 9128 tmp = list_next_entry(tmp, asocs)) { 9129 /* Manually skip the head element. */ 9130 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9131 continue; 9132 /* Wake up association. */ 9133 __sctp_write_space(tmp); 9134 /* We've reached the end. */ 9135 if (tmp == asoc) 9136 break; 9137 } 9138 } 9139 9140 /* Do accounting for the sndbuf space. 9141 * Decrement the used sndbuf space of the corresponding association by the 9142 * data size which was just transmitted(freed). 9143 */ 9144 static void sctp_wfree(struct sk_buff *skb) 9145 { 9146 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9147 struct sctp_association *asoc = chunk->asoc; 9148 struct sock *sk = asoc->base.sk; 9149 9150 sk_mem_uncharge(sk, skb->truesize); 9151 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9152 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9153 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9154 &sk->sk_wmem_alloc)); 9155 9156 if (chunk->shkey) { 9157 struct sctp_shared_key *shkey = chunk->shkey; 9158 9159 /* refcnt == 2 and !list_empty mean after this release, it's 9160 * not being used anywhere, and it's time to notify userland 9161 * that this shkey can be freed if it's been deactivated. 9162 */ 9163 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9164 refcount_read(&shkey->refcnt) == 2) { 9165 struct sctp_ulpevent *ev; 9166 9167 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9168 SCTP_AUTH_FREE_KEY, 9169 GFP_KERNEL); 9170 if (ev) 9171 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9172 } 9173 sctp_auth_shkey_release(chunk->shkey); 9174 } 9175 9176 sock_wfree(skb); 9177 sctp_wake_up_waiters(sk, asoc); 9178 9179 sctp_association_put(asoc); 9180 } 9181 9182 /* Do accounting for the receive space on the socket. 9183 * Accounting for the association is done in ulpevent.c 9184 * We set this as a destructor for the cloned data skbs so that 9185 * accounting is done at the correct time. 9186 */ 9187 void sctp_sock_rfree(struct sk_buff *skb) 9188 { 9189 struct sock *sk = skb->sk; 9190 struct sctp_ulpevent *event = sctp_skb2event(skb); 9191 9192 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9193 9194 /* 9195 * Mimic the behavior of sock_rfree 9196 */ 9197 sk_mem_uncharge(sk, event->rmem_len); 9198 } 9199 9200 9201 /* Helper function to wait for space in the sndbuf. */ 9202 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9203 size_t msg_len) 9204 { 9205 struct sock *sk = asoc->base.sk; 9206 long current_timeo = *timeo_p; 9207 DEFINE_WAIT(wait); 9208 int err = 0; 9209 9210 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9211 *timeo_p, msg_len); 9212 9213 /* Increment the association's refcnt. */ 9214 sctp_association_hold(asoc); 9215 9216 /* Wait on the association specific sndbuf space. */ 9217 for (;;) { 9218 prepare_to_wait_exclusive(&asoc->wait, &wait, 9219 TASK_INTERRUPTIBLE); 9220 if (asoc->base.dead) 9221 goto do_dead; 9222 if (!*timeo_p) 9223 goto do_nonblock; 9224 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9225 goto do_error; 9226 if (signal_pending(current)) 9227 goto do_interrupted; 9228 if ((int)msg_len <= sctp_wspace(asoc) && 9229 sk_wmem_schedule(sk, msg_len)) 9230 break; 9231 9232 /* Let another process have a go. Since we are going 9233 * to sleep anyway. 9234 */ 9235 release_sock(sk); 9236 current_timeo = schedule_timeout(current_timeo); 9237 lock_sock(sk); 9238 if (sk != asoc->base.sk) 9239 goto do_error; 9240 9241 *timeo_p = current_timeo; 9242 } 9243 9244 out: 9245 finish_wait(&asoc->wait, &wait); 9246 9247 /* Release the association's refcnt. */ 9248 sctp_association_put(asoc); 9249 9250 return err; 9251 9252 do_dead: 9253 err = -ESRCH; 9254 goto out; 9255 9256 do_error: 9257 err = -EPIPE; 9258 goto out; 9259 9260 do_interrupted: 9261 err = sock_intr_errno(*timeo_p); 9262 goto out; 9263 9264 do_nonblock: 9265 err = -EAGAIN; 9266 goto out; 9267 } 9268 9269 void sctp_data_ready(struct sock *sk) 9270 { 9271 struct socket_wq *wq; 9272 9273 trace_sk_data_ready(sk); 9274 9275 rcu_read_lock(); 9276 wq = rcu_dereference(sk->sk_wq); 9277 if (skwq_has_sleeper(wq)) 9278 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9279 EPOLLRDNORM | EPOLLRDBAND); 9280 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9281 rcu_read_unlock(); 9282 } 9283 9284 /* If socket sndbuf has changed, wake up all per association waiters. */ 9285 void sctp_write_space(struct sock *sk) 9286 { 9287 struct sctp_association *asoc; 9288 9289 /* Wake up the tasks in each wait queue. */ 9290 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9291 __sctp_write_space(asoc); 9292 } 9293 } 9294 9295 /* Is there any sndbuf space available on the socket? 9296 * 9297 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9298 * associations on the same socket. For a UDP-style socket with 9299 * multiple associations, it is possible for it to be "unwriteable" 9300 * prematurely. I assume that this is acceptable because 9301 * a premature "unwriteable" is better than an accidental "writeable" which 9302 * would cause an unwanted block under certain circumstances. For the 1-1 9303 * UDP-style sockets or TCP-style sockets, this code should work. 9304 * - Daisy 9305 */ 9306 static bool sctp_writeable(const struct sock *sk) 9307 { 9308 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9309 } 9310 9311 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9312 * returns immediately with EINPROGRESS. 9313 */ 9314 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9315 { 9316 struct sock *sk = asoc->base.sk; 9317 int err = 0; 9318 long current_timeo = *timeo_p; 9319 DEFINE_WAIT(wait); 9320 9321 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9322 9323 /* Increment the association's refcnt. */ 9324 sctp_association_hold(asoc); 9325 9326 for (;;) { 9327 prepare_to_wait_exclusive(&asoc->wait, &wait, 9328 TASK_INTERRUPTIBLE); 9329 if (!*timeo_p) 9330 goto do_nonblock; 9331 if (sk->sk_shutdown & RCV_SHUTDOWN) 9332 break; 9333 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9334 asoc->base.dead) 9335 goto do_error; 9336 if (signal_pending(current)) 9337 goto do_interrupted; 9338 9339 if (sctp_state(asoc, ESTABLISHED)) 9340 break; 9341 9342 /* Let another process have a go. Since we are going 9343 * to sleep anyway. 9344 */ 9345 release_sock(sk); 9346 current_timeo = schedule_timeout(current_timeo); 9347 lock_sock(sk); 9348 9349 *timeo_p = current_timeo; 9350 } 9351 9352 out: 9353 finish_wait(&asoc->wait, &wait); 9354 9355 /* Release the association's refcnt. */ 9356 sctp_association_put(asoc); 9357 9358 return err; 9359 9360 do_error: 9361 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9362 err = -ETIMEDOUT; 9363 else 9364 err = -ECONNREFUSED; 9365 goto out; 9366 9367 do_interrupted: 9368 err = sock_intr_errno(*timeo_p); 9369 goto out; 9370 9371 do_nonblock: 9372 err = -EINPROGRESS; 9373 goto out; 9374 } 9375 9376 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9377 { 9378 struct sctp_endpoint *ep; 9379 int err = 0; 9380 DEFINE_WAIT(wait); 9381 9382 ep = sctp_sk(sk)->ep; 9383 9384 9385 for (;;) { 9386 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9387 TASK_INTERRUPTIBLE); 9388 9389 if (list_empty(&ep->asocs)) { 9390 release_sock(sk); 9391 timeo = schedule_timeout(timeo); 9392 lock_sock(sk); 9393 } 9394 9395 err = -EINVAL; 9396 if (!sctp_sstate(sk, LISTENING)) 9397 break; 9398 9399 err = 0; 9400 if (!list_empty(&ep->asocs)) 9401 break; 9402 9403 err = sock_intr_errno(timeo); 9404 if (signal_pending(current)) 9405 break; 9406 9407 err = -EAGAIN; 9408 if (!timeo) 9409 break; 9410 } 9411 9412 finish_wait(sk_sleep(sk), &wait); 9413 9414 return err; 9415 } 9416 9417 static void sctp_wait_for_close(struct sock *sk, long timeout) 9418 { 9419 DEFINE_WAIT(wait); 9420 9421 do { 9422 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9423 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9424 break; 9425 release_sock(sk); 9426 timeout = schedule_timeout(timeout); 9427 lock_sock(sk); 9428 } while (!signal_pending(current) && timeout); 9429 9430 finish_wait(sk_sleep(sk), &wait); 9431 } 9432 9433 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9434 { 9435 struct sk_buff *frag; 9436 9437 if (!skb->data_len) 9438 goto done; 9439 9440 /* Don't forget the fragments. */ 9441 skb_walk_frags(skb, frag) 9442 sctp_skb_set_owner_r_frag(frag, sk); 9443 9444 done: 9445 sctp_skb_set_owner_r(skb, sk); 9446 } 9447 9448 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9449 struct sctp_association *asoc) 9450 { 9451 struct inet_sock *inet = inet_sk(sk); 9452 struct inet_sock *newinet; 9453 struct sctp_sock *sp = sctp_sk(sk); 9454 9455 newsk->sk_type = sk->sk_type; 9456 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9457 newsk->sk_flags = sk->sk_flags; 9458 newsk->sk_tsflags = sk->sk_tsflags; 9459 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9460 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9461 newsk->sk_reuse = sk->sk_reuse; 9462 sctp_sk(newsk)->reuse = sp->reuse; 9463 9464 newsk->sk_shutdown = sk->sk_shutdown; 9465 newsk->sk_destruct = sk->sk_destruct; 9466 newsk->sk_family = sk->sk_family; 9467 newsk->sk_protocol = IPPROTO_SCTP; 9468 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9469 newsk->sk_sndbuf = sk->sk_sndbuf; 9470 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9471 newsk->sk_lingertime = sk->sk_lingertime; 9472 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9473 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9474 newsk->sk_rxhash = sk->sk_rxhash; 9475 9476 newinet = inet_sk(newsk); 9477 9478 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9479 * getsockname() and getpeername() 9480 */ 9481 newinet->inet_sport = inet->inet_sport; 9482 newinet->inet_saddr = inet->inet_saddr; 9483 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9484 newinet->inet_dport = htons(asoc->peer.port); 9485 newinet->pmtudisc = inet->pmtudisc; 9486 atomic_set(&newinet->inet_id, get_random_u16()); 9487 9488 newinet->uc_ttl = inet->uc_ttl; 9489 inet_set_bit(MC_LOOP, newsk); 9490 newinet->mc_ttl = 1; 9491 newinet->mc_index = 0; 9492 newinet->mc_list = NULL; 9493 9494 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9495 net_enable_timestamp(); 9496 9497 /* Set newsk security attributes from original sk and connection 9498 * security attribute from asoc. 9499 */ 9500 security_sctp_sk_clone(asoc, sk, newsk); 9501 } 9502 9503 static inline void sctp_copy_descendant(struct sock *sk_to, 9504 const struct sock *sk_from) 9505 { 9506 size_t ancestor_size = sizeof(struct inet_sock); 9507 9508 ancestor_size += sk_from->sk_prot->obj_size; 9509 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9510 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9511 } 9512 9513 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9514 * and its messages to the newsk. 9515 */ 9516 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9517 struct sctp_association *assoc, 9518 enum sctp_socket_type type) 9519 { 9520 struct sctp_sock *oldsp = sctp_sk(oldsk); 9521 struct sctp_sock *newsp = sctp_sk(newsk); 9522 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9523 struct sctp_endpoint *newep = newsp->ep; 9524 struct sk_buff *skb, *tmp; 9525 struct sctp_ulpevent *event; 9526 struct sctp_bind_hashbucket *head; 9527 int err; 9528 9529 /* Migrate socket buffer sizes and all the socket level options to the 9530 * new socket. 9531 */ 9532 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9533 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9534 /* Brute force copy old sctp opt. */ 9535 sctp_copy_descendant(newsk, oldsk); 9536 9537 /* Restore the ep value that was overwritten with the above structure 9538 * copy. 9539 */ 9540 newsp->ep = newep; 9541 newsp->hmac = NULL; 9542 9543 /* Hook this new socket in to the bind_hash list. */ 9544 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9545 inet_sk(oldsk)->inet_num)]; 9546 spin_lock_bh(&head->lock); 9547 pp = sctp_sk(oldsk)->bind_hash; 9548 sk_add_bind_node(newsk, &pp->owner); 9549 sctp_sk(newsk)->bind_hash = pp; 9550 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9551 spin_unlock_bh(&head->lock); 9552 9553 /* Copy the bind_addr list from the original endpoint to the new 9554 * endpoint so that we can handle restarts properly 9555 */ 9556 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9557 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9558 if (err) 9559 return err; 9560 9561 /* New ep's auth_hmacs should be set if old ep's is set, in case 9562 * that net->sctp.auth_enable has been changed to 0 by users and 9563 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9564 */ 9565 if (oldsp->ep->auth_hmacs) { 9566 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9567 if (err) 9568 return err; 9569 } 9570 9571 sctp_auto_asconf_init(newsp); 9572 9573 /* Move any messages in the old socket's receive queue that are for the 9574 * peeled off association to the new socket's receive queue. 9575 */ 9576 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9577 event = sctp_skb2event(skb); 9578 if (event->asoc == assoc) { 9579 __skb_unlink(skb, &oldsk->sk_receive_queue); 9580 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9581 sctp_skb_set_owner_r_frag(skb, newsk); 9582 } 9583 } 9584 9585 /* Clean up any messages pending delivery due to partial 9586 * delivery. Three cases: 9587 * 1) No partial deliver; no work. 9588 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9589 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9590 */ 9591 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9592 9593 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9594 struct sk_buff_head *queue; 9595 9596 /* Decide which queue to move pd_lobby skbs to. */ 9597 if (assoc->ulpq.pd_mode) { 9598 queue = &newsp->pd_lobby; 9599 } else 9600 queue = &newsk->sk_receive_queue; 9601 9602 /* Walk through the pd_lobby, looking for skbs that 9603 * need moved to the new socket. 9604 */ 9605 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9606 event = sctp_skb2event(skb); 9607 if (event->asoc == assoc) { 9608 __skb_unlink(skb, &oldsp->pd_lobby); 9609 __skb_queue_tail(queue, skb); 9610 sctp_skb_set_owner_r_frag(skb, newsk); 9611 } 9612 } 9613 9614 /* Clear up any skbs waiting for the partial 9615 * delivery to finish. 9616 */ 9617 if (assoc->ulpq.pd_mode) 9618 sctp_clear_pd(oldsk, NULL); 9619 9620 } 9621 9622 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9623 9624 /* Set the type of socket to indicate that it is peeled off from the 9625 * original UDP-style socket or created with the accept() call on a 9626 * TCP-style socket.. 9627 */ 9628 newsp->type = type; 9629 9630 /* Mark the new socket "in-use" by the user so that any packets 9631 * that may arrive on the association after we've moved it are 9632 * queued to the backlog. This prevents a potential race between 9633 * backlog processing on the old socket and new-packet processing 9634 * on the new socket. 9635 * 9636 * The caller has just allocated newsk so we can guarantee that other 9637 * paths won't try to lock it and then oldsk. 9638 */ 9639 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9640 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9641 sctp_assoc_migrate(assoc, newsk); 9642 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9643 9644 /* If the association on the newsk is already closed before accept() 9645 * is called, set RCV_SHUTDOWN flag. 9646 */ 9647 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9648 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9649 newsk->sk_shutdown |= RCV_SHUTDOWN; 9650 } else { 9651 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9652 } 9653 9654 release_sock(newsk); 9655 9656 return 0; 9657 } 9658 9659 9660 /* This proto struct describes the ULP interface for SCTP. */ 9661 struct proto sctp_prot = { 9662 .name = "SCTP", 9663 .owner = THIS_MODULE, 9664 .close = sctp_close, 9665 .disconnect = sctp_disconnect, 9666 .accept = sctp_accept, 9667 .ioctl = sctp_ioctl, 9668 .init = sctp_init_sock, 9669 .destroy = sctp_destroy_sock, 9670 .shutdown = sctp_shutdown, 9671 .setsockopt = sctp_setsockopt, 9672 .getsockopt = sctp_getsockopt, 9673 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9674 .sendmsg = sctp_sendmsg, 9675 .recvmsg = sctp_recvmsg, 9676 .bind = sctp_bind, 9677 .bind_add = sctp_bind_add, 9678 .backlog_rcv = sctp_backlog_rcv, 9679 .hash = sctp_hash, 9680 .unhash = sctp_unhash, 9681 .no_autobind = true, 9682 .obj_size = sizeof(struct sctp_sock), 9683 .useroffset = offsetof(struct sctp_sock, subscribe), 9684 .usersize = offsetof(struct sctp_sock, initmsg) - 9685 offsetof(struct sctp_sock, subscribe) + 9686 sizeof_field(struct sctp_sock, initmsg), 9687 .sysctl_mem = sysctl_sctp_mem, 9688 .sysctl_rmem = sysctl_sctp_rmem, 9689 .sysctl_wmem = sysctl_sctp_wmem, 9690 .memory_pressure = &sctp_memory_pressure, 9691 .enter_memory_pressure = sctp_enter_memory_pressure, 9692 9693 .memory_allocated = &sctp_memory_allocated, 9694 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9695 9696 .sockets_allocated = &sctp_sockets_allocated, 9697 }; 9698 9699 #if IS_ENABLED(CONFIG_IPV6) 9700 9701 static void sctp_v6_destruct_sock(struct sock *sk) 9702 { 9703 sctp_destruct_common(sk); 9704 inet6_sock_destruct(sk); 9705 } 9706 9707 static int sctp_v6_init_sock(struct sock *sk) 9708 { 9709 int ret = sctp_init_sock(sk); 9710 9711 if (!ret) 9712 sk->sk_destruct = sctp_v6_destruct_sock; 9713 9714 return ret; 9715 } 9716 9717 struct proto sctpv6_prot = { 9718 .name = "SCTPv6", 9719 .owner = THIS_MODULE, 9720 .close = sctp_close, 9721 .disconnect = sctp_disconnect, 9722 .accept = sctp_accept, 9723 .ioctl = sctp_ioctl, 9724 .init = sctp_v6_init_sock, 9725 .destroy = sctp_destroy_sock, 9726 .shutdown = sctp_shutdown, 9727 .setsockopt = sctp_setsockopt, 9728 .getsockopt = sctp_getsockopt, 9729 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9730 .sendmsg = sctp_sendmsg, 9731 .recvmsg = sctp_recvmsg, 9732 .bind = sctp_bind, 9733 .bind_add = sctp_bind_add, 9734 .backlog_rcv = sctp_backlog_rcv, 9735 .hash = sctp_hash, 9736 .unhash = sctp_unhash, 9737 .no_autobind = true, 9738 .obj_size = sizeof(struct sctp6_sock), 9739 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9740 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9741 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9742 offsetof(struct sctp6_sock, sctp.subscribe) + 9743 sizeof_field(struct sctp6_sock, sctp.initmsg), 9744 .sysctl_mem = sysctl_sctp_mem, 9745 .sysctl_rmem = sysctl_sctp_rmem, 9746 .sysctl_wmem = sysctl_sctp_wmem, 9747 .memory_pressure = &sctp_memory_pressure, 9748 .enter_memory_pressure = sctp_enter_memory_pressure, 9749 9750 .memory_allocated = &sctp_memory_allocated, 9751 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9752 9753 .sockets_allocated = &sctp_sockets_allocated, 9754 }; 9755 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9756