1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/ip.h> 61 #include <linux/capability.h> 62 #include <linux/fcntl.h> 63 #include <linux/poll.h> 64 #include <linux/init.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 static int sctp_memory_pressure; 106 static atomic_long_t sctp_memory_allocated; 107 struct percpu_counter sctp_sockets_allocated; 108 109 static void sctp_enter_memory_pressure(struct sock *sk) 110 { 111 sctp_memory_pressure = 1; 112 } 113 114 115 /* Get the sndbuf space available at the time on the association. */ 116 static inline int sctp_wspace(struct sctp_association *asoc) 117 { 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137 } 138 139 /* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149 { 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169 } 170 171 /* Verify that this is a valid address. */ 172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174 { 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196 { 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227 } 228 229 /* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236 { 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 struct sctp_transport *transport; 241 242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 243 return NULL; 244 245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 246 laddr, 247 &transport); 248 249 if (!addr_asoc) 250 return NULL; 251 252 id_asoc = sctp_id2assoc(sk, id); 253 if (id_asoc && (id_asoc != addr_asoc)) 254 return NULL; 255 256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 257 (union sctp_addr *)addr); 258 259 return transport; 260 } 261 262 /* API 3.1.2 bind() - UDP Style Syntax 263 * The syntax of bind() is, 264 * 265 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 266 * 267 * sd - the socket descriptor returned by socket(). 268 * addr - the address structure (struct sockaddr_in or struct 269 * sockaddr_in6 [RFC 2553]), 270 * addr_len - the size of the address structure. 271 */ 272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 273 { 274 int retval = 0; 275 276 lock_sock(sk); 277 278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 279 addr, addr_len); 280 281 /* Disallow binding twice. */ 282 if (!sctp_sk(sk)->ep->base.bind_addr.port) 283 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 284 addr_len); 285 else 286 retval = -EINVAL; 287 288 release_sock(sk); 289 290 return retval; 291 } 292 293 static long sctp_get_port_local(struct sock *, union sctp_addr *); 294 295 /* Verify this is a valid sockaddr. */ 296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 297 union sctp_addr *addr, int len) 298 { 299 struct sctp_af *af; 300 301 /* Check minimum size. */ 302 if (len < sizeof (struct sockaddr)) 303 return NULL; 304 305 /* V4 mapped address are really of AF_INET family */ 306 if (addr->sa.sa_family == AF_INET6 && 307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 308 if (!opt->pf->af_supported(AF_INET, opt)) 309 return NULL; 310 } else { 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 } 315 316 /* If we get this far, af is valid. */ 317 af = sctp_get_af_specific(addr->sa.sa_family); 318 319 if (len < af->sockaddr_len) 320 return NULL; 321 322 return af; 323 } 324 325 /* Bind a local address either to an endpoint or to an association. */ 326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 327 { 328 struct net *net = sock_net(sk); 329 struct sctp_sock *sp = sctp_sk(sk); 330 struct sctp_endpoint *ep = sp->ep; 331 struct sctp_bind_addr *bp = &ep->base.bind_addr; 332 struct sctp_af *af; 333 unsigned short snum; 334 int ret = 0; 335 336 /* Common sockaddr verification. */ 337 af = sctp_sockaddr_af(sp, addr, len); 338 if (!af) { 339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 340 __func__, sk, addr, len); 341 return -EINVAL; 342 } 343 344 snum = ntohs(addr->v4.sin_port); 345 346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 347 __func__, sk, &addr->sa, bp->port, snum, len); 348 349 /* PF specific bind() address verification. */ 350 if (!sp->pf->bind_verify(sp, addr)) 351 return -EADDRNOTAVAIL; 352 353 /* We must either be unbound, or bind to the same port. 354 * It's OK to allow 0 ports if we are already bound. 355 * We'll just inhert an already bound port in this case 356 */ 357 if (bp->port) { 358 if (!snum) 359 snum = bp->port; 360 else if (snum != bp->port) { 361 pr_debug("%s: new port %d doesn't match existing port " 362 "%d\n", __func__, snum, bp->port); 363 return -EINVAL; 364 } 365 } 366 367 if (snum && snum < inet_prot_sock(net) && 368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 369 return -EACCES; 370 371 /* See if the address matches any of the addresses we may have 372 * already bound before checking against other endpoints. 373 */ 374 if (sctp_bind_addr_match(bp, addr, sp)) 375 return -EINVAL; 376 377 /* Make sure we are allowed to bind here. 378 * The function sctp_get_port_local() does duplicate address 379 * detection. 380 */ 381 addr->v4.sin_port = htons(snum); 382 if ((ret = sctp_get_port_local(sk, addr))) { 383 return -EADDRINUSE; 384 } 385 386 /* Refresh ephemeral port. */ 387 if (!bp->port) 388 bp->port = inet_sk(sk)->inet_num; 389 390 /* Add the address to the bind address list. 391 * Use GFP_ATOMIC since BHs will be disabled. 392 */ 393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 394 SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 399 sp->pf->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403 } 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415 static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417 { 418 struct net *net = sock_net(asoc->base.sk); 419 int retval = 0; 420 421 /* If there is an outstanding ASCONF chunk, queue it for later 422 * transmission. 423 */ 424 if (asoc->addip_last_asconf) { 425 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 426 goto out; 427 } 428 429 /* Hold the chunk until an ASCONF_ACK is received. */ 430 sctp_chunk_hold(chunk); 431 retval = sctp_primitive_ASCONF(net, asoc, chunk); 432 if (retval) 433 sctp_chunk_free(chunk); 434 else 435 asoc->addip_last_asconf = chunk; 436 437 out: 438 return retval; 439 } 440 441 /* Add a list of addresses as bind addresses to local endpoint or 442 * association. 443 * 444 * Basically run through each address specified in the addrs/addrcnt 445 * array/length pair, determine if it is IPv6 or IPv4 and call 446 * sctp_do_bind() on it. 447 * 448 * If any of them fails, then the operation will be reversed and the 449 * ones that were added will be removed. 450 * 451 * Only sctp_setsockopt_bindx() is supposed to call this function. 452 */ 453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 454 { 455 int cnt; 456 int retval = 0; 457 void *addr_buf; 458 struct sockaddr *sa_addr; 459 struct sctp_af *af; 460 461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 462 addrs, addrcnt); 463 464 addr_buf = addrs; 465 for (cnt = 0; cnt < addrcnt; cnt++) { 466 /* The list may contain either IPv4 or IPv6 address; 467 * determine the address length for walking thru the list. 468 */ 469 sa_addr = addr_buf; 470 af = sctp_get_af_specific(sa_addr->sa_family); 471 if (!af) { 472 retval = -EINVAL; 473 goto err_bindx_add; 474 } 475 476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 477 af->sockaddr_len); 478 479 addr_buf += af->sockaddr_len; 480 481 err_bindx_add: 482 if (retval < 0) { 483 /* Failed. Cleanup the ones that have been added */ 484 if (cnt > 0) 485 sctp_bindx_rem(sk, addrs, cnt); 486 return retval; 487 } 488 } 489 490 return retval; 491 } 492 493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 494 * associations that are part of the endpoint indicating that a list of local 495 * addresses are added to the endpoint. 496 * 497 * If any of the addresses is already in the bind address list of the 498 * association, we do not send the chunk for that association. But it will not 499 * affect other associations. 500 * 501 * Only sctp_setsockopt_bindx() is supposed to call this function. 502 */ 503 static int sctp_send_asconf_add_ip(struct sock *sk, 504 struct sockaddr *addrs, 505 int addrcnt) 506 { 507 struct net *net = sock_net(sk); 508 struct sctp_sock *sp; 509 struct sctp_endpoint *ep; 510 struct sctp_association *asoc; 511 struct sctp_bind_addr *bp; 512 struct sctp_chunk *chunk; 513 struct sctp_sockaddr_entry *laddr; 514 union sctp_addr *addr; 515 union sctp_addr saveaddr; 516 void *addr_buf; 517 struct sctp_af *af; 518 struct list_head *p; 519 int i; 520 int retval = 0; 521 522 if (!net->sctp.addip_enable) 523 return retval; 524 525 sp = sctp_sk(sk); 526 ep = sp->ep; 527 528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 529 __func__, sk, addrs, addrcnt); 530 531 list_for_each_entry(asoc, &ep->asocs, asocs) { 532 if (!asoc->peer.asconf_capable) 533 continue; 534 535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 536 continue; 537 538 if (!sctp_state(asoc, ESTABLISHED)) 539 continue; 540 541 /* Check if any address in the packed array of addresses is 542 * in the bind address list of the association. If so, 543 * do not send the asconf chunk to its peer, but continue with 544 * other associations. 545 */ 546 addr_buf = addrs; 547 for (i = 0; i < addrcnt; i++) { 548 addr = addr_buf; 549 af = sctp_get_af_specific(addr->v4.sin_family); 550 if (!af) { 551 retval = -EINVAL; 552 goto out; 553 } 554 555 if (sctp_assoc_lookup_laddr(asoc, addr)) 556 break; 557 558 addr_buf += af->sockaddr_len; 559 } 560 if (i < addrcnt) 561 continue; 562 563 /* Use the first valid address in bind addr list of 564 * association as Address Parameter of ASCONF CHUNK. 565 */ 566 bp = &asoc->base.bind_addr; 567 p = bp->address_list.next; 568 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 570 addrcnt, SCTP_PARAM_ADD_IP); 571 if (!chunk) { 572 retval = -ENOMEM; 573 goto out; 574 } 575 576 /* Add the new addresses to the bind address list with 577 * use_as_src set to 0. 578 */ 579 addr_buf = addrs; 580 for (i = 0; i < addrcnt; i++) { 581 addr = addr_buf; 582 af = sctp_get_af_specific(addr->v4.sin_family); 583 memcpy(&saveaddr, addr, af->sockaddr_len); 584 retval = sctp_add_bind_addr(bp, &saveaddr, 585 sizeof(saveaddr), 586 SCTP_ADDR_NEW, GFP_ATOMIC); 587 addr_buf += af->sockaddr_len; 588 } 589 if (asoc->src_out_of_asoc_ok) { 590 struct sctp_transport *trans; 591 592 list_for_each_entry(trans, 593 &asoc->peer.transport_addr_list, transports) { 594 /* Clear the source and route cache */ 595 sctp_transport_dst_release(trans); 596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 597 2*asoc->pathmtu, 4380)); 598 trans->ssthresh = asoc->peer.i.a_rwnd; 599 trans->rto = asoc->rto_initial; 600 sctp_max_rto(asoc, trans); 601 trans->rtt = trans->srtt = trans->rttvar = 0; 602 sctp_transport_route(trans, NULL, 603 sctp_sk(asoc->base.sk)); 604 } 605 } 606 retval = sctp_send_asconf(asoc, chunk); 607 } 608 609 out: 610 return retval; 611 } 612 613 /* Remove a list of addresses from bind addresses list. Do not remove the 614 * last address. 615 * 616 * Basically run through each address specified in the addrs/addrcnt 617 * array/length pair, determine if it is IPv6 or IPv4 and call 618 * sctp_del_bind() on it. 619 * 620 * If any of them fails, then the operation will be reversed and the 621 * ones that were removed will be added back. 622 * 623 * At least one address has to be left; if only one address is 624 * available, the operation will return -EBUSY. 625 * 626 * Only sctp_setsockopt_bindx() is supposed to call this function. 627 */ 628 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 629 { 630 struct sctp_sock *sp = sctp_sk(sk); 631 struct sctp_endpoint *ep = sp->ep; 632 int cnt; 633 struct sctp_bind_addr *bp = &ep->base.bind_addr; 634 int retval = 0; 635 void *addr_buf; 636 union sctp_addr *sa_addr; 637 struct sctp_af *af; 638 639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 640 __func__, sk, addrs, addrcnt); 641 642 addr_buf = addrs; 643 for (cnt = 0; cnt < addrcnt; cnt++) { 644 /* If the bind address list is empty or if there is only one 645 * bind address, there is nothing more to be removed (we need 646 * at least one address here). 647 */ 648 if (list_empty(&bp->address_list) || 649 (sctp_list_single_entry(&bp->address_list))) { 650 retval = -EBUSY; 651 goto err_bindx_rem; 652 } 653 654 sa_addr = addr_buf; 655 af = sctp_get_af_specific(sa_addr->sa.sa_family); 656 if (!af) { 657 retval = -EINVAL; 658 goto err_bindx_rem; 659 } 660 661 if (!af->addr_valid(sa_addr, sp, NULL)) { 662 retval = -EADDRNOTAVAIL; 663 goto err_bindx_rem; 664 } 665 666 if (sa_addr->v4.sin_port && 667 sa_addr->v4.sin_port != htons(bp->port)) { 668 retval = -EINVAL; 669 goto err_bindx_rem; 670 } 671 672 if (!sa_addr->v4.sin_port) 673 sa_addr->v4.sin_port = htons(bp->port); 674 675 /* FIXME - There is probably a need to check if sk->sk_saddr and 676 * sk->sk_rcv_addr are currently set to one of the addresses to 677 * be removed. This is something which needs to be looked into 678 * when we are fixing the outstanding issues with multi-homing 679 * socket routing and failover schemes. Refer to comments in 680 * sctp_do_bind(). -daisy 681 */ 682 retval = sctp_del_bind_addr(bp, sa_addr); 683 684 addr_buf += af->sockaddr_len; 685 err_bindx_rem: 686 if (retval < 0) { 687 /* Failed. Add the ones that has been removed back */ 688 if (cnt > 0) 689 sctp_bindx_add(sk, addrs, cnt); 690 return retval; 691 } 692 } 693 694 return retval; 695 } 696 697 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 698 * the associations that are part of the endpoint indicating that a list of 699 * local addresses are removed from the endpoint. 700 * 701 * If any of the addresses is already in the bind address list of the 702 * association, we do not send the chunk for that association. But it will not 703 * affect other associations. 704 * 705 * Only sctp_setsockopt_bindx() is supposed to call this function. 706 */ 707 static int sctp_send_asconf_del_ip(struct sock *sk, 708 struct sockaddr *addrs, 709 int addrcnt) 710 { 711 struct net *net = sock_net(sk); 712 struct sctp_sock *sp; 713 struct sctp_endpoint *ep; 714 struct sctp_association *asoc; 715 struct sctp_transport *transport; 716 struct sctp_bind_addr *bp; 717 struct sctp_chunk *chunk; 718 union sctp_addr *laddr; 719 void *addr_buf; 720 struct sctp_af *af; 721 struct sctp_sockaddr_entry *saddr; 722 int i; 723 int retval = 0; 724 int stored = 0; 725 726 chunk = NULL; 727 if (!net->sctp.addip_enable) 728 return retval; 729 730 sp = sctp_sk(sk); 731 ep = sp->ep; 732 733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 734 __func__, sk, addrs, addrcnt); 735 736 list_for_each_entry(asoc, &ep->asocs, asocs) { 737 738 if (!asoc->peer.asconf_capable) 739 continue; 740 741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 742 continue; 743 744 if (!sctp_state(asoc, ESTABLISHED)) 745 continue; 746 747 /* Check if any address in the packed array of addresses is 748 * not present in the bind address list of the association. 749 * If so, do not send the asconf chunk to its peer, but 750 * continue with other associations. 751 */ 752 addr_buf = addrs; 753 for (i = 0; i < addrcnt; i++) { 754 laddr = addr_buf; 755 af = sctp_get_af_specific(laddr->v4.sin_family); 756 if (!af) { 757 retval = -EINVAL; 758 goto out; 759 } 760 761 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 762 break; 763 764 addr_buf += af->sockaddr_len; 765 } 766 if (i < addrcnt) 767 continue; 768 769 /* Find one address in the association's bind address list 770 * that is not in the packed array of addresses. This is to 771 * make sure that we do not delete all the addresses in the 772 * association. 773 */ 774 bp = &asoc->base.bind_addr; 775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 776 addrcnt, sp); 777 if ((laddr == NULL) && (addrcnt == 1)) { 778 if (asoc->asconf_addr_del_pending) 779 continue; 780 asoc->asconf_addr_del_pending = 781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 782 if (asoc->asconf_addr_del_pending == NULL) { 783 retval = -ENOMEM; 784 goto out; 785 } 786 asoc->asconf_addr_del_pending->sa.sa_family = 787 addrs->sa_family; 788 asoc->asconf_addr_del_pending->v4.sin_port = 789 htons(bp->port); 790 if (addrs->sa_family == AF_INET) { 791 struct sockaddr_in *sin; 792 793 sin = (struct sockaddr_in *)addrs; 794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 795 } else if (addrs->sa_family == AF_INET6) { 796 struct sockaddr_in6 *sin6; 797 798 sin6 = (struct sockaddr_in6 *)addrs; 799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 800 } 801 802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 803 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 804 asoc->asconf_addr_del_pending); 805 806 asoc->src_out_of_asoc_ok = 1; 807 stored = 1; 808 goto skip_mkasconf; 809 } 810 811 if (laddr == NULL) 812 return -EINVAL; 813 814 /* We do not need RCU protection throughout this loop 815 * because this is done under a socket lock from the 816 * setsockopt call. 817 */ 818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 819 SCTP_PARAM_DEL_IP); 820 if (!chunk) { 821 retval = -ENOMEM; 822 goto out; 823 } 824 825 skip_mkasconf: 826 /* Reset use_as_src flag for the addresses in the bind address 827 * list that are to be deleted. 828 */ 829 addr_buf = addrs; 830 for (i = 0; i < addrcnt; i++) { 831 laddr = addr_buf; 832 af = sctp_get_af_specific(laddr->v4.sin_family); 833 list_for_each_entry(saddr, &bp->address_list, list) { 834 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 835 saddr->state = SCTP_ADDR_DEL; 836 } 837 addr_buf += af->sockaddr_len; 838 } 839 840 /* Update the route and saddr entries for all the transports 841 * as some of the addresses in the bind address list are 842 * about to be deleted and cannot be used as source addresses. 843 */ 844 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 845 transports) { 846 sctp_transport_dst_release(transport); 847 sctp_transport_route(transport, NULL, 848 sctp_sk(asoc->base.sk)); 849 } 850 851 if (stored) 852 /* We don't need to transmit ASCONF */ 853 continue; 854 retval = sctp_send_asconf(asoc, chunk); 855 } 856 out: 857 return retval; 858 } 859 860 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 861 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 862 { 863 struct sock *sk = sctp_opt2sk(sp); 864 union sctp_addr *addr; 865 struct sctp_af *af; 866 867 /* It is safe to write port space in caller. */ 868 addr = &addrw->a; 869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 870 af = sctp_get_af_specific(addr->sa.sa_family); 871 if (!af) 872 return -EINVAL; 873 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 874 return -EINVAL; 875 876 if (addrw->state == SCTP_ADDR_NEW) 877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 878 else 879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 880 } 881 882 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 883 * 884 * API 8.1 885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 886 * int flags); 887 * 888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 890 * or IPv6 addresses. 891 * 892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 893 * Section 3.1.2 for this usage. 894 * 895 * addrs is a pointer to an array of one or more socket addresses. Each 896 * address is contained in its appropriate structure (i.e. struct 897 * sockaddr_in or struct sockaddr_in6) the family of the address type 898 * must be used to distinguish the address length (note that this 899 * representation is termed a "packed array" of addresses). The caller 900 * specifies the number of addresses in the array with addrcnt. 901 * 902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 903 * -1, and sets errno to the appropriate error code. 904 * 905 * For SCTP, the port given in each socket address must be the same, or 906 * sctp_bindx() will fail, setting errno to EINVAL. 907 * 908 * The flags parameter is formed from the bitwise OR of zero or more of 909 * the following currently defined flags: 910 * 911 * SCTP_BINDX_ADD_ADDR 912 * 913 * SCTP_BINDX_REM_ADDR 914 * 915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 917 * addresses from the association. The two flags are mutually exclusive; 918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 919 * not remove all addresses from an association; sctp_bindx() will 920 * reject such an attempt with EINVAL. 921 * 922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 923 * additional addresses with an endpoint after calling bind(). Or use 924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 925 * socket is associated with so that no new association accepted will be 926 * associated with those addresses. If the endpoint supports dynamic 927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 928 * endpoint to send the appropriate message to the peer to change the 929 * peers address lists. 930 * 931 * Adding and removing addresses from a connected association is 932 * optional functionality. Implementations that do not support this 933 * functionality should return EOPNOTSUPP. 934 * 935 * Basically do nothing but copying the addresses from user to kernel 936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 938 * from userspace. 939 * 940 * We don't use copy_from_user() for optimization: we first do the 941 * sanity checks (buffer size -fast- and access check-healthy 942 * pointer); if all of those succeed, then we can alloc the memory 943 * (expensive operation) needed to copy the data to kernel. Then we do 944 * the copying without checking the user space area 945 * (__copy_from_user()). 946 * 947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 948 * it. 949 * 950 * sk The sk of the socket 951 * addrs The pointer to the addresses in user land 952 * addrssize Size of the addrs buffer 953 * op Operation to perform (add or remove, see the flags of 954 * sctp_bindx) 955 * 956 * Returns 0 if ok, <0 errno code on error. 957 */ 958 static int sctp_setsockopt_bindx(struct sock *sk, 959 struct sockaddr __user *addrs, 960 int addrs_size, int op) 961 { 962 struct sockaddr *kaddrs; 963 int err; 964 int addrcnt = 0; 965 int walk_size = 0; 966 struct sockaddr *sa_addr; 967 void *addr_buf; 968 struct sctp_af *af; 969 970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 971 __func__, sk, addrs, addrs_size, op); 972 973 if (unlikely(addrs_size <= 0)) 974 return -EINVAL; 975 976 /* Check the user passed a healthy pointer. */ 977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 978 return -EFAULT; 979 980 /* Alloc space for the address array in kernel memory. */ 981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 982 if (unlikely(!kaddrs)) 983 return -ENOMEM; 984 985 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 986 kfree(kaddrs); 987 return -EFAULT; 988 } 989 990 /* Walk through the addrs buffer and count the number of addresses. */ 991 addr_buf = kaddrs; 992 while (walk_size < addrs_size) { 993 if (walk_size + sizeof(sa_family_t) > addrs_size) { 994 kfree(kaddrs); 995 return -EINVAL; 996 } 997 998 sa_addr = addr_buf; 999 af = sctp_get_af_specific(sa_addr->sa_family); 1000 1001 /* If the address family is not supported or if this address 1002 * causes the address buffer to overflow return EINVAL. 1003 */ 1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1005 kfree(kaddrs); 1006 return -EINVAL; 1007 } 1008 addrcnt++; 1009 addr_buf += af->sockaddr_len; 1010 walk_size += af->sockaddr_len; 1011 } 1012 1013 /* Do the work. */ 1014 switch (op) { 1015 case SCTP_BINDX_ADD_ADDR: 1016 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1017 if (err) 1018 goto out; 1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1020 break; 1021 1022 case SCTP_BINDX_REM_ADDR: 1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1024 if (err) 1025 goto out; 1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1027 break; 1028 1029 default: 1030 err = -EINVAL; 1031 break; 1032 } 1033 1034 out: 1035 kfree(kaddrs); 1036 1037 return err; 1038 } 1039 1040 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1041 * 1042 * Common routine for handling connect() and sctp_connectx(). 1043 * Connect will come in with just a single address. 1044 */ 1045 static int __sctp_connect(struct sock *sk, 1046 struct sockaddr *kaddrs, 1047 int addrs_size, 1048 sctp_assoc_t *assoc_id) 1049 { 1050 struct net *net = sock_net(sk); 1051 struct sctp_sock *sp; 1052 struct sctp_endpoint *ep; 1053 struct sctp_association *asoc = NULL; 1054 struct sctp_association *asoc2; 1055 struct sctp_transport *transport; 1056 union sctp_addr to; 1057 sctp_scope_t scope; 1058 long timeo; 1059 int err = 0; 1060 int addrcnt = 0; 1061 int walk_size = 0; 1062 union sctp_addr *sa_addr = NULL; 1063 void *addr_buf; 1064 unsigned short port; 1065 unsigned int f_flags = 0; 1066 1067 sp = sctp_sk(sk); 1068 ep = sp->ep; 1069 1070 /* connect() cannot be done on a socket that is already in ESTABLISHED 1071 * state - UDP-style peeled off socket or a TCP-style socket that 1072 * is already connected. 1073 * It cannot be done even on a TCP-style listening socket. 1074 */ 1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1077 err = -EISCONN; 1078 goto out_free; 1079 } 1080 1081 /* Walk through the addrs buffer and count the number of addresses. */ 1082 addr_buf = kaddrs; 1083 while (walk_size < addrs_size) { 1084 struct sctp_af *af; 1085 1086 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1087 err = -EINVAL; 1088 goto out_free; 1089 } 1090 1091 sa_addr = addr_buf; 1092 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1093 1094 /* If the address family is not supported or if this address 1095 * causes the address buffer to overflow return EINVAL. 1096 */ 1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1098 err = -EINVAL; 1099 goto out_free; 1100 } 1101 1102 port = ntohs(sa_addr->v4.sin_port); 1103 1104 /* Save current address so we can work with it */ 1105 memcpy(&to, sa_addr, af->sockaddr_len); 1106 1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1108 if (err) 1109 goto out_free; 1110 1111 /* Make sure the destination port is correctly set 1112 * in all addresses. 1113 */ 1114 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1115 err = -EINVAL; 1116 goto out_free; 1117 } 1118 1119 /* Check if there already is a matching association on the 1120 * endpoint (other than the one created here). 1121 */ 1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1123 if (asoc2 && asoc2 != asoc) { 1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1125 err = -EISCONN; 1126 else 1127 err = -EALREADY; 1128 goto out_free; 1129 } 1130 1131 /* If we could not find a matching association on the endpoint, 1132 * make sure that there is no peeled-off association matching 1133 * the peer address even on another socket. 1134 */ 1135 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1136 err = -EADDRNOTAVAIL; 1137 goto out_free; 1138 } 1139 1140 if (!asoc) { 1141 /* If a bind() or sctp_bindx() is not called prior to 1142 * an sctp_connectx() call, the system picks an 1143 * ephemeral port and will choose an address set 1144 * equivalent to binding with a wildcard address. 1145 */ 1146 if (!ep->base.bind_addr.port) { 1147 if (sctp_autobind(sk)) { 1148 err = -EAGAIN; 1149 goto out_free; 1150 } 1151 } else { 1152 /* 1153 * If an unprivileged user inherits a 1-many 1154 * style socket with open associations on a 1155 * privileged port, it MAY be permitted to 1156 * accept new associations, but it SHOULD NOT 1157 * be permitted to open new associations. 1158 */ 1159 if (ep->base.bind_addr.port < 1160 inet_prot_sock(net) && 1161 !ns_capable(net->user_ns, 1162 CAP_NET_BIND_SERVICE)) { 1163 err = -EACCES; 1164 goto out_free; 1165 } 1166 } 1167 1168 scope = sctp_scope(&to); 1169 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1170 if (!asoc) { 1171 err = -ENOMEM; 1172 goto out_free; 1173 } 1174 1175 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1176 GFP_KERNEL); 1177 if (err < 0) { 1178 goto out_free; 1179 } 1180 1181 } 1182 1183 /* Prime the peer's transport structures. */ 1184 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1185 SCTP_UNKNOWN); 1186 if (!transport) { 1187 err = -ENOMEM; 1188 goto out_free; 1189 } 1190 1191 addrcnt++; 1192 addr_buf += af->sockaddr_len; 1193 walk_size += af->sockaddr_len; 1194 } 1195 1196 /* In case the user of sctp_connectx() wants an association 1197 * id back, assign one now. 1198 */ 1199 if (assoc_id) { 1200 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1201 if (err < 0) 1202 goto out_free; 1203 } 1204 1205 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1206 if (err < 0) { 1207 goto out_free; 1208 } 1209 1210 /* Initialize sk's dport and daddr for getpeername() */ 1211 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1212 sp->pf->to_sk_daddr(sa_addr, sk); 1213 sk->sk_err = 0; 1214 1215 /* in-kernel sockets don't generally have a file allocated to them 1216 * if all they do is call sock_create_kern(). 1217 */ 1218 if (sk->sk_socket->file) 1219 f_flags = sk->sk_socket->file->f_flags; 1220 1221 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1222 1223 if (assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 err = sctp_wait_for_connect(asoc, &timeo); 1226 /* Note: the asoc may be freed after the return of 1227 * sctp_wait_for_connect. 1228 */ 1229 1230 /* Don't free association on exit. */ 1231 asoc = NULL; 1232 1233 out_free: 1234 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1235 __func__, asoc, kaddrs, err); 1236 1237 if (asoc) { 1238 /* sctp_primitive_ASSOCIATE may have added this association 1239 * To the hash table, try to unhash it, just in case, its a noop 1240 * if it wasn't hashed so we're safe 1241 */ 1242 sctp_association_free(asoc); 1243 } 1244 return err; 1245 } 1246 1247 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1248 * 1249 * API 8.9 1250 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1251 * sctp_assoc_t *asoc); 1252 * 1253 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1254 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1255 * or IPv6 addresses. 1256 * 1257 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1258 * Section 3.1.2 for this usage. 1259 * 1260 * addrs is a pointer to an array of one or more socket addresses. Each 1261 * address is contained in its appropriate structure (i.e. struct 1262 * sockaddr_in or struct sockaddr_in6) the family of the address type 1263 * must be used to distengish the address length (note that this 1264 * representation is termed a "packed array" of addresses). The caller 1265 * specifies the number of addresses in the array with addrcnt. 1266 * 1267 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1268 * the association id of the new association. On failure, sctp_connectx() 1269 * returns -1, and sets errno to the appropriate error code. The assoc_id 1270 * is not touched by the kernel. 1271 * 1272 * For SCTP, the port given in each socket address must be the same, or 1273 * sctp_connectx() will fail, setting errno to EINVAL. 1274 * 1275 * An application can use sctp_connectx to initiate an association with 1276 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1277 * allows a caller to specify multiple addresses at which a peer can be 1278 * reached. The way the SCTP stack uses the list of addresses to set up 1279 * the association is implementation dependent. This function only 1280 * specifies that the stack will try to make use of all the addresses in 1281 * the list when needed. 1282 * 1283 * Note that the list of addresses passed in is only used for setting up 1284 * the association. It does not necessarily equal the set of addresses 1285 * the peer uses for the resulting association. If the caller wants to 1286 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1287 * retrieve them after the association has been set up. 1288 * 1289 * Basically do nothing but copying the addresses from user to kernel 1290 * land and invoking either sctp_connectx(). This is used for tunneling 1291 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1292 * 1293 * We don't use copy_from_user() for optimization: we first do the 1294 * sanity checks (buffer size -fast- and access check-healthy 1295 * pointer); if all of those succeed, then we can alloc the memory 1296 * (expensive operation) needed to copy the data to kernel. Then we do 1297 * the copying without checking the user space area 1298 * (__copy_from_user()). 1299 * 1300 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1301 * it. 1302 * 1303 * sk The sk of the socket 1304 * addrs The pointer to the addresses in user land 1305 * addrssize Size of the addrs buffer 1306 * 1307 * Returns >=0 if ok, <0 errno code on error. 1308 */ 1309 static int __sctp_setsockopt_connectx(struct sock *sk, 1310 struct sockaddr __user *addrs, 1311 int addrs_size, 1312 sctp_assoc_t *assoc_id) 1313 { 1314 struct sockaddr *kaddrs; 1315 gfp_t gfp = GFP_KERNEL; 1316 int err = 0; 1317 1318 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1319 __func__, sk, addrs, addrs_size); 1320 1321 if (unlikely(addrs_size <= 0)) 1322 return -EINVAL; 1323 1324 /* Check the user passed a healthy pointer. */ 1325 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1326 return -EFAULT; 1327 1328 /* Alloc space for the address array in kernel memory. */ 1329 if (sk->sk_socket->file) 1330 gfp = GFP_USER | __GFP_NOWARN; 1331 kaddrs = kmalloc(addrs_size, gfp); 1332 if (unlikely(!kaddrs)) 1333 return -ENOMEM; 1334 1335 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1336 err = -EFAULT; 1337 } else { 1338 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1339 } 1340 1341 kfree(kaddrs); 1342 1343 return err; 1344 } 1345 1346 /* 1347 * This is an older interface. It's kept for backward compatibility 1348 * to the option that doesn't provide association id. 1349 */ 1350 static int sctp_setsockopt_connectx_old(struct sock *sk, 1351 struct sockaddr __user *addrs, 1352 int addrs_size) 1353 { 1354 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1355 } 1356 1357 /* 1358 * New interface for the API. The since the API is done with a socket 1359 * option, to make it simple we feed back the association id is as a return 1360 * indication to the call. Error is always negative and association id is 1361 * always positive. 1362 */ 1363 static int sctp_setsockopt_connectx(struct sock *sk, 1364 struct sockaddr __user *addrs, 1365 int addrs_size) 1366 { 1367 sctp_assoc_t assoc_id = 0; 1368 int err = 0; 1369 1370 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1371 1372 if (err) 1373 return err; 1374 else 1375 return assoc_id; 1376 } 1377 1378 /* 1379 * New (hopefully final) interface for the API. 1380 * We use the sctp_getaddrs_old structure so that use-space library 1381 * can avoid any unnecessary allocations. The only different part 1382 * is that we store the actual length of the address buffer into the 1383 * addrs_num structure member. That way we can re-use the existing 1384 * code. 1385 */ 1386 #ifdef CONFIG_COMPAT 1387 struct compat_sctp_getaddrs_old { 1388 sctp_assoc_t assoc_id; 1389 s32 addr_num; 1390 compat_uptr_t addrs; /* struct sockaddr * */ 1391 }; 1392 #endif 1393 1394 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1395 char __user *optval, 1396 int __user *optlen) 1397 { 1398 struct sctp_getaddrs_old param; 1399 sctp_assoc_t assoc_id = 0; 1400 int err = 0; 1401 1402 #ifdef CONFIG_COMPAT 1403 if (in_compat_syscall()) { 1404 struct compat_sctp_getaddrs_old param32; 1405 1406 if (len < sizeof(param32)) 1407 return -EINVAL; 1408 if (copy_from_user(¶m32, optval, sizeof(param32))) 1409 return -EFAULT; 1410 1411 param.assoc_id = param32.assoc_id; 1412 param.addr_num = param32.addr_num; 1413 param.addrs = compat_ptr(param32.addrs); 1414 } else 1415 #endif 1416 { 1417 if (len < sizeof(param)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m, optval, sizeof(param))) 1420 return -EFAULT; 1421 } 1422 1423 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1424 param.addrs, param.addr_num, 1425 &assoc_id); 1426 if (err == 0 || err == -EINPROGRESS) { 1427 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1428 return -EFAULT; 1429 if (put_user(sizeof(assoc_id), optlen)) 1430 return -EFAULT; 1431 } 1432 1433 return err; 1434 } 1435 1436 /* API 3.1.4 close() - UDP Style Syntax 1437 * Applications use close() to perform graceful shutdown (as described in 1438 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1439 * by a UDP-style socket. 1440 * 1441 * The syntax is 1442 * 1443 * ret = close(int sd); 1444 * 1445 * sd - the socket descriptor of the associations to be closed. 1446 * 1447 * To gracefully shutdown a specific association represented by the 1448 * UDP-style socket, an application should use the sendmsg() call, 1449 * passing no user data, but including the appropriate flag in the 1450 * ancillary data (see Section xxxx). 1451 * 1452 * If sd in the close() call is a branched-off socket representing only 1453 * one association, the shutdown is performed on that association only. 1454 * 1455 * 4.1.6 close() - TCP Style Syntax 1456 * 1457 * Applications use close() to gracefully close down an association. 1458 * 1459 * The syntax is: 1460 * 1461 * int close(int sd); 1462 * 1463 * sd - the socket descriptor of the association to be closed. 1464 * 1465 * After an application calls close() on a socket descriptor, no further 1466 * socket operations will succeed on that descriptor. 1467 * 1468 * API 7.1.4 SO_LINGER 1469 * 1470 * An application using the TCP-style socket can use this option to 1471 * perform the SCTP ABORT primitive. The linger option structure is: 1472 * 1473 * struct linger { 1474 * int l_onoff; // option on/off 1475 * int l_linger; // linger time 1476 * }; 1477 * 1478 * To enable the option, set l_onoff to 1. If the l_linger value is set 1479 * to 0, calling close() is the same as the ABORT primitive. If the 1480 * value is set to a negative value, the setsockopt() call will return 1481 * an error. If the value is set to a positive value linger_time, the 1482 * close() can be blocked for at most linger_time ms. If the graceful 1483 * shutdown phase does not finish during this period, close() will 1484 * return but the graceful shutdown phase continues in the system. 1485 */ 1486 static void sctp_close(struct sock *sk, long timeout) 1487 { 1488 struct net *net = sock_net(sk); 1489 struct sctp_endpoint *ep; 1490 struct sctp_association *asoc; 1491 struct list_head *pos, *temp; 1492 unsigned int data_was_unread; 1493 1494 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1495 1496 lock_sock(sk); 1497 sk->sk_shutdown = SHUTDOWN_MASK; 1498 sk->sk_state = SCTP_SS_CLOSING; 1499 1500 ep = sctp_sk(sk)->ep; 1501 1502 /* Clean up any skbs sitting on the receive queue. */ 1503 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1504 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1505 1506 /* Walk all associations on an endpoint. */ 1507 list_for_each_safe(pos, temp, &ep->asocs) { 1508 asoc = list_entry(pos, struct sctp_association, asocs); 1509 1510 if (sctp_style(sk, TCP)) { 1511 /* A closed association can still be in the list if 1512 * it belongs to a TCP-style listening socket that is 1513 * not yet accepted. If so, free it. If not, send an 1514 * ABORT or SHUTDOWN based on the linger options. 1515 */ 1516 if (sctp_state(asoc, CLOSED)) { 1517 sctp_association_free(asoc); 1518 continue; 1519 } 1520 } 1521 1522 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1523 !skb_queue_empty(&asoc->ulpq.reasm) || 1524 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1525 struct sctp_chunk *chunk; 1526 1527 chunk = sctp_make_abort_user(asoc, NULL, 0); 1528 sctp_primitive_ABORT(net, asoc, chunk); 1529 } else 1530 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1531 } 1532 1533 /* On a TCP-style socket, block for at most linger_time if set. */ 1534 if (sctp_style(sk, TCP) && timeout) 1535 sctp_wait_for_close(sk, timeout); 1536 1537 /* This will run the backlog queue. */ 1538 release_sock(sk); 1539 1540 /* Supposedly, no process has access to the socket, but 1541 * the net layers still may. 1542 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1543 * held and that should be grabbed before socket lock. 1544 */ 1545 spin_lock_bh(&net->sctp.addr_wq_lock); 1546 bh_lock_sock(sk); 1547 1548 /* Hold the sock, since sk_common_release() will put sock_put() 1549 * and we have just a little more cleanup. 1550 */ 1551 sock_hold(sk); 1552 sk_common_release(sk); 1553 1554 bh_unlock_sock(sk); 1555 spin_unlock_bh(&net->sctp.addr_wq_lock); 1556 1557 sock_put(sk); 1558 1559 SCTP_DBG_OBJCNT_DEC(sock); 1560 } 1561 1562 /* Handle EPIPE error. */ 1563 static int sctp_error(struct sock *sk, int flags, int err) 1564 { 1565 if (err == -EPIPE) 1566 err = sock_error(sk) ? : -EPIPE; 1567 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1568 send_sig(SIGPIPE, current, 0); 1569 return err; 1570 } 1571 1572 /* API 3.1.3 sendmsg() - UDP Style Syntax 1573 * 1574 * An application uses sendmsg() and recvmsg() calls to transmit data to 1575 * and receive data from its peer. 1576 * 1577 * ssize_t sendmsg(int socket, const struct msghdr *message, 1578 * int flags); 1579 * 1580 * socket - the socket descriptor of the endpoint. 1581 * message - pointer to the msghdr structure which contains a single 1582 * user message and possibly some ancillary data. 1583 * 1584 * See Section 5 for complete description of the data 1585 * structures. 1586 * 1587 * flags - flags sent or received with the user message, see Section 1588 * 5 for complete description of the flags. 1589 * 1590 * Note: This function could use a rewrite especially when explicit 1591 * connect support comes in. 1592 */ 1593 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1594 1595 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1596 1597 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1598 { 1599 struct net *net = sock_net(sk); 1600 struct sctp_sock *sp; 1601 struct sctp_endpoint *ep; 1602 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1603 struct sctp_transport *transport, *chunk_tp; 1604 struct sctp_chunk *chunk; 1605 union sctp_addr to; 1606 struct sockaddr *msg_name = NULL; 1607 struct sctp_sndrcvinfo default_sinfo; 1608 struct sctp_sndrcvinfo *sinfo; 1609 struct sctp_initmsg *sinit; 1610 sctp_assoc_t associd = 0; 1611 sctp_cmsgs_t cmsgs = { NULL }; 1612 sctp_scope_t scope; 1613 bool fill_sinfo_ttl = false, wait_connect = false; 1614 struct sctp_datamsg *datamsg; 1615 int msg_flags = msg->msg_flags; 1616 __u16 sinfo_flags = 0; 1617 long timeo; 1618 int err; 1619 1620 err = 0; 1621 sp = sctp_sk(sk); 1622 ep = sp->ep; 1623 1624 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1625 msg, msg_len, ep); 1626 1627 /* We cannot send a message over a TCP-style listening socket. */ 1628 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1629 err = -EPIPE; 1630 goto out_nounlock; 1631 } 1632 1633 /* Parse out the SCTP CMSGs. */ 1634 err = sctp_msghdr_parse(msg, &cmsgs); 1635 if (err) { 1636 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1637 goto out_nounlock; 1638 } 1639 1640 /* Fetch the destination address for this packet. This 1641 * address only selects the association--it is not necessarily 1642 * the address we will send to. 1643 * For a peeled-off socket, msg_name is ignored. 1644 */ 1645 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1646 int msg_namelen = msg->msg_namelen; 1647 1648 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1649 msg_namelen); 1650 if (err) 1651 return err; 1652 1653 if (msg_namelen > sizeof(to)) 1654 msg_namelen = sizeof(to); 1655 memcpy(&to, msg->msg_name, msg_namelen); 1656 msg_name = msg->msg_name; 1657 } 1658 1659 sinit = cmsgs.init; 1660 if (cmsgs.sinfo != NULL) { 1661 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1662 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1663 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1664 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1665 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1666 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1667 1668 sinfo = &default_sinfo; 1669 fill_sinfo_ttl = true; 1670 } else { 1671 sinfo = cmsgs.srinfo; 1672 } 1673 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1674 if (sinfo) { 1675 sinfo_flags = sinfo->sinfo_flags; 1676 associd = sinfo->sinfo_assoc_id; 1677 } 1678 1679 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1680 msg_len, sinfo_flags); 1681 1682 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1683 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1684 err = -EINVAL; 1685 goto out_nounlock; 1686 } 1687 1688 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1689 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1690 * If SCTP_ABORT is set, the message length could be non zero with 1691 * the msg_iov set to the user abort reason. 1692 */ 1693 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1694 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1695 err = -EINVAL; 1696 goto out_nounlock; 1697 } 1698 1699 /* If SCTP_ADDR_OVER is set, there must be an address 1700 * specified in msg_name. 1701 */ 1702 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1703 err = -EINVAL; 1704 goto out_nounlock; 1705 } 1706 1707 transport = NULL; 1708 1709 pr_debug("%s: about to look up association\n", __func__); 1710 1711 lock_sock(sk); 1712 1713 /* If a msg_name has been specified, assume this is to be used. */ 1714 if (msg_name) { 1715 /* Look for a matching association on the endpoint. */ 1716 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1717 1718 /* If we could not find a matching association on the 1719 * endpoint, make sure that it is not a TCP-style 1720 * socket that already has an association or there is 1721 * no peeled-off association on another socket. 1722 */ 1723 if (!asoc && 1724 ((sctp_style(sk, TCP) && 1725 (sctp_sstate(sk, ESTABLISHED) || 1726 sctp_sstate(sk, CLOSING))) || 1727 sctp_endpoint_is_peeled_off(ep, &to))) { 1728 err = -EADDRNOTAVAIL; 1729 goto out_unlock; 1730 } 1731 } else { 1732 asoc = sctp_id2assoc(sk, associd); 1733 if (!asoc) { 1734 err = -EPIPE; 1735 goto out_unlock; 1736 } 1737 } 1738 1739 if (asoc) { 1740 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1741 1742 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1743 * socket that has an association in CLOSED state. This can 1744 * happen when an accepted socket has an association that is 1745 * already CLOSED. 1746 */ 1747 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1748 err = -EPIPE; 1749 goto out_unlock; 1750 } 1751 1752 if (sinfo_flags & SCTP_EOF) { 1753 pr_debug("%s: shutting down association:%p\n", 1754 __func__, asoc); 1755 1756 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1757 err = 0; 1758 goto out_unlock; 1759 } 1760 if (sinfo_flags & SCTP_ABORT) { 1761 1762 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1763 if (!chunk) { 1764 err = -ENOMEM; 1765 goto out_unlock; 1766 } 1767 1768 pr_debug("%s: aborting association:%p\n", 1769 __func__, asoc); 1770 1771 sctp_primitive_ABORT(net, asoc, chunk); 1772 err = 0; 1773 goto out_unlock; 1774 } 1775 } 1776 1777 /* Do we need to create the association? */ 1778 if (!asoc) { 1779 pr_debug("%s: there is no association yet\n", __func__); 1780 1781 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1782 err = -EINVAL; 1783 goto out_unlock; 1784 } 1785 1786 /* Check for invalid stream against the stream counts, 1787 * either the default or the user specified stream counts. 1788 */ 1789 if (sinfo) { 1790 if (!sinit || !sinit->sinit_num_ostreams) { 1791 /* Check against the defaults. */ 1792 if (sinfo->sinfo_stream >= 1793 sp->initmsg.sinit_num_ostreams) { 1794 err = -EINVAL; 1795 goto out_unlock; 1796 } 1797 } else { 1798 /* Check against the requested. */ 1799 if (sinfo->sinfo_stream >= 1800 sinit->sinit_num_ostreams) { 1801 err = -EINVAL; 1802 goto out_unlock; 1803 } 1804 } 1805 } 1806 1807 /* 1808 * API 3.1.2 bind() - UDP Style Syntax 1809 * If a bind() or sctp_bindx() is not called prior to a 1810 * sendmsg() call that initiates a new association, the 1811 * system picks an ephemeral port and will choose an address 1812 * set equivalent to binding with a wildcard address. 1813 */ 1814 if (!ep->base.bind_addr.port) { 1815 if (sctp_autobind(sk)) { 1816 err = -EAGAIN; 1817 goto out_unlock; 1818 } 1819 } else { 1820 /* 1821 * If an unprivileged user inherits a one-to-many 1822 * style socket with open associations on a privileged 1823 * port, it MAY be permitted to accept new associations, 1824 * but it SHOULD NOT be permitted to open new 1825 * associations. 1826 */ 1827 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1828 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1829 err = -EACCES; 1830 goto out_unlock; 1831 } 1832 } 1833 1834 scope = sctp_scope(&to); 1835 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1836 if (!new_asoc) { 1837 err = -ENOMEM; 1838 goto out_unlock; 1839 } 1840 asoc = new_asoc; 1841 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1842 if (err < 0) { 1843 err = -ENOMEM; 1844 goto out_free; 1845 } 1846 1847 /* If the SCTP_INIT ancillary data is specified, set all 1848 * the association init values accordingly. 1849 */ 1850 if (sinit) { 1851 if (sinit->sinit_num_ostreams) { 1852 asoc->c.sinit_num_ostreams = 1853 sinit->sinit_num_ostreams; 1854 } 1855 if (sinit->sinit_max_instreams) { 1856 asoc->c.sinit_max_instreams = 1857 sinit->sinit_max_instreams; 1858 } 1859 if (sinit->sinit_max_attempts) { 1860 asoc->max_init_attempts 1861 = sinit->sinit_max_attempts; 1862 } 1863 if (sinit->sinit_max_init_timeo) { 1864 asoc->max_init_timeo = 1865 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1866 } 1867 } 1868 1869 /* Prime the peer's transport structures. */ 1870 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1871 if (!transport) { 1872 err = -ENOMEM; 1873 goto out_free; 1874 } 1875 } 1876 1877 /* ASSERT: we have a valid association at this point. */ 1878 pr_debug("%s: we have a valid association\n", __func__); 1879 1880 if (!sinfo) { 1881 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1882 * one with some defaults. 1883 */ 1884 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1885 default_sinfo.sinfo_stream = asoc->default_stream; 1886 default_sinfo.sinfo_flags = asoc->default_flags; 1887 default_sinfo.sinfo_ppid = asoc->default_ppid; 1888 default_sinfo.sinfo_context = asoc->default_context; 1889 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1890 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1891 1892 sinfo = &default_sinfo; 1893 } else if (fill_sinfo_ttl) { 1894 /* In case SNDINFO was specified, we still need to fill 1895 * it with a default ttl from the assoc here. 1896 */ 1897 sinfo->sinfo_timetolive = asoc->default_timetolive; 1898 } 1899 1900 /* API 7.1.7, the sndbuf size per association bounds the 1901 * maximum size of data that can be sent in a single send call. 1902 */ 1903 if (msg_len > sk->sk_sndbuf) { 1904 err = -EMSGSIZE; 1905 goto out_free; 1906 } 1907 1908 if (asoc->pmtu_pending) 1909 sctp_assoc_pending_pmtu(sk, asoc); 1910 1911 /* If fragmentation is disabled and the message length exceeds the 1912 * association fragmentation point, return EMSGSIZE. The I-D 1913 * does not specify what this error is, but this looks like 1914 * a great fit. 1915 */ 1916 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1917 err = -EMSGSIZE; 1918 goto out_free; 1919 } 1920 1921 /* Check for invalid stream. */ 1922 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1923 err = -EINVAL; 1924 goto out_free; 1925 } 1926 1927 if (sctp_wspace(asoc) < msg_len) 1928 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1929 1930 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1931 if (!sctp_wspace(asoc)) { 1932 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1933 if (err) 1934 goto out_free; 1935 } 1936 1937 /* If an address is passed with the sendto/sendmsg call, it is used 1938 * to override the primary destination address in the TCP model, or 1939 * when SCTP_ADDR_OVER flag is set in the UDP model. 1940 */ 1941 if ((sctp_style(sk, TCP) && msg_name) || 1942 (sinfo_flags & SCTP_ADDR_OVER)) { 1943 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1944 if (!chunk_tp) { 1945 err = -EINVAL; 1946 goto out_free; 1947 } 1948 } else 1949 chunk_tp = NULL; 1950 1951 /* Auto-connect, if we aren't connected already. */ 1952 if (sctp_state(asoc, CLOSED)) { 1953 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1954 if (err < 0) 1955 goto out_free; 1956 1957 wait_connect = true; 1958 pr_debug("%s: we associated primitively\n", __func__); 1959 } 1960 1961 /* Break the message into multiple chunks of maximum size. */ 1962 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1963 if (IS_ERR(datamsg)) { 1964 err = PTR_ERR(datamsg); 1965 goto out_free; 1966 } 1967 1968 /* Now send the (possibly) fragmented message. */ 1969 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1970 sctp_chunk_hold(chunk); 1971 1972 /* Do accounting for the write space. */ 1973 sctp_set_owner_w(chunk); 1974 1975 chunk->transport = chunk_tp; 1976 } 1977 1978 /* Send it to the lower layers. Note: all chunks 1979 * must either fail or succeed. The lower layer 1980 * works that way today. Keep it that way or this 1981 * breaks. 1982 */ 1983 err = sctp_primitive_SEND(net, asoc, datamsg); 1984 /* Did the lower layer accept the chunk? */ 1985 if (err) { 1986 sctp_datamsg_free(datamsg); 1987 goto out_free; 1988 } 1989 1990 pr_debug("%s: we sent primitively\n", __func__); 1991 1992 sctp_datamsg_put(datamsg); 1993 err = msg_len; 1994 1995 if (unlikely(wait_connect)) { 1996 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1997 sctp_wait_for_connect(asoc, &timeo); 1998 } 1999 2000 /* If we are already past ASSOCIATE, the lower 2001 * layers are responsible for association cleanup. 2002 */ 2003 goto out_unlock; 2004 2005 out_free: 2006 if (new_asoc) 2007 sctp_association_free(asoc); 2008 out_unlock: 2009 release_sock(sk); 2010 2011 out_nounlock: 2012 return sctp_error(sk, msg_flags, err); 2013 2014 #if 0 2015 do_sock_err: 2016 if (msg_len) 2017 err = msg_len; 2018 else 2019 err = sock_error(sk); 2020 goto out; 2021 2022 do_interrupted: 2023 if (msg_len) 2024 err = msg_len; 2025 goto out; 2026 #endif /* 0 */ 2027 } 2028 2029 /* This is an extended version of skb_pull() that removes the data from the 2030 * start of a skb even when data is spread across the list of skb's in the 2031 * frag_list. len specifies the total amount of data that needs to be removed. 2032 * when 'len' bytes could be removed from the skb, it returns 0. 2033 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2034 * could not be removed. 2035 */ 2036 static int sctp_skb_pull(struct sk_buff *skb, int len) 2037 { 2038 struct sk_buff *list; 2039 int skb_len = skb_headlen(skb); 2040 int rlen; 2041 2042 if (len <= skb_len) { 2043 __skb_pull(skb, len); 2044 return 0; 2045 } 2046 len -= skb_len; 2047 __skb_pull(skb, skb_len); 2048 2049 skb_walk_frags(skb, list) { 2050 rlen = sctp_skb_pull(list, len); 2051 skb->len -= (len-rlen); 2052 skb->data_len -= (len-rlen); 2053 2054 if (!rlen) 2055 return 0; 2056 2057 len = rlen; 2058 } 2059 2060 return len; 2061 } 2062 2063 /* API 3.1.3 recvmsg() - UDP Style Syntax 2064 * 2065 * ssize_t recvmsg(int socket, struct msghdr *message, 2066 * int flags); 2067 * 2068 * socket - the socket descriptor of the endpoint. 2069 * message - pointer to the msghdr structure which contains a single 2070 * user message and possibly some ancillary data. 2071 * 2072 * See Section 5 for complete description of the data 2073 * structures. 2074 * 2075 * flags - flags sent or received with the user message, see Section 2076 * 5 for complete description of the flags. 2077 */ 2078 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2079 int noblock, int flags, int *addr_len) 2080 { 2081 struct sctp_ulpevent *event = NULL; 2082 struct sctp_sock *sp = sctp_sk(sk); 2083 struct sk_buff *skb, *head_skb; 2084 int copied; 2085 int err = 0; 2086 int skb_len; 2087 2088 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2089 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2090 addr_len); 2091 2092 lock_sock(sk); 2093 2094 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2095 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2096 err = -ENOTCONN; 2097 goto out; 2098 } 2099 2100 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2101 if (!skb) 2102 goto out; 2103 2104 /* Get the total length of the skb including any skb's in the 2105 * frag_list. 2106 */ 2107 skb_len = skb->len; 2108 2109 copied = skb_len; 2110 if (copied > len) 2111 copied = len; 2112 2113 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2114 2115 event = sctp_skb2event(skb); 2116 2117 if (err) 2118 goto out_free; 2119 2120 if (event->chunk && event->chunk->head_skb) 2121 head_skb = event->chunk->head_skb; 2122 else 2123 head_skb = skb; 2124 sock_recv_ts_and_drops(msg, sk, head_skb); 2125 if (sctp_ulpevent_is_notification(event)) { 2126 msg->msg_flags |= MSG_NOTIFICATION; 2127 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2128 } else { 2129 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2130 } 2131 2132 /* Check if we allow SCTP_NXTINFO. */ 2133 if (sp->recvnxtinfo) 2134 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2135 /* Check if we allow SCTP_RCVINFO. */ 2136 if (sp->recvrcvinfo) 2137 sctp_ulpevent_read_rcvinfo(event, msg); 2138 /* Check if we allow SCTP_SNDRCVINFO. */ 2139 if (sp->subscribe.sctp_data_io_event) 2140 sctp_ulpevent_read_sndrcvinfo(event, msg); 2141 2142 err = copied; 2143 2144 /* If skb's length exceeds the user's buffer, update the skb and 2145 * push it back to the receive_queue so that the next call to 2146 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2147 */ 2148 if (skb_len > copied) { 2149 msg->msg_flags &= ~MSG_EOR; 2150 if (flags & MSG_PEEK) 2151 goto out_free; 2152 sctp_skb_pull(skb, copied); 2153 skb_queue_head(&sk->sk_receive_queue, skb); 2154 2155 /* When only partial message is copied to the user, increase 2156 * rwnd by that amount. If all the data in the skb is read, 2157 * rwnd is updated when the event is freed. 2158 */ 2159 if (!sctp_ulpevent_is_notification(event)) 2160 sctp_assoc_rwnd_increase(event->asoc, copied); 2161 goto out; 2162 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2163 (event->msg_flags & MSG_EOR)) 2164 msg->msg_flags |= MSG_EOR; 2165 else 2166 msg->msg_flags &= ~MSG_EOR; 2167 2168 out_free: 2169 if (flags & MSG_PEEK) { 2170 /* Release the skb reference acquired after peeking the skb in 2171 * sctp_skb_recv_datagram(). 2172 */ 2173 kfree_skb(skb); 2174 } else { 2175 /* Free the event which includes releasing the reference to 2176 * the owner of the skb, freeing the skb and updating the 2177 * rwnd. 2178 */ 2179 sctp_ulpevent_free(event); 2180 } 2181 out: 2182 release_sock(sk); 2183 return err; 2184 } 2185 2186 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2187 * 2188 * This option is a on/off flag. If enabled no SCTP message 2189 * fragmentation will be performed. Instead if a message being sent 2190 * exceeds the current PMTU size, the message will NOT be sent and 2191 * instead a error will be indicated to the user. 2192 */ 2193 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2194 char __user *optval, 2195 unsigned int optlen) 2196 { 2197 int val; 2198 2199 if (optlen < sizeof(int)) 2200 return -EINVAL; 2201 2202 if (get_user(val, (int __user *)optval)) 2203 return -EFAULT; 2204 2205 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2206 2207 return 0; 2208 } 2209 2210 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2211 unsigned int optlen) 2212 { 2213 struct sctp_association *asoc; 2214 struct sctp_ulpevent *event; 2215 2216 if (optlen > sizeof(struct sctp_event_subscribe)) 2217 return -EINVAL; 2218 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2219 return -EFAULT; 2220 2221 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2222 * if there is no data to be sent or retransmit, the stack will 2223 * immediately send up this notification. 2224 */ 2225 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2226 &sctp_sk(sk)->subscribe)) { 2227 asoc = sctp_id2assoc(sk, 0); 2228 2229 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2230 event = sctp_ulpevent_make_sender_dry_event(asoc, 2231 GFP_ATOMIC); 2232 if (!event) 2233 return -ENOMEM; 2234 2235 sctp_ulpq_tail_event(&asoc->ulpq, event); 2236 } 2237 } 2238 2239 return 0; 2240 } 2241 2242 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2243 * 2244 * This socket option is applicable to the UDP-style socket only. When 2245 * set it will cause associations that are idle for more than the 2246 * specified number of seconds to automatically close. An association 2247 * being idle is defined an association that has NOT sent or received 2248 * user data. The special value of '0' indicates that no automatic 2249 * close of any associations should be performed. The option expects an 2250 * integer defining the number of seconds of idle time before an 2251 * association is closed. 2252 */ 2253 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2254 unsigned int optlen) 2255 { 2256 struct sctp_sock *sp = sctp_sk(sk); 2257 struct net *net = sock_net(sk); 2258 2259 /* Applicable to UDP-style socket only */ 2260 if (sctp_style(sk, TCP)) 2261 return -EOPNOTSUPP; 2262 if (optlen != sizeof(int)) 2263 return -EINVAL; 2264 if (copy_from_user(&sp->autoclose, optval, optlen)) 2265 return -EFAULT; 2266 2267 if (sp->autoclose > net->sctp.max_autoclose) 2268 sp->autoclose = net->sctp.max_autoclose; 2269 2270 return 0; 2271 } 2272 2273 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2274 * 2275 * Applications can enable or disable heartbeats for any peer address of 2276 * an association, modify an address's heartbeat interval, force a 2277 * heartbeat to be sent immediately, and adjust the address's maximum 2278 * number of retransmissions sent before an address is considered 2279 * unreachable. The following structure is used to access and modify an 2280 * address's parameters: 2281 * 2282 * struct sctp_paddrparams { 2283 * sctp_assoc_t spp_assoc_id; 2284 * struct sockaddr_storage spp_address; 2285 * uint32_t spp_hbinterval; 2286 * uint16_t spp_pathmaxrxt; 2287 * uint32_t spp_pathmtu; 2288 * uint32_t spp_sackdelay; 2289 * uint32_t spp_flags; 2290 * }; 2291 * 2292 * spp_assoc_id - (one-to-many style socket) This is filled in the 2293 * application, and identifies the association for 2294 * this query. 2295 * spp_address - This specifies which address is of interest. 2296 * spp_hbinterval - This contains the value of the heartbeat interval, 2297 * in milliseconds. If a value of zero 2298 * is present in this field then no changes are to 2299 * be made to this parameter. 2300 * spp_pathmaxrxt - This contains the maximum number of 2301 * retransmissions before this address shall be 2302 * considered unreachable. If a value of zero 2303 * is present in this field then no changes are to 2304 * be made to this parameter. 2305 * spp_pathmtu - When Path MTU discovery is disabled the value 2306 * specified here will be the "fixed" path mtu. 2307 * Note that if the spp_address field is empty 2308 * then all associations on this address will 2309 * have this fixed path mtu set upon them. 2310 * 2311 * spp_sackdelay - When delayed sack is enabled, this value specifies 2312 * the number of milliseconds that sacks will be delayed 2313 * for. This value will apply to all addresses of an 2314 * association if the spp_address field is empty. Note 2315 * also, that if delayed sack is enabled and this 2316 * value is set to 0, no change is made to the last 2317 * recorded delayed sack timer value. 2318 * 2319 * spp_flags - These flags are used to control various features 2320 * on an association. The flag field may contain 2321 * zero or more of the following options. 2322 * 2323 * SPP_HB_ENABLE - Enable heartbeats on the 2324 * specified address. Note that if the address 2325 * field is empty all addresses for the association 2326 * have heartbeats enabled upon them. 2327 * 2328 * SPP_HB_DISABLE - Disable heartbeats on the 2329 * speicifed address. Note that if the address 2330 * field is empty all addresses for the association 2331 * will have their heartbeats disabled. Note also 2332 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2333 * mutually exclusive, only one of these two should 2334 * be specified. Enabling both fields will have 2335 * undetermined results. 2336 * 2337 * SPP_HB_DEMAND - Request a user initiated heartbeat 2338 * to be made immediately. 2339 * 2340 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2341 * heartbeat delayis to be set to the value of 0 2342 * milliseconds. 2343 * 2344 * SPP_PMTUD_ENABLE - This field will enable PMTU 2345 * discovery upon the specified address. Note that 2346 * if the address feild is empty then all addresses 2347 * on the association are effected. 2348 * 2349 * SPP_PMTUD_DISABLE - This field will disable PMTU 2350 * discovery upon the specified address. Note that 2351 * if the address feild is empty then all addresses 2352 * on the association are effected. Not also that 2353 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2354 * exclusive. Enabling both will have undetermined 2355 * results. 2356 * 2357 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2358 * on delayed sack. The time specified in spp_sackdelay 2359 * is used to specify the sack delay for this address. Note 2360 * that if spp_address is empty then all addresses will 2361 * enable delayed sack and take on the sack delay 2362 * value specified in spp_sackdelay. 2363 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2364 * off delayed sack. If the spp_address field is blank then 2365 * delayed sack is disabled for the entire association. Note 2366 * also that this field is mutually exclusive to 2367 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2368 * results. 2369 */ 2370 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2371 struct sctp_transport *trans, 2372 struct sctp_association *asoc, 2373 struct sctp_sock *sp, 2374 int hb_change, 2375 int pmtud_change, 2376 int sackdelay_change) 2377 { 2378 int error; 2379 2380 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2381 struct net *net = sock_net(trans->asoc->base.sk); 2382 2383 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2384 if (error) 2385 return error; 2386 } 2387 2388 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2389 * this field is ignored. Note also that a value of zero indicates 2390 * the current setting should be left unchanged. 2391 */ 2392 if (params->spp_flags & SPP_HB_ENABLE) { 2393 2394 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2395 * set. This lets us use 0 value when this flag 2396 * is set. 2397 */ 2398 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2399 params->spp_hbinterval = 0; 2400 2401 if (params->spp_hbinterval || 2402 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2403 if (trans) { 2404 trans->hbinterval = 2405 msecs_to_jiffies(params->spp_hbinterval); 2406 } else if (asoc) { 2407 asoc->hbinterval = 2408 msecs_to_jiffies(params->spp_hbinterval); 2409 } else { 2410 sp->hbinterval = params->spp_hbinterval; 2411 } 2412 } 2413 } 2414 2415 if (hb_change) { 2416 if (trans) { 2417 trans->param_flags = 2418 (trans->param_flags & ~SPP_HB) | hb_change; 2419 } else if (asoc) { 2420 asoc->param_flags = 2421 (asoc->param_flags & ~SPP_HB) | hb_change; 2422 } else { 2423 sp->param_flags = 2424 (sp->param_flags & ~SPP_HB) | hb_change; 2425 } 2426 } 2427 2428 /* When Path MTU discovery is disabled the value specified here will 2429 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2430 * include the flag SPP_PMTUD_DISABLE for this field to have any 2431 * effect). 2432 */ 2433 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2434 if (trans) { 2435 trans->pathmtu = params->spp_pathmtu; 2436 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2437 } else if (asoc) { 2438 asoc->pathmtu = params->spp_pathmtu; 2439 } else { 2440 sp->pathmtu = params->spp_pathmtu; 2441 } 2442 } 2443 2444 if (pmtud_change) { 2445 if (trans) { 2446 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2447 (params->spp_flags & SPP_PMTUD_ENABLE); 2448 trans->param_flags = 2449 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2450 if (update) { 2451 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2452 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2453 } 2454 } else if (asoc) { 2455 asoc->param_flags = 2456 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2457 } else { 2458 sp->param_flags = 2459 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2460 } 2461 } 2462 2463 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2464 * value of this field is ignored. Note also that a value of zero 2465 * indicates the current setting should be left unchanged. 2466 */ 2467 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2468 if (trans) { 2469 trans->sackdelay = 2470 msecs_to_jiffies(params->spp_sackdelay); 2471 } else if (asoc) { 2472 asoc->sackdelay = 2473 msecs_to_jiffies(params->spp_sackdelay); 2474 } else { 2475 sp->sackdelay = params->spp_sackdelay; 2476 } 2477 } 2478 2479 if (sackdelay_change) { 2480 if (trans) { 2481 trans->param_flags = 2482 (trans->param_flags & ~SPP_SACKDELAY) | 2483 sackdelay_change; 2484 } else if (asoc) { 2485 asoc->param_flags = 2486 (asoc->param_flags & ~SPP_SACKDELAY) | 2487 sackdelay_change; 2488 } else { 2489 sp->param_flags = 2490 (sp->param_flags & ~SPP_SACKDELAY) | 2491 sackdelay_change; 2492 } 2493 } 2494 2495 /* Note that a value of zero indicates the current setting should be 2496 left unchanged. 2497 */ 2498 if (params->spp_pathmaxrxt) { 2499 if (trans) { 2500 trans->pathmaxrxt = params->spp_pathmaxrxt; 2501 } else if (asoc) { 2502 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2503 } else { 2504 sp->pathmaxrxt = params->spp_pathmaxrxt; 2505 } 2506 } 2507 2508 return 0; 2509 } 2510 2511 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2512 char __user *optval, 2513 unsigned int optlen) 2514 { 2515 struct sctp_paddrparams params; 2516 struct sctp_transport *trans = NULL; 2517 struct sctp_association *asoc = NULL; 2518 struct sctp_sock *sp = sctp_sk(sk); 2519 int error; 2520 int hb_change, pmtud_change, sackdelay_change; 2521 2522 if (optlen != sizeof(struct sctp_paddrparams)) 2523 return -EINVAL; 2524 2525 if (copy_from_user(¶ms, optval, optlen)) 2526 return -EFAULT; 2527 2528 /* Validate flags and value parameters. */ 2529 hb_change = params.spp_flags & SPP_HB; 2530 pmtud_change = params.spp_flags & SPP_PMTUD; 2531 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2532 2533 if (hb_change == SPP_HB || 2534 pmtud_change == SPP_PMTUD || 2535 sackdelay_change == SPP_SACKDELAY || 2536 params.spp_sackdelay > 500 || 2537 (params.spp_pathmtu && 2538 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2539 return -EINVAL; 2540 2541 /* If an address other than INADDR_ANY is specified, and 2542 * no transport is found, then the request is invalid. 2543 */ 2544 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2545 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2546 params.spp_assoc_id); 2547 if (!trans) 2548 return -EINVAL; 2549 } 2550 2551 /* Get association, if assoc_id != 0 and the socket is a one 2552 * to many style socket, and an association was not found, then 2553 * the id was invalid. 2554 */ 2555 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2556 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2557 return -EINVAL; 2558 2559 /* Heartbeat demand can only be sent on a transport or 2560 * association, but not a socket. 2561 */ 2562 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2563 return -EINVAL; 2564 2565 /* Process parameters. */ 2566 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2567 hb_change, pmtud_change, 2568 sackdelay_change); 2569 2570 if (error) 2571 return error; 2572 2573 /* If changes are for association, also apply parameters to each 2574 * transport. 2575 */ 2576 if (!trans && asoc) { 2577 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2578 transports) { 2579 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2580 hb_change, pmtud_change, 2581 sackdelay_change); 2582 } 2583 } 2584 2585 return 0; 2586 } 2587 2588 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2589 { 2590 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2591 } 2592 2593 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2594 { 2595 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2596 } 2597 2598 /* 2599 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2600 * 2601 * This option will effect the way delayed acks are performed. This 2602 * option allows you to get or set the delayed ack time, in 2603 * milliseconds. It also allows changing the delayed ack frequency. 2604 * Changing the frequency to 1 disables the delayed sack algorithm. If 2605 * the assoc_id is 0, then this sets or gets the endpoints default 2606 * values. If the assoc_id field is non-zero, then the set or get 2607 * effects the specified association for the one to many model (the 2608 * assoc_id field is ignored by the one to one model). Note that if 2609 * sack_delay or sack_freq are 0 when setting this option, then the 2610 * current values will remain unchanged. 2611 * 2612 * struct sctp_sack_info { 2613 * sctp_assoc_t sack_assoc_id; 2614 * uint32_t sack_delay; 2615 * uint32_t sack_freq; 2616 * }; 2617 * 2618 * sack_assoc_id - This parameter, indicates which association the user 2619 * is performing an action upon. Note that if this field's value is 2620 * zero then the endpoints default value is changed (effecting future 2621 * associations only). 2622 * 2623 * sack_delay - This parameter contains the number of milliseconds that 2624 * the user is requesting the delayed ACK timer be set to. Note that 2625 * this value is defined in the standard to be between 200 and 500 2626 * milliseconds. 2627 * 2628 * sack_freq - This parameter contains the number of packets that must 2629 * be received before a sack is sent without waiting for the delay 2630 * timer to expire. The default value for this is 2, setting this 2631 * value to 1 will disable the delayed sack algorithm. 2632 */ 2633 2634 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2635 char __user *optval, unsigned int optlen) 2636 { 2637 struct sctp_sack_info params; 2638 struct sctp_transport *trans = NULL; 2639 struct sctp_association *asoc = NULL; 2640 struct sctp_sock *sp = sctp_sk(sk); 2641 2642 if (optlen == sizeof(struct sctp_sack_info)) { 2643 if (copy_from_user(¶ms, optval, optlen)) 2644 return -EFAULT; 2645 2646 if (params.sack_delay == 0 && params.sack_freq == 0) 2647 return 0; 2648 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2649 pr_warn_ratelimited(DEPRECATED 2650 "%s (pid %d) " 2651 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2652 "Use struct sctp_sack_info instead\n", 2653 current->comm, task_pid_nr(current)); 2654 if (copy_from_user(¶ms, optval, optlen)) 2655 return -EFAULT; 2656 2657 if (params.sack_delay == 0) 2658 params.sack_freq = 1; 2659 else 2660 params.sack_freq = 0; 2661 } else 2662 return -EINVAL; 2663 2664 /* Validate value parameter. */ 2665 if (params.sack_delay > 500) 2666 return -EINVAL; 2667 2668 /* Get association, if sack_assoc_id != 0 and the socket is a one 2669 * to many style socket, and an association was not found, then 2670 * the id was invalid. 2671 */ 2672 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2673 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2674 return -EINVAL; 2675 2676 if (params.sack_delay) { 2677 if (asoc) { 2678 asoc->sackdelay = 2679 msecs_to_jiffies(params.sack_delay); 2680 asoc->param_flags = 2681 sctp_spp_sackdelay_enable(asoc->param_flags); 2682 } else { 2683 sp->sackdelay = params.sack_delay; 2684 sp->param_flags = 2685 sctp_spp_sackdelay_enable(sp->param_flags); 2686 } 2687 } 2688 2689 if (params.sack_freq == 1) { 2690 if (asoc) { 2691 asoc->param_flags = 2692 sctp_spp_sackdelay_disable(asoc->param_flags); 2693 } else { 2694 sp->param_flags = 2695 sctp_spp_sackdelay_disable(sp->param_flags); 2696 } 2697 } else if (params.sack_freq > 1) { 2698 if (asoc) { 2699 asoc->sackfreq = params.sack_freq; 2700 asoc->param_flags = 2701 sctp_spp_sackdelay_enable(asoc->param_flags); 2702 } else { 2703 sp->sackfreq = params.sack_freq; 2704 sp->param_flags = 2705 sctp_spp_sackdelay_enable(sp->param_flags); 2706 } 2707 } 2708 2709 /* If change is for association, also apply to each transport. */ 2710 if (asoc) { 2711 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2712 transports) { 2713 if (params.sack_delay) { 2714 trans->sackdelay = 2715 msecs_to_jiffies(params.sack_delay); 2716 trans->param_flags = 2717 sctp_spp_sackdelay_enable(trans->param_flags); 2718 } 2719 if (params.sack_freq == 1) { 2720 trans->param_flags = 2721 sctp_spp_sackdelay_disable(trans->param_flags); 2722 } else if (params.sack_freq > 1) { 2723 trans->sackfreq = params.sack_freq; 2724 trans->param_flags = 2725 sctp_spp_sackdelay_enable(trans->param_flags); 2726 } 2727 } 2728 } 2729 2730 return 0; 2731 } 2732 2733 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2734 * 2735 * Applications can specify protocol parameters for the default association 2736 * initialization. The option name argument to setsockopt() and getsockopt() 2737 * is SCTP_INITMSG. 2738 * 2739 * Setting initialization parameters is effective only on an unconnected 2740 * socket (for UDP-style sockets only future associations are effected 2741 * by the change). With TCP-style sockets, this option is inherited by 2742 * sockets derived from a listener socket. 2743 */ 2744 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2745 { 2746 struct sctp_initmsg sinit; 2747 struct sctp_sock *sp = sctp_sk(sk); 2748 2749 if (optlen != sizeof(struct sctp_initmsg)) 2750 return -EINVAL; 2751 if (copy_from_user(&sinit, optval, optlen)) 2752 return -EFAULT; 2753 2754 if (sinit.sinit_num_ostreams) 2755 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2756 if (sinit.sinit_max_instreams) 2757 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2758 if (sinit.sinit_max_attempts) 2759 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2760 if (sinit.sinit_max_init_timeo) 2761 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2762 2763 return 0; 2764 } 2765 2766 /* 2767 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2768 * 2769 * Applications that wish to use the sendto() system call may wish to 2770 * specify a default set of parameters that would normally be supplied 2771 * through the inclusion of ancillary data. This socket option allows 2772 * such an application to set the default sctp_sndrcvinfo structure. 2773 * The application that wishes to use this socket option simply passes 2774 * in to this call the sctp_sndrcvinfo structure defined in Section 2775 * 5.2.2) The input parameters accepted by this call include 2776 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2777 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2778 * to this call if the caller is using the UDP model. 2779 */ 2780 static int sctp_setsockopt_default_send_param(struct sock *sk, 2781 char __user *optval, 2782 unsigned int optlen) 2783 { 2784 struct sctp_sock *sp = sctp_sk(sk); 2785 struct sctp_association *asoc; 2786 struct sctp_sndrcvinfo info; 2787 2788 if (optlen != sizeof(info)) 2789 return -EINVAL; 2790 if (copy_from_user(&info, optval, optlen)) 2791 return -EFAULT; 2792 if (info.sinfo_flags & 2793 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2794 SCTP_ABORT | SCTP_EOF)) 2795 return -EINVAL; 2796 2797 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2798 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2799 return -EINVAL; 2800 if (asoc) { 2801 asoc->default_stream = info.sinfo_stream; 2802 asoc->default_flags = info.sinfo_flags; 2803 asoc->default_ppid = info.sinfo_ppid; 2804 asoc->default_context = info.sinfo_context; 2805 asoc->default_timetolive = info.sinfo_timetolive; 2806 } else { 2807 sp->default_stream = info.sinfo_stream; 2808 sp->default_flags = info.sinfo_flags; 2809 sp->default_ppid = info.sinfo_ppid; 2810 sp->default_context = info.sinfo_context; 2811 sp->default_timetolive = info.sinfo_timetolive; 2812 } 2813 2814 return 0; 2815 } 2816 2817 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2818 * (SCTP_DEFAULT_SNDINFO) 2819 */ 2820 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2821 char __user *optval, 2822 unsigned int optlen) 2823 { 2824 struct sctp_sock *sp = sctp_sk(sk); 2825 struct sctp_association *asoc; 2826 struct sctp_sndinfo info; 2827 2828 if (optlen != sizeof(info)) 2829 return -EINVAL; 2830 if (copy_from_user(&info, optval, optlen)) 2831 return -EFAULT; 2832 if (info.snd_flags & 2833 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2834 SCTP_ABORT | SCTP_EOF)) 2835 return -EINVAL; 2836 2837 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2838 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2839 return -EINVAL; 2840 if (asoc) { 2841 asoc->default_stream = info.snd_sid; 2842 asoc->default_flags = info.snd_flags; 2843 asoc->default_ppid = info.snd_ppid; 2844 asoc->default_context = info.snd_context; 2845 } else { 2846 sp->default_stream = info.snd_sid; 2847 sp->default_flags = info.snd_flags; 2848 sp->default_ppid = info.snd_ppid; 2849 sp->default_context = info.snd_context; 2850 } 2851 2852 return 0; 2853 } 2854 2855 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2856 * 2857 * Requests that the local SCTP stack use the enclosed peer address as 2858 * the association primary. The enclosed address must be one of the 2859 * association peer's addresses. 2860 */ 2861 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2862 unsigned int optlen) 2863 { 2864 struct sctp_prim prim; 2865 struct sctp_transport *trans; 2866 2867 if (optlen != sizeof(struct sctp_prim)) 2868 return -EINVAL; 2869 2870 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2871 return -EFAULT; 2872 2873 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2874 if (!trans) 2875 return -EINVAL; 2876 2877 sctp_assoc_set_primary(trans->asoc, trans); 2878 2879 return 0; 2880 } 2881 2882 /* 2883 * 7.1.5 SCTP_NODELAY 2884 * 2885 * Turn on/off any Nagle-like algorithm. This means that packets are 2886 * generally sent as soon as possible and no unnecessary delays are 2887 * introduced, at the cost of more packets in the network. Expects an 2888 * integer boolean flag. 2889 */ 2890 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2891 unsigned int optlen) 2892 { 2893 int val; 2894 2895 if (optlen < sizeof(int)) 2896 return -EINVAL; 2897 if (get_user(val, (int __user *)optval)) 2898 return -EFAULT; 2899 2900 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2901 return 0; 2902 } 2903 2904 /* 2905 * 2906 * 7.1.1 SCTP_RTOINFO 2907 * 2908 * The protocol parameters used to initialize and bound retransmission 2909 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2910 * and modify these parameters. 2911 * All parameters are time values, in milliseconds. A value of 0, when 2912 * modifying the parameters, indicates that the current value should not 2913 * be changed. 2914 * 2915 */ 2916 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2917 { 2918 struct sctp_rtoinfo rtoinfo; 2919 struct sctp_association *asoc; 2920 unsigned long rto_min, rto_max; 2921 struct sctp_sock *sp = sctp_sk(sk); 2922 2923 if (optlen != sizeof (struct sctp_rtoinfo)) 2924 return -EINVAL; 2925 2926 if (copy_from_user(&rtoinfo, optval, optlen)) 2927 return -EFAULT; 2928 2929 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2930 2931 /* Set the values to the specific association */ 2932 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2933 return -EINVAL; 2934 2935 rto_max = rtoinfo.srto_max; 2936 rto_min = rtoinfo.srto_min; 2937 2938 if (rto_max) 2939 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2940 else 2941 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2942 2943 if (rto_min) 2944 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2945 else 2946 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2947 2948 if (rto_min > rto_max) 2949 return -EINVAL; 2950 2951 if (asoc) { 2952 if (rtoinfo.srto_initial != 0) 2953 asoc->rto_initial = 2954 msecs_to_jiffies(rtoinfo.srto_initial); 2955 asoc->rto_max = rto_max; 2956 asoc->rto_min = rto_min; 2957 } else { 2958 /* If there is no association or the association-id = 0 2959 * set the values to the endpoint. 2960 */ 2961 if (rtoinfo.srto_initial != 0) 2962 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2963 sp->rtoinfo.srto_max = rto_max; 2964 sp->rtoinfo.srto_min = rto_min; 2965 } 2966 2967 return 0; 2968 } 2969 2970 /* 2971 * 2972 * 7.1.2 SCTP_ASSOCINFO 2973 * 2974 * This option is used to tune the maximum retransmission attempts 2975 * of the association. 2976 * Returns an error if the new association retransmission value is 2977 * greater than the sum of the retransmission value of the peer. 2978 * See [SCTP] for more information. 2979 * 2980 */ 2981 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2982 { 2983 2984 struct sctp_assocparams assocparams; 2985 struct sctp_association *asoc; 2986 2987 if (optlen != sizeof(struct sctp_assocparams)) 2988 return -EINVAL; 2989 if (copy_from_user(&assocparams, optval, optlen)) 2990 return -EFAULT; 2991 2992 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2993 2994 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2995 return -EINVAL; 2996 2997 /* Set the values to the specific association */ 2998 if (asoc) { 2999 if (assocparams.sasoc_asocmaxrxt != 0) { 3000 __u32 path_sum = 0; 3001 int paths = 0; 3002 struct sctp_transport *peer_addr; 3003 3004 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3005 transports) { 3006 path_sum += peer_addr->pathmaxrxt; 3007 paths++; 3008 } 3009 3010 /* Only validate asocmaxrxt if we have more than 3011 * one path/transport. We do this because path 3012 * retransmissions are only counted when we have more 3013 * then one path. 3014 */ 3015 if (paths > 1 && 3016 assocparams.sasoc_asocmaxrxt > path_sum) 3017 return -EINVAL; 3018 3019 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3020 } 3021 3022 if (assocparams.sasoc_cookie_life != 0) 3023 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3024 } else { 3025 /* Set the values to the endpoint */ 3026 struct sctp_sock *sp = sctp_sk(sk); 3027 3028 if (assocparams.sasoc_asocmaxrxt != 0) 3029 sp->assocparams.sasoc_asocmaxrxt = 3030 assocparams.sasoc_asocmaxrxt; 3031 if (assocparams.sasoc_cookie_life != 0) 3032 sp->assocparams.sasoc_cookie_life = 3033 assocparams.sasoc_cookie_life; 3034 } 3035 return 0; 3036 } 3037 3038 /* 3039 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3040 * 3041 * This socket option is a boolean flag which turns on or off mapped V4 3042 * addresses. If this option is turned on and the socket is type 3043 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3044 * If this option is turned off, then no mapping will be done of V4 3045 * addresses and a user will receive both PF_INET6 and PF_INET type 3046 * addresses on the socket. 3047 */ 3048 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3049 { 3050 int val; 3051 struct sctp_sock *sp = sctp_sk(sk); 3052 3053 if (optlen < sizeof(int)) 3054 return -EINVAL; 3055 if (get_user(val, (int __user *)optval)) 3056 return -EFAULT; 3057 if (val) 3058 sp->v4mapped = 1; 3059 else 3060 sp->v4mapped = 0; 3061 3062 return 0; 3063 } 3064 3065 /* 3066 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3067 * This option will get or set the maximum size to put in any outgoing 3068 * SCTP DATA chunk. If a message is larger than this size it will be 3069 * fragmented by SCTP into the specified size. Note that the underlying 3070 * SCTP implementation may fragment into smaller sized chunks when the 3071 * PMTU of the underlying association is smaller than the value set by 3072 * the user. The default value for this option is '0' which indicates 3073 * the user is NOT limiting fragmentation and only the PMTU will effect 3074 * SCTP's choice of DATA chunk size. Note also that values set larger 3075 * than the maximum size of an IP datagram will effectively let SCTP 3076 * control fragmentation (i.e. the same as setting this option to 0). 3077 * 3078 * The following structure is used to access and modify this parameter: 3079 * 3080 * struct sctp_assoc_value { 3081 * sctp_assoc_t assoc_id; 3082 * uint32_t assoc_value; 3083 * }; 3084 * 3085 * assoc_id: This parameter is ignored for one-to-one style sockets. 3086 * For one-to-many style sockets this parameter indicates which 3087 * association the user is performing an action upon. Note that if 3088 * this field's value is zero then the endpoints default value is 3089 * changed (effecting future associations only). 3090 * assoc_value: This parameter specifies the maximum size in bytes. 3091 */ 3092 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3093 { 3094 struct sctp_assoc_value params; 3095 struct sctp_association *asoc; 3096 struct sctp_sock *sp = sctp_sk(sk); 3097 int val; 3098 3099 if (optlen == sizeof(int)) { 3100 pr_warn_ratelimited(DEPRECATED 3101 "%s (pid %d) " 3102 "Use of int in maxseg socket option.\n" 3103 "Use struct sctp_assoc_value instead\n", 3104 current->comm, task_pid_nr(current)); 3105 if (copy_from_user(&val, optval, optlen)) 3106 return -EFAULT; 3107 params.assoc_id = 0; 3108 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3109 if (copy_from_user(¶ms, optval, optlen)) 3110 return -EFAULT; 3111 val = params.assoc_value; 3112 } else 3113 return -EINVAL; 3114 3115 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3116 return -EINVAL; 3117 3118 asoc = sctp_id2assoc(sk, params.assoc_id); 3119 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3120 return -EINVAL; 3121 3122 if (asoc) { 3123 if (val == 0) { 3124 val = asoc->pathmtu; 3125 val -= sp->pf->af->net_header_len; 3126 val -= sizeof(struct sctphdr) + 3127 sizeof(struct sctp_data_chunk); 3128 } 3129 asoc->user_frag = val; 3130 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3131 } else { 3132 sp->user_frag = val; 3133 } 3134 3135 return 0; 3136 } 3137 3138 3139 /* 3140 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3141 * 3142 * Requests that the peer mark the enclosed address as the association 3143 * primary. The enclosed address must be one of the association's 3144 * locally bound addresses. The following structure is used to make a 3145 * set primary request: 3146 */ 3147 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3148 unsigned int optlen) 3149 { 3150 struct net *net = sock_net(sk); 3151 struct sctp_sock *sp; 3152 struct sctp_association *asoc = NULL; 3153 struct sctp_setpeerprim prim; 3154 struct sctp_chunk *chunk; 3155 struct sctp_af *af; 3156 int err; 3157 3158 sp = sctp_sk(sk); 3159 3160 if (!net->sctp.addip_enable) 3161 return -EPERM; 3162 3163 if (optlen != sizeof(struct sctp_setpeerprim)) 3164 return -EINVAL; 3165 3166 if (copy_from_user(&prim, optval, optlen)) 3167 return -EFAULT; 3168 3169 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3170 if (!asoc) 3171 return -EINVAL; 3172 3173 if (!asoc->peer.asconf_capable) 3174 return -EPERM; 3175 3176 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3177 return -EPERM; 3178 3179 if (!sctp_state(asoc, ESTABLISHED)) 3180 return -ENOTCONN; 3181 3182 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3183 if (!af) 3184 return -EINVAL; 3185 3186 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3187 return -EADDRNOTAVAIL; 3188 3189 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3190 return -EADDRNOTAVAIL; 3191 3192 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3193 chunk = sctp_make_asconf_set_prim(asoc, 3194 (union sctp_addr *)&prim.sspp_addr); 3195 if (!chunk) 3196 return -ENOMEM; 3197 3198 err = sctp_send_asconf(asoc, chunk); 3199 3200 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3201 3202 return err; 3203 } 3204 3205 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3206 unsigned int optlen) 3207 { 3208 struct sctp_setadaptation adaptation; 3209 3210 if (optlen != sizeof(struct sctp_setadaptation)) 3211 return -EINVAL; 3212 if (copy_from_user(&adaptation, optval, optlen)) 3213 return -EFAULT; 3214 3215 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3222 * 3223 * The context field in the sctp_sndrcvinfo structure is normally only 3224 * used when a failed message is retrieved holding the value that was 3225 * sent down on the actual send call. This option allows the setting of 3226 * a default context on an association basis that will be received on 3227 * reading messages from the peer. This is especially helpful in the 3228 * one-2-many model for an application to keep some reference to an 3229 * internal state machine that is processing messages on the 3230 * association. Note that the setting of this value only effects 3231 * received messages from the peer and does not effect the value that is 3232 * saved with outbound messages. 3233 */ 3234 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3235 unsigned int optlen) 3236 { 3237 struct sctp_assoc_value params; 3238 struct sctp_sock *sp; 3239 struct sctp_association *asoc; 3240 3241 if (optlen != sizeof(struct sctp_assoc_value)) 3242 return -EINVAL; 3243 if (copy_from_user(¶ms, optval, optlen)) 3244 return -EFAULT; 3245 3246 sp = sctp_sk(sk); 3247 3248 if (params.assoc_id != 0) { 3249 asoc = sctp_id2assoc(sk, params.assoc_id); 3250 if (!asoc) 3251 return -EINVAL; 3252 asoc->default_rcv_context = params.assoc_value; 3253 } else { 3254 sp->default_rcv_context = params.assoc_value; 3255 } 3256 3257 return 0; 3258 } 3259 3260 /* 3261 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3262 * 3263 * This options will at a minimum specify if the implementation is doing 3264 * fragmented interleave. Fragmented interleave, for a one to many 3265 * socket, is when subsequent calls to receive a message may return 3266 * parts of messages from different associations. Some implementations 3267 * may allow you to turn this value on or off. If so, when turned off, 3268 * no fragment interleave will occur (which will cause a head of line 3269 * blocking amongst multiple associations sharing the same one to many 3270 * socket). When this option is turned on, then each receive call may 3271 * come from a different association (thus the user must receive data 3272 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3273 * association each receive belongs to. 3274 * 3275 * This option takes a boolean value. A non-zero value indicates that 3276 * fragmented interleave is on. A value of zero indicates that 3277 * fragmented interleave is off. 3278 * 3279 * Note that it is important that an implementation that allows this 3280 * option to be turned on, have it off by default. Otherwise an unaware 3281 * application using the one to many model may become confused and act 3282 * incorrectly. 3283 */ 3284 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3285 char __user *optval, 3286 unsigned int optlen) 3287 { 3288 int val; 3289 3290 if (optlen != sizeof(int)) 3291 return -EINVAL; 3292 if (get_user(val, (int __user *)optval)) 3293 return -EFAULT; 3294 3295 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3296 3297 return 0; 3298 } 3299 3300 /* 3301 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3302 * (SCTP_PARTIAL_DELIVERY_POINT) 3303 * 3304 * This option will set or get the SCTP partial delivery point. This 3305 * point is the size of a message where the partial delivery API will be 3306 * invoked to help free up rwnd space for the peer. Setting this to a 3307 * lower value will cause partial deliveries to happen more often. The 3308 * calls argument is an integer that sets or gets the partial delivery 3309 * point. Note also that the call will fail if the user attempts to set 3310 * this value larger than the socket receive buffer size. 3311 * 3312 * Note that any single message having a length smaller than or equal to 3313 * the SCTP partial delivery point will be delivered in one single read 3314 * call as long as the user provided buffer is large enough to hold the 3315 * message. 3316 */ 3317 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3318 char __user *optval, 3319 unsigned int optlen) 3320 { 3321 u32 val; 3322 3323 if (optlen != sizeof(u32)) 3324 return -EINVAL; 3325 if (get_user(val, (int __user *)optval)) 3326 return -EFAULT; 3327 3328 /* Note: We double the receive buffer from what the user sets 3329 * it to be, also initial rwnd is based on rcvbuf/2. 3330 */ 3331 if (val > (sk->sk_rcvbuf >> 1)) 3332 return -EINVAL; 3333 3334 sctp_sk(sk)->pd_point = val; 3335 3336 return 0; /* is this the right error code? */ 3337 } 3338 3339 /* 3340 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3341 * 3342 * This option will allow a user to change the maximum burst of packets 3343 * that can be emitted by this association. Note that the default value 3344 * is 4, and some implementations may restrict this setting so that it 3345 * can only be lowered. 3346 * 3347 * NOTE: This text doesn't seem right. Do this on a socket basis with 3348 * future associations inheriting the socket value. 3349 */ 3350 static int sctp_setsockopt_maxburst(struct sock *sk, 3351 char __user *optval, 3352 unsigned int optlen) 3353 { 3354 struct sctp_assoc_value params; 3355 struct sctp_sock *sp; 3356 struct sctp_association *asoc; 3357 int val; 3358 int assoc_id = 0; 3359 3360 if (optlen == sizeof(int)) { 3361 pr_warn_ratelimited(DEPRECATED 3362 "%s (pid %d) " 3363 "Use of int in max_burst socket option deprecated.\n" 3364 "Use struct sctp_assoc_value instead\n", 3365 current->comm, task_pid_nr(current)); 3366 if (copy_from_user(&val, optval, optlen)) 3367 return -EFAULT; 3368 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3369 if (copy_from_user(¶ms, optval, optlen)) 3370 return -EFAULT; 3371 val = params.assoc_value; 3372 assoc_id = params.assoc_id; 3373 } else 3374 return -EINVAL; 3375 3376 sp = sctp_sk(sk); 3377 3378 if (assoc_id != 0) { 3379 asoc = sctp_id2assoc(sk, assoc_id); 3380 if (!asoc) 3381 return -EINVAL; 3382 asoc->max_burst = val; 3383 } else 3384 sp->max_burst = val; 3385 3386 return 0; 3387 } 3388 3389 /* 3390 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3391 * 3392 * This set option adds a chunk type that the user is requesting to be 3393 * received only in an authenticated way. Changes to the list of chunks 3394 * will only effect future associations on the socket. 3395 */ 3396 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3397 char __user *optval, 3398 unsigned int optlen) 3399 { 3400 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3401 struct sctp_authchunk val; 3402 3403 if (!ep->auth_enable) 3404 return -EACCES; 3405 3406 if (optlen != sizeof(struct sctp_authchunk)) 3407 return -EINVAL; 3408 if (copy_from_user(&val, optval, optlen)) 3409 return -EFAULT; 3410 3411 switch (val.sauth_chunk) { 3412 case SCTP_CID_INIT: 3413 case SCTP_CID_INIT_ACK: 3414 case SCTP_CID_SHUTDOWN_COMPLETE: 3415 case SCTP_CID_AUTH: 3416 return -EINVAL; 3417 } 3418 3419 /* add this chunk id to the endpoint */ 3420 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3421 } 3422 3423 /* 3424 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3425 * 3426 * This option gets or sets the list of HMAC algorithms that the local 3427 * endpoint requires the peer to use. 3428 */ 3429 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3430 char __user *optval, 3431 unsigned int optlen) 3432 { 3433 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3434 struct sctp_hmacalgo *hmacs; 3435 u32 idents; 3436 int err; 3437 3438 if (!ep->auth_enable) 3439 return -EACCES; 3440 3441 if (optlen < sizeof(struct sctp_hmacalgo)) 3442 return -EINVAL; 3443 3444 hmacs = memdup_user(optval, optlen); 3445 if (IS_ERR(hmacs)) 3446 return PTR_ERR(hmacs); 3447 3448 idents = hmacs->shmac_num_idents; 3449 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3450 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3451 err = -EINVAL; 3452 goto out; 3453 } 3454 3455 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3456 out: 3457 kfree(hmacs); 3458 return err; 3459 } 3460 3461 /* 3462 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3463 * 3464 * This option will set a shared secret key which is used to build an 3465 * association shared key. 3466 */ 3467 static int sctp_setsockopt_auth_key(struct sock *sk, 3468 char __user *optval, 3469 unsigned int optlen) 3470 { 3471 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3472 struct sctp_authkey *authkey; 3473 struct sctp_association *asoc; 3474 int ret; 3475 3476 if (!ep->auth_enable) 3477 return -EACCES; 3478 3479 if (optlen <= sizeof(struct sctp_authkey)) 3480 return -EINVAL; 3481 3482 authkey = memdup_user(optval, optlen); 3483 if (IS_ERR(authkey)) 3484 return PTR_ERR(authkey); 3485 3486 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3487 ret = -EINVAL; 3488 goto out; 3489 } 3490 3491 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3492 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3493 ret = -EINVAL; 3494 goto out; 3495 } 3496 3497 ret = sctp_auth_set_key(ep, asoc, authkey); 3498 out: 3499 kzfree(authkey); 3500 return ret; 3501 } 3502 3503 /* 3504 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3505 * 3506 * This option will get or set the active shared key to be used to build 3507 * the association shared key. 3508 */ 3509 static int sctp_setsockopt_active_key(struct sock *sk, 3510 char __user *optval, 3511 unsigned int optlen) 3512 { 3513 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3514 struct sctp_authkeyid val; 3515 struct sctp_association *asoc; 3516 3517 if (!ep->auth_enable) 3518 return -EACCES; 3519 3520 if (optlen != sizeof(struct sctp_authkeyid)) 3521 return -EINVAL; 3522 if (copy_from_user(&val, optval, optlen)) 3523 return -EFAULT; 3524 3525 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3526 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3527 return -EINVAL; 3528 3529 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3530 } 3531 3532 /* 3533 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3534 * 3535 * This set option will delete a shared secret key from use. 3536 */ 3537 static int sctp_setsockopt_del_key(struct sock *sk, 3538 char __user *optval, 3539 unsigned int optlen) 3540 { 3541 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3542 struct sctp_authkeyid val; 3543 struct sctp_association *asoc; 3544 3545 if (!ep->auth_enable) 3546 return -EACCES; 3547 3548 if (optlen != sizeof(struct sctp_authkeyid)) 3549 return -EINVAL; 3550 if (copy_from_user(&val, optval, optlen)) 3551 return -EFAULT; 3552 3553 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3554 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3555 return -EINVAL; 3556 3557 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3558 3559 } 3560 3561 /* 3562 * 8.1.23 SCTP_AUTO_ASCONF 3563 * 3564 * This option will enable or disable the use of the automatic generation of 3565 * ASCONF chunks to add and delete addresses to an existing association. Note 3566 * that this option has two caveats namely: a) it only affects sockets that 3567 * are bound to all addresses available to the SCTP stack, and b) the system 3568 * administrator may have an overriding control that turns the ASCONF feature 3569 * off no matter what setting the socket option may have. 3570 * This option expects an integer boolean flag, where a non-zero value turns on 3571 * the option, and a zero value turns off the option. 3572 * Note. In this implementation, socket operation overrides default parameter 3573 * being set by sysctl as well as FreeBSD implementation 3574 */ 3575 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3576 unsigned int optlen) 3577 { 3578 int val; 3579 struct sctp_sock *sp = sctp_sk(sk); 3580 3581 if (optlen < sizeof(int)) 3582 return -EINVAL; 3583 if (get_user(val, (int __user *)optval)) 3584 return -EFAULT; 3585 if (!sctp_is_ep_boundall(sk) && val) 3586 return -EINVAL; 3587 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3588 return 0; 3589 3590 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3591 if (val == 0 && sp->do_auto_asconf) { 3592 list_del(&sp->auto_asconf_list); 3593 sp->do_auto_asconf = 0; 3594 } else if (val && !sp->do_auto_asconf) { 3595 list_add_tail(&sp->auto_asconf_list, 3596 &sock_net(sk)->sctp.auto_asconf_splist); 3597 sp->do_auto_asconf = 1; 3598 } 3599 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3600 return 0; 3601 } 3602 3603 /* 3604 * SCTP_PEER_ADDR_THLDS 3605 * 3606 * This option allows us to alter the partially failed threshold for one or all 3607 * transports in an association. See Section 6.1 of: 3608 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3609 */ 3610 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3611 char __user *optval, 3612 unsigned int optlen) 3613 { 3614 struct sctp_paddrthlds val; 3615 struct sctp_transport *trans; 3616 struct sctp_association *asoc; 3617 3618 if (optlen < sizeof(struct sctp_paddrthlds)) 3619 return -EINVAL; 3620 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3621 sizeof(struct sctp_paddrthlds))) 3622 return -EFAULT; 3623 3624 3625 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3626 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3627 if (!asoc) 3628 return -ENOENT; 3629 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3630 transports) { 3631 if (val.spt_pathmaxrxt) 3632 trans->pathmaxrxt = val.spt_pathmaxrxt; 3633 trans->pf_retrans = val.spt_pathpfthld; 3634 } 3635 3636 if (val.spt_pathmaxrxt) 3637 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3638 asoc->pf_retrans = val.spt_pathpfthld; 3639 } else { 3640 trans = sctp_addr_id2transport(sk, &val.spt_address, 3641 val.spt_assoc_id); 3642 if (!trans) 3643 return -ENOENT; 3644 3645 if (val.spt_pathmaxrxt) 3646 trans->pathmaxrxt = val.spt_pathmaxrxt; 3647 trans->pf_retrans = val.spt_pathpfthld; 3648 } 3649 3650 return 0; 3651 } 3652 3653 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3654 char __user *optval, 3655 unsigned int optlen) 3656 { 3657 int val; 3658 3659 if (optlen < sizeof(int)) 3660 return -EINVAL; 3661 if (get_user(val, (int __user *) optval)) 3662 return -EFAULT; 3663 3664 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3665 3666 return 0; 3667 } 3668 3669 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3670 char __user *optval, 3671 unsigned int optlen) 3672 { 3673 int val; 3674 3675 if (optlen < sizeof(int)) 3676 return -EINVAL; 3677 if (get_user(val, (int __user *) optval)) 3678 return -EFAULT; 3679 3680 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3681 3682 return 0; 3683 } 3684 3685 static int sctp_setsockopt_pr_supported(struct sock *sk, 3686 char __user *optval, 3687 unsigned int optlen) 3688 { 3689 struct sctp_assoc_value params; 3690 struct sctp_association *asoc; 3691 int retval = -EINVAL; 3692 3693 if (optlen != sizeof(params)) 3694 goto out; 3695 3696 if (copy_from_user(¶ms, optval, optlen)) { 3697 retval = -EFAULT; 3698 goto out; 3699 } 3700 3701 asoc = sctp_id2assoc(sk, params.assoc_id); 3702 if (asoc) { 3703 asoc->prsctp_enable = !!params.assoc_value; 3704 } else if (!params.assoc_id) { 3705 struct sctp_sock *sp = sctp_sk(sk); 3706 3707 sp->ep->prsctp_enable = !!params.assoc_value; 3708 } else { 3709 goto out; 3710 } 3711 3712 retval = 0; 3713 3714 out: 3715 return retval; 3716 } 3717 3718 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3719 char __user *optval, 3720 unsigned int optlen) 3721 { 3722 struct sctp_default_prinfo info; 3723 struct sctp_association *asoc; 3724 int retval = -EINVAL; 3725 3726 if (optlen != sizeof(info)) 3727 goto out; 3728 3729 if (copy_from_user(&info, optval, sizeof(info))) { 3730 retval = -EFAULT; 3731 goto out; 3732 } 3733 3734 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3735 goto out; 3736 3737 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3738 info.pr_value = 0; 3739 3740 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3741 if (asoc) { 3742 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3743 asoc->default_timetolive = info.pr_value; 3744 } else if (!info.pr_assoc_id) { 3745 struct sctp_sock *sp = sctp_sk(sk); 3746 3747 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3748 sp->default_timetolive = info.pr_value; 3749 } else { 3750 goto out; 3751 } 3752 3753 retval = 0; 3754 3755 out: 3756 return retval; 3757 } 3758 3759 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3760 char __user *optval, 3761 unsigned int optlen) 3762 { 3763 struct sctp_assoc_value params; 3764 struct sctp_association *asoc; 3765 int retval = -EINVAL; 3766 3767 if (optlen != sizeof(params)) 3768 goto out; 3769 3770 if (copy_from_user(¶ms, optval, optlen)) { 3771 retval = -EFAULT; 3772 goto out; 3773 } 3774 3775 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3776 goto out; 3777 3778 asoc = sctp_id2assoc(sk, params.assoc_id); 3779 if (asoc) { 3780 asoc->strreset_enable = params.assoc_value; 3781 } else if (!params.assoc_id) { 3782 struct sctp_sock *sp = sctp_sk(sk); 3783 3784 sp->ep->strreset_enable = params.assoc_value; 3785 } else { 3786 goto out; 3787 } 3788 3789 retval = 0; 3790 3791 out: 3792 return retval; 3793 } 3794 3795 static int sctp_setsockopt_reset_streams(struct sock *sk, 3796 char __user *optval, 3797 unsigned int optlen) 3798 { 3799 struct sctp_reset_streams *params; 3800 struct sctp_association *asoc; 3801 int retval = -EINVAL; 3802 3803 if (optlen < sizeof(struct sctp_reset_streams)) 3804 return -EINVAL; 3805 3806 params = memdup_user(optval, optlen); 3807 if (IS_ERR(params)) 3808 return PTR_ERR(params); 3809 3810 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3811 if (!asoc) 3812 goto out; 3813 3814 retval = sctp_send_reset_streams(asoc, params); 3815 3816 out: 3817 kfree(params); 3818 return retval; 3819 } 3820 3821 /* API 6.2 setsockopt(), getsockopt() 3822 * 3823 * Applications use setsockopt() and getsockopt() to set or retrieve 3824 * socket options. Socket options are used to change the default 3825 * behavior of sockets calls. They are described in Section 7. 3826 * 3827 * The syntax is: 3828 * 3829 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3830 * int __user *optlen); 3831 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3832 * int optlen); 3833 * 3834 * sd - the socket descript. 3835 * level - set to IPPROTO_SCTP for all SCTP options. 3836 * optname - the option name. 3837 * optval - the buffer to store the value of the option. 3838 * optlen - the size of the buffer. 3839 */ 3840 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3841 char __user *optval, unsigned int optlen) 3842 { 3843 int retval = 0; 3844 3845 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3846 3847 /* I can hardly begin to describe how wrong this is. This is 3848 * so broken as to be worse than useless. The API draft 3849 * REALLY is NOT helpful here... I am not convinced that the 3850 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3851 * are at all well-founded. 3852 */ 3853 if (level != SOL_SCTP) { 3854 struct sctp_af *af = sctp_sk(sk)->pf->af; 3855 retval = af->setsockopt(sk, level, optname, optval, optlen); 3856 goto out_nounlock; 3857 } 3858 3859 lock_sock(sk); 3860 3861 switch (optname) { 3862 case SCTP_SOCKOPT_BINDX_ADD: 3863 /* 'optlen' is the size of the addresses buffer. */ 3864 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3865 optlen, SCTP_BINDX_ADD_ADDR); 3866 break; 3867 3868 case SCTP_SOCKOPT_BINDX_REM: 3869 /* 'optlen' is the size of the addresses buffer. */ 3870 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3871 optlen, SCTP_BINDX_REM_ADDR); 3872 break; 3873 3874 case SCTP_SOCKOPT_CONNECTX_OLD: 3875 /* 'optlen' is the size of the addresses buffer. */ 3876 retval = sctp_setsockopt_connectx_old(sk, 3877 (struct sockaddr __user *)optval, 3878 optlen); 3879 break; 3880 3881 case SCTP_SOCKOPT_CONNECTX: 3882 /* 'optlen' is the size of the addresses buffer. */ 3883 retval = sctp_setsockopt_connectx(sk, 3884 (struct sockaddr __user *)optval, 3885 optlen); 3886 break; 3887 3888 case SCTP_DISABLE_FRAGMENTS: 3889 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3890 break; 3891 3892 case SCTP_EVENTS: 3893 retval = sctp_setsockopt_events(sk, optval, optlen); 3894 break; 3895 3896 case SCTP_AUTOCLOSE: 3897 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3898 break; 3899 3900 case SCTP_PEER_ADDR_PARAMS: 3901 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3902 break; 3903 3904 case SCTP_DELAYED_SACK: 3905 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3906 break; 3907 case SCTP_PARTIAL_DELIVERY_POINT: 3908 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3909 break; 3910 3911 case SCTP_INITMSG: 3912 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3913 break; 3914 case SCTP_DEFAULT_SEND_PARAM: 3915 retval = sctp_setsockopt_default_send_param(sk, optval, 3916 optlen); 3917 break; 3918 case SCTP_DEFAULT_SNDINFO: 3919 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3920 break; 3921 case SCTP_PRIMARY_ADDR: 3922 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3923 break; 3924 case SCTP_SET_PEER_PRIMARY_ADDR: 3925 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3926 break; 3927 case SCTP_NODELAY: 3928 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3929 break; 3930 case SCTP_RTOINFO: 3931 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3932 break; 3933 case SCTP_ASSOCINFO: 3934 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3935 break; 3936 case SCTP_I_WANT_MAPPED_V4_ADDR: 3937 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3938 break; 3939 case SCTP_MAXSEG: 3940 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3941 break; 3942 case SCTP_ADAPTATION_LAYER: 3943 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3944 break; 3945 case SCTP_CONTEXT: 3946 retval = sctp_setsockopt_context(sk, optval, optlen); 3947 break; 3948 case SCTP_FRAGMENT_INTERLEAVE: 3949 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3950 break; 3951 case SCTP_MAX_BURST: 3952 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3953 break; 3954 case SCTP_AUTH_CHUNK: 3955 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3956 break; 3957 case SCTP_HMAC_IDENT: 3958 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3959 break; 3960 case SCTP_AUTH_KEY: 3961 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3962 break; 3963 case SCTP_AUTH_ACTIVE_KEY: 3964 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3965 break; 3966 case SCTP_AUTH_DELETE_KEY: 3967 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3968 break; 3969 case SCTP_AUTO_ASCONF: 3970 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3971 break; 3972 case SCTP_PEER_ADDR_THLDS: 3973 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3974 break; 3975 case SCTP_RECVRCVINFO: 3976 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3977 break; 3978 case SCTP_RECVNXTINFO: 3979 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3980 break; 3981 case SCTP_PR_SUPPORTED: 3982 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 3983 break; 3984 case SCTP_DEFAULT_PRINFO: 3985 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 3986 break; 3987 case SCTP_ENABLE_STREAM_RESET: 3988 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 3989 break; 3990 case SCTP_RESET_STREAMS: 3991 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 3992 break; 3993 default: 3994 retval = -ENOPROTOOPT; 3995 break; 3996 } 3997 3998 release_sock(sk); 3999 4000 out_nounlock: 4001 return retval; 4002 } 4003 4004 /* API 3.1.6 connect() - UDP Style Syntax 4005 * 4006 * An application may use the connect() call in the UDP model to initiate an 4007 * association without sending data. 4008 * 4009 * The syntax is: 4010 * 4011 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4012 * 4013 * sd: the socket descriptor to have a new association added to. 4014 * 4015 * nam: the address structure (either struct sockaddr_in or struct 4016 * sockaddr_in6 defined in RFC2553 [7]). 4017 * 4018 * len: the size of the address. 4019 */ 4020 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4021 int addr_len) 4022 { 4023 int err = 0; 4024 struct sctp_af *af; 4025 4026 lock_sock(sk); 4027 4028 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4029 addr, addr_len); 4030 4031 /* Validate addr_len before calling common connect/connectx routine. */ 4032 af = sctp_get_af_specific(addr->sa_family); 4033 if (!af || addr_len < af->sockaddr_len) { 4034 err = -EINVAL; 4035 } else { 4036 /* Pass correct addr len to common routine (so it knows there 4037 * is only one address being passed. 4038 */ 4039 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4040 } 4041 4042 release_sock(sk); 4043 return err; 4044 } 4045 4046 /* FIXME: Write comments. */ 4047 static int sctp_disconnect(struct sock *sk, int flags) 4048 { 4049 return -EOPNOTSUPP; /* STUB */ 4050 } 4051 4052 /* 4.1.4 accept() - TCP Style Syntax 4053 * 4054 * Applications use accept() call to remove an established SCTP 4055 * association from the accept queue of the endpoint. A new socket 4056 * descriptor will be returned from accept() to represent the newly 4057 * formed association. 4058 */ 4059 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 4060 { 4061 struct sctp_sock *sp; 4062 struct sctp_endpoint *ep; 4063 struct sock *newsk = NULL; 4064 struct sctp_association *asoc; 4065 long timeo; 4066 int error = 0; 4067 4068 lock_sock(sk); 4069 4070 sp = sctp_sk(sk); 4071 ep = sp->ep; 4072 4073 if (!sctp_style(sk, TCP)) { 4074 error = -EOPNOTSUPP; 4075 goto out; 4076 } 4077 4078 if (!sctp_sstate(sk, LISTENING)) { 4079 error = -EINVAL; 4080 goto out; 4081 } 4082 4083 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4084 4085 error = sctp_wait_for_accept(sk, timeo); 4086 if (error) 4087 goto out; 4088 4089 /* We treat the list of associations on the endpoint as the accept 4090 * queue and pick the first association on the list. 4091 */ 4092 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4093 4094 newsk = sp->pf->create_accept_sk(sk, asoc); 4095 if (!newsk) { 4096 error = -ENOMEM; 4097 goto out; 4098 } 4099 4100 /* Populate the fields of the newsk from the oldsk and migrate the 4101 * asoc to the newsk. 4102 */ 4103 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4104 4105 out: 4106 release_sock(sk); 4107 *err = error; 4108 return newsk; 4109 } 4110 4111 /* The SCTP ioctl handler. */ 4112 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4113 { 4114 int rc = -ENOTCONN; 4115 4116 lock_sock(sk); 4117 4118 /* 4119 * SEQPACKET-style sockets in LISTENING state are valid, for 4120 * SCTP, so only discard TCP-style sockets in LISTENING state. 4121 */ 4122 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4123 goto out; 4124 4125 switch (cmd) { 4126 case SIOCINQ: { 4127 struct sk_buff *skb; 4128 unsigned int amount = 0; 4129 4130 skb = skb_peek(&sk->sk_receive_queue); 4131 if (skb != NULL) { 4132 /* 4133 * We will only return the amount of this packet since 4134 * that is all that will be read. 4135 */ 4136 amount = skb->len; 4137 } 4138 rc = put_user(amount, (int __user *)arg); 4139 break; 4140 } 4141 default: 4142 rc = -ENOIOCTLCMD; 4143 break; 4144 } 4145 out: 4146 release_sock(sk); 4147 return rc; 4148 } 4149 4150 /* This is the function which gets called during socket creation to 4151 * initialized the SCTP-specific portion of the sock. 4152 * The sock structure should already be zero-filled memory. 4153 */ 4154 static int sctp_init_sock(struct sock *sk) 4155 { 4156 struct net *net = sock_net(sk); 4157 struct sctp_sock *sp; 4158 4159 pr_debug("%s: sk:%p\n", __func__, sk); 4160 4161 sp = sctp_sk(sk); 4162 4163 /* Initialize the SCTP per socket area. */ 4164 switch (sk->sk_type) { 4165 case SOCK_SEQPACKET: 4166 sp->type = SCTP_SOCKET_UDP; 4167 break; 4168 case SOCK_STREAM: 4169 sp->type = SCTP_SOCKET_TCP; 4170 break; 4171 default: 4172 return -ESOCKTNOSUPPORT; 4173 } 4174 4175 sk->sk_gso_type = SKB_GSO_SCTP; 4176 4177 /* Initialize default send parameters. These parameters can be 4178 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4179 */ 4180 sp->default_stream = 0; 4181 sp->default_ppid = 0; 4182 sp->default_flags = 0; 4183 sp->default_context = 0; 4184 sp->default_timetolive = 0; 4185 4186 sp->default_rcv_context = 0; 4187 sp->max_burst = net->sctp.max_burst; 4188 4189 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4190 4191 /* Initialize default setup parameters. These parameters 4192 * can be modified with the SCTP_INITMSG socket option or 4193 * overridden by the SCTP_INIT CMSG. 4194 */ 4195 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4196 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4197 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4198 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4199 4200 /* Initialize default RTO related parameters. These parameters can 4201 * be modified for with the SCTP_RTOINFO socket option. 4202 */ 4203 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4204 sp->rtoinfo.srto_max = net->sctp.rto_max; 4205 sp->rtoinfo.srto_min = net->sctp.rto_min; 4206 4207 /* Initialize default association related parameters. These parameters 4208 * can be modified with the SCTP_ASSOCINFO socket option. 4209 */ 4210 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4211 sp->assocparams.sasoc_number_peer_destinations = 0; 4212 sp->assocparams.sasoc_peer_rwnd = 0; 4213 sp->assocparams.sasoc_local_rwnd = 0; 4214 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4215 4216 /* Initialize default event subscriptions. By default, all the 4217 * options are off. 4218 */ 4219 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4220 4221 /* Default Peer Address Parameters. These defaults can 4222 * be modified via SCTP_PEER_ADDR_PARAMS 4223 */ 4224 sp->hbinterval = net->sctp.hb_interval; 4225 sp->pathmaxrxt = net->sctp.max_retrans_path; 4226 sp->pathmtu = 0; /* allow default discovery */ 4227 sp->sackdelay = net->sctp.sack_timeout; 4228 sp->sackfreq = 2; 4229 sp->param_flags = SPP_HB_ENABLE | 4230 SPP_PMTUD_ENABLE | 4231 SPP_SACKDELAY_ENABLE; 4232 4233 /* If enabled no SCTP message fragmentation will be performed. 4234 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4235 */ 4236 sp->disable_fragments = 0; 4237 4238 /* Enable Nagle algorithm by default. */ 4239 sp->nodelay = 0; 4240 4241 sp->recvrcvinfo = 0; 4242 sp->recvnxtinfo = 0; 4243 4244 /* Enable by default. */ 4245 sp->v4mapped = 1; 4246 4247 /* Auto-close idle associations after the configured 4248 * number of seconds. A value of 0 disables this 4249 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4250 * for UDP-style sockets only. 4251 */ 4252 sp->autoclose = 0; 4253 4254 /* User specified fragmentation limit. */ 4255 sp->user_frag = 0; 4256 4257 sp->adaptation_ind = 0; 4258 4259 sp->pf = sctp_get_pf_specific(sk->sk_family); 4260 4261 /* Control variables for partial data delivery. */ 4262 atomic_set(&sp->pd_mode, 0); 4263 skb_queue_head_init(&sp->pd_lobby); 4264 sp->frag_interleave = 0; 4265 4266 /* Create a per socket endpoint structure. Even if we 4267 * change the data structure relationships, this may still 4268 * be useful for storing pre-connect address information. 4269 */ 4270 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4271 if (!sp->ep) 4272 return -ENOMEM; 4273 4274 sp->hmac = NULL; 4275 4276 sk->sk_destruct = sctp_destruct_sock; 4277 4278 SCTP_DBG_OBJCNT_INC(sock); 4279 4280 local_bh_disable(); 4281 percpu_counter_inc(&sctp_sockets_allocated); 4282 sock_prot_inuse_add(net, sk->sk_prot, 1); 4283 4284 /* Nothing can fail after this block, otherwise 4285 * sctp_destroy_sock() will be called without addr_wq_lock held 4286 */ 4287 if (net->sctp.default_auto_asconf) { 4288 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4289 list_add_tail(&sp->auto_asconf_list, 4290 &net->sctp.auto_asconf_splist); 4291 sp->do_auto_asconf = 1; 4292 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4293 } else { 4294 sp->do_auto_asconf = 0; 4295 } 4296 4297 local_bh_enable(); 4298 4299 return 0; 4300 } 4301 4302 /* Cleanup any SCTP per socket resources. Must be called with 4303 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4304 */ 4305 static void sctp_destroy_sock(struct sock *sk) 4306 { 4307 struct sctp_sock *sp; 4308 4309 pr_debug("%s: sk:%p\n", __func__, sk); 4310 4311 /* Release our hold on the endpoint. */ 4312 sp = sctp_sk(sk); 4313 /* This could happen during socket init, thus we bail out 4314 * early, since the rest of the below is not setup either. 4315 */ 4316 if (sp->ep == NULL) 4317 return; 4318 4319 if (sp->do_auto_asconf) { 4320 sp->do_auto_asconf = 0; 4321 list_del(&sp->auto_asconf_list); 4322 } 4323 sctp_endpoint_free(sp->ep); 4324 local_bh_disable(); 4325 percpu_counter_dec(&sctp_sockets_allocated); 4326 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4327 local_bh_enable(); 4328 } 4329 4330 /* Triggered when there are no references on the socket anymore */ 4331 static void sctp_destruct_sock(struct sock *sk) 4332 { 4333 struct sctp_sock *sp = sctp_sk(sk); 4334 4335 /* Free up the HMAC transform. */ 4336 crypto_free_shash(sp->hmac); 4337 4338 inet_sock_destruct(sk); 4339 } 4340 4341 /* API 4.1.7 shutdown() - TCP Style Syntax 4342 * int shutdown(int socket, int how); 4343 * 4344 * sd - the socket descriptor of the association to be closed. 4345 * how - Specifies the type of shutdown. The values are 4346 * as follows: 4347 * SHUT_RD 4348 * Disables further receive operations. No SCTP 4349 * protocol action is taken. 4350 * SHUT_WR 4351 * Disables further send operations, and initiates 4352 * the SCTP shutdown sequence. 4353 * SHUT_RDWR 4354 * Disables further send and receive operations 4355 * and initiates the SCTP shutdown sequence. 4356 */ 4357 static void sctp_shutdown(struct sock *sk, int how) 4358 { 4359 struct net *net = sock_net(sk); 4360 struct sctp_endpoint *ep; 4361 4362 if (!sctp_style(sk, TCP)) 4363 return; 4364 4365 ep = sctp_sk(sk)->ep; 4366 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4367 struct sctp_association *asoc; 4368 4369 sk->sk_state = SCTP_SS_CLOSING; 4370 asoc = list_entry(ep->asocs.next, 4371 struct sctp_association, asocs); 4372 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4373 } 4374 } 4375 4376 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4377 struct sctp_info *info) 4378 { 4379 struct sctp_transport *prim; 4380 struct list_head *pos; 4381 int mask; 4382 4383 memset(info, 0, sizeof(*info)); 4384 if (!asoc) { 4385 struct sctp_sock *sp = sctp_sk(sk); 4386 4387 info->sctpi_s_autoclose = sp->autoclose; 4388 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4389 info->sctpi_s_pd_point = sp->pd_point; 4390 info->sctpi_s_nodelay = sp->nodelay; 4391 info->sctpi_s_disable_fragments = sp->disable_fragments; 4392 info->sctpi_s_v4mapped = sp->v4mapped; 4393 info->sctpi_s_frag_interleave = sp->frag_interleave; 4394 info->sctpi_s_type = sp->type; 4395 4396 return 0; 4397 } 4398 4399 info->sctpi_tag = asoc->c.my_vtag; 4400 info->sctpi_state = asoc->state; 4401 info->sctpi_rwnd = asoc->a_rwnd; 4402 info->sctpi_unackdata = asoc->unack_data; 4403 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4404 info->sctpi_instrms = asoc->c.sinit_max_instreams; 4405 info->sctpi_outstrms = asoc->c.sinit_num_ostreams; 4406 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4407 info->sctpi_inqueue++; 4408 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4409 info->sctpi_outqueue++; 4410 info->sctpi_overall_error = asoc->overall_error_count; 4411 info->sctpi_max_burst = asoc->max_burst; 4412 info->sctpi_maxseg = asoc->frag_point; 4413 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4414 info->sctpi_peer_tag = asoc->c.peer_vtag; 4415 4416 mask = asoc->peer.ecn_capable << 1; 4417 mask = (mask | asoc->peer.ipv4_address) << 1; 4418 mask = (mask | asoc->peer.ipv6_address) << 1; 4419 mask = (mask | asoc->peer.hostname_address) << 1; 4420 mask = (mask | asoc->peer.asconf_capable) << 1; 4421 mask = (mask | asoc->peer.prsctp_capable) << 1; 4422 mask = (mask | asoc->peer.auth_capable); 4423 info->sctpi_peer_capable = mask; 4424 mask = asoc->peer.sack_needed << 1; 4425 mask = (mask | asoc->peer.sack_generation) << 1; 4426 mask = (mask | asoc->peer.zero_window_announced); 4427 info->sctpi_peer_sack = mask; 4428 4429 info->sctpi_isacks = asoc->stats.isacks; 4430 info->sctpi_osacks = asoc->stats.osacks; 4431 info->sctpi_opackets = asoc->stats.opackets; 4432 info->sctpi_ipackets = asoc->stats.ipackets; 4433 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4434 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4435 info->sctpi_idupchunks = asoc->stats.idupchunks; 4436 info->sctpi_gapcnt = asoc->stats.gapcnt; 4437 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4438 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4439 info->sctpi_oodchunks = asoc->stats.oodchunks; 4440 info->sctpi_iodchunks = asoc->stats.iodchunks; 4441 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4442 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4443 4444 prim = asoc->peer.primary_path; 4445 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4446 sizeof(struct sockaddr_storage)); 4447 info->sctpi_p_state = prim->state; 4448 info->sctpi_p_cwnd = prim->cwnd; 4449 info->sctpi_p_srtt = prim->srtt; 4450 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4451 info->sctpi_p_hbinterval = prim->hbinterval; 4452 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4453 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4454 info->sctpi_p_ssthresh = prim->ssthresh; 4455 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4456 info->sctpi_p_flight_size = prim->flight_size; 4457 info->sctpi_p_error = prim->error_count; 4458 4459 return 0; 4460 } 4461 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4462 4463 /* use callback to avoid exporting the core structure */ 4464 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4465 { 4466 int err; 4467 4468 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4469 4470 err = rhashtable_walk_start(iter); 4471 if (err && err != -EAGAIN) { 4472 rhashtable_walk_stop(iter); 4473 rhashtable_walk_exit(iter); 4474 return err; 4475 } 4476 4477 return 0; 4478 } 4479 4480 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4481 { 4482 rhashtable_walk_stop(iter); 4483 rhashtable_walk_exit(iter); 4484 } 4485 4486 struct sctp_transport *sctp_transport_get_next(struct net *net, 4487 struct rhashtable_iter *iter) 4488 { 4489 struct sctp_transport *t; 4490 4491 t = rhashtable_walk_next(iter); 4492 for (; t; t = rhashtable_walk_next(iter)) { 4493 if (IS_ERR(t)) { 4494 if (PTR_ERR(t) == -EAGAIN) 4495 continue; 4496 break; 4497 } 4498 4499 if (net_eq(sock_net(t->asoc->base.sk), net) && 4500 t->asoc->peer.primary_path == t) 4501 break; 4502 } 4503 4504 return t; 4505 } 4506 4507 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4508 struct rhashtable_iter *iter, 4509 int pos) 4510 { 4511 void *obj = SEQ_START_TOKEN; 4512 4513 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4514 !IS_ERR(obj)) 4515 pos--; 4516 4517 return obj; 4518 } 4519 4520 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4521 void *p) { 4522 int err = 0; 4523 int hash = 0; 4524 struct sctp_ep_common *epb; 4525 struct sctp_hashbucket *head; 4526 4527 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4528 hash++, head++) { 4529 read_lock(&head->lock); 4530 sctp_for_each_hentry(epb, &head->chain) { 4531 err = cb(sctp_ep(epb), p); 4532 if (err) 4533 break; 4534 } 4535 read_unlock(&head->lock); 4536 } 4537 4538 return err; 4539 } 4540 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4541 4542 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4543 struct net *net, 4544 const union sctp_addr *laddr, 4545 const union sctp_addr *paddr, void *p) 4546 { 4547 struct sctp_transport *transport; 4548 int err; 4549 4550 rcu_read_lock(); 4551 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4552 rcu_read_unlock(); 4553 if (!transport) 4554 return -ENOENT; 4555 4556 err = cb(transport, p); 4557 sctp_transport_put(transport); 4558 4559 return err; 4560 } 4561 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4562 4563 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4564 struct net *net, int pos, void *p) { 4565 struct rhashtable_iter hti; 4566 void *obj; 4567 int err; 4568 4569 err = sctp_transport_walk_start(&hti); 4570 if (err) 4571 return err; 4572 4573 sctp_transport_get_idx(net, &hti, pos); 4574 obj = sctp_transport_get_next(net, &hti); 4575 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { 4576 struct sctp_transport *transport = obj; 4577 4578 if (!sctp_transport_hold(transport)) 4579 continue; 4580 err = cb(transport, p); 4581 sctp_transport_put(transport); 4582 if (err) 4583 break; 4584 } 4585 sctp_transport_walk_stop(&hti); 4586 4587 return err; 4588 } 4589 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4590 4591 /* 7.2.1 Association Status (SCTP_STATUS) 4592 4593 * Applications can retrieve current status information about an 4594 * association, including association state, peer receiver window size, 4595 * number of unacked data chunks, and number of data chunks pending 4596 * receipt. This information is read-only. 4597 */ 4598 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4599 char __user *optval, 4600 int __user *optlen) 4601 { 4602 struct sctp_status status; 4603 struct sctp_association *asoc = NULL; 4604 struct sctp_transport *transport; 4605 sctp_assoc_t associd; 4606 int retval = 0; 4607 4608 if (len < sizeof(status)) { 4609 retval = -EINVAL; 4610 goto out; 4611 } 4612 4613 len = sizeof(status); 4614 if (copy_from_user(&status, optval, len)) { 4615 retval = -EFAULT; 4616 goto out; 4617 } 4618 4619 associd = status.sstat_assoc_id; 4620 asoc = sctp_id2assoc(sk, associd); 4621 if (!asoc) { 4622 retval = -EINVAL; 4623 goto out; 4624 } 4625 4626 transport = asoc->peer.primary_path; 4627 4628 status.sstat_assoc_id = sctp_assoc2id(asoc); 4629 status.sstat_state = sctp_assoc_to_state(asoc); 4630 status.sstat_rwnd = asoc->peer.rwnd; 4631 status.sstat_unackdata = asoc->unack_data; 4632 4633 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4634 status.sstat_instrms = asoc->c.sinit_max_instreams; 4635 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4636 status.sstat_fragmentation_point = asoc->frag_point; 4637 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4638 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4639 transport->af_specific->sockaddr_len); 4640 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4641 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4642 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4643 status.sstat_primary.spinfo_state = transport->state; 4644 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4645 status.sstat_primary.spinfo_srtt = transport->srtt; 4646 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4647 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4648 4649 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4650 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4651 4652 if (put_user(len, optlen)) { 4653 retval = -EFAULT; 4654 goto out; 4655 } 4656 4657 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4658 __func__, len, status.sstat_state, status.sstat_rwnd, 4659 status.sstat_assoc_id); 4660 4661 if (copy_to_user(optval, &status, len)) { 4662 retval = -EFAULT; 4663 goto out; 4664 } 4665 4666 out: 4667 return retval; 4668 } 4669 4670 4671 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4672 * 4673 * Applications can retrieve information about a specific peer address 4674 * of an association, including its reachability state, congestion 4675 * window, and retransmission timer values. This information is 4676 * read-only. 4677 */ 4678 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4679 char __user *optval, 4680 int __user *optlen) 4681 { 4682 struct sctp_paddrinfo pinfo; 4683 struct sctp_transport *transport; 4684 int retval = 0; 4685 4686 if (len < sizeof(pinfo)) { 4687 retval = -EINVAL; 4688 goto out; 4689 } 4690 4691 len = sizeof(pinfo); 4692 if (copy_from_user(&pinfo, optval, len)) { 4693 retval = -EFAULT; 4694 goto out; 4695 } 4696 4697 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4698 pinfo.spinfo_assoc_id); 4699 if (!transport) 4700 return -EINVAL; 4701 4702 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4703 pinfo.spinfo_state = transport->state; 4704 pinfo.spinfo_cwnd = transport->cwnd; 4705 pinfo.spinfo_srtt = transport->srtt; 4706 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4707 pinfo.spinfo_mtu = transport->pathmtu; 4708 4709 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4710 pinfo.spinfo_state = SCTP_ACTIVE; 4711 4712 if (put_user(len, optlen)) { 4713 retval = -EFAULT; 4714 goto out; 4715 } 4716 4717 if (copy_to_user(optval, &pinfo, len)) { 4718 retval = -EFAULT; 4719 goto out; 4720 } 4721 4722 out: 4723 return retval; 4724 } 4725 4726 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4727 * 4728 * This option is a on/off flag. If enabled no SCTP message 4729 * fragmentation will be performed. Instead if a message being sent 4730 * exceeds the current PMTU size, the message will NOT be sent and 4731 * instead a error will be indicated to the user. 4732 */ 4733 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4734 char __user *optval, int __user *optlen) 4735 { 4736 int val; 4737 4738 if (len < sizeof(int)) 4739 return -EINVAL; 4740 4741 len = sizeof(int); 4742 val = (sctp_sk(sk)->disable_fragments == 1); 4743 if (put_user(len, optlen)) 4744 return -EFAULT; 4745 if (copy_to_user(optval, &val, len)) 4746 return -EFAULT; 4747 return 0; 4748 } 4749 4750 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4751 * 4752 * This socket option is used to specify various notifications and 4753 * ancillary data the user wishes to receive. 4754 */ 4755 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4756 int __user *optlen) 4757 { 4758 if (len == 0) 4759 return -EINVAL; 4760 if (len > sizeof(struct sctp_event_subscribe)) 4761 len = sizeof(struct sctp_event_subscribe); 4762 if (put_user(len, optlen)) 4763 return -EFAULT; 4764 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4765 return -EFAULT; 4766 return 0; 4767 } 4768 4769 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4770 * 4771 * This socket option is applicable to the UDP-style socket only. When 4772 * set it will cause associations that are idle for more than the 4773 * specified number of seconds to automatically close. An association 4774 * being idle is defined an association that has NOT sent or received 4775 * user data. The special value of '0' indicates that no automatic 4776 * close of any associations should be performed. The option expects an 4777 * integer defining the number of seconds of idle time before an 4778 * association is closed. 4779 */ 4780 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4781 { 4782 /* Applicable to UDP-style socket only */ 4783 if (sctp_style(sk, TCP)) 4784 return -EOPNOTSUPP; 4785 if (len < sizeof(int)) 4786 return -EINVAL; 4787 len = sizeof(int); 4788 if (put_user(len, optlen)) 4789 return -EFAULT; 4790 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4791 return -EFAULT; 4792 return 0; 4793 } 4794 4795 /* Helper routine to branch off an association to a new socket. */ 4796 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4797 { 4798 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4799 struct sctp_sock *sp = sctp_sk(sk); 4800 struct socket *sock; 4801 int err = 0; 4802 4803 if (!asoc) 4804 return -EINVAL; 4805 4806 /* An association cannot be branched off from an already peeled-off 4807 * socket, nor is this supported for tcp style sockets. 4808 */ 4809 if (!sctp_style(sk, UDP)) 4810 return -EINVAL; 4811 4812 /* Create a new socket. */ 4813 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4814 if (err < 0) 4815 return err; 4816 4817 sctp_copy_sock(sock->sk, sk, asoc); 4818 4819 /* Make peeled-off sockets more like 1-1 accepted sockets. 4820 * Set the daddr and initialize id to something more random 4821 */ 4822 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4823 4824 /* Populate the fields of the newsk from the oldsk and migrate the 4825 * asoc to the newsk. 4826 */ 4827 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4828 4829 *sockp = sock; 4830 4831 return err; 4832 } 4833 EXPORT_SYMBOL(sctp_do_peeloff); 4834 4835 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4836 { 4837 sctp_peeloff_arg_t peeloff; 4838 struct socket *newsock; 4839 struct file *newfile; 4840 int retval = 0; 4841 4842 if (len < sizeof(sctp_peeloff_arg_t)) 4843 return -EINVAL; 4844 len = sizeof(sctp_peeloff_arg_t); 4845 if (copy_from_user(&peeloff, optval, len)) 4846 return -EFAULT; 4847 4848 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4849 if (retval < 0) 4850 goto out; 4851 4852 /* Map the socket to an unused fd that can be returned to the user. */ 4853 retval = get_unused_fd_flags(0); 4854 if (retval < 0) { 4855 sock_release(newsock); 4856 goto out; 4857 } 4858 4859 newfile = sock_alloc_file(newsock, 0, NULL); 4860 if (IS_ERR(newfile)) { 4861 put_unused_fd(retval); 4862 sock_release(newsock); 4863 return PTR_ERR(newfile); 4864 } 4865 4866 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4867 retval); 4868 4869 /* Return the fd mapped to the new socket. */ 4870 if (put_user(len, optlen)) { 4871 fput(newfile); 4872 put_unused_fd(retval); 4873 return -EFAULT; 4874 } 4875 peeloff.sd = retval; 4876 if (copy_to_user(optval, &peeloff, len)) { 4877 fput(newfile); 4878 put_unused_fd(retval); 4879 return -EFAULT; 4880 } 4881 fd_install(retval, newfile); 4882 out: 4883 return retval; 4884 } 4885 4886 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4887 * 4888 * Applications can enable or disable heartbeats for any peer address of 4889 * an association, modify an address's heartbeat interval, force a 4890 * heartbeat to be sent immediately, and adjust the address's maximum 4891 * number of retransmissions sent before an address is considered 4892 * unreachable. The following structure is used to access and modify an 4893 * address's parameters: 4894 * 4895 * struct sctp_paddrparams { 4896 * sctp_assoc_t spp_assoc_id; 4897 * struct sockaddr_storage spp_address; 4898 * uint32_t spp_hbinterval; 4899 * uint16_t spp_pathmaxrxt; 4900 * uint32_t spp_pathmtu; 4901 * uint32_t spp_sackdelay; 4902 * uint32_t spp_flags; 4903 * }; 4904 * 4905 * spp_assoc_id - (one-to-many style socket) This is filled in the 4906 * application, and identifies the association for 4907 * this query. 4908 * spp_address - This specifies which address is of interest. 4909 * spp_hbinterval - This contains the value of the heartbeat interval, 4910 * in milliseconds. If a value of zero 4911 * is present in this field then no changes are to 4912 * be made to this parameter. 4913 * spp_pathmaxrxt - This contains the maximum number of 4914 * retransmissions before this address shall be 4915 * considered unreachable. If a value of zero 4916 * is present in this field then no changes are to 4917 * be made to this parameter. 4918 * spp_pathmtu - When Path MTU discovery is disabled the value 4919 * specified here will be the "fixed" path mtu. 4920 * Note that if the spp_address field is empty 4921 * then all associations on this address will 4922 * have this fixed path mtu set upon them. 4923 * 4924 * spp_sackdelay - When delayed sack is enabled, this value specifies 4925 * the number of milliseconds that sacks will be delayed 4926 * for. This value will apply to all addresses of an 4927 * association if the spp_address field is empty. Note 4928 * also, that if delayed sack is enabled and this 4929 * value is set to 0, no change is made to the last 4930 * recorded delayed sack timer value. 4931 * 4932 * spp_flags - These flags are used to control various features 4933 * on an association. The flag field may contain 4934 * zero or more of the following options. 4935 * 4936 * SPP_HB_ENABLE - Enable heartbeats on the 4937 * specified address. Note that if the address 4938 * field is empty all addresses for the association 4939 * have heartbeats enabled upon them. 4940 * 4941 * SPP_HB_DISABLE - Disable heartbeats on the 4942 * speicifed address. Note that if the address 4943 * field is empty all addresses for the association 4944 * will have their heartbeats disabled. Note also 4945 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4946 * mutually exclusive, only one of these two should 4947 * be specified. Enabling both fields will have 4948 * undetermined results. 4949 * 4950 * SPP_HB_DEMAND - Request a user initiated heartbeat 4951 * to be made immediately. 4952 * 4953 * SPP_PMTUD_ENABLE - This field will enable PMTU 4954 * discovery upon the specified address. Note that 4955 * if the address feild is empty then all addresses 4956 * on the association are effected. 4957 * 4958 * SPP_PMTUD_DISABLE - This field will disable PMTU 4959 * discovery upon the specified address. Note that 4960 * if the address feild is empty then all addresses 4961 * on the association are effected. Not also that 4962 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4963 * exclusive. Enabling both will have undetermined 4964 * results. 4965 * 4966 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4967 * on delayed sack. The time specified in spp_sackdelay 4968 * is used to specify the sack delay for this address. Note 4969 * that if spp_address is empty then all addresses will 4970 * enable delayed sack and take on the sack delay 4971 * value specified in spp_sackdelay. 4972 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4973 * off delayed sack. If the spp_address field is blank then 4974 * delayed sack is disabled for the entire association. Note 4975 * also that this field is mutually exclusive to 4976 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4977 * results. 4978 */ 4979 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4980 char __user *optval, int __user *optlen) 4981 { 4982 struct sctp_paddrparams params; 4983 struct sctp_transport *trans = NULL; 4984 struct sctp_association *asoc = NULL; 4985 struct sctp_sock *sp = sctp_sk(sk); 4986 4987 if (len < sizeof(struct sctp_paddrparams)) 4988 return -EINVAL; 4989 len = sizeof(struct sctp_paddrparams); 4990 if (copy_from_user(¶ms, optval, len)) 4991 return -EFAULT; 4992 4993 /* If an address other than INADDR_ANY is specified, and 4994 * no transport is found, then the request is invalid. 4995 */ 4996 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4997 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4998 params.spp_assoc_id); 4999 if (!trans) { 5000 pr_debug("%s: failed no transport\n", __func__); 5001 return -EINVAL; 5002 } 5003 } 5004 5005 /* Get association, if assoc_id != 0 and the socket is a one 5006 * to many style socket, and an association was not found, then 5007 * the id was invalid. 5008 */ 5009 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5010 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5011 pr_debug("%s: failed no association\n", __func__); 5012 return -EINVAL; 5013 } 5014 5015 if (trans) { 5016 /* Fetch transport values. */ 5017 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5018 params.spp_pathmtu = trans->pathmtu; 5019 params.spp_pathmaxrxt = trans->pathmaxrxt; 5020 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5021 5022 /*draft-11 doesn't say what to return in spp_flags*/ 5023 params.spp_flags = trans->param_flags; 5024 } else if (asoc) { 5025 /* Fetch association values. */ 5026 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5027 params.spp_pathmtu = asoc->pathmtu; 5028 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5029 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5030 5031 /*draft-11 doesn't say what to return in spp_flags*/ 5032 params.spp_flags = asoc->param_flags; 5033 } else { 5034 /* Fetch socket values. */ 5035 params.spp_hbinterval = sp->hbinterval; 5036 params.spp_pathmtu = sp->pathmtu; 5037 params.spp_sackdelay = sp->sackdelay; 5038 params.spp_pathmaxrxt = sp->pathmaxrxt; 5039 5040 /*draft-11 doesn't say what to return in spp_flags*/ 5041 params.spp_flags = sp->param_flags; 5042 } 5043 5044 if (copy_to_user(optval, ¶ms, len)) 5045 return -EFAULT; 5046 5047 if (put_user(len, optlen)) 5048 return -EFAULT; 5049 5050 return 0; 5051 } 5052 5053 /* 5054 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5055 * 5056 * This option will effect the way delayed acks are performed. This 5057 * option allows you to get or set the delayed ack time, in 5058 * milliseconds. It also allows changing the delayed ack frequency. 5059 * Changing the frequency to 1 disables the delayed sack algorithm. If 5060 * the assoc_id is 0, then this sets or gets the endpoints default 5061 * values. If the assoc_id field is non-zero, then the set or get 5062 * effects the specified association for the one to many model (the 5063 * assoc_id field is ignored by the one to one model). Note that if 5064 * sack_delay or sack_freq are 0 when setting this option, then the 5065 * current values will remain unchanged. 5066 * 5067 * struct sctp_sack_info { 5068 * sctp_assoc_t sack_assoc_id; 5069 * uint32_t sack_delay; 5070 * uint32_t sack_freq; 5071 * }; 5072 * 5073 * sack_assoc_id - This parameter, indicates which association the user 5074 * is performing an action upon. Note that if this field's value is 5075 * zero then the endpoints default value is changed (effecting future 5076 * associations only). 5077 * 5078 * sack_delay - This parameter contains the number of milliseconds that 5079 * the user is requesting the delayed ACK timer be set to. Note that 5080 * this value is defined in the standard to be between 200 and 500 5081 * milliseconds. 5082 * 5083 * sack_freq - This parameter contains the number of packets that must 5084 * be received before a sack is sent without waiting for the delay 5085 * timer to expire. The default value for this is 2, setting this 5086 * value to 1 will disable the delayed sack algorithm. 5087 */ 5088 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5089 char __user *optval, 5090 int __user *optlen) 5091 { 5092 struct sctp_sack_info params; 5093 struct sctp_association *asoc = NULL; 5094 struct sctp_sock *sp = sctp_sk(sk); 5095 5096 if (len >= sizeof(struct sctp_sack_info)) { 5097 len = sizeof(struct sctp_sack_info); 5098 5099 if (copy_from_user(¶ms, optval, len)) 5100 return -EFAULT; 5101 } else if (len == sizeof(struct sctp_assoc_value)) { 5102 pr_warn_ratelimited(DEPRECATED 5103 "%s (pid %d) " 5104 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5105 "Use struct sctp_sack_info instead\n", 5106 current->comm, task_pid_nr(current)); 5107 if (copy_from_user(¶ms, optval, len)) 5108 return -EFAULT; 5109 } else 5110 return -EINVAL; 5111 5112 /* Get association, if sack_assoc_id != 0 and the socket is a one 5113 * to many style socket, and an association was not found, then 5114 * the id was invalid. 5115 */ 5116 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5117 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5118 return -EINVAL; 5119 5120 if (asoc) { 5121 /* Fetch association values. */ 5122 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5123 params.sack_delay = jiffies_to_msecs( 5124 asoc->sackdelay); 5125 params.sack_freq = asoc->sackfreq; 5126 5127 } else { 5128 params.sack_delay = 0; 5129 params.sack_freq = 1; 5130 } 5131 } else { 5132 /* Fetch socket values. */ 5133 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5134 params.sack_delay = sp->sackdelay; 5135 params.sack_freq = sp->sackfreq; 5136 } else { 5137 params.sack_delay = 0; 5138 params.sack_freq = 1; 5139 } 5140 } 5141 5142 if (copy_to_user(optval, ¶ms, len)) 5143 return -EFAULT; 5144 5145 if (put_user(len, optlen)) 5146 return -EFAULT; 5147 5148 return 0; 5149 } 5150 5151 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5152 * 5153 * Applications can specify protocol parameters for the default association 5154 * initialization. The option name argument to setsockopt() and getsockopt() 5155 * is SCTP_INITMSG. 5156 * 5157 * Setting initialization parameters is effective only on an unconnected 5158 * socket (for UDP-style sockets only future associations are effected 5159 * by the change). With TCP-style sockets, this option is inherited by 5160 * sockets derived from a listener socket. 5161 */ 5162 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5163 { 5164 if (len < sizeof(struct sctp_initmsg)) 5165 return -EINVAL; 5166 len = sizeof(struct sctp_initmsg); 5167 if (put_user(len, optlen)) 5168 return -EFAULT; 5169 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5170 return -EFAULT; 5171 return 0; 5172 } 5173 5174 5175 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5176 char __user *optval, int __user *optlen) 5177 { 5178 struct sctp_association *asoc; 5179 int cnt = 0; 5180 struct sctp_getaddrs getaddrs; 5181 struct sctp_transport *from; 5182 void __user *to; 5183 union sctp_addr temp; 5184 struct sctp_sock *sp = sctp_sk(sk); 5185 int addrlen; 5186 size_t space_left; 5187 int bytes_copied; 5188 5189 if (len < sizeof(struct sctp_getaddrs)) 5190 return -EINVAL; 5191 5192 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5193 return -EFAULT; 5194 5195 /* For UDP-style sockets, id specifies the association to query. */ 5196 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5197 if (!asoc) 5198 return -EINVAL; 5199 5200 to = optval + offsetof(struct sctp_getaddrs, addrs); 5201 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5202 5203 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5204 transports) { 5205 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5206 addrlen = sctp_get_pf_specific(sk->sk_family) 5207 ->addr_to_user(sp, &temp); 5208 if (space_left < addrlen) 5209 return -ENOMEM; 5210 if (copy_to_user(to, &temp, addrlen)) 5211 return -EFAULT; 5212 to += addrlen; 5213 cnt++; 5214 space_left -= addrlen; 5215 } 5216 5217 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5218 return -EFAULT; 5219 bytes_copied = ((char __user *)to) - optval; 5220 if (put_user(bytes_copied, optlen)) 5221 return -EFAULT; 5222 5223 return 0; 5224 } 5225 5226 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5227 size_t space_left, int *bytes_copied) 5228 { 5229 struct sctp_sockaddr_entry *addr; 5230 union sctp_addr temp; 5231 int cnt = 0; 5232 int addrlen; 5233 struct net *net = sock_net(sk); 5234 5235 rcu_read_lock(); 5236 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5237 if (!addr->valid) 5238 continue; 5239 5240 if ((PF_INET == sk->sk_family) && 5241 (AF_INET6 == addr->a.sa.sa_family)) 5242 continue; 5243 if ((PF_INET6 == sk->sk_family) && 5244 inet_v6_ipv6only(sk) && 5245 (AF_INET == addr->a.sa.sa_family)) 5246 continue; 5247 memcpy(&temp, &addr->a, sizeof(temp)); 5248 if (!temp.v4.sin_port) 5249 temp.v4.sin_port = htons(port); 5250 5251 addrlen = sctp_get_pf_specific(sk->sk_family) 5252 ->addr_to_user(sctp_sk(sk), &temp); 5253 5254 if (space_left < addrlen) { 5255 cnt = -ENOMEM; 5256 break; 5257 } 5258 memcpy(to, &temp, addrlen); 5259 5260 to += addrlen; 5261 cnt++; 5262 space_left -= addrlen; 5263 *bytes_copied += addrlen; 5264 } 5265 rcu_read_unlock(); 5266 5267 return cnt; 5268 } 5269 5270 5271 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5272 char __user *optval, int __user *optlen) 5273 { 5274 struct sctp_bind_addr *bp; 5275 struct sctp_association *asoc; 5276 int cnt = 0; 5277 struct sctp_getaddrs getaddrs; 5278 struct sctp_sockaddr_entry *addr; 5279 void __user *to; 5280 union sctp_addr temp; 5281 struct sctp_sock *sp = sctp_sk(sk); 5282 int addrlen; 5283 int err = 0; 5284 size_t space_left; 5285 int bytes_copied = 0; 5286 void *addrs; 5287 void *buf; 5288 5289 if (len < sizeof(struct sctp_getaddrs)) 5290 return -EINVAL; 5291 5292 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5293 return -EFAULT; 5294 5295 /* 5296 * For UDP-style sockets, id specifies the association to query. 5297 * If the id field is set to the value '0' then the locally bound 5298 * addresses are returned without regard to any particular 5299 * association. 5300 */ 5301 if (0 == getaddrs.assoc_id) { 5302 bp = &sctp_sk(sk)->ep->base.bind_addr; 5303 } else { 5304 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5305 if (!asoc) 5306 return -EINVAL; 5307 bp = &asoc->base.bind_addr; 5308 } 5309 5310 to = optval + offsetof(struct sctp_getaddrs, addrs); 5311 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5312 5313 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5314 if (!addrs) 5315 return -ENOMEM; 5316 5317 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5318 * addresses from the global local address list. 5319 */ 5320 if (sctp_list_single_entry(&bp->address_list)) { 5321 addr = list_entry(bp->address_list.next, 5322 struct sctp_sockaddr_entry, list); 5323 if (sctp_is_any(sk, &addr->a)) { 5324 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5325 space_left, &bytes_copied); 5326 if (cnt < 0) { 5327 err = cnt; 5328 goto out; 5329 } 5330 goto copy_getaddrs; 5331 } 5332 } 5333 5334 buf = addrs; 5335 /* Protection on the bound address list is not needed since 5336 * in the socket option context we hold a socket lock and 5337 * thus the bound address list can't change. 5338 */ 5339 list_for_each_entry(addr, &bp->address_list, list) { 5340 memcpy(&temp, &addr->a, sizeof(temp)); 5341 addrlen = sctp_get_pf_specific(sk->sk_family) 5342 ->addr_to_user(sp, &temp); 5343 if (space_left < addrlen) { 5344 err = -ENOMEM; /*fixme: right error?*/ 5345 goto out; 5346 } 5347 memcpy(buf, &temp, addrlen); 5348 buf += addrlen; 5349 bytes_copied += addrlen; 5350 cnt++; 5351 space_left -= addrlen; 5352 } 5353 5354 copy_getaddrs: 5355 if (copy_to_user(to, addrs, bytes_copied)) { 5356 err = -EFAULT; 5357 goto out; 5358 } 5359 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5360 err = -EFAULT; 5361 goto out; 5362 } 5363 if (put_user(bytes_copied, optlen)) 5364 err = -EFAULT; 5365 out: 5366 kfree(addrs); 5367 return err; 5368 } 5369 5370 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5371 * 5372 * Requests that the local SCTP stack use the enclosed peer address as 5373 * the association primary. The enclosed address must be one of the 5374 * association peer's addresses. 5375 */ 5376 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5377 char __user *optval, int __user *optlen) 5378 { 5379 struct sctp_prim prim; 5380 struct sctp_association *asoc; 5381 struct sctp_sock *sp = sctp_sk(sk); 5382 5383 if (len < sizeof(struct sctp_prim)) 5384 return -EINVAL; 5385 5386 len = sizeof(struct sctp_prim); 5387 5388 if (copy_from_user(&prim, optval, len)) 5389 return -EFAULT; 5390 5391 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5392 if (!asoc) 5393 return -EINVAL; 5394 5395 if (!asoc->peer.primary_path) 5396 return -ENOTCONN; 5397 5398 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5399 asoc->peer.primary_path->af_specific->sockaddr_len); 5400 5401 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5402 (union sctp_addr *)&prim.ssp_addr); 5403 5404 if (put_user(len, optlen)) 5405 return -EFAULT; 5406 if (copy_to_user(optval, &prim, len)) 5407 return -EFAULT; 5408 5409 return 0; 5410 } 5411 5412 /* 5413 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5414 * 5415 * Requests that the local endpoint set the specified Adaptation Layer 5416 * Indication parameter for all future INIT and INIT-ACK exchanges. 5417 */ 5418 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5419 char __user *optval, int __user *optlen) 5420 { 5421 struct sctp_setadaptation adaptation; 5422 5423 if (len < sizeof(struct sctp_setadaptation)) 5424 return -EINVAL; 5425 5426 len = sizeof(struct sctp_setadaptation); 5427 5428 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5429 5430 if (put_user(len, optlen)) 5431 return -EFAULT; 5432 if (copy_to_user(optval, &adaptation, len)) 5433 return -EFAULT; 5434 5435 return 0; 5436 } 5437 5438 /* 5439 * 5440 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5441 * 5442 * Applications that wish to use the sendto() system call may wish to 5443 * specify a default set of parameters that would normally be supplied 5444 * through the inclusion of ancillary data. This socket option allows 5445 * such an application to set the default sctp_sndrcvinfo structure. 5446 5447 5448 * The application that wishes to use this socket option simply passes 5449 * in to this call the sctp_sndrcvinfo structure defined in Section 5450 * 5.2.2) The input parameters accepted by this call include 5451 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5452 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5453 * to this call if the caller is using the UDP model. 5454 * 5455 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5456 */ 5457 static int sctp_getsockopt_default_send_param(struct sock *sk, 5458 int len, char __user *optval, 5459 int __user *optlen) 5460 { 5461 struct sctp_sock *sp = sctp_sk(sk); 5462 struct sctp_association *asoc; 5463 struct sctp_sndrcvinfo info; 5464 5465 if (len < sizeof(info)) 5466 return -EINVAL; 5467 5468 len = sizeof(info); 5469 5470 if (copy_from_user(&info, optval, len)) 5471 return -EFAULT; 5472 5473 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5474 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5475 return -EINVAL; 5476 if (asoc) { 5477 info.sinfo_stream = asoc->default_stream; 5478 info.sinfo_flags = asoc->default_flags; 5479 info.sinfo_ppid = asoc->default_ppid; 5480 info.sinfo_context = asoc->default_context; 5481 info.sinfo_timetolive = asoc->default_timetolive; 5482 } else { 5483 info.sinfo_stream = sp->default_stream; 5484 info.sinfo_flags = sp->default_flags; 5485 info.sinfo_ppid = sp->default_ppid; 5486 info.sinfo_context = sp->default_context; 5487 info.sinfo_timetolive = sp->default_timetolive; 5488 } 5489 5490 if (put_user(len, optlen)) 5491 return -EFAULT; 5492 if (copy_to_user(optval, &info, len)) 5493 return -EFAULT; 5494 5495 return 0; 5496 } 5497 5498 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5499 * (SCTP_DEFAULT_SNDINFO) 5500 */ 5501 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5502 char __user *optval, 5503 int __user *optlen) 5504 { 5505 struct sctp_sock *sp = sctp_sk(sk); 5506 struct sctp_association *asoc; 5507 struct sctp_sndinfo info; 5508 5509 if (len < sizeof(info)) 5510 return -EINVAL; 5511 5512 len = sizeof(info); 5513 5514 if (copy_from_user(&info, optval, len)) 5515 return -EFAULT; 5516 5517 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5518 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5519 return -EINVAL; 5520 if (asoc) { 5521 info.snd_sid = asoc->default_stream; 5522 info.snd_flags = asoc->default_flags; 5523 info.snd_ppid = asoc->default_ppid; 5524 info.snd_context = asoc->default_context; 5525 } else { 5526 info.snd_sid = sp->default_stream; 5527 info.snd_flags = sp->default_flags; 5528 info.snd_ppid = sp->default_ppid; 5529 info.snd_context = sp->default_context; 5530 } 5531 5532 if (put_user(len, optlen)) 5533 return -EFAULT; 5534 if (copy_to_user(optval, &info, len)) 5535 return -EFAULT; 5536 5537 return 0; 5538 } 5539 5540 /* 5541 * 5542 * 7.1.5 SCTP_NODELAY 5543 * 5544 * Turn on/off any Nagle-like algorithm. This means that packets are 5545 * generally sent as soon as possible and no unnecessary delays are 5546 * introduced, at the cost of more packets in the network. Expects an 5547 * integer boolean flag. 5548 */ 5549 5550 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5551 char __user *optval, int __user *optlen) 5552 { 5553 int val; 5554 5555 if (len < sizeof(int)) 5556 return -EINVAL; 5557 5558 len = sizeof(int); 5559 val = (sctp_sk(sk)->nodelay == 1); 5560 if (put_user(len, optlen)) 5561 return -EFAULT; 5562 if (copy_to_user(optval, &val, len)) 5563 return -EFAULT; 5564 return 0; 5565 } 5566 5567 /* 5568 * 5569 * 7.1.1 SCTP_RTOINFO 5570 * 5571 * The protocol parameters used to initialize and bound retransmission 5572 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5573 * and modify these parameters. 5574 * All parameters are time values, in milliseconds. A value of 0, when 5575 * modifying the parameters, indicates that the current value should not 5576 * be changed. 5577 * 5578 */ 5579 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5580 char __user *optval, 5581 int __user *optlen) { 5582 struct sctp_rtoinfo rtoinfo; 5583 struct sctp_association *asoc; 5584 5585 if (len < sizeof (struct sctp_rtoinfo)) 5586 return -EINVAL; 5587 5588 len = sizeof(struct sctp_rtoinfo); 5589 5590 if (copy_from_user(&rtoinfo, optval, len)) 5591 return -EFAULT; 5592 5593 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5594 5595 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5596 return -EINVAL; 5597 5598 /* Values corresponding to the specific association. */ 5599 if (asoc) { 5600 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5601 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5602 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5603 } else { 5604 /* Values corresponding to the endpoint. */ 5605 struct sctp_sock *sp = sctp_sk(sk); 5606 5607 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5608 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5609 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5610 } 5611 5612 if (put_user(len, optlen)) 5613 return -EFAULT; 5614 5615 if (copy_to_user(optval, &rtoinfo, len)) 5616 return -EFAULT; 5617 5618 return 0; 5619 } 5620 5621 /* 5622 * 5623 * 7.1.2 SCTP_ASSOCINFO 5624 * 5625 * This option is used to tune the maximum retransmission attempts 5626 * of the association. 5627 * Returns an error if the new association retransmission value is 5628 * greater than the sum of the retransmission value of the peer. 5629 * See [SCTP] for more information. 5630 * 5631 */ 5632 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5633 char __user *optval, 5634 int __user *optlen) 5635 { 5636 5637 struct sctp_assocparams assocparams; 5638 struct sctp_association *asoc; 5639 struct list_head *pos; 5640 int cnt = 0; 5641 5642 if (len < sizeof (struct sctp_assocparams)) 5643 return -EINVAL; 5644 5645 len = sizeof(struct sctp_assocparams); 5646 5647 if (copy_from_user(&assocparams, optval, len)) 5648 return -EFAULT; 5649 5650 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5651 5652 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5653 return -EINVAL; 5654 5655 /* Values correspoinding to the specific association */ 5656 if (asoc) { 5657 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5658 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5659 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5660 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5661 5662 list_for_each(pos, &asoc->peer.transport_addr_list) { 5663 cnt++; 5664 } 5665 5666 assocparams.sasoc_number_peer_destinations = cnt; 5667 } else { 5668 /* Values corresponding to the endpoint */ 5669 struct sctp_sock *sp = sctp_sk(sk); 5670 5671 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5672 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5673 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5674 assocparams.sasoc_cookie_life = 5675 sp->assocparams.sasoc_cookie_life; 5676 assocparams.sasoc_number_peer_destinations = 5677 sp->assocparams. 5678 sasoc_number_peer_destinations; 5679 } 5680 5681 if (put_user(len, optlen)) 5682 return -EFAULT; 5683 5684 if (copy_to_user(optval, &assocparams, len)) 5685 return -EFAULT; 5686 5687 return 0; 5688 } 5689 5690 /* 5691 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5692 * 5693 * This socket option is a boolean flag which turns on or off mapped V4 5694 * addresses. If this option is turned on and the socket is type 5695 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5696 * If this option is turned off, then no mapping will be done of V4 5697 * addresses and a user will receive both PF_INET6 and PF_INET type 5698 * addresses on the socket. 5699 */ 5700 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5701 char __user *optval, int __user *optlen) 5702 { 5703 int val; 5704 struct sctp_sock *sp = sctp_sk(sk); 5705 5706 if (len < sizeof(int)) 5707 return -EINVAL; 5708 5709 len = sizeof(int); 5710 val = sp->v4mapped; 5711 if (put_user(len, optlen)) 5712 return -EFAULT; 5713 if (copy_to_user(optval, &val, len)) 5714 return -EFAULT; 5715 5716 return 0; 5717 } 5718 5719 /* 5720 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5721 * (chapter and verse is quoted at sctp_setsockopt_context()) 5722 */ 5723 static int sctp_getsockopt_context(struct sock *sk, int len, 5724 char __user *optval, int __user *optlen) 5725 { 5726 struct sctp_assoc_value params; 5727 struct sctp_sock *sp; 5728 struct sctp_association *asoc; 5729 5730 if (len < sizeof(struct sctp_assoc_value)) 5731 return -EINVAL; 5732 5733 len = sizeof(struct sctp_assoc_value); 5734 5735 if (copy_from_user(¶ms, optval, len)) 5736 return -EFAULT; 5737 5738 sp = sctp_sk(sk); 5739 5740 if (params.assoc_id != 0) { 5741 asoc = sctp_id2assoc(sk, params.assoc_id); 5742 if (!asoc) 5743 return -EINVAL; 5744 params.assoc_value = asoc->default_rcv_context; 5745 } else { 5746 params.assoc_value = sp->default_rcv_context; 5747 } 5748 5749 if (put_user(len, optlen)) 5750 return -EFAULT; 5751 if (copy_to_user(optval, ¶ms, len)) 5752 return -EFAULT; 5753 5754 return 0; 5755 } 5756 5757 /* 5758 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5759 * This option will get or set the maximum size to put in any outgoing 5760 * SCTP DATA chunk. If a message is larger than this size it will be 5761 * fragmented by SCTP into the specified size. Note that the underlying 5762 * SCTP implementation may fragment into smaller sized chunks when the 5763 * PMTU of the underlying association is smaller than the value set by 5764 * the user. The default value for this option is '0' which indicates 5765 * the user is NOT limiting fragmentation and only the PMTU will effect 5766 * SCTP's choice of DATA chunk size. Note also that values set larger 5767 * than the maximum size of an IP datagram will effectively let SCTP 5768 * control fragmentation (i.e. the same as setting this option to 0). 5769 * 5770 * The following structure is used to access and modify this parameter: 5771 * 5772 * struct sctp_assoc_value { 5773 * sctp_assoc_t assoc_id; 5774 * uint32_t assoc_value; 5775 * }; 5776 * 5777 * assoc_id: This parameter is ignored for one-to-one style sockets. 5778 * For one-to-many style sockets this parameter indicates which 5779 * association the user is performing an action upon. Note that if 5780 * this field's value is zero then the endpoints default value is 5781 * changed (effecting future associations only). 5782 * assoc_value: This parameter specifies the maximum size in bytes. 5783 */ 5784 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5785 char __user *optval, int __user *optlen) 5786 { 5787 struct sctp_assoc_value params; 5788 struct sctp_association *asoc; 5789 5790 if (len == sizeof(int)) { 5791 pr_warn_ratelimited(DEPRECATED 5792 "%s (pid %d) " 5793 "Use of int in maxseg socket option.\n" 5794 "Use struct sctp_assoc_value instead\n", 5795 current->comm, task_pid_nr(current)); 5796 params.assoc_id = 0; 5797 } else if (len >= sizeof(struct sctp_assoc_value)) { 5798 len = sizeof(struct sctp_assoc_value); 5799 if (copy_from_user(¶ms, optval, sizeof(params))) 5800 return -EFAULT; 5801 } else 5802 return -EINVAL; 5803 5804 asoc = sctp_id2assoc(sk, params.assoc_id); 5805 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5806 return -EINVAL; 5807 5808 if (asoc) 5809 params.assoc_value = asoc->frag_point; 5810 else 5811 params.assoc_value = sctp_sk(sk)->user_frag; 5812 5813 if (put_user(len, optlen)) 5814 return -EFAULT; 5815 if (len == sizeof(int)) { 5816 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5817 return -EFAULT; 5818 } else { 5819 if (copy_to_user(optval, ¶ms, len)) 5820 return -EFAULT; 5821 } 5822 5823 return 0; 5824 } 5825 5826 /* 5827 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5828 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5829 */ 5830 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5831 char __user *optval, int __user *optlen) 5832 { 5833 int val; 5834 5835 if (len < sizeof(int)) 5836 return -EINVAL; 5837 5838 len = sizeof(int); 5839 5840 val = sctp_sk(sk)->frag_interleave; 5841 if (put_user(len, optlen)) 5842 return -EFAULT; 5843 if (copy_to_user(optval, &val, len)) 5844 return -EFAULT; 5845 5846 return 0; 5847 } 5848 5849 /* 5850 * 7.1.25. Set or Get the sctp partial delivery point 5851 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5852 */ 5853 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5854 char __user *optval, 5855 int __user *optlen) 5856 { 5857 u32 val; 5858 5859 if (len < sizeof(u32)) 5860 return -EINVAL; 5861 5862 len = sizeof(u32); 5863 5864 val = sctp_sk(sk)->pd_point; 5865 if (put_user(len, optlen)) 5866 return -EFAULT; 5867 if (copy_to_user(optval, &val, len)) 5868 return -EFAULT; 5869 5870 return 0; 5871 } 5872 5873 /* 5874 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5875 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5876 */ 5877 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5878 char __user *optval, 5879 int __user *optlen) 5880 { 5881 struct sctp_assoc_value params; 5882 struct sctp_sock *sp; 5883 struct sctp_association *asoc; 5884 5885 if (len == sizeof(int)) { 5886 pr_warn_ratelimited(DEPRECATED 5887 "%s (pid %d) " 5888 "Use of int in max_burst socket option.\n" 5889 "Use struct sctp_assoc_value instead\n", 5890 current->comm, task_pid_nr(current)); 5891 params.assoc_id = 0; 5892 } else if (len >= sizeof(struct sctp_assoc_value)) { 5893 len = sizeof(struct sctp_assoc_value); 5894 if (copy_from_user(¶ms, optval, len)) 5895 return -EFAULT; 5896 } else 5897 return -EINVAL; 5898 5899 sp = sctp_sk(sk); 5900 5901 if (params.assoc_id != 0) { 5902 asoc = sctp_id2assoc(sk, params.assoc_id); 5903 if (!asoc) 5904 return -EINVAL; 5905 params.assoc_value = asoc->max_burst; 5906 } else 5907 params.assoc_value = sp->max_burst; 5908 5909 if (len == sizeof(int)) { 5910 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5911 return -EFAULT; 5912 } else { 5913 if (copy_to_user(optval, ¶ms, len)) 5914 return -EFAULT; 5915 } 5916 5917 return 0; 5918 5919 } 5920 5921 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5922 char __user *optval, int __user *optlen) 5923 { 5924 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5925 struct sctp_hmacalgo __user *p = (void __user *)optval; 5926 struct sctp_hmac_algo_param *hmacs; 5927 __u16 data_len = 0; 5928 u32 num_idents; 5929 int i; 5930 5931 if (!ep->auth_enable) 5932 return -EACCES; 5933 5934 hmacs = ep->auth_hmacs_list; 5935 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5936 5937 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5938 return -EINVAL; 5939 5940 len = sizeof(struct sctp_hmacalgo) + data_len; 5941 num_idents = data_len / sizeof(u16); 5942 5943 if (put_user(len, optlen)) 5944 return -EFAULT; 5945 if (put_user(num_idents, &p->shmac_num_idents)) 5946 return -EFAULT; 5947 for (i = 0; i < num_idents; i++) { 5948 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 5949 5950 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 5951 return -EFAULT; 5952 } 5953 return 0; 5954 } 5955 5956 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5957 char __user *optval, int __user *optlen) 5958 { 5959 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5960 struct sctp_authkeyid val; 5961 struct sctp_association *asoc; 5962 5963 if (!ep->auth_enable) 5964 return -EACCES; 5965 5966 if (len < sizeof(struct sctp_authkeyid)) 5967 return -EINVAL; 5968 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5969 return -EFAULT; 5970 5971 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5972 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5973 return -EINVAL; 5974 5975 if (asoc) 5976 val.scact_keynumber = asoc->active_key_id; 5977 else 5978 val.scact_keynumber = ep->active_key_id; 5979 5980 len = sizeof(struct sctp_authkeyid); 5981 if (put_user(len, optlen)) 5982 return -EFAULT; 5983 if (copy_to_user(optval, &val, len)) 5984 return -EFAULT; 5985 5986 return 0; 5987 } 5988 5989 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5990 char __user *optval, int __user *optlen) 5991 { 5992 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5993 struct sctp_authchunks __user *p = (void __user *)optval; 5994 struct sctp_authchunks val; 5995 struct sctp_association *asoc; 5996 struct sctp_chunks_param *ch; 5997 u32 num_chunks = 0; 5998 char __user *to; 5999 6000 if (!ep->auth_enable) 6001 return -EACCES; 6002 6003 if (len < sizeof(struct sctp_authchunks)) 6004 return -EINVAL; 6005 6006 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6007 return -EFAULT; 6008 6009 to = p->gauth_chunks; 6010 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6011 if (!asoc) 6012 return -EINVAL; 6013 6014 ch = asoc->peer.peer_chunks; 6015 if (!ch) 6016 goto num; 6017 6018 /* See if the user provided enough room for all the data */ 6019 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 6020 if (len < num_chunks) 6021 return -EINVAL; 6022 6023 if (copy_to_user(to, ch->chunks, num_chunks)) 6024 return -EFAULT; 6025 num: 6026 len = sizeof(struct sctp_authchunks) + num_chunks; 6027 if (put_user(len, optlen)) 6028 return -EFAULT; 6029 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6030 return -EFAULT; 6031 return 0; 6032 } 6033 6034 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6035 char __user *optval, int __user *optlen) 6036 { 6037 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6038 struct sctp_authchunks __user *p = (void __user *)optval; 6039 struct sctp_authchunks val; 6040 struct sctp_association *asoc; 6041 struct sctp_chunks_param *ch; 6042 u32 num_chunks = 0; 6043 char __user *to; 6044 6045 if (!ep->auth_enable) 6046 return -EACCES; 6047 6048 if (len < sizeof(struct sctp_authchunks)) 6049 return -EINVAL; 6050 6051 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6052 return -EFAULT; 6053 6054 to = p->gauth_chunks; 6055 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6056 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6057 return -EINVAL; 6058 6059 if (asoc) 6060 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6061 else 6062 ch = ep->auth_chunk_list; 6063 6064 if (!ch) 6065 goto num; 6066 6067 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 6068 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6069 return -EINVAL; 6070 6071 if (copy_to_user(to, ch->chunks, num_chunks)) 6072 return -EFAULT; 6073 num: 6074 len = sizeof(struct sctp_authchunks) + num_chunks; 6075 if (put_user(len, optlen)) 6076 return -EFAULT; 6077 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6078 return -EFAULT; 6079 6080 return 0; 6081 } 6082 6083 /* 6084 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6085 * This option gets the current number of associations that are attached 6086 * to a one-to-many style socket. The option value is an uint32_t. 6087 */ 6088 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6089 char __user *optval, int __user *optlen) 6090 { 6091 struct sctp_sock *sp = sctp_sk(sk); 6092 struct sctp_association *asoc; 6093 u32 val = 0; 6094 6095 if (sctp_style(sk, TCP)) 6096 return -EOPNOTSUPP; 6097 6098 if (len < sizeof(u32)) 6099 return -EINVAL; 6100 6101 len = sizeof(u32); 6102 6103 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6104 val++; 6105 } 6106 6107 if (put_user(len, optlen)) 6108 return -EFAULT; 6109 if (copy_to_user(optval, &val, len)) 6110 return -EFAULT; 6111 6112 return 0; 6113 } 6114 6115 /* 6116 * 8.1.23 SCTP_AUTO_ASCONF 6117 * See the corresponding setsockopt entry as description 6118 */ 6119 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6120 char __user *optval, int __user *optlen) 6121 { 6122 int val = 0; 6123 6124 if (len < sizeof(int)) 6125 return -EINVAL; 6126 6127 len = sizeof(int); 6128 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6129 val = 1; 6130 if (put_user(len, optlen)) 6131 return -EFAULT; 6132 if (copy_to_user(optval, &val, len)) 6133 return -EFAULT; 6134 return 0; 6135 } 6136 6137 /* 6138 * 8.2.6. Get the Current Identifiers of Associations 6139 * (SCTP_GET_ASSOC_ID_LIST) 6140 * 6141 * This option gets the current list of SCTP association identifiers of 6142 * the SCTP associations handled by a one-to-many style socket. 6143 */ 6144 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6145 char __user *optval, int __user *optlen) 6146 { 6147 struct sctp_sock *sp = sctp_sk(sk); 6148 struct sctp_association *asoc; 6149 struct sctp_assoc_ids *ids; 6150 u32 num = 0; 6151 6152 if (sctp_style(sk, TCP)) 6153 return -EOPNOTSUPP; 6154 6155 if (len < sizeof(struct sctp_assoc_ids)) 6156 return -EINVAL; 6157 6158 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6159 num++; 6160 } 6161 6162 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6163 return -EINVAL; 6164 6165 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6166 6167 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6168 if (unlikely(!ids)) 6169 return -ENOMEM; 6170 6171 ids->gaids_number_of_ids = num; 6172 num = 0; 6173 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6174 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6175 } 6176 6177 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6178 kfree(ids); 6179 return -EFAULT; 6180 } 6181 6182 kfree(ids); 6183 return 0; 6184 } 6185 6186 /* 6187 * SCTP_PEER_ADDR_THLDS 6188 * 6189 * This option allows us to fetch the partially failed threshold for one or all 6190 * transports in an association. See Section 6.1 of: 6191 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6192 */ 6193 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6194 char __user *optval, 6195 int len, 6196 int __user *optlen) 6197 { 6198 struct sctp_paddrthlds val; 6199 struct sctp_transport *trans; 6200 struct sctp_association *asoc; 6201 6202 if (len < sizeof(struct sctp_paddrthlds)) 6203 return -EINVAL; 6204 len = sizeof(struct sctp_paddrthlds); 6205 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6206 return -EFAULT; 6207 6208 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6209 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6210 if (!asoc) 6211 return -ENOENT; 6212 6213 val.spt_pathpfthld = asoc->pf_retrans; 6214 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6215 } else { 6216 trans = sctp_addr_id2transport(sk, &val.spt_address, 6217 val.spt_assoc_id); 6218 if (!trans) 6219 return -ENOENT; 6220 6221 val.spt_pathmaxrxt = trans->pathmaxrxt; 6222 val.spt_pathpfthld = trans->pf_retrans; 6223 } 6224 6225 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6226 return -EFAULT; 6227 6228 return 0; 6229 } 6230 6231 /* 6232 * SCTP_GET_ASSOC_STATS 6233 * 6234 * This option retrieves local per endpoint statistics. It is modeled 6235 * after OpenSolaris' implementation 6236 */ 6237 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6238 char __user *optval, 6239 int __user *optlen) 6240 { 6241 struct sctp_assoc_stats sas; 6242 struct sctp_association *asoc = NULL; 6243 6244 /* User must provide at least the assoc id */ 6245 if (len < sizeof(sctp_assoc_t)) 6246 return -EINVAL; 6247 6248 /* Allow the struct to grow and fill in as much as possible */ 6249 len = min_t(size_t, len, sizeof(sas)); 6250 6251 if (copy_from_user(&sas, optval, len)) 6252 return -EFAULT; 6253 6254 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6255 if (!asoc) 6256 return -EINVAL; 6257 6258 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6259 sas.sas_gapcnt = asoc->stats.gapcnt; 6260 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6261 sas.sas_osacks = asoc->stats.osacks; 6262 sas.sas_isacks = asoc->stats.isacks; 6263 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6264 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6265 sas.sas_oodchunks = asoc->stats.oodchunks; 6266 sas.sas_iodchunks = asoc->stats.iodchunks; 6267 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6268 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6269 sas.sas_idupchunks = asoc->stats.idupchunks; 6270 sas.sas_opackets = asoc->stats.opackets; 6271 sas.sas_ipackets = asoc->stats.ipackets; 6272 6273 /* New high max rto observed, will return 0 if not a single 6274 * RTO update took place. obs_rto_ipaddr will be bogus 6275 * in such a case 6276 */ 6277 sas.sas_maxrto = asoc->stats.max_obs_rto; 6278 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6279 sizeof(struct sockaddr_storage)); 6280 6281 /* Mark beginning of a new observation period */ 6282 asoc->stats.max_obs_rto = asoc->rto_min; 6283 6284 if (put_user(len, optlen)) 6285 return -EFAULT; 6286 6287 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6288 6289 if (copy_to_user(optval, &sas, len)) 6290 return -EFAULT; 6291 6292 return 0; 6293 } 6294 6295 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6296 char __user *optval, 6297 int __user *optlen) 6298 { 6299 int val = 0; 6300 6301 if (len < sizeof(int)) 6302 return -EINVAL; 6303 6304 len = sizeof(int); 6305 if (sctp_sk(sk)->recvrcvinfo) 6306 val = 1; 6307 if (put_user(len, optlen)) 6308 return -EFAULT; 6309 if (copy_to_user(optval, &val, len)) 6310 return -EFAULT; 6311 6312 return 0; 6313 } 6314 6315 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6316 char __user *optval, 6317 int __user *optlen) 6318 { 6319 int val = 0; 6320 6321 if (len < sizeof(int)) 6322 return -EINVAL; 6323 6324 len = sizeof(int); 6325 if (sctp_sk(sk)->recvnxtinfo) 6326 val = 1; 6327 if (put_user(len, optlen)) 6328 return -EFAULT; 6329 if (copy_to_user(optval, &val, len)) 6330 return -EFAULT; 6331 6332 return 0; 6333 } 6334 6335 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6336 char __user *optval, 6337 int __user *optlen) 6338 { 6339 struct sctp_assoc_value params; 6340 struct sctp_association *asoc; 6341 int retval = -EFAULT; 6342 6343 if (len < sizeof(params)) { 6344 retval = -EINVAL; 6345 goto out; 6346 } 6347 6348 len = sizeof(params); 6349 if (copy_from_user(¶ms, optval, len)) 6350 goto out; 6351 6352 asoc = sctp_id2assoc(sk, params.assoc_id); 6353 if (asoc) { 6354 params.assoc_value = asoc->prsctp_enable; 6355 } else if (!params.assoc_id) { 6356 struct sctp_sock *sp = sctp_sk(sk); 6357 6358 params.assoc_value = sp->ep->prsctp_enable; 6359 } else { 6360 retval = -EINVAL; 6361 goto out; 6362 } 6363 6364 if (put_user(len, optlen)) 6365 goto out; 6366 6367 if (copy_to_user(optval, ¶ms, len)) 6368 goto out; 6369 6370 retval = 0; 6371 6372 out: 6373 return retval; 6374 } 6375 6376 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6377 char __user *optval, 6378 int __user *optlen) 6379 { 6380 struct sctp_default_prinfo info; 6381 struct sctp_association *asoc; 6382 int retval = -EFAULT; 6383 6384 if (len < sizeof(info)) { 6385 retval = -EINVAL; 6386 goto out; 6387 } 6388 6389 len = sizeof(info); 6390 if (copy_from_user(&info, optval, len)) 6391 goto out; 6392 6393 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6394 if (asoc) { 6395 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6396 info.pr_value = asoc->default_timetolive; 6397 } else if (!info.pr_assoc_id) { 6398 struct sctp_sock *sp = sctp_sk(sk); 6399 6400 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6401 info.pr_value = sp->default_timetolive; 6402 } else { 6403 retval = -EINVAL; 6404 goto out; 6405 } 6406 6407 if (put_user(len, optlen)) 6408 goto out; 6409 6410 if (copy_to_user(optval, &info, len)) 6411 goto out; 6412 6413 retval = 0; 6414 6415 out: 6416 return retval; 6417 } 6418 6419 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6420 char __user *optval, 6421 int __user *optlen) 6422 { 6423 struct sctp_prstatus params; 6424 struct sctp_association *asoc; 6425 int policy; 6426 int retval = -EINVAL; 6427 6428 if (len < sizeof(params)) 6429 goto out; 6430 6431 len = sizeof(params); 6432 if (copy_from_user(¶ms, optval, len)) { 6433 retval = -EFAULT; 6434 goto out; 6435 } 6436 6437 policy = params.sprstat_policy; 6438 if (policy & ~SCTP_PR_SCTP_MASK) 6439 goto out; 6440 6441 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6442 if (!asoc) 6443 goto out; 6444 6445 if (policy == SCTP_PR_SCTP_NONE) { 6446 params.sprstat_abandoned_unsent = 0; 6447 params.sprstat_abandoned_sent = 0; 6448 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6449 params.sprstat_abandoned_unsent += 6450 asoc->abandoned_unsent[policy]; 6451 params.sprstat_abandoned_sent += 6452 asoc->abandoned_sent[policy]; 6453 } 6454 } else { 6455 params.sprstat_abandoned_unsent = 6456 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6457 params.sprstat_abandoned_sent = 6458 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6459 } 6460 6461 if (put_user(len, optlen)) { 6462 retval = -EFAULT; 6463 goto out; 6464 } 6465 6466 if (copy_to_user(optval, ¶ms, len)) { 6467 retval = -EFAULT; 6468 goto out; 6469 } 6470 6471 retval = 0; 6472 6473 out: 6474 return retval; 6475 } 6476 6477 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6478 char __user *optval, 6479 int __user *optlen) 6480 { 6481 struct sctp_assoc_value params; 6482 struct sctp_association *asoc; 6483 int retval = -EFAULT; 6484 6485 if (len < sizeof(params)) { 6486 retval = -EINVAL; 6487 goto out; 6488 } 6489 6490 len = sizeof(params); 6491 if (copy_from_user(¶ms, optval, len)) 6492 goto out; 6493 6494 asoc = sctp_id2assoc(sk, params.assoc_id); 6495 if (asoc) { 6496 params.assoc_value = asoc->strreset_enable; 6497 } else if (!params.assoc_id) { 6498 struct sctp_sock *sp = sctp_sk(sk); 6499 6500 params.assoc_value = sp->ep->strreset_enable; 6501 } else { 6502 retval = -EINVAL; 6503 goto out; 6504 } 6505 6506 if (put_user(len, optlen)) 6507 goto out; 6508 6509 if (copy_to_user(optval, ¶ms, len)) 6510 goto out; 6511 6512 retval = 0; 6513 6514 out: 6515 return retval; 6516 } 6517 6518 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6519 char __user *optval, int __user *optlen) 6520 { 6521 int retval = 0; 6522 int len; 6523 6524 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6525 6526 /* I can hardly begin to describe how wrong this is. This is 6527 * so broken as to be worse than useless. The API draft 6528 * REALLY is NOT helpful here... I am not convinced that the 6529 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6530 * are at all well-founded. 6531 */ 6532 if (level != SOL_SCTP) { 6533 struct sctp_af *af = sctp_sk(sk)->pf->af; 6534 6535 retval = af->getsockopt(sk, level, optname, optval, optlen); 6536 return retval; 6537 } 6538 6539 if (get_user(len, optlen)) 6540 return -EFAULT; 6541 6542 if (len < 0) 6543 return -EINVAL; 6544 6545 lock_sock(sk); 6546 6547 switch (optname) { 6548 case SCTP_STATUS: 6549 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6550 break; 6551 case SCTP_DISABLE_FRAGMENTS: 6552 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6553 optlen); 6554 break; 6555 case SCTP_EVENTS: 6556 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6557 break; 6558 case SCTP_AUTOCLOSE: 6559 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6560 break; 6561 case SCTP_SOCKOPT_PEELOFF: 6562 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6563 break; 6564 case SCTP_PEER_ADDR_PARAMS: 6565 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6566 optlen); 6567 break; 6568 case SCTP_DELAYED_SACK: 6569 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6570 optlen); 6571 break; 6572 case SCTP_INITMSG: 6573 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6574 break; 6575 case SCTP_GET_PEER_ADDRS: 6576 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6577 optlen); 6578 break; 6579 case SCTP_GET_LOCAL_ADDRS: 6580 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6581 optlen); 6582 break; 6583 case SCTP_SOCKOPT_CONNECTX3: 6584 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6585 break; 6586 case SCTP_DEFAULT_SEND_PARAM: 6587 retval = sctp_getsockopt_default_send_param(sk, len, 6588 optval, optlen); 6589 break; 6590 case SCTP_DEFAULT_SNDINFO: 6591 retval = sctp_getsockopt_default_sndinfo(sk, len, 6592 optval, optlen); 6593 break; 6594 case SCTP_PRIMARY_ADDR: 6595 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6596 break; 6597 case SCTP_NODELAY: 6598 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6599 break; 6600 case SCTP_RTOINFO: 6601 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6602 break; 6603 case SCTP_ASSOCINFO: 6604 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6605 break; 6606 case SCTP_I_WANT_MAPPED_V4_ADDR: 6607 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6608 break; 6609 case SCTP_MAXSEG: 6610 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6611 break; 6612 case SCTP_GET_PEER_ADDR_INFO: 6613 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6614 optlen); 6615 break; 6616 case SCTP_ADAPTATION_LAYER: 6617 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6618 optlen); 6619 break; 6620 case SCTP_CONTEXT: 6621 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6622 break; 6623 case SCTP_FRAGMENT_INTERLEAVE: 6624 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6625 optlen); 6626 break; 6627 case SCTP_PARTIAL_DELIVERY_POINT: 6628 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6629 optlen); 6630 break; 6631 case SCTP_MAX_BURST: 6632 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6633 break; 6634 case SCTP_AUTH_KEY: 6635 case SCTP_AUTH_CHUNK: 6636 case SCTP_AUTH_DELETE_KEY: 6637 retval = -EOPNOTSUPP; 6638 break; 6639 case SCTP_HMAC_IDENT: 6640 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6641 break; 6642 case SCTP_AUTH_ACTIVE_KEY: 6643 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6644 break; 6645 case SCTP_PEER_AUTH_CHUNKS: 6646 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6647 optlen); 6648 break; 6649 case SCTP_LOCAL_AUTH_CHUNKS: 6650 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6651 optlen); 6652 break; 6653 case SCTP_GET_ASSOC_NUMBER: 6654 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6655 break; 6656 case SCTP_GET_ASSOC_ID_LIST: 6657 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6658 break; 6659 case SCTP_AUTO_ASCONF: 6660 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6661 break; 6662 case SCTP_PEER_ADDR_THLDS: 6663 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6664 break; 6665 case SCTP_GET_ASSOC_STATS: 6666 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6667 break; 6668 case SCTP_RECVRCVINFO: 6669 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6670 break; 6671 case SCTP_RECVNXTINFO: 6672 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6673 break; 6674 case SCTP_PR_SUPPORTED: 6675 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6676 break; 6677 case SCTP_DEFAULT_PRINFO: 6678 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6679 optlen); 6680 break; 6681 case SCTP_PR_ASSOC_STATUS: 6682 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6683 optlen); 6684 break; 6685 case SCTP_ENABLE_STREAM_RESET: 6686 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6687 optlen); 6688 break; 6689 default: 6690 retval = -ENOPROTOOPT; 6691 break; 6692 } 6693 6694 release_sock(sk); 6695 return retval; 6696 } 6697 6698 static int sctp_hash(struct sock *sk) 6699 { 6700 /* STUB */ 6701 return 0; 6702 } 6703 6704 static void sctp_unhash(struct sock *sk) 6705 { 6706 /* STUB */ 6707 } 6708 6709 /* Check if port is acceptable. Possibly find first available port. 6710 * 6711 * The port hash table (contained in the 'global' SCTP protocol storage 6712 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6713 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6714 * list (the list number is the port number hashed out, so as you 6715 * would expect from a hash function, all the ports in a given list have 6716 * such a number that hashes out to the same list number; you were 6717 * expecting that, right?); so each list has a set of ports, with a 6718 * link to the socket (struct sock) that uses it, the port number and 6719 * a fastreuse flag (FIXME: NPI ipg). 6720 */ 6721 static struct sctp_bind_bucket *sctp_bucket_create( 6722 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6723 6724 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6725 { 6726 struct sctp_bind_hashbucket *head; /* hash list */ 6727 struct sctp_bind_bucket *pp; 6728 unsigned short snum; 6729 int ret; 6730 6731 snum = ntohs(addr->v4.sin_port); 6732 6733 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6734 6735 local_bh_disable(); 6736 6737 if (snum == 0) { 6738 /* Search for an available port. */ 6739 int low, high, remaining, index; 6740 unsigned int rover; 6741 struct net *net = sock_net(sk); 6742 6743 inet_get_local_port_range(net, &low, &high); 6744 remaining = (high - low) + 1; 6745 rover = prandom_u32() % remaining + low; 6746 6747 do { 6748 rover++; 6749 if ((rover < low) || (rover > high)) 6750 rover = low; 6751 if (inet_is_local_reserved_port(net, rover)) 6752 continue; 6753 index = sctp_phashfn(sock_net(sk), rover); 6754 head = &sctp_port_hashtable[index]; 6755 spin_lock(&head->lock); 6756 sctp_for_each_hentry(pp, &head->chain) 6757 if ((pp->port == rover) && 6758 net_eq(sock_net(sk), pp->net)) 6759 goto next; 6760 break; 6761 next: 6762 spin_unlock(&head->lock); 6763 } while (--remaining > 0); 6764 6765 /* Exhausted local port range during search? */ 6766 ret = 1; 6767 if (remaining <= 0) 6768 goto fail; 6769 6770 /* OK, here is the one we will use. HEAD (the port 6771 * hash table list entry) is non-NULL and we hold it's 6772 * mutex. 6773 */ 6774 snum = rover; 6775 } else { 6776 /* We are given an specific port number; we verify 6777 * that it is not being used. If it is used, we will 6778 * exahust the search in the hash list corresponding 6779 * to the port number (snum) - we detect that with the 6780 * port iterator, pp being NULL. 6781 */ 6782 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6783 spin_lock(&head->lock); 6784 sctp_for_each_hentry(pp, &head->chain) { 6785 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6786 goto pp_found; 6787 } 6788 } 6789 pp = NULL; 6790 goto pp_not_found; 6791 pp_found: 6792 if (!hlist_empty(&pp->owner)) { 6793 /* We had a port hash table hit - there is an 6794 * available port (pp != NULL) and it is being 6795 * used by other socket (pp->owner not empty); that other 6796 * socket is going to be sk2. 6797 */ 6798 int reuse = sk->sk_reuse; 6799 struct sock *sk2; 6800 6801 pr_debug("%s: found a possible match\n", __func__); 6802 6803 if (pp->fastreuse && sk->sk_reuse && 6804 sk->sk_state != SCTP_SS_LISTENING) 6805 goto success; 6806 6807 /* Run through the list of sockets bound to the port 6808 * (pp->port) [via the pointers bind_next and 6809 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6810 * we get the endpoint they describe and run through 6811 * the endpoint's list of IP (v4 or v6) addresses, 6812 * comparing each of the addresses with the address of 6813 * the socket sk. If we find a match, then that means 6814 * that this port/socket (sk) combination are already 6815 * in an endpoint. 6816 */ 6817 sk_for_each_bound(sk2, &pp->owner) { 6818 struct sctp_endpoint *ep2; 6819 ep2 = sctp_sk(sk2)->ep; 6820 6821 if (sk == sk2 || 6822 (reuse && sk2->sk_reuse && 6823 sk2->sk_state != SCTP_SS_LISTENING)) 6824 continue; 6825 6826 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6827 sctp_sk(sk2), sctp_sk(sk))) { 6828 ret = (long)sk2; 6829 goto fail_unlock; 6830 } 6831 } 6832 6833 pr_debug("%s: found a match\n", __func__); 6834 } 6835 pp_not_found: 6836 /* If there was a hash table miss, create a new port. */ 6837 ret = 1; 6838 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6839 goto fail_unlock; 6840 6841 /* In either case (hit or miss), make sure fastreuse is 1 only 6842 * if sk->sk_reuse is too (that is, if the caller requested 6843 * SO_REUSEADDR on this socket -sk-). 6844 */ 6845 if (hlist_empty(&pp->owner)) { 6846 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6847 pp->fastreuse = 1; 6848 else 6849 pp->fastreuse = 0; 6850 } else if (pp->fastreuse && 6851 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6852 pp->fastreuse = 0; 6853 6854 /* We are set, so fill up all the data in the hash table 6855 * entry, tie the socket list information with the rest of the 6856 * sockets FIXME: Blurry, NPI (ipg). 6857 */ 6858 success: 6859 if (!sctp_sk(sk)->bind_hash) { 6860 inet_sk(sk)->inet_num = snum; 6861 sk_add_bind_node(sk, &pp->owner); 6862 sctp_sk(sk)->bind_hash = pp; 6863 } 6864 ret = 0; 6865 6866 fail_unlock: 6867 spin_unlock(&head->lock); 6868 6869 fail: 6870 local_bh_enable(); 6871 return ret; 6872 } 6873 6874 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6875 * port is requested. 6876 */ 6877 static int sctp_get_port(struct sock *sk, unsigned short snum) 6878 { 6879 union sctp_addr addr; 6880 struct sctp_af *af = sctp_sk(sk)->pf->af; 6881 6882 /* Set up a dummy address struct from the sk. */ 6883 af->from_sk(&addr, sk); 6884 addr.v4.sin_port = htons(snum); 6885 6886 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6887 return !!sctp_get_port_local(sk, &addr); 6888 } 6889 6890 /* 6891 * Move a socket to LISTENING state. 6892 */ 6893 static int sctp_listen_start(struct sock *sk, int backlog) 6894 { 6895 struct sctp_sock *sp = sctp_sk(sk); 6896 struct sctp_endpoint *ep = sp->ep; 6897 struct crypto_shash *tfm = NULL; 6898 char alg[32]; 6899 6900 /* Allocate HMAC for generating cookie. */ 6901 if (!sp->hmac && sp->sctp_hmac_alg) { 6902 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6903 tfm = crypto_alloc_shash(alg, 0, 0); 6904 if (IS_ERR(tfm)) { 6905 net_info_ratelimited("failed to load transform for %s: %ld\n", 6906 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6907 return -ENOSYS; 6908 } 6909 sctp_sk(sk)->hmac = tfm; 6910 } 6911 6912 /* 6913 * If a bind() or sctp_bindx() is not called prior to a listen() 6914 * call that allows new associations to be accepted, the system 6915 * picks an ephemeral port and will choose an address set equivalent 6916 * to binding with a wildcard address. 6917 * 6918 * This is not currently spelled out in the SCTP sockets 6919 * extensions draft, but follows the practice as seen in TCP 6920 * sockets. 6921 * 6922 */ 6923 sk->sk_state = SCTP_SS_LISTENING; 6924 if (!ep->base.bind_addr.port) { 6925 if (sctp_autobind(sk)) 6926 return -EAGAIN; 6927 } else { 6928 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6929 sk->sk_state = SCTP_SS_CLOSED; 6930 return -EADDRINUSE; 6931 } 6932 } 6933 6934 sk->sk_max_ack_backlog = backlog; 6935 sctp_hash_endpoint(ep); 6936 return 0; 6937 } 6938 6939 /* 6940 * 4.1.3 / 5.1.3 listen() 6941 * 6942 * By default, new associations are not accepted for UDP style sockets. 6943 * An application uses listen() to mark a socket as being able to 6944 * accept new associations. 6945 * 6946 * On TCP style sockets, applications use listen() to ready the SCTP 6947 * endpoint for accepting inbound associations. 6948 * 6949 * On both types of endpoints a backlog of '0' disables listening. 6950 * 6951 * Move a socket to LISTENING state. 6952 */ 6953 int sctp_inet_listen(struct socket *sock, int backlog) 6954 { 6955 struct sock *sk = sock->sk; 6956 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6957 int err = -EINVAL; 6958 6959 if (unlikely(backlog < 0)) 6960 return err; 6961 6962 lock_sock(sk); 6963 6964 /* Peeled-off sockets are not allowed to listen(). */ 6965 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6966 goto out; 6967 6968 if (sock->state != SS_UNCONNECTED) 6969 goto out; 6970 6971 /* If backlog is zero, disable listening. */ 6972 if (!backlog) { 6973 if (sctp_sstate(sk, CLOSED)) 6974 goto out; 6975 6976 err = 0; 6977 sctp_unhash_endpoint(ep); 6978 sk->sk_state = SCTP_SS_CLOSED; 6979 if (sk->sk_reuse) 6980 sctp_sk(sk)->bind_hash->fastreuse = 1; 6981 goto out; 6982 } 6983 6984 /* If we are already listening, just update the backlog */ 6985 if (sctp_sstate(sk, LISTENING)) 6986 sk->sk_max_ack_backlog = backlog; 6987 else { 6988 err = sctp_listen_start(sk, backlog); 6989 if (err) 6990 goto out; 6991 } 6992 6993 err = 0; 6994 out: 6995 release_sock(sk); 6996 return err; 6997 } 6998 6999 /* 7000 * This function is done by modeling the current datagram_poll() and the 7001 * tcp_poll(). Note that, based on these implementations, we don't 7002 * lock the socket in this function, even though it seems that, 7003 * ideally, locking or some other mechanisms can be used to ensure 7004 * the integrity of the counters (sndbuf and wmem_alloc) used 7005 * in this place. We assume that we don't need locks either until proven 7006 * otherwise. 7007 * 7008 * Another thing to note is that we include the Async I/O support 7009 * here, again, by modeling the current TCP/UDP code. We don't have 7010 * a good way to test with it yet. 7011 */ 7012 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7013 { 7014 struct sock *sk = sock->sk; 7015 struct sctp_sock *sp = sctp_sk(sk); 7016 unsigned int mask; 7017 7018 poll_wait(file, sk_sleep(sk), wait); 7019 7020 sock_rps_record_flow(sk); 7021 7022 /* A TCP-style listening socket becomes readable when the accept queue 7023 * is not empty. 7024 */ 7025 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7026 return (!list_empty(&sp->ep->asocs)) ? 7027 (POLLIN | POLLRDNORM) : 0; 7028 7029 mask = 0; 7030 7031 /* Is there any exceptional events? */ 7032 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7033 mask |= POLLERR | 7034 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7035 if (sk->sk_shutdown & RCV_SHUTDOWN) 7036 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7037 if (sk->sk_shutdown == SHUTDOWN_MASK) 7038 mask |= POLLHUP; 7039 7040 /* Is it readable? Reconsider this code with TCP-style support. */ 7041 if (!skb_queue_empty(&sk->sk_receive_queue)) 7042 mask |= POLLIN | POLLRDNORM; 7043 7044 /* The association is either gone or not ready. */ 7045 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7046 return mask; 7047 7048 /* Is it writable? */ 7049 if (sctp_writeable(sk)) { 7050 mask |= POLLOUT | POLLWRNORM; 7051 } else { 7052 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7053 /* 7054 * Since the socket is not locked, the buffer 7055 * might be made available after the writeable check and 7056 * before the bit is set. This could cause a lost I/O 7057 * signal. tcp_poll() has a race breaker for this race 7058 * condition. Based on their implementation, we put 7059 * in the following code to cover it as well. 7060 */ 7061 if (sctp_writeable(sk)) 7062 mask |= POLLOUT | POLLWRNORM; 7063 } 7064 return mask; 7065 } 7066 7067 /******************************************************************** 7068 * 2nd Level Abstractions 7069 ********************************************************************/ 7070 7071 static struct sctp_bind_bucket *sctp_bucket_create( 7072 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7073 { 7074 struct sctp_bind_bucket *pp; 7075 7076 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7077 if (pp) { 7078 SCTP_DBG_OBJCNT_INC(bind_bucket); 7079 pp->port = snum; 7080 pp->fastreuse = 0; 7081 INIT_HLIST_HEAD(&pp->owner); 7082 pp->net = net; 7083 hlist_add_head(&pp->node, &head->chain); 7084 } 7085 return pp; 7086 } 7087 7088 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7089 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7090 { 7091 if (pp && hlist_empty(&pp->owner)) { 7092 __hlist_del(&pp->node); 7093 kmem_cache_free(sctp_bucket_cachep, pp); 7094 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7095 } 7096 } 7097 7098 /* Release this socket's reference to a local port. */ 7099 static inline void __sctp_put_port(struct sock *sk) 7100 { 7101 struct sctp_bind_hashbucket *head = 7102 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7103 inet_sk(sk)->inet_num)]; 7104 struct sctp_bind_bucket *pp; 7105 7106 spin_lock(&head->lock); 7107 pp = sctp_sk(sk)->bind_hash; 7108 __sk_del_bind_node(sk); 7109 sctp_sk(sk)->bind_hash = NULL; 7110 inet_sk(sk)->inet_num = 0; 7111 sctp_bucket_destroy(pp); 7112 spin_unlock(&head->lock); 7113 } 7114 7115 void sctp_put_port(struct sock *sk) 7116 { 7117 local_bh_disable(); 7118 __sctp_put_port(sk); 7119 local_bh_enable(); 7120 } 7121 7122 /* 7123 * The system picks an ephemeral port and choose an address set equivalent 7124 * to binding with a wildcard address. 7125 * One of those addresses will be the primary address for the association. 7126 * This automatically enables the multihoming capability of SCTP. 7127 */ 7128 static int sctp_autobind(struct sock *sk) 7129 { 7130 union sctp_addr autoaddr; 7131 struct sctp_af *af; 7132 __be16 port; 7133 7134 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7135 af = sctp_sk(sk)->pf->af; 7136 7137 port = htons(inet_sk(sk)->inet_num); 7138 af->inaddr_any(&autoaddr, port); 7139 7140 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7141 } 7142 7143 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7144 * 7145 * From RFC 2292 7146 * 4.2 The cmsghdr Structure * 7147 * 7148 * When ancillary data is sent or received, any number of ancillary data 7149 * objects can be specified by the msg_control and msg_controllen members of 7150 * the msghdr structure, because each object is preceded by 7151 * a cmsghdr structure defining the object's length (the cmsg_len member). 7152 * Historically Berkeley-derived implementations have passed only one object 7153 * at a time, but this API allows multiple objects to be 7154 * passed in a single call to sendmsg() or recvmsg(). The following example 7155 * shows two ancillary data objects in a control buffer. 7156 * 7157 * |<--------------------------- msg_controllen -------------------------->| 7158 * | | 7159 * 7160 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7161 * 7162 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7163 * | | | 7164 * 7165 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7166 * 7167 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7168 * | | | | | 7169 * 7170 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7171 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7172 * 7173 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7174 * 7175 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7176 * ^ 7177 * | 7178 * 7179 * msg_control 7180 * points here 7181 */ 7182 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 7183 { 7184 struct cmsghdr *cmsg; 7185 struct msghdr *my_msg = (struct msghdr *)msg; 7186 7187 for_each_cmsghdr(cmsg, my_msg) { 7188 if (!CMSG_OK(my_msg, cmsg)) 7189 return -EINVAL; 7190 7191 /* Should we parse this header or ignore? */ 7192 if (cmsg->cmsg_level != IPPROTO_SCTP) 7193 continue; 7194 7195 /* Strictly check lengths following example in SCM code. */ 7196 switch (cmsg->cmsg_type) { 7197 case SCTP_INIT: 7198 /* SCTP Socket API Extension 7199 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7200 * 7201 * This cmsghdr structure provides information for 7202 * initializing new SCTP associations with sendmsg(). 7203 * The SCTP_INITMSG socket option uses this same data 7204 * structure. This structure is not used for 7205 * recvmsg(). 7206 * 7207 * cmsg_level cmsg_type cmsg_data[] 7208 * ------------ ------------ ---------------------- 7209 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7210 */ 7211 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7212 return -EINVAL; 7213 7214 cmsgs->init = CMSG_DATA(cmsg); 7215 break; 7216 7217 case SCTP_SNDRCV: 7218 /* SCTP Socket API Extension 7219 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7220 * 7221 * This cmsghdr structure specifies SCTP options for 7222 * sendmsg() and describes SCTP header information 7223 * about a received message through recvmsg(). 7224 * 7225 * cmsg_level cmsg_type cmsg_data[] 7226 * ------------ ------------ ---------------------- 7227 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7228 */ 7229 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7230 return -EINVAL; 7231 7232 cmsgs->srinfo = CMSG_DATA(cmsg); 7233 7234 if (cmsgs->srinfo->sinfo_flags & 7235 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7236 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7237 SCTP_ABORT | SCTP_EOF)) 7238 return -EINVAL; 7239 break; 7240 7241 case SCTP_SNDINFO: 7242 /* SCTP Socket API Extension 7243 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7244 * 7245 * This cmsghdr structure specifies SCTP options for 7246 * sendmsg(). This structure and SCTP_RCVINFO replaces 7247 * SCTP_SNDRCV which has been deprecated. 7248 * 7249 * cmsg_level cmsg_type cmsg_data[] 7250 * ------------ ------------ --------------------- 7251 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7252 */ 7253 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7254 return -EINVAL; 7255 7256 cmsgs->sinfo = CMSG_DATA(cmsg); 7257 7258 if (cmsgs->sinfo->snd_flags & 7259 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7260 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7261 SCTP_ABORT | SCTP_EOF)) 7262 return -EINVAL; 7263 break; 7264 default: 7265 return -EINVAL; 7266 } 7267 } 7268 7269 return 0; 7270 } 7271 7272 /* 7273 * Wait for a packet.. 7274 * Note: This function is the same function as in core/datagram.c 7275 * with a few modifications to make lksctp work. 7276 */ 7277 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7278 { 7279 int error; 7280 DEFINE_WAIT(wait); 7281 7282 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7283 7284 /* Socket errors? */ 7285 error = sock_error(sk); 7286 if (error) 7287 goto out; 7288 7289 if (!skb_queue_empty(&sk->sk_receive_queue)) 7290 goto ready; 7291 7292 /* Socket shut down? */ 7293 if (sk->sk_shutdown & RCV_SHUTDOWN) 7294 goto out; 7295 7296 /* Sequenced packets can come disconnected. If so we report the 7297 * problem. 7298 */ 7299 error = -ENOTCONN; 7300 7301 /* Is there a good reason to think that we may receive some data? */ 7302 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7303 goto out; 7304 7305 /* Handle signals. */ 7306 if (signal_pending(current)) 7307 goto interrupted; 7308 7309 /* Let another process have a go. Since we are going to sleep 7310 * anyway. Note: This may cause odd behaviors if the message 7311 * does not fit in the user's buffer, but this seems to be the 7312 * only way to honor MSG_DONTWAIT realistically. 7313 */ 7314 release_sock(sk); 7315 *timeo_p = schedule_timeout(*timeo_p); 7316 lock_sock(sk); 7317 7318 ready: 7319 finish_wait(sk_sleep(sk), &wait); 7320 return 0; 7321 7322 interrupted: 7323 error = sock_intr_errno(*timeo_p); 7324 7325 out: 7326 finish_wait(sk_sleep(sk), &wait); 7327 *err = error; 7328 return error; 7329 } 7330 7331 /* Receive a datagram. 7332 * Note: This is pretty much the same routine as in core/datagram.c 7333 * with a few changes to make lksctp work. 7334 */ 7335 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7336 int noblock, int *err) 7337 { 7338 int error; 7339 struct sk_buff *skb; 7340 long timeo; 7341 7342 timeo = sock_rcvtimeo(sk, noblock); 7343 7344 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7345 MAX_SCHEDULE_TIMEOUT); 7346 7347 do { 7348 /* Again only user level code calls this function, 7349 * so nothing interrupt level 7350 * will suddenly eat the receive_queue. 7351 * 7352 * Look at current nfs client by the way... 7353 * However, this function was correct in any case. 8) 7354 */ 7355 if (flags & MSG_PEEK) { 7356 skb = skb_peek(&sk->sk_receive_queue); 7357 if (skb) 7358 atomic_inc(&skb->users); 7359 } else { 7360 skb = __skb_dequeue(&sk->sk_receive_queue); 7361 } 7362 7363 if (skb) 7364 return skb; 7365 7366 /* Caller is allowed not to check sk->sk_err before calling. */ 7367 error = sock_error(sk); 7368 if (error) 7369 goto no_packet; 7370 7371 if (sk->sk_shutdown & RCV_SHUTDOWN) 7372 break; 7373 7374 if (sk_can_busy_loop(sk) && 7375 sk_busy_loop(sk, noblock)) 7376 continue; 7377 7378 /* User doesn't want to wait. */ 7379 error = -EAGAIN; 7380 if (!timeo) 7381 goto no_packet; 7382 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7383 7384 return NULL; 7385 7386 no_packet: 7387 *err = error; 7388 return NULL; 7389 } 7390 7391 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7392 static void __sctp_write_space(struct sctp_association *asoc) 7393 { 7394 struct sock *sk = asoc->base.sk; 7395 7396 if (sctp_wspace(asoc) <= 0) 7397 return; 7398 7399 if (waitqueue_active(&asoc->wait)) 7400 wake_up_interruptible(&asoc->wait); 7401 7402 if (sctp_writeable(sk)) { 7403 struct socket_wq *wq; 7404 7405 rcu_read_lock(); 7406 wq = rcu_dereference(sk->sk_wq); 7407 if (wq) { 7408 if (waitqueue_active(&wq->wait)) 7409 wake_up_interruptible(&wq->wait); 7410 7411 /* Note that we try to include the Async I/O support 7412 * here by modeling from the current TCP/UDP code. 7413 * We have not tested with it yet. 7414 */ 7415 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7416 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7417 } 7418 rcu_read_unlock(); 7419 } 7420 } 7421 7422 static void sctp_wake_up_waiters(struct sock *sk, 7423 struct sctp_association *asoc) 7424 { 7425 struct sctp_association *tmp = asoc; 7426 7427 /* We do accounting for the sndbuf space per association, 7428 * so we only need to wake our own association. 7429 */ 7430 if (asoc->ep->sndbuf_policy) 7431 return __sctp_write_space(asoc); 7432 7433 /* If association goes down and is just flushing its 7434 * outq, then just normally notify others. 7435 */ 7436 if (asoc->base.dead) 7437 return sctp_write_space(sk); 7438 7439 /* Accounting for the sndbuf space is per socket, so we 7440 * need to wake up others, try to be fair and in case of 7441 * other associations, let them have a go first instead 7442 * of just doing a sctp_write_space() call. 7443 * 7444 * Note that we reach sctp_wake_up_waiters() only when 7445 * associations free up queued chunks, thus we are under 7446 * lock and the list of associations on a socket is 7447 * guaranteed not to change. 7448 */ 7449 for (tmp = list_next_entry(tmp, asocs); 1; 7450 tmp = list_next_entry(tmp, asocs)) { 7451 /* Manually skip the head element. */ 7452 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7453 continue; 7454 /* Wake up association. */ 7455 __sctp_write_space(tmp); 7456 /* We've reached the end. */ 7457 if (tmp == asoc) 7458 break; 7459 } 7460 } 7461 7462 /* Do accounting for the sndbuf space. 7463 * Decrement the used sndbuf space of the corresponding association by the 7464 * data size which was just transmitted(freed). 7465 */ 7466 static void sctp_wfree(struct sk_buff *skb) 7467 { 7468 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7469 struct sctp_association *asoc = chunk->asoc; 7470 struct sock *sk = asoc->base.sk; 7471 7472 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7473 sizeof(struct sk_buff) + 7474 sizeof(struct sctp_chunk); 7475 7476 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 7477 7478 /* 7479 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7480 */ 7481 sk->sk_wmem_queued -= skb->truesize; 7482 sk_mem_uncharge(sk, skb->truesize); 7483 7484 sock_wfree(skb); 7485 sctp_wake_up_waiters(sk, asoc); 7486 7487 sctp_association_put(asoc); 7488 } 7489 7490 /* Do accounting for the receive space on the socket. 7491 * Accounting for the association is done in ulpevent.c 7492 * We set this as a destructor for the cloned data skbs so that 7493 * accounting is done at the correct time. 7494 */ 7495 void sctp_sock_rfree(struct sk_buff *skb) 7496 { 7497 struct sock *sk = skb->sk; 7498 struct sctp_ulpevent *event = sctp_skb2event(skb); 7499 7500 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7501 7502 /* 7503 * Mimic the behavior of sock_rfree 7504 */ 7505 sk_mem_uncharge(sk, event->rmem_len); 7506 } 7507 7508 7509 /* Helper function to wait for space in the sndbuf. */ 7510 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7511 size_t msg_len) 7512 { 7513 struct sock *sk = asoc->base.sk; 7514 int err = 0; 7515 long current_timeo = *timeo_p; 7516 DEFINE_WAIT(wait); 7517 7518 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7519 *timeo_p, msg_len); 7520 7521 /* Increment the association's refcnt. */ 7522 sctp_association_hold(asoc); 7523 7524 /* Wait on the association specific sndbuf space. */ 7525 for (;;) { 7526 prepare_to_wait_exclusive(&asoc->wait, &wait, 7527 TASK_INTERRUPTIBLE); 7528 if (!*timeo_p) 7529 goto do_nonblock; 7530 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7531 asoc->base.dead) 7532 goto do_error; 7533 if (signal_pending(current)) 7534 goto do_interrupted; 7535 if (msg_len <= sctp_wspace(asoc)) 7536 break; 7537 7538 /* Let another process have a go. Since we are going 7539 * to sleep anyway. 7540 */ 7541 release_sock(sk); 7542 current_timeo = schedule_timeout(current_timeo); 7543 if (sk != asoc->base.sk) 7544 goto do_error; 7545 lock_sock(sk); 7546 7547 *timeo_p = current_timeo; 7548 } 7549 7550 out: 7551 finish_wait(&asoc->wait, &wait); 7552 7553 /* Release the association's refcnt. */ 7554 sctp_association_put(asoc); 7555 7556 return err; 7557 7558 do_error: 7559 err = -EPIPE; 7560 goto out; 7561 7562 do_interrupted: 7563 err = sock_intr_errno(*timeo_p); 7564 goto out; 7565 7566 do_nonblock: 7567 err = -EAGAIN; 7568 goto out; 7569 } 7570 7571 void sctp_data_ready(struct sock *sk) 7572 { 7573 struct socket_wq *wq; 7574 7575 rcu_read_lock(); 7576 wq = rcu_dereference(sk->sk_wq); 7577 if (skwq_has_sleeper(wq)) 7578 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7579 POLLRDNORM | POLLRDBAND); 7580 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7581 rcu_read_unlock(); 7582 } 7583 7584 /* If socket sndbuf has changed, wake up all per association waiters. */ 7585 void sctp_write_space(struct sock *sk) 7586 { 7587 struct sctp_association *asoc; 7588 7589 /* Wake up the tasks in each wait queue. */ 7590 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7591 __sctp_write_space(asoc); 7592 } 7593 } 7594 7595 /* Is there any sndbuf space available on the socket? 7596 * 7597 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7598 * associations on the same socket. For a UDP-style socket with 7599 * multiple associations, it is possible for it to be "unwriteable" 7600 * prematurely. I assume that this is acceptable because 7601 * a premature "unwriteable" is better than an accidental "writeable" which 7602 * would cause an unwanted block under certain circumstances. For the 1-1 7603 * UDP-style sockets or TCP-style sockets, this code should work. 7604 * - Daisy 7605 */ 7606 static int sctp_writeable(struct sock *sk) 7607 { 7608 int amt = 0; 7609 7610 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7611 if (amt < 0) 7612 amt = 0; 7613 return amt; 7614 } 7615 7616 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7617 * returns immediately with EINPROGRESS. 7618 */ 7619 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7620 { 7621 struct sock *sk = asoc->base.sk; 7622 int err = 0; 7623 long current_timeo = *timeo_p; 7624 DEFINE_WAIT(wait); 7625 7626 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7627 7628 /* Increment the association's refcnt. */ 7629 sctp_association_hold(asoc); 7630 7631 for (;;) { 7632 prepare_to_wait_exclusive(&asoc->wait, &wait, 7633 TASK_INTERRUPTIBLE); 7634 if (!*timeo_p) 7635 goto do_nonblock; 7636 if (sk->sk_shutdown & RCV_SHUTDOWN) 7637 break; 7638 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7639 asoc->base.dead) 7640 goto do_error; 7641 if (signal_pending(current)) 7642 goto do_interrupted; 7643 7644 if (sctp_state(asoc, ESTABLISHED)) 7645 break; 7646 7647 /* Let another process have a go. Since we are going 7648 * to sleep anyway. 7649 */ 7650 release_sock(sk); 7651 current_timeo = schedule_timeout(current_timeo); 7652 lock_sock(sk); 7653 7654 *timeo_p = current_timeo; 7655 } 7656 7657 out: 7658 finish_wait(&asoc->wait, &wait); 7659 7660 /* Release the association's refcnt. */ 7661 sctp_association_put(asoc); 7662 7663 return err; 7664 7665 do_error: 7666 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7667 err = -ETIMEDOUT; 7668 else 7669 err = -ECONNREFUSED; 7670 goto out; 7671 7672 do_interrupted: 7673 err = sock_intr_errno(*timeo_p); 7674 goto out; 7675 7676 do_nonblock: 7677 err = -EINPROGRESS; 7678 goto out; 7679 } 7680 7681 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7682 { 7683 struct sctp_endpoint *ep; 7684 int err = 0; 7685 DEFINE_WAIT(wait); 7686 7687 ep = sctp_sk(sk)->ep; 7688 7689 7690 for (;;) { 7691 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7692 TASK_INTERRUPTIBLE); 7693 7694 if (list_empty(&ep->asocs)) { 7695 release_sock(sk); 7696 timeo = schedule_timeout(timeo); 7697 lock_sock(sk); 7698 } 7699 7700 err = -EINVAL; 7701 if (!sctp_sstate(sk, LISTENING)) 7702 break; 7703 7704 err = 0; 7705 if (!list_empty(&ep->asocs)) 7706 break; 7707 7708 err = sock_intr_errno(timeo); 7709 if (signal_pending(current)) 7710 break; 7711 7712 err = -EAGAIN; 7713 if (!timeo) 7714 break; 7715 } 7716 7717 finish_wait(sk_sleep(sk), &wait); 7718 7719 return err; 7720 } 7721 7722 static void sctp_wait_for_close(struct sock *sk, long timeout) 7723 { 7724 DEFINE_WAIT(wait); 7725 7726 do { 7727 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7728 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7729 break; 7730 release_sock(sk); 7731 timeout = schedule_timeout(timeout); 7732 lock_sock(sk); 7733 } while (!signal_pending(current) && timeout); 7734 7735 finish_wait(sk_sleep(sk), &wait); 7736 } 7737 7738 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7739 { 7740 struct sk_buff *frag; 7741 7742 if (!skb->data_len) 7743 goto done; 7744 7745 /* Don't forget the fragments. */ 7746 skb_walk_frags(skb, frag) 7747 sctp_skb_set_owner_r_frag(frag, sk); 7748 7749 done: 7750 sctp_skb_set_owner_r(skb, sk); 7751 } 7752 7753 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7754 struct sctp_association *asoc) 7755 { 7756 struct inet_sock *inet = inet_sk(sk); 7757 struct inet_sock *newinet; 7758 7759 newsk->sk_type = sk->sk_type; 7760 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7761 newsk->sk_flags = sk->sk_flags; 7762 newsk->sk_tsflags = sk->sk_tsflags; 7763 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7764 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7765 newsk->sk_reuse = sk->sk_reuse; 7766 7767 newsk->sk_shutdown = sk->sk_shutdown; 7768 newsk->sk_destruct = sctp_destruct_sock; 7769 newsk->sk_family = sk->sk_family; 7770 newsk->sk_protocol = IPPROTO_SCTP; 7771 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7772 newsk->sk_sndbuf = sk->sk_sndbuf; 7773 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7774 newsk->sk_lingertime = sk->sk_lingertime; 7775 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7776 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7777 newsk->sk_rxhash = sk->sk_rxhash; 7778 7779 newinet = inet_sk(newsk); 7780 7781 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7782 * getsockname() and getpeername() 7783 */ 7784 newinet->inet_sport = inet->inet_sport; 7785 newinet->inet_saddr = inet->inet_saddr; 7786 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7787 newinet->inet_dport = htons(asoc->peer.port); 7788 newinet->pmtudisc = inet->pmtudisc; 7789 newinet->inet_id = asoc->next_tsn ^ jiffies; 7790 7791 newinet->uc_ttl = inet->uc_ttl; 7792 newinet->mc_loop = 1; 7793 newinet->mc_ttl = 1; 7794 newinet->mc_index = 0; 7795 newinet->mc_list = NULL; 7796 7797 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7798 net_enable_timestamp(); 7799 7800 security_sk_clone(sk, newsk); 7801 } 7802 7803 static inline void sctp_copy_descendant(struct sock *sk_to, 7804 const struct sock *sk_from) 7805 { 7806 int ancestor_size = sizeof(struct inet_sock) + 7807 sizeof(struct sctp_sock) - 7808 offsetof(struct sctp_sock, auto_asconf_list); 7809 7810 if (sk_from->sk_family == PF_INET6) 7811 ancestor_size += sizeof(struct ipv6_pinfo); 7812 7813 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7814 } 7815 7816 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7817 * and its messages to the newsk. 7818 */ 7819 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7820 struct sctp_association *assoc, 7821 sctp_socket_type_t type) 7822 { 7823 struct sctp_sock *oldsp = sctp_sk(oldsk); 7824 struct sctp_sock *newsp = sctp_sk(newsk); 7825 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7826 struct sctp_endpoint *newep = newsp->ep; 7827 struct sk_buff *skb, *tmp; 7828 struct sctp_ulpevent *event; 7829 struct sctp_bind_hashbucket *head; 7830 7831 /* Migrate socket buffer sizes and all the socket level options to the 7832 * new socket. 7833 */ 7834 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7835 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7836 /* Brute force copy old sctp opt. */ 7837 sctp_copy_descendant(newsk, oldsk); 7838 7839 /* Restore the ep value that was overwritten with the above structure 7840 * copy. 7841 */ 7842 newsp->ep = newep; 7843 newsp->hmac = NULL; 7844 7845 /* Hook this new socket in to the bind_hash list. */ 7846 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7847 inet_sk(oldsk)->inet_num)]; 7848 spin_lock_bh(&head->lock); 7849 pp = sctp_sk(oldsk)->bind_hash; 7850 sk_add_bind_node(newsk, &pp->owner); 7851 sctp_sk(newsk)->bind_hash = pp; 7852 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7853 spin_unlock_bh(&head->lock); 7854 7855 /* Copy the bind_addr list from the original endpoint to the new 7856 * endpoint so that we can handle restarts properly 7857 */ 7858 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7859 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7860 7861 /* Move any messages in the old socket's receive queue that are for the 7862 * peeled off association to the new socket's receive queue. 7863 */ 7864 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7865 event = sctp_skb2event(skb); 7866 if (event->asoc == assoc) { 7867 __skb_unlink(skb, &oldsk->sk_receive_queue); 7868 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7869 sctp_skb_set_owner_r_frag(skb, newsk); 7870 } 7871 } 7872 7873 /* Clean up any messages pending delivery due to partial 7874 * delivery. Three cases: 7875 * 1) No partial deliver; no work. 7876 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7877 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7878 */ 7879 skb_queue_head_init(&newsp->pd_lobby); 7880 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7881 7882 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7883 struct sk_buff_head *queue; 7884 7885 /* Decide which queue to move pd_lobby skbs to. */ 7886 if (assoc->ulpq.pd_mode) { 7887 queue = &newsp->pd_lobby; 7888 } else 7889 queue = &newsk->sk_receive_queue; 7890 7891 /* Walk through the pd_lobby, looking for skbs that 7892 * need moved to the new socket. 7893 */ 7894 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7895 event = sctp_skb2event(skb); 7896 if (event->asoc == assoc) { 7897 __skb_unlink(skb, &oldsp->pd_lobby); 7898 __skb_queue_tail(queue, skb); 7899 sctp_skb_set_owner_r_frag(skb, newsk); 7900 } 7901 } 7902 7903 /* Clear up any skbs waiting for the partial 7904 * delivery to finish. 7905 */ 7906 if (assoc->ulpq.pd_mode) 7907 sctp_clear_pd(oldsk, NULL); 7908 7909 } 7910 7911 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7912 sctp_skb_set_owner_r_frag(skb, newsk); 7913 7914 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7915 sctp_skb_set_owner_r_frag(skb, newsk); 7916 7917 /* Set the type of socket to indicate that it is peeled off from the 7918 * original UDP-style socket or created with the accept() call on a 7919 * TCP-style socket.. 7920 */ 7921 newsp->type = type; 7922 7923 /* Mark the new socket "in-use" by the user so that any packets 7924 * that may arrive on the association after we've moved it are 7925 * queued to the backlog. This prevents a potential race between 7926 * backlog processing on the old socket and new-packet processing 7927 * on the new socket. 7928 * 7929 * The caller has just allocated newsk so we can guarantee that other 7930 * paths won't try to lock it and then oldsk. 7931 */ 7932 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7933 sctp_assoc_migrate(assoc, newsk); 7934 7935 /* If the association on the newsk is already closed before accept() 7936 * is called, set RCV_SHUTDOWN flag. 7937 */ 7938 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 7939 newsk->sk_state = SCTP_SS_CLOSED; 7940 newsk->sk_shutdown |= RCV_SHUTDOWN; 7941 } else { 7942 newsk->sk_state = SCTP_SS_ESTABLISHED; 7943 } 7944 7945 release_sock(newsk); 7946 } 7947 7948 7949 /* This proto struct describes the ULP interface for SCTP. */ 7950 struct proto sctp_prot = { 7951 .name = "SCTP", 7952 .owner = THIS_MODULE, 7953 .close = sctp_close, 7954 .connect = sctp_connect, 7955 .disconnect = sctp_disconnect, 7956 .accept = sctp_accept, 7957 .ioctl = sctp_ioctl, 7958 .init = sctp_init_sock, 7959 .destroy = sctp_destroy_sock, 7960 .shutdown = sctp_shutdown, 7961 .setsockopt = sctp_setsockopt, 7962 .getsockopt = sctp_getsockopt, 7963 .sendmsg = sctp_sendmsg, 7964 .recvmsg = sctp_recvmsg, 7965 .bind = sctp_bind, 7966 .backlog_rcv = sctp_backlog_rcv, 7967 .hash = sctp_hash, 7968 .unhash = sctp_unhash, 7969 .get_port = sctp_get_port, 7970 .obj_size = sizeof(struct sctp_sock), 7971 .sysctl_mem = sysctl_sctp_mem, 7972 .sysctl_rmem = sysctl_sctp_rmem, 7973 .sysctl_wmem = sysctl_sctp_wmem, 7974 .memory_pressure = &sctp_memory_pressure, 7975 .enter_memory_pressure = sctp_enter_memory_pressure, 7976 .memory_allocated = &sctp_memory_allocated, 7977 .sockets_allocated = &sctp_sockets_allocated, 7978 }; 7979 7980 #if IS_ENABLED(CONFIG_IPV6) 7981 7982 #include <net/transp_v6.h> 7983 static void sctp_v6_destroy_sock(struct sock *sk) 7984 { 7985 sctp_destroy_sock(sk); 7986 inet6_destroy_sock(sk); 7987 } 7988 7989 struct proto sctpv6_prot = { 7990 .name = "SCTPv6", 7991 .owner = THIS_MODULE, 7992 .close = sctp_close, 7993 .connect = sctp_connect, 7994 .disconnect = sctp_disconnect, 7995 .accept = sctp_accept, 7996 .ioctl = sctp_ioctl, 7997 .init = sctp_init_sock, 7998 .destroy = sctp_v6_destroy_sock, 7999 .shutdown = sctp_shutdown, 8000 .setsockopt = sctp_setsockopt, 8001 .getsockopt = sctp_getsockopt, 8002 .sendmsg = sctp_sendmsg, 8003 .recvmsg = sctp_recvmsg, 8004 .bind = sctp_bind, 8005 .backlog_rcv = sctp_backlog_rcv, 8006 .hash = sctp_hash, 8007 .unhash = sctp_unhash, 8008 .get_port = sctp_get_port, 8009 .obj_size = sizeof(struct sctp6_sock), 8010 .sysctl_mem = sysctl_sctp_mem, 8011 .sysctl_rmem = sysctl_sctp_rmem, 8012 .sysctl_wmem = sysctl_sctp_wmem, 8013 .memory_pressure = &sctp_memory_pressure, 8014 .enter_memory_pressure = sctp_enter_memory_pressure, 8015 .memory_allocated = &sctp_memory_allocated, 8016 .sockets_allocated = &sctp_sockets_allocated, 8017 }; 8018 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8019