1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 /* Get the sndbuf space available at the time on the association. */ 111 static inline int sctp_wspace(struct sctp_association *asoc) 112 { 113 struct sock *sk = asoc->base.sk; 114 int amt = 0; 115 116 if (asoc->ep->sndbuf_policy) { 117 /* make sure that no association uses more than sk_sndbuf */ 118 amt = sk->sk_sndbuf - asoc->sndbuf_used; 119 } else { 120 /* do socket level accounting */ 121 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 122 } 123 124 if (amt < 0) 125 amt = 0; 126 127 return amt; 128 } 129 130 /* Increment the used sndbuf space count of the corresponding association by 131 * the size of the outgoing data chunk. 132 * Also, set the skb destructor for sndbuf accounting later. 133 * 134 * Since it is always 1-1 between chunk and skb, and also a new skb is always 135 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 136 * destructor in the data chunk skb for the purpose of the sndbuf space 137 * tracking. 138 */ 139 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 140 { 141 struct sctp_association *asoc = chunk->asoc; 142 struct sock *sk = asoc->base.sk; 143 144 /* The sndbuf space is tracked per association. */ 145 sctp_association_hold(asoc); 146 147 skb_set_owner_w(chunk->skb, sk); 148 149 chunk->skb->destructor = sctp_wfree; 150 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 151 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 152 153 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 154 sizeof(struct sk_buff) + 155 sizeof(struct sctp_chunk); 156 157 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 158 } 159 160 /* Verify that this is a valid address. */ 161 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 162 int len) 163 { 164 struct sctp_af *af; 165 166 /* Verify basic sockaddr. */ 167 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 168 if (!af) 169 return -EINVAL; 170 171 /* Is this a valid SCTP address? */ 172 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 173 return -EINVAL; 174 175 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 176 return -EINVAL; 177 178 return 0; 179 } 180 181 /* Look up the association by its id. If this is not a UDP-style 182 * socket, the ID field is always ignored. 183 */ 184 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 185 { 186 struct sctp_association *asoc = NULL; 187 188 /* If this is not a UDP-style socket, assoc id should be ignored. */ 189 if (!sctp_style(sk, UDP)) { 190 /* Return NULL if the socket state is not ESTABLISHED. It 191 * could be a TCP-style listening socket or a socket which 192 * hasn't yet called connect() to establish an association. 193 */ 194 if (!sctp_sstate(sk, ESTABLISHED)) 195 return NULL; 196 197 /* Get the first and the only association from the list. */ 198 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 199 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 200 struct sctp_association, asocs); 201 return asoc; 202 } 203 204 /* Otherwise this is a UDP-style socket. */ 205 if (!id || (id == (sctp_assoc_t)-1)) 206 return NULL; 207 208 spin_lock_bh(&sctp_assocs_id_lock); 209 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 210 spin_unlock_bh(&sctp_assocs_id_lock); 211 212 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 213 return NULL; 214 215 return asoc; 216 } 217 218 /* Look up the transport from an address and an assoc id. If both address and 219 * id are specified, the associations matching the address and the id should be 220 * the same. 221 */ 222 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 223 struct sockaddr_storage *addr, 224 sctp_assoc_t id) 225 { 226 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 227 struct sctp_transport *transport; 228 union sctp_addr *laddr = (union sctp_addr *)addr; 229 230 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 231 laddr, 232 &transport); 233 234 if (!addr_asoc) 235 return NULL; 236 237 id_asoc = sctp_id2assoc(sk, id); 238 if (id_asoc && (id_asoc != addr_asoc)) 239 return NULL; 240 241 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 242 (union sctp_addr *)addr); 243 244 return transport; 245 } 246 247 /* API 3.1.2 bind() - UDP Style Syntax 248 * The syntax of bind() is, 249 * 250 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 251 * 252 * sd - the socket descriptor returned by socket(). 253 * addr - the address structure (struct sockaddr_in or struct 254 * sockaddr_in6 [RFC 2553]), 255 * addr_len - the size of the address structure. 256 */ 257 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 258 { 259 int retval = 0; 260 261 sctp_lock_sock(sk); 262 263 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 264 sk, addr, addr_len); 265 266 /* Disallow binding twice. */ 267 if (!sctp_sk(sk)->ep->base.bind_addr.port) 268 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 269 addr_len); 270 else 271 retval = -EINVAL; 272 273 sctp_release_sock(sk); 274 275 return retval; 276 } 277 278 static long sctp_get_port_local(struct sock *, union sctp_addr *); 279 280 /* Verify this is a valid sockaddr. */ 281 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 282 union sctp_addr *addr, int len) 283 { 284 struct sctp_af *af; 285 286 /* Check minimum size. */ 287 if (len < sizeof (struct sockaddr)) 288 return NULL; 289 290 /* Does this PF support this AF? */ 291 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 292 return NULL; 293 294 /* If we get this far, af is valid. */ 295 af = sctp_get_af_specific(addr->sa.sa_family); 296 297 if (len < af->sockaddr_len) 298 return NULL; 299 300 return af; 301 } 302 303 /* Bind a local address either to an endpoint or to an association. */ 304 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 305 { 306 struct sctp_sock *sp = sctp_sk(sk); 307 struct sctp_endpoint *ep = sp->ep; 308 struct sctp_bind_addr *bp = &ep->base.bind_addr; 309 struct sctp_af *af; 310 unsigned short snum; 311 int ret = 0; 312 313 /* Common sockaddr verification. */ 314 af = sctp_sockaddr_af(sp, addr, len); 315 if (!af) { 316 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 317 sk, addr, len); 318 return -EINVAL; 319 } 320 321 snum = ntohs(addr->v4.sin_port); 322 323 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 324 ", port: %d, new port: %d, len: %d)\n", 325 sk, 326 addr, 327 bp->port, snum, 328 len); 329 330 /* PF specific bind() address verification. */ 331 if (!sp->pf->bind_verify(sp, addr)) 332 return -EADDRNOTAVAIL; 333 334 /* We must either be unbound, or bind to the same port. 335 * It's OK to allow 0 ports if we are already bound. 336 * We'll just inhert an already bound port in this case 337 */ 338 if (bp->port) { 339 if (!snum) 340 snum = bp->port; 341 else if (snum != bp->port) { 342 SCTP_DEBUG_PRINTK("sctp_do_bind:" 343 " New port %d does not match existing port " 344 "%d.\n", snum, bp->port); 345 return -EINVAL; 346 } 347 } 348 349 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 350 return -EACCES; 351 352 /* Make sure we are allowed to bind here. 353 * The function sctp_get_port_local() does duplicate address 354 * detection. 355 */ 356 addr->v4.sin_port = htons(snum); 357 if ((ret = sctp_get_port_local(sk, addr))) { 358 if (ret == (long) sk) { 359 /* This endpoint has a conflicting address. */ 360 return -EINVAL; 361 } else { 362 return -EADDRINUSE; 363 } 364 } 365 366 /* Refresh ephemeral port. */ 367 if (!bp->port) 368 bp->port = inet_sk(sk)->num; 369 370 /* Add the address to the bind address list. 371 * Use GFP_ATOMIC since BHs will be disabled. 372 */ 373 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 374 375 /* Copy back into socket for getsockname() use. */ 376 if (!ret) { 377 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 378 af->to_sk_saddr(addr, sk); 379 } 380 381 return ret; 382 } 383 384 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 385 * 386 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 387 * at any one time. If a sender, after sending an ASCONF chunk, decides 388 * it needs to transfer another ASCONF Chunk, it MUST wait until the 389 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 390 * subsequent ASCONF. Note this restriction binds each side, so at any 391 * time two ASCONF may be in-transit on any given association (one sent 392 * from each endpoint). 393 */ 394 static int sctp_send_asconf(struct sctp_association *asoc, 395 struct sctp_chunk *chunk) 396 { 397 int retval = 0; 398 399 /* If there is an outstanding ASCONF chunk, queue it for later 400 * transmission. 401 */ 402 if (asoc->addip_last_asconf) { 403 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 404 goto out; 405 } 406 407 /* Hold the chunk until an ASCONF_ACK is received. */ 408 sctp_chunk_hold(chunk); 409 retval = sctp_primitive_ASCONF(asoc, chunk); 410 if (retval) 411 sctp_chunk_free(chunk); 412 else 413 asoc->addip_last_asconf = chunk; 414 415 out: 416 return retval; 417 } 418 419 /* Add a list of addresses as bind addresses to local endpoint or 420 * association. 421 * 422 * Basically run through each address specified in the addrs/addrcnt 423 * array/length pair, determine if it is IPv6 or IPv4 and call 424 * sctp_do_bind() on it. 425 * 426 * If any of them fails, then the operation will be reversed and the 427 * ones that were added will be removed. 428 * 429 * Only sctp_setsockopt_bindx() is supposed to call this function. 430 */ 431 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 432 { 433 int cnt; 434 int retval = 0; 435 void *addr_buf; 436 struct sockaddr *sa_addr; 437 struct sctp_af *af; 438 439 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 440 sk, addrs, addrcnt); 441 442 addr_buf = addrs; 443 for (cnt = 0; cnt < addrcnt; cnt++) { 444 /* The list may contain either IPv4 or IPv6 address; 445 * determine the address length for walking thru the list. 446 */ 447 sa_addr = (struct sockaddr *)addr_buf; 448 af = sctp_get_af_specific(sa_addr->sa_family); 449 if (!af) { 450 retval = -EINVAL; 451 goto err_bindx_add; 452 } 453 454 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 455 af->sockaddr_len); 456 457 addr_buf += af->sockaddr_len; 458 459 err_bindx_add: 460 if (retval < 0) { 461 /* Failed. Cleanup the ones that have been added */ 462 if (cnt > 0) 463 sctp_bindx_rem(sk, addrs, cnt); 464 return retval; 465 } 466 } 467 468 return retval; 469 } 470 471 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 472 * associations that are part of the endpoint indicating that a list of local 473 * addresses are added to the endpoint. 474 * 475 * If any of the addresses is already in the bind address list of the 476 * association, we do not send the chunk for that association. But it will not 477 * affect other associations. 478 * 479 * Only sctp_setsockopt_bindx() is supposed to call this function. 480 */ 481 static int sctp_send_asconf_add_ip(struct sock *sk, 482 struct sockaddr *addrs, 483 int addrcnt) 484 { 485 struct sctp_sock *sp; 486 struct sctp_endpoint *ep; 487 struct sctp_association *asoc; 488 struct sctp_bind_addr *bp; 489 struct sctp_chunk *chunk; 490 struct sctp_sockaddr_entry *laddr; 491 union sctp_addr *addr; 492 union sctp_addr saveaddr; 493 void *addr_buf; 494 struct sctp_af *af; 495 struct list_head *pos; 496 struct list_head *p; 497 int i; 498 int retval = 0; 499 500 if (!sctp_addip_enable) 501 return retval; 502 503 sp = sctp_sk(sk); 504 ep = sp->ep; 505 506 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 507 __FUNCTION__, sk, addrs, addrcnt); 508 509 list_for_each(pos, &ep->asocs) { 510 asoc = list_entry(pos, struct sctp_association, asocs); 511 512 if (!asoc->peer.asconf_capable) 513 continue; 514 515 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 516 continue; 517 518 if (!sctp_state(asoc, ESTABLISHED)) 519 continue; 520 521 /* Check if any address in the packed array of addresses is 522 * in the bind address list of the association. If so, 523 * do not send the asconf chunk to its peer, but continue with 524 * other associations. 525 */ 526 addr_buf = addrs; 527 for (i = 0; i < addrcnt; i++) { 528 addr = (union sctp_addr *)addr_buf; 529 af = sctp_get_af_specific(addr->v4.sin_family); 530 if (!af) { 531 retval = -EINVAL; 532 goto out; 533 } 534 535 if (sctp_assoc_lookup_laddr(asoc, addr)) 536 break; 537 538 addr_buf += af->sockaddr_len; 539 } 540 if (i < addrcnt) 541 continue; 542 543 /* Use the first valid address in bind addr list of 544 * association as Address Parameter of ASCONF CHUNK. 545 */ 546 bp = &asoc->base.bind_addr; 547 p = bp->address_list.next; 548 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 549 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 550 addrcnt, SCTP_PARAM_ADD_IP); 551 if (!chunk) { 552 retval = -ENOMEM; 553 goto out; 554 } 555 556 retval = sctp_send_asconf(asoc, chunk); 557 if (retval) 558 goto out; 559 560 /* Add the new addresses to the bind address list with 561 * use_as_src set to 0. 562 */ 563 addr_buf = addrs; 564 for (i = 0; i < addrcnt; i++) { 565 addr = (union sctp_addr *)addr_buf; 566 af = sctp_get_af_specific(addr->v4.sin_family); 567 memcpy(&saveaddr, addr, af->sockaddr_len); 568 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 569 GFP_ATOMIC); 570 addr_buf += af->sockaddr_len; 571 } 572 } 573 574 out: 575 return retval; 576 } 577 578 /* Remove a list of addresses from bind addresses list. Do not remove the 579 * last address. 580 * 581 * Basically run through each address specified in the addrs/addrcnt 582 * array/length pair, determine if it is IPv6 or IPv4 and call 583 * sctp_del_bind() on it. 584 * 585 * If any of them fails, then the operation will be reversed and the 586 * ones that were removed will be added back. 587 * 588 * At least one address has to be left; if only one address is 589 * available, the operation will return -EBUSY. 590 * 591 * Only sctp_setsockopt_bindx() is supposed to call this function. 592 */ 593 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 594 { 595 struct sctp_sock *sp = sctp_sk(sk); 596 struct sctp_endpoint *ep = sp->ep; 597 int cnt; 598 struct sctp_bind_addr *bp = &ep->base.bind_addr; 599 int retval = 0; 600 void *addr_buf; 601 union sctp_addr *sa_addr; 602 struct sctp_af *af; 603 604 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 605 sk, addrs, addrcnt); 606 607 addr_buf = addrs; 608 for (cnt = 0; cnt < addrcnt; cnt++) { 609 /* If the bind address list is empty or if there is only one 610 * bind address, there is nothing more to be removed (we need 611 * at least one address here). 612 */ 613 if (list_empty(&bp->address_list) || 614 (sctp_list_single_entry(&bp->address_list))) { 615 retval = -EBUSY; 616 goto err_bindx_rem; 617 } 618 619 sa_addr = (union sctp_addr *)addr_buf; 620 af = sctp_get_af_specific(sa_addr->sa.sa_family); 621 if (!af) { 622 retval = -EINVAL; 623 goto err_bindx_rem; 624 } 625 626 if (!af->addr_valid(sa_addr, sp, NULL)) { 627 retval = -EADDRNOTAVAIL; 628 goto err_bindx_rem; 629 } 630 631 if (sa_addr->v4.sin_port != htons(bp->port)) { 632 retval = -EINVAL; 633 goto err_bindx_rem; 634 } 635 636 /* FIXME - There is probably a need to check if sk->sk_saddr and 637 * sk->sk_rcv_addr are currently set to one of the addresses to 638 * be removed. This is something which needs to be looked into 639 * when we are fixing the outstanding issues with multi-homing 640 * socket routing and failover schemes. Refer to comments in 641 * sctp_do_bind(). -daisy 642 */ 643 retval = sctp_del_bind_addr(bp, sa_addr, call_rcu); 644 645 addr_buf += af->sockaddr_len; 646 err_bindx_rem: 647 if (retval < 0) { 648 /* Failed. Add the ones that has been removed back */ 649 if (cnt > 0) 650 sctp_bindx_add(sk, addrs, cnt); 651 return retval; 652 } 653 } 654 655 return retval; 656 } 657 658 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 659 * the associations that are part of the endpoint indicating that a list of 660 * local addresses are removed from the endpoint. 661 * 662 * If any of the addresses is already in the bind address list of the 663 * association, we do not send the chunk for that association. But it will not 664 * affect other associations. 665 * 666 * Only sctp_setsockopt_bindx() is supposed to call this function. 667 */ 668 static int sctp_send_asconf_del_ip(struct sock *sk, 669 struct sockaddr *addrs, 670 int addrcnt) 671 { 672 struct sctp_sock *sp; 673 struct sctp_endpoint *ep; 674 struct sctp_association *asoc; 675 struct sctp_transport *transport; 676 struct sctp_bind_addr *bp; 677 struct sctp_chunk *chunk; 678 union sctp_addr *laddr; 679 void *addr_buf; 680 struct sctp_af *af; 681 struct list_head *pos, *pos1; 682 struct sctp_sockaddr_entry *saddr; 683 int i; 684 int retval = 0; 685 686 if (!sctp_addip_enable) 687 return retval; 688 689 sp = sctp_sk(sk); 690 ep = sp->ep; 691 692 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 693 __FUNCTION__, sk, addrs, addrcnt); 694 695 list_for_each(pos, &ep->asocs) { 696 asoc = list_entry(pos, struct sctp_association, asocs); 697 698 if (!asoc->peer.asconf_capable) 699 continue; 700 701 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 702 continue; 703 704 if (!sctp_state(asoc, ESTABLISHED)) 705 continue; 706 707 /* Check if any address in the packed array of addresses is 708 * not present in the bind address list of the association. 709 * If so, do not send the asconf chunk to its peer, but 710 * continue with other associations. 711 */ 712 addr_buf = addrs; 713 for (i = 0; i < addrcnt; i++) { 714 laddr = (union sctp_addr *)addr_buf; 715 af = sctp_get_af_specific(laddr->v4.sin_family); 716 if (!af) { 717 retval = -EINVAL; 718 goto out; 719 } 720 721 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 722 break; 723 724 addr_buf += af->sockaddr_len; 725 } 726 if (i < addrcnt) 727 continue; 728 729 /* Find one address in the association's bind address list 730 * that is not in the packed array of addresses. This is to 731 * make sure that we do not delete all the addresses in the 732 * association. 733 */ 734 bp = &asoc->base.bind_addr; 735 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 736 addrcnt, sp); 737 if (!laddr) 738 continue; 739 740 /* We do not need RCU protection throughout this loop 741 * because this is done under a socket lock from the 742 * setsockopt call. 743 */ 744 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 745 SCTP_PARAM_DEL_IP); 746 if (!chunk) { 747 retval = -ENOMEM; 748 goto out; 749 } 750 751 /* Reset use_as_src flag for the addresses in the bind address 752 * list that are to be deleted. 753 */ 754 addr_buf = addrs; 755 for (i = 0; i < addrcnt; i++) { 756 laddr = (union sctp_addr *)addr_buf; 757 af = sctp_get_af_specific(laddr->v4.sin_family); 758 list_for_each_entry(saddr, &bp->address_list, list) { 759 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 760 saddr->use_as_src = 0; 761 } 762 addr_buf += af->sockaddr_len; 763 } 764 765 /* Update the route and saddr entries for all the transports 766 * as some of the addresses in the bind address list are 767 * about to be deleted and cannot be used as source addresses. 768 */ 769 list_for_each(pos1, &asoc->peer.transport_addr_list) { 770 transport = list_entry(pos1, struct sctp_transport, 771 transports); 772 dst_release(transport->dst); 773 sctp_transport_route(transport, NULL, 774 sctp_sk(asoc->base.sk)); 775 } 776 777 retval = sctp_send_asconf(asoc, chunk); 778 } 779 out: 780 return retval; 781 } 782 783 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 784 * 785 * API 8.1 786 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 787 * int flags); 788 * 789 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 790 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 791 * or IPv6 addresses. 792 * 793 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 794 * Section 3.1.2 for this usage. 795 * 796 * addrs is a pointer to an array of one or more socket addresses. Each 797 * address is contained in its appropriate structure (i.e. struct 798 * sockaddr_in or struct sockaddr_in6) the family of the address type 799 * must be used to distinguish the address length (note that this 800 * representation is termed a "packed array" of addresses). The caller 801 * specifies the number of addresses in the array with addrcnt. 802 * 803 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 804 * -1, and sets errno to the appropriate error code. 805 * 806 * For SCTP, the port given in each socket address must be the same, or 807 * sctp_bindx() will fail, setting errno to EINVAL. 808 * 809 * The flags parameter is formed from the bitwise OR of zero or more of 810 * the following currently defined flags: 811 * 812 * SCTP_BINDX_ADD_ADDR 813 * 814 * SCTP_BINDX_REM_ADDR 815 * 816 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 817 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 818 * addresses from the association. The two flags are mutually exclusive; 819 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 820 * not remove all addresses from an association; sctp_bindx() will 821 * reject such an attempt with EINVAL. 822 * 823 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 824 * additional addresses with an endpoint after calling bind(). Or use 825 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 826 * socket is associated with so that no new association accepted will be 827 * associated with those addresses. If the endpoint supports dynamic 828 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 829 * endpoint to send the appropriate message to the peer to change the 830 * peers address lists. 831 * 832 * Adding and removing addresses from a connected association is 833 * optional functionality. Implementations that do not support this 834 * functionality should return EOPNOTSUPP. 835 * 836 * Basically do nothing but copying the addresses from user to kernel 837 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 838 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 839 * from userspace. 840 * 841 * We don't use copy_from_user() for optimization: we first do the 842 * sanity checks (buffer size -fast- and access check-healthy 843 * pointer); if all of those succeed, then we can alloc the memory 844 * (expensive operation) needed to copy the data to kernel. Then we do 845 * the copying without checking the user space area 846 * (__copy_from_user()). 847 * 848 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 849 * it. 850 * 851 * sk The sk of the socket 852 * addrs The pointer to the addresses in user land 853 * addrssize Size of the addrs buffer 854 * op Operation to perform (add or remove, see the flags of 855 * sctp_bindx) 856 * 857 * Returns 0 if ok, <0 errno code on error. 858 */ 859 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 860 struct sockaddr __user *addrs, 861 int addrs_size, int op) 862 { 863 struct sockaddr *kaddrs; 864 int err; 865 int addrcnt = 0; 866 int walk_size = 0; 867 struct sockaddr *sa_addr; 868 void *addr_buf; 869 struct sctp_af *af; 870 871 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 872 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 873 874 if (unlikely(addrs_size <= 0)) 875 return -EINVAL; 876 877 /* Check the user passed a healthy pointer. */ 878 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 879 return -EFAULT; 880 881 /* Alloc space for the address array in kernel memory. */ 882 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 883 if (unlikely(!kaddrs)) 884 return -ENOMEM; 885 886 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 887 kfree(kaddrs); 888 return -EFAULT; 889 } 890 891 /* Walk through the addrs buffer and count the number of addresses. */ 892 addr_buf = kaddrs; 893 while (walk_size < addrs_size) { 894 sa_addr = (struct sockaddr *)addr_buf; 895 af = sctp_get_af_specific(sa_addr->sa_family); 896 897 /* If the address family is not supported or if this address 898 * causes the address buffer to overflow return EINVAL. 899 */ 900 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 901 kfree(kaddrs); 902 return -EINVAL; 903 } 904 addrcnt++; 905 addr_buf += af->sockaddr_len; 906 walk_size += af->sockaddr_len; 907 } 908 909 /* Do the work. */ 910 switch (op) { 911 case SCTP_BINDX_ADD_ADDR: 912 err = sctp_bindx_add(sk, kaddrs, addrcnt); 913 if (err) 914 goto out; 915 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 916 break; 917 918 case SCTP_BINDX_REM_ADDR: 919 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 920 if (err) 921 goto out; 922 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 923 break; 924 925 default: 926 err = -EINVAL; 927 break; 928 } 929 930 out: 931 kfree(kaddrs); 932 933 return err; 934 } 935 936 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 937 * 938 * Common routine for handling connect() and sctp_connectx(). 939 * Connect will come in with just a single address. 940 */ 941 static int __sctp_connect(struct sock* sk, 942 struct sockaddr *kaddrs, 943 int addrs_size) 944 { 945 struct sctp_sock *sp; 946 struct sctp_endpoint *ep; 947 struct sctp_association *asoc = NULL; 948 struct sctp_association *asoc2; 949 struct sctp_transport *transport; 950 union sctp_addr to; 951 struct sctp_af *af; 952 sctp_scope_t scope; 953 long timeo; 954 int err = 0; 955 int addrcnt = 0; 956 int walk_size = 0; 957 union sctp_addr *sa_addr = NULL; 958 void *addr_buf; 959 unsigned short port; 960 unsigned int f_flags = 0; 961 962 sp = sctp_sk(sk); 963 ep = sp->ep; 964 965 /* connect() cannot be done on a socket that is already in ESTABLISHED 966 * state - UDP-style peeled off socket or a TCP-style socket that 967 * is already connected. 968 * It cannot be done even on a TCP-style listening socket. 969 */ 970 if (sctp_sstate(sk, ESTABLISHED) || 971 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 972 err = -EISCONN; 973 goto out_free; 974 } 975 976 /* Walk through the addrs buffer and count the number of addresses. */ 977 addr_buf = kaddrs; 978 while (walk_size < addrs_size) { 979 sa_addr = (union sctp_addr *)addr_buf; 980 af = sctp_get_af_specific(sa_addr->sa.sa_family); 981 port = ntohs(sa_addr->v4.sin_port); 982 983 /* If the address family is not supported or if this address 984 * causes the address buffer to overflow return EINVAL. 985 */ 986 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 987 err = -EINVAL; 988 goto out_free; 989 } 990 991 /* Save current address so we can work with it */ 992 memcpy(&to, sa_addr, af->sockaddr_len); 993 994 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 995 if (err) 996 goto out_free; 997 998 /* Make sure the destination port is correctly set 999 * in all addresses. 1000 */ 1001 if (asoc && asoc->peer.port && asoc->peer.port != port) 1002 goto out_free; 1003 1004 1005 /* Check if there already is a matching association on the 1006 * endpoint (other than the one created here). 1007 */ 1008 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1009 if (asoc2 && asoc2 != asoc) { 1010 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1011 err = -EISCONN; 1012 else 1013 err = -EALREADY; 1014 goto out_free; 1015 } 1016 1017 /* If we could not find a matching association on the endpoint, 1018 * make sure that there is no peeled-off association matching 1019 * the peer address even on another socket. 1020 */ 1021 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1022 err = -EADDRNOTAVAIL; 1023 goto out_free; 1024 } 1025 1026 if (!asoc) { 1027 /* If a bind() or sctp_bindx() is not called prior to 1028 * an sctp_connectx() call, the system picks an 1029 * ephemeral port and will choose an address set 1030 * equivalent to binding with a wildcard address. 1031 */ 1032 if (!ep->base.bind_addr.port) { 1033 if (sctp_autobind(sk)) { 1034 err = -EAGAIN; 1035 goto out_free; 1036 } 1037 } else { 1038 /* 1039 * If an unprivileged user inherits a 1-many 1040 * style socket with open associations on a 1041 * privileged port, it MAY be permitted to 1042 * accept new associations, but it SHOULD NOT 1043 * be permitted to open new associations. 1044 */ 1045 if (ep->base.bind_addr.port < PROT_SOCK && 1046 !capable(CAP_NET_BIND_SERVICE)) { 1047 err = -EACCES; 1048 goto out_free; 1049 } 1050 } 1051 1052 scope = sctp_scope(&to); 1053 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1054 if (!asoc) { 1055 err = -ENOMEM; 1056 goto out_free; 1057 } 1058 } 1059 1060 /* Prime the peer's transport structures. */ 1061 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1062 SCTP_UNKNOWN); 1063 if (!transport) { 1064 err = -ENOMEM; 1065 goto out_free; 1066 } 1067 1068 addrcnt++; 1069 addr_buf += af->sockaddr_len; 1070 walk_size += af->sockaddr_len; 1071 } 1072 1073 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1074 if (err < 0) { 1075 goto out_free; 1076 } 1077 1078 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1079 if (err < 0) { 1080 goto out_free; 1081 } 1082 1083 /* Initialize sk's dport and daddr for getpeername() */ 1084 inet_sk(sk)->dport = htons(asoc->peer.port); 1085 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1086 af->to_sk_daddr(sa_addr, sk); 1087 sk->sk_err = 0; 1088 1089 /* in-kernel sockets don't generally have a file allocated to them 1090 * if all they do is call sock_create_kern(). 1091 */ 1092 if (sk->sk_socket->file) 1093 f_flags = sk->sk_socket->file->f_flags; 1094 1095 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1096 1097 err = sctp_wait_for_connect(asoc, &timeo); 1098 1099 /* Don't free association on exit. */ 1100 asoc = NULL; 1101 1102 out_free: 1103 1104 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1105 " kaddrs: %p err: %d\n", 1106 asoc, kaddrs, err); 1107 if (asoc) 1108 sctp_association_free(asoc); 1109 return err; 1110 } 1111 1112 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1113 * 1114 * API 8.9 1115 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1116 * 1117 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1118 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1119 * or IPv6 addresses. 1120 * 1121 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1122 * Section 3.1.2 for this usage. 1123 * 1124 * addrs is a pointer to an array of one or more socket addresses. Each 1125 * address is contained in its appropriate structure (i.e. struct 1126 * sockaddr_in or struct sockaddr_in6) the family of the address type 1127 * must be used to distengish the address length (note that this 1128 * representation is termed a "packed array" of addresses). The caller 1129 * specifies the number of addresses in the array with addrcnt. 1130 * 1131 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1132 * -1, and sets errno to the appropriate error code. 1133 * 1134 * For SCTP, the port given in each socket address must be the same, or 1135 * sctp_connectx() will fail, setting errno to EINVAL. 1136 * 1137 * An application can use sctp_connectx to initiate an association with 1138 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1139 * allows a caller to specify multiple addresses at which a peer can be 1140 * reached. The way the SCTP stack uses the list of addresses to set up 1141 * the association is implementation dependant. This function only 1142 * specifies that the stack will try to make use of all the addresses in 1143 * the list when needed. 1144 * 1145 * Note that the list of addresses passed in is only used for setting up 1146 * the association. It does not necessarily equal the set of addresses 1147 * the peer uses for the resulting association. If the caller wants to 1148 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1149 * retrieve them after the association has been set up. 1150 * 1151 * Basically do nothing but copying the addresses from user to kernel 1152 * land and invoking either sctp_connectx(). This is used for tunneling 1153 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1154 * 1155 * We don't use copy_from_user() for optimization: we first do the 1156 * sanity checks (buffer size -fast- and access check-healthy 1157 * pointer); if all of those succeed, then we can alloc the memory 1158 * (expensive operation) needed to copy the data to kernel. Then we do 1159 * the copying without checking the user space area 1160 * (__copy_from_user()). 1161 * 1162 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1163 * it. 1164 * 1165 * sk The sk of the socket 1166 * addrs The pointer to the addresses in user land 1167 * addrssize Size of the addrs buffer 1168 * 1169 * Returns 0 if ok, <0 errno code on error. 1170 */ 1171 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1172 struct sockaddr __user *addrs, 1173 int addrs_size) 1174 { 1175 int err = 0; 1176 struct sockaddr *kaddrs; 1177 1178 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1179 __FUNCTION__, sk, addrs, addrs_size); 1180 1181 if (unlikely(addrs_size <= 0)) 1182 return -EINVAL; 1183 1184 /* Check the user passed a healthy pointer. */ 1185 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1186 return -EFAULT; 1187 1188 /* Alloc space for the address array in kernel memory. */ 1189 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1190 if (unlikely(!kaddrs)) 1191 return -ENOMEM; 1192 1193 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1194 err = -EFAULT; 1195 } else { 1196 err = __sctp_connect(sk, kaddrs, addrs_size); 1197 } 1198 1199 kfree(kaddrs); 1200 return err; 1201 } 1202 1203 /* API 3.1.4 close() - UDP Style Syntax 1204 * Applications use close() to perform graceful shutdown (as described in 1205 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1206 * by a UDP-style socket. 1207 * 1208 * The syntax is 1209 * 1210 * ret = close(int sd); 1211 * 1212 * sd - the socket descriptor of the associations to be closed. 1213 * 1214 * To gracefully shutdown a specific association represented by the 1215 * UDP-style socket, an application should use the sendmsg() call, 1216 * passing no user data, but including the appropriate flag in the 1217 * ancillary data (see Section xxxx). 1218 * 1219 * If sd in the close() call is a branched-off socket representing only 1220 * one association, the shutdown is performed on that association only. 1221 * 1222 * 4.1.6 close() - TCP Style Syntax 1223 * 1224 * Applications use close() to gracefully close down an association. 1225 * 1226 * The syntax is: 1227 * 1228 * int close(int sd); 1229 * 1230 * sd - the socket descriptor of the association to be closed. 1231 * 1232 * After an application calls close() on a socket descriptor, no further 1233 * socket operations will succeed on that descriptor. 1234 * 1235 * API 7.1.4 SO_LINGER 1236 * 1237 * An application using the TCP-style socket can use this option to 1238 * perform the SCTP ABORT primitive. The linger option structure is: 1239 * 1240 * struct linger { 1241 * int l_onoff; // option on/off 1242 * int l_linger; // linger time 1243 * }; 1244 * 1245 * To enable the option, set l_onoff to 1. If the l_linger value is set 1246 * to 0, calling close() is the same as the ABORT primitive. If the 1247 * value is set to a negative value, the setsockopt() call will return 1248 * an error. If the value is set to a positive value linger_time, the 1249 * close() can be blocked for at most linger_time ms. If the graceful 1250 * shutdown phase does not finish during this period, close() will 1251 * return but the graceful shutdown phase continues in the system. 1252 */ 1253 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1254 { 1255 struct sctp_endpoint *ep; 1256 struct sctp_association *asoc; 1257 struct list_head *pos, *temp; 1258 1259 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1260 1261 sctp_lock_sock(sk); 1262 sk->sk_shutdown = SHUTDOWN_MASK; 1263 1264 ep = sctp_sk(sk)->ep; 1265 1266 /* Walk all associations on an endpoint. */ 1267 list_for_each_safe(pos, temp, &ep->asocs) { 1268 asoc = list_entry(pos, struct sctp_association, asocs); 1269 1270 if (sctp_style(sk, TCP)) { 1271 /* A closed association can still be in the list if 1272 * it belongs to a TCP-style listening socket that is 1273 * not yet accepted. If so, free it. If not, send an 1274 * ABORT or SHUTDOWN based on the linger options. 1275 */ 1276 if (sctp_state(asoc, CLOSED)) { 1277 sctp_unhash_established(asoc); 1278 sctp_association_free(asoc); 1279 continue; 1280 } 1281 } 1282 1283 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1284 struct sctp_chunk *chunk; 1285 1286 chunk = sctp_make_abort_user(asoc, NULL, 0); 1287 if (chunk) 1288 sctp_primitive_ABORT(asoc, chunk); 1289 } else 1290 sctp_primitive_SHUTDOWN(asoc, NULL); 1291 } 1292 1293 /* Clean up any skbs sitting on the receive queue. */ 1294 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1295 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1296 1297 /* On a TCP-style socket, block for at most linger_time if set. */ 1298 if (sctp_style(sk, TCP) && timeout) 1299 sctp_wait_for_close(sk, timeout); 1300 1301 /* This will run the backlog queue. */ 1302 sctp_release_sock(sk); 1303 1304 /* Supposedly, no process has access to the socket, but 1305 * the net layers still may. 1306 */ 1307 sctp_local_bh_disable(); 1308 sctp_bh_lock_sock(sk); 1309 1310 /* Hold the sock, since sk_common_release() will put sock_put() 1311 * and we have just a little more cleanup. 1312 */ 1313 sock_hold(sk); 1314 sk_common_release(sk); 1315 1316 sctp_bh_unlock_sock(sk); 1317 sctp_local_bh_enable(); 1318 1319 sock_put(sk); 1320 1321 SCTP_DBG_OBJCNT_DEC(sock); 1322 } 1323 1324 /* Handle EPIPE error. */ 1325 static int sctp_error(struct sock *sk, int flags, int err) 1326 { 1327 if (err == -EPIPE) 1328 err = sock_error(sk) ? : -EPIPE; 1329 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1330 send_sig(SIGPIPE, current, 0); 1331 return err; 1332 } 1333 1334 /* API 3.1.3 sendmsg() - UDP Style Syntax 1335 * 1336 * An application uses sendmsg() and recvmsg() calls to transmit data to 1337 * and receive data from its peer. 1338 * 1339 * ssize_t sendmsg(int socket, const struct msghdr *message, 1340 * int flags); 1341 * 1342 * socket - the socket descriptor of the endpoint. 1343 * message - pointer to the msghdr structure which contains a single 1344 * user message and possibly some ancillary data. 1345 * 1346 * See Section 5 for complete description of the data 1347 * structures. 1348 * 1349 * flags - flags sent or received with the user message, see Section 1350 * 5 for complete description of the flags. 1351 * 1352 * Note: This function could use a rewrite especially when explicit 1353 * connect support comes in. 1354 */ 1355 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1356 1357 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1358 1359 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1360 struct msghdr *msg, size_t msg_len) 1361 { 1362 struct sctp_sock *sp; 1363 struct sctp_endpoint *ep; 1364 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1365 struct sctp_transport *transport, *chunk_tp; 1366 struct sctp_chunk *chunk; 1367 union sctp_addr to; 1368 struct sockaddr *msg_name = NULL; 1369 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1370 struct sctp_sndrcvinfo *sinfo; 1371 struct sctp_initmsg *sinit; 1372 sctp_assoc_t associd = 0; 1373 sctp_cmsgs_t cmsgs = { NULL }; 1374 int err; 1375 sctp_scope_t scope; 1376 long timeo; 1377 __u16 sinfo_flags = 0; 1378 struct sctp_datamsg *datamsg; 1379 struct list_head *pos; 1380 int msg_flags = msg->msg_flags; 1381 1382 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1383 sk, msg, msg_len); 1384 1385 err = 0; 1386 sp = sctp_sk(sk); 1387 ep = sp->ep; 1388 1389 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1390 1391 /* We cannot send a message over a TCP-style listening socket. */ 1392 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1393 err = -EPIPE; 1394 goto out_nounlock; 1395 } 1396 1397 /* Parse out the SCTP CMSGs. */ 1398 err = sctp_msghdr_parse(msg, &cmsgs); 1399 1400 if (err) { 1401 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1402 goto out_nounlock; 1403 } 1404 1405 /* Fetch the destination address for this packet. This 1406 * address only selects the association--it is not necessarily 1407 * the address we will send to. 1408 * For a peeled-off socket, msg_name is ignored. 1409 */ 1410 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1411 int msg_namelen = msg->msg_namelen; 1412 1413 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1414 msg_namelen); 1415 if (err) 1416 return err; 1417 1418 if (msg_namelen > sizeof(to)) 1419 msg_namelen = sizeof(to); 1420 memcpy(&to, msg->msg_name, msg_namelen); 1421 msg_name = msg->msg_name; 1422 } 1423 1424 sinfo = cmsgs.info; 1425 sinit = cmsgs.init; 1426 1427 /* Did the user specify SNDRCVINFO? */ 1428 if (sinfo) { 1429 sinfo_flags = sinfo->sinfo_flags; 1430 associd = sinfo->sinfo_assoc_id; 1431 } 1432 1433 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1434 msg_len, sinfo_flags); 1435 1436 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1437 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1438 err = -EINVAL; 1439 goto out_nounlock; 1440 } 1441 1442 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1443 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1444 * If SCTP_ABORT is set, the message length could be non zero with 1445 * the msg_iov set to the user abort reason. 1446 */ 1447 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1448 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1449 err = -EINVAL; 1450 goto out_nounlock; 1451 } 1452 1453 /* If SCTP_ADDR_OVER is set, there must be an address 1454 * specified in msg_name. 1455 */ 1456 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1457 err = -EINVAL; 1458 goto out_nounlock; 1459 } 1460 1461 transport = NULL; 1462 1463 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1464 1465 sctp_lock_sock(sk); 1466 1467 /* If a msg_name has been specified, assume this is to be used. */ 1468 if (msg_name) { 1469 /* Look for a matching association on the endpoint. */ 1470 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1471 if (!asoc) { 1472 /* If we could not find a matching association on the 1473 * endpoint, make sure that it is not a TCP-style 1474 * socket that already has an association or there is 1475 * no peeled-off association on another socket. 1476 */ 1477 if ((sctp_style(sk, TCP) && 1478 sctp_sstate(sk, ESTABLISHED)) || 1479 sctp_endpoint_is_peeled_off(ep, &to)) { 1480 err = -EADDRNOTAVAIL; 1481 goto out_unlock; 1482 } 1483 } 1484 } else { 1485 asoc = sctp_id2assoc(sk, associd); 1486 if (!asoc) { 1487 err = -EPIPE; 1488 goto out_unlock; 1489 } 1490 } 1491 1492 if (asoc) { 1493 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1494 1495 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1496 * socket that has an association in CLOSED state. This can 1497 * happen when an accepted socket has an association that is 1498 * already CLOSED. 1499 */ 1500 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1501 err = -EPIPE; 1502 goto out_unlock; 1503 } 1504 1505 if (sinfo_flags & SCTP_EOF) { 1506 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1507 asoc); 1508 sctp_primitive_SHUTDOWN(asoc, NULL); 1509 err = 0; 1510 goto out_unlock; 1511 } 1512 if (sinfo_flags & SCTP_ABORT) { 1513 1514 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1515 if (!chunk) { 1516 err = -ENOMEM; 1517 goto out_unlock; 1518 } 1519 1520 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1521 sctp_primitive_ABORT(asoc, chunk); 1522 err = 0; 1523 goto out_unlock; 1524 } 1525 } 1526 1527 /* Do we need to create the association? */ 1528 if (!asoc) { 1529 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1530 1531 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1532 err = -EINVAL; 1533 goto out_unlock; 1534 } 1535 1536 /* Check for invalid stream against the stream counts, 1537 * either the default or the user specified stream counts. 1538 */ 1539 if (sinfo) { 1540 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1541 /* Check against the defaults. */ 1542 if (sinfo->sinfo_stream >= 1543 sp->initmsg.sinit_num_ostreams) { 1544 err = -EINVAL; 1545 goto out_unlock; 1546 } 1547 } else { 1548 /* Check against the requested. */ 1549 if (sinfo->sinfo_stream >= 1550 sinit->sinit_num_ostreams) { 1551 err = -EINVAL; 1552 goto out_unlock; 1553 } 1554 } 1555 } 1556 1557 /* 1558 * API 3.1.2 bind() - UDP Style Syntax 1559 * If a bind() or sctp_bindx() is not called prior to a 1560 * sendmsg() call that initiates a new association, the 1561 * system picks an ephemeral port and will choose an address 1562 * set equivalent to binding with a wildcard address. 1563 */ 1564 if (!ep->base.bind_addr.port) { 1565 if (sctp_autobind(sk)) { 1566 err = -EAGAIN; 1567 goto out_unlock; 1568 } 1569 } else { 1570 /* 1571 * If an unprivileged user inherits a one-to-many 1572 * style socket with open associations on a privileged 1573 * port, it MAY be permitted to accept new associations, 1574 * but it SHOULD NOT be permitted to open new 1575 * associations. 1576 */ 1577 if (ep->base.bind_addr.port < PROT_SOCK && 1578 !capable(CAP_NET_BIND_SERVICE)) { 1579 err = -EACCES; 1580 goto out_unlock; 1581 } 1582 } 1583 1584 scope = sctp_scope(&to); 1585 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1586 if (!new_asoc) { 1587 err = -ENOMEM; 1588 goto out_unlock; 1589 } 1590 asoc = new_asoc; 1591 1592 /* If the SCTP_INIT ancillary data is specified, set all 1593 * the association init values accordingly. 1594 */ 1595 if (sinit) { 1596 if (sinit->sinit_num_ostreams) { 1597 asoc->c.sinit_num_ostreams = 1598 sinit->sinit_num_ostreams; 1599 } 1600 if (sinit->sinit_max_instreams) { 1601 asoc->c.sinit_max_instreams = 1602 sinit->sinit_max_instreams; 1603 } 1604 if (sinit->sinit_max_attempts) { 1605 asoc->max_init_attempts 1606 = sinit->sinit_max_attempts; 1607 } 1608 if (sinit->sinit_max_init_timeo) { 1609 asoc->max_init_timeo = 1610 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1611 } 1612 } 1613 1614 /* Prime the peer's transport structures. */ 1615 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1616 if (!transport) { 1617 err = -ENOMEM; 1618 goto out_free; 1619 } 1620 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1621 if (err < 0) { 1622 err = -ENOMEM; 1623 goto out_free; 1624 } 1625 } 1626 1627 /* ASSERT: we have a valid association at this point. */ 1628 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1629 1630 if (!sinfo) { 1631 /* If the user didn't specify SNDRCVINFO, make up one with 1632 * some defaults. 1633 */ 1634 default_sinfo.sinfo_stream = asoc->default_stream; 1635 default_sinfo.sinfo_flags = asoc->default_flags; 1636 default_sinfo.sinfo_ppid = asoc->default_ppid; 1637 default_sinfo.sinfo_context = asoc->default_context; 1638 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1639 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1640 sinfo = &default_sinfo; 1641 } 1642 1643 /* API 7.1.7, the sndbuf size per association bounds the 1644 * maximum size of data that can be sent in a single send call. 1645 */ 1646 if (msg_len > sk->sk_sndbuf) { 1647 err = -EMSGSIZE; 1648 goto out_free; 1649 } 1650 1651 if (asoc->pmtu_pending) 1652 sctp_assoc_pending_pmtu(asoc); 1653 1654 /* If fragmentation is disabled and the message length exceeds the 1655 * association fragmentation point, return EMSGSIZE. The I-D 1656 * does not specify what this error is, but this looks like 1657 * a great fit. 1658 */ 1659 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1660 err = -EMSGSIZE; 1661 goto out_free; 1662 } 1663 1664 if (sinfo) { 1665 /* Check for invalid stream. */ 1666 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1667 err = -EINVAL; 1668 goto out_free; 1669 } 1670 } 1671 1672 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1673 if (!sctp_wspace(asoc)) { 1674 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1675 if (err) 1676 goto out_free; 1677 } 1678 1679 /* If an address is passed with the sendto/sendmsg call, it is used 1680 * to override the primary destination address in the TCP model, or 1681 * when SCTP_ADDR_OVER flag is set in the UDP model. 1682 */ 1683 if ((sctp_style(sk, TCP) && msg_name) || 1684 (sinfo_flags & SCTP_ADDR_OVER)) { 1685 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1686 if (!chunk_tp) { 1687 err = -EINVAL; 1688 goto out_free; 1689 } 1690 } else 1691 chunk_tp = NULL; 1692 1693 /* Auto-connect, if we aren't connected already. */ 1694 if (sctp_state(asoc, CLOSED)) { 1695 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1696 if (err < 0) 1697 goto out_free; 1698 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1699 } 1700 1701 /* Break the message into multiple chunks of maximum size. */ 1702 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1703 if (!datamsg) { 1704 err = -ENOMEM; 1705 goto out_free; 1706 } 1707 1708 /* Now send the (possibly) fragmented message. */ 1709 list_for_each(pos, &datamsg->chunks) { 1710 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1711 sctp_datamsg_track(chunk); 1712 1713 /* Do accounting for the write space. */ 1714 sctp_set_owner_w(chunk); 1715 1716 chunk->transport = chunk_tp; 1717 1718 /* Send it to the lower layers. Note: all chunks 1719 * must either fail or succeed. The lower layer 1720 * works that way today. Keep it that way or this 1721 * breaks. 1722 */ 1723 err = sctp_primitive_SEND(asoc, chunk); 1724 /* Did the lower layer accept the chunk? */ 1725 if (err) 1726 sctp_chunk_free(chunk); 1727 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1728 } 1729 1730 sctp_datamsg_free(datamsg); 1731 if (err) 1732 goto out_free; 1733 else 1734 err = msg_len; 1735 1736 /* If we are already past ASSOCIATE, the lower 1737 * layers are responsible for association cleanup. 1738 */ 1739 goto out_unlock; 1740 1741 out_free: 1742 if (new_asoc) 1743 sctp_association_free(asoc); 1744 out_unlock: 1745 sctp_release_sock(sk); 1746 1747 out_nounlock: 1748 return sctp_error(sk, msg_flags, err); 1749 1750 #if 0 1751 do_sock_err: 1752 if (msg_len) 1753 err = msg_len; 1754 else 1755 err = sock_error(sk); 1756 goto out; 1757 1758 do_interrupted: 1759 if (msg_len) 1760 err = msg_len; 1761 goto out; 1762 #endif /* 0 */ 1763 } 1764 1765 /* This is an extended version of skb_pull() that removes the data from the 1766 * start of a skb even when data is spread across the list of skb's in the 1767 * frag_list. len specifies the total amount of data that needs to be removed. 1768 * when 'len' bytes could be removed from the skb, it returns 0. 1769 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1770 * could not be removed. 1771 */ 1772 static int sctp_skb_pull(struct sk_buff *skb, int len) 1773 { 1774 struct sk_buff *list; 1775 int skb_len = skb_headlen(skb); 1776 int rlen; 1777 1778 if (len <= skb_len) { 1779 __skb_pull(skb, len); 1780 return 0; 1781 } 1782 len -= skb_len; 1783 __skb_pull(skb, skb_len); 1784 1785 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1786 rlen = sctp_skb_pull(list, len); 1787 skb->len -= (len-rlen); 1788 skb->data_len -= (len-rlen); 1789 1790 if (!rlen) 1791 return 0; 1792 1793 len = rlen; 1794 } 1795 1796 return len; 1797 } 1798 1799 /* API 3.1.3 recvmsg() - UDP Style Syntax 1800 * 1801 * ssize_t recvmsg(int socket, struct msghdr *message, 1802 * int flags); 1803 * 1804 * socket - the socket descriptor of the endpoint. 1805 * message - pointer to the msghdr structure which contains a single 1806 * user message and possibly some ancillary data. 1807 * 1808 * See Section 5 for complete description of the data 1809 * structures. 1810 * 1811 * flags - flags sent or received with the user message, see Section 1812 * 5 for complete description of the flags. 1813 */ 1814 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1815 1816 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1817 struct msghdr *msg, size_t len, int noblock, 1818 int flags, int *addr_len) 1819 { 1820 struct sctp_ulpevent *event = NULL; 1821 struct sctp_sock *sp = sctp_sk(sk); 1822 struct sk_buff *skb; 1823 int copied; 1824 int err = 0; 1825 int skb_len; 1826 1827 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1828 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1829 "len", len, "knoblauch", noblock, 1830 "flags", flags, "addr_len", addr_len); 1831 1832 sctp_lock_sock(sk); 1833 1834 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1835 err = -ENOTCONN; 1836 goto out; 1837 } 1838 1839 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1840 if (!skb) 1841 goto out; 1842 1843 /* Get the total length of the skb including any skb's in the 1844 * frag_list. 1845 */ 1846 skb_len = skb->len; 1847 1848 copied = skb_len; 1849 if (copied > len) 1850 copied = len; 1851 1852 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1853 1854 event = sctp_skb2event(skb); 1855 1856 if (err) 1857 goto out_free; 1858 1859 sock_recv_timestamp(msg, sk, skb); 1860 if (sctp_ulpevent_is_notification(event)) { 1861 msg->msg_flags |= MSG_NOTIFICATION; 1862 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1863 } else { 1864 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1865 } 1866 1867 /* Check if we allow SCTP_SNDRCVINFO. */ 1868 if (sp->subscribe.sctp_data_io_event) 1869 sctp_ulpevent_read_sndrcvinfo(event, msg); 1870 #if 0 1871 /* FIXME: we should be calling IP/IPv6 layers. */ 1872 if (sk->sk_protinfo.af_inet.cmsg_flags) 1873 ip_cmsg_recv(msg, skb); 1874 #endif 1875 1876 err = copied; 1877 1878 /* If skb's length exceeds the user's buffer, update the skb and 1879 * push it back to the receive_queue so that the next call to 1880 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1881 */ 1882 if (skb_len > copied) { 1883 msg->msg_flags &= ~MSG_EOR; 1884 if (flags & MSG_PEEK) 1885 goto out_free; 1886 sctp_skb_pull(skb, copied); 1887 skb_queue_head(&sk->sk_receive_queue, skb); 1888 1889 /* When only partial message is copied to the user, increase 1890 * rwnd by that amount. If all the data in the skb is read, 1891 * rwnd is updated when the event is freed. 1892 */ 1893 sctp_assoc_rwnd_increase(event->asoc, copied); 1894 goto out; 1895 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1896 (event->msg_flags & MSG_EOR)) 1897 msg->msg_flags |= MSG_EOR; 1898 else 1899 msg->msg_flags &= ~MSG_EOR; 1900 1901 out_free: 1902 if (flags & MSG_PEEK) { 1903 /* Release the skb reference acquired after peeking the skb in 1904 * sctp_skb_recv_datagram(). 1905 */ 1906 kfree_skb(skb); 1907 } else { 1908 /* Free the event which includes releasing the reference to 1909 * the owner of the skb, freeing the skb and updating the 1910 * rwnd. 1911 */ 1912 sctp_ulpevent_free(event); 1913 } 1914 out: 1915 sctp_release_sock(sk); 1916 return err; 1917 } 1918 1919 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1920 * 1921 * This option is a on/off flag. If enabled no SCTP message 1922 * fragmentation will be performed. Instead if a message being sent 1923 * exceeds the current PMTU size, the message will NOT be sent and 1924 * instead a error will be indicated to the user. 1925 */ 1926 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1927 char __user *optval, int optlen) 1928 { 1929 int val; 1930 1931 if (optlen < sizeof(int)) 1932 return -EINVAL; 1933 1934 if (get_user(val, (int __user *)optval)) 1935 return -EFAULT; 1936 1937 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1938 1939 return 0; 1940 } 1941 1942 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1943 int optlen) 1944 { 1945 if (optlen != sizeof(struct sctp_event_subscribe)) 1946 return -EINVAL; 1947 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1948 return -EFAULT; 1949 return 0; 1950 } 1951 1952 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1953 * 1954 * This socket option is applicable to the UDP-style socket only. When 1955 * set it will cause associations that are idle for more than the 1956 * specified number of seconds to automatically close. An association 1957 * being idle is defined an association that has NOT sent or received 1958 * user data. The special value of '0' indicates that no automatic 1959 * close of any associations should be performed. The option expects an 1960 * integer defining the number of seconds of idle time before an 1961 * association is closed. 1962 */ 1963 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1964 int optlen) 1965 { 1966 struct sctp_sock *sp = sctp_sk(sk); 1967 1968 /* Applicable to UDP-style socket only */ 1969 if (sctp_style(sk, TCP)) 1970 return -EOPNOTSUPP; 1971 if (optlen != sizeof(int)) 1972 return -EINVAL; 1973 if (copy_from_user(&sp->autoclose, optval, optlen)) 1974 return -EFAULT; 1975 1976 return 0; 1977 } 1978 1979 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1980 * 1981 * Applications can enable or disable heartbeats for any peer address of 1982 * an association, modify an address's heartbeat interval, force a 1983 * heartbeat to be sent immediately, and adjust the address's maximum 1984 * number of retransmissions sent before an address is considered 1985 * unreachable. The following structure is used to access and modify an 1986 * address's parameters: 1987 * 1988 * struct sctp_paddrparams { 1989 * sctp_assoc_t spp_assoc_id; 1990 * struct sockaddr_storage spp_address; 1991 * uint32_t spp_hbinterval; 1992 * uint16_t spp_pathmaxrxt; 1993 * uint32_t spp_pathmtu; 1994 * uint32_t spp_sackdelay; 1995 * uint32_t spp_flags; 1996 * }; 1997 * 1998 * spp_assoc_id - (one-to-many style socket) This is filled in the 1999 * application, and identifies the association for 2000 * this query. 2001 * spp_address - This specifies which address is of interest. 2002 * spp_hbinterval - This contains the value of the heartbeat interval, 2003 * in milliseconds. If a value of zero 2004 * is present in this field then no changes are to 2005 * be made to this parameter. 2006 * spp_pathmaxrxt - This contains the maximum number of 2007 * retransmissions before this address shall be 2008 * considered unreachable. If a value of zero 2009 * is present in this field then no changes are to 2010 * be made to this parameter. 2011 * spp_pathmtu - When Path MTU discovery is disabled the value 2012 * specified here will be the "fixed" path mtu. 2013 * Note that if the spp_address field is empty 2014 * then all associations on this address will 2015 * have this fixed path mtu set upon them. 2016 * 2017 * spp_sackdelay - When delayed sack is enabled, this value specifies 2018 * the number of milliseconds that sacks will be delayed 2019 * for. This value will apply to all addresses of an 2020 * association if the spp_address field is empty. Note 2021 * also, that if delayed sack is enabled and this 2022 * value is set to 0, no change is made to the last 2023 * recorded delayed sack timer value. 2024 * 2025 * spp_flags - These flags are used to control various features 2026 * on an association. The flag field may contain 2027 * zero or more of the following options. 2028 * 2029 * SPP_HB_ENABLE - Enable heartbeats on the 2030 * specified address. Note that if the address 2031 * field is empty all addresses for the association 2032 * have heartbeats enabled upon them. 2033 * 2034 * SPP_HB_DISABLE - Disable heartbeats on the 2035 * speicifed address. Note that if the address 2036 * field is empty all addresses for the association 2037 * will have their heartbeats disabled. Note also 2038 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2039 * mutually exclusive, only one of these two should 2040 * be specified. Enabling both fields will have 2041 * undetermined results. 2042 * 2043 * SPP_HB_DEMAND - Request a user initiated heartbeat 2044 * to be made immediately. 2045 * 2046 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2047 * heartbeat delayis to be set to the value of 0 2048 * milliseconds. 2049 * 2050 * SPP_PMTUD_ENABLE - This field will enable PMTU 2051 * discovery upon the specified address. Note that 2052 * if the address feild is empty then all addresses 2053 * on the association are effected. 2054 * 2055 * SPP_PMTUD_DISABLE - This field will disable PMTU 2056 * discovery upon the specified address. Note that 2057 * if the address feild is empty then all addresses 2058 * on the association are effected. Not also that 2059 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2060 * exclusive. Enabling both will have undetermined 2061 * results. 2062 * 2063 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2064 * on delayed sack. The time specified in spp_sackdelay 2065 * is used to specify the sack delay for this address. Note 2066 * that if spp_address is empty then all addresses will 2067 * enable delayed sack and take on the sack delay 2068 * value specified in spp_sackdelay. 2069 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2070 * off delayed sack. If the spp_address field is blank then 2071 * delayed sack is disabled for the entire association. Note 2072 * also that this field is mutually exclusive to 2073 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2074 * results. 2075 */ 2076 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2077 struct sctp_transport *trans, 2078 struct sctp_association *asoc, 2079 struct sctp_sock *sp, 2080 int hb_change, 2081 int pmtud_change, 2082 int sackdelay_change) 2083 { 2084 int error; 2085 2086 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2087 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2088 if (error) 2089 return error; 2090 } 2091 2092 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2093 * this field is ignored. Note also that a value of zero indicates 2094 * the current setting should be left unchanged. 2095 */ 2096 if (params->spp_flags & SPP_HB_ENABLE) { 2097 2098 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2099 * set. This lets us use 0 value when this flag 2100 * is set. 2101 */ 2102 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2103 params->spp_hbinterval = 0; 2104 2105 if (params->spp_hbinterval || 2106 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2107 if (trans) { 2108 trans->hbinterval = 2109 msecs_to_jiffies(params->spp_hbinterval); 2110 } else if (asoc) { 2111 asoc->hbinterval = 2112 msecs_to_jiffies(params->spp_hbinterval); 2113 } else { 2114 sp->hbinterval = params->spp_hbinterval; 2115 } 2116 } 2117 } 2118 2119 if (hb_change) { 2120 if (trans) { 2121 trans->param_flags = 2122 (trans->param_flags & ~SPP_HB) | hb_change; 2123 } else if (asoc) { 2124 asoc->param_flags = 2125 (asoc->param_flags & ~SPP_HB) | hb_change; 2126 } else { 2127 sp->param_flags = 2128 (sp->param_flags & ~SPP_HB) | hb_change; 2129 } 2130 } 2131 2132 /* When Path MTU discovery is disabled the value specified here will 2133 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2134 * include the flag SPP_PMTUD_DISABLE for this field to have any 2135 * effect). 2136 */ 2137 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2138 if (trans) { 2139 trans->pathmtu = params->spp_pathmtu; 2140 sctp_assoc_sync_pmtu(asoc); 2141 } else if (asoc) { 2142 asoc->pathmtu = params->spp_pathmtu; 2143 sctp_frag_point(sp, params->spp_pathmtu); 2144 } else { 2145 sp->pathmtu = params->spp_pathmtu; 2146 } 2147 } 2148 2149 if (pmtud_change) { 2150 if (trans) { 2151 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2152 (params->spp_flags & SPP_PMTUD_ENABLE); 2153 trans->param_flags = 2154 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2155 if (update) { 2156 sctp_transport_pmtu(trans); 2157 sctp_assoc_sync_pmtu(asoc); 2158 } 2159 } else if (asoc) { 2160 asoc->param_flags = 2161 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2162 } else { 2163 sp->param_flags = 2164 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2165 } 2166 } 2167 2168 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2169 * value of this field is ignored. Note also that a value of zero 2170 * indicates the current setting should be left unchanged. 2171 */ 2172 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2173 if (trans) { 2174 trans->sackdelay = 2175 msecs_to_jiffies(params->spp_sackdelay); 2176 } else if (asoc) { 2177 asoc->sackdelay = 2178 msecs_to_jiffies(params->spp_sackdelay); 2179 } else { 2180 sp->sackdelay = params->spp_sackdelay; 2181 } 2182 } 2183 2184 if (sackdelay_change) { 2185 if (trans) { 2186 trans->param_flags = 2187 (trans->param_flags & ~SPP_SACKDELAY) | 2188 sackdelay_change; 2189 } else if (asoc) { 2190 asoc->param_flags = 2191 (asoc->param_flags & ~SPP_SACKDELAY) | 2192 sackdelay_change; 2193 } else { 2194 sp->param_flags = 2195 (sp->param_flags & ~SPP_SACKDELAY) | 2196 sackdelay_change; 2197 } 2198 } 2199 2200 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2201 * of this field is ignored. Note also that a value of zero 2202 * indicates the current setting should be left unchanged. 2203 */ 2204 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2205 if (trans) { 2206 trans->pathmaxrxt = params->spp_pathmaxrxt; 2207 } else if (asoc) { 2208 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2209 } else { 2210 sp->pathmaxrxt = params->spp_pathmaxrxt; 2211 } 2212 } 2213 2214 return 0; 2215 } 2216 2217 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2218 char __user *optval, int optlen) 2219 { 2220 struct sctp_paddrparams params; 2221 struct sctp_transport *trans = NULL; 2222 struct sctp_association *asoc = NULL; 2223 struct sctp_sock *sp = sctp_sk(sk); 2224 int error; 2225 int hb_change, pmtud_change, sackdelay_change; 2226 2227 if (optlen != sizeof(struct sctp_paddrparams)) 2228 return - EINVAL; 2229 2230 if (copy_from_user(¶ms, optval, optlen)) 2231 return -EFAULT; 2232 2233 /* Validate flags and value parameters. */ 2234 hb_change = params.spp_flags & SPP_HB; 2235 pmtud_change = params.spp_flags & SPP_PMTUD; 2236 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2237 2238 if (hb_change == SPP_HB || 2239 pmtud_change == SPP_PMTUD || 2240 sackdelay_change == SPP_SACKDELAY || 2241 params.spp_sackdelay > 500 || 2242 (params.spp_pathmtu 2243 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2244 return -EINVAL; 2245 2246 /* If an address other than INADDR_ANY is specified, and 2247 * no transport is found, then the request is invalid. 2248 */ 2249 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2250 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2251 params.spp_assoc_id); 2252 if (!trans) 2253 return -EINVAL; 2254 } 2255 2256 /* Get association, if assoc_id != 0 and the socket is a one 2257 * to many style socket, and an association was not found, then 2258 * the id was invalid. 2259 */ 2260 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2261 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2262 return -EINVAL; 2263 2264 /* Heartbeat demand can only be sent on a transport or 2265 * association, but not a socket. 2266 */ 2267 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2268 return -EINVAL; 2269 2270 /* Process parameters. */ 2271 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2272 hb_change, pmtud_change, 2273 sackdelay_change); 2274 2275 if (error) 2276 return error; 2277 2278 /* If changes are for association, also apply parameters to each 2279 * transport. 2280 */ 2281 if (!trans && asoc) { 2282 struct list_head *pos; 2283 2284 list_for_each(pos, &asoc->peer.transport_addr_list) { 2285 trans = list_entry(pos, struct sctp_transport, 2286 transports); 2287 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2288 hb_change, pmtud_change, 2289 sackdelay_change); 2290 } 2291 } 2292 2293 return 0; 2294 } 2295 2296 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2297 * 2298 * This options will get or set the delayed ack timer. The time is set 2299 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2300 * endpoints default delayed ack timer value. If the assoc_id field is 2301 * non-zero, then the set or get effects the specified association. 2302 * 2303 * struct sctp_assoc_value { 2304 * sctp_assoc_t assoc_id; 2305 * uint32_t assoc_value; 2306 * }; 2307 * 2308 * assoc_id - This parameter, indicates which association the 2309 * user is preforming an action upon. Note that if 2310 * this field's value is zero then the endpoints 2311 * default value is changed (effecting future 2312 * associations only). 2313 * 2314 * assoc_value - This parameter contains the number of milliseconds 2315 * that the user is requesting the delayed ACK timer 2316 * be set to. Note that this value is defined in 2317 * the standard to be between 200 and 500 milliseconds. 2318 * 2319 * Note: a value of zero will leave the value alone, 2320 * but disable SACK delay. A non-zero value will also 2321 * enable SACK delay. 2322 */ 2323 2324 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2325 char __user *optval, int optlen) 2326 { 2327 struct sctp_assoc_value params; 2328 struct sctp_transport *trans = NULL; 2329 struct sctp_association *asoc = NULL; 2330 struct sctp_sock *sp = sctp_sk(sk); 2331 2332 if (optlen != sizeof(struct sctp_assoc_value)) 2333 return - EINVAL; 2334 2335 if (copy_from_user(¶ms, optval, optlen)) 2336 return -EFAULT; 2337 2338 /* Validate value parameter. */ 2339 if (params.assoc_value > 500) 2340 return -EINVAL; 2341 2342 /* Get association, if assoc_id != 0 and the socket is a one 2343 * to many style socket, and an association was not found, then 2344 * the id was invalid. 2345 */ 2346 asoc = sctp_id2assoc(sk, params.assoc_id); 2347 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2348 return -EINVAL; 2349 2350 if (params.assoc_value) { 2351 if (asoc) { 2352 asoc->sackdelay = 2353 msecs_to_jiffies(params.assoc_value); 2354 asoc->param_flags = 2355 (asoc->param_flags & ~SPP_SACKDELAY) | 2356 SPP_SACKDELAY_ENABLE; 2357 } else { 2358 sp->sackdelay = params.assoc_value; 2359 sp->param_flags = 2360 (sp->param_flags & ~SPP_SACKDELAY) | 2361 SPP_SACKDELAY_ENABLE; 2362 } 2363 } else { 2364 if (asoc) { 2365 asoc->param_flags = 2366 (asoc->param_flags & ~SPP_SACKDELAY) | 2367 SPP_SACKDELAY_DISABLE; 2368 } else { 2369 sp->param_flags = 2370 (sp->param_flags & ~SPP_SACKDELAY) | 2371 SPP_SACKDELAY_DISABLE; 2372 } 2373 } 2374 2375 /* If change is for association, also apply to each transport. */ 2376 if (asoc) { 2377 struct list_head *pos; 2378 2379 list_for_each(pos, &asoc->peer.transport_addr_list) { 2380 trans = list_entry(pos, struct sctp_transport, 2381 transports); 2382 if (params.assoc_value) { 2383 trans->sackdelay = 2384 msecs_to_jiffies(params.assoc_value); 2385 trans->param_flags = 2386 (trans->param_flags & ~SPP_SACKDELAY) | 2387 SPP_SACKDELAY_ENABLE; 2388 } else { 2389 trans->param_flags = 2390 (trans->param_flags & ~SPP_SACKDELAY) | 2391 SPP_SACKDELAY_DISABLE; 2392 } 2393 } 2394 } 2395 2396 return 0; 2397 } 2398 2399 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2400 * 2401 * Applications can specify protocol parameters for the default association 2402 * initialization. The option name argument to setsockopt() and getsockopt() 2403 * is SCTP_INITMSG. 2404 * 2405 * Setting initialization parameters is effective only on an unconnected 2406 * socket (for UDP-style sockets only future associations are effected 2407 * by the change). With TCP-style sockets, this option is inherited by 2408 * sockets derived from a listener socket. 2409 */ 2410 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2411 { 2412 struct sctp_initmsg sinit; 2413 struct sctp_sock *sp = sctp_sk(sk); 2414 2415 if (optlen != sizeof(struct sctp_initmsg)) 2416 return -EINVAL; 2417 if (copy_from_user(&sinit, optval, optlen)) 2418 return -EFAULT; 2419 2420 if (sinit.sinit_num_ostreams) 2421 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2422 if (sinit.sinit_max_instreams) 2423 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2424 if (sinit.sinit_max_attempts) 2425 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2426 if (sinit.sinit_max_init_timeo) 2427 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2428 2429 return 0; 2430 } 2431 2432 /* 2433 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2434 * 2435 * Applications that wish to use the sendto() system call may wish to 2436 * specify a default set of parameters that would normally be supplied 2437 * through the inclusion of ancillary data. This socket option allows 2438 * such an application to set the default sctp_sndrcvinfo structure. 2439 * The application that wishes to use this socket option simply passes 2440 * in to this call the sctp_sndrcvinfo structure defined in Section 2441 * 5.2.2) The input parameters accepted by this call include 2442 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2443 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2444 * to this call if the caller is using the UDP model. 2445 */ 2446 static int sctp_setsockopt_default_send_param(struct sock *sk, 2447 char __user *optval, int optlen) 2448 { 2449 struct sctp_sndrcvinfo info; 2450 struct sctp_association *asoc; 2451 struct sctp_sock *sp = sctp_sk(sk); 2452 2453 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2454 return -EINVAL; 2455 if (copy_from_user(&info, optval, optlen)) 2456 return -EFAULT; 2457 2458 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2459 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2460 return -EINVAL; 2461 2462 if (asoc) { 2463 asoc->default_stream = info.sinfo_stream; 2464 asoc->default_flags = info.sinfo_flags; 2465 asoc->default_ppid = info.sinfo_ppid; 2466 asoc->default_context = info.sinfo_context; 2467 asoc->default_timetolive = info.sinfo_timetolive; 2468 } else { 2469 sp->default_stream = info.sinfo_stream; 2470 sp->default_flags = info.sinfo_flags; 2471 sp->default_ppid = info.sinfo_ppid; 2472 sp->default_context = info.sinfo_context; 2473 sp->default_timetolive = info.sinfo_timetolive; 2474 } 2475 2476 return 0; 2477 } 2478 2479 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2480 * 2481 * Requests that the local SCTP stack use the enclosed peer address as 2482 * the association primary. The enclosed address must be one of the 2483 * association peer's addresses. 2484 */ 2485 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2486 int optlen) 2487 { 2488 struct sctp_prim prim; 2489 struct sctp_transport *trans; 2490 2491 if (optlen != sizeof(struct sctp_prim)) 2492 return -EINVAL; 2493 2494 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2495 return -EFAULT; 2496 2497 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2498 if (!trans) 2499 return -EINVAL; 2500 2501 sctp_assoc_set_primary(trans->asoc, trans); 2502 2503 return 0; 2504 } 2505 2506 /* 2507 * 7.1.5 SCTP_NODELAY 2508 * 2509 * Turn on/off any Nagle-like algorithm. This means that packets are 2510 * generally sent as soon as possible and no unnecessary delays are 2511 * introduced, at the cost of more packets in the network. Expects an 2512 * integer boolean flag. 2513 */ 2514 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2515 int optlen) 2516 { 2517 int val; 2518 2519 if (optlen < sizeof(int)) 2520 return -EINVAL; 2521 if (get_user(val, (int __user *)optval)) 2522 return -EFAULT; 2523 2524 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2525 return 0; 2526 } 2527 2528 /* 2529 * 2530 * 7.1.1 SCTP_RTOINFO 2531 * 2532 * The protocol parameters used to initialize and bound retransmission 2533 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2534 * and modify these parameters. 2535 * All parameters are time values, in milliseconds. A value of 0, when 2536 * modifying the parameters, indicates that the current value should not 2537 * be changed. 2538 * 2539 */ 2540 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2541 struct sctp_rtoinfo rtoinfo; 2542 struct sctp_association *asoc; 2543 2544 if (optlen != sizeof (struct sctp_rtoinfo)) 2545 return -EINVAL; 2546 2547 if (copy_from_user(&rtoinfo, optval, optlen)) 2548 return -EFAULT; 2549 2550 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2551 2552 /* Set the values to the specific association */ 2553 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2554 return -EINVAL; 2555 2556 if (asoc) { 2557 if (rtoinfo.srto_initial != 0) 2558 asoc->rto_initial = 2559 msecs_to_jiffies(rtoinfo.srto_initial); 2560 if (rtoinfo.srto_max != 0) 2561 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2562 if (rtoinfo.srto_min != 0) 2563 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2564 } else { 2565 /* If there is no association or the association-id = 0 2566 * set the values to the endpoint. 2567 */ 2568 struct sctp_sock *sp = sctp_sk(sk); 2569 2570 if (rtoinfo.srto_initial != 0) 2571 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2572 if (rtoinfo.srto_max != 0) 2573 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2574 if (rtoinfo.srto_min != 0) 2575 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2576 } 2577 2578 return 0; 2579 } 2580 2581 /* 2582 * 2583 * 7.1.2 SCTP_ASSOCINFO 2584 * 2585 * This option is used to tune the maximum retransmission attempts 2586 * of the association. 2587 * Returns an error if the new association retransmission value is 2588 * greater than the sum of the retransmission value of the peer. 2589 * See [SCTP] for more information. 2590 * 2591 */ 2592 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2593 { 2594 2595 struct sctp_assocparams assocparams; 2596 struct sctp_association *asoc; 2597 2598 if (optlen != sizeof(struct sctp_assocparams)) 2599 return -EINVAL; 2600 if (copy_from_user(&assocparams, optval, optlen)) 2601 return -EFAULT; 2602 2603 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2604 2605 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2606 return -EINVAL; 2607 2608 /* Set the values to the specific association */ 2609 if (asoc) { 2610 if (assocparams.sasoc_asocmaxrxt != 0) { 2611 __u32 path_sum = 0; 2612 int paths = 0; 2613 struct list_head *pos; 2614 struct sctp_transport *peer_addr; 2615 2616 list_for_each(pos, &asoc->peer.transport_addr_list) { 2617 peer_addr = list_entry(pos, 2618 struct sctp_transport, 2619 transports); 2620 path_sum += peer_addr->pathmaxrxt; 2621 paths++; 2622 } 2623 2624 /* Only validate asocmaxrxt if we have more then 2625 * one path/transport. We do this because path 2626 * retransmissions are only counted when we have more 2627 * then one path. 2628 */ 2629 if (paths > 1 && 2630 assocparams.sasoc_asocmaxrxt > path_sum) 2631 return -EINVAL; 2632 2633 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2634 } 2635 2636 if (assocparams.sasoc_cookie_life != 0) { 2637 asoc->cookie_life.tv_sec = 2638 assocparams.sasoc_cookie_life / 1000; 2639 asoc->cookie_life.tv_usec = 2640 (assocparams.sasoc_cookie_life % 1000) 2641 * 1000; 2642 } 2643 } else { 2644 /* Set the values to the endpoint */ 2645 struct sctp_sock *sp = sctp_sk(sk); 2646 2647 if (assocparams.sasoc_asocmaxrxt != 0) 2648 sp->assocparams.sasoc_asocmaxrxt = 2649 assocparams.sasoc_asocmaxrxt; 2650 if (assocparams.sasoc_cookie_life != 0) 2651 sp->assocparams.sasoc_cookie_life = 2652 assocparams.sasoc_cookie_life; 2653 } 2654 return 0; 2655 } 2656 2657 /* 2658 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2659 * 2660 * This socket option is a boolean flag which turns on or off mapped V4 2661 * addresses. If this option is turned on and the socket is type 2662 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2663 * If this option is turned off, then no mapping will be done of V4 2664 * addresses and a user will receive both PF_INET6 and PF_INET type 2665 * addresses on the socket. 2666 */ 2667 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2668 { 2669 int val; 2670 struct sctp_sock *sp = sctp_sk(sk); 2671 2672 if (optlen < sizeof(int)) 2673 return -EINVAL; 2674 if (get_user(val, (int __user *)optval)) 2675 return -EFAULT; 2676 if (val) 2677 sp->v4mapped = 1; 2678 else 2679 sp->v4mapped = 0; 2680 2681 return 0; 2682 } 2683 2684 /* 2685 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2686 * 2687 * This socket option specifies the maximum size to put in any outgoing 2688 * SCTP chunk. If a message is larger than this size it will be 2689 * fragmented by SCTP into the specified size. Note that the underlying 2690 * SCTP implementation may fragment into smaller sized chunks when the 2691 * PMTU of the underlying association is smaller than the value set by 2692 * the user. 2693 */ 2694 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2695 { 2696 struct sctp_association *asoc; 2697 struct list_head *pos; 2698 struct sctp_sock *sp = sctp_sk(sk); 2699 int val; 2700 2701 if (optlen < sizeof(int)) 2702 return -EINVAL; 2703 if (get_user(val, (int __user *)optval)) 2704 return -EFAULT; 2705 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2706 return -EINVAL; 2707 sp->user_frag = val; 2708 2709 /* Update the frag_point of the existing associations. */ 2710 list_for_each(pos, &(sp->ep->asocs)) { 2711 asoc = list_entry(pos, struct sctp_association, asocs); 2712 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2713 } 2714 2715 return 0; 2716 } 2717 2718 2719 /* 2720 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2721 * 2722 * Requests that the peer mark the enclosed address as the association 2723 * primary. The enclosed address must be one of the association's 2724 * locally bound addresses. The following structure is used to make a 2725 * set primary request: 2726 */ 2727 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2728 int optlen) 2729 { 2730 struct sctp_sock *sp; 2731 struct sctp_endpoint *ep; 2732 struct sctp_association *asoc = NULL; 2733 struct sctp_setpeerprim prim; 2734 struct sctp_chunk *chunk; 2735 int err; 2736 2737 sp = sctp_sk(sk); 2738 ep = sp->ep; 2739 2740 if (!sctp_addip_enable) 2741 return -EPERM; 2742 2743 if (optlen != sizeof(struct sctp_setpeerprim)) 2744 return -EINVAL; 2745 2746 if (copy_from_user(&prim, optval, optlen)) 2747 return -EFAULT; 2748 2749 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2750 if (!asoc) 2751 return -EINVAL; 2752 2753 if (!asoc->peer.asconf_capable) 2754 return -EPERM; 2755 2756 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2757 return -EPERM; 2758 2759 if (!sctp_state(asoc, ESTABLISHED)) 2760 return -ENOTCONN; 2761 2762 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2763 return -EADDRNOTAVAIL; 2764 2765 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2766 chunk = sctp_make_asconf_set_prim(asoc, 2767 (union sctp_addr *)&prim.sspp_addr); 2768 if (!chunk) 2769 return -ENOMEM; 2770 2771 err = sctp_send_asconf(asoc, chunk); 2772 2773 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2774 2775 return err; 2776 } 2777 2778 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2779 int optlen) 2780 { 2781 struct sctp_setadaptation adaptation; 2782 2783 if (optlen != sizeof(struct sctp_setadaptation)) 2784 return -EINVAL; 2785 if (copy_from_user(&adaptation, optval, optlen)) 2786 return -EFAULT; 2787 2788 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2789 2790 return 0; 2791 } 2792 2793 /* 2794 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2795 * 2796 * The context field in the sctp_sndrcvinfo structure is normally only 2797 * used when a failed message is retrieved holding the value that was 2798 * sent down on the actual send call. This option allows the setting of 2799 * a default context on an association basis that will be received on 2800 * reading messages from the peer. This is especially helpful in the 2801 * one-2-many model for an application to keep some reference to an 2802 * internal state machine that is processing messages on the 2803 * association. Note that the setting of this value only effects 2804 * received messages from the peer and does not effect the value that is 2805 * saved with outbound messages. 2806 */ 2807 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2808 int optlen) 2809 { 2810 struct sctp_assoc_value params; 2811 struct sctp_sock *sp; 2812 struct sctp_association *asoc; 2813 2814 if (optlen != sizeof(struct sctp_assoc_value)) 2815 return -EINVAL; 2816 if (copy_from_user(¶ms, optval, optlen)) 2817 return -EFAULT; 2818 2819 sp = sctp_sk(sk); 2820 2821 if (params.assoc_id != 0) { 2822 asoc = sctp_id2assoc(sk, params.assoc_id); 2823 if (!asoc) 2824 return -EINVAL; 2825 asoc->default_rcv_context = params.assoc_value; 2826 } else { 2827 sp->default_rcv_context = params.assoc_value; 2828 } 2829 2830 return 0; 2831 } 2832 2833 /* 2834 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2835 * 2836 * This options will at a minimum specify if the implementation is doing 2837 * fragmented interleave. Fragmented interleave, for a one to many 2838 * socket, is when subsequent calls to receive a message may return 2839 * parts of messages from different associations. Some implementations 2840 * may allow you to turn this value on or off. If so, when turned off, 2841 * no fragment interleave will occur (which will cause a head of line 2842 * blocking amongst multiple associations sharing the same one to many 2843 * socket). When this option is turned on, then each receive call may 2844 * come from a different association (thus the user must receive data 2845 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2846 * association each receive belongs to. 2847 * 2848 * This option takes a boolean value. A non-zero value indicates that 2849 * fragmented interleave is on. A value of zero indicates that 2850 * fragmented interleave is off. 2851 * 2852 * Note that it is important that an implementation that allows this 2853 * option to be turned on, have it off by default. Otherwise an unaware 2854 * application using the one to many model may become confused and act 2855 * incorrectly. 2856 */ 2857 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2858 char __user *optval, 2859 int optlen) 2860 { 2861 int val; 2862 2863 if (optlen != sizeof(int)) 2864 return -EINVAL; 2865 if (get_user(val, (int __user *)optval)) 2866 return -EFAULT; 2867 2868 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2869 2870 return 0; 2871 } 2872 2873 /* 2874 * 7.1.25. Set or Get the sctp partial delivery point 2875 * (SCTP_PARTIAL_DELIVERY_POINT) 2876 * This option will set or get the SCTP partial delivery point. This 2877 * point is the size of a message where the partial delivery API will be 2878 * invoked to help free up rwnd space for the peer. Setting this to a 2879 * lower value will cause partial delivery's to happen more often. The 2880 * calls argument is an integer that sets or gets the partial delivery 2881 * point. 2882 */ 2883 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2884 char __user *optval, 2885 int optlen) 2886 { 2887 u32 val; 2888 2889 if (optlen != sizeof(u32)) 2890 return -EINVAL; 2891 if (get_user(val, (int __user *)optval)) 2892 return -EFAULT; 2893 2894 sctp_sk(sk)->pd_point = val; 2895 2896 return 0; /* is this the right error code? */ 2897 } 2898 2899 /* 2900 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2901 * 2902 * This option will allow a user to change the maximum burst of packets 2903 * that can be emitted by this association. Note that the default value 2904 * is 4, and some implementations may restrict this setting so that it 2905 * can only be lowered. 2906 * 2907 * NOTE: This text doesn't seem right. Do this on a socket basis with 2908 * future associations inheriting the socket value. 2909 */ 2910 static int sctp_setsockopt_maxburst(struct sock *sk, 2911 char __user *optval, 2912 int optlen) 2913 { 2914 int val; 2915 2916 if (optlen != sizeof(int)) 2917 return -EINVAL; 2918 if (get_user(val, (int __user *)optval)) 2919 return -EFAULT; 2920 2921 if (val < 0) 2922 return -EINVAL; 2923 2924 sctp_sk(sk)->max_burst = val; 2925 2926 return 0; 2927 } 2928 2929 /* API 6.2 setsockopt(), getsockopt() 2930 * 2931 * Applications use setsockopt() and getsockopt() to set or retrieve 2932 * socket options. Socket options are used to change the default 2933 * behavior of sockets calls. They are described in Section 7. 2934 * 2935 * The syntax is: 2936 * 2937 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2938 * int __user *optlen); 2939 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2940 * int optlen); 2941 * 2942 * sd - the socket descript. 2943 * level - set to IPPROTO_SCTP for all SCTP options. 2944 * optname - the option name. 2945 * optval - the buffer to store the value of the option. 2946 * optlen - the size of the buffer. 2947 */ 2948 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2949 char __user *optval, int optlen) 2950 { 2951 int retval = 0; 2952 2953 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2954 sk, optname); 2955 2956 /* I can hardly begin to describe how wrong this is. This is 2957 * so broken as to be worse than useless. The API draft 2958 * REALLY is NOT helpful here... I am not convinced that the 2959 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2960 * are at all well-founded. 2961 */ 2962 if (level != SOL_SCTP) { 2963 struct sctp_af *af = sctp_sk(sk)->pf->af; 2964 retval = af->setsockopt(sk, level, optname, optval, optlen); 2965 goto out_nounlock; 2966 } 2967 2968 sctp_lock_sock(sk); 2969 2970 switch (optname) { 2971 case SCTP_SOCKOPT_BINDX_ADD: 2972 /* 'optlen' is the size of the addresses buffer. */ 2973 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2974 optlen, SCTP_BINDX_ADD_ADDR); 2975 break; 2976 2977 case SCTP_SOCKOPT_BINDX_REM: 2978 /* 'optlen' is the size of the addresses buffer. */ 2979 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2980 optlen, SCTP_BINDX_REM_ADDR); 2981 break; 2982 2983 case SCTP_SOCKOPT_CONNECTX: 2984 /* 'optlen' is the size of the addresses buffer. */ 2985 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2986 optlen); 2987 break; 2988 2989 case SCTP_DISABLE_FRAGMENTS: 2990 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2991 break; 2992 2993 case SCTP_EVENTS: 2994 retval = sctp_setsockopt_events(sk, optval, optlen); 2995 break; 2996 2997 case SCTP_AUTOCLOSE: 2998 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2999 break; 3000 3001 case SCTP_PEER_ADDR_PARAMS: 3002 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3003 break; 3004 3005 case SCTP_DELAYED_ACK_TIME: 3006 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3007 break; 3008 case SCTP_PARTIAL_DELIVERY_POINT: 3009 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3010 break; 3011 3012 case SCTP_INITMSG: 3013 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3014 break; 3015 case SCTP_DEFAULT_SEND_PARAM: 3016 retval = sctp_setsockopt_default_send_param(sk, optval, 3017 optlen); 3018 break; 3019 case SCTP_PRIMARY_ADDR: 3020 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3021 break; 3022 case SCTP_SET_PEER_PRIMARY_ADDR: 3023 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3024 break; 3025 case SCTP_NODELAY: 3026 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3027 break; 3028 case SCTP_RTOINFO: 3029 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3030 break; 3031 case SCTP_ASSOCINFO: 3032 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3033 break; 3034 case SCTP_I_WANT_MAPPED_V4_ADDR: 3035 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3036 break; 3037 case SCTP_MAXSEG: 3038 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3039 break; 3040 case SCTP_ADAPTATION_LAYER: 3041 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3042 break; 3043 case SCTP_CONTEXT: 3044 retval = sctp_setsockopt_context(sk, optval, optlen); 3045 break; 3046 case SCTP_FRAGMENT_INTERLEAVE: 3047 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3048 break; 3049 case SCTP_MAX_BURST: 3050 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3051 break; 3052 default: 3053 retval = -ENOPROTOOPT; 3054 break; 3055 } 3056 3057 sctp_release_sock(sk); 3058 3059 out_nounlock: 3060 return retval; 3061 } 3062 3063 /* API 3.1.6 connect() - UDP Style Syntax 3064 * 3065 * An application may use the connect() call in the UDP model to initiate an 3066 * association without sending data. 3067 * 3068 * The syntax is: 3069 * 3070 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3071 * 3072 * sd: the socket descriptor to have a new association added to. 3073 * 3074 * nam: the address structure (either struct sockaddr_in or struct 3075 * sockaddr_in6 defined in RFC2553 [7]). 3076 * 3077 * len: the size of the address. 3078 */ 3079 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3080 int addr_len) 3081 { 3082 int err = 0; 3083 struct sctp_af *af; 3084 3085 sctp_lock_sock(sk); 3086 3087 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3088 __FUNCTION__, sk, addr, addr_len); 3089 3090 /* Validate addr_len before calling common connect/connectx routine. */ 3091 af = sctp_get_af_specific(addr->sa_family); 3092 if (!af || addr_len < af->sockaddr_len) { 3093 err = -EINVAL; 3094 } else { 3095 /* Pass correct addr len to common routine (so it knows there 3096 * is only one address being passed. 3097 */ 3098 err = __sctp_connect(sk, addr, af->sockaddr_len); 3099 } 3100 3101 sctp_release_sock(sk); 3102 return err; 3103 } 3104 3105 /* FIXME: Write comments. */ 3106 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3107 { 3108 return -EOPNOTSUPP; /* STUB */ 3109 } 3110 3111 /* 4.1.4 accept() - TCP Style Syntax 3112 * 3113 * Applications use accept() call to remove an established SCTP 3114 * association from the accept queue of the endpoint. A new socket 3115 * descriptor will be returned from accept() to represent the newly 3116 * formed association. 3117 */ 3118 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3119 { 3120 struct sctp_sock *sp; 3121 struct sctp_endpoint *ep; 3122 struct sock *newsk = NULL; 3123 struct sctp_association *asoc; 3124 long timeo; 3125 int error = 0; 3126 3127 sctp_lock_sock(sk); 3128 3129 sp = sctp_sk(sk); 3130 ep = sp->ep; 3131 3132 if (!sctp_style(sk, TCP)) { 3133 error = -EOPNOTSUPP; 3134 goto out; 3135 } 3136 3137 if (!sctp_sstate(sk, LISTENING)) { 3138 error = -EINVAL; 3139 goto out; 3140 } 3141 3142 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3143 3144 error = sctp_wait_for_accept(sk, timeo); 3145 if (error) 3146 goto out; 3147 3148 /* We treat the list of associations on the endpoint as the accept 3149 * queue and pick the first association on the list. 3150 */ 3151 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3152 3153 newsk = sp->pf->create_accept_sk(sk, asoc); 3154 if (!newsk) { 3155 error = -ENOMEM; 3156 goto out; 3157 } 3158 3159 /* Populate the fields of the newsk from the oldsk and migrate the 3160 * asoc to the newsk. 3161 */ 3162 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3163 3164 out: 3165 sctp_release_sock(sk); 3166 *err = error; 3167 return newsk; 3168 } 3169 3170 /* The SCTP ioctl handler. */ 3171 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3172 { 3173 return -ENOIOCTLCMD; 3174 } 3175 3176 /* This is the function which gets called during socket creation to 3177 * initialized the SCTP-specific portion of the sock. 3178 * The sock structure should already be zero-filled memory. 3179 */ 3180 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3181 { 3182 struct sctp_endpoint *ep; 3183 struct sctp_sock *sp; 3184 3185 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3186 3187 sp = sctp_sk(sk); 3188 3189 /* Initialize the SCTP per socket area. */ 3190 switch (sk->sk_type) { 3191 case SOCK_SEQPACKET: 3192 sp->type = SCTP_SOCKET_UDP; 3193 break; 3194 case SOCK_STREAM: 3195 sp->type = SCTP_SOCKET_TCP; 3196 break; 3197 default: 3198 return -ESOCKTNOSUPPORT; 3199 } 3200 3201 /* Initialize default send parameters. These parameters can be 3202 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3203 */ 3204 sp->default_stream = 0; 3205 sp->default_ppid = 0; 3206 sp->default_flags = 0; 3207 sp->default_context = 0; 3208 sp->default_timetolive = 0; 3209 3210 sp->default_rcv_context = 0; 3211 sp->max_burst = sctp_max_burst; 3212 3213 /* Initialize default setup parameters. These parameters 3214 * can be modified with the SCTP_INITMSG socket option or 3215 * overridden by the SCTP_INIT CMSG. 3216 */ 3217 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3218 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3219 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3220 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3221 3222 /* Initialize default RTO related parameters. These parameters can 3223 * be modified for with the SCTP_RTOINFO socket option. 3224 */ 3225 sp->rtoinfo.srto_initial = sctp_rto_initial; 3226 sp->rtoinfo.srto_max = sctp_rto_max; 3227 sp->rtoinfo.srto_min = sctp_rto_min; 3228 3229 /* Initialize default association related parameters. These parameters 3230 * can be modified with the SCTP_ASSOCINFO socket option. 3231 */ 3232 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3233 sp->assocparams.sasoc_number_peer_destinations = 0; 3234 sp->assocparams.sasoc_peer_rwnd = 0; 3235 sp->assocparams.sasoc_local_rwnd = 0; 3236 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3237 3238 /* Initialize default event subscriptions. By default, all the 3239 * options are off. 3240 */ 3241 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3242 3243 /* Default Peer Address Parameters. These defaults can 3244 * be modified via SCTP_PEER_ADDR_PARAMS 3245 */ 3246 sp->hbinterval = sctp_hb_interval; 3247 sp->pathmaxrxt = sctp_max_retrans_path; 3248 sp->pathmtu = 0; // allow default discovery 3249 sp->sackdelay = sctp_sack_timeout; 3250 sp->param_flags = SPP_HB_ENABLE | 3251 SPP_PMTUD_ENABLE | 3252 SPP_SACKDELAY_ENABLE; 3253 3254 /* If enabled no SCTP message fragmentation will be performed. 3255 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3256 */ 3257 sp->disable_fragments = 0; 3258 3259 /* Enable Nagle algorithm by default. */ 3260 sp->nodelay = 0; 3261 3262 /* Enable by default. */ 3263 sp->v4mapped = 1; 3264 3265 /* Auto-close idle associations after the configured 3266 * number of seconds. A value of 0 disables this 3267 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3268 * for UDP-style sockets only. 3269 */ 3270 sp->autoclose = 0; 3271 3272 /* User specified fragmentation limit. */ 3273 sp->user_frag = 0; 3274 3275 sp->adaptation_ind = 0; 3276 3277 sp->pf = sctp_get_pf_specific(sk->sk_family); 3278 3279 /* Control variables for partial data delivery. */ 3280 atomic_set(&sp->pd_mode, 0); 3281 skb_queue_head_init(&sp->pd_lobby); 3282 sp->frag_interleave = 0; 3283 3284 /* Create a per socket endpoint structure. Even if we 3285 * change the data structure relationships, this may still 3286 * be useful for storing pre-connect address information. 3287 */ 3288 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3289 if (!ep) 3290 return -ENOMEM; 3291 3292 sp->ep = ep; 3293 sp->hmac = NULL; 3294 3295 SCTP_DBG_OBJCNT_INC(sock); 3296 return 0; 3297 } 3298 3299 /* Cleanup any SCTP per socket resources. */ 3300 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3301 { 3302 struct sctp_endpoint *ep; 3303 3304 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3305 3306 /* Release our hold on the endpoint. */ 3307 ep = sctp_sk(sk)->ep; 3308 sctp_endpoint_free(ep); 3309 3310 return 0; 3311 } 3312 3313 /* API 4.1.7 shutdown() - TCP Style Syntax 3314 * int shutdown(int socket, int how); 3315 * 3316 * sd - the socket descriptor of the association to be closed. 3317 * how - Specifies the type of shutdown. The values are 3318 * as follows: 3319 * SHUT_RD 3320 * Disables further receive operations. No SCTP 3321 * protocol action is taken. 3322 * SHUT_WR 3323 * Disables further send operations, and initiates 3324 * the SCTP shutdown sequence. 3325 * SHUT_RDWR 3326 * Disables further send and receive operations 3327 * and initiates the SCTP shutdown sequence. 3328 */ 3329 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3330 { 3331 struct sctp_endpoint *ep; 3332 struct sctp_association *asoc; 3333 3334 if (!sctp_style(sk, TCP)) 3335 return; 3336 3337 if (how & SEND_SHUTDOWN) { 3338 ep = sctp_sk(sk)->ep; 3339 if (!list_empty(&ep->asocs)) { 3340 asoc = list_entry(ep->asocs.next, 3341 struct sctp_association, asocs); 3342 sctp_primitive_SHUTDOWN(asoc, NULL); 3343 } 3344 } 3345 } 3346 3347 /* 7.2.1 Association Status (SCTP_STATUS) 3348 3349 * Applications can retrieve current status information about an 3350 * association, including association state, peer receiver window size, 3351 * number of unacked data chunks, and number of data chunks pending 3352 * receipt. This information is read-only. 3353 */ 3354 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3355 char __user *optval, 3356 int __user *optlen) 3357 { 3358 struct sctp_status status; 3359 struct sctp_association *asoc = NULL; 3360 struct sctp_transport *transport; 3361 sctp_assoc_t associd; 3362 int retval = 0; 3363 3364 if (len < sizeof(status)) { 3365 retval = -EINVAL; 3366 goto out; 3367 } 3368 3369 len = sizeof(status); 3370 if (copy_from_user(&status, optval, len)) { 3371 retval = -EFAULT; 3372 goto out; 3373 } 3374 3375 associd = status.sstat_assoc_id; 3376 asoc = sctp_id2assoc(sk, associd); 3377 if (!asoc) { 3378 retval = -EINVAL; 3379 goto out; 3380 } 3381 3382 transport = asoc->peer.primary_path; 3383 3384 status.sstat_assoc_id = sctp_assoc2id(asoc); 3385 status.sstat_state = asoc->state; 3386 status.sstat_rwnd = asoc->peer.rwnd; 3387 status.sstat_unackdata = asoc->unack_data; 3388 3389 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3390 status.sstat_instrms = asoc->c.sinit_max_instreams; 3391 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3392 status.sstat_fragmentation_point = asoc->frag_point; 3393 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3394 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3395 transport->af_specific->sockaddr_len); 3396 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3397 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3398 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3399 status.sstat_primary.spinfo_state = transport->state; 3400 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3401 status.sstat_primary.spinfo_srtt = transport->srtt; 3402 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3403 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3404 3405 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3406 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3407 3408 if (put_user(len, optlen)) { 3409 retval = -EFAULT; 3410 goto out; 3411 } 3412 3413 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3414 len, status.sstat_state, status.sstat_rwnd, 3415 status.sstat_assoc_id); 3416 3417 if (copy_to_user(optval, &status, len)) { 3418 retval = -EFAULT; 3419 goto out; 3420 } 3421 3422 out: 3423 return (retval); 3424 } 3425 3426 3427 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3428 * 3429 * Applications can retrieve information about a specific peer address 3430 * of an association, including its reachability state, congestion 3431 * window, and retransmission timer values. This information is 3432 * read-only. 3433 */ 3434 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3435 char __user *optval, 3436 int __user *optlen) 3437 { 3438 struct sctp_paddrinfo pinfo; 3439 struct sctp_transport *transport; 3440 int retval = 0; 3441 3442 if (len < sizeof(pinfo)) { 3443 retval = -EINVAL; 3444 goto out; 3445 } 3446 3447 len = sizeof(pinfo); 3448 if (copy_from_user(&pinfo, optval, len)) { 3449 retval = -EFAULT; 3450 goto out; 3451 } 3452 3453 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3454 pinfo.spinfo_assoc_id); 3455 if (!transport) 3456 return -EINVAL; 3457 3458 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3459 pinfo.spinfo_state = transport->state; 3460 pinfo.spinfo_cwnd = transport->cwnd; 3461 pinfo.spinfo_srtt = transport->srtt; 3462 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3463 pinfo.spinfo_mtu = transport->pathmtu; 3464 3465 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3466 pinfo.spinfo_state = SCTP_ACTIVE; 3467 3468 if (put_user(len, optlen)) { 3469 retval = -EFAULT; 3470 goto out; 3471 } 3472 3473 if (copy_to_user(optval, &pinfo, len)) { 3474 retval = -EFAULT; 3475 goto out; 3476 } 3477 3478 out: 3479 return (retval); 3480 } 3481 3482 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3483 * 3484 * This option is a on/off flag. If enabled no SCTP message 3485 * fragmentation will be performed. Instead if a message being sent 3486 * exceeds the current PMTU size, the message will NOT be sent and 3487 * instead a error will be indicated to the user. 3488 */ 3489 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3490 char __user *optval, int __user *optlen) 3491 { 3492 int val; 3493 3494 if (len < sizeof(int)) 3495 return -EINVAL; 3496 3497 len = sizeof(int); 3498 val = (sctp_sk(sk)->disable_fragments == 1); 3499 if (put_user(len, optlen)) 3500 return -EFAULT; 3501 if (copy_to_user(optval, &val, len)) 3502 return -EFAULT; 3503 return 0; 3504 } 3505 3506 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3507 * 3508 * This socket option is used to specify various notifications and 3509 * ancillary data the user wishes to receive. 3510 */ 3511 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3512 int __user *optlen) 3513 { 3514 if (len < sizeof(struct sctp_event_subscribe)) 3515 return -EINVAL; 3516 len = sizeof(struct sctp_event_subscribe); 3517 if (put_user(len, optlen)) 3518 return -EFAULT; 3519 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3520 return -EFAULT; 3521 return 0; 3522 } 3523 3524 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3525 * 3526 * This socket option is applicable to the UDP-style socket only. When 3527 * set it will cause associations that are idle for more than the 3528 * specified number of seconds to automatically close. An association 3529 * being idle is defined an association that has NOT sent or received 3530 * user data. The special value of '0' indicates that no automatic 3531 * close of any associations should be performed. The option expects an 3532 * integer defining the number of seconds of idle time before an 3533 * association is closed. 3534 */ 3535 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3536 { 3537 /* Applicable to UDP-style socket only */ 3538 if (sctp_style(sk, TCP)) 3539 return -EOPNOTSUPP; 3540 if (len < sizeof(int)) 3541 return -EINVAL; 3542 len = sizeof(int); 3543 if (put_user(len, optlen)) 3544 return -EFAULT; 3545 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3546 return -EFAULT; 3547 return 0; 3548 } 3549 3550 /* Helper routine to branch off an association to a new socket. */ 3551 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3552 struct socket **sockp) 3553 { 3554 struct sock *sk = asoc->base.sk; 3555 struct socket *sock; 3556 struct inet_sock *inetsk; 3557 struct sctp_af *af; 3558 int err = 0; 3559 3560 /* An association cannot be branched off from an already peeled-off 3561 * socket, nor is this supported for tcp style sockets. 3562 */ 3563 if (!sctp_style(sk, UDP)) 3564 return -EINVAL; 3565 3566 /* Create a new socket. */ 3567 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3568 if (err < 0) 3569 return err; 3570 3571 /* Populate the fields of the newsk from the oldsk and migrate the 3572 * asoc to the newsk. 3573 */ 3574 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3575 3576 /* Make peeled-off sockets more like 1-1 accepted sockets. 3577 * Set the daddr and initialize id to something more random 3578 */ 3579 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3580 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3581 inetsk = inet_sk(sock->sk); 3582 inetsk->id = asoc->next_tsn ^ jiffies; 3583 3584 *sockp = sock; 3585 3586 return err; 3587 } 3588 3589 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3590 { 3591 sctp_peeloff_arg_t peeloff; 3592 struct socket *newsock; 3593 int retval = 0; 3594 struct sctp_association *asoc; 3595 3596 if (len < sizeof(sctp_peeloff_arg_t)) 3597 return -EINVAL; 3598 len = sizeof(sctp_peeloff_arg_t); 3599 if (copy_from_user(&peeloff, optval, len)) 3600 return -EFAULT; 3601 3602 asoc = sctp_id2assoc(sk, peeloff.associd); 3603 if (!asoc) { 3604 retval = -EINVAL; 3605 goto out; 3606 } 3607 3608 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3609 3610 retval = sctp_do_peeloff(asoc, &newsock); 3611 if (retval < 0) 3612 goto out; 3613 3614 /* Map the socket to an unused fd that can be returned to the user. */ 3615 retval = sock_map_fd(newsock); 3616 if (retval < 0) { 3617 sock_release(newsock); 3618 goto out; 3619 } 3620 3621 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3622 __FUNCTION__, sk, asoc, newsock->sk, retval); 3623 3624 /* Return the fd mapped to the new socket. */ 3625 peeloff.sd = retval; 3626 if (put_user(len, optlen)) 3627 return -EFAULT; 3628 if (copy_to_user(optval, &peeloff, len)) 3629 retval = -EFAULT; 3630 3631 out: 3632 return retval; 3633 } 3634 3635 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3636 * 3637 * Applications can enable or disable heartbeats for any peer address of 3638 * an association, modify an address's heartbeat interval, force a 3639 * heartbeat to be sent immediately, and adjust the address's maximum 3640 * number of retransmissions sent before an address is considered 3641 * unreachable. The following structure is used to access and modify an 3642 * address's parameters: 3643 * 3644 * struct sctp_paddrparams { 3645 * sctp_assoc_t spp_assoc_id; 3646 * struct sockaddr_storage spp_address; 3647 * uint32_t spp_hbinterval; 3648 * uint16_t spp_pathmaxrxt; 3649 * uint32_t spp_pathmtu; 3650 * uint32_t spp_sackdelay; 3651 * uint32_t spp_flags; 3652 * }; 3653 * 3654 * spp_assoc_id - (one-to-many style socket) This is filled in the 3655 * application, and identifies the association for 3656 * this query. 3657 * spp_address - This specifies which address is of interest. 3658 * spp_hbinterval - This contains the value of the heartbeat interval, 3659 * in milliseconds. If a value of zero 3660 * is present in this field then no changes are to 3661 * be made to this parameter. 3662 * spp_pathmaxrxt - This contains the maximum number of 3663 * retransmissions before this address shall be 3664 * considered unreachable. If a value of zero 3665 * is present in this field then no changes are to 3666 * be made to this parameter. 3667 * spp_pathmtu - When Path MTU discovery is disabled the value 3668 * specified here will be the "fixed" path mtu. 3669 * Note that if the spp_address field is empty 3670 * then all associations on this address will 3671 * have this fixed path mtu set upon them. 3672 * 3673 * spp_sackdelay - When delayed sack is enabled, this value specifies 3674 * the number of milliseconds that sacks will be delayed 3675 * for. This value will apply to all addresses of an 3676 * association if the spp_address field is empty. Note 3677 * also, that if delayed sack is enabled and this 3678 * value is set to 0, no change is made to the last 3679 * recorded delayed sack timer value. 3680 * 3681 * spp_flags - These flags are used to control various features 3682 * on an association. The flag field may contain 3683 * zero or more of the following options. 3684 * 3685 * SPP_HB_ENABLE - Enable heartbeats on the 3686 * specified address. Note that if the address 3687 * field is empty all addresses for the association 3688 * have heartbeats enabled upon them. 3689 * 3690 * SPP_HB_DISABLE - Disable heartbeats on the 3691 * speicifed address. Note that if the address 3692 * field is empty all addresses for the association 3693 * will have their heartbeats disabled. Note also 3694 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3695 * mutually exclusive, only one of these two should 3696 * be specified. Enabling both fields will have 3697 * undetermined results. 3698 * 3699 * SPP_HB_DEMAND - Request a user initiated heartbeat 3700 * to be made immediately. 3701 * 3702 * SPP_PMTUD_ENABLE - This field will enable PMTU 3703 * discovery upon the specified address. Note that 3704 * if the address feild is empty then all addresses 3705 * on the association are effected. 3706 * 3707 * SPP_PMTUD_DISABLE - This field will disable PMTU 3708 * discovery upon the specified address. Note that 3709 * if the address feild is empty then all addresses 3710 * on the association are effected. Not also that 3711 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3712 * exclusive. Enabling both will have undetermined 3713 * results. 3714 * 3715 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3716 * on delayed sack. The time specified in spp_sackdelay 3717 * is used to specify the sack delay for this address. Note 3718 * that if spp_address is empty then all addresses will 3719 * enable delayed sack and take on the sack delay 3720 * value specified in spp_sackdelay. 3721 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3722 * off delayed sack. If the spp_address field is blank then 3723 * delayed sack is disabled for the entire association. Note 3724 * also that this field is mutually exclusive to 3725 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3726 * results. 3727 */ 3728 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3729 char __user *optval, int __user *optlen) 3730 { 3731 struct sctp_paddrparams params; 3732 struct sctp_transport *trans = NULL; 3733 struct sctp_association *asoc = NULL; 3734 struct sctp_sock *sp = sctp_sk(sk); 3735 3736 if (len < sizeof(struct sctp_paddrparams)) 3737 return -EINVAL; 3738 len = sizeof(struct sctp_paddrparams); 3739 if (copy_from_user(¶ms, optval, len)) 3740 return -EFAULT; 3741 3742 /* If an address other than INADDR_ANY is specified, and 3743 * no transport is found, then the request is invalid. 3744 */ 3745 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3746 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3747 params.spp_assoc_id); 3748 if (!trans) { 3749 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3750 return -EINVAL; 3751 } 3752 } 3753 3754 /* Get association, if assoc_id != 0 and the socket is a one 3755 * to many style socket, and an association was not found, then 3756 * the id was invalid. 3757 */ 3758 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3759 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3760 SCTP_DEBUG_PRINTK("Failed no association\n"); 3761 return -EINVAL; 3762 } 3763 3764 if (trans) { 3765 /* Fetch transport values. */ 3766 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3767 params.spp_pathmtu = trans->pathmtu; 3768 params.spp_pathmaxrxt = trans->pathmaxrxt; 3769 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3770 3771 /*draft-11 doesn't say what to return in spp_flags*/ 3772 params.spp_flags = trans->param_flags; 3773 } else if (asoc) { 3774 /* Fetch association values. */ 3775 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3776 params.spp_pathmtu = asoc->pathmtu; 3777 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3778 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3779 3780 /*draft-11 doesn't say what to return in spp_flags*/ 3781 params.spp_flags = asoc->param_flags; 3782 } else { 3783 /* Fetch socket values. */ 3784 params.spp_hbinterval = sp->hbinterval; 3785 params.spp_pathmtu = sp->pathmtu; 3786 params.spp_sackdelay = sp->sackdelay; 3787 params.spp_pathmaxrxt = sp->pathmaxrxt; 3788 3789 /*draft-11 doesn't say what to return in spp_flags*/ 3790 params.spp_flags = sp->param_flags; 3791 } 3792 3793 if (copy_to_user(optval, ¶ms, len)) 3794 return -EFAULT; 3795 3796 if (put_user(len, optlen)) 3797 return -EFAULT; 3798 3799 return 0; 3800 } 3801 3802 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3803 * 3804 * This options will get or set the delayed ack timer. The time is set 3805 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3806 * endpoints default delayed ack timer value. If the assoc_id field is 3807 * non-zero, then the set or get effects the specified association. 3808 * 3809 * struct sctp_assoc_value { 3810 * sctp_assoc_t assoc_id; 3811 * uint32_t assoc_value; 3812 * }; 3813 * 3814 * assoc_id - This parameter, indicates which association the 3815 * user is preforming an action upon. Note that if 3816 * this field's value is zero then the endpoints 3817 * default value is changed (effecting future 3818 * associations only). 3819 * 3820 * assoc_value - This parameter contains the number of milliseconds 3821 * that the user is requesting the delayed ACK timer 3822 * be set to. Note that this value is defined in 3823 * the standard to be between 200 and 500 milliseconds. 3824 * 3825 * Note: a value of zero will leave the value alone, 3826 * but disable SACK delay. A non-zero value will also 3827 * enable SACK delay. 3828 */ 3829 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3830 char __user *optval, 3831 int __user *optlen) 3832 { 3833 struct sctp_assoc_value params; 3834 struct sctp_association *asoc = NULL; 3835 struct sctp_sock *sp = sctp_sk(sk); 3836 3837 if (len < sizeof(struct sctp_assoc_value)) 3838 return - EINVAL; 3839 3840 len = sizeof(struct sctp_assoc_value); 3841 3842 if (copy_from_user(¶ms, optval, len)) 3843 return -EFAULT; 3844 3845 /* Get association, if assoc_id != 0 and the socket is a one 3846 * to many style socket, and an association was not found, then 3847 * the id was invalid. 3848 */ 3849 asoc = sctp_id2assoc(sk, params.assoc_id); 3850 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3851 return -EINVAL; 3852 3853 if (asoc) { 3854 /* Fetch association values. */ 3855 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3856 params.assoc_value = jiffies_to_msecs( 3857 asoc->sackdelay); 3858 else 3859 params.assoc_value = 0; 3860 } else { 3861 /* Fetch socket values. */ 3862 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3863 params.assoc_value = sp->sackdelay; 3864 else 3865 params.assoc_value = 0; 3866 } 3867 3868 if (copy_to_user(optval, ¶ms, len)) 3869 return -EFAULT; 3870 3871 if (put_user(len, optlen)) 3872 return -EFAULT; 3873 3874 return 0; 3875 } 3876 3877 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3878 * 3879 * Applications can specify protocol parameters for the default association 3880 * initialization. The option name argument to setsockopt() and getsockopt() 3881 * is SCTP_INITMSG. 3882 * 3883 * Setting initialization parameters is effective only on an unconnected 3884 * socket (for UDP-style sockets only future associations are effected 3885 * by the change). With TCP-style sockets, this option is inherited by 3886 * sockets derived from a listener socket. 3887 */ 3888 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3889 { 3890 if (len < sizeof(struct sctp_initmsg)) 3891 return -EINVAL; 3892 len = sizeof(struct sctp_initmsg); 3893 if (put_user(len, optlen)) 3894 return -EFAULT; 3895 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3896 return -EFAULT; 3897 return 0; 3898 } 3899 3900 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3901 char __user *optval, 3902 int __user *optlen) 3903 { 3904 sctp_assoc_t id; 3905 struct sctp_association *asoc; 3906 struct list_head *pos; 3907 int cnt = 0; 3908 3909 if (len < sizeof(sctp_assoc_t)) 3910 return -EINVAL; 3911 3912 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3913 return -EFAULT; 3914 3915 /* For UDP-style sockets, id specifies the association to query. */ 3916 asoc = sctp_id2assoc(sk, id); 3917 if (!asoc) 3918 return -EINVAL; 3919 3920 list_for_each(pos, &asoc->peer.transport_addr_list) { 3921 cnt ++; 3922 } 3923 3924 return cnt; 3925 } 3926 3927 /* 3928 * Old API for getting list of peer addresses. Does not work for 32-bit 3929 * programs running on a 64-bit kernel 3930 */ 3931 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3932 char __user *optval, 3933 int __user *optlen) 3934 { 3935 struct sctp_association *asoc; 3936 struct list_head *pos; 3937 int cnt = 0; 3938 struct sctp_getaddrs_old getaddrs; 3939 struct sctp_transport *from; 3940 void __user *to; 3941 union sctp_addr temp; 3942 struct sctp_sock *sp = sctp_sk(sk); 3943 int addrlen; 3944 3945 if (len < sizeof(struct sctp_getaddrs_old)) 3946 return -EINVAL; 3947 3948 len = sizeof(struct sctp_getaddrs_old); 3949 3950 if (copy_from_user(&getaddrs, optval, len)) 3951 return -EFAULT; 3952 3953 if (getaddrs.addr_num <= 0) return -EINVAL; 3954 3955 /* For UDP-style sockets, id specifies the association to query. */ 3956 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3957 if (!asoc) 3958 return -EINVAL; 3959 3960 to = (void __user *)getaddrs.addrs; 3961 list_for_each(pos, &asoc->peer.transport_addr_list) { 3962 from = list_entry(pos, struct sctp_transport, transports); 3963 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3964 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3965 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3966 if (copy_to_user(to, &temp, addrlen)) 3967 return -EFAULT; 3968 to += addrlen ; 3969 cnt ++; 3970 if (cnt >= getaddrs.addr_num) break; 3971 } 3972 getaddrs.addr_num = cnt; 3973 if (put_user(len, optlen)) 3974 return -EFAULT; 3975 if (copy_to_user(optval, &getaddrs, len)) 3976 return -EFAULT; 3977 3978 return 0; 3979 } 3980 3981 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3982 char __user *optval, int __user *optlen) 3983 { 3984 struct sctp_association *asoc; 3985 struct list_head *pos; 3986 int cnt = 0; 3987 struct sctp_getaddrs getaddrs; 3988 struct sctp_transport *from; 3989 void __user *to; 3990 union sctp_addr temp; 3991 struct sctp_sock *sp = sctp_sk(sk); 3992 int addrlen; 3993 size_t space_left; 3994 int bytes_copied; 3995 3996 if (len < sizeof(struct sctp_getaddrs)) 3997 return -EINVAL; 3998 3999 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4000 return -EFAULT; 4001 4002 /* For UDP-style sockets, id specifies the association to query. */ 4003 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4004 if (!asoc) 4005 return -EINVAL; 4006 4007 to = optval + offsetof(struct sctp_getaddrs,addrs); 4008 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4009 4010 list_for_each(pos, &asoc->peer.transport_addr_list) { 4011 from = list_entry(pos, struct sctp_transport, transports); 4012 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4013 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4014 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4015 if (space_left < addrlen) 4016 return -ENOMEM; 4017 if (copy_to_user(to, &temp, addrlen)) 4018 return -EFAULT; 4019 to += addrlen; 4020 cnt++; 4021 space_left -= addrlen; 4022 } 4023 4024 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4025 return -EFAULT; 4026 bytes_copied = ((char __user *)to) - optval; 4027 if (put_user(bytes_copied, optlen)) 4028 return -EFAULT; 4029 4030 return 0; 4031 } 4032 4033 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4034 char __user *optval, 4035 int __user *optlen) 4036 { 4037 sctp_assoc_t id; 4038 struct sctp_bind_addr *bp; 4039 struct sctp_association *asoc; 4040 struct sctp_sockaddr_entry *addr; 4041 int cnt = 0; 4042 4043 if (len < sizeof(sctp_assoc_t)) 4044 return -EINVAL; 4045 4046 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4047 return -EFAULT; 4048 4049 /* 4050 * For UDP-style sockets, id specifies the association to query. 4051 * If the id field is set to the value '0' then the locally bound 4052 * addresses are returned without regard to any particular 4053 * association. 4054 */ 4055 if (0 == id) { 4056 bp = &sctp_sk(sk)->ep->base.bind_addr; 4057 } else { 4058 asoc = sctp_id2assoc(sk, id); 4059 if (!asoc) 4060 return -EINVAL; 4061 bp = &asoc->base.bind_addr; 4062 } 4063 4064 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4065 * addresses from the global local address list. 4066 */ 4067 if (sctp_list_single_entry(&bp->address_list)) { 4068 addr = list_entry(bp->address_list.next, 4069 struct sctp_sockaddr_entry, list); 4070 if (sctp_is_any(&addr->a)) { 4071 rcu_read_lock(); 4072 list_for_each_entry_rcu(addr, 4073 &sctp_local_addr_list, list) { 4074 if (!addr->valid) 4075 continue; 4076 4077 if ((PF_INET == sk->sk_family) && 4078 (AF_INET6 == addr->a.sa.sa_family)) 4079 continue; 4080 4081 cnt++; 4082 } 4083 rcu_read_unlock(); 4084 } else { 4085 cnt = 1; 4086 } 4087 goto done; 4088 } 4089 4090 /* Protection on the bound address list is not needed, 4091 * since in the socket option context we hold the socket lock, 4092 * so there is no way that the bound address list can change. 4093 */ 4094 list_for_each_entry(addr, &bp->address_list, list) { 4095 cnt ++; 4096 } 4097 done: 4098 return cnt; 4099 } 4100 4101 /* Helper function that copies local addresses to user and returns the number 4102 * of addresses copied. 4103 */ 4104 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4105 int max_addrs, void *to, 4106 int *bytes_copied) 4107 { 4108 struct sctp_sockaddr_entry *addr; 4109 union sctp_addr temp; 4110 int cnt = 0; 4111 int addrlen; 4112 4113 rcu_read_lock(); 4114 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4115 if (!addr->valid) 4116 continue; 4117 4118 if ((PF_INET == sk->sk_family) && 4119 (AF_INET6 == addr->a.sa.sa_family)) 4120 continue; 4121 memcpy(&temp, &addr->a, sizeof(temp)); 4122 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4123 &temp); 4124 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4125 memcpy(to, &temp, addrlen); 4126 4127 to += addrlen; 4128 *bytes_copied += addrlen; 4129 cnt ++; 4130 if (cnt >= max_addrs) break; 4131 } 4132 rcu_read_unlock(); 4133 4134 return cnt; 4135 } 4136 4137 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4138 size_t space_left, int *bytes_copied) 4139 { 4140 struct sctp_sockaddr_entry *addr; 4141 union sctp_addr temp; 4142 int cnt = 0; 4143 int addrlen; 4144 4145 rcu_read_lock(); 4146 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4147 if (!addr->valid) 4148 continue; 4149 4150 if ((PF_INET == sk->sk_family) && 4151 (AF_INET6 == addr->a.sa.sa_family)) 4152 continue; 4153 memcpy(&temp, &addr->a, sizeof(temp)); 4154 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4155 &temp); 4156 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4157 if (space_left < addrlen) { 4158 cnt = -ENOMEM; 4159 break; 4160 } 4161 memcpy(to, &temp, addrlen); 4162 4163 to += addrlen; 4164 cnt ++; 4165 space_left -= addrlen; 4166 *bytes_copied += addrlen; 4167 } 4168 rcu_read_unlock(); 4169 4170 return cnt; 4171 } 4172 4173 /* Old API for getting list of local addresses. Does not work for 32-bit 4174 * programs running on a 64-bit kernel 4175 */ 4176 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4177 char __user *optval, int __user *optlen) 4178 { 4179 struct sctp_bind_addr *bp; 4180 struct sctp_association *asoc; 4181 int cnt = 0; 4182 struct sctp_getaddrs_old getaddrs; 4183 struct sctp_sockaddr_entry *addr; 4184 void __user *to; 4185 union sctp_addr temp; 4186 struct sctp_sock *sp = sctp_sk(sk); 4187 int addrlen; 4188 int err = 0; 4189 void *addrs; 4190 void *buf; 4191 int bytes_copied = 0; 4192 4193 if (len < sizeof(struct sctp_getaddrs_old)) 4194 return -EINVAL; 4195 4196 len = sizeof(struct sctp_getaddrs_old); 4197 if (copy_from_user(&getaddrs, optval, len)) 4198 return -EFAULT; 4199 4200 if (getaddrs.addr_num <= 0) return -EINVAL; 4201 /* 4202 * For UDP-style sockets, id specifies the association to query. 4203 * If the id field is set to the value '0' then the locally bound 4204 * addresses are returned without regard to any particular 4205 * association. 4206 */ 4207 if (0 == getaddrs.assoc_id) { 4208 bp = &sctp_sk(sk)->ep->base.bind_addr; 4209 } else { 4210 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4211 if (!asoc) 4212 return -EINVAL; 4213 bp = &asoc->base.bind_addr; 4214 } 4215 4216 to = getaddrs.addrs; 4217 4218 /* Allocate space for a local instance of packed array to hold all 4219 * the data. We store addresses here first and then put write them 4220 * to the user in one shot. 4221 */ 4222 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4223 GFP_KERNEL); 4224 if (!addrs) 4225 return -ENOMEM; 4226 4227 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4228 * addresses from the global local address list. 4229 */ 4230 if (sctp_list_single_entry(&bp->address_list)) { 4231 addr = list_entry(bp->address_list.next, 4232 struct sctp_sockaddr_entry, list); 4233 if (sctp_is_any(&addr->a)) { 4234 cnt = sctp_copy_laddrs_old(sk, bp->port, 4235 getaddrs.addr_num, 4236 addrs, &bytes_copied); 4237 goto copy_getaddrs; 4238 } 4239 } 4240 4241 buf = addrs; 4242 /* Protection on the bound address list is not needed since 4243 * in the socket option context we hold a socket lock and 4244 * thus the bound address list can't change. 4245 */ 4246 list_for_each_entry(addr, &bp->address_list, list) { 4247 memcpy(&temp, &addr->a, sizeof(temp)); 4248 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4249 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4250 memcpy(buf, &temp, addrlen); 4251 buf += addrlen; 4252 bytes_copied += addrlen; 4253 cnt ++; 4254 if (cnt >= getaddrs.addr_num) break; 4255 } 4256 4257 copy_getaddrs: 4258 /* copy the entire address list into the user provided space */ 4259 if (copy_to_user(to, addrs, bytes_copied)) { 4260 err = -EFAULT; 4261 goto error; 4262 } 4263 4264 /* copy the leading structure back to user */ 4265 getaddrs.addr_num = cnt; 4266 if (copy_to_user(optval, &getaddrs, len)) 4267 err = -EFAULT; 4268 4269 error: 4270 kfree(addrs); 4271 return err; 4272 } 4273 4274 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4275 char __user *optval, int __user *optlen) 4276 { 4277 struct sctp_bind_addr *bp; 4278 struct sctp_association *asoc; 4279 int cnt = 0; 4280 struct sctp_getaddrs getaddrs; 4281 struct sctp_sockaddr_entry *addr; 4282 void __user *to; 4283 union sctp_addr temp; 4284 struct sctp_sock *sp = sctp_sk(sk); 4285 int addrlen; 4286 int err = 0; 4287 size_t space_left; 4288 int bytes_copied = 0; 4289 void *addrs; 4290 void *buf; 4291 4292 if (len < sizeof(struct sctp_getaddrs)) 4293 return -EINVAL; 4294 4295 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4296 return -EFAULT; 4297 4298 /* 4299 * For UDP-style sockets, id specifies the association to query. 4300 * If the id field is set to the value '0' then the locally bound 4301 * addresses are returned without regard to any particular 4302 * association. 4303 */ 4304 if (0 == getaddrs.assoc_id) { 4305 bp = &sctp_sk(sk)->ep->base.bind_addr; 4306 } else { 4307 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4308 if (!asoc) 4309 return -EINVAL; 4310 bp = &asoc->base.bind_addr; 4311 } 4312 4313 to = optval + offsetof(struct sctp_getaddrs,addrs); 4314 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4315 4316 addrs = kmalloc(space_left, GFP_KERNEL); 4317 if (!addrs) 4318 return -ENOMEM; 4319 4320 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4321 * addresses from the global local address list. 4322 */ 4323 if (sctp_list_single_entry(&bp->address_list)) { 4324 addr = list_entry(bp->address_list.next, 4325 struct sctp_sockaddr_entry, list); 4326 if (sctp_is_any(&addr->a)) { 4327 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4328 space_left, &bytes_copied); 4329 if (cnt < 0) { 4330 err = cnt; 4331 goto out; 4332 } 4333 goto copy_getaddrs; 4334 } 4335 } 4336 4337 buf = addrs; 4338 /* Protection on the bound address list is not needed since 4339 * in the socket option context we hold a socket lock and 4340 * thus the bound address list can't change. 4341 */ 4342 list_for_each_entry(addr, &bp->address_list, list) { 4343 memcpy(&temp, &addr->a, sizeof(temp)); 4344 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4345 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4346 if (space_left < addrlen) { 4347 err = -ENOMEM; /*fixme: right error?*/ 4348 goto out; 4349 } 4350 memcpy(buf, &temp, addrlen); 4351 buf += addrlen; 4352 bytes_copied += addrlen; 4353 cnt ++; 4354 space_left -= addrlen; 4355 } 4356 4357 copy_getaddrs: 4358 if (copy_to_user(to, addrs, bytes_copied)) { 4359 err = -EFAULT; 4360 goto out; 4361 } 4362 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4363 err = -EFAULT; 4364 goto out; 4365 } 4366 if (put_user(bytes_copied, optlen)) 4367 err = -EFAULT; 4368 out: 4369 kfree(addrs); 4370 return err; 4371 } 4372 4373 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4374 * 4375 * Requests that the local SCTP stack use the enclosed peer address as 4376 * the association primary. The enclosed address must be one of the 4377 * association peer's addresses. 4378 */ 4379 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4380 char __user *optval, int __user *optlen) 4381 { 4382 struct sctp_prim prim; 4383 struct sctp_association *asoc; 4384 struct sctp_sock *sp = sctp_sk(sk); 4385 4386 if (len < sizeof(struct sctp_prim)) 4387 return -EINVAL; 4388 4389 len = sizeof(struct sctp_prim); 4390 4391 if (copy_from_user(&prim, optval, len)) 4392 return -EFAULT; 4393 4394 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4395 if (!asoc) 4396 return -EINVAL; 4397 4398 if (!asoc->peer.primary_path) 4399 return -ENOTCONN; 4400 4401 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4402 asoc->peer.primary_path->af_specific->sockaddr_len); 4403 4404 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4405 (union sctp_addr *)&prim.ssp_addr); 4406 4407 if (put_user(len, optlen)) 4408 return -EFAULT; 4409 if (copy_to_user(optval, &prim, len)) 4410 return -EFAULT; 4411 4412 return 0; 4413 } 4414 4415 /* 4416 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4417 * 4418 * Requests that the local endpoint set the specified Adaptation Layer 4419 * Indication parameter for all future INIT and INIT-ACK exchanges. 4420 */ 4421 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4422 char __user *optval, int __user *optlen) 4423 { 4424 struct sctp_setadaptation adaptation; 4425 4426 if (len < sizeof(struct sctp_setadaptation)) 4427 return -EINVAL; 4428 4429 len = sizeof(struct sctp_setadaptation); 4430 4431 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4432 4433 if (put_user(len, optlen)) 4434 return -EFAULT; 4435 if (copy_to_user(optval, &adaptation, len)) 4436 return -EFAULT; 4437 4438 return 0; 4439 } 4440 4441 /* 4442 * 4443 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4444 * 4445 * Applications that wish to use the sendto() system call may wish to 4446 * specify a default set of parameters that would normally be supplied 4447 * through the inclusion of ancillary data. This socket option allows 4448 * such an application to set the default sctp_sndrcvinfo structure. 4449 4450 4451 * The application that wishes to use this socket option simply passes 4452 * in to this call the sctp_sndrcvinfo structure defined in Section 4453 * 5.2.2) The input parameters accepted by this call include 4454 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4455 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4456 * to this call if the caller is using the UDP model. 4457 * 4458 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4459 */ 4460 static int sctp_getsockopt_default_send_param(struct sock *sk, 4461 int len, char __user *optval, 4462 int __user *optlen) 4463 { 4464 struct sctp_sndrcvinfo info; 4465 struct sctp_association *asoc; 4466 struct sctp_sock *sp = sctp_sk(sk); 4467 4468 if (len < sizeof(struct sctp_sndrcvinfo)) 4469 return -EINVAL; 4470 4471 len = sizeof(struct sctp_sndrcvinfo); 4472 4473 if (copy_from_user(&info, optval, len)) 4474 return -EFAULT; 4475 4476 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4477 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4478 return -EINVAL; 4479 4480 if (asoc) { 4481 info.sinfo_stream = asoc->default_stream; 4482 info.sinfo_flags = asoc->default_flags; 4483 info.sinfo_ppid = asoc->default_ppid; 4484 info.sinfo_context = asoc->default_context; 4485 info.sinfo_timetolive = asoc->default_timetolive; 4486 } else { 4487 info.sinfo_stream = sp->default_stream; 4488 info.sinfo_flags = sp->default_flags; 4489 info.sinfo_ppid = sp->default_ppid; 4490 info.sinfo_context = sp->default_context; 4491 info.sinfo_timetolive = sp->default_timetolive; 4492 } 4493 4494 if (put_user(len, optlen)) 4495 return -EFAULT; 4496 if (copy_to_user(optval, &info, len)) 4497 return -EFAULT; 4498 4499 return 0; 4500 } 4501 4502 /* 4503 * 4504 * 7.1.5 SCTP_NODELAY 4505 * 4506 * Turn on/off any Nagle-like algorithm. This means that packets are 4507 * generally sent as soon as possible and no unnecessary delays are 4508 * introduced, at the cost of more packets in the network. Expects an 4509 * integer boolean flag. 4510 */ 4511 4512 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4513 char __user *optval, int __user *optlen) 4514 { 4515 int val; 4516 4517 if (len < sizeof(int)) 4518 return -EINVAL; 4519 4520 len = sizeof(int); 4521 val = (sctp_sk(sk)->nodelay == 1); 4522 if (put_user(len, optlen)) 4523 return -EFAULT; 4524 if (copy_to_user(optval, &val, len)) 4525 return -EFAULT; 4526 return 0; 4527 } 4528 4529 /* 4530 * 4531 * 7.1.1 SCTP_RTOINFO 4532 * 4533 * The protocol parameters used to initialize and bound retransmission 4534 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4535 * and modify these parameters. 4536 * All parameters are time values, in milliseconds. A value of 0, when 4537 * modifying the parameters, indicates that the current value should not 4538 * be changed. 4539 * 4540 */ 4541 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4542 char __user *optval, 4543 int __user *optlen) { 4544 struct sctp_rtoinfo rtoinfo; 4545 struct sctp_association *asoc; 4546 4547 if (len < sizeof (struct sctp_rtoinfo)) 4548 return -EINVAL; 4549 4550 len = sizeof(struct sctp_rtoinfo); 4551 4552 if (copy_from_user(&rtoinfo, optval, len)) 4553 return -EFAULT; 4554 4555 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4556 4557 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4558 return -EINVAL; 4559 4560 /* Values corresponding to the specific association. */ 4561 if (asoc) { 4562 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4563 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4564 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4565 } else { 4566 /* Values corresponding to the endpoint. */ 4567 struct sctp_sock *sp = sctp_sk(sk); 4568 4569 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4570 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4571 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4572 } 4573 4574 if (put_user(len, optlen)) 4575 return -EFAULT; 4576 4577 if (copy_to_user(optval, &rtoinfo, len)) 4578 return -EFAULT; 4579 4580 return 0; 4581 } 4582 4583 /* 4584 * 4585 * 7.1.2 SCTP_ASSOCINFO 4586 * 4587 * This option is used to tune the maximum retransmission attempts 4588 * of the association. 4589 * Returns an error if the new association retransmission value is 4590 * greater than the sum of the retransmission value of the peer. 4591 * See [SCTP] for more information. 4592 * 4593 */ 4594 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4595 char __user *optval, 4596 int __user *optlen) 4597 { 4598 4599 struct sctp_assocparams assocparams; 4600 struct sctp_association *asoc; 4601 struct list_head *pos; 4602 int cnt = 0; 4603 4604 if (len < sizeof (struct sctp_assocparams)) 4605 return -EINVAL; 4606 4607 len = sizeof(struct sctp_assocparams); 4608 4609 if (copy_from_user(&assocparams, optval, len)) 4610 return -EFAULT; 4611 4612 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4613 4614 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4615 return -EINVAL; 4616 4617 /* Values correspoinding to the specific association */ 4618 if (asoc) { 4619 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4620 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4621 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4622 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4623 * 1000) + 4624 (asoc->cookie_life.tv_usec 4625 / 1000); 4626 4627 list_for_each(pos, &asoc->peer.transport_addr_list) { 4628 cnt ++; 4629 } 4630 4631 assocparams.sasoc_number_peer_destinations = cnt; 4632 } else { 4633 /* Values corresponding to the endpoint */ 4634 struct sctp_sock *sp = sctp_sk(sk); 4635 4636 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4637 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4638 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4639 assocparams.sasoc_cookie_life = 4640 sp->assocparams.sasoc_cookie_life; 4641 assocparams.sasoc_number_peer_destinations = 4642 sp->assocparams. 4643 sasoc_number_peer_destinations; 4644 } 4645 4646 if (put_user(len, optlen)) 4647 return -EFAULT; 4648 4649 if (copy_to_user(optval, &assocparams, len)) 4650 return -EFAULT; 4651 4652 return 0; 4653 } 4654 4655 /* 4656 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4657 * 4658 * This socket option is a boolean flag which turns on or off mapped V4 4659 * addresses. If this option is turned on and the socket is type 4660 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4661 * If this option is turned off, then no mapping will be done of V4 4662 * addresses and a user will receive both PF_INET6 and PF_INET type 4663 * addresses on the socket. 4664 */ 4665 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4666 char __user *optval, int __user *optlen) 4667 { 4668 int val; 4669 struct sctp_sock *sp = sctp_sk(sk); 4670 4671 if (len < sizeof(int)) 4672 return -EINVAL; 4673 4674 len = sizeof(int); 4675 val = sp->v4mapped; 4676 if (put_user(len, optlen)) 4677 return -EFAULT; 4678 if (copy_to_user(optval, &val, len)) 4679 return -EFAULT; 4680 4681 return 0; 4682 } 4683 4684 /* 4685 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4686 * (chapter and verse is quoted at sctp_setsockopt_context()) 4687 */ 4688 static int sctp_getsockopt_context(struct sock *sk, int len, 4689 char __user *optval, int __user *optlen) 4690 { 4691 struct sctp_assoc_value params; 4692 struct sctp_sock *sp; 4693 struct sctp_association *asoc; 4694 4695 if (len < sizeof(struct sctp_assoc_value)) 4696 return -EINVAL; 4697 4698 len = sizeof(struct sctp_assoc_value); 4699 4700 if (copy_from_user(¶ms, optval, len)) 4701 return -EFAULT; 4702 4703 sp = sctp_sk(sk); 4704 4705 if (params.assoc_id != 0) { 4706 asoc = sctp_id2assoc(sk, params.assoc_id); 4707 if (!asoc) 4708 return -EINVAL; 4709 params.assoc_value = asoc->default_rcv_context; 4710 } else { 4711 params.assoc_value = sp->default_rcv_context; 4712 } 4713 4714 if (put_user(len, optlen)) 4715 return -EFAULT; 4716 if (copy_to_user(optval, ¶ms, len)) 4717 return -EFAULT; 4718 4719 return 0; 4720 } 4721 4722 /* 4723 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4724 * 4725 * This socket option specifies the maximum size to put in any outgoing 4726 * SCTP chunk. If a message is larger than this size it will be 4727 * fragmented by SCTP into the specified size. Note that the underlying 4728 * SCTP implementation may fragment into smaller sized chunks when the 4729 * PMTU of the underlying association is smaller than the value set by 4730 * the user. 4731 */ 4732 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4733 char __user *optval, int __user *optlen) 4734 { 4735 int val; 4736 4737 if (len < sizeof(int)) 4738 return -EINVAL; 4739 4740 len = sizeof(int); 4741 4742 val = sctp_sk(sk)->user_frag; 4743 if (put_user(len, optlen)) 4744 return -EFAULT; 4745 if (copy_to_user(optval, &val, len)) 4746 return -EFAULT; 4747 4748 return 0; 4749 } 4750 4751 /* 4752 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4753 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4754 */ 4755 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4756 char __user *optval, int __user *optlen) 4757 { 4758 int val; 4759 4760 if (len < sizeof(int)) 4761 return -EINVAL; 4762 4763 len = sizeof(int); 4764 4765 val = sctp_sk(sk)->frag_interleave; 4766 if (put_user(len, optlen)) 4767 return -EFAULT; 4768 if (copy_to_user(optval, &val, len)) 4769 return -EFAULT; 4770 4771 return 0; 4772 } 4773 4774 /* 4775 * 7.1.25. Set or Get the sctp partial delivery point 4776 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4777 */ 4778 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4779 char __user *optval, 4780 int __user *optlen) 4781 { 4782 u32 val; 4783 4784 if (len < sizeof(u32)) 4785 return -EINVAL; 4786 4787 len = sizeof(u32); 4788 4789 val = sctp_sk(sk)->pd_point; 4790 if (put_user(len, optlen)) 4791 return -EFAULT; 4792 if (copy_to_user(optval, &val, len)) 4793 return -EFAULT; 4794 4795 return -ENOTSUPP; 4796 } 4797 4798 /* 4799 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 4800 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 4801 */ 4802 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 4803 char __user *optval, 4804 int __user *optlen) 4805 { 4806 int val; 4807 4808 if (len < sizeof(int)) 4809 return -EINVAL; 4810 4811 len = sizeof(int); 4812 4813 val = sctp_sk(sk)->max_burst; 4814 if (put_user(len, optlen)) 4815 return -EFAULT; 4816 if (copy_to_user(optval, &val, len)) 4817 return -EFAULT; 4818 4819 return -ENOTSUPP; 4820 } 4821 4822 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4823 char __user *optval, int __user *optlen) 4824 { 4825 int retval = 0; 4826 int len; 4827 4828 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4829 sk, optname); 4830 4831 /* I can hardly begin to describe how wrong this is. This is 4832 * so broken as to be worse than useless. The API draft 4833 * REALLY is NOT helpful here... I am not convinced that the 4834 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4835 * are at all well-founded. 4836 */ 4837 if (level != SOL_SCTP) { 4838 struct sctp_af *af = sctp_sk(sk)->pf->af; 4839 4840 retval = af->getsockopt(sk, level, optname, optval, optlen); 4841 return retval; 4842 } 4843 4844 if (get_user(len, optlen)) 4845 return -EFAULT; 4846 4847 sctp_lock_sock(sk); 4848 4849 switch (optname) { 4850 case SCTP_STATUS: 4851 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4852 break; 4853 case SCTP_DISABLE_FRAGMENTS: 4854 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4855 optlen); 4856 break; 4857 case SCTP_EVENTS: 4858 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4859 break; 4860 case SCTP_AUTOCLOSE: 4861 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4862 break; 4863 case SCTP_SOCKOPT_PEELOFF: 4864 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4865 break; 4866 case SCTP_PEER_ADDR_PARAMS: 4867 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4868 optlen); 4869 break; 4870 case SCTP_DELAYED_ACK_TIME: 4871 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4872 optlen); 4873 break; 4874 case SCTP_INITMSG: 4875 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4876 break; 4877 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4878 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4879 optlen); 4880 break; 4881 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4882 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4883 optlen); 4884 break; 4885 case SCTP_GET_PEER_ADDRS_OLD: 4886 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4887 optlen); 4888 break; 4889 case SCTP_GET_LOCAL_ADDRS_OLD: 4890 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4891 optlen); 4892 break; 4893 case SCTP_GET_PEER_ADDRS: 4894 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4895 optlen); 4896 break; 4897 case SCTP_GET_LOCAL_ADDRS: 4898 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4899 optlen); 4900 break; 4901 case SCTP_DEFAULT_SEND_PARAM: 4902 retval = sctp_getsockopt_default_send_param(sk, len, 4903 optval, optlen); 4904 break; 4905 case SCTP_PRIMARY_ADDR: 4906 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4907 break; 4908 case SCTP_NODELAY: 4909 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4910 break; 4911 case SCTP_RTOINFO: 4912 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4913 break; 4914 case SCTP_ASSOCINFO: 4915 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4916 break; 4917 case SCTP_I_WANT_MAPPED_V4_ADDR: 4918 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4919 break; 4920 case SCTP_MAXSEG: 4921 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4922 break; 4923 case SCTP_GET_PEER_ADDR_INFO: 4924 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4925 optlen); 4926 break; 4927 case SCTP_ADAPTATION_LAYER: 4928 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 4929 optlen); 4930 break; 4931 case SCTP_CONTEXT: 4932 retval = sctp_getsockopt_context(sk, len, optval, optlen); 4933 break; 4934 case SCTP_FRAGMENT_INTERLEAVE: 4935 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 4936 optlen); 4937 break; 4938 case SCTP_PARTIAL_DELIVERY_POINT: 4939 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 4940 optlen); 4941 break; 4942 case SCTP_MAX_BURST: 4943 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 4944 break; 4945 default: 4946 retval = -ENOPROTOOPT; 4947 break; 4948 } 4949 4950 sctp_release_sock(sk); 4951 return retval; 4952 } 4953 4954 static void sctp_hash(struct sock *sk) 4955 { 4956 /* STUB */ 4957 } 4958 4959 static void sctp_unhash(struct sock *sk) 4960 { 4961 /* STUB */ 4962 } 4963 4964 /* Check if port is acceptable. Possibly find first available port. 4965 * 4966 * The port hash table (contained in the 'global' SCTP protocol storage 4967 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4968 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4969 * list (the list number is the port number hashed out, so as you 4970 * would expect from a hash function, all the ports in a given list have 4971 * such a number that hashes out to the same list number; you were 4972 * expecting that, right?); so each list has a set of ports, with a 4973 * link to the socket (struct sock) that uses it, the port number and 4974 * a fastreuse flag (FIXME: NPI ipg). 4975 */ 4976 static struct sctp_bind_bucket *sctp_bucket_create( 4977 struct sctp_bind_hashbucket *head, unsigned short snum); 4978 4979 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4980 { 4981 struct sctp_bind_hashbucket *head; /* hash list */ 4982 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4983 unsigned short snum; 4984 int ret; 4985 4986 snum = ntohs(addr->v4.sin_port); 4987 4988 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4989 sctp_local_bh_disable(); 4990 4991 if (snum == 0) { 4992 /* Search for an available port. 4993 * 4994 * 'sctp_port_rover' was the last port assigned, so 4995 * we start to search from 'sctp_port_rover + 4996 * 1'. What we do is first check if port 'rover' is 4997 * already in the hash table; if not, we use that; if 4998 * it is, we try next. 4999 */ 5000 int low = sysctl_local_port_range[0]; 5001 int high = sysctl_local_port_range[1]; 5002 int remaining = (high - low) + 1; 5003 int rover; 5004 int index; 5005 5006 sctp_spin_lock(&sctp_port_alloc_lock); 5007 rover = sctp_port_rover; 5008 do { 5009 rover++; 5010 if ((rover < low) || (rover > high)) 5011 rover = low; 5012 index = sctp_phashfn(rover); 5013 head = &sctp_port_hashtable[index]; 5014 sctp_spin_lock(&head->lock); 5015 for (pp = head->chain; pp; pp = pp->next) 5016 if (pp->port == rover) 5017 goto next; 5018 break; 5019 next: 5020 sctp_spin_unlock(&head->lock); 5021 } while (--remaining > 0); 5022 sctp_port_rover = rover; 5023 sctp_spin_unlock(&sctp_port_alloc_lock); 5024 5025 /* Exhausted local port range during search? */ 5026 ret = 1; 5027 if (remaining <= 0) 5028 goto fail; 5029 5030 /* OK, here is the one we will use. HEAD (the port 5031 * hash table list entry) is non-NULL and we hold it's 5032 * mutex. 5033 */ 5034 snum = rover; 5035 } else { 5036 /* We are given an specific port number; we verify 5037 * that it is not being used. If it is used, we will 5038 * exahust the search in the hash list corresponding 5039 * to the port number (snum) - we detect that with the 5040 * port iterator, pp being NULL. 5041 */ 5042 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5043 sctp_spin_lock(&head->lock); 5044 for (pp = head->chain; pp; pp = pp->next) { 5045 if (pp->port == snum) 5046 goto pp_found; 5047 } 5048 } 5049 pp = NULL; 5050 goto pp_not_found; 5051 pp_found: 5052 if (!hlist_empty(&pp->owner)) { 5053 /* We had a port hash table hit - there is an 5054 * available port (pp != NULL) and it is being 5055 * used by other socket (pp->owner not empty); that other 5056 * socket is going to be sk2. 5057 */ 5058 int reuse = sk->sk_reuse; 5059 struct sock *sk2; 5060 struct hlist_node *node; 5061 5062 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5063 if (pp->fastreuse && sk->sk_reuse && 5064 sk->sk_state != SCTP_SS_LISTENING) 5065 goto success; 5066 5067 /* Run through the list of sockets bound to the port 5068 * (pp->port) [via the pointers bind_next and 5069 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5070 * we get the endpoint they describe and run through 5071 * the endpoint's list of IP (v4 or v6) addresses, 5072 * comparing each of the addresses with the address of 5073 * the socket sk. If we find a match, then that means 5074 * that this port/socket (sk) combination are already 5075 * in an endpoint. 5076 */ 5077 sk_for_each_bound(sk2, node, &pp->owner) { 5078 struct sctp_endpoint *ep2; 5079 ep2 = sctp_sk(sk2)->ep; 5080 5081 if (reuse && sk2->sk_reuse && 5082 sk2->sk_state != SCTP_SS_LISTENING) 5083 continue; 5084 5085 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5086 sctp_sk(sk))) { 5087 ret = (long)sk2; 5088 goto fail_unlock; 5089 } 5090 } 5091 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5092 } 5093 pp_not_found: 5094 /* If there was a hash table miss, create a new port. */ 5095 ret = 1; 5096 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5097 goto fail_unlock; 5098 5099 /* In either case (hit or miss), make sure fastreuse is 1 only 5100 * if sk->sk_reuse is too (that is, if the caller requested 5101 * SO_REUSEADDR on this socket -sk-). 5102 */ 5103 if (hlist_empty(&pp->owner)) { 5104 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5105 pp->fastreuse = 1; 5106 else 5107 pp->fastreuse = 0; 5108 } else if (pp->fastreuse && 5109 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5110 pp->fastreuse = 0; 5111 5112 /* We are set, so fill up all the data in the hash table 5113 * entry, tie the socket list information with the rest of the 5114 * sockets FIXME: Blurry, NPI (ipg). 5115 */ 5116 success: 5117 if (!sctp_sk(sk)->bind_hash) { 5118 inet_sk(sk)->num = snum; 5119 sk_add_bind_node(sk, &pp->owner); 5120 sctp_sk(sk)->bind_hash = pp; 5121 } 5122 ret = 0; 5123 5124 fail_unlock: 5125 sctp_spin_unlock(&head->lock); 5126 5127 fail: 5128 sctp_local_bh_enable(); 5129 return ret; 5130 } 5131 5132 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5133 * port is requested. 5134 */ 5135 static int sctp_get_port(struct sock *sk, unsigned short snum) 5136 { 5137 long ret; 5138 union sctp_addr addr; 5139 struct sctp_af *af = sctp_sk(sk)->pf->af; 5140 5141 /* Set up a dummy address struct from the sk. */ 5142 af->from_sk(&addr, sk); 5143 addr.v4.sin_port = htons(snum); 5144 5145 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5146 ret = sctp_get_port_local(sk, &addr); 5147 5148 return (ret ? 1 : 0); 5149 } 5150 5151 /* 5152 * 3.1.3 listen() - UDP Style Syntax 5153 * 5154 * By default, new associations are not accepted for UDP style sockets. 5155 * An application uses listen() to mark a socket as being able to 5156 * accept new associations. 5157 */ 5158 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5159 { 5160 struct sctp_sock *sp = sctp_sk(sk); 5161 struct sctp_endpoint *ep = sp->ep; 5162 5163 /* Only UDP style sockets that are not peeled off are allowed to 5164 * listen(). 5165 */ 5166 if (!sctp_style(sk, UDP)) 5167 return -EINVAL; 5168 5169 /* If backlog is zero, disable listening. */ 5170 if (!backlog) { 5171 if (sctp_sstate(sk, CLOSED)) 5172 return 0; 5173 5174 sctp_unhash_endpoint(ep); 5175 sk->sk_state = SCTP_SS_CLOSED; 5176 return 0; 5177 } 5178 5179 /* Return if we are already listening. */ 5180 if (sctp_sstate(sk, LISTENING)) 5181 return 0; 5182 5183 /* 5184 * If a bind() or sctp_bindx() is not called prior to a listen() 5185 * call that allows new associations to be accepted, the system 5186 * picks an ephemeral port and will choose an address set equivalent 5187 * to binding with a wildcard address. 5188 * 5189 * This is not currently spelled out in the SCTP sockets 5190 * extensions draft, but follows the practice as seen in TCP 5191 * sockets. 5192 * 5193 * Additionally, turn off fastreuse flag since we are not listening 5194 */ 5195 sk->sk_state = SCTP_SS_LISTENING; 5196 if (!ep->base.bind_addr.port) { 5197 if (sctp_autobind(sk)) 5198 return -EAGAIN; 5199 } else 5200 sctp_sk(sk)->bind_hash->fastreuse = 0; 5201 5202 sctp_hash_endpoint(ep); 5203 return 0; 5204 } 5205 5206 /* 5207 * 4.1.3 listen() - TCP Style Syntax 5208 * 5209 * Applications uses listen() to ready the SCTP endpoint for accepting 5210 * inbound associations. 5211 */ 5212 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5213 { 5214 struct sctp_sock *sp = sctp_sk(sk); 5215 struct sctp_endpoint *ep = sp->ep; 5216 5217 /* If backlog is zero, disable listening. */ 5218 if (!backlog) { 5219 if (sctp_sstate(sk, CLOSED)) 5220 return 0; 5221 5222 sctp_unhash_endpoint(ep); 5223 sk->sk_state = SCTP_SS_CLOSED; 5224 return 0; 5225 } 5226 5227 if (sctp_sstate(sk, LISTENING)) 5228 return 0; 5229 5230 /* 5231 * If a bind() or sctp_bindx() is not called prior to a listen() 5232 * call that allows new associations to be accepted, the system 5233 * picks an ephemeral port and will choose an address set equivalent 5234 * to binding with a wildcard address. 5235 * 5236 * This is not currently spelled out in the SCTP sockets 5237 * extensions draft, but follows the practice as seen in TCP 5238 * sockets. 5239 */ 5240 sk->sk_state = SCTP_SS_LISTENING; 5241 if (!ep->base.bind_addr.port) { 5242 if (sctp_autobind(sk)) 5243 return -EAGAIN; 5244 } else 5245 sctp_sk(sk)->bind_hash->fastreuse = 0; 5246 5247 sk->sk_max_ack_backlog = backlog; 5248 sctp_hash_endpoint(ep); 5249 return 0; 5250 } 5251 5252 /* 5253 * Move a socket to LISTENING state. 5254 */ 5255 int sctp_inet_listen(struct socket *sock, int backlog) 5256 { 5257 struct sock *sk = sock->sk; 5258 struct crypto_hash *tfm = NULL; 5259 int err = -EINVAL; 5260 5261 if (unlikely(backlog < 0)) 5262 goto out; 5263 5264 sctp_lock_sock(sk); 5265 5266 if (sock->state != SS_UNCONNECTED) 5267 goto out; 5268 5269 /* Allocate HMAC for generating cookie. */ 5270 if (sctp_hmac_alg) { 5271 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5272 if (IS_ERR(tfm)) { 5273 if (net_ratelimit()) { 5274 printk(KERN_INFO 5275 "SCTP: failed to load transform for %s: %ld\n", 5276 sctp_hmac_alg, PTR_ERR(tfm)); 5277 } 5278 err = -ENOSYS; 5279 goto out; 5280 } 5281 } 5282 5283 switch (sock->type) { 5284 case SOCK_SEQPACKET: 5285 err = sctp_seqpacket_listen(sk, backlog); 5286 break; 5287 case SOCK_STREAM: 5288 err = sctp_stream_listen(sk, backlog); 5289 break; 5290 default: 5291 break; 5292 } 5293 5294 if (err) 5295 goto cleanup; 5296 5297 /* Store away the transform reference. */ 5298 sctp_sk(sk)->hmac = tfm; 5299 out: 5300 sctp_release_sock(sk); 5301 return err; 5302 cleanup: 5303 crypto_free_hash(tfm); 5304 goto out; 5305 } 5306 5307 /* 5308 * This function is done by modeling the current datagram_poll() and the 5309 * tcp_poll(). Note that, based on these implementations, we don't 5310 * lock the socket in this function, even though it seems that, 5311 * ideally, locking or some other mechanisms can be used to ensure 5312 * the integrity of the counters (sndbuf and wmem_alloc) used 5313 * in this place. We assume that we don't need locks either until proven 5314 * otherwise. 5315 * 5316 * Another thing to note is that we include the Async I/O support 5317 * here, again, by modeling the current TCP/UDP code. We don't have 5318 * a good way to test with it yet. 5319 */ 5320 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5321 { 5322 struct sock *sk = sock->sk; 5323 struct sctp_sock *sp = sctp_sk(sk); 5324 unsigned int mask; 5325 5326 poll_wait(file, sk->sk_sleep, wait); 5327 5328 /* A TCP-style listening socket becomes readable when the accept queue 5329 * is not empty. 5330 */ 5331 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5332 return (!list_empty(&sp->ep->asocs)) ? 5333 (POLLIN | POLLRDNORM) : 0; 5334 5335 mask = 0; 5336 5337 /* Is there any exceptional events? */ 5338 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5339 mask |= POLLERR; 5340 if (sk->sk_shutdown & RCV_SHUTDOWN) 5341 mask |= POLLRDHUP; 5342 if (sk->sk_shutdown == SHUTDOWN_MASK) 5343 mask |= POLLHUP; 5344 5345 /* Is it readable? Reconsider this code with TCP-style support. */ 5346 if (!skb_queue_empty(&sk->sk_receive_queue) || 5347 (sk->sk_shutdown & RCV_SHUTDOWN)) 5348 mask |= POLLIN | POLLRDNORM; 5349 5350 /* The association is either gone or not ready. */ 5351 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5352 return mask; 5353 5354 /* Is it writable? */ 5355 if (sctp_writeable(sk)) { 5356 mask |= POLLOUT | POLLWRNORM; 5357 } else { 5358 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5359 /* 5360 * Since the socket is not locked, the buffer 5361 * might be made available after the writeable check and 5362 * before the bit is set. This could cause a lost I/O 5363 * signal. tcp_poll() has a race breaker for this race 5364 * condition. Based on their implementation, we put 5365 * in the following code to cover it as well. 5366 */ 5367 if (sctp_writeable(sk)) 5368 mask |= POLLOUT | POLLWRNORM; 5369 } 5370 return mask; 5371 } 5372 5373 /******************************************************************** 5374 * 2nd Level Abstractions 5375 ********************************************************************/ 5376 5377 static struct sctp_bind_bucket *sctp_bucket_create( 5378 struct sctp_bind_hashbucket *head, unsigned short snum) 5379 { 5380 struct sctp_bind_bucket *pp; 5381 5382 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5383 SCTP_DBG_OBJCNT_INC(bind_bucket); 5384 if (pp) { 5385 pp->port = snum; 5386 pp->fastreuse = 0; 5387 INIT_HLIST_HEAD(&pp->owner); 5388 if ((pp->next = head->chain) != NULL) 5389 pp->next->pprev = &pp->next; 5390 head->chain = pp; 5391 pp->pprev = &head->chain; 5392 } 5393 return pp; 5394 } 5395 5396 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5397 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5398 { 5399 if (pp && hlist_empty(&pp->owner)) { 5400 if (pp->next) 5401 pp->next->pprev = pp->pprev; 5402 *(pp->pprev) = pp->next; 5403 kmem_cache_free(sctp_bucket_cachep, pp); 5404 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5405 } 5406 } 5407 5408 /* Release this socket's reference to a local port. */ 5409 static inline void __sctp_put_port(struct sock *sk) 5410 { 5411 struct sctp_bind_hashbucket *head = 5412 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5413 struct sctp_bind_bucket *pp; 5414 5415 sctp_spin_lock(&head->lock); 5416 pp = sctp_sk(sk)->bind_hash; 5417 __sk_del_bind_node(sk); 5418 sctp_sk(sk)->bind_hash = NULL; 5419 inet_sk(sk)->num = 0; 5420 sctp_bucket_destroy(pp); 5421 sctp_spin_unlock(&head->lock); 5422 } 5423 5424 void sctp_put_port(struct sock *sk) 5425 { 5426 sctp_local_bh_disable(); 5427 __sctp_put_port(sk); 5428 sctp_local_bh_enable(); 5429 } 5430 5431 /* 5432 * The system picks an ephemeral port and choose an address set equivalent 5433 * to binding with a wildcard address. 5434 * One of those addresses will be the primary address for the association. 5435 * This automatically enables the multihoming capability of SCTP. 5436 */ 5437 static int sctp_autobind(struct sock *sk) 5438 { 5439 union sctp_addr autoaddr; 5440 struct sctp_af *af; 5441 __be16 port; 5442 5443 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5444 af = sctp_sk(sk)->pf->af; 5445 5446 port = htons(inet_sk(sk)->num); 5447 af->inaddr_any(&autoaddr, port); 5448 5449 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5450 } 5451 5452 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5453 * 5454 * From RFC 2292 5455 * 4.2 The cmsghdr Structure * 5456 * 5457 * When ancillary data is sent or received, any number of ancillary data 5458 * objects can be specified by the msg_control and msg_controllen members of 5459 * the msghdr structure, because each object is preceded by 5460 * a cmsghdr structure defining the object's length (the cmsg_len member). 5461 * Historically Berkeley-derived implementations have passed only one object 5462 * at a time, but this API allows multiple objects to be 5463 * passed in a single call to sendmsg() or recvmsg(). The following example 5464 * shows two ancillary data objects in a control buffer. 5465 * 5466 * |<--------------------------- msg_controllen -------------------------->| 5467 * | | 5468 * 5469 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5470 * 5471 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5472 * | | | 5473 * 5474 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5475 * 5476 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5477 * | | | | | 5478 * 5479 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5480 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5481 * 5482 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5483 * 5484 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5485 * ^ 5486 * | 5487 * 5488 * msg_control 5489 * points here 5490 */ 5491 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5492 sctp_cmsgs_t *cmsgs) 5493 { 5494 struct cmsghdr *cmsg; 5495 5496 for (cmsg = CMSG_FIRSTHDR(msg); 5497 cmsg != NULL; 5498 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5499 if (!CMSG_OK(msg, cmsg)) 5500 return -EINVAL; 5501 5502 /* Should we parse this header or ignore? */ 5503 if (cmsg->cmsg_level != IPPROTO_SCTP) 5504 continue; 5505 5506 /* Strictly check lengths following example in SCM code. */ 5507 switch (cmsg->cmsg_type) { 5508 case SCTP_INIT: 5509 /* SCTP Socket API Extension 5510 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5511 * 5512 * This cmsghdr structure provides information for 5513 * initializing new SCTP associations with sendmsg(). 5514 * The SCTP_INITMSG socket option uses this same data 5515 * structure. This structure is not used for 5516 * recvmsg(). 5517 * 5518 * cmsg_level cmsg_type cmsg_data[] 5519 * ------------ ------------ ---------------------- 5520 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5521 */ 5522 if (cmsg->cmsg_len != 5523 CMSG_LEN(sizeof(struct sctp_initmsg))) 5524 return -EINVAL; 5525 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5526 break; 5527 5528 case SCTP_SNDRCV: 5529 /* SCTP Socket API Extension 5530 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5531 * 5532 * This cmsghdr structure specifies SCTP options for 5533 * sendmsg() and describes SCTP header information 5534 * about a received message through recvmsg(). 5535 * 5536 * cmsg_level cmsg_type cmsg_data[] 5537 * ------------ ------------ ---------------------- 5538 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5539 */ 5540 if (cmsg->cmsg_len != 5541 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5542 return -EINVAL; 5543 5544 cmsgs->info = 5545 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5546 5547 /* Minimally, validate the sinfo_flags. */ 5548 if (cmsgs->info->sinfo_flags & 5549 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5550 SCTP_ABORT | SCTP_EOF)) 5551 return -EINVAL; 5552 break; 5553 5554 default: 5555 return -EINVAL; 5556 } 5557 } 5558 return 0; 5559 } 5560 5561 /* 5562 * Wait for a packet.. 5563 * Note: This function is the same function as in core/datagram.c 5564 * with a few modifications to make lksctp work. 5565 */ 5566 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5567 { 5568 int error; 5569 DEFINE_WAIT(wait); 5570 5571 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5572 5573 /* Socket errors? */ 5574 error = sock_error(sk); 5575 if (error) 5576 goto out; 5577 5578 if (!skb_queue_empty(&sk->sk_receive_queue)) 5579 goto ready; 5580 5581 /* Socket shut down? */ 5582 if (sk->sk_shutdown & RCV_SHUTDOWN) 5583 goto out; 5584 5585 /* Sequenced packets can come disconnected. If so we report the 5586 * problem. 5587 */ 5588 error = -ENOTCONN; 5589 5590 /* Is there a good reason to think that we may receive some data? */ 5591 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5592 goto out; 5593 5594 /* Handle signals. */ 5595 if (signal_pending(current)) 5596 goto interrupted; 5597 5598 /* Let another process have a go. Since we are going to sleep 5599 * anyway. Note: This may cause odd behaviors if the message 5600 * does not fit in the user's buffer, but this seems to be the 5601 * only way to honor MSG_DONTWAIT realistically. 5602 */ 5603 sctp_release_sock(sk); 5604 *timeo_p = schedule_timeout(*timeo_p); 5605 sctp_lock_sock(sk); 5606 5607 ready: 5608 finish_wait(sk->sk_sleep, &wait); 5609 return 0; 5610 5611 interrupted: 5612 error = sock_intr_errno(*timeo_p); 5613 5614 out: 5615 finish_wait(sk->sk_sleep, &wait); 5616 *err = error; 5617 return error; 5618 } 5619 5620 /* Receive a datagram. 5621 * Note: This is pretty much the same routine as in core/datagram.c 5622 * with a few changes to make lksctp work. 5623 */ 5624 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5625 int noblock, int *err) 5626 { 5627 int error; 5628 struct sk_buff *skb; 5629 long timeo; 5630 5631 timeo = sock_rcvtimeo(sk, noblock); 5632 5633 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5634 timeo, MAX_SCHEDULE_TIMEOUT); 5635 5636 do { 5637 /* Again only user level code calls this function, 5638 * so nothing interrupt level 5639 * will suddenly eat the receive_queue. 5640 * 5641 * Look at current nfs client by the way... 5642 * However, this function was corrent in any case. 8) 5643 */ 5644 if (flags & MSG_PEEK) { 5645 spin_lock_bh(&sk->sk_receive_queue.lock); 5646 skb = skb_peek(&sk->sk_receive_queue); 5647 if (skb) 5648 atomic_inc(&skb->users); 5649 spin_unlock_bh(&sk->sk_receive_queue.lock); 5650 } else { 5651 skb = skb_dequeue(&sk->sk_receive_queue); 5652 } 5653 5654 if (skb) 5655 return skb; 5656 5657 /* Caller is allowed not to check sk->sk_err before calling. */ 5658 error = sock_error(sk); 5659 if (error) 5660 goto no_packet; 5661 5662 if (sk->sk_shutdown & RCV_SHUTDOWN) 5663 break; 5664 5665 /* User doesn't want to wait. */ 5666 error = -EAGAIN; 5667 if (!timeo) 5668 goto no_packet; 5669 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5670 5671 return NULL; 5672 5673 no_packet: 5674 *err = error; 5675 return NULL; 5676 } 5677 5678 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5679 static void __sctp_write_space(struct sctp_association *asoc) 5680 { 5681 struct sock *sk = asoc->base.sk; 5682 struct socket *sock = sk->sk_socket; 5683 5684 if ((sctp_wspace(asoc) > 0) && sock) { 5685 if (waitqueue_active(&asoc->wait)) 5686 wake_up_interruptible(&asoc->wait); 5687 5688 if (sctp_writeable(sk)) { 5689 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5690 wake_up_interruptible(sk->sk_sleep); 5691 5692 /* Note that we try to include the Async I/O support 5693 * here by modeling from the current TCP/UDP code. 5694 * We have not tested with it yet. 5695 */ 5696 if (sock->fasync_list && 5697 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5698 sock_wake_async(sock, 2, POLL_OUT); 5699 } 5700 } 5701 } 5702 5703 /* Do accounting for the sndbuf space. 5704 * Decrement the used sndbuf space of the corresponding association by the 5705 * data size which was just transmitted(freed). 5706 */ 5707 static void sctp_wfree(struct sk_buff *skb) 5708 { 5709 struct sctp_association *asoc; 5710 struct sctp_chunk *chunk; 5711 struct sock *sk; 5712 5713 /* Get the saved chunk pointer. */ 5714 chunk = *((struct sctp_chunk **)(skb->cb)); 5715 asoc = chunk->asoc; 5716 sk = asoc->base.sk; 5717 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5718 sizeof(struct sk_buff) + 5719 sizeof(struct sctp_chunk); 5720 5721 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5722 5723 sock_wfree(skb); 5724 __sctp_write_space(asoc); 5725 5726 sctp_association_put(asoc); 5727 } 5728 5729 /* Do accounting for the receive space on the socket. 5730 * Accounting for the association is done in ulpevent.c 5731 * We set this as a destructor for the cloned data skbs so that 5732 * accounting is done at the correct time. 5733 */ 5734 void sctp_sock_rfree(struct sk_buff *skb) 5735 { 5736 struct sock *sk = skb->sk; 5737 struct sctp_ulpevent *event = sctp_skb2event(skb); 5738 5739 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 5740 } 5741 5742 5743 /* Helper function to wait for space in the sndbuf. */ 5744 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5745 size_t msg_len) 5746 { 5747 struct sock *sk = asoc->base.sk; 5748 int err = 0; 5749 long current_timeo = *timeo_p; 5750 DEFINE_WAIT(wait); 5751 5752 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5753 asoc, (long)(*timeo_p), msg_len); 5754 5755 /* Increment the association's refcnt. */ 5756 sctp_association_hold(asoc); 5757 5758 /* Wait on the association specific sndbuf space. */ 5759 for (;;) { 5760 prepare_to_wait_exclusive(&asoc->wait, &wait, 5761 TASK_INTERRUPTIBLE); 5762 if (!*timeo_p) 5763 goto do_nonblock; 5764 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5765 asoc->base.dead) 5766 goto do_error; 5767 if (signal_pending(current)) 5768 goto do_interrupted; 5769 if (msg_len <= sctp_wspace(asoc)) 5770 break; 5771 5772 /* Let another process have a go. Since we are going 5773 * to sleep anyway. 5774 */ 5775 sctp_release_sock(sk); 5776 current_timeo = schedule_timeout(current_timeo); 5777 BUG_ON(sk != asoc->base.sk); 5778 sctp_lock_sock(sk); 5779 5780 *timeo_p = current_timeo; 5781 } 5782 5783 out: 5784 finish_wait(&asoc->wait, &wait); 5785 5786 /* Release the association's refcnt. */ 5787 sctp_association_put(asoc); 5788 5789 return err; 5790 5791 do_error: 5792 err = -EPIPE; 5793 goto out; 5794 5795 do_interrupted: 5796 err = sock_intr_errno(*timeo_p); 5797 goto out; 5798 5799 do_nonblock: 5800 err = -EAGAIN; 5801 goto out; 5802 } 5803 5804 /* If socket sndbuf has changed, wake up all per association waiters. */ 5805 void sctp_write_space(struct sock *sk) 5806 { 5807 struct sctp_association *asoc; 5808 struct list_head *pos; 5809 5810 /* Wake up the tasks in each wait queue. */ 5811 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5812 asoc = list_entry(pos, struct sctp_association, asocs); 5813 __sctp_write_space(asoc); 5814 } 5815 } 5816 5817 /* Is there any sndbuf space available on the socket? 5818 * 5819 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5820 * associations on the same socket. For a UDP-style socket with 5821 * multiple associations, it is possible for it to be "unwriteable" 5822 * prematurely. I assume that this is acceptable because 5823 * a premature "unwriteable" is better than an accidental "writeable" which 5824 * would cause an unwanted block under certain circumstances. For the 1-1 5825 * UDP-style sockets or TCP-style sockets, this code should work. 5826 * - Daisy 5827 */ 5828 static int sctp_writeable(struct sock *sk) 5829 { 5830 int amt = 0; 5831 5832 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5833 if (amt < 0) 5834 amt = 0; 5835 return amt; 5836 } 5837 5838 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5839 * returns immediately with EINPROGRESS. 5840 */ 5841 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5842 { 5843 struct sock *sk = asoc->base.sk; 5844 int err = 0; 5845 long current_timeo = *timeo_p; 5846 DEFINE_WAIT(wait); 5847 5848 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5849 (long)(*timeo_p)); 5850 5851 /* Increment the association's refcnt. */ 5852 sctp_association_hold(asoc); 5853 5854 for (;;) { 5855 prepare_to_wait_exclusive(&asoc->wait, &wait, 5856 TASK_INTERRUPTIBLE); 5857 if (!*timeo_p) 5858 goto do_nonblock; 5859 if (sk->sk_shutdown & RCV_SHUTDOWN) 5860 break; 5861 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5862 asoc->base.dead) 5863 goto do_error; 5864 if (signal_pending(current)) 5865 goto do_interrupted; 5866 5867 if (sctp_state(asoc, ESTABLISHED)) 5868 break; 5869 5870 /* Let another process have a go. Since we are going 5871 * to sleep anyway. 5872 */ 5873 sctp_release_sock(sk); 5874 current_timeo = schedule_timeout(current_timeo); 5875 sctp_lock_sock(sk); 5876 5877 *timeo_p = current_timeo; 5878 } 5879 5880 out: 5881 finish_wait(&asoc->wait, &wait); 5882 5883 /* Release the association's refcnt. */ 5884 sctp_association_put(asoc); 5885 5886 return err; 5887 5888 do_error: 5889 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5890 err = -ETIMEDOUT; 5891 else 5892 err = -ECONNREFUSED; 5893 goto out; 5894 5895 do_interrupted: 5896 err = sock_intr_errno(*timeo_p); 5897 goto out; 5898 5899 do_nonblock: 5900 err = -EINPROGRESS; 5901 goto out; 5902 } 5903 5904 static int sctp_wait_for_accept(struct sock *sk, long timeo) 5905 { 5906 struct sctp_endpoint *ep; 5907 int err = 0; 5908 DEFINE_WAIT(wait); 5909 5910 ep = sctp_sk(sk)->ep; 5911 5912 5913 for (;;) { 5914 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5915 TASK_INTERRUPTIBLE); 5916 5917 if (list_empty(&ep->asocs)) { 5918 sctp_release_sock(sk); 5919 timeo = schedule_timeout(timeo); 5920 sctp_lock_sock(sk); 5921 } 5922 5923 err = -EINVAL; 5924 if (!sctp_sstate(sk, LISTENING)) 5925 break; 5926 5927 err = 0; 5928 if (!list_empty(&ep->asocs)) 5929 break; 5930 5931 err = sock_intr_errno(timeo); 5932 if (signal_pending(current)) 5933 break; 5934 5935 err = -EAGAIN; 5936 if (!timeo) 5937 break; 5938 } 5939 5940 finish_wait(sk->sk_sleep, &wait); 5941 5942 return err; 5943 } 5944 5945 static void sctp_wait_for_close(struct sock *sk, long timeout) 5946 { 5947 DEFINE_WAIT(wait); 5948 5949 do { 5950 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5951 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5952 break; 5953 sctp_release_sock(sk); 5954 timeout = schedule_timeout(timeout); 5955 sctp_lock_sock(sk); 5956 } while (!signal_pending(current) && timeout); 5957 5958 finish_wait(sk->sk_sleep, &wait); 5959 } 5960 5961 static void sctp_sock_rfree_frag(struct sk_buff *skb) 5962 { 5963 struct sk_buff *frag; 5964 5965 if (!skb->data_len) 5966 goto done; 5967 5968 /* Don't forget the fragments. */ 5969 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 5970 sctp_sock_rfree_frag(frag); 5971 5972 done: 5973 sctp_sock_rfree(skb); 5974 } 5975 5976 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 5977 { 5978 struct sk_buff *frag; 5979 5980 if (!skb->data_len) 5981 goto done; 5982 5983 /* Don't forget the fragments. */ 5984 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 5985 sctp_skb_set_owner_r_frag(frag, sk); 5986 5987 done: 5988 sctp_skb_set_owner_r(skb, sk); 5989 } 5990 5991 /* Populate the fields of the newsk from the oldsk and migrate the assoc 5992 * and its messages to the newsk. 5993 */ 5994 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5995 struct sctp_association *assoc, 5996 sctp_socket_type_t type) 5997 { 5998 struct sctp_sock *oldsp = sctp_sk(oldsk); 5999 struct sctp_sock *newsp = sctp_sk(newsk); 6000 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6001 struct sctp_endpoint *newep = newsp->ep; 6002 struct sk_buff *skb, *tmp; 6003 struct sctp_ulpevent *event; 6004 int flags = 0; 6005 6006 /* Migrate socket buffer sizes and all the socket level options to the 6007 * new socket. 6008 */ 6009 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6010 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6011 /* Brute force copy old sctp opt. */ 6012 inet_sk_copy_descendant(newsk, oldsk); 6013 6014 /* Restore the ep value that was overwritten with the above structure 6015 * copy. 6016 */ 6017 newsp->ep = newep; 6018 newsp->hmac = NULL; 6019 6020 /* Hook this new socket in to the bind_hash list. */ 6021 pp = sctp_sk(oldsk)->bind_hash; 6022 sk_add_bind_node(newsk, &pp->owner); 6023 sctp_sk(newsk)->bind_hash = pp; 6024 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6025 6026 /* Copy the bind_addr list from the original endpoint to the new 6027 * endpoint so that we can handle restarts properly 6028 */ 6029 if (PF_INET6 == assoc->base.sk->sk_family) 6030 flags = SCTP_ADDR6_ALLOWED; 6031 if (assoc->peer.ipv4_address) 6032 flags |= SCTP_ADDR4_PEERSUPP; 6033 if (assoc->peer.ipv6_address) 6034 flags |= SCTP_ADDR6_PEERSUPP; 6035 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 6036 &oldsp->ep->base.bind_addr, 6037 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 6038 6039 /* Move any messages in the old socket's receive queue that are for the 6040 * peeled off association to the new socket's receive queue. 6041 */ 6042 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6043 event = sctp_skb2event(skb); 6044 if (event->asoc == assoc) { 6045 sctp_sock_rfree_frag(skb); 6046 __skb_unlink(skb, &oldsk->sk_receive_queue); 6047 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6048 sctp_skb_set_owner_r_frag(skb, newsk); 6049 } 6050 } 6051 6052 /* Clean up any messages pending delivery due to partial 6053 * delivery. Three cases: 6054 * 1) No partial deliver; no work. 6055 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6056 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6057 */ 6058 skb_queue_head_init(&newsp->pd_lobby); 6059 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6060 6061 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6062 struct sk_buff_head *queue; 6063 6064 /* Decide which queue to move pd_lobby skbs to. */ 6065 if (assoc->ulpq.pd_mode) { 6066 queue = &newsp->pd_lobby; 6067 } else 6068 queue = &newsk->sk_receive_queue; 6069 6070 /* Walk through the pd_lobby, looking for skbs that 6071 * need moved to the new socket. 6072 */ 6073 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6074 event = sctp_skb2event(skb); 6075 if (event->asoc == assoc) { 6076 sctp_sock_rfree_frag(skb); 6077 __skb_unlink(skb, &oldsp->pd_lobby); 6078 __skb_queue_tail(queue, skb); 6079 sctp_skb_set_owner_r_frag(skb, newsk); 6080 } 6081 } 6082 6083 /* Clear up any skbs waiting for the partial 6084 * delivery to finish. 6085 */ 6086 if (assoc->ulpq.pd_mode) 6087 sctp_clear_pd(oldsk, NULL); 6088 6089 } 6090 6091 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6092 sctp_sock_rfree_frag(skb); 6093 sctp_skb_set_owner_r_frag(skb, newsk); 6094 } 6095 6096 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6097 sctp_sock_rfree_frag(skb); 6098 sctp_skb_set_owner_r_frag(skb, newsk); 6099 } 6100 6101 /* Set the type of socket to indicate that it is peeled off from the 6102 * original UDP-style socket or created with the accept() call on a 6103 * TCP-style socket.. 6104 */ 6105 newsp->type = type; 6106 6107 /* Mark the new socket "in-use" by the user so that any packets 6108 * that may arrive on the association after we've moved it are 6109 * queued to the backlog. This prevents a potential race between 6110 * backlog processing on the old socket and new-packet processing 6111 * on the new socket. 6112 * 6113 * The caller has just allocated newsk so we can guarantee that other 6114 * paths won't try to lock it and then oldsk. 6115 */ 6116 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6117 sctp_assoc_migrate(assoc, newsk); 6118 6119 /* If the association on the newsk is already closed before accept() 6120 * is called, set RCV_SHUTDOWN flag. 6121 */ 6122 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6123 newsk->sk_shutdown |= RCV_SHUTDOWN; 6124 6125 newsk->sk_state = SCTP_SS_ESTABLISHED; 6126 sctp_release_sock(newsk); 6127 } 6128 6129 /* This proto struct describes the ULP interface for SCTP. */ 6130 struct proto sctp_prot = { 6131 .name = "SCTP", 6132 .owner = THIS_MODULE, 6133 .close = sctp_close, 6134 .connect = sctp_connect, 6135 .disconnect = sctp_disconnect, 6136 .accept = sctp_accept, 6137 .ioctl = sctp_ioctl, 6138 .init = sctp_init_sock, 6139 .destroy = sctp_destroy_sock, 6140 .shutdown = sctp_shutdown, 6141 .setsockopt = sctp_setsockopt, 6142 .getsockopt = sctp_getsockopt, 6143 .sendmsg = sctp_sendmsg, 6144 .recvmsg = sctp_recvmsg, 6145 .bind = sctp_bind, 6146 .backlog_rcv = sctp_backlog_rcv, 6147 .hash = sctp_hash, 6148 .unhash = sctp_unhash, 6149 .get_port = sctp_get_port, 6150 .obj_size = sizeof(struct sctp_sock), 6151 }; 6152 6153 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6154 struct proto sctpv6_prot = { 6155 .name = "SCTPv6", 6156 .owner = THIS_MODULE, 6157 .close = sctp_close, 6158 .connect = sctp_connect, 6159 .disconnect = sctp_disconnect, 6160 .accept = sctp_accept, 6161 .ioctl = sctp_ioctl, 6162 .init = sctp_init_sock, 6163 .destroy = sctp_destroy_sock, 6164 .shutdown = sctp_shutdown, 6165 .setsockopt = sctp_setsockopt, 6166 .getsockopt = sctp_getsockopt, 6167 .sendmsg = sctp_sendmsg, 6168 .recvmsg = sctp_recvmsg, 6169 .bind = sctp_bind, 6170 .backlog_rcv = sctp_backlog_rcv, 6171 .hash = sctp_hash, 6172 .unhash = sctp_unhash, 6173 .get_port = sctp_get_port, 6174 .obj_size = sizeof(struct sctp6_sock), 6175 }; 6176 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6177