xref: /linux/net/sctp/socket.c (revision 05dc8c02bf40090e9ed23932b1980ead48eb8870)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 /* Get the sndbuf space available at the time on the association.  */
111 static inline int sctp_wspace(struct sctp_association *asoc)
112 {
113 	struct sock *sk = asoc->base.sk;
114 	int amt = 0;
115 
116 	if (asoc->ep->sndbuf_policy) {
117 		/* make sure that no association uses more than sk_sndbuf */
118 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
119 	} else {
120 		/* do socket level accounting */
121 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
122 	}
123 
124 	if (amt < 0)
125 		amt = 0;
126 
127 	return amt;
128 }
129 
130 /* Increment the used sndbuf space count of the corresponding association by
131  * the size of the outgoing data chunk.
132  * Also, set the skb destructor for sndbuf accounting later.
133  *
134  * Since it is always 1-1 between chunk and skb, and also a new skb is always
135  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
136  * destructor in the data chunk skb for the purpose of the sndbuf space
137  * tracking.
138  */
139 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
140 {
141 	struct sctp_association *asoc = chunk->asoc;
142 	struct sock *sk = asoc->base.sk;
143 
144 	/* The sndbuf space is tracked per association.  */
145 	sctp_association_hold(asoc);
146 
147 	skb_set_owner_w(chunk->skb, sk);
148 
149 	chunk->skb->destructor = sctp_wfree;
150 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
151 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
152 
153 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
154 				sizeof(struct sk_buff) +
155 				sizeof(struct sctp_chunk);
156 
157 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
158 }
159 
160 /* Verify that this is a valid address. */
161 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
162 				   int len)
163 {
164 	struct sctp_af *af;
165 
166 	/* Verify basic sockaddr. */
167 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
168 	if (!af)
169 		return -EINVAL;
170 
171 	/* Is this a valid SCTP address?  */
172 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
173 		return -EINVAL;
174 
175 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 
181 /* Look up the association by its id.  If this is not a UDP-style
182  * socket, the ID field is always ignored.
183  */
184 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
185 {
186 	struct sctp_association *asoc = NULL;
187 
188 	/* If this is not a UDP-style socket, assoc id should be ignored. */
189 	if (!sctp_style(sk, UDP)) {
190 		/* Return NULL if the socket state is not ESTABLISHED. It
191 		 * could be a TCP-style listening socket or a socket which
192 		 * hasn't yet called connect() to establish an association.
193 		 */
194 		if (!sctp_sstate(sk, ESTABLISHED))
195 			return NULL;
196 
197 		/* Get the first and the only association from the list. */
198 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
199 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
200 					  struct sctp_association, asocs);
201 		return asoc;
202 	}
203 
204 	/* Otherwise this is a UDP-style socket. */
205 	if (!id || (id == (sctp_assoc_t)-1))
206 		return NULL;
207 
208 	spin_lock_bh(&sctp_assocs_id_lock);
209 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
210 	spin_unlock_bh(&sctp_assocs_id_lock);
211 
212 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
213 		return NULL;
214 
215 	return asoc;
216 }
217 
218 /* Look up the transport from an address and an assoc id. If both address and
219  * id are specified, the associations matching the address and the id should be
220  * the same.
221  */
222 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
223 					      struct sockaddr_storage *addr,
224 					      sctp_assoc_t id)
225 {
226 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
227 	struct sctp_transport *transport;
228 	union sctp_addr *laddr = (union sctp_addr *)addr;
229 
230 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
231 					       laddr,
232 					       &transport);
233 
234 	if (!addr_asoc)
235 		return NULL;
236 
237 	id_asoc = sctp_id2assoc(sk, id);
238 	if (id_asoc && (id_asoc != addr_asoc))
239 		return NULL;
240 
241 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
242 						(union sctp_addr *)addr);
243 
244 	return transport;
245 }
246 
247 /* API 3.1.2 bind() - UDP Style Syntax
248  * The syntax of bind() is,
249  *
250  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
251  *
252  *   sd      - the socket descriptor returned by socket().
253  *   addr    - the address structure (struct sockaddr_in or struct
254  *             sockaddr_in6 [RFC 2553]),
255  *   addr_len - the size of the address structure.
256  */
257 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
258 {
259 	int retval = 0;
260 
261 	sctp_lock_sock(sk);
262 
263 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
264 			  sk, addr, addr_len);
265 
266 	/* Disallow binding twice. */
267 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
268 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
269 				      addr_len);
270 	else
271 		retval = -EINVAL;
272 
273 	sctp_release_sock(sk);
274 
275 	return retval;
276 }
277 
278 static long sctp_get_port_local(struct sock *, union sctp_addr *);
279 
280 /* Verify this is a valid sockaddr. */
281 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
282 					union sctp_addr *addr, int len)
283 {
284 	struct sctp_af *af;
285 
286 	/* Check minimum size.  */
287 	if (len < sizeof (struct sockaddr))
288 		return NULL;
289 
290 	/* Does this PF support this AF? */
291 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
292 		return NULL;
293 
294 	/* If we get this far, af is valid. */
295 	af = sctp_get_af_specific(addr->sa.sa_family);
296 
297 	if (len < af->sockaddr_len)
298 		return NULL;
299 
300 	return af;
301 }
302 
303 /* Bind a local address either to an endpoint or to an association.  */
304 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
305 {
306 	struct sctp_sock *sp = sctp_sk(sk);
307 	struct sctp_endpoint *ep = sp->ep;
308 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
309 	struct sctp_af *af;
310 	unsigned short snum;
311 	int ret = 0;
312 
313 	/* Common sockaddr verification. */
314 	af = sctp_sockaddr_af(sp, addr, len);
315 	if (!af) {
316 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
317 				  sk, addr, len);
318 		return -EINVAL;
319 	}
320 
321 	snum = ntohs(addr->v4.sin_port);
322 
323 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
324 				 ", port: %d, new port: %d, len: %d)\n",
325 				 sk,
326 				 addr,
327 				 bp->port, snum,
328 				 len);
329 
330 	/* PF specific bind() address verification. */
331 	if (!sp->pf->bind_verify(sp, addr))
332 		return -EADDRNOTAVAIL;
333 
334 	/* We must either be unbound, or bind to the same port.
335 	 * It's OK to allow 0 ports if we are already bound.
336 	 * We'll just inhert an already bound port in this case
337 	 */
338 	if (bp->port) {
339 		if (!snum)
340 			snum = bp->port;
341 		else if (snum != bp->port) {
342 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
343 				  " New port %d does not match existing port "
344 				  "%d.\n", snum, bp->port);
345 			return -EINVAL;
346 		}
347 	}
348 
349 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
350 		return -EACCES;
351 
352 	/* Make sure we are allowed to bind here.
353 	 * The function sctp_get_port_local() does duplicate address
354 	 * detection.
355 	 */
356 	addr->v4.sin_port = htons(snum);
357 	if ((ret = sctp_get_port_local(sk, addr))) {
358 		if (ret == (long) sk) {
359 			/* This endpoint has a conflicting address. */
360 			return -EINVAL;
361 		} else {
362 			return -EADDRINUSE;
363 		}
364 	}
365 
366 	/* Refresh ephemeral port.  */
367 	if (!bp->port)
368 		bp->port = inet_sk(sk)->num;
369 
370 	/* Add the address to the bind address list.
371 	 * Use GFP_ATOMIC since BHs will be disabled.
372 	 */
373 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
374 
375 	/* Copy back into socket for getsockname() use. */
376 	if (!ret) {
377 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
378 		af->to_sk_saddr(addr, sk);
379 	}
380 
381 	return ret;
382 }
383 
384  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
385  *
386  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
387  * at any one time.  If a sender, after sending an ASCONF chunk, decides
388  * it needs to transfer another ASCONF Chunk, it MUST wait until the
389  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
390  * subsequent ASCONF. Note this restriction binds each side, so at any
391  * time two ASCONF may be in-transit on any given association (one sent
392  * from each endpoint).
393  */
394 static int sctp_send_asconf(struct sctp_association *asoc,
395 			    struct sctp_chunk *chunk)
396 {
397 	int		retval = 0;
398 
399 	/* If there is an outstanding ASCONF chunk, queue it for later
400 	 * transmission.
401 	 */
402 	if (asoc->addip_last_asconf) {
403 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
404 		goto out;
405 	}
406 
407 	/* Hold the chunk until an ASCONF_ACK is received. */
408 	sctp_chunk_hold(chunk);
409 	retval = sctp_primitive_ASCONF(asoc, chunk);
410 	if (retval)
411 		sctp_chunk_free(chunk);
412 	else
413 		asoc->addip_last_asconf = chunk;
414 
415 out:
416 	return retval;
417 }
418 
419 /* Add a list of addresses as bind addresses to local endpoint or
420  * association.
421  *
422  * Basically run through each address specified in the addrs/addrcnt
423  * array/length pair, determine if it is IPv6 or IPv4 and call
424  * sctp_do_bind() on it.
425  *
426  * If any of them fails, then the operation will be reversed and the
427  * ones that were added will be removed.
428  *
429  * Only sctp_setsockopt_bindx() is supposed to call this function.
430  */
431 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
432 {
433 	int cnt;
434 	int retval = 0;
435 	void *addr_buf;
436 	struct sockaddr *sa_addr;
437 	struct sctp_af *af;
438 
439 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
440 			  sk, addrs, addrcnt);
441 
442 	addr_buf = addrs;
443 	for (cnt = 0; cnt < addrcnt; cnt++) {
444 		/* The list may contain either IPv4 or IPv6 address;
445 		 * determine the address length for walking thru the list.
446 		 */
447 		sa_addr = (struct sockaddr *)addr_buf;
448 		af = sctp_get_af_specific(sa_addr->sa_family);
449 		if (!af) {
450 			retval = -EINVAL;
451 			goto err_bindx_add;
452 		}
453 
454 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
455 				      af->sockaddr_len);
456 
457 		addr_buf += af->sockaddr_len;
458 
459 err_bindx_add:
460 		if (retval < 0) {
461 			/* Failed. Cleanup the ones that have been added */
462 			if (cnt > 0)
463 				sctp_bindx_rem(sk, addrs, cnt);
464 			return retval;
465 		}
466 	}
467 
468 	return retval;
469 }
470 
471 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
472  * associations that are part of the endpoint indicating that a list of local
473  * addresses are added to the endpoint.
474  *
475  * If any of the addresses is already in the bind address list of the
476  * association, we do not send the chunk for that association.  But it will not
477  * affect other associations.
478  *
479  * Only sctp_setsockopt_bindx() is supposed to call this function.
480  */
481 static int sctp_send_asconf_add_ip(struct sock		*sk,
482 				   struct sockaddr	*addrs,
483 				   int 			addrcnt)
484 {
485 	struct sctp_sock		*sp;
486 	struct sctp_endpoint		*ep;
487 	struct sctp_association		*asoc;
488 	struct sctp_bind_addr		*bp;
489 	struct sctp_chunk		*chunk;
490 	struct sctp_sockaddr_entry	*laddr;
491 	union sctp_addr			*addr;
492 	union sctp_addr			saveaddr;
493 	void				*addr_buf;
494 	struct sctp_af			*af;
495 	struct list_head		*pos;
496 	struct list_head		*p;
497 	int 				i;
498 	int 				retval = 0;
499 
500 	if (!sctp_addip_enable)
501 		return retval;
502 
503 	sp = sctp_sk(sk);
504 	ep = sp->ep;
505 
506 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
507 			  __FUNCTION__, sk, addrs, addrcnt);
508 
509 	list_for_each(pos, &ep->asocs) {
510 		asoc = list_entry(pos, struct sctp_association, asocs);
511 
512 		if (!asoc->peer.asconf_capable)
513 			continue;
514 
515 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
516 			continue;
517 
518 		if (!sctp_state(asoc, ESTABLISHED))
519 			continue;
520 
521 		/* Check if any address in the packed array of addresses is
522 		 * in the bind address list of the association. If so,
523 		 * do not send the asconf chunk to its peer, but continue with
524 		 * other associations.
525 		 */
526 		addr_buf = addrs;
527 		for (i = 0; i < addrcnt; i++) {
528 			addr = (union sctp_addr *)addr_buf;
529 			af = sctp_get_af_specific(addr->v4.sin_family);
530 			if (!af) {
531 				retval = -EINVAL;
532 				goto out;
533 			}
534 
535 			if (sctp_assoc_lookup_laddr(asoc, addr))
536 				break;
537 
538 			addr_buf += af->sockaddr_len;
539 		}
540 		if (i < addrcnt)
541 			continue;
542 
543 		/* Use the first valid address in bind addr list of
544 		 * association as Address Parameter of ASCONF CHUNK.
545 		 */
546 		bp = &asoc->base.bind_addr;
547 		p = bp->address_list.next;
548 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
549 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
550 						   addrcnt, SCTP_PARAM_ADD_IP);
551 		if (!chunk) {
552 			retval = -ENOMEM;
553 			goto out;
554 		}
555 
556 		retval = sctp_send_asconf(asoc, chunk);
557 		if (retval)
558 			goto out;
559 
560 		/* Add the new addresses to the bind address list with
561 		 * use_as_src set to 0.
562 		 */
563 		addr_buf = addrs;
564 		for (i = 0; i < addrcnt; i++) {
565 			addr = (union sctp_addr *)addr_buf;
566 			af = sctp_get_af_specific(addr->v4.sin_family);
567 			memcpy(&saveaddr, addr, af->sockaddr_len);
568 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
569 						    GFP_ATOMIC);
570 			addr_buf += af->sockaddr_len;
571 		}
572 	}
573 
574 out:
575 	return retval;
576 }
577 
578 /* Remove a list of addresses from bind addresses list.  Do not remove the
579  * last address.
580  *
581  * Basically run through each address specified in the addrs/addrcnt
582  * array/length pair, determine if it is IPv6 or IPv4 and call
583  * sctp_del_bind() on it.
584  *
585  * If any of them fails, then the operation will be reversed and the
586  * ones that were removed will be added back.
587  *
588  * At least one address has to be left; if only one address is
589  * available, the operation will return -EBUSY.
590  *
591  * Only sctp_setsockopt_bindx() is supposed to call this function.
592  */
593 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
594 {
595 	struct sctp_sock *sp = sctp_sk(sk);
596 	struct sctp_endpoint *ep = sp->ep;
597 	int cnt;
598 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
599 	int retval = 0;
600 	void *addr_buf;
601 	union sctp_addr *sa_addr;
602 	struct sctp_af *af;
603 
604 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
605 			  sk, addrs, addrcnt);
606 
607 	addr_buf = addrs;
608 	for (cnt = 0; cnt < addrcnt; cnt++) {
609 		/* If the bind address list is empty or if there is only one
610 		 * bind address, there is nothing more to be removed (we need
611 		 * at least one address here).
612 		 */
613 		if (list_empty(&bp->address_list) ||
614 		    (sctp_list_single_entry(&bp->address_list))) {
615 			retval = -EBUSY;
616 			goto err_bindx_rem;
617 		}
618 
619 		sa_addr = (union sctp_addr *)addr_buf;
620 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
621 		if (!af) {
622 			retval = -EINVAL;
623 			goto err_bindx_rem;
624 		}
625 
626 		if (!af->addr_valid(sa_addr, sp, NULL)) {
627 			retval = -EADDRNOTAVAIL;
628 			goto err_bindx_rem;
629 		}
630 
631 		if (sa_addr->v4.sin_port != htons(bp->port)) {
632 			retval = -EINVAL;
633 			goto err_bindx_rem;
634 		}
635 
636 		/* FIXME - There is probably a need to check if sk->sk_saddr and
637 		 * sk->sk_rcv_addr are currently set to one of the addresses to
638 		 * be removed. This is something which needs to be looked into
639 		 * when we are fixing the outstanding issues with multi-homing
640 		 * socket routing and failover schemes. Refer to comments in
641 		 * sctp_do_bind(). -daisy
642 		 */
643 		retval = sctp_del_bind_addr(bp, sa_addr, call_rcu);
644 
645 		addr_buf += af->sockaddr_len;
646 err_bindx_rem:
647 		if (retval < 0) {
648 			/* Failed. Add the ones that has been removed back */
649 			if (cnt > 0)
650 				sctp_bindx_add(sk, addrs, cnt);
651 			return retval;
652 		}
653 	}
654 
655 	return retval;
656 }
657 
658 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
659  * the associations that are part of the endpoint indicating that a list of
660  * local addresses are removed from the endpoint.
661  *
662  * If any of the addresses is already in the bind address list of the
663  * association, we do not send the chunk for that association.  But it will not
664  * affect other associations.
665  *
666  * Only sctp_setsockopt_bindx() is supposed to call this function.
667  */
668 static int sctp_send_asconf_del_ip(struct sock		*sk,
669 				   struct sockaddr	*addrs,
670 				   int			addrcnt)
671 {
672 	struct sctp_sock	*sp;
673 	struct sctp_endpoint	*ep;
674 	struct sctp_association	*asoc;
675 	struct sctp_transport	*transport;
676 	struct sctp_bind_addr	*bp;
677 	struct sctp_chunk	*chunk;
678 	union sctp_addr		*laddr;
679 	void			*addr_buf;
680 	struct sctp_af		*af;
681 	struct list_head	*pos, *pos1;
682 	struct sctp_sockaddr_entry *saddr;
683 	int 			i;
684 	int 			retval = 0;
685 
686 	if (!sctp_addip_enable)
687 		return retval;
688 
689 	sp = sctp_sk(sk);
690 	ep = sp->ep;
691 
692 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
693 			  __FUNCTION__, sk, addrs, addrcnt);
694 
695 	list_for_each(pos, &ep->asocs) {
696 		asoc = list_entry(pos, struct sctp_association, asocs);
697 
698 		if (!asoc->peer.asconf_capable)
699 			continue;
700 
701 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
702 			continue;
703 
704 		if (!sctp_state(asoc, ESTABLISHED))
705 			continue;
706 
707 		/* Check if any address in the packed array of addresses is
708 		 * not present in the bind address list of the association.
709 		 * If so, do not send the asconf chunk to its peer, but
710 		 * continue with other associations.
711 		 */
712 		addr_buf = addrs;
713 		for (i = 0; i < addrcnt; i++) {
714 			laddr = (union sctp_addr *)addr_buf;
715 			af = sctp_get_af_specific(laddr->v4.sin_family);
716 			if (!af) {
717 				retval = -EINVAL;
718 				goto out;
719 			}
720 
721 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
722 				break;
723 
724 			addr_buf += af->sockaddr_len;
725 		}
726 		if (i < addrcnt)
727 			continue;
728 
729 		/* Find one address in the association's bind address list
730 		 * that is not in the packed array of addresses. This is to
731 		 * make sure that we do not delete all the addresses in the
732 		 * association.
733 		 */
734 		bp = &asoc->base.bind_addr;
735 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
736 					       addrcnt, sp);
737 		if (!laddr)
738 			continue;
739 
740 		/* We do not need RCU protection throughout this loop
741 		 * because this is done under a socket lock from the
742 		 * setsockopt call.
743 		 */
744 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
745 						   SCTP_PARAM_DEL_IP);
746 		if (!chunk) {
747 			retval = -ENOMEM;
748 			goto out;
749 		}
750 
751 		/* Reset use_as_src flag for the addresses in the bind address
752 		 * list that are to be deleted.
753 		 */
754 		addr_buf = addrs;
755 		for (i = 0; i < addrcnt; i++) {
756 			laddr = (union sctp_addr *)addr_buf;
757 			af = sctp_get_af_specific(laddr->v4.sin_family);
758 			list_for_each_entry(saddr, &bp->address_list, list) {
759 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
760 					saddr->use_as_src = 0;
761 			}
762 			addr_buf += af->sockaddr_len;
763 		}
764 
765 		/* Update the route and saddr entries for all the transports
766 		 * as some of the addresses in the bind address list are
767 		 * about to be deleted and cannot be used as source addresses.
768 		 */
769 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
770 			transport = list_entry(pos1, struct sctp_transport,
771 					       transports);
772 			dst_release(transport->dst);
773 			sctp_transport_route(transport, NULL,
774 					     sctp_sk(asoc->base.sk));
775 		}
776 
777 		retval = sctp_send_asconf(asoc, chunk);
778 	}
779 out:
780 	return retval;
781 }
782 
783 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
784  *
785  * API 8.1
786  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
787  *                int flags);
788  *
789  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
790  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
791  * or IPv6 addresses.
792  *
793  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
794  * Section 3.1.2 for this usage.
795  *
796  * addrs is a pointer to an array of one or more socket addresses. Each
797  * address is contained in its appropriate structure (i.e. struct
798  * sockaddr_in or struct sockaddr_in6) the family of the address type
799  * must be used to distinguish the address length (note that this
800  * representation is termed a "packed array" of addresses). The caller
801  * specifies the number of addresses in the array with addrcnt.
802  *
803  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
804  * -1, and sets errno to the appropriate error code.
805  *
806  * For SCTP, the port given in each socket address must be the same, or
807  * sctp_bindx() will fail, setting errno to EINVAL.
808  *
809  * The flags parameter is formed from the bitwise OR of zero or more of
810  * the following currently defined flags:
811  *
812  * SCTP_BINDX_ADD_ADDR
813  *
814  * SCTP_BINDX_REM_ADDR
815  *
816  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
817  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
818  * addresses from the association. The two flags are mutually exclusive;
819  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
820  * not remove all addresses from an association; sctp_bindx() will
821  * reject such an attempt with EINVAL.
822  *
823  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
824  * additional addresses with an endpoint after calling bind().  Or use
825  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
826  * socket is associated with so that no new association accepted will be
827  * associated with those addresses. If the endpoint supports dynamic
828  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
829  * endpoint to send the appropriate message to the peer to change the
830  * peers address lists.
831  *
832  * Adding and removing addresses from a connected association is
833  * optional functionality. Implementations that do not support this
834  * functionality should return EOPNOTSUPP.
835  *
836  * Basically do nothing but copying the addresses from user to kernel
837  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
838  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
839  * from userspace.
840  *
841  * We don't use copy_from_user() for optimization: we first do the
842  * sanity checks (buffer size -fast- and access check-healthy
843  * pointer); if all of those succeed, then we can alloc the memory
844  * (expensive operation) needed to copy the data to kernel. Then we do
845  * the copying without checking the user space area
846  * (__copy_from_user()).
847  *
848  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
849  * it.
850  *
851  * sk        The sk of the socket
852  * addrs     The pointer to the addresses in user land
853  * addrssize Size of the addrs buffer
854  * op        Operation to perform (add or remove, see the flags of
855  *           sctp_bindx)
856  *
857  * Returns 0 if ok, <0 errno code on error.
858  */
859 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
860 				      struct sockaddr __user *addrs,
861 				      int addrs_size, int op)
862 {
863 	struct sockaddr *kaddrs;
864 	int err;
865 	int addrcnt = 0;
866 	int walk_size = 0;
867 	struct sockaddr *sa_addr;
868 	void *addr_buf;
869 	struct sctp_af *af;
870 
871 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
872 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
873 
874 	if (unlikely(addrs_size <= 0))
875 		return -EINVAL;
876 
877 	/* Check the user passed a healthy pointer.  */
878 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
879 		return -EFAULT;
880 
881 	/* Alloc space for the address array in kernel memory.  */
882 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
883 	if (unlikely(!kaddrs))
884 		return -ENOMEM;
885 
886 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
887 		kfree(kaddrs);
888 		return -EFAULT;
889 	}
890 
891 	/* Walk through the addrs buffer and count the number of addresses. */
892 	addr_buf = kaddrs;
893 	while (walk_size < addrs_size) {
894 		sa_addr = (struct sockaddr *)addr_buf;
895 		af = sctp_get_af_specific(sa_addr->sa_family);
896 
897 		/* If the address family is not supported or if this address
898 		 * causes the address buffer to overflow return EINVAL.
899 		 */
900 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
901 			kfree(kaddrs);
902 			return -EINVAL;
903 		}
904 		addrcnt++;
905 		addr_buf += af->sockaddr_len;
906 		walk_size += af->sockaddr_len;
907 	}
908 
909 	/* Do the work. */
910 	switch (op) {
911 	case SCTP_BINDX_ADD_ADDR:
912 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
913 		if (err)
914 			goto out;
915 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
916 		break;
917 
918 	case SCTP_BINDX_REM_ADDR:
919 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
920 		if (err)
921 			goto out;
922 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
923 		break;
924 
925 	default:
926 		err = -EINVAL;
927 		break;
928 	}
929 
930 out:
931 	kfree(kaddrs);
932 
933 	return err;
934 }
935 
936 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
937  *
938  * Common routine for handling connect() and sctp_connectx().
939  * Connect will come in with just a single address.
940  */
941 static int __sctp_connect(struct sock* sk,
942 			  struct sockaddr *kaddrs,
943 			  int addrs_size)
944 {
945 	struct sctp_sock *sp;
946 	struct sctp_endpoint *ep;
947 	struct sctp_association *asoc = NULL;
948 	struct sctp_association *asoc2;
949 	struct sctp_transport *transport;
950 	union sctp_addr to;
951 	struct sctp_af *af;
952 	sctp_scope_t scope;
953 	long timeo;
954 	int err = 0;
955 	int addrcnt = 0;
956 	int walk_size = 0;
957 	union sctp_addr *sa_addr = NULL;
958 	void *addr_buf;
959 	unsigned short port;
960 	unsigned int f_flags = 0;
961 
962 	sp = sctp_sk(sk);
963 	ep = sp->ep;
964 
965 	/* connect() cannot be done on a socket that is already in ESTABLISHED
966 	 * state - UDP-style peeled off socket or a TCP-style socket that
967 	 * is already connected.
968 	 * It cannot be done even on a TCP-style listening socket.
969 	 */
970 	if (sctp_sstate(sk, ESTABLISHED) ||
971 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
972 		err = -EISCONN;
973 		goto out_free;
974 	}
975 
976 	/* Walk through the addrs buffer and count the number of addresses. */
977 	addr_buf = kaddrs;
978 	while (walk_size < addrs_size) {
979 		sa_addr = (union sctp_addr *)addr_buf;
980 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
981 		port = ntohs(sa_addr->v4.sin_port);
982 
983 		/* If the address family is not supported or if this address
984 		 * causes the address buffer to overflow return EINVAL.
985 		 */
986 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
987 			err = -EINVAL;
988 			goto out_free;
989 		}
990 
991 		/* Save current address so we can work with it */
992 		memcpy(&to, sa_addr, af->sockaddr_len);
993 
994 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
995 		if (err)
996 			goto out_free;
997 
998 		/* Make sure the destination port is correctly set
999 		 * in all addresses.
1000 		 */
1001 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1002 			goto out_free;
1003 
1004 
1005 		/* Check if there already is a matching association on the
1006 		 * endpoint (other than the one created here).
1007 		 */
1008 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1009 		if (asoc2 && asoc2 != asoc) {
1010 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1011 				err = -EISCONN;
1012 			else
1013 				err = -EALREADY;
1014 			goto out_free;
1015 		}
1016 
1017 		/* If we could not find a matching association on the endpoint,
1018 		 * make sure that there is no peeled-off association matching
1019 		 * the peer address even on another socket.
1020 		 */
1021 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1022 			err = -EADDRNOTAVAIL;
1023 			goto out_free;
1024 		}
1025 
1026 		if (!asoc) {
1027 			/* If a bind() or sctp_bindx() is not called prior to
1028 			 * an sctp_connectx() call, the system picks an
1029 			 * ephemeral port and will choose an address set
1030 			 * equivalent to binding with a wildcard address.
1031 			 */
1032 			if (!ep->base.bind_addr.port) {
1033 				if (sctp_autobind(sk)) {
1034 					err = -EAGAIN;
1035 					goto out_free;
1036 				}
1037 			} else {
1038 				/*
1039 				 * If an unprivileged user inherits a 1-many
1040 				 * style socket with open associations on a
1041 				 * privileged port, it MAY be permitted to
1042 				 * accept new associations, but it SHOULD NOT
1043 				 * be permitted to open new associations.
1044 				 */
1045 				if (ep->base.bind_addr.port < PROT_SOCK &&
1046 				    !capable(CAP_NET_BIND_SERVICE)) {
1047 					err = -EACCES;
1048 					goto out_free;
1049 				}
1050 			}
1051 
1052 			scope = sctp_scope(&to);
1053 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1054 			if (!asoc) {
1055 				err = -ENOMEM;
1056 				goto out_free;
1057 			}
1058 		}
1059 
1060 		/* Prime the peer's transport structures.  */
1061 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1062 						SCTP_UNKNOWN);
1063 		if (!transport) {
1064 			err = -ENOMEM;
1065 			goto out_free;
1066 		}
1067 
1068 		addrcnt++;
1069 		addr_buf += af->sockaddr_len;
1070 		walk_size += af->sockaddr_len;
1071 	}
1072 
1073 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1074 	if (err < 0) {
1075 		goto out_free;
1076 	}
1077 
1078 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1079 	if (err < 0) {
1080 		goto out_free;
1081 	}
1082 
1083 	/* Initialize sk's dport and daddr for getpeername() */
1084 	inet_sk(sk)->dport = htons(asoc->peer.port);
1085 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1086 	af->to_sk_daddr(sa_addr, sk);
1087 	sk->sk_err = 0;
1088 
1089 	/* in-kernel sockets don't generally have a file allocated to them
1090 	 * if all they do is call sock_create_kern().
1091 	 */
1092 	if (sk->sk_socket->file)
1093 		f_flags = sk->sk_socket->file->f_flags;
1094 
1095 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1096 
1097 	err = sctp_wait_for_connect(asoc, &timeo);
1098 
1099 	/* Don't free association on exit. */
1100 	asoc = NULL;
1101 
1102 out_free:
1103 
1104 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1105 			  " kaddrs: %p err: %d\n",
1106 			  asoc, kaddrs, err);
1107 	if (asoc)
1108 		sctp_association_free(asoc);
1109 	return err;
1110 }
1111 
1112 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1113  *
1114  * API 8.9
1115  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1116  *
1117  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1118  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1119  * or IPv6 addresses.
1120  *
1121  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1122  * Section 3.1.2 for this usage.
1123  *
1124  * addrs is a pointer to an array of one or more socket addresses. Each
1125  * address is contained in its appropriate structure (i.e. struct
1126  * sockaddr_in or struct sockaddr_in6) the family of the address type
1127  * must be used to distengish the address length (note that this
1128  * representation is termed a "packed array" of addresses). The caller
1129  * specifies the number of addresses in the array with addrcnt.
1130  *
1131  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1132  * -1, and sets errno to the appropriate error code.
1133  *
1134  * For SCTP, the port given in each socket address must be the same, or
1135  * sctp_connectx() will fail, setting errno to EINVAL.
1136  *
1137  * An application can use sctp_connectx to initiate an association with
1138  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1139  * allows a caller to specify multiple addresses at which a peer can be
1140  * reached.  The way the SCTP stack uses the list of addresses to set up
1141  * the association is implementation dependant.  This function only
1142  * specifies that the stack will try to make use of all the addresses in
1143  * the list when needed.
1144  *
1145  * Note that the list of addresses passed in is only used for setting up
1146  * the association.  It does not necessarily equal the set of addresses
1147  * the peer uses for the resulting association.  If the caller wants to
1148  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1149  * retrieve them after the association has been set up.
1150  *
1151  * Basically do nothing but copying the addresses from user to kernel
1152  * land and invoking either sctp_connectx(). This is used for tunneling
1153  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1154  *
1155  * We don't use copy_from_user() for optimization: we first do the
1156  * sanity checks (buffer size -fast- and access check-healthy
1157  * pointer); if all of those succeed, then we can alloc the memory
1158  * (expensive operation) needed to copy the data to kernel. Then we do
1159  * the copying without checking the user space area
1160  * (__copy_from_user()).
1161  *
1162  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1163  * it.
1164  *
1165  * sk        The sk of the socket
1166  * addrs     The pointer to the addresses in user land
1167  * addrssize Size of the addrs buffer
1168  *
1169  * Returns 0 if ok, <0 errno code on error.
1170  */
1171 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1172 				      struct sockaddr __user *addrs,
1173 				      int addrs_size)
1174 {
1175 	int err = 0;
1176 	struct sockaddr *kaddrs;
1177 
1178 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1179 			  __FUNCTION__, sk, addrs, addrs_size);
1180 
1181 	if (unlikely(addrs_size <= 0))
1182 		return -EINVAL;
1183 
1184 	/* Check the user passed a healthy pointer.  */
1185 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1186 		return -EFAULT;
1187 
1188 	/* Alloc space for the address array in kernel memory.  */
1189 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1190 	if (unlikely(!kaddrs))
1191 		return -ENOMEM;
1192 
1193 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1194 		err = -EFAULT;
1195 	} else {
1196 		err = __sctp_connect(sk, kaddrs, addrs_size);
1197 	}
1198 
1199 	kfree(kaddrs);
1200 	return err;
1201 }
1202 
1203 /* API 3.1.4 close() - UDP Style Syntax
1204  * Applications use close() to perform graceful shutdown (as described in
1205  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1206  * by a UDP-style socket.
1207  *
1208  * The syntax is
1209  *
1210  *   ret = close(int sd);
1211  *
1212  *   sd      - the socket descriptor of the associations to be closed.
1213  *
1214  * To gracefully shutdown a specific association represented by the
1215  * UDP-style socket, an application should use the sendmsg() call,
1216  * passing no user data, but including the appropriate flag in the
1217  * ancillary data (see Section xxxx).
1218  *
1219  * If sd in the close() call is a branched-off socket representing only
1220  * one association, the shutdown is performed on that association only.
1221  *
1222  * 4.1.6 close() - TCP Style Syntax
1223  *
1224  * Applications use close() to gracefully close down an association.
1225  *
1226  * The syntax is:
1227  *
1228  *    int close(int sd);
1229  *
1230  *      sd      - the socket descriptor of the association to be closed.
1231  *
1232  * After an application calls close() on a socket descriptor, no further
1233  * socket operations will succeed on that descriptor.
1234  *
1235  * API 7.1.4 SO_LINGER
1236  *
1237  * An application using the TCP-style socket can use this option to
1238  * perform the SCTP ABORT primitive.  The linger option structure is:
1239  *
1240  *  struct  linger {
1241  *     int     l_onoff;                // option on/off
1242  *     int     l_linger;               // linger time
1243  * };
1244  *
1245  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1246  * to 0, calling close() is the same as the ABORT primitive.  If the
1247  * value is set to a negative value, the setsockopt() call will return
1248  * an error.  If the value is set to a positive value linger_time, the
1249  * close() can be blocked for at most linger_time ms.  If the graceful
1250  * shutdown phase does not finish during this period, close() will
1251  * return but the graceful shutdown phase continues in the system.
1252  */
1253 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1254 {
1255 	struct sctp_endpoint *ep;
1256 	struct sctp_association *asoc;
1257 	struct list_head *pos, *temp;
1258 
1259 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1260 
1261 	sctp_lock_sock(sk);
1262 	sk->sk_shutdown = SHUTDOWN_MASK;
1263 
1264 	ep = sctp_sk(sk)->ep;
1265 
1266 	/* Walk all associations on an endpoint.  */
1267 	list_for_each_safe(pos, temp, &ep->asocs) {
1268 		asoc = list_entry(pos, struct sctp_association, asocs);
1269 
1270 		if (sctp_style(sk, TCP)) {
1271 			/* A closed association can still be in the list if
1272 			 * it belongs to a TCP-style listening socket that is
1273 			 * not yet accepted. If so, free it. If not, send an
1274 			 * ABORT or SHUTDOWN based on the linger options.
1275 			 */
1276 			if (sctp_state(asoc, CLOSED)) {
1277 				sctp_unhash_established(asoc);
1278 				sctp_association_free(asoc);
1279 				continue;
1280 			}
1281 		}
1282 
1283 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1284 			struct sctp_chunk *chunk;
1285 
1286 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1287 			if (chunk)
1288 				sctp_primitive_ABORT(asoc, chunk);
1289 		} else
1290 			sctp_primitive_SHUTDOWN(asoc, NULL);
1291 	}
1292 
1293 	/* Clean up any skbs sitting on the receive queue.  */
1294 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1295 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1296 
1297 	/* On a TCP-style socket, block for at most linger_time if set. */
1298 	if (sctp_style(sk, TCP) && timeout)
1299 		sctp_wait_for_close(sk, timeout);
1300 
1301 	/* This will run the backlog queue.  */
1302 	sctp_release_sock(sk);
1303 
1304 	/* Supposedly, no process has access to the socket, but
1305 	 * the net layers still may.
1306 	 */
1307 	sctp_local_bh_disable();
1308 	sctp_bh_lock_sock(sk);
1309 
1310 	/* Hold the sock, since sk_common_release() will put sock_put()
1311 	 * and we have just a little more cleanup.
1312 	 */
1313 	sock_hold(sk);
1314 	sk_common_release(sk);
1315 
1316 	sctp_bh_unlock_sock(sk);
1317 	sctp_local_bh_enable();
1318 
1319 	sock_put(sk);
1320 
1321 	SCTP_DBG_OBJCNT_DEC(sock);
1322 }
1323 
1324 /* Handle EPIPE error. */
1325 static int sctp_error(struct sock *sk, int flags, int err)
1326 {
1327 	if (err == -EPIPE)
1328 		err = sock_error(sk) ? : -EPIPE;
1329 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1330 		send_sig(SIGPIPE, current, 0);
1331 	return err;
1332 }
1333 
1334 /* API 3.1.3 sendmsg() - UDP Style Syntax
1335  *
1336  * An application uses sendmsg() and recvmsg() calls to transmit data to
1337  * and receive data from its peer.
1338  *
1339  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1340  *                  int flags);
1341  *
1342  *  socket  - the socket descriptor of the endpoint.
1343  *  message - pointer to the msghdr structure which contains a single
1344  *            user message and possibly some ancillary data.
1345  *
1346  *            See Section 5 for complete description of the data
1347  *            structures.
1348  *
1349  *  flags   - flags sent or received with the user message, see Section
1350  *            5 for complete description of the flags.
1351  *
1352  * Note:  This function could use a rewrite especially when explicit
1353  * connect support comes in.
1354  */
1355 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1356 
1357 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1358 
1359 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1360 			     struct msghdr *msg, size_t msg_len)
1361 {
1362 	struct sctp_sock *sp;
1363 	struct sctp_endpoint *ep;
1364 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1365 	struct sctp_transport *transport, *chunk_tp;
1366 	struct sctp_chunk *chunk;
1367 	union sctp_addr to;
1368 	struct sockaddr *msg_name = NULL;
1369 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1370 	struct sctp_sndrcvinfo *sinfo;
1371 	struct sctp_initmsg *sinit;
1372 	sctp_assoc_t associd = 0;
1373 	sctp_cmsgs_t cmsgs = { NULL };
1374 	int err;
1375 	sctp_scope_t scope;
1376 	long timeo;
1377 	__u16 sinfo_flags = 0;
1378 	struct sctp_datamsg *datamsg;
1379 	struct list_head *pos;
1380 	int msg_flags = msg->msg_flags;
1381 
1382 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1383 			  sk, msg, msg_len);
1384 
1385 	err = 0;
1386 	sp = sctp_sk(sk);
1387 	ep = sp->ep;
1388 
1389 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1390 
1391 	/* We cannot send a message over a TCP-style listening socket. */
1392 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1393 		err = -EPIPE;
1394 		goto out_nounlock;
1395 	}
1396 
1397 	/* Parse out the SCTP CMSGs.  */
1398 	err = sctp_msghdr_parse(msg, &cmsgs);
1399 
1400 	if (err) {
1401 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1402 		goto out_nounlock;
1403 	}
1404 
1405 	/* Fetch the destination address for this packet.  This
1406 	 * address only selects the association--it is not necessarily
1407 	 * the address we will send to.
1408 	 * For a peeled-off socket, msg_name is ignored.
1409 	 */
1410 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1411 		int msg_namelen = msg->msg_namelen;
1412 
1413 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1414 				       msg_namelen);
1415 		if (err)
1416 			return err;
1417 
1418 		if (msg_namelen > sizeof(to))
1419 			msg_namelen = sizeof(to);
1420 		memcpy(&to, msg->msg_name, msg_namelen);
1421 		msg_name = msg->msg_name;
1422 	}
1423 
1424 	sinfo = cmsgs.info;
1425 	sinit = cmsgs.init;
1426 
1427 	/* Did the user specify SNDRCVINFO?  */
1428 	if (sinfo) {
1429 		sinfo_flags = sinfo->sinfo_flags;
1430 		associd = sinfo->sinfo_assoc_id;
1431 	}
1432 
1433 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1434 			  msg_len, sinfo_flags);
1435 
1436 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1437 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1438 		err = -EINVAL;
1439 		goto out_nounlock;
1440 	}
1441 
1442 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1443 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1444 	 * If SCTP_ABORT is set, the message length could be non zero with
1445 	 * the msg_iov set to the user abort reason.
1446 	 */
1447 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1448 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1449 		err = -EINVAL;
1450 		goto out_nounlock;
1451 	}
1452 
1453 	/* If SCTP_ADDR_OVER is set, there must be an address
1454 	 * specified in msg_name.
1455 	 */
1456 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1457 		err = -EINVAL;
1458 		goto out_nounlock;
1459 	}
1460 
1461 	transport = NULL;
1462 
1463 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1464 
1465 	sctp_lock_sock(sk);
1466 
1467 	/* If a msg_name has been specified, assume this is to be used.  */
1468 	if (msg_name) {
1469 		/* Look for a matching association on the endpoint. */
1470 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1471 		if (!asoc) {
1472 			/* If we could not find a matching association on the
1473 			 * endpoint, make sure that it is not a TCP-style
1474 			 * socket that already has an association or there is
1475 			 * no peeled-off association on another socket.
1476 			 */
1477 			if ((sctp_style(sk, TCP) &&
1478 			     sctp_sstate(sk, ESTABLISHED)) ||
1479 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1480 				err = -EADDRNOTAVAIL;
1481 				goto out_unlock;
1482 			}
1483 		}
1484 	} else {
1485 		asoc = sctp_id2assoc(sk, associd);
1486 		if (!asoc) {
1487 			err = -EPIPE;
1488 			goto out_unlock;
1489 		}
1490 	}
1491 
1492 	if (asoc) {
1493 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1494 
1495 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1496 		 * socket that has an association in CLOSED state. This can
1497 		 * happen when an accepted socket has an association that is
1498 		 * already CLOSED.
1499 		 */
1500 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1501 			err = -EPIPE;
1502 			goto out_unlock;
1503 		}
1504 
1505 		if (sinfo_flags & SCTP_EOF) {
1506 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1507 					  asoc);
1508 			sctp_primitive_SHUTDOWN(asoc, NULL);
1509 			err = 0;
1510 			goto out_unlock;
1511 		}
1512 		if (sinfo_flags & SCTP_ABORT) {
1513 
1514 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1515 			if (!chunk) {
1516 				err = -ENOMEM;
1517 				goto out_unlock;
1518 			}
1519 
1520 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1521 			sctp_primitive_ABORT(asoc, chunk);
1522 			err = 0;
1523 			goto out_unlock;
1524 		}
1525 	}
1526 
1527 	/* Do we need to create the association?  */
1528 	if (!asoc) {
1529 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1530 
1531 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1532 			err = -EINVAL;
1533 			goto out_unlock;
1534 		}
1535 
1536 		/* Check for invalid stream against the stream counts,
1537 		 * either the default or the user specified stream counts.
1538 		 */
1539 		if (sinfo) {
1540 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1541 				/* Check against the defaults. */
1542 				if (sinfo->sinfo_stream >=
1543 				    sp->initmsg.sinit_num_ostreams) {
1544 					err = -EINVAL;
1545 					goto out_unlock;
1546 				}
1547 			} else {
1548 				/* Check against the requested.  */
1549 				if (sinfo->sinfo_stream >=
1550 				    sinit->sinit_num_ostreams) {
1551 					err = -EINVAL;
1552 					goto out_unlock;
1553 				}
1554 			}
1555 		}
1556 
1557 		/*
1558 		 * API 3.1.2 bind() - UDP Style Syntax
1559 		 * If a bind() or sctp_bindx() is not called prior to a
1560 		 * sendmsg() call that initiates a new association, the
1561 		 * system picks an ephemeral port and will choose an address
1562 		 * set equivalent to binding with a wildcard address.
1563 		 */
1564 		if (!ep->base.bind_addr.port) {
1565 			if (sctp_autobind(sk)) {
1566 				err = -EAGAIN;
1567 				goto out_unlock;
1568 			}
1569 		} else {
1570 			/*
1571 			 * If an unprivileged user inherits a one-to-many
1572 			 * style socket with open associations on a privileged
1573 			 * port, it MAY be permitted to accept new associations,
1574 			 * but it SHOULD NOT be permitted to open new
1575 			 * associations.
1576 			 */
1577 			if (ep->base.bind_addr.port < PROT_SOCK &&
1578 			    !capable(CAP_NET_BIND_SERVICE)) {
1579 				err = -EACCES;
1580 				goto out_unlock;
1581 			}
1582 		}
1583 
1584 		scope = sctp_scope(&to);
1585 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1586 		if (!new_asoc) {
1587 			err = -ENOMEM;
1588 			goto out_unlock;
1589 		}
1590 		asoc = new_asoc;
1591 
1592 		/* If the SCTP_INIT ancillary data is specified, set all
1593 		 * the association init values accordingly.
1594 		 */
1595 		if (sinit) {
1596 			if (sinit->sinit_num_ostreams) {
1597 				asoc->c.sinit_num_ostreams =
1598 					sinit->sinit_num_ostreams;
1599 			}
1600 			if (sinit->sinit_max_instreams) {
1601 				asoc->c.sinit_max_instreams =
1602 					sinit->sinit_max_instreams;
1603 			}
1604 			if (sinit->sinit_max_attempts) {
1605 				asoc->max_init_attempts
1606 					= sinit->sinit_max_attempts;
1607 			}
1608 			if (sinit->sinit_max_init_timeo) {
1609 				asoc->max_init_timeo =
1610 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1611 			}
1612 		}
1613 
1614 		/* Prime the peer's transport structures.  */
1615 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1616 		if (!transport) {
1617 			err = -ENOMEM;
1618 			goto out_free;
1619 		}
1620 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1621 		if (err < 0) {
1622 			err = -ENOMEM;
1623 			goto out_free;
1624 		}
1625 	}
1626 
1627 	/* ASSERT: we have a valid association at this point.  */
1628 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1629 
1630 	if (!sinfo) {
1631 		/* If the user didn't specify SNDRCVINFO, make up one with
1632 		 * some defaults.
1633 		 */
1634 		default_sinfo.sinfo_stream = asoc->default_stream;
1635 		default_sinfo.sinfo_flags = asoc->default_flags;
1636 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1637 		default_sinfo.sinfo_context = asoc->default_context;
1638 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1639 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1640 		sinfo = &default_sinfo;
1641 	}
1642 
1643 	/* API 7.1.7, the sndbuf size per association bounds the
1644 	 * maximum size of data that can be sent in a single send call.
1645 	 */
1646 	if (msg_len > sk->sk_sndbuf) {
1647 		err = -EMSGSIZE;
1648 		goto out_free;
1649 	}
1650 
1651 	if (asoc->pmtu_pending)
1652 		sctp_assoc_pending_pmtu(asoc);
1653 
1654 	/* If fragmentation is disabled and the message length exceeds the
1655 	 * association fragmentation point, return EMSGSIZE.  The I-D
1656 	 * does not specify what this error is, but this looks like
1657 	 * a great fit.
1658 	 */
1659 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1660 		err = -EMSGSIZE;
1661 		goto out_free;
1662 	}
1663 
1664 	if (sinfo) {
1665 		/* Check for invalid stream. */
1666 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1667 			err = -EINVAL;
1668 			goto out_free;
1669 		}
1670 	}
1671 
1672 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1673 	if (!sctp_wspace(asoc)) {
1674 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1675 		if (err)
1676 			goto out_free;
1677 	}
1678 
1679 	/* If an address is passed with the sendto/sendmsg call, it is used
1680 	 * to override the primary destination address in the TCP model, or
1681 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1682 	 */
1683 	if ((sctp_style(sk, TCP) && msg_name) ||
1684 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1685 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1686 		if (!chunk_tp) {
1687 			err = -EINVAL;
1688 			goto out_free;
1689 		}
1690 	} else
1691 		chunk_tp = NULL;
1692 
1693 	/* Auto-connect, if we aren't connected already. */
1694 	if (sctp_state(asoc, CLOSED)) {
1695 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1696 		if (err < 0)
1697 			goto out_free;
1698 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1699 	}
1700 
1701 	/* Break the message into multiple chunks of maximum size. */
1702 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1703 	if (!datamsg) {
1704 		err = -ENOMEM;
1705 		goto out_free;
1706 	}
1707 
1708 	/* Now send the (possibly) fragmented message. */
1709 	list_for_each(pos, &datamsg->chunks) {
1710 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1711 		sctp_datamsg_track(chunk);
1712 
1713 		/* Do accounting for the write space.  */
1714 		sctp_set_owner_w(chunk);
1715 
1716 		chunk->transport = chunk_tp;
1717 
1718 		/* Send it to the lower layers.  Note:  all chunks
1719 		 * must either fail or succeed.   The lower layer
1720 		 * works that way today.  Keep it that way or this
1721 		 * breaks.
1722 		 */
1723 		err = sctp_primitive_SEND(asoc, chunk);
1724 		/* Did the lower layer accept the chunk? */
1725 		if (err)
1726 			sctp_chunk_free(chunk);
1727 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1728 	}
1729 
1730 	sctp_datamsg_free(datamsg);
1731 	if (err)
1732 		goto out_free;
1733 	else
1734 		err = msg_len;
1735 
1736 	/* If we are already past ASSOCIATE, the lower
1737 	 * layers are responsible for association cleanup.
1738 	 */
1739 	goto out_unlock;
1740 
1741 out_free:
1742 	if (new_asoc)
1743 		sctp_association_free(asoc);
1744 out_unlock:
1745 	sctp_release_sock(sk);
1746 
1747 out_nounlock:
1748 	return sctp_error(sk, msg_flags, err);
1749 
1750 #if 0
1751 do_sock_err:
1752 	if (msg_len)
1753 		err = msg_len;
1754 	else
1755 		err = sock_error(sk);
1756 	goto out;
1757 
1758 do_interrupted:
1759 	if (msg_len)
1760 		err = msg_len;
1761 	goto out;
1762 #endif /* 0 */
1763 }
1764 
1765 /* This is an extended version of skb_pull() that removes the data from the
1766  * start of a skb even when data is spread across the list of skb's in the
1767  * frag_list. len specifies the total amount of data that needs to be removed.
1768  * when 'len' bytes could be removed from the skb, it returns 0.
1769  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1770  * could not be removed.
1771  */
1772 static int sctp_skb_pull(struct sk_buff *skb, int len)
1773 {
1774 	struct sk_buff *list;
1775 	int skb_len = skb_headlen(skb);
1776 	int rlen;
1777 
1778 	if (len <= skb_len) {
1779 		__skb_pull(skb, len);
1780 		return 0;
1781 	}
1782 	len -= skb_len;
1783 	__skb_pull(skb, skb_len);
1784 
1785 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1786 		rlen = sctp_skb_pull(list, len);
1787 		skb->len -= (len-rlen);
1788 		skb->data_len -= (len-rlen);
1789 
1790 		if (!rlen)
1791 			return 0;
1792 
1793 		len = rlen;
1794 	}
1795 
1796 	return len;
1797 }
1798 
1799 /* API 3.1.3  recvmsg() - UDP Style Syntax
1800  *
1801  *  ssize_t recvmsg(int socket, struct msghdr *message,
1802  *                    int flags);
1803  *
1804  *  socket  - the socket descriptor of the endpoint.
1805  *  message - pointer to the msghdr structure which contains a single
1806  *            user message and possibly some ancillary data.
1807  *
1808  *            See Section 5 for complete description of the data
1809  *            structures.
1810  *
1811  *  flags   - flags sent or received with the user message, see Section
1812  *            5 for complete description of the flags.
1813  */
1814 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1815 
1816 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1817 			     struct msghdr *msg, size_t len, int noblock,
1818 			     int flags, int *addr_len)
1819 {
1820 	struct sctp_ulpevent *event = NULL;
1821 	struct sctp_sock *sp = sctp_sk(sk);
1822 	struct sk_buff *skb;
1823 	int copied;
1824 	int err = 0;
1825 	int skb_len;
1826 
1827 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1828 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1829 			  "len", len, "knoblauch", noblock,
1830 			  "flags", flags, "addr_len", addr_len);
1831 
1832 	sctp_lock_sock(sk);
1833 
1834 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1835 		err = -ENOTCONN;
1836 		goto out;
1837 	}
1838 
1839 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1840 	if (!skb)
1841 		goto out;
1842 
1843 	/* Get the total length of the skb including any skb's in the
1844 	 * frag_list.
1845 	 */
1846 	skb_len = skb->len;
1847 
1848 	copied = skb_len;
1849 	if (copied > len)
1850 		copied = len;
1851 
1852 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1853 
1854 	event = sctp_skb2event(skb);
1855 
1856 	if (err)
1857 		goto out_free;
1858 
1859 	sock_recv_timestamp(msg, sk, skb);
1860 	if (sctp_ulpevent_is_notification(event)) {
1861 		msg->msg_flags |= MSG_NOTIFICATION;
1862 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1863 	} else {
1864 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1865 	}
1866 
1867 	/* Check if we allow SCTP_SNDRCVINFO. */
1868 	if (sp->subscribe.sctp_data_io_event)
1869 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1870 #if 0
1871 	/* FIXME: we should be calling IP/IPv6 layers.  */
1872 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1873 		ip_cmsg_recv(msg, skb);
1874 #endif
1875 
1876 	err = copied;
1877 
1878 	/* If skb's length exceeds the user's buffer, update the skb and
1879 	 * push it back to the receive_queue so that the next call to
1880 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1881 	 */
1882 	if (skb_len > copied) {
1883 		msg->msg_flags &= ~MSG_EOR;
1884 		if (flags & MSG_PEEK)
1885 			goto out_free;
1886 		sctp_skb_pull(skb, copied);
1887 		skb_queue_head(&sk->sk_receive_queue, skb);
1888 
1889 		/* When only partial message is copied to the user, increase
1890 		 * rwnd by that amount. If all the data in the skb is read,
1891 		 * rwnd is updated when the event is freed.
1892 		 */
1893 		sctp_assoc_rwnd_increase(event->asoc, copied);
1894 		goto out;
1895 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1896 		   (event->msg_flags & MSG_EOR))
1897 		msg->msg_flags |= MSG_EOR;
1898 	else
1899 		msg->msg_flags &= ~MSG_EOR;
1900 
1901 out_free:
1902 	if (flags & MSG_PEEK) {
1903 		/* Release the skb reference acquired after peeking the skb in
1904 		 * sctp_skb_recv_datagram().
1905 		 */
1906 		kfree_skb(skb);
1907 	} else {
1908 		/* Free the event which includes releasing the reference to
1909 		 * the owner of the skb, freeing the skb and updating the
1910 		 * rwnd.
1911 		 */
1912 		sctp_ulpevent_free(event);
1913 	}
1914 out:
1915 	sctp_release_sock(sk);
1916 	return err;
1917 }
1918 
1919 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1920  *
1921  * This option is a on/off flag.  If enabled no SCTP message
1922  * fragmentation will be performed.  Instead if a message being sent
1923  * exceeds the current PMTU size, the message will NOT be sent and
1924  * instead a error will be indicated to the user.
1925  */
1926 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1927 					    char __user *optval, int optlen)
1928 {
1929 	int val;
1930 
1931 	if (optlen < sizeof(int))
1932 		return -EINVAL;
1933 
1934 	if (get_user(val, (int __user *)optval))
1935 		return -EFAULT;
1936 
1937 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1938 
1939 	return 0;
1940 }
1941 
1942 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1943 					int optlen)
1944 {
1945 	if (optlen != sizeof(struct sctp_event_subscribe))
1946 		return -EINVAL;
1947 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1948 		return -EFAULT;
1949 	return 0;
1950 }
1951 
1952 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1953  *
1954  * This socket option is applicable to the UDP-style socket only.  When
1955  * set it will cause associations that are idle for more than the
1956  * specified number of seconds to automatically close.  An association
1957  * being idle is defined an association that has NOT sent or received
1958  * user data.  The special value of '0' indicates that no automatic
1959  * close of any associations should be performed.  The option expects an
1960  * integer defining the number of seconds of idle time before an
1961  * association is closed.
1962  */
1963 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1964 					    int optlen)
1965 {
1966 	struct sctp_sock *sp = sctp_sk(sk);
1967 
1968 	/* Applicable to UDP-style socket only */
1969 	if (sctp_style(sk, TCP))
1970 		return -EOPNOTSUPP;
1971 	if (optlen != sizeof(int))
1972 		return -EINVAL;
1973 	if (copy_from_user(&sp->autoclose, optval, optlen))
1974 		return -EFAULT;
1975 
1976 	return 0;
1977 }
1978 
1979 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1980  *
1981  * Applications can enable or disable heartbeats for any peer address of
1982  * an association, modify an address's heartbeat interval, force a
1983  * heartbeat to be sent immediately, and adjust the address's maximum
1984  * number of retransmissions sent before an address is considered
1985  * unreachable.  The following structure is used to access and modify an
1986  * address's parameters:
1987  *
1988  *  struct sctp_paddrparams {
1989  *     sctp_assoc_t            spp_assoc_id;
1990  *     struct sockaddr_storage spp_address;
1991  *     uint32_t                spp_hbinterval;
1992  *     uint16_t                spp_pathmaxrxt;
1993  *     uint32_t                spp_pathmtu;
1994  *     uint32_t                spp_sackdelay;
1995  *     uint32_t                spp_flags;
1996  * };
1997  *
1998  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1999  *                     application, and identifies the association for
2000  *                     this query.
2001  *   spp_address     - This specifies which address is of interest.
2002  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2003  *                     in milliseconds.  If a  value of zero
2004  *                     is present in this field then no changes are to
2005  *                     be made to this parameter.
2006  *   spp_pathmaxrxt  - This contains the maximum number of
2007  *                     retransmissions before this address shall be
2008  *                     considered unreachable. If a  value of zero
2009  *                     is present in this field then no changes are to
2010  *                     be made to this parameter.
2011  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2012  *                     specified here will be the "fixed" path mtu.
2013  *                     Note that if the spp_address field is empty
2014  *                     then all associations on this address will
2015  *                     have this fixed path mtu set upon them.
2016  *
2017  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2018  *                     the number of milliseconds that sacks will be delayed
2019  *                     for. This value will apply to all addresses of an
2020  *                     association if the spp_address field is empty. Note
2021  *                     also, that if delayed sack is enabled and this
2022  *                     value is set to 0, no change is made to the last
2023  *                     recorded delayed sack timer value.
2024  *
2025  *   spp_flags       - These flags are used to control various features
2026  *                     on an association. The flag field may contain
2027  *                     zero or more of the following options.
2028  *
2029  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2030  *                     specified address. Note that if the address
2031  *                     field is empty all addresses for the association
2032  *                     have heartbeats enabled upon them.
2033  *
2034  *                     SPP_HB_DISABLE - Disable heartbeats on the
2035  *                     speicifed address. Note that if the address
2036  *                     field is empty all addresses for the association
2037  *                     will have their heartbeats disabled. Note also
2038  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2039  *                     mutually exclusive, only one of these two should
2040  *                     be specified. Enabling both fields will have
2041  *                     undetermined results.
2042  *
2043  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2044  *                     to be made immediately.
2045  *
2046  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2047  *                     heartbeat delayis to be set to the value of 0
2048  *                     milliseconds.
2049  *
2050  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2051  *                     discovery upon the specified address. Note that
2052  *                     if the address feild is empty then all addresses
2053  *                     on the association are effected.
2054  *
2055  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2056  *                     discovery upon the specified address. Note that
2057  *                     if the address feild is empty then all addresses
2058  *                     on the association are effected. Not also that
2059  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2060  *                     exclusive. Enabling both will have undetermined
2061  *                     results.
2062  *
2063  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2064  *                     on delayed sack. The time specified in spp_sackdelay
2065  *                     is used to specify the sack delay for this address. Note
2066  *                     that if spp_address is empty then all addresses will
2067  *                     enable delayed sack and take on the sack delay
2068  *                     value specified in spp_sackdelay.
2069  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2070  *                     off delayed sack. If the spp_address field is blank then
2071  *                     delayed sack is disabled for the entire association. Note
2072  *                     also that this field is mutually exclusive to
2073  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2074  *                     results.
2075  */
2076 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2077 				       struct sctp_transport   *trans,
2078 				       struct sctp_association *asoc,
2079 				       struct sctp_sock        *sp,
2080 				       int                      hb_change,
2081 				       int                      pmtud_change,
2082 				       int                      sackdelay_change)
2083 {
2084 	int error;
2085 
2086 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2087 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2088 		if (error)
2089 			return error;
2090 	}
2091 
2092 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2093 	 * this field is ignored.  Note also that a value of zero indicates
2094 	 * the current setting should be left unchanged.
2095 	 */
2096 	if (params->spp_flags & SPP_HB_ENABLE) {
2097 
2098 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2099 		 * set.  This lets us use 0 value when this flag
2100 		 * is set.
2101 		 */
2102 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2103 			params->spp_hbinterval = 0;
2104 
2105 		if (params->spp_hbinterval ||
2106 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2107 			if (trans) {
2108 				trans->hbinterval =
2109 				    msecs_to_jiffies(params->spp_hbinterval);
2110 			} else if (asoc) {
2111 				asoc->hbinterval =
2112 				    msecs_to_jiffies(params->spp_hbinterval);
2113 			} else {
2114 				sp->hbinterval = params->spp_hbinterval;
2115 			}
2116 		}
2117 	}
2118 
2119 	if (hb_change) {
2120 		if (trans) {
2121 			trans->param_flags =
2122 				(trans->param_flags & ~SPP_HB) | hb_change;
2123 		} else if (asoc) {
2124 			asoc->param_flags =
2125 				(asoc->param_flags & ~SPP_HB) | hb_change;
2126 		} else {
2127 			sp->param_flags =
2128 				(sp->param_flags & ~SPP_HB) | hb_change;
2129 		}
2130 	}
2131 
2132 	/* When Path MTU discovery is disabled the value specified here will
2133 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2134 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2135 	 * effect).
2136 	 */
2137 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2138 		if (trans) {
2139 			trans->pathmtu = params->spp_pathmtu;
2140 			sctp_assoc_sync_pmtu(asoc);
2141 		} else if (asoc) {
2142 			asoc->pathmtu = params->spp_pathmtu;
2143 			sctp_frag_point(sp, params->spp_pathmtu);
2144 		} else {
2145 			sp->pathmtu = params->spp_pathmtu;
2146 		}
2147 	}
2148 
2149 	if (pmtud_change) {
2150 		if (trans) {
2151 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2152 				(params->spp_flags & SPP_PMTUD_ENABLE);
2153 			trans->param_flags =
2154 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2155 			if (update) {
2156 				sctp_transport_pmtu(trans);
2157 				sctp_assoc_sync_pmtu(asoc);
2158 			}
2159 		} else if (asoc) {
2160 			asoc->param_flags =
2161 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2162 		} else {
2163 			sp->param_flags =
2164 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2165 		}
2166 	}
2167 
2168 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2169 	 * value of this field is ignored.  Note also that a value of zero
2170 	 * indicates the current setting should be left unchanged.
2171 	 */
2172 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2173 		if (trans) {
2174 			trans->sackdelay =
2175 				msecs_to_jiffies(params->spp_sackdelay);
2176 		} else if (asoc) {
2177 			asoc->sackdelay =
2178 				msecs_to_jiffies(params->spp_sackdelay);
2179 		} else {
2180 			sp->sackdelay = params->spp_sackdelay;
2181 		}
2182 	}
2183 
2184 	if (sackdelay_change) {
2185 		if (trans) {
2186 			trans->param_flags =
2187 				(trans->param_flags & ~SPP_SACKDELAY) |
2188 				sackdelay_change;
2189 		} else if (asoc) {
2190 			asoc->param_flags =
2191 				(asoc->param_flags & ~SPP_SACKDELAY) |
2192 				sackdelay_change;
2193 		} else {
2194 			sp->param_flags =
2195 				(sp->param_flags & ~SPP_SACKDELAY) |
2196 				sackdelay_change;
2197 		}
2198 	}
2199 
2200 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2201 	 * of this field is ignored.  Note also that a value of zero
2202 	 * indicates the current setting should be left unchanged.
2203 	 */
2204 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2205 		if (trans) {
2206 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2207 		} else if (asoc) {
2208 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2209 		} else {
2210 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2218 					    char __user *optval, int optlen)
2219 {
2220 	struct sctp_paddrparams  params;
2221 	struct sctp_transport   *trans = NULL;
2222 	struct sctp_association *asoc = NULL;
2223 	struct sctp_sock        *sp = sctp_sk(sk);
2224 	int error;
2225 	int hb_change, pmtud_change, sackdelay_change;
2226 
2227 	if (optlen != sizeof(struct sctp_paddrparams))
2228 		return - EINVAL;
2229 
2230 	if (copy_from_user(&params, optval, optlen))
2231 		return -EFAULT;
2232 
2233 	/* Validate flags and value parameters. */
2234 	hb_change        = params.spp_flags & SPP_HB;
2235 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2236 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2237 
2238 	if (hb_change        == SPP_HB ||
2239 	    pmtud_change     == SPP_PMTUD ||
2240 	    sackdelay_change == SPP_SACKDELAY ||
2241 	    params.spp_sackdelay > 500 ||
2242 	    (params.spp_pathmtu
2243 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2244 		return -EINVAL;
2245 
2246 	/* If an address other than INADDR_ANY is specified, and
2247 	 * no transport is found, then the request is invalid.
2248 	 */
2249 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2250 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2251 					       params.spp_assoc_id);
2252 		if (!trans)
2253 			return -EINVAL;
2254 	}
2255 
2256 	/* Get association, if assoc_id != 0 and the socket is a one
2257 	 * to many style socket, and an association was not found, then
2258 	 * the id was invalid.
2259 	 */
2260 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2261 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2262 		return -EINVAL;
2263 
2264 	/* Heartbeat demand can only be sent on a transport or
2265 	 * association, but not a socket.
2266 	 */
2267 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2268 		return -EINVAL;
2269 
2270 	/* Process parameters. */
2271 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2272 					    hb_change, pmtud_change,
2273 					    sackdelay_change);
2274 
2275 	if (error)
2276 		return error;
2277 
2278 	/* If changes are for association, also apply parameters to each
2279 	 * transport.
2280 	 */
2281 	if (!trans && asoc) {
2282 		struct list_head *pos;
2283 
2284 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2285 			trans = list_entry(pos, struct sctp_transport,
2286 					   transports);
2287 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2288 						    hb_change, pmtud_change,
2289 						    sackdelay_change);
2290 		}
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2297  *
2298  *   This options will get or set the delayed ack timer.  The time is set
2299  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2300  *   endpoints default delayed ack timer value.  If the assoc_id field is
2301  *   non-zero, then the set or get effects the specified association.
2302  *
2303  *   struct sctp_assoc_value {
2304  *       sctp_assoc_t            assoc_id;
2305  *       uint32_t                assoc_value;
2306  *   };
2307  *
2308  *     assoc_id    - This parameter, indicates which association the
2309  *                   user is preforming an action upon. Note that if
2310  *                   this field's value is zero then the endpoints
2311  *                   default value is changed (effecting future
2312  *                   associations only).
2313  *
2314  *     assoc_value - This parameter contains the number of milliseconds
2315  *                   that the user is requesting the delayed ACK timer
2316  *                   be set to. Note that this value is defined in
2317  *                   the standard to be between 200 and 500 milliseconds.
2318  *
2319  *                   Note: a value of zero will leave the value alone,
2320  *                   but disable SACK delay. A non-zero value will also
2321  *                   enable SACK delay.
2322  */
2323 
2324 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2325 					    char __user *optval, int optlen)
2326 {
2327 	struct sctp_assoc_value  params;
2328 	struct sctp_transport   *trans = NULL;
2329 	struct sctp_association *asoc = NULL;
2330 	struct sctp_sock        *sp = sctp_sk(sk);
2331 
2332 	if (optlen != sizeof(struct sctp_assoc_value))
2333 		return - EINVAL;
2334 
2335 	if (copy_from_user(&params, optval, optlen))
2336 		return -EFAULT;
2337 
2338 	/* Validate value parameter. */
2339 	if (params.assoc_value > 500)
2340 		return -EINVAL;
2341 
2342 	/* Get association, if assoc_id != 0 and the socket is a one
2343 	 * to many style socket, and an association was not found, then
2344 	 * the id was invalid.
2345 	 */
2346 	asoc = sctp_id2assoc(sk, params.assoc_id);
2347 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2348 		return -EINVAL;
2349 
2350 	if (params.assoc_value) {
2351 		if (asoc) {
2352 			asoc->sackdelay =
2353 				msecs_to_jiffies(params.assoc_value);
2354 			asoc->param_flags =
2355 				(asoc->param_flags & ~SPP_SACKDELAY) |
2356 				SPP_SACKDELAY_ENABLE;
2357 		} else {
2358 			sp->sackdelay = params.assoc_value;
2359 			sp->param_flags =
2360 				(sp->param_flags & ~SPP_SACKDELAY) |
2361 				SPP_SACKDELAY_ENABLE;
2362 		}
2363 	} else {
2364 		if (asoc) {
2365 			asoc->param_flags =
2366 				(asoc->param_flags & ~SPP_SACKDELAY) |
2367 				SPP_SACKDELAY_DISABLE;
2368 		} else {
2369 			sp->param_flags =
2370 				(sp->param_flags & ~SPP_SACKDELAY) |
2371 				SPP_SACKDELAY_DISABLE;
2372 		}
2373 	}
2374 
2375 	/* If change is for association, also apply to each transport. */
2376 	if (asoc) {
2377 		struct list_head *pos;
2378 
2379 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2380 			trans = list_entry(pos, struct sctp_transport,
2381 					   transports);
2382 			if (params.assoc_value) {
2383 				trans->sackdelay =
2384 					msecs_to_jiffies(params.assoc_value);
2385 				trans->param_flags =
2386 					(trans->param_flags & ~SPP_SACKDELAY) |
2387 					SPP_SACKDELAY_ENABLE;
2388 			} else {
2389 				trans->param_flags =
2390 					(trans->param_flags & ~SPP_SACKDELAY) |
2391 					SPP_SACKDELAY_DISABLE;
2392 			}
2393 		}
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2400  *
2401  * Applications can specify protocol parameters for the default association
2402  * initialization.  The option name argument to setsockopt() and getsockopt()
2403  * is SCTP_INITMSG.
2404  *
2405  * Setting initialization parameters is effective only on an unconnected
2406  * socket (for UDP-style sockets only future associations are effected
2407  * by the change).  With TCP-style sockets, this option is inherited by
2408  * sockets derived from a listener socket.
2409  */
2410 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2411 {
2412 	struct sctp_initmsg sinit;
2413 	struct sctp_sock *sp = sctp_sk(sk);
2414 
2415 	if (optlen != sizeof(struct sctp_initmsg))
2416 		return -EINVAL;
2417 	if (copy_from_user(&sinit, optval, optlen))
2418 		return -EFAULT;
2419 
2420 	if (sinit.sinit_num_ostreams)
2421 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2422 	if (sinit.sinit_max_instreams)
2423 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2424 	if (sinit.sinit_max_attempts)
2425 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2426 	if (sinit.sinit_max_init_timeo)
2427 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2428 
2429 	return 0;
2430 }
2431 
2432 /*
2433  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2434  *
2435  *   Applications that wish to use the sendto() system call may wish to
2436  *   specify a default set of parameters that would normally be supplied
2437  *   through the inclusion of ancillary data.  This socket option allows
2438  *   such an application to set the default sctp_sndrcvinfo structure.
2439  *   The application that wishes to use this socket option simply passes
2440  *   in to this call the sctp_sndrcvinfo structure defined in Section
2441  *   5.2.2) The input parameters accepted by this call include
2442  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2443  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2444  *   to this call if the caller is using the UDP model.
2445  */
2446 static int sctp_setsockopt_default_send_param(struct sock *sk,
2447 						char __user *optval, int optlen)
2448 {
2449 	struct sctp_sndrcvinfo info;
2450 	struct sctp_association *asoc;
2451 	struct sctp_sock *sp = sctp_sk(sk);
2452 
2453 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2454 		return -EINVAL;
2455 	if (copy_from_user(&info, optval, optlen))
2456 		return -EFAULT;
2457 
2458 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2459 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2460 		return -EINVAL;
2461 
2462 	if (asoc) {
2463 		asoc->default_stream = info.sinfo_stream;
2464 		asoc->default_flags = info.sinfo_flags;
2465 		asoc->default_ppid = info.sinfo_ppid;
2466 		asoc->default_context = info.sinfo_context;
2467 		asoc->default_timetolive = info.sinfo_timetolive;
2468 	} else {
2469 		sp->default_stream = info.sinfo_stream;
2470 		sp->default_flags = info.sinfo_flags;
2471 		sp->default_ppid = info.sinfo_ppid;
2472 		sp->default_context = info.sinfo_context;
2473 		sp->default_timetolive = info.sinfo_timetolive;
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2480  *
2481  * Requests that the local SCTP stack use the enclosed peer address as
2482  * the association primary.  The enclosed address must be one of the
2483  * association peer's addresses.
2484  */
2485 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2486 					int optlen)
2487 {
2488 	struct sctp_prim prim;
2489 	struct sctp_transport *trans;
2490 
2491 	if (optlen != sizeof(struct sctp_prim))
2492 		return -EINVAL;
2493 
2494 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2495 		return -EFAULT;
2496 
2497 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2498 	if (!trans)
2499 		return -EINVAL;
2500 
2501 	sctp_assoc_set_primary(trans->asoc, trans);
2502 
2503 	return 0;
2504 }
2505 
2506 /*
2507  * 7.1.5 SCTP_NODELAY
2508  *
2509  * Turn on/off any Nagle-like algorithm.  This means that packets are
2510  * generally sent as soon as possible and no unnecessary delays are
2511  * introduced, at the cost of more packets in the network.  Expects an
2512  *  integer boolean flag.
2513  */
2514 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2515 					int optlen)
2516 {
2517 	int val;
2518 
2519 	if (optlen < sizeof(int))
2520 		return -EINVAL;
2521 	if (get_user(val, (int __user *)optval))
2522 		return -EFAULT;
2523 
2524 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2525 	return 0;
2526 }
2527 
2528 /*
2529  *
2530  * 7.1.1 SCTP_RTOINFO
2531  *
2532  * The protocol parameters used to initialize and bound retransmission
2533  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2534  * and modify these parameters.
2535  * All parameters are time values, in milliseconds.  A value of 0, when
2536  * modifying the parameters, indicates that the current value should not
2537  * be changed.
2538  *
2539  */
2540 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2541 	struct sctp_rtoinfo rtoinfo;
2542 	struct sctp_association *asoc;
2543 
2544 	if (optlen != sizeof (struct sctp_rtoinfo))
2545 		return -EINVAL;
2546 
2547 	if (copy_from_user(&rtoinfo, optval, optlen))
2548 		return -EFAULT;
2549 
2550 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2551 
2552 	/* Set the values to the specific association */
2553 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2554 		return -EINVAL;
2555 
2556 	if (asoc) {
2557 		if (rtoinfo.srto_initial != 0)
2558 			asoc->rto_initial =
2559 				msecs_to_jiffies(rtoinfo.srto_initial);
2560 		if (rtoinfo.srto_max != 0)
2561 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2562 		if (rtoinfo.srto_min != 0)
2563 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2564 	} else {
2565 		/* If there is no association or the association-id = 0
2566 		 * set the values to the endpoint.
2567 		 */
2568 		struct sctp_sock *sp = sctp_sk(sk);
2569 
2570 		if (rtoinfo.srto_initial != 0)
2571 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2572 		if (rtoinfo.srto_max != 0)
2573 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2574 		if (rtoinfo.srto_min != 0)
2575 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 /*
2582  *
2583  * 7.1.2 SCTP_ASSOCINFO
2584  *
2585  * This option is used to tune the maximum retransmission attempts
2586  * of the association.
2587  * Returns an error if the new association retransmission value is
2588  * greater than the sum of the retransmission value  of the peer.
2589  * See [SCTP] for more information.
2590  *
2591  */
2592 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2593 {
2594 
2595 	struct sctp_assocparams assocparams;
2596 	struct sctp_association *asoc;
2597 
2598 	if (optlen != sizeof(struct sctp_assocparams))
2599 		return -EINVAL;
2600 	if (copy_from_user(&assocparams, optval, optlen))
2601 		return -EFAULT;
2602 
2603 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2604 
2605 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2606 		return -EINVAL;
2607 
2608 	/* Set the values to the specific association */
2609 	if (asoc) {
2610 		if (assocparams.sasoc_asocmaxrxt != 0) {
2611 			__u32 path_sum = 0;
2612 			int   paths = 0;
2613 			struct list_head *pos;
2614 			struct sctp_transport *peer_addr;
2615 
2616 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2617 				peer_addr = list_entry(pos,
2618 						struct sctp_transport,
2619 						transports);
2620 				path_sum += peer_addr->pathmaxrxt;
2621 				paths++;
2622 			}
2623 
2624 			/* Only validate asocmaxrxt if we have more then
2625 			 * one path/transport.  We do this because path
2626 			 * retransmissions are only counted when we have more
2627 			 * then one path.
2628 			 */
2629 			if (paths > 1 &&
2630 			    assocparams.sasoc_asocmaxrxt > path_sum)
2631 				return -EINVAL;
2632 
2633 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2634 		}
2635 
2636 		if (assocparams.sasoc_cookie_life != 0) {
2637 			asoc->cookie_life.tv_sec =
2638 					assocparams.sasoc_cookie_life / 1000;
2639 			asoc->cookie_life.tv_usec =
2640 					(assocparams.sasoc_cookie_life % 1000)
2641 					* 1000;
2642 		}
2643 	} else {
2644 		/* Set the values to the endpoint */
2645 		struct sctp_sock *sp = sctp_sk(sk);
2646 
2647 		if (assocparams.sasoc_asocmaxrxt != 0)
2648 			sp->assocparams.sasoc_asocmaxrxt =
2649 						assocparams.sasoc_asocmaxrxt;
2650 		if (assocparams.sasoc_cookie_life != 0)
2651 			sp->assocparams.sasoc_cookie_life =
2652 						assocparams.sasoc_cookie_life;
2653 	}
2654 	return 0;
2655 }
2656 
2657 /*
2658  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2659  *
2660  * This socket option is a boolean flag which turns on or off mapped V4
2661  * addresses.  If this option is turned on and the socket is type
2662  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2663  * If this option is turned off, then no mapping will be done of V4
2664  * addresses and a user will receive both PF_INET6 and PF_INET type
2665  * addresses on the socket.
2666  */
2667 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2668 {
2669 	int val;
2670 	struct sctp_sock *sp = sctp_sk(sk);
2671 
2672 	if (optlen < sizeof(int))
2673 		return -EINVAL;
2674 	if (get_user(val, (int __user *)optval))
2675 		return -EFAULT;
2676 	if (val)
2677 		sp->v4mapped = 1;
2678 	else
2679 		sp->v4mapped = 0;
2680 
2681 	return 0;
2682 }
2683 
2684 /*
2685  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2686  *
2687  * This socket option specifies the maximum size to put in any outgoing
2688  * SCTP chunk.  If a message is larger than this size it will be
2689  * fragmented by SCTP into the specified size.  Note that the underlying
2690  * SCTP implementation may fragment into smaller sized chunks when the
2691  * PMTU of the underlying association is smaller than the value set by
2692  * the user.
2693  */
2694 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2695 {
2696 	struct sctp_association *asoc;
2697 	struct list_head *pos;
2698 	struct sctp_sock *sp = sctp_sk(sk);
2699 	int val;
2700 
2701 	if (optlen < sizeof(int))
2702 		return -EINVAL;
2703 	if (get_user(val, (int __user *)optval))
2704 		return -EFAULT;
2705 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2706 		return -EINVAL;
2707 	sp->user_frag = val;
2708 
2709 	/* Update the frag_point of the existing associations. */
2710 	list_for_each(pos, &(sp->ep->asocs)) {
2711 		asoc = list_entry(pos, struct sctp_association, asocs);
2712 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 
2719 /*
2720  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2721  *
2722  *   Requests that the peer mark the enclosed address as the association
2723  *   primary. The enclosed address must be one of the association's
2724  *   locally bound addresses. The following structure is used to make a
2725  *   set primary request:
2726  */
2727 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2728 					     int optlen)
2729 {
2730 	struct sctp_sock	*sp;
2731 	struct sctp_endpoint	*ep;
2732 	struct sctp_association	*asoc = NULL;
2733 	struct sctp_setpeerprim	prim;
2734 	struct sctp_chunk	*chunk;
2735 	int 			err;
2736 
2737 	sp = sctp_sk(sk);
2738 	ep = sp->ep;
2739 
2740 	if (!sctp_addip_enable)
2741 		return -EPERM;
2742 
2743 	if (optlen != sizeof(struct sctp_setpeerprim))
2744 		return -EINVAL;
2745 
2746 	if (copy_from_user(&prim, optval, optlen))
2747 		return -EFAULT;
2748 
2749 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2750 	if (!asoc)
2751 		return -EINVAL;
2752 
2753 	if (!asoc->peer.asconf_capable)
2754 		return -EPERM;
2755 
2756 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2757 		return -EPERM;
2758 
2759 	if (!sctp_state(asoc, ESTABLISHED))
2760 		return -ENOTCONN;
2761 
2762 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2763 		return -EADDRNOTAVAIL;
2764 
2765 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2766 	chunk = sctp_make_asconf_set_prim(asoc,
2767 					  (union sctp_addr *)&prim.sspp_addr);
2768 	if (!chunk)
2769 		return -ENOMEM;
2770 
2771 	err = sctp_send_asconf(asoc, chunk);
2772 
2773 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2774 
2775 	return err;
2776 }
2777 
2778 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2779 					  int optlen)
2780 {
2781 	struct sctp_setadaptation adaptation;
2782 
2783 	if (optlen != sizeof(struct sctp_setadaptation))
2784 		return -EINVAL;
2785 	if (copy_from_user(&adaptation, optval, optlen))
2786 		return -EFAULT;
2787 
2788 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2789 
2790 	return 0;
2791 }
2792 
2793 /*
2794  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2795  *
2796  * The context field in the sctp_sndrcvinfo structure is normally only
2797  * used when a failed message is retrieved holding the value that was
2798  * sent down on the actual send call.  This option allows the setting of
2799  * a default context on an association basis that will be received on
2800  * reading messages from the peer.  This is especially helpful in the
2801  * one-2-many model for an application to keep some reference to an
2802  * internal state machine that is processing messages on the
2803  * association.  Note that the setting of this value only effects
2804  * received messages from the peer and does not effect the value that is
2805  * saved with outbound messages.
2806  */
2807 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2808 				   int optlen)
2809 {
2810 	struct sctp_assoc_value params;
2811 	struct sctp_sock *sp;
2812 	struct sctp_association *asoc;
2813 
2814 	if (optlen != sizeof(struct sctp_assoc_value))
2815 		return -EINVAL;
2816 	if (copy_from_user(&params, optval, optlen))
2817 		return -EFAULT;
2818 
2819 	sp = sctp_sk(sk);
2820 
2821 	if (params.assoc_id != 0) {
2822 		asoc = sctp_id2assoc(sk, params.assoc_id);
2823 		if (!asoc)
2824 			return -EINVAL;
2825 		asoc->default_rcv_context = params.assoc_value;
2826 	} else {
2827 		sp->default_rcv_context = params.assoc_value;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 /*
2834  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2835  *
2836  * This options will at a minimum specify if the implementation is doing
2837  * fragmented interleave.  Fragmented interleave, for a one to many
2838  * socket, is when subsequent calls to receive a message may return
2839  * parts of messages from different associations.  Some implementations
2840  * may allow you to turn this value on or off.  If so, when turned off,
2841  * no fragment interleave will occur (which will cause a head of line
2842  * blocking amongst multiple associations sharing the same one to many
2843  * socket).  When this option is turned on, then each receive call may
2844  * come from a different association (thus the user must receive data
2845  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2846  * association each receive belongs to.
2847  *
2848  * This option takes a boolean value.  A non-zero value indicates that
2849  * fragmented interleave is on.  A value of zero indicates that
2850  * fragmented interleave is off.
2851  *
2852  * Note that it is important that an implementation that allows this
2853  * option to be turned on, have it off by default.  Otherwise an unaware
2854  * application using the one to many model may become confused and act
2855  * incorrectly.
2856  */
2857 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2858 					       char __user *optval,
2859 					       int optlen)
2860 {
2861 	int val;
2862 
2863 	if (optlen != sizeof(int))
2864 		return -EINVAL;
2865 	if (get_user(val, (int __user *)optval))
2866 		return -EFAULT;
2867 
2868 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2869 
2870 	return 0;
2871 }
2872 
2873 /*
2874  * 7.1.25.  Set or Get the sctp partial delivery point
2875  *       (SCTP_PARTIAL_DELIVERY_POINT)
2876  * This option will set or get the SCTP partial delivery point.  This
2877  * point is the size of a message where the partial delivery API will be
2878  * invoked to help free up rwnd space for the peer.  Setting this to a
2879  * lower value will cause partial delivery's to happen more often.  The
2880  * calls argument is an integer that sets or gets the partial delivery
2881  * point.
2882  */
2883 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2884 						  char __user *optval,
2885 						  int optlen)
2886 {
2887 	u32 val;
2888 
2889 	if (optlen != sizeof(u32))
2890 		return -EINVAL;
2891 	if (get_user(val, (int __user *)optval))
2892 		return -EFAULT;
2893 
2894 	sctp_sk(sk)->pd_point = val;
2895 
2896 	return 0; /* is this the right error code? */
2897 }
2898 
2899 /*
2900  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
2901  *
2902  * This option will allow a user to change the maximum burst of packets
2903  * that can be emitted by this association.  Note that the default value
2904  * is 4, and some implementations may restrict this setting so that it
2905  * can only be lowered.
2906  *
2907  * NOTE: This text doesn't seem right.  Do this on a socket basis with
2908  * future associations inheriting the socket value.
2909  */
2910 static int sctp_setsockopt_maxburst(struct sock *sk,
2911 				    char __user *optval,
2912 				    int optlen)
2913 {
2914 	int val;
2915 
2916 	if (optlen != sizeof(int))
2917 		return -EINVAL;
2918 	if (get_user(val, (int __user *)optval))
2919 		return -EFAULT;
2920 
2921 	if (val < 0)
2922 		return -EINVAL;
2923 
2924 	sctp_sk(sk)->max_burst = val;
2925 
2926 	return 0;
2927 }
2928 
2929 /* API 6.2 setsockopt(), getsockopt()
2930  *
2931  * Applications use setsockopt() and getsockopt() to set or retrieve
2932  * socket options.  Socket options are used to change the default
2933  * behavior of sockets calls.  They are described in Section 7.
2934  *
2935  * The syntax is:
2936  *
2937  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2938  *                    int __user *optlen);
2939  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2940  *                    int optlen);
2941  *
2942  *   sd      - the socket descript.
2943  *   level   - set to IPPROTO_SCTP for all SCTP options.
2944  *   optname - the option name.
2945  *   optval  - the buffer to store the value of the option.
2946  *   optlen  - the size of the buffer.
2947  */
2948 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2949 				char __user *optval, int optlen)
2950 {
2951 	int retval = 0;
2952 
2953 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2954 			  sk, optname);
2955 
2956 	/* I can hardly begin to describe how wrong this is.  This is
2957 	 * so broken as to be worse than useless.  The API draft
2958 	 * REALLY is NOT helpful here...  I am not convinced that the
2959 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2960 	 * are at all well-founded.
2961 	 */
2962 	if (level != SOL_SCTP) {
2963 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2964 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2965 		goto out_nounlock;
2966 	}
2967 
2968 	sctp_lock_sock(sk);
2969 
2970 	switch (optname) {
2971 	case SCTP_SOCKOPT_BINDX_ADD:
2972 		/* 'optlen' is the size of the addresses buffer. */
2973 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2974 					       optlen, SCTP_BINDX_ADD_ADDR);
2975 		break;
2976 
2977 	case SCTP_SOCKOPT_BINDX_REM:
2978 		/* 'optlen' is the size of the addresses buffer. */
2979 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2980 					       optlen, SCTP_BINDX_REM_ADDR);
2981 		break;
2982 
2983 	case SCTP_SOCKOPT_CONNECTX:
2984 		/* 'optlen' is the size of the addresses buffer. */
2985 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2986 					       optlen);
2987 		break;
2988 
2989 	case SCTP_DISABLE_FRAGMENTS:
2990 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2991 		break;
2992 
2993 	case SCTP_EVENTS:
2994 		retval = sctp_setsockopt_events(sk, optval, optlen);
2995 		break;
2996 
2997 	case SCTP_AUTOCLOSE:
2998 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2999 		break;
3000 
3001 	case SCTP_PEER_ADDR_PARAMS:
3002 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3003 		break;
3004 
3005 	case SCTP_DELAYED_ACK_TIME:
3006 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3007 		break;
3008 	case SCTP_PARTIAL_DELIVERY_POINT:
3009 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3010 		break;
3011 
3012 	case SCTP_INITMSG:
3013 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3014 		break;
3015 	case SCTP_DEFAULT_SEND_PARAM:
3016 		retval = sctp_setsockopt_default_send_param(sk, optval,
3017 							    optlen);
3018 		break;
3019 	case SCTP_PRIMARY_ADDR:
3020 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3021 		break;
3022 	case SCTP_SET_PEER_PRIMARY_ADDR:
3023 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3024 		break;
3025 	case SCTP_NODELAY:
3026 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3027 		break;
3028 	case SCTP_RTOINFO:
3029 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3030 		break;
3031 	case SCTP_ASSOCINFO:
3032 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3033 		break;
3034 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3035 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3036 		break;
3037 	case SCTP_MAXSEG:
3038 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3039 		break;
3040 	case SCTP_ADAPTATION_LAYER:
3041 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3042 		break;
3043 	case SCTP_CONTEXT:
3044 		retval = sctp_setsockopt_context(sk, optval, optlen);
3045 		break;
3046 	case SCTP_FRAGMENT_INTERLEAVE:
3047 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3048 		break;
3049 	case SCTP_MAX_BURST:
3050 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3051 		break;
3052 	default:
3053 		retval = -ENOPROTOOPT;
3054 		break;
3055 	}
3056 
3057 	sctp_release_sock(sk);
3058 
3059 out_nounlock:
3060 	return retval;
3061 }
3062 
3063 /* API 3.1.6 connect() - UDP Style Syntax
3064  *
3065  * An application may use the connect() call in the UDP model to initiate an
3066  * association without sending data.
3067  *
3068  * The syntax is:
3069  *
3070  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3071  *
3072  * sd: the socket descriptor to have a new association added to.
3073  *
3074  * nam: the address structure (either struct sockaddr_in or struct
3075  *    sockaddr_in6 defined in RFC2553 [7]).
3076  *
3077  * len: the size of the address.
3078  */
3079 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3080 			     int addr_len)
3081 {
3082 	int err = 0;
3083 	struct sctp_af *af;
3084 
3085 	sctp_lock_sock(sk);
3086 
3087 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3088 			  __FUNCTION__, sk, addr, addr_len);
3089 
3090 	/* Validate addr_len before calling common connect/connectx routine. */
3091 	af = sctp_get_af_specific(addr->sa_family);
3092 	if (!af || addr_len < af->sockaddr_len) {
3093 		err = -EINVAL;
3094 	} else {
3095 		/* Pass correct addr len to common routine (so it knows there
3096 		 * is only one address being passed.
3097 		 */
3098 		err = __sctp_connect(sk, addr, af->sockaddr_len);
3099 	}
3100 
3101 	sctp_release_sock(sk);
3102 	return err;
3103 }
3104 
3105 /* FIXME: Write comments. */
3106 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3107 {
3108 	return -EOPNOTSUPP; /* STUB */
3109 }
3110 
3111 /* 4.1.4 accept() - TCP Style Syntax
3112  *
3113  * Applications use accept() call to remove an established SCTP
3114  * association from the accept queue of the endpoint.  A new socket
3115  * descriptor will be returned from accept() to represent the newly
3116  * formed association.
3117  */
3118 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3119 {
3120 	struct sctp_sock *sp;
3121 	struct sctp_endpoint *ep;
3122 	struct sock *newsk = NULL;
3123 	struct sctp_association *asoc;
3124 	long timeo;
3125 	int error = 0;
3126 
3127 	sctp_lock_sock(sk);
3128 
3129 	sp = sctp_sk(sk);
3130 	ep = sp->ep;
3131 
3132 	if (!sctp_style(sk, TCP)) {
3133 		error = -EOPNOTSUPP;
3134 		goto out;
3135 	}
3136 
3137 	if (!sctp_sstate(sk, LISTENING)) {
3138 		error = -EINVAL;
3139 		goto out;
3140 	}
3141 
3142 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3143 
3144 	error = sctp_wait_for_accept(sk, timeo);
3145 	if (error)
3146 		goto out;
3147 
3148 	/* We treat the list of associations on the endpoint as the accept
3149 	 * queue and pick the first association on the list.
3150 	 */
3151 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3152 
3153 	newsk = sp->pf->create_accept_sk(sk, asoc);
3154 	if (!newsk) {
3155 		error = -ENOMEM;
3156 		goto out;
3157 	}
3158 
3159 	/* Populate the fields of the newsk from the oldsk and migrate the
3160 	 * asoc to the newsk.
3161 	 */
3162 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3163 
3164 out:
3165 	sctp_release_sock(sk);
3166 	*err = error;
3167 	return newsk;
3168 }
3169 
3170 /* The SCTP ioctl handler. */
3171 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3172 {
3173 	return -ENOIOCTLCMD;
3174 }
3175 
3176 /* This is the function which gets called during socket creation to
3177  * initialized the SCTP-specific portion of the sock.
3178  * The sock structure should already be zero-filled memory.
3179  */
3180 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3181 {
3182 	struct sctp_endpoint *ep;
3183 	struct sctp_sock *sp;
3184 
3185 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3186 
3187 	sp = sctp_sk(sk);
3188 
3189 	/* Initialize the SCTP per socket area.  */
3190 	switch (sk->sk_type) {
3191 	case SOCK_SEQPACKET:
3192 		sp->type = SCTP_SOCKET_UDP;
3193 		break;
3194 	case SOCK_STREAM:
3195 		sp->type = SCTP_SOCKET_TCP;
3196 		break;
3197 	default:
3198 		return -ESOCKTNOSUPPORT;
3199 	}
3200 
3201 	/* Initialize default send parameters. These parameters can be
3202 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3203 	 */
3204 	sp->default_stream = 0;
3205 	sp->default_ppid = 0;
3206 	sp->default_flags = 0;
3207 	sp->default_context = 0;
3208 	sp->default_timetolive = 0;
3209 
3210 	sp->default_rcv_context = 0;
3211 	sp->max_burst = sctp_max_burst;
3212 
3213 	/* Initialize default setup parameters. These parameters
3214 	 * can be modified with the SCTP_INITMSG socket option or
3215 	 * overridden by the SCTP_INIT CMSG.
3216 	 */
3217 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3218 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3219 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3220 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3221 
3222 	/* Initialize default RTO related parameters.  These parameters can
3223 	 * be modified for with the SCTP_RTOINFO socket option.
3224 	 */
3225 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3226 	sp->rtoinfo.srto_max     = sctp_rto_max;
3227 	sp->rtoinfo.srto_min     = sctp_rto_min;
3228 
3229 	/* Initialize default association related parameters. These parameters
3230 	 * can be modified with the SCTP_ASSOCINFO socket option.
3231 	 */
3232 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3233 	sp->assocparams.sasoc_number_peer_destinations = 0;
3234 	sp->assocparams.sasoc_peer_rwnd = 0;
3235 	sp->assocparams.sasoc_local_rwnd = 0;
3236 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3237 
3238 	/* Initialize default event subscriptions. By default, all the
3239 	 * options are off.
3240 	 */
3241 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3242 
3243 	/* Default Peer Address Parameters.  These defaults can
3244 	 * be modified via SCTP_PEER_ADDR_PARAMS
3245 	 */
3246 	sp->hbinterval  = sctp_hb_interval;
3247 	sp->pathmaxrxt  = sctp_max_retrans_path;
3248 	sp->pathmtu     = 0; // allow default discovery
3249 	sp->sackdelay   = sctp_sack_timeout;
3250 	sp->param_flags = SPP_HB_ENABLE |
3251 			  SPP_PMTUD_ENABLE |
3252 			  SPP_SACKDELAY_ENABLE;
3253 
3254 	/* If enabled no SCTP message fragmentation will be performed.
3255 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3256 	 */
3257 	sp->disable_fragments = 0;
3258 
3259 	/* Enable Nagle algorithm by default.  */
3260 	sp->nodelay           = 0;
3261 
3262 	/* Enable by default. */
3263 	sp->v4mapped          = 1;
3264 
3265 	/* Auto-close idle associations after the configured
3266 	 * number of seconds.  A value of 0 disables this
3267 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3268 	 * for UDP-style sockets only.
3269 	 */
3270 	sp->autoclose         = 0;
3271 
3272 	/* User specified fragmentation limit. */
3273 	sp->user_frag         = 0;
3274 
3275 	sp->adaptation_ind = 0;
3276 
3277 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3278 
3279 	/* Control variables for partial data delivery. */
3280 	atomic_set(&sp->pd_mode, 0);
3281 	skb_queue_head_init(&sp->pd_lobby);
3282 	sp->frag_interleave = 0;
3283 
3284 	/* Create a per socket endpoint structure.  Even if we
3285 	 * change the data structure relationships, this may still
3286 	 * be useful for storing pre-connect address information.
3287 	 */
3288 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3289 	if (!ep)
3290 		return -ENOMEM;
3291 
3292 	sp->ep = ep;
3293 	sp->hmac = NULL;
3294 
3295 	SCTP_DBG_OBJCNT_INC(sock);
3296 	return 0;
3297 }
3298 
3299 /* Cleanup any SCTP per socket resources.  */
3300 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3301 {
3302 	struct sctp_endpoint *ep;
3303 
3304 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3305 
3306 	/* Release our hold on the endpoint. */
3307 	ep = sctp_sk(sk)->ep;
3308 	sctp_endpoint_free(ep);
3309 
3310 	return 0;
3311 }
3312 
3313 /* API 4.1.7 shutdown() - TCP Style Syntax
3314  *     int shutdown(int socket, int how);
3315  *
3316  *     sd      - the socket descriptor of the association to be closed.
3317  *     how     - Specifies the type of shutdown.  The  values  are
3318  *               as follows:
3319  *               SHUT_RD
3320  *                     Disables further receive operations. No SCTP
3321  *                     protocol action is taken.
3322  *               SHUT_WR
3323  *                     Disables further send operations, and initiates
3324  *                     the SCTP shutdown sequence.
3325  *               SHUT_RDWR
3326  *                     Disables further send  and  receive  operations
3327  *                     and initiates the SCTP shutdown sequence.
3328  */
3329 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3330 {
3331 	struct sctp_endpoint *ep;
3332 	struct sctp_association *asoc;
3333 
3334 	if (!sctp_style(sk, TCP))
3335 		return;
3336 
3337 	if (how & SEND_SHUTDOWN) {
3338 		ep = sctp_sk(sk)->ep;
3339 		if (!list_empty(&ep->asocs)) {
3340 			asoc = list_entry(ep->asocs.next,
3341 					  struct sctp_association, asocs);
3342 			sctp_primitive_SHUTDOWN(asoc, NULL);
3343 		}
3344 	}
3345 }
3346 
3347 /* 7.2.1 Association Status (SCTP_STATUS)
3348 
3349  * Applications can retrieve current status information about an
3350  * association, including association state, peer receiver window size,
3351  * number of unacked data chunks, and number of data chunks pending
3352  * receipt.  This information is read-only.
3353  */
3354 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3355 				       char __user *optval,
3356 				       int __user *optlen)
3357 {
3358 	struct sctp_status status;
3359 	struct sctp_association *asoc = NULL;
3360 	struct sctp_transport *transport;
3361 	sctp_assoc_t associd;
3362 	int retval = 0;
3363 
3364 	if (len < sizeof(status)) {
3365 		retval = -EINVAL;
3366 		goto out;
3367 	}
3368 
3369 	len = sizeof(status);
3370 	if (copy_from_user(&status, optval, len)) {
3371 		retval = -EFAULT;
3372 		goto out;
3373 	}
3374 
3375 	associd = status.sstat_assoc_id;
3376 	asoc = sctp_id2assoc(sk, associd);
3377 	if (!asoc) {
3378 		retval = -EINVAL;
3379 		goto out;
3380 	}
3381 
3382 	transport = asoc->peer.primary_path;
3383 
3384 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3385 	status.sstat_state = asoc->state;
3386 	status.sstat_rwnd =  asoc->peer.rwnd;
3387 	status.sstat_unackdata = asoc->unack_data;
3388 
3389 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3390 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3391 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3392 	status.sstat_fragmentation_point = asoc->frag_point;
3393 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3394 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3395 			transport->af_specific->sockaddr_len);
3396 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3397 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3398 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3399 	status.sstat_primary.spinfo_state = transport->state;
3400 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3401 	status.sstat_primary.spinfo_srtt = transport->srtt;
3402 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3403 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3404 
3405 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3406 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3407 
3408 	if (put_user(len, optlen)) {
3409 		retval = -EFAULT;
3410 		goto out;
3411 	}
3412 
3413 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3414 			  len, status.sstat_state, status.sstat_rwnd,
3415 			  status.sstat_assoc_id);
3416 
3417 	if (copy_to_user(optval, &status, len)) {
3418 		retval = -EFAULT;
3419 		goto out;
3420 	}
3421 
3422 out:
3423 	return (retval);
3424 }
3425 
3426 
3427 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3428  *
3429  * Applications can retrieve information about a specific peer address
3430  * of an association, including its reachability state, congestion
3431  * window, and retransmission timer values.  This information is
3432  * read-only.
3433  */
3434 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3435 					  char __user *optval,
3436 					  int __user *optlen)
3437 {
3438 	struct sctp_paddrinfo pinfo;
3439 	struct sctp_transport *transport;
3440 	int retval = 0;
3441 
3442 	if (len < sizeof(pinfo)) {
3443 		retval = -EINVAL;
3444 		goto out;
3445 	}
3446 
3447 	len = sizeof(pinfo);
3448 	if (copy_from_user(&pinfo, optval, len)) {
3449 		retval = -EFAULT;
3450 		goto out;
3451 	}
3452 
3453 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3454 					   pinfo.spinfo_assoc_id);
3455 	if (!transport)
3456 		return -EINVAL;
3457 
3458 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3459 	pinfo.spinfo_state = transport->state;
3460 	pinfo.spinfo_cwnd = transport->cwnd;
3461 	pinfo.spinfo_srtt = transport->srtt;
3462 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3463 	pinfo.spinfo_mtu = transport->pathmtu;
3464 
3465 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3466 		pinfo.spinfo_state = SCTP_ACTIVE;
3467 
3468 	if (put_user(len, optlen)) {
3469 		retval = -EFAULT;
3470 		goto out;
3471 	}
3472 
3473 	if (copy_to_user(optval, &pinfo, len)) {
3474 		retval = -EFAULT;
3475 		goto out;
3476 	}
3477 
3478 out:
3479 	return (retval);
3480 }
3481 
3482 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3483  *
3484  * This option is a on/off flag.  If enabled no SCTP message
3485  * fragmentation will be performed.  Instead if a message being sent
3486  * exceeds the current PMTU size, the message will NOT be sent and
3487  * instead a error will be indicated to the user.
3488  */
3489 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3490 					char __user *optval, int __user *optlen)
3491 {
3492 	int val;
3493 
3494 	if (len < sizeof(int))
3495 		return -EINVAL;
3496 
3497 	len = sizeof(int);
3498 	val = (sctp_sk(sk)->disable_fragments == 1);
3499 	if (put_user(len, optlen))
3500 		return -EFAULT;
3501 	if (copy_to_user(optval, &val, len))
3502 		return -EFAULT;
3503 	return 0;
3504 }
3505 
3506 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3507  *
3508  * This socket option is used to specify various notifications and
3509  * ancillary data the user wishes to receive.
3510  */
3511 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3512 				  int __user *optlen)
3513 {
3514 	if (len < sizeof(struct sctp_event_subscribe))
3515 		return -EINVAL;
3516 	len = sizeof(struct sctp_event_subscribe);
3517 	if (put_user(len, optlen))
3518 		return -EFAULT;
3519 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3520 		return -EFAULT;
3521 	return 0;
3522 }
3523 
3524 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3525  *
3526  * This socket option is applicable to the UDP-style socket only.  When
3527  * set it will cause associations that are idle for more than the
3528  * specified number of seconds to automatically close.  An association
3529  * being idle is defined an association that has NOT sent or received
3530  * user data.  The special value of '0' indicates that no automatic
3531  * close of any associations should be performed.  The option expects an
3532  * integer defining the number of seconds of idle time before an
3533  * association is closed.
3534  */
3535 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3536 {
3537 	/* Applicable to UDP-style socket only */
3538 	if (sctp_style(sk, TCP))
3539 		return -EOPNOTSUPP;
3540 	if (len < sizeof(int))
3541 		return -EINVAL;
3542 	len = sizeof(int);
3543 	if (put_user(len, optlen))
3544 		return -EFAULT;
3545 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3546 		return -EFAULT;
3547 	return 0;
3548 }
3549 
3550 /* Helper routine to branch off an association to a new socket.  */
3551 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3552 				struct socket **sockp)
3553 {
3554 	struct sock *sk = asoc->base.sk;
3555 	struct socket *sock;
3556 	struct inet_sock *inetsk;
3557 	struct sctp_af *af;
3558 	int err = 0;
3559 
3560 	/* An association cannot be branched off from an already peeled-off
3561 	 * socket, nor is this supported for tcp style sockets.
3562 	 */
3563 	if (!sctp_style(sk, UDP))
3564 		return -EINVAL;
3565 
3566 	/* Create a new socket.  */
3567 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3568 	if (err < 0)
3569 		return err;
3570 
3571 	/* Populate the fields of the newsk from the oldsk and migrate the
3572 	 * asoc to the newsk.
3573 	 */
3574 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3575 
3576 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3577 	 * Set the daddr and initialize id to something more random
3578 	 */
3579 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3580 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3581 	inetsk = inet_sk(sock->sk);
3582 	inetsk->id = asoc->next_tsn ^ jiffies;
3583 
3584 	*sockp = sock;
3585 
3586 	return err;
3587 }
3588 
3589 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3590 {
3591 	sctp_peeloff_arg_t peeloff;
3592 	struct socket *newsock;
3593 	int retval = 0;
3594 	struct sctp_association *asoc;
3595 
3596 	if (len < sizeof(sctp_peeloff_arg_t))
3597 		return -EINVAL;
3598 	len = sizeof(sctp_peeloff_arg_t);
3599 	if (copy_from_user(&peeloff, optval, len))
3600 		return -EFAULT;
3601 
3602 	asoc = sctp_id2assoc(sk, peeloff.associd);
3603 	if (!asoc) {
3604 		retval = -EINVAL;
3605 		goto out;
3606 	}
3607 
3608 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3609 
3610 	retval = sctp_do_peeloff(asoc, &newsock);
3611 	if (retval < 0)
3612 		goto out;
3613 
3614 	/* Map the socket to an unused fd that can be returned to the user.  */
3615 	retval = sock_map_fd(newsock);
3616 	if (retval < 0) {
3617 		sock_release(newsock);
3618 		goto out;
3619 	}
3620 
3621 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3622 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3623 
3624 	/* Return the fd mapped to the new socket.  */
3625 	peeloff.sd = retval;
3626 	if (put_user(len, optlen))
3627 		return -EFAULT;
3628 	if (copy_to_user(optval, &peeloff, len))
3629 		retval = -EFAULT;
3630 
3631 out:
3632 	return retval;
3633 }
3634 
3635 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3636  *
3637  * Applications can enable or disable heartbeats for any peer address of
3638  * an association, modify an address's heartbeat interval, force a
3639  * heartbeat to be sent immediately, and adjust the address's maximum
3640  * number of retransmissions sent before an address is considered
3641  * unreachable.  The following structure is used to access and modify an
3642  * address's parameters:
3643  *
3644  *  struct sctp_paddrparams {
3645  *     sctp_assoc_t            spp_assoc_id;
3646  *     struct sockaddr_storage spp_address;
3647  *     uint32_t                spp_hbinterval;
3648  *     uint16_t                spp_pathmaxrxt;
3649  *     uint32_t                spp_pathmtu;
3650  *     uint32_t                spp_sackdelay;
3651  *     uint32_t                spp_flags;
3652  * };
3653  *
3654  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3655  *                     application, and identifies the association for
3656  *                     this query.
3657  *   spp_address     - This specifies which address is of interest.
3658  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3659  *                     in milliseconds.  If a  value of zero
3660  *                     is present in this field then no changes are to
3661  *                     be made to this parameter.
3662  *   spp_pathmaxrxt  - This contains the maximum number of
3663  *                     retransmissions before this address shall be
3664  *                     considered unreachable. If a  value of zero
3665  *                     is present in this field then no changes are to
3666  *                     be made to this parameter.
3667  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3668  *                     specified here will be the "fixed" path mtu.
3669  *                     Note that if the spp_address field is empty
3670  *                     then all associations on this address will
3671  *                     have this fixed path mtu set upon them.
3672  *
3673  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3674  *                     the number of milliseconds that sacks will be delayed
3675  *                     for. This value will apply to all addresses of an
3676  *                     association if the spp_address field is empty. Note
3677  *                     also, that if delayed sack is enabled and this
3678  *                     value is set to 0, no change is made to the last
3679  *                     recorded delayed sack timer value.
3680  *
3681  *   spp_flags       - These flags are used to control various features
3682  *                     on an association. The flag field may contain
3683  *                     zero or more of the following options.
3684  *
3685  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3686  *                     specified address. Note that if the address
3687  *                     field is empty all addresses for the association
3688  *                     have heartbeats enabled upon them.
3689  *
3690  *                     SPP_HB_DISABLE - Disable heartbeats on the
3691  *                     speicifed address. Note that if the address
3692  *                     field is empty all addresses for the association
3693  *                     will have their heartbeats disabled. Note also
3694  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3695  *                     mutually exclusive, only one of these two should
3696  *                     be specified. Enabling both fields will have
3697  *                     undetermined results.
3698  *
3699  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3700  *                     to be made immediately.
3701  *
3702  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3703  *                     discovery upon the specified address. Note that
3704  *                     if the address feild is empty then all addresses
3705  *                     on the association are effected.
3706  *
3707  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3708  *                     discovery upon the specified address. Note that
3709  *                     if the address feild is empty then all addresses
3710  *                     on the association are effected. Not also that
3711  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3712  *                     exclusive. Enabling both will have undetermined
3713  *                     results.
3714  *
3715  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3716  *                     on delayed sack. The time specified in spp_sackdelay
3717  *                     is used to specify the sack delay for this address. Note
3718  *                     that if spp_address is empty then all addresses will
3719  *                     enable delayed sack and take on the sack delay
3720  *                     value specified in spp_sackdelay.
3721  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3722  *                     off delayed sack. If the spp_address field is blank then
3723  *                     delayed sack is disabled for the entire association. Note
3724  *                     also that this field is mutually exclusive to
3725  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3726  *                     results.
3727  */
3728 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3729 					    char __user *optval, int __user *optlen)
3730 {
3731 	struct sctp_paddrparams  params;
3732 	struct sctp_transport   *trans = NULL;
3733 	struct sctp_association *asoc = NULL;
3734 	struct sctp_sock        *sp = sctp_sk(sk);
3735 
3736 	if (len < sizeof(struct sctp_paddrparams))
3737 		return -EINVAL;
3738 	len = sizeof(struct sctp_paddrparams);
3739 	if (copy_from_user(&params, optval, len))
3740 		return -EFAULT;
3741 
3742 	/* If an address other than INADDR_ANY is specified, and
3743 	 * no transport is found, then the request is invalid.
3744 	 */
3745 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3746 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3747 					       params.spp_assoc_id);
3748 		if (!trans) {
3749 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3750 			return -EINVAL;
3751 		}
3752 	}
3753 
3754 	/* Get association, if assoc_id != 0 and the socket is a one
3755 	 * to many style socket, and an association was not found, then
3756 	 * the id was invalid.
3757 	 */
3758 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3759 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3760 		SCTP_DEBUG_PRINTK("Failed no association\n");
3761 		return -EINVAL;
3762 	}
3763 
3764 	if (trans) {
3765 		/* Fetch transport values. */
3766 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3767 		params.spp_pathmtu    = trans->pathmtu;
3768 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3769 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3770 
3771 		/*draft-11 doesn't say what to return in spp_flags*/
3772 		params.spp_flags      = trans->param_flags;
3773 	} else if (asoc) {
3774 		/* Fetch association values. */
3775 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3776 		params.spp_pathmtu    = asoc->pathmtu;
3777 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3778 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3779 
3780 		/*draft-11 doesn't say what to return in spp_flags*/
3781 		params.spp_flags      = asoc->param_flags;
3782 	} else {
3783 		/* Fetch socket values. */
3784 		params.spp_hbinterval = sp->hbinterval;
3785 		params.spp_pathmtu    = sp->pathmtu;
3786 		params.spp_sackdelay  = sp->sackdelay;
3787 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3788 
3789 		/*draft-11 doesn't say what to return in spp_flags*/
3790 		params.spp_flags      = sp->param_flags;
3791 	}
3792 
3793 	if (copy_to_user(optval, &params, len))
3794 		return -EFAULT;
3795 
3796 	if (put_user(len, optlen))
3797 		return -EFAULT;
3798 
3799 	return 0;
3800 }
3801 
3802 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3803  *
3804  *   This options will get or set the delayed ack timer.  The time is set
3805  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3806  *   endpoints default delayed ack timer value.  If the assoc_id field is
3807  *   non-zero, then the set or get effects the specified association.
3808  *
3809  *   struct sctp_assoc_value {
3810  *       sctp_assoc_t            assoc_id;
3811  *       uint32_t                assoc_value;
3812  *   };
3813  *
3814  *     assoc_id    - This parameter, indicates which association the
3815  *                   user is preforming an action upon. Note that if
3816  *                   this field's value is zero then the endpoints
3817  *                   default value is changed (effecting future
3818  *                   associations only).
3819  *
3820  *     assoc_value - This parameter contains the number of milliseconds
3821  *                   that the user is requesting the delayed ACK timer
3822  *                   be set to. Note that this value is defined in
3823  *                   the standard to be between 200 and 500 milliseconds.
3824  *
3825  *                   Note: a value of zero will leave the value alone,
3826  *                   but disable SACK delay. A non-zero value will also
3827  *                   enable SACK delay.
3828  */
3829 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3830 					    char __user *optval,
3831 					    int __user *optlen)
3832 {
3833 	struct sctp_assoc_value  params;
3834 	struct sctp_association *asoc = NULL;
3835 	struct sctp_sock        *sp = sctp_sk(sk);
3836 
3837 	if (len < sizeof(struct sctp_assoc_value))
3838 		return - EINVAL;
3839 
3840 	len = sizeof(struct sctp_assoc_value);
3841 
3842 	if (copy_from_user(&params, optval, len))
3843 		return -EFAULT;
3844 
3845 	/* Get association, if assoc_id != 0 and the socket is a one
3846 	 * to many style socket, and an association was not found, then
3847 	 * the id was invalid.
3848 	 */
3849 	asoc = sctp_id2assoc(sk, params.assoc_id);
3850 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3851 		return -EINVAL;
3852 
3853 	if (asoc) {
3854 		/* Fetch association values. */
3855 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3856 			params.assoc_value = jiffies_to_msecs(
3857 				asoc->sackdelay);
3858 		else
3859 			params.assoc_value = 0;
3860 	} else {
3861 		/* Fetch socket values. */
3862 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3863 			params.assoc_value  = sp->sackdelay;
3864 		else
3865 			params.assoc_value  = 0;
3866 	}
3867 
3868 	if (copy_to_user(optval, &params, len))
3869 		return -EFAULT;
3870 
3871 	if (put_user(len, optlen))
3872 		return -EFAULT;
3873 
3874 	return 0;
3875 }
3876 
3877 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3878  *
3879  * Applications can specify protocol parameters for the default association
3880  * initialization.  The option name argument to setsockopt() and getsockopt()
3881  * is SCTP_INITMSG.
3882  *
3883  * Setting initialization parameters is effective only on an unconnected
3884  * socket (for UDP-style sockets only future associations are effected
3885  * by the change).  With TCP-style sockets, this option is inherited by
3886  * sockets derived from a listener socket.
3887  */
3888 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3889 {
3890 	if (len < sizeof(struct sctp_initmsg))
3891 		return -EINVAL;
3892 	len = sizeof(struct sctp_initmsg);
3893 	if (put_user(len, optlen))
3894 		return -EFAULT;
3895 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3896 		return -EFAULT;
3897 	return 0;
3898 }
3899 
3900 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3901 					      char __user *optval,
3902 					      int __user *optlen)
3903 {
3904 	sctp_assoc_t id;
3905 	struct sctp_association *asoc;
3906 	struct list_head *pos;
3907 	int cnt = 0;
3908 
3909 	if (len < sizeof(sctp_assoc_t))
3910 		return -EINVAL;
3911 
3912 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3913 		return -EFAULT;
3914 
3915 	/* For UDP-style sockets, id specifies the association to query.  */
3916 	asoc = sctp_id2assoc(sk, id);
3917 	if (!asoc)
3918 		return -EINVAL;
3919 
3920 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3921 		cnt ++;
3922 	}
3923 
3924 	return cnt;
3925 }
3926 
3927 /*
3928  * Old API for getting list of peer addresses. Does not work for 32-bit
3929  * programs running on a 64-bit kernel
3930  */
3931 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3932 					  char __user *optval,
3933 					  int __user *optlen)
3934 {
3935 	struct sctp_association *asoc;
3936 	struct list_head *pos;
3937 	int cnt = 0;
3938 	struct sctp_getaddrs_old getaddrs;
3939 	struct sctp_transport *from;
3940 	void __user *to;
3941 	union sctp_addr temp;
3942 	struct sctp_sock *sp = sctp_sk(sk);
3943 	int addrlen;
3944 
3945 	if (len < sizeof(struct sctp_getaddrs_old))
3946 		return -EINVAL;
3947 
3948 	len = sizeof(struct sctp_getaddrs_old);
3949 
3950 	if (copy_from_user(&getaddrs, optval, len))
3951 		return -EFAULT;
3952 
3953 	if (getaddrs.addr_num <= 0) return -EINVAL;
3954 
3955 	/* For UDP-style sockets, id specifies the association to query.  */
3956 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3957 	if (!asoc)
3958 		return -EINVAL;
3959 
3960 	to = (void __user *)getaddrs.addrs;
3961 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3962 		from = list_entry(pos, struct sctp_transport, transports);
3963 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3964 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3965 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3966 		if (copy_to_user(to, &temp, addrlen))
3967 			return -EFAULT;
3968 		to += addrlen ;
3969 		cnt ++;
3970 		if (cnt >= getaddrs.addr_num) break;
3971 	}
3972 	getaddrs.addr_num = cnt;
3973 	if (put_user(len, optlen))
3974 		return -EFAULT;
3975 	if (copy_to_user(optval, &getaddrs, len))
3976 		return -EFAULT;
3977 
3978 	return 0;
3979 }
3980 
3981 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3982 				      char __user *optval, int __user *optlen)
3983 {
3984 	struct sctp_association *asoc;
3985 	struct list_head *pos;
3986 	int cnt = 0;
3987 	struct sctp_getaddrs getaddrs;
3988 	struct sctp_transport *from;
3989 	void __user *to;
3990 	union sctp_addr temp;
3991 	struct sctp_sock *sp = sctp_sk(sk);
3992 	int addrlen;
3993 	size_t space_left;
3994 	int bytes_copied;
3995 
3996 	if (len < sizeof(struct sctp_getaddrs))
3997 		return -EINVAL;
3998 
3999 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4000 		return -EFAULT;
4001 
4002 	/* For UDP-style sockets, id specifies the association to query.  */
4003 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4004 	if (!asoc)
4005 		return -EINVAL;
4006 
4007 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4008 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4009 
4010 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4011 		from = list_entry(pos, struct sctp_transport, transports);
4012 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4013 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4014 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4015 		if (space_left < addrlen)
4016 			return -ENOMEM;
4017 		if (copy_to_user(to, &temp, addrlen))
4018 			return -EFAULT;
4019 		to += addrlen;
4020 		cnt++;
4021 		space_left -= addrlen;
4022 	}
4023 
4024 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4025 		return -EFAULT;
4026 	bytes_copied = ((char __user *)to) - optval;
4027 	if (put_user(bytes_copied, optlen))
4028 		return -EFAULT;
4029 
4030 	return 0;
4031 }
4032 
4033 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4034 					       char __user *optval,
4035 					       int __user *optlen)
4036 {
4037 	sctp_assoc_t id;
4038 	struct sctp_bind_addr *bp;
4039 	struct sctp_association *asoc;
4040 	struct sctp_sockaddr_entry *addr;
4041 	int cnt = 0;
4042 
4043 	if (len < sizeof(sctp_assoc_t))
4044 		return -EINVAL;
4045 
4046 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4047 		return -EFAULT;
4048 
4049 	/*
4050 	 *  For UDP-style sockets, id specifies the association to query.
4051 	 *  If the id field is set to the value '0' then the locally bound
4052 	 *  addresses are returned without regard to any particular
4053 	 *  association.
4054 	 */
4055 	if (0 == id) {
4056 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4057 	} else {
4058 		asoc = sctp_id2assoc(sk, id);
4059 		if (!asoc)
4060 			return -EINVAL;
4061 		bp = &asoc->base.bind_addr;
4062 	}
4063 
4064 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4065 	 * addresses from the global local address list.
4066 	 */
4067 	if (sctp_list_single_entry(&bp->address_list)) {
4068 		addr = list_entry(bp->address_list.next,
4069 				  struct sctp_sockaddr_entry, list);
4070 		if (sctp_is_any(&addr->a)) {
4071 			rcu_read_lock();
4072 			list_for_each_entry_rcu(addr,
4073 						&sctp_local_addr_list, list) {
4074 				if (!addr->valid)
4075 					continue;
4076 
4077 				if ((PF_INET == sk->sk_family) &&
4078 				    (AF_INET6 == addr->a.sa.sa_family))
4079 					continue;
4080 
4081 				cnt++;
4082 			}
4083 			rcu_read_unlock();
4084 		} else {
4085 			cnt = 1;
4086 		}
4087 		goto done;
4088 	}
4089 
4090 	/* Protection on the bound address list is not needed,
4091 	 * since in the socket option context we hold the socket lock,
4092 	 * so there is no way that the bound address list can change.
4093 	 */
4094 	list_for_each_entry(addr, &bp->address_list, list) {
4095 		cnt ++;
4096 	}
4097 done:
4098 	return cnt;
4099 }
4100 
4101 /* Helper function that copies local addresses to user and returns the number
4102  * of addresses copied.
4103  */
4104 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4105 					int max_addrs, void *to,
4106 					int *bytes_copied)
4107 {
4108 	struct sctp_sockaddr_entry *addr;
4109 	union sctp_addr temp;
4110 	int cnt = 0;
4111 	int addrlen;
4112 
4113 	rcu_read_lock();
4114 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4115 		if (!addr->valid)
4116 			continue;
4117 
4118 		if ((PF_INET == sk->sk_family) &&
4119 		    (AF_INET6 == addr->a.sa.sa_family))
4120 			continue;
4121 		memcpy(&temp, &addr->a, sizeof(temp));
4122 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4123 								&temp);
4124 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4125 		memcpy(to, &temp, addrlen);
4126 
4127 		to += addrlen;
4128 		*bytes_copied += addrlen;
4129 		cnt ++;
4130 		if (cnt >= max_addrs) break;
4131 	}
4132 	rcu_read_unlock();
4133 
4134 	return cnt;
4135 }
4136 
4137 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4138 			    size_t space_left, int *bytes_copied)
4139 {
4140 	struct sctp_sockaddr_entry *addr;
4141 	union sctp_addr temp;
4142 	int cnt = 0;
4143 	int addrlen;
4144 
4145 	rcu_read_lock();
4146 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4147 		if (!addr->valid)
4148 			continue;
4149 
4150 		if ((PF_INET == sk->sk_family) &&
4151 		    (AF_INET6 == addr->a.sa.sa_family))
4152 			continue;
4153 		memcpy(&temp, &addr->a, sizeof(temp));
4154 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4155 								&temp);
4156 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4157 		if (space_left < addrlen) {
4158 			cnt =  -ENOMEM;
4159 			break;
4160 		}
4161 		memcpy(to, &temp, addrlen);
4162 
4163 		to += addrlen;
4164 		cnt ++;
4165 		space_left -= addrlen;
4166 		*bytes_copied += addrlen;
4167 	}
4168 	rcu_read_unlock();
4169 
4170 	return cnt;
4171 }
4172 
4173 /* Old API for getting list of local addresses. Does not work for 32-bit
4174  * programs running on a 64-bit kernel
4175  */
4176 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4177 					   char __user *optval, int __user *optlen)
4178 {
4179 	struct sctp_bind_addr *bp;
4180 	struct sctp_association *asoc;
4181 	int cnt = 0;
4182 	struct sctp_getaddrs_old getaddrs;
4183 	struct sctp_sockaddr_entry *addr;
4184 	void __user *to;
4185 	union sctp_addr temp;
4186 	struct sctp_sock *sp = sctp_sk(sk);
4187 	int addrlen;
4188 	int err = 0;
4189 	void *addrs;
4190 	void *buf;
4191 	int bytes_copied = 0;
4192 
4193 	if (len < sizeof(struct sctp_getaddrs_old))
4194 		return -EINVAL;
4195 
4196 	len = sizeof(struct sctp_getaddrs_old);
4197 	if (copy_from_user(&getaddrs, optval, len))
4198 		return -EFAULT;
4199 
4200 	if (getaddrs.addr_num <= 0) return -EINVAL;
4201 	/*
4202 	 *  For UDP-style sockets, id specifies the association to query.
4203 	 *  If the id field is set to the value '0' then the locally bound
4204 	 *  addresses are returned without regard to any particular
4205 	 *  association.
4206 	 */
4207 	if (0 == getaddrs.assoc_id) {
4208 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4209 	} else {
4210 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4211 		if (!asoc)
4212 			return -EINVAL;
4213 		bp = &asoc->base.bind_addr;
4214 	}
4215 
4216 	to = getaddrs.addrs;
4217 
4218 	/* Allocate space for a local instance of packed array to hold all
4219 	 * the data.  We store addresses here first and then put write them
4220 	 * to the user in one shot.
4221 	 */
4222 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4223 			GFP_KERNEL);
4224 	if (!addrs)
4225 		return -ENOMEM;
4226 
4227 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4228 	 * addresses from the global local address list.
4229 	 */
4230 	if (sctp_list_single_entry(&bp->address_list)) {
4231 		addr = list_entry(bp->address_list.next,
4232 				  struct sctp_sockaddr_entry, list);
4233 		if (sctp_is_any(&addr->a)) {
4234 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4235 						   getaddrs.addr_num,
4236 						   addrs, &bytes_copied);
4237 			goto copy_getaddrs;
4238 		}
4239 	}
4240 
4241 	buf = addrs;
4242 	/* Protection on the bound address list is not needed since
4243 	 * in the socket option context we hold a socket lock and
4244 	 * thus the bound address list can't change.
4245 	 */
4246 	list_for_each_entry(addr, &bp->address_list, list) {
4247 		memcpy(&temp, &addr->a, sizeof(temp));
4248 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4249 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4250 		memcpy(buf, &temp, addrlen);
4251 		buf += addrlen;
4252 		bytes_copied += addrlen;
4253 		cnt ++;
4254 		if (cnt >= getaddrs.addr_num) break;
4255 	}
4256 
4257 copy_getaddrs:
4258 	/* copy the entire address list into the user provided space */
4259 	if (copy_to_user(to, addrs, bytes_copied)) {
4260 		err = -EFAULT;
4261 		goto error;
4262 	}
4263 
4264 	/* copy the leading structure back to user */
4265 	getaddrs.addr_num = cnt;
4266 	if (copy_to_user(optval, &getaddrs, len))
4267 		err = -EFAULT;
4268 
4269 error:
4270 	kfree(addrs);
4271 	return err;
4272 }
4273 
4274 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4275 				       char __user *optval, int __user *optlen)
4276 {
4277 	struct sctp_bind_addr *bp;
4278 	struct sctp_association *asoc;
4279 	int cnt = 0;
4280 	struct sctp_getaddrs getaddrs;
4281 	struct sctp_sockaddr_entry *addr;
4282 	void __user *to;
4283 	union sctp_addr temp;
4284 	struct sctp_sock *sp = sctp_sk(sk);
4285 	int addrlen;
4286 	int err = 0;
4287 	size_t space_left;
4288 	int bytes_copied = 0;
4289 	void *addrs;
4290 	void *buf;
4291 
4292 	if (len < sizeof(struct sctp_getaddrs))
4293 		return -EINVAL;
4294 
4295 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4296 		return -EFAULT;
4297 
4298 	/*
4299 	 *  For UDP-style sockets, id specifies the association to query.
4300 	 *  If the id field is set to the value '0' then the locally bound
4301 	 *  addresses are returned without regard to any particular
4302 	 *  association.
4303 	 */
4304 	if (0 == getaddrs.assoc_id) {
4305 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4306 	} else {
4307 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4308 		if (!asoc)
4309 			return -EINVAL;
4310 		bp = &asoc->base.bind_addr;
4311 	}
4312 
4313 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4314 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4315 
4316 	addrs = kmalloc(space_left, GFP_KERNEL);
4317 	if (!addrs)
4318 		return -ENOMEM;
4319 
4320 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4321 	 * addresses from the global local address list.
4322 	 */
4323 	if (sctp_list_single_entry(&bp->address_list)) {
4324 		addr = list_entry(bp->address_list.next,
4325 				  struct sctp_sockaddr_entry, list);
4326 		if (sctp_is_any(&addr->a)) {
4327 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4328 						space_left, &bytes_copied);
4329 			if (cnt < 0) {
4330 				err = cnt;
4331 				goto out;
4332 			}
4333 			goto copy_getaddrs;
4334 		}
4335 	}
4336 
4337 	buf = addrs;
4338 	/* Protection on the bound address list is not needed since
4339 	 * in the socket option context we hold a socket lock and
4340 	 * thus the bound address list can't change.
4341 	 */
4342 	list_for_each_entry(addr, &bp->address_list, list) {
4343 		memcpy(&temp, &addr->a, sizeof(temp));
4344 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4345 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4346 		if (space_left < addrlen) {
4347 			err =  -ENOMEM; /*fixme: right error?*/
4348 			goto out;
4349 		}
4350 		memcpy(buf, &temp, addrlen);
4351 		buf += addrlen;
4352 		bytes_copied += addrlen;
4353 		cnt ++;
4354 		space_left -= addrlen;
4355 	}
4356 
4357 copy_getaddrs:
4358 	if (copy_to_user(to, addrs, bytes_copied)) {
4359 		err = -EFAULT;
4360 		goto out;
4361 	}
4362 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4363 		err = -EFAULT;
4364 		goto out;
4365 	}
4366 	if (put_user(bytes_copied, optlen))
4367 		err = -EFAULT;
4368 out:
4369 	kfree(addrs);
4370 	return err;
4371 }
4372 
4373 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4374  *
4375  * Requests that the local SCTP stack use the enclosed peer address as
4376  * the association primary.  The enclosed address must be one of the
4377  * association peer's addresses.
4378  */
4379 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4380 					char __user *optval, int __user *optlen)
4381 {
4382 	struct sctp_prim prim;
4383 	struct sctp_association *asoc;
4384 	struct sctp_sock *sp = sctp_sk(sk);
4385 
4386 	if (len < sizeof(struct sctp_prim))
4387 		return -EINVAL;
4388 
4389 	len = sizeof(struct sctp_prim);
4390 
4391 	if (copy_from_user(&prim, optval, len))
4392 		return -EFAULT;
4393 
4394 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4395 	if (!asoc)
4396 		return -EINVAL;
4397 
4398 	if (!asoc->peer.primary_path)
4399 		return -ENOTCONN;
4400 
4401 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4402 		asoc->peer.primary_path->af_specific->sockaddr_len);
4403 
4404 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4405 			(union sctp_addr *)&prim.ssp_addr);
4406 
4407 	if (put_user(len, optlen))
4408 		return -EFAULT;
4409 	if (copy_to_user(optval, &prim, len))
4410 		return -EFAULT;
4411 
4412 	return 0;
4413 }
4414 
4415 /*
4416  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4417  *
4418  * Requests that the local endpoint set the specified Adaptation Layer
4419  * Indication parameter for all future INIT and INIT-ACK exchanges.
4420  */
4421 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4422 				  char __user *optval, int __user *optlen)
4423 {
4424 	struct sctp_setadaptation adaptation;
4425 
4426 	if (len < sizeof(struct sctp_setadaptation))
4427 		return -EINVAL;
4428 
4429 	len = sizeof(struct sctp_setadaptation);
4430 
4431 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4432 
4433 	if (put_user(len, optlen))
4434 		return -EFAULT;
4435 	if (copy_to_user(optval, &adaptation, len))
4436 		return -EFAULT;
4437 
4438 	return 0;
4439 }
4440 
4441 /*
4442  *
4443  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4444  *
4445  *   Applications that wish to use the sendto() system call may wish to
4446  *   specify a default set of parameters that would normally be supplied
4447  *   through the inclusion of ancillary data.  This socket option allows
4448  *   such an application to set the default sctp_sndrcvinfo structure.
4449 
4450 
4451  *   The application that wishes to use this socket option simply passes
4452  *   in to this call the sctp_sndrcvinfo structure defined in Section
4453  *   5.2.2) The input parameters accepted by this call include
4454  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4455  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4456  *   to this call if the caller is using the UDP model.
4457  *
4458  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4459  */
4460 static int sctp_getsockopt_default_send_param(struct sock *sk,
4461 					int len, char __user *optval,
4462 					int __user *optlen)
4463 {
4464 	struct sctp_sndrcvinfo info;
4465 	struct sctp_association *asoc;
4466 	struct sctp_sock *sp = sctp_sk(sk);
4467 
4468 	if (len < sizeof(struct sctp_sndrcvinfo))
4469 		return -EINVAL;
4470 
4471 	len = sizeof(struct sctp_sndrcvinfo);
4472 
4473 	if (copy_from_user(&info, optval, len))
4474 		return -EFAULT;
4475 
4476 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4477 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4478 		return -EINVAL;
4479 
4480 	if (asoc) {
4481 		info.sinfo_stream = asoc->default_stream;
4482 		info.sinfo_flags = asoc->default_flags;
4483 		info.sinfo_ppid = asoc->default_ppid;
4484 		info.sinfo_context = asoc->default_context;
4485 		info.sinfo_timetolive = asoc->default_timetolive;
4486 	} else {
4487 		info.sinfo_stream = sp->default_stream;
4488 		info.sinfo_flags = sp->default_flags;
4489 		info.sinfo_ppid = sp->default_ppid;
4490 		info.sinfo_context = sp->default_context;
4491 		info.sinfo_timetolive = sp->default_timetolive;
4492 	}
4493 
4494 	if (put_user(len, optlen))
4495 		return -EFAULT;
4496 	if (copy_to_user(optval, &info, len))
4497 		return -EFAULT;
4498 
4499 	return 0;
4500 }
4501 
4502 /*
4503  *
4504  * 7.1.5 SCTP_NODELAY
4505  *
4506  * Turn on/off any Nagle-like algorithm.  This means that packets are
4507  * generally sent as soon as possible and no unnecessary delays are
4508  * introduced, at the cost of more packets in the network.  Expects an
4509  * integer boolean flag.
4510  */
4511 
4512 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4513 				   char __user *optval, int __user *optlen)
4514 {
4515 	int val;
4516 
4517 	if (len < sizeof(int))
4518 		return -EINVAL;
4519 
4520 	len = sizeof(int);
4521 	val = (sctp_sk(sk)->nodelay == 1);
4522 	if (put_user(len, optlen))
4523 		return -EFAULT;
4524 	if (copy_to_user(optval, &val, len))
4525 		return -EFAULT;
4526 	return 0;
4527 }
4528 
4529 /*
4530  *
4531  * 7.1.1 SCTP_RTOINFO
4532  *
4533  * The protocol parameters used to initialize and bound retransmission
4534  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4535  * and modify these parameters.
4536  * All parameters are time values, in milliseconds.  A value of 0, when
4537  * modifying the parameters, indicates that the current value should not
4538  * be changed.
4539  *
4540  */
4541 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4542 				char __user *optval,
4543 				int __user *optlen) {
4544 	struct sctp_rtoinfo rtoinfo;
4545 	struct sctp_association *asoc;
4546 
4547 	if (len < sizeof (struct sctp_rtoinfo))
4548 		return -EINVAL;
4549 
4550 	len = sizeof(struct sctp_rtoinfo);
4551 
4552 	if (copy_from_user(&rtoinfo, optval, len))
4553 		return -EFAULT;
4554 
4555 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4556 
4557 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4558 		return -EINVAL;
4559 
4560 	/* Values corresponding to the specific association. */
4561 	if (asoc) {
4562 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4563 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4564 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4565 	} else {
4566 		/* Values corresponding to the endpoint. */
4567 		struct sctp_sock *sp = sctp_sk(sk);
4568 
4569 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4570 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4571 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4572 	}
4573 
4574 	if (put_user(len, optlen))
4575 		return -EFAULT;
4576 
4577 	if (copy_to_user(optval, &rtoinfo, len))
4578 		return -EFAULT;
4579 
4580 	return 0;
4581 }
4582 
4583 /*
4584  *
4585  * 7.1.2 SCTP_ASSOCINFO
4586  *
4587  * This option is used to tune the maximum retransmission attempts
4588  * of the association.
4589  * Returns an error if the new association retransmission value is
4590  * greater than the sum of the retransmission value  of the peer.
4591  * See [SCTP] for more information.
4592  *
4593  */
4594 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4595 				     char __user *optval,
4596 				     int __user *optlen)
4597 {
4598 
4599 	struct sctp_assocparams assocparams;
4600 	struct sctp_association *asoc;
4601 	struct list_head *pos;
4602 	int cnt = 0;
4603 
4604 	if (len < sizeof (struct sctp_assocparams))
4605 		return -EINVAL;
4606 
4607 	len = sizeof(struct sctp_assocparams);
4608 
4609 	if (copy_from_user(&assocparams, optval, len))
4610 		return -EFAULT;
4611 
4612 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4613 
4614 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4615 		return -EINVAL;
4616 
4617 	/* Values correspoinding to the specific association */
4618 	if (asoc) {
4619 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4620 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4621 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4622 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4623 						* 1000) +
4624 						(asoc->cookie_life.tv_usec
4625 						/ 1000);
4626 
4627 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4628 			cnt ++;
4629 		}
4630 
4631 		assocparams.sasoc_number_peer_destinations = cnt;
4632 	} else {
4633 		/* Values corresponding to the endpoint */
4634 		struct sctp_sock *sp = sctp_sk(sk);
4635 
4636 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4637 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4638 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4639 		assocparams.sasoc_cookie_life =
4640 					sp->assocparams.sasoc_cookie_life;
4641 		assocparams.sasoc_number_peer_destinations =
4642 					sp->assocparams.
4643 					sasoc_number_peer_destinations;
4644 	}
4645 
4646 	if (put_user(len, optlen))
4647 		return -EFAULT;
4648 
4649 	if (copy_to_user(optval, &assocparams, len))
4650 		return -EFAULT;
4651 
4652 	return 0;
4653 }
4654 
4655 /*
4656  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4657  *
4658  * This socket option is a boolean flag which turns on or off mapped V4
4659  * addresses.  If this option is turned on and the socket is type
4660  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4661  * If this option is turned off, then no mapping will be done of V4
4662  * addresses and a user will receive both PF_INET6 and PF_INET type
4663  * addresses on the socket.
4664  */
4665 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4666 				    char __user *optval, int __user *optlen)
4667 {
4668 	int val;
4669 	struct sctp_sock *sp = sctp_sk(sk);
4670 
4671 	if (len < sizeof(int))
4672 		return -EINVAL;
4673 
4674 	len = sizeof(int);
4675 	val = sp->v4mapped;
4676 	if (put_user(len, optlen))
4677 		return -EFAULT;
4678 	if (copy_to_user(optval, &val, len))
4679 		return -EFAULT;
4680 
4681 	return 0;
4682 }
4683 
4684 /*
4685  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
4686  * (chapter and verse is quoted at sctp_setsockopt_context())
4687  */
4688 static int sctp_getsockopt_context(struct sock *sk, int len,
4689 				   char __user *optval, int __user *optlen)
4690 {
4691 	struct sctp_assoc_value params;
4692 	struct sctp_sock *sp;
4693 	struct sctp_association *asoc;
4694 
4695 	if (len < sizeof(struct sctp_assoc_value))
4696 		return -EINVAL;
4697 
4698 	len = sizeof(struct sctp_assoc_value);
4699 
4700 	if (copy_from_user(&params, optval, len))
4701 		return -EFAULT;
4702 
4703 	sp = sctp_sk(sk);
4704 
4705 	if (params.assoc_id != 0) {
4706 		asoc = sctp_id2assoc(sk, params.assoc_id);
4707 		if (!asoc)
4708 			return -EINVAL;
4709 		params.assoc_value = asoc->default_rcv_context;
4710 	} else {
4711 		params.assoc_value = sp->default_rcv_context;
4712 	}
4713 
4714 	if (put_user(len, optlen))
4715 		return -EFAULT;
4716 	if (copy_to_user(optval, &params, len))
4717 		return -EFAULT;
4718 
4719 	return 0;
4720 }
4721 
4722 /*
4723  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4724  *
4725  * This socket option specifies the maximum size to put in any outgoing
4726  * SCTP chunk.  If a message is larger than this size it will be
4727  * fragmented by SCTP into the specified size.  Note that the underlying
4728  * SCTP implementation may fragment into smaller sized chunks when the
4729  * PMTU of the underlying association is smaller than the value set by
4730  * the user.
4731  */
4732 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4733 				  char __user *optval, int __user *optlen)
4734 {
4735 	int val;
4736 
4737 	if (len < sizeof(int))
4738 		return -EINVAL;
4739 
4740 	len = sizeof(int);
4741 
4742 	val = sctp_sk(sk)->user_frag;
4743 	if (put_user(len, optlen))
4744 		return -EFAULT;
4745 	if (copy_to_user(optval, &val, len))
4746 		return -EFAULT;
4747 
4748 	return 0;
4749 }
4750 
4751 /*
4752  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4753  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4754  */
4755 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4756 					       char __user *optval, int __user *optlen)
4757 {
4758 	int val;
4759 
4760 	if (len < sizeof(int))
4761 		return -EINVAL;
4762 
4763 	len = sizeof(int);
4764 
4765 	val = sctp_sk(sk)->frag_interleave;
4766 	if (put_user(len, optlen))
4767 		return -EFAULT;
4768 	if (copy_to_user(optval, &val, len))
4769 		return -EFAULT;
4770 
4771 	return 0;
4772 }
4773 
4774 /*
4775  * 7.1.25.  Set or Get the sctp partial delivery point
4776  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4777  */
4778 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4779 						  char __user *optval,
4780 						  int __user *optlen)
4781 {
4782 	u32 val;
4783 
4784 	if (len < sizeof(u32))
4785 		return -EINVAL;
4786 
4787 	len = sizeof(u32);
4788 
4789 	val = sctp_sk(sk)->pd_point;
4790 	if (put_user(len, optlen))
4791 		return -EFAULT;
4792 	if (copy_to_user(optval, &val, len))
4793 		return -EFAULT;
4794 
4795 	return -ENOTSUPP;
4796 }
4797 
4798 /*
4799  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
4800  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4801  */
4802 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4803 				    char __user *optval,
4804 				    int __user *optlen)
4805 {
4806 	int val;
4807 
4808 	if (len < sizeof(int))
4809 		return -EINVAL;
4810 
4811 	len = sizeof(int);
4812 
4813 	val = sctp_sk(sk)->max_burst;
4814 	if (put_user(len, optlen))
4815 		return -EFAULT;
4816 	if (copy_to_user(optval, &val, len))
4817 		return -EFAULT;
4818 
4819 	return -ENOTSUPP;
4820 }
4821 
4822 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4823 				char __user *optval, int __user *optlen)
4824 {
4825 	int retval = 0;
4826 	int len;
4827 
4828 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4829 			  sk, optname);
4830 
4831 	/* I can hardly begin to describe how wrong this is.  This is
4832 	 * so broken as to be worse than useless.  The API draft
4833 	 * REALLY is NOT helpful here...  I am not convinced that the
4834 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4835 	 * are at all well-founded.
4836 	 */
4837 	if (level != SOL_SCTP) {
4838 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4839 
4840 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4841 		return retval;
4842 	}
4843 
4844 	if (get_user(len, optlen))
4845 		return -EFAULT;
4846 
4847 	sctp_lock_sock(sk);
4848 
4849 	switch (optname) {
4850 	case SCTP_STATUS:
4851 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4852 		break;
4853 	case SCTP_DISABLE_FRAGMENTS:
4854 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4855 							   optlen);
4856 		break;
4857 	case SCTP_EVENTS:
4858 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4859 		break;
4860 	case SCTP_AUTOCLOSE:
4861 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4862 		break;
4863 	case SCTP_SOCKOPT_PEELOFF:
4864 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4865 		break;
4866 	case SCTP_PEER_ADDR_PARAMS:
4867 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4868 							  optlen);
4869 		break;
4870 	case SCTP_DELAYED_ACK_TIME:
4871 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4872 							  optlen);
4873 		break;
4874 	case SCTP_INITMSG:
4875 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4876 		break;
4877 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4878 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4879 							    optlen);
4880 		break;
4881 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4882 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4883 							     optlen);
4884 		break;
4885 	case SCTP_GET_PEER_ADDRS_OLD:
4886 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4887 							optlen);
4888 		break;
4889 	case SCTP_GET_LOCAL_ADDRS_OLD:
4890 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4891 							 optlen);
4892 		break;
4893 	case SCTP_GET_PEER_ADDRS:
4894 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4895 						    optlen);
4896 		break;
4897 	case SCTP_GET_LOCAL_ADDRS:
4898 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4899 						     optlen);
4900 		break;
4901 	case SCTP_DEFAULT_SEND_PARAM:
4902 		retval = sctp_getsockopt_default_send_param(sk, len,
4903 							    optval, optlen);
4904 		break;
4905 	case SCTP_PRIMARY_ADDR:
4906 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4907 		break;
4908 	case SCTP_NODELAY:
4909 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4910 		break;
4911 	case SCTP_RTOINFO:
4912 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4913 		break;
4914 	case SCTP_ASSOCINFO:
4915 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4916 		break;
4917 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4918 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4919 		break;
4920 	case SCTP_MAXSEG:
4921 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4922 		break;
4923 	case SCTP_GET_PEER_ADDR_INFO:
4924 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4925 							optlen);
4926 		break;
4927 	case SCTP_ADAPTATION_LAYER:
4928 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
4929 							optlen);
4930 		break;
4931 	case SCTP_CONTEXT:
4932 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
4933 		break;
4934 	case SCTP_FRAGMENT_INTERLEAVE:
4935 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
4936 							     optlen);
4937 		break;
4938 	case SCTP_PARTIAL_DELIVERY_POINT:
4939 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
4940 								optlen);
4941 		break;
4942 	case SCTP_MAX_BURST:
4943 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
4944 		break;
4945 	default:
4946 		retval = -ENOPROTOOPT;
4947 		break;
4948 	}
4949 
4950 	sctp_release_sock(sk);
4951 	return retval;
4952 }
4953 
4954 static void sctp_hash(struct sock *sk)
4955 {
4956 	/* STUB */
4957 }
4958 
4959 static void sctp_unhash(struct sock *sk)
4960 {
4961 	/* STUB */
4962 }
4963 
4964 /* Check if port is acceptable.  Possibly find first available port.
4965  *
4966  * The port hash table (contained in the 'global' SCTP protocol storage
4967  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4968  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4969  * list (the list number is the port number hashed out, so as you
4970  * would expect from a hash function, all the ports in a given list have
4971  * such a number that hashes out to the same list number; you were
4972  * expecting that, right?); so each list has a set of ports, with a
4973  * link to the socket (struct sock) that uses it, the port number and
4974  * a fastreuse flag (FIXME: NPI ipg).
4975  */
4976 static struct sctp_bind_bucket *sctp_bucket_create(
4977 	struct sctp_bind_hashbucket *head, unsigned short snum);
4978 
4979 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4980 {
4981 	struct sctp_bind_hashbucket *head; /* hash list */
4982 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4983 	unsigned short snum;
4984 	int ret;
4985 
4986 	snum = ntohs(addr->v4.sin_port);
4987 
4988 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4989 	sctp_local_bh_disable();
4990 
4991 	if (snum == 0) {
4992 		/* Search for an available port.
4993 		 *
4994 		 * 'sctp_port_rover' was the last port assigned, so
4995 		 * we start to search from 'sctp_port_rover +
4996 		 * 1'. What we do is first check if port 'rover' is
4997 		 * already in the hash table; if not, we use that; if
4998 		 * it is, we try next.
4999 		 */
5000 		int low = sysctl_local_port_range[0];
5001 		int high = sysctl_local_port_range[1];
5002 		int remaining = (high - low) + 1;
5003 		int rover;
5004 		int index;
5005 
5006 		sctp_spin_lock(&sctp_port_alloc_lock);
5007 		rover = sctp_port_rover;
5008 		do {
5009 			rover++;
5010 			if ((rover < low) || (rover > high))
5011 				rover = low;
5012 			index = sctp_phashfn(rover);
5013 			head = &sctp_port_hashtable[index];
5014 			sctp_spin_lock(&head->lock);
5015 			for (pp = head->chain; pp; pp = pp->next)
5016 				if (pp->port == rover)
5017 					goto next;
5018 			break;
5019 		next:
5020 			sctp_spin_unlock(&head->lock);
5021 		} while (--remaining > 0);
5022 		sctp_port_rover = rover;
5023 		sctp_spin_unlock(&sctp_port_alloc_lock);
5024 
5025 		/* Exhausted local port range during search? */
5026 		ret = 1;
5027 		if (remaining <= 0)
5028 			goto fail;
5029 
5030 		/* OK, here is the one we will use.  HEAD (the port
5031 		 * hash table list entry) is non-NULL and we hold it's
5032 		 * mutex.
5033 		 */
5034 		snum = rover;
5035 	} else {
5036 		/* We are given an specific port number; we verify
5037 		 * that it is not being used. If it is used, we will
5038 		 * exahust the search in the hash list corresponding
5039 		 * to the port number (snum) - we detect that with the
5040 		 * port iterator, pp being NULL.
5041 		 */
5042 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5043 		sctp_spin_lock(&head->lock);
5044 		for (pp = head->chain; pp; pp = pp->next) {
5045 			if (pp->port == snum)
5046 				goto pp_found;
5047 		}
5048 	}
5049 	pp = NULL;
5050 	goto pp_not_found;
5051 pp_found:
5052 	if (!hlist_empty(&pp->owner)) {
5053 		/* We had a port hash table hit - there is an
5054 		 * available port (pp != NULL) and it is being
5055 		 * used by other socket (pp->owner not empty); that other
5056 		 * socket is going to be sk2.
5057 		 */
5058 		int reuse = sk->sk_reuse;
5059 		struct sock *sk2;
5060 		struct hlist_node *node;
5061 
5062 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5063 		if (pp->fastreuse && sk->sk_reuse &&
5064 			sk->sk_state != SCTP_SS_LISTENING)
5065 			goto success;
5066 
5067 		/* Run through the list of sockets bound to the port
5068 		 * (pp->port) [via the pointers bind_next and
5069 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5070 		 * we get the endpoint they describe and run through
5071 		 * the endpoint's list of IP (v4 or v6) addresses,
5072 		 * comparing each of the addresses with the address of
5073 		 * the socket sk. If we find a match, then that means
5074 		 * that this port/socket (sk) combination are already
5075 		 * in an endpoint.
5076 		 */
5077 		sk_for_each_bound(sk2, node, &pp->owner) {
5078 			struct sctp_endpoint *ep2;
5079 			ep2 = sctp_sk(sk2)->ep;
5080 
5081 			if (reuse && sk2->sk_reuse &&
5082 			    sk2->sk_state != SCTP_SS_LISTENING)
5083 				continue;
5084 
5085 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5086 						 sctp_sk(sk))) {
5087 				ret = (long)sk2;
5088 				goto fail_unlock;
5089 			}
5090 		}
5091 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5092 	}
5093 pp_not_found:
5094 	/* If there was a hash table miss, create a new port.  */
5095 	ret = 1;
5096 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5097 		goto fail_unlock;
5098 
5099 	/* In either case (hit or miss), make sure fastreuse is 1 only
5100 	 * if sk->sk_reuse is too (that is, if the caller requested
5101 	 * SO_REUSEADDR on this socket -sk-).
5102 	 */
5103 	if (hlist_empty(&pp->owner)) {
5104 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5105 			pp->fastreuse = 1;
5106 		else
5107 			pp->fastreuse = 0;
5108 	} else if (pp->fastreuse &&
5109 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5110 		pp->fastreuse = 0;
5111 
5112 	/* We are set, so fill up all the data in the hash table
5113 	 * entry, tie the socket list information with the rest of the
5114 	 * sockets FIXME: Blurry, NPI (ipg).
5115 	 */
5116 success:
5117 	if (!sctp_sk(sk)->bind_hash) {
5118 		inet_sk(sk)->num = snum;
5119 		sk_add_bind_node(sk, &pp->owner);
5120 		sctp_sk(sk)->bind_hash = pp;
5121 	}
5122 	ret = 0;
5123 
5124 fail_unlock:
5125 	sctp_spin_unlock(&head->lock);
5126 
5127 fail:
5128 	sctp_local_bh_enable();
5129 	return ret;
5130 }
5131 
5132 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5133  * port is requested.
5134  */
5135 static int sctp_get_port(struct sock *sk, unsigned short snum)
5136 {
5137 	long ret;
5138 	union sctp_addr addr;
5139 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5140 
5141 	/* Set up a dummy address struct from the sk. */
5142 	af->from_sk(&addr, sk);
5143 	addr.v4.sin_port = htons(snum);
5144 
5145 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5146 	ret = sctp_get_port_local(sk, &addr);
5147 
5148 	return (ret ? 1 : 0);
5149 }
5150 
5151 /*
5152  * 3.1.3 listen() - UDP Style Syntax
5153  *
5154  *   By default, new associations are not accepted for UDP style sockets.
5155  *   An application uses listen() to mark a socket as being able to
5156  *   accept new associations.
5157  */
5158 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5159 {
5160 	struct sctp_sock *sp = sctp_sk(sk);
5161 	struct sctp_endpoint *ep = sp->ep;
5162 
5163 	/* Only UDP style sockets that are not peeled off are allowed to
5164 	 * listen().
5165 	 */
5166 	if (!sctp_style(sk, UDP))
5167 		return -EINVAL;
5168 
5169 	/* If backlog is zero, disable listening. */
5170 	if (!backlog) {
5171 		if (sctp_sstate(sk, CLOSED))
5172 			return 0;
5173 
5174 		sctp_unhash_endpoint(ep);
5175 		sk->sk_state = SCTP_SS_CLOSED;
5176 		return 0;
5177 	}
5178 
5179 	/* Return if we are already listening. */
5180 	if (sctp_sstate(sk, LISTENING))
5181 		return 0;
5182 
5183 	/*
5184 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5185 	 * call that allows new associations to be accepted, the system
5186 	 * picks an ephemeral port and will choose an address set equivalent
5187 	 * to binding with a wildcard address.
5188 	 *
5189 	 * This is not currently spelled out in the SCTP sockets
5190 	 * extensions draft, but follows the practice as seen in TCP
5191 	 * sockets.
5192 	 *
5193 	 * Additionally, turn off fastreuse flag since we are not listening
5194 	 */
5195 	sk->sk_state = SCTP_SS_LISTENING;
5196 	if (!ep->base.bind_addr.port) {
5197 		if (sctp_autobind(sk))
5198 			return -EAGAIN;
5199 	} else
5200 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5201 
5202 	sctp_hash_endpoint(ep);
5203 	return 0;
5204 }
5205 
5206 /*
5207  * 4.1.3 listen() - TCP Style Syntax
5208  *
5209  *   Applications uses listen() to ready the SCTP endpoint for accepting
5210  *   inbound associations.
5211  */
5212 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5213 {
5214 	struct sctp_sock *sp = sctp_sk(sk);
5215 	struct sctp_endpoint *ep = sp->ep;
5216 
5217 	/* If backlog is zero, disable listening. */
5218 	if (!backlog) {
5219 		if (sctp_sstate(sk, CLOSED))
5220 			return 0;
5221 
5222 		sctp_unhash_endpoint(ep);
5223 		sk->sk_state = SCTP_SS_CLOSED;
5224 		return 0;
5225 	}
5226 
5227 	if (sctp_sstate(sk, LISTENING))
5228 		return 0;
5229 
5230 	/*
5231 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5232 	 * call that allows new associations to be accepted, the system
5233 	 * picks an ephemeral port and will choose an address set equivalent
5234 	 * to binding with a wildcard address.
5235 	 *
5236 	 * This is not currently spelled out in the SCTP sockets
5237 	 * extensions draft, but follows the practice as seen in TCP
5238 	 * sockets.
5239 	 */
5240 	sk->sk_state = SCTP_SS_LISTENING;
5241 	if (!ep->base.bind_addr.port) {
5242 		if (sctp_autobind(sk))
5243 			return -EAGAIN;
5244 	} else
5245 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5246 
5247 	sk->sk_max_ack_backlog = backlog;
5248 	sctp_hash_endpoint(ep);
5249 	return 0;
5250 }
5251 
5252 /*
5253  *  Move a socket to LISTENING state.
5254  */
5255 int sctp_inet_listen(struct socket *sock, int backlog)
5256 {
5257 	struct sock *sk = sock->sk;
5258 	struct crypto_hash *tfm = NULL;
5259 	int err = -EINVAL;
5260 
5261 	if (unlikely(backlog < 0))
5262 		goto out;
5263 
5264 	sctp_lock_sock(sk);
5265 
5266 	if (sock->state != SS_UNCONNECTED)
5267 		goto out;
5268 
5269 	/* Allocate HMAC for generating cookie. */
5270 	if (sctp_hmac_alg) {
5271 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5272 		if (IS_ERR(tfm)) {
5273 			if (net_ratelimit()) {
5274 				printk(KERN_INFO
5275 				       "SCTP: failed to load transform for %s: %ld\n",
5276 					sctp_hmac_alg, PTR_ERR(tfm));
5277 			}
5278 			err = -ENOSYS;
5279 			goto out;
5280 		}
5281 	}
5282 
5283 	switch (sock->type) {
5284 	case SOCK_SEQPACKET:
5285 		err = sctp_seqpacket_listen(sk, backlog);
5286 		break;
5287 	case SOCK_STREAM:
5288 		err = sctp_stream_listen(sk, backlog);
5289 		break;
5290 	default:
5291 		break;
5292 	}
5293 
5294 	if (err)
5295 		goto cleanup;
5296 
5297 	/* Store away the transform reference. */
5298 	sctp_sk(sk)->hmac = tfm;
5299 out:
5300 	sctp_release_sock(sk);
5301 	return err;
5302 cleanup:
5303 	crypto_free_hash(tfm);
5304 	goto out;
5305 }
5306 
5307 /*
5308  * This function is done by modeling the current datagram_poll() and the
5309  * tcp_poll().  Note that, based on these implementations, we don't
5310  * lock the socket in this function, even though it seems that,
5311  * ideally, locking or some other mechanisms can be used to ensure
5312  * the integrity of the counters (sndbuf and wmem_alloc) used
5313  * in this place.  We assume that we don't need locks either until proven
5314  * otherwise.
5315  *
5316  * Another thing to note is that we include the Async I/O support
5317  * here, again, by modeling the current TCP/UDP code.  We don't have
5318  * a good way to test with it yet.
5319  */
5320 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5321 {
5322 	struct sock *sk = sock->sk;
5323 	struct sctp_sock *sp = sctp_sk(sk);
5324 	unsigned int mask;
5325 
5326 	poll_wait(file, sk->sk_sleep, wait);
5327 
5328 	/* A TCP-style listening socket becomes readable when the accept queue
5329 	 * is not empty.
5330 	 */
5331 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5332 		return (!list_empty(&sp->ep->asocs)) ?
5333 			(POLLIN | POLLRDNORM) : 0;
5334 
5335 	mask = 0;
5336 
5337 	/* Is there any exceptional events?  */
5338 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5339 		mask |= POLLERR;
5340 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5341 		mask |= POLLRDHUP;
5342 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5343 		mask |= POLLHUP;
5344 
5345 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5346 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5347 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5348 		mask |= POLLIN | POLLRDNORM;
5349 
5350 	/* The association is either gone or not ready.  */
5351 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5352 		return mask;
5353 
5354 	/* Is it writable?  */
5355 	if (sctp_writeable(sk)) {
5356 		mask |= POLLOUT | POLLWRNORM;
5357 	} else {
5358 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5359 		/*
5360 		 * Since the socket is not locked, the buffer
5361 		 * might be made available after the writeable check and
5362 		 * before the bit is set.  This could cause a lost I/O
5363 		 * signal.  tcp_poll() has a race breaker for this race
5364 		 * condition.  Based on their implementation, we put
5365 		 * in the following code to cover it as well.
5366 		 */
5367 		if (sctp_writeable(sk))
5368 			mask |= POLLOUT | POLLWRNORM;
5369 	}
5370 	return mask;
5371 }
5372 
5373 /********************************************************************
5374  * 2nd Level Abstractions
5375  ********************************************************************/
5376 
5377 static struct sctp_bind_bucket *sctp_bucket_create(
5378 	struct sctp_bind_hashbucket *head, unsigned short snum)
5379 {
5380 	struct sctp_bind_bucket *pp;
5381 
5382 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5383 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5384 	if (pp) {
5385 		pp->port = snum;
5386 		pp->fastreuse = 0;
5387 		INIT_HLIST_HEAD(&pp->owner);
5388 		if ((pp->next = head->chain) != NULL)
5389 			pp->next->pprev = &pp->next;
5390 		head->chain = pp;
5391 		pp->pprev = &head->chain;
5392 	}
5393 	return pp;
5394 }
5395 
5396 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5397 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5398 {
5399 	if (pp && hlist_empty(&pp->owner)) {
5400 		if (pp->next)
5401 			pp->next->pprev = pp->pprev;
5402 		*(pp->pprev) = pp->next;
5403 		kmem_cache_free(sctp_bucket_cachep, pp);
5404 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5405 	}
5406 }
5407 
5408 /* Release this socket's reference to a local port.  */
5409 static inline void __sctp_put_port(struct sock *sk)
5410 {
5411 	struct sctp_bind_hashbucket *head =
5412 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5413 	struct sctp_bind_bucket *pp;
5414 
5415 	sctp_spin_lock(&head->lock);
5416 	pp = sctp_sk(sk)->bind_hash;
5417 	__sk_del_bind_node(sk);
5418 	sctp_sk(sk)->bind_hash = NULL;
5419 	inet_sk(sk)->num = 0;
5420 	sctp_bucket_destroy(pp);
5421 	sctp_spin_unlock(&head->lock);
5422 }
5423 
5424 void sctp_put_port(struct sock *sk)
5425 {
5426 	sctp_local_bh_disable();
5427 	__sctp_put_port(sk);
5428 	sctp_local_bh_enable();
5429 }
5430 
5431 /*
5432  * The system picks an ephemeral port and choose an address set equivalent
5433  * to binding with a wildcard address.
5434  * One of those addresses will be the primary address for the association.
5435  * This automatically enables the multihoming capability of SCTP.
5436  */
5437 static int sctp_autobind(struct sock *sk)
5438 {
5439 	union sctp_addr autoaddr;
5440 	struct sctp_af *af;
5441 	__be16 port;
5442 
5443 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5444 	af = sctp_sk(sk)->pf->af;
5445 
5446 	port = htons(inet_sk(sk)->num);
5447 	af->inaddr_any(&autoaddr, port);
5448 
5449 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5450 }
5451 
5452 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5453  *
5454  * From RFC 2292
5455  * 4.2 The cmsghdr Structure *
5456  *
5457  * When ancillary data is sent or received, any number of ancillary data
5458  * objects can be specified by the msg_control and msg_controllen members of
5459  * the msghdr structure, because each object is preceded by
5460  * a cmsghdr structure defining the object's length (the cmsg_len member).
5461  * Historically Berkeley-derived implementations have passed only one object
5462  * at a time, but this API allows multiple objects to be
5463  * passed in a single call to sendmsg() or recvmsg(). The following example
5464  * shows two ancillary data objects in a control buffer.
5465  *
5466  *   |<--------------------------- msg_controllen -------------------------->|
5467  *   |                                                                       |
5468  *
5469  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5470  *
5471  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5472  *   |                                   |                                   |
5473  *
5474  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5475  *
5476  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5477  *   |                                |  |                                |  |
5478  *
5479  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5480  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5481  *
5482  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5483  *
5484  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5485  *    ^
5486  *    |
5487  *
5488  * msg_control
5489  * points here
5490  */
5491 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5492 				  sctp_cmsgs_t *cmsgs)
5493 {
5494 	struct cmsghdr *cmsg;
5495 
5496 	for (cmsg = CMSG_FIRSTHDR(msg);
5497 	     cmsg != NULL;
5498 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5499 		if (!CMSG_OK(msg, cmsg))
5500 			return -EINVAL;
5501 
5502 		/* Should we parse this header or ignore?  */
5503 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5504 			continue;
5505 
5506 		/* Strictly check lengths following example in SCM code.  */
5507 		switch (cmsg->cmsg_type) {
5508 		case SCTP_INIT:
5509 			/* SCTP Socket API Extension
5510 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5511 			 *
5512 			 * This cmsghdr structure provides information for
5513 			 * initializing new SCTP associations with sendmsg().
5514 			 * The SCTP_INITMSG socket option uses this same data
5515 			 * structure.  This structure is not used for
5516 			 * recvmsg().
5517 			 *
5518 			 * cmsg_level    cmsg_type      cmsg_data[]
5519 			 * ------------  ------------   ----------------------
5520 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5521 			 */
5522 			if (cmsg->cmsg_len !=
5523 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5524 				return -EINVAL;
5525 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5526 			break;
5527 
5528 		case SCTP_SNDRCV:
5529 			/* SCTP Socket API Extension
5530 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5531 			 *
5532 			 * This cmsghdr structure specifies SCTP options for
5533 			 * sendmsg() and describes SCTP header information
5534 			 * about a received message through recvmsg().
5535 			 *
5536 			 * cmsg_level    cmsg_type      cmsg_data[]
5537 			 * ------------  ------------   ----------------------
5538 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5539 			 */
5540 			if (cmsg->cmsg_len !=
5541 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5542 				return -EINVAL;
5543 
5544 			cmsgs->info =
5545 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5546 
5547 			/* Minimally, validate the sinfo_flags. */
5548 			if (cmsgs->info->sinfo_flags &
5549 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5550 			      SCTP_ABORT | SCTP_EOF))
5551 				return -EINVAL;
5552 			break;
5553 
5554 		default:
5555 			return -EINVAL;
5556 		}
5557 	}
5558 	return 0;
5559 }
5560 
5561 /*
5562  * Wait for a packet..
5563  * Note: This function is the same function as in core/datagram.c
5564  * with a few modifications to make lksctp work.
5565  */
5566 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5567 {
5568 	int error;
5569 	DEFINE_WAIT(wait);
5570 
5571 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5572 
5573 	/* Socket errors? */
5574 	error = sock_error(sk);
5575 	if (error)
5576 		goto out;
5577 
5578 	if (!skb_queue_empty(&sk->sk_receive_queue))
5579 		goto ready;
5580 
5581 	/* Socket shut down?  */
5582 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5583 		goto out;
5584 
5585 	/* Sequenced packets can come disconnected.  If so we report the
5586 	 * problem.
5587 	 */
5588 	error = -ENOTCONN;
5589 
5590 	/* Is there a good reason to think that we may receive some data?  */
5591 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5592 		goto out;
5593 
5594 	/* Handle signals.  */
5595 	if (signal_pending(current))
5596 		goto interrupted;
5597 
5598 	/* Let another process have a go.  Since we are going to sleep
5599 	 * anyway.  Note: This may cause odd behaviors if the message
5600 	 * does not fit in the user's buffer, but this seems to be the
5601 	 * only way to honor MSG_DONTWAIT realistically.
5602 	 */
5603 	sctp_release_sock(sk);
5604 	*timeo_p = schedule_timeout(*timeo_p);
5605 	sctp_lock_sock(sk);
5606 
5607 ready:
5608 	finish_wait(sk->sk_sleep, &wait);
5609 	return 0;
5610 
5611 interrupted:
5612 	error = sock_intr_errno(*timeo_p);
5613 
5614 out:
5615 	finish_wait(sk->sk_sleep, &wait);
5616 	*err = error;
5617 	return error;
5618 }
5619 
5620 /* Receive a datagram.
5621  * Note: This is pretty much the same routine as in core/datagram.c
5622  * with a few changes to make lksctp work.
5623  */
5624 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5625 					      int noblock, int *err)
5626 {
5627 	int error;
5628 	struct sk_buff *skb;
5629 	long timeo;
5630 
5631 	timeo = sock_rcvtimeo(sk, noblock);
5632 
5633 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5634 			  timeo, MAX_SCHEDULE_TIMEOUT);
5635 
5636 	do {
5637 		/* Again only user level code calls this function,
5638 		 * so nothing interrupt level
5639 		 * will suddenly eat the receive_queue.
5640 		 *
5641 		 *  Look at current nfs client by the way...
5642 		 *  However, this function was corrent in any case. 8)
5643 		 */
5644 		if (flags & MSG_PEEK) {
5645 			spin_lock_bh(&sk->sk_receive_queue.lock);
5646 			skb = skb_peek(&sk->sk_receive_queue);
5647 			if (skb)
5648 				atomic_inc(&skb->users);
5649 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5650 		} else {
5651 			skb = skb_dequeue(&sk->sk_receive_queue);
5652 		}
5653 
5654 		if (skb)
5655 			return skb;
5656 
5657 		/* Caller is allowed not to check sk->sk_err before calling. */
5658 		error = sock_error(sk);
5659 		if (error)
5660 			goto no_packet;
5661 
5662 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5663 			break;
5664 
5665 		/* User doesn't want to wait.  */
5666 		error = -EAGAIN;
5667 		if (!timeo)
5668 			goto no_packet;
5669 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5670 
5671 	return NULL;
5672 
5673 no_packet:
5674 	*err = error;
5675 	return NULL;
5676 }
5677 
5678 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5679 static void __sctp_write_space(struct sctp_association *asoc)
5680 {
5681 	struct sock *sk = asoc->base.sk;
5682 	struct socket *sock = sk->sk_socket;
5683 
5684 	if ((sctp_wspace(asoc) > 0) && sock) {
5685 		if (waitqueue_active(&asoc->wait))
5686 			wake_up_interruptible(&asoc->wait);
5687 
5688 		if (sctp_writeable(sk)) {
5689 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5690 				wake_up_interruptible(sk->sk_sleep);
5691 
5692 			/* Note that we try to include the Async I/O support
5693 			 * here by modeling from the current TCP/UDP code.
5694 			 * We have not tested with it yet.
5695 			 */
5696 			if (sock->fasync_list &&
5697 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5698 				sock_wake_async(sock, 2, POLL_OUT);
5699 		}
5700 	}
5701 }
5702 
5703 /* Do accounting for the sndbuf space.
5704  * Decrement the used sndbuf space of the corresponding association by the
5705  * data size which was just transmitted(freed).
5706  */
5707 static void sctp_wfree(struct sk_buff *skb)
5708 {
5709 	struct sctp_association *asoc;
5710 	struct sctp_chunk *chunk;
5711 	struct sock *sk;
5712 
5713 	/* Get the saved chunk pointer.  */
5714 	chunk = *((struct sctp_chunk **)(skb->cb));
5715 	asoc = chunk->asoc;
5716 	sk = asoc->base.sk;
5717 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5718 				sizeof(struct sk_buff) +
5719 				sizeof(struct sctp_chunk);
5720 
5721 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5722 
5723 	sock_wfree(skb);
5724 	__sctp_write_space(asoc);
5725 
5726 	sctp_association_put(asoc);
5727 }
5728 
5729 /* Do accounting for the receive space on the socket.
5730  * Accounting for the association is done in ulpevent.c
5731  * We set this as a destructor for the cloned data skbs so that
5732  * accounting is done at the correct time.
5733  */
5734 void sctp_sock_rfree(struct sk_buff *skb)
5735 {
5736 	struct sock *sk = skb->sk;
5737 	struct sctp_ulpevent *event = sctp_skb2event(skb);
5738 
5739 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5740 }
5741 
5742 
5743 /* Helper function to wait for space in the sndbuf.  */
5744 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5745 				size_t msg_len)
5746 {
5747 	struct sock *sk = asoc->base.sk;
5748 	int err = 0;
5749 	long current_timeo = *timeo_p;
5750 	DEFINE_WAIT(wait);
5751 
5752 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5753 			  asoc, (long)(*timeo_p), msg_len);
5754 
5755 	/* Increment the association's refcnt.  */
5756 	sctp_association_hold(asoc);
5757 
5758 	/* Wait on the association specific sndbuf space. */
5759 	for (;;) {
5760 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5761 					  TASK_INTERRUPTIBLE);
5762 		if (!*timeo_p)
5763 			goto do_nonblock;
5764 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5765 		    asoc->base.dead)
5766 			goto do_error;
5767 		if (signal_pending(current))
5768 			goto do_interrupted;
5769 		if (msg_len <= sctp_wspace(asoc))
5770 			break;
5771 
5772 		/* Let another process have a go.  Since we are going
5773 		 * to sleep anyway.
5774 		 */
5775 		sctp_release_sock(sk);
5776 		current_timeo = schedule_timeout(current_timeo);
5777 		BUG_ON(sk != asoc->base.sk);
5778 		sctp_lock_sock(sk);
5779 
5780 		*timeo_p = current_timeo;
5781 	}
5782 
5783 out:
5784 	finish_wait(&asoc->wait, &wait);
5785 
5786 	/* Release the association's refcnt.  */
5787 	sctp_association_put(asoc);
5788 
5789 	return err;
5790 
5791 do_error:
5792 	err = -EPIPE;
5793 	goto out;
5794 
5795 do_interrupted:
5796 	err = sock_intr_errno(*timeo_p);
5797 	goto out;
5798 
5799 do_nonblock:
5800 	err = -EAGAIN;
5801 	goto out;
5802 }
5803 
5804 /* If socket sndbuf has changed, wake up all per association waiters.  */
5805 void sctp_write_space(struct sock *sk)
5806 {
5807 	struct sctp_association *asoc;
5808 	struct list_head *pos;
5809 
5810 	/* Wake up the tasks in each wait queue.  */
5811 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5812 		asoc = list_entry(pos, struct sctp_association, asocs);
5813 		__sctp_write_space(asoc);
5814 	}
5815 }
5816 
5817 /* Is there any sndbuf space available on the socket?
5818  *
5819  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5820  * associations on the same socket.  For a UDP-style socket with
5821  * multiple associations, it is possible for it to be "unwriteable"
5822  * prematurely.  I assume that this is acceptable because
5823  * a premature "unwriteable" is better than an accidental "writeable" which
5824  * would cause an unwanted block under certain circumstances.  For the 1-1
5825  * UDP-style sockets or TCP-style sockets, this code should work.
5826  *  - Daisy
5827  */
5828 static int sctp_writeable(struct sock *sk)
5829 {
5830 	int amt = 0;
5831 
5832 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5833 	if (amt < 0)
5834 		amt = 0;
5835 	return amt;
5836 }
5837 
5838 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5839  * returns immediately with EINPROGRESS.
5840  */
5841 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5842 {
5843 	struct sock *sk = asoc->base.sk;
5844 	int err = 0;
5845 	long current_timeo = *timeo_p;
5846 	DEFINE_WAIT(wait);
5847 
5848 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5849 			  (long)(*timeo_p));
5850 
5851 	/* Increment the association's refcnt.  */
5852 	sctp_association_hold(asoc);
5853 
5854 	for (;;) {
5855 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5856 					  TASK_INTERRUPTIBLE);
5857 		if (!*timeo_p)
5858 			goto do_nonblock;
5859 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5860 			break;
5861 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5862 		    asoc->base.dead)
5863 			goto do_error;
5864 		if (signal_pending(current))
5865 			goto do_interrupted;
5866 
5867 		if (sctp_state(asoc, ESTABLISHED))
5868 			break;
5869 
5870 		/* Let another process have a go.  Since we are going
5871 		 * to sleep anyway.
5872 		 */
5873 		sctp_release_sock(sk);
5874 		current_timeo = schedule_timeout(current_timeo);
5875 		sctp_lock_sock(sk);
5876 
5877 		*timeo_p = current_timeo;
5878 	}
5879 
5880 out:
5881 	finish_wait(&asoc->wait, &wait);
5882 
5883 	/* Release the association's refcnt.  */
5884 	sctp_association_put(asoc);
5885 
5886 	return err;
5887 
5888 do_error:
5889 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5890 		err = -ETIMEDOUT;
5891 	else
5892 		err = -ECONNREFUSED;
5893 	goto out;
5894 
5895 do_interrupted:
5896 	err = sock_intr_errno(*timeo_p);
5897 	goto out;
5898 
5899 do_nonblock:
5900 	err = -EINPROGRESS;
5901 	goto out;
5902 }
5903 
5904 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5905 {
5906 	struct sctp_endpoint *ep;
5907 	int err = 0;
5908 	DEFINE_WAIT(wait);
5909 
5910 	ep = sctp_sk(sk)->ep;
5911 
5912 
5913 	for (;;) {
5914 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5915 					  TASK_INTERRUPTIBLE);
5916 
5917 		if (list_empty(&ep->asocs)) {
5918 			sctp_release_sock(sk);
5919 			timeo = schedule_timeout(timeo);
5920 			sctp_lock_sock(sk);
5921 		}
5922 
5923 		err = -EINVAL;
5924 		if (!sctp_sstate(sk, LISTENING))
5925 			break;
5926 
5927 		err = 0;
5928 		if (!list_empty(&ep->asocs))
5929 			break;
5930 
5931 		err = sock_intr_errno(timeo);
5932 		if (signal_pending(current))
5933 			break;
5934 
5935 		err = -EAGAIN;
5936 		if (!timeo)
5937 			break;
5938 	}
5939 
5940 	finish_wait(sk->sk_sleep, &wait);
5941 
5942 	return err;
5943 }
5944 
5945 static void sctp_wait_for_close(struct sock *sk, long timeout)
5946 {
5947 	DEFINE_WAIT(wait);
5948 
5949 	do {
5950 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5951 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5952 			break;
5953 		sctp_release_sock(sk);
5954 		timeout = schedule_timeout(timeout);
5955 		sctp_lock_sock(sk);
5956 	} while (!signal_pending(current) && timeout);
5957 
5958 	finish_wait(sk->sk_sleep, &wait);
5959 }
5960 
5961 static void sctp_sock_rfree_frag(struct sk_buff *skb)
5962 {
5963 	struct sk_buff *frag;
5964 
5965 	if (!skb->data_len)
5966 		goto done;
5967 
5968 	/* Don't forget the fragments. */
5969 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
5970 		sctp_sock_rfree_frag(frag);
5971 
5972 done:
5973 	sctp_sock_rfree(skb);
5974 }
5975 
5976 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
5977 {
5978 	struct sk_buff *frag;
5979 
5980 	if (!skb->data_len)
5981 		goto done;
5982 
5983 	/* Don't forget the fragments. */
5984 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
5985 		sctp_skb_set_owner_r_frag(frag, sk);
5986 
5987 done:
5988 	sctp_skb_set_owner_r(skb, sk);
5989 }
5990 
5991 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5992  * and its messages to the newsk.
5993  */
5994 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5995 			      struct sctp_association *assoc,
5996 			      sctp_socket_type_t type)
5997 {
5998 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5999 	struct sctp_sock *newsp = sctp_sk(newsk);
6000 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6001 	struct sctp_endpoint *newep = newsp->ep;
6002 	struct sk_buff *skb, *tmp;
6003 	struct sctp_ulpevent *event;
6004 	int flags = 0;
6005 
6006 	/* Migrate socket buffer sizes and all the socket level options to the
6007 	 * new socket.
6008 	 */
6009 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6010 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6011 	/* Brute force copy old sctp opt. */
6012 	inet_sk_copy_descendant(newsk, oldsk);
6013 
6014 	/* Restore the ep value that was overwritten with the above structure
6015 	 * copy.
6016 	 */
6017 	newsp->ep = newep;
6018 	newsp->hmac = NULL;
6019 
6020 	/* Hook this new socket in to the bind_hash list. */
6021 	pp = sctp_sk(oldsk)->bind_hash;
6022 	sk_add_bind_node(newsk, &pp->owner);
6023 	sctp_sk(newsk)->bind_hash = pp;
6024 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6025 
6026 	/* Copy the bind_addr list from the original endpoint to the new
6027 	 * endpoint so that we can handle restarts properly
6028 	 */
6029 	if (PF_INET6 == assoc->base.sk->sk_family)
6030 		flags = SCTP_ADDR6_ALLOWED;
6031 	if (assoc->peer.ipv4_address)
6032 		flags |= SCTP_ADDR4_PEERSUPP;
6033 	if (assoc->peer.ipv6_address)
6034 		flags |= SCTP_ADDR6_PEERSUPP;
6035 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6036 			     &oldsp->ep->base.bind_addr,
6037 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6038 
6039 	/* Move any messages in the old socket's receive queue that are for the
6040 	 * peeled off association to the new socket's receive queue.
6041 	 */
6042 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6043 		event = sctp_skb2event(skb);
6044 		if (event->asoc == assoc) {
6045 			sctp_sock_rfree_frag(skb);
6046 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6047 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6048 			sctp_skb_set_owner_r_frag(skb, newsk);
6049 		}
6050 	}
6051 
6052 	/* Clean up any messages pending delivery due to partial
6053 	 * delivery.   Three cases:
6054 	 * 1) No partial deliver;  no work.
6055 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6056 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6057 	 */
6058 	skb_queue_head_init(&newsp->pd_lobby);
6059 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6060 
6061 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6062 		struct sk_buff_head *queue;
6063 
6064 		/* Decide which queue to move pd_lobby skbs to. */
6065 		if (assoc->ulpq.pd_mode) {
6066 			queue = &newsp->pd_lobby;
6067 		} else
6068 			queue = &newsk->sk_receive_queue;
6069 
6070 		/* Walk through the pd_lobby, looking for skbs that
6071 		 * need moved to the new socket.
6072 		 */
6073 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6074 			event = sctp_skb2event(skb);
6075 			if (event->asoc == assoc) {
6076 				sctp_sock_rfree_frag(skb);
6077 				__skb_unlink(skb, &oldsp->pd_lobby);
6078 				__skb_queue_tail(queue, skb);
6079 				sctp_skb_set_owner_r_frag(skb, newsk);
6080 			}
6081 		}
6082 
6083 		/* Clear up any skbs waiting for the partial
6084 		 * delivery to finish.
6085 		 */
6086 		if (assoc->ulpq.pd_mode)
6087 			sctp_clear_pd(oldsk, NULL);
6088 
6089 	}
6090 
6091 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6092 		sctp_sock_rfree_frag(skb);
6093 		sctp_skb_set_owner_r_frag(skb, newsk);
6094 	}
6095 
6096 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6097 		sctp_sock_rfree_frag(skb);
6098 		sctp_skb_set_owner_r_frag(skb, newsk);
6099 	}
6100 
6101 	/* Set the type of socket to indicate that it is peeled off from the
6102 	 * original UDP-style socket or created with the accept() call on a
6103 	 * TCP-style socket..
6104 	 */
6105 	newsp->type = type;
6106 
6107 	/* Mark the new socket "in-use" by the user so that any packets
6108 	 * that may arrive on the association after we've moved it are
6109 	 * queued to the backlog.  This prevents a potential race between
6110 	 * backlog processing on the old socket and new-packet processing
6111 	 * on the new socket.
6112 	 *
6113 	 * The caller has just allocated newsk so we can guarantee that other
6114 	 * paths won't try to lock it and then oldsk.
6115 	 */
6116 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6117 	sctp_assoc_migrate(assoc, newsk);
6118 
6119 	/* If the association on the newsk is already closed before accept()
6120 	 * is called, set RCV_SHUTDOWN flag.
6121 	 */
6122 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6123 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6124 
6125 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6126 	sctp_release_sock(newsk);
6127 }
6128 
6129 /* This proto struct describes the ULP interface for SCTP.  */
6130 struct proto sctp_prot = {
6131 	.name        =	"SCTP",
6132 	.owner       =	THIS_MODULE,
6133 	.close       =	sctp_close,
6134 	.connect     =	sctp_connect,
6135 	.disconnect  =	sctp_disconnect,
6136 	.accept      =	sctp_accept,
6137 	.ioctl       =	sctp_ioctl,
6138 	.init        =	sctp_init_sock,
6139 	.destroy     =	sctp_destroy_sock,
6140 	.shutdown    =	sctp_shutdown,
6141 	.setsockopt  =	sctp_setsockopt,
6142 	.getsockopt  =	sctp_getsockopt,
6143 	.sendmsg     =	sctp_sendmsg,
6144 	.recvmsg     =	sctp_recvmsg,
6145 	.bind        =	sctp_bind,
6146 	.backlog_rcv =	sctp_backlog_rcv,
6147 	.hash        =	sctp_hash,
6148 	.unhash      =	sctp_unhash,
6149 	.get_port    =	sctp_get_port,
6150 	.obj_size    =  sizeof(struct sctp_sock),
6151 };
6152 
6153 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6154 struct proto sctpv6_prot = {
6155 	.name		= "SCTPv6",
6156 	.owner		= THIS_MODULE,
6157 	.close		= sctp_close,
6158 	.connect	= sctp_connect,
6159 	.disconnect	= sctp_disconnect,
6160 	.accept		= sctp_accept,
6161 	.ioctl		= sctp_ioctl,
6162 	.init		= sctp_init_sock,
6163 	.destroy	= sctp_destroy_sock,
6164 	.shutdown	= sctp_shutdown,
6165 	.setsockopt	= sctp_setsockopt,
6166 	.getsockopt	= sctp_getsockopt,
6167 	.sendmsg	= sctp_sendmsg,
6168 	.recvmsg	= sctp_recvmsg,
6169 	.bind		= sctp_bind,
6170 	.backlog_rcv	= sctp_backlog_rcv,
6171 	.hash		= sctp_hash,
6172 	.unhash		= sctp_unhash,
6173 	.get_port	= sctp_get_port,
6174 	.obj_size	= sizeof(struct sctp6_sock),
6175 };
6176 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6177