xref: /linux/net/sctp/socket.c (revision 04d8a0a5f3b6887543850d991a5e37c4ec90e250)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 	struct sctp_transport *transport;
241 
242 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
243 		return NULL;
244 
245 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 					       laddr,
247 					       &transport);
248 
249 	if (!addr_asoc)
250 		return NULL;
251 
252 	id_asoc = sctp_id2assoc(sk, id);
253 	if (id_asoc && (id_asoc != addr_asoc))
254 		return NULL;
255 
256 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
257 						(union sctp_addr *)addr);
258 
259 	return transport;
260 }
261 
262 /* API 3.1.2 bind() - UDP Style Syntax
263  * The syntax of bind() is,
264  *
265  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
266  *
267  *   sd      - the socket descriptor returned by socket().
268  *   addr    - the address structure (struct sockaddr_in or struct
269  *             sockaddr_in6 [RFC 2553]),
270  *   addr_len - the size of the address structure.
271  */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 	int retval = 0;
275 
276 	lock_sock(sk);
277 
278 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 		 addr, addr_len);
280 
281 	/* Disallow binding twice. */
282 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 				      addr_len);
285 	else
286 		retval = -EINVAL;
287 
288 	release_sock(sk);
289 
290 	return retval;
291 }
292 
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294 
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 					union sctp_addr *addr, int len)
298 {
299 	struct sctp_af *af;
300 
301 	/* Check minimum size.  */
302 	if (len < sizeof (struct sockaddr))
303 		return NULL;
304 
305 	/* V4 mapped address are really of AF_INET family */
306 	if (addr->sa.sa_family == AF_INET6 &&
307 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 		if (!opt->pf->af_supported(AF_INET, opt))
309 			return NULL;
310 	} else {
311 		/* Does this PF support this AF? */
312 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 			return NULL;
314 	}
315 
316 	/* If we get this far, af is valid. */
317 	af = sctp_get_af_specific(addr->sa.sa_family);
318 
319 	if (len < af->sockaddr_len)
320 		return NULL;
321 
322 	return af;
323 }
324 
325 /* Bind a local address either to an endpoint or to an association.  */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 	struct net *net = sock_net(sk);
329 	struct sctp_sock *sp = sctp_sk(sk);
330 	struct sctp_endpoint *ep = sp->ep;
331 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 	struct sctp_af *af;
333 	unsigned short snum;
334 	int ret = 0;
335 
336 	/* Common sockaddr verification. */
337 	af = sctp_sockaddr_af(sp, addr, len);
338 	if (!af) {
339 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 			 __func__, sk, addr, len);
341 		return -EINVAL;
342 	}
343 
344 	snum = ntohs(addr->v4.sin_port);
345 
346 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 		 __func__, sk, &addr->sa, bp->port, snum, len);
348 
349 	/* PF specific bind() address verification. */
350 	if (!sp->pf->bind_verify(sp, addr))
351 		return -EADDRNOTAVAIL;
352 
353 	/* We must either be unbound, or bind to the same port.
354 	 * It's OK to allow 0 ports if we are already bound.
355 	 * We'll just inhert an already bound port in this case
356 	 */
357 	if (bp->port) {
358 		if (!snum)
359 			snum = bp->port;
360 		else if (snum != bp->port) {
361 			pr_debug("%s: new port %d doesn't match existing port "
362 				 "%d\n", __func__, snum, bp->port);
363 			return -EINVAL;
364 		}
365 	}
366 
367 	if (snum && snum < inet_prot_sock(net) &&
368 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 		return -EACCES;
370 
371 	/* See if the address matches any of the addresses we may have
372 	 * already bound before checking against other endpoints.
373 	 */
374 	if (sctp_bind_addr_match(bp, addr, sp))
375 		return -EINVAL;
376 
377 	/* Make sure we are allowed to bind here.
378 	 * The function sctp_get_port_local() does duplicate address
379 	 * detection.
380 	 */
381 	addr->v4.sin_port = htons(snum);
382 	if ((ret = sctp_get_port_local(sk, addr))) {
383 		return -EADDRINUSE;
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->inet_num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
394 				 SCTP_ADDR_SRC, GFP_ATOMIC);
395 
396 	/* Copy back into socket for getsockname() use. */
397 	if (!ret) {
398 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 		sp->pf->to_sk_saddr(addr, sk);
400 	}
401 
402 	return ret;
403 }
404 
405  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406  *
407  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408  * at any one time.  If a sender, after sending an ASCONF chunk, decides
409  * it needs to transfer another ASCONF Chunk, it MUST wait until the
410  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411  * subsequent ASCONF. Note this restriction binds each side, so at any
412  * time two ASCONF may be in-transit on any given association (one sent
413  * from each endpoint).
414  */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 			    struct sctp_chunk *chunk)
417 {
418 	struct net 	*net = sock_net(asoc->base.sk);
419 	int		retval = 0;
420 
421 	/* If there is an outstanding ASCONF chunk, queue it for later
422 	 * transmission.
423 	 */
424 	if (asoc->addip_last_asconf) {
425 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 		goto out;
427 	}
428 
429 	/* Hold the chunk until an ASCONF_ACK is received. */
430 	sctp_chunk_hold(chunk);
431 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 	if (retval)
433 		sctp_chunk_free(chunk);
434 	else
435 		asoc->addip_last_asconf = chunk;
436 
437 out:
438 	return retval;
439 }
440 
441 /* Add a list of addresses as bind addresses to local endpoint or
442  * association.
443  *
444  * Basically run through each address specified in the addrs/addrcnt
445  * array/length pair, determine if it is IPv6 or IPv4 and call
446  * sctp_do_bind() on it.
447  *
448  * If any of them fails, then the operation will be reversed and the
449  * ones that were added will be removed.
450  *
451  * Only sctp_setsockopt_bindx() is supposed to call this function.
452  */
453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 {
455 	int cnt;
456 	int retval = 0;
457 	void *addr_buf;
458 	struct sockaddr *sa_addr;
459 	struct sctp_af *af;
460 
461 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 		 addrs, addrcnt);
463 
464 	addr_buf = addrs;
465 	for (cnt = 0; cnt < addrcnt; cnt++) {
466 		/* The list may contain either IPv4 or IPv6 address;
467 		 * determine the address length for walking thru the list.
468 		 */
469 		sa_addr = addr_buf;
470 		af = sctp_get_af_specific(sa_addr->sa_family);
471 		if (!af) {
472 			retval = -EINVAL;
473 			goto err_bindx_add;
474 		}
475 
476 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 				      af->sockaddr_len);
478 
479 		addr_buf += af->sockaddr_len;
480 
481 err_bindx_add:
482 		if (retval < 0) {
483 			/* Failed. Cleanup the ones that have been added */
484 			if (cnt > 0)
485 				sctp_bindx_rem(sk, addrs, cnt);
486 			return retval;
487 		}
488 	}
489 
490 	return retval;
491 }
492 
493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494  * associations that are part of the endpoint indicating that a list of local
495  * addresses are added to the endpoint.
496  *
497  * If any of the addresses is already in the bind address list of the
498  * association, we do not send the chunk for that association.  But it will not
499  * affect other associations.
500  *
501  * Only sctp_setsockopt_bindx() is supposed to call this function.
502  */
503 static int sctp_send_asconf_add_ip(struct sock		*sk,
504 				   struct sockaddr	*addrs,
505 				   int 			addrcnt)
506 {
507 	struct net *net = sock_net(sk);
508 	struct sctp_sock		*sp;
509 	struct sctp_endpoint		*ep;
510 	struct sctp_association		*asoc;
511 	struct sctp_bind_addr		*bp;
512 	struct sctp_chunk		*chunk;
513 	struct sctp_sockaddr_entry	*laddr;
514 	union sctp_addr			*addr;
515 	union sctp_addr			saveaddr;
516 	void				*addr_buf;
517 	struct sctp_af			*af;
518 	struct list_head		*p;
519 	int 				i;
520 	int 				retval = 0;
521 
522 	if (!net->sctp.addip_enable)
523 		return retval;
524 
525 	sp = sctp_sk(sk);
526 	ep = sp->ep;
527 
528 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 		 __func__, sk, addrs, addrcnt);
530 
531 	list_for_each_entry(asoc, &ep->asocs, asocs) {
532 		if (!asoc->peer.asconf_capable)
533 			continue;
534 
535 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 			continue;
537 
538 		if (!sctp_state(asoc, ESTABLISHED))
539 			continue;
540 
541 		/* Check if any address in the packed array of addresses is
542 		 * in the bind address list of the association. If so,
543 		 * do not send the asconf chunk to its peer, but continue with
544 		 * other associations.
545 		 */
546 		addr_buf = addrs;
547 		for (i = 0; i < addrcnt; i++) {
548 			addr = addr_buf;
549 			af = sctp_get_af_specific(addr->v4.sin_family);
550 			if (!af) {
551 				retval = -EINVAL;
552 				goto out;
553 			}
554 
555 			if (sctp_assoc_lookup_laddr(asoc, addr))
556 				break;
557 
558 			addr_buf += af->sockaddr_len;
559 		}
560 		if (i < addrcnt)
561 			continue;
562 
563 		/* Use the first valid address in bind addr list of
564 		 * association as Address Parameter of ASCONF CHUNK.
565 		 */
566 		bp = &asoc->base.bind_addr;
567 		p = bp->address_list.next;
568 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 						   addrcnt, SCTP_PARAM_ADD_IP);
571 		if (!chunk) {
572 			retval = -ENOMEM;
573 			goto out;
574 		}
575 
576 		/* Add the new addresses to the bind address list with
577 		 * use_as_src set to 0.
578 		 */
579 		addr_buf = addrs;
580 		for (i = 0; i < addrcnt; i++) {
581 			addr = addr_buf;
582 			af = sctp_get_af_specific(addr->v4.sin_family);
583 			memcpy(&saveaddr, addr, af->sockaddr_len);
584 			retval = sctp_add_bind_addr(bp, &saveaddr,
585 						    sizeof(saveaddr),
586 						    SCTP_ADDR_NEW, GFP_ATOMIC);
587 			addr_buf += af->sockaddr_len;
588 		}
589 		if (asoc->src_out_of_asoc_ok) {
590 			struct sctp_transport *trans;
591 
592 			list_for_each_entry(trans,
593 			    &asoc->peer.transport_addr_list, transports) {
594 				/* Clear the source and route cache */
595 				sctp_transport_dst_release(trans);
596 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
597 				    2*asoc->pathmtu, 4380));
598 				trans->ssthresh = asoc->peer.i.a_rwnd;
599 				trans->rto = asoc->rto_initial;
600 				sctp_max_rto(asoc, trans);
601 				trans->rtt = trans->srtt = trans->rttvar = 0;
602 				sctp_transport_route(trans, NULL,
603 				    sctp_sk(asoc->base.sk));
604 			}
605 		}
606 		retval = sctp_send_asconf(asoc, chunk);
607 	}
608 
609 out:
610 	return retval;
611 }
612 
613 /* Remove a list of addresses from bind addresses list.  Do not remove the
614  * last address.
615  *
616  * Basically run through each address specified in the addrs/addrcnt
617  * array/length pair, determine if it is IPv6 or IPv4 and call
618  * sctp_del_bind() on it.
619  *
620  * If any of them fails, then the operation will be reversed and the
621  * ones that were removed will be added back.
622  *
623  * At least one address has to be left; if only one address is
624  * available, the operation will return -EBUSY.
625  *
626  * Only sctp_setsockopt_bindx() is supposed to call this function.
627  */
628 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
629 {
630 	struct sctp_sock *sp = sctp_sk(sk);
631 	struct sctp_endpoint *ep = sp->ep;
632 	int cnt;
633 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
634 	int retval = 0;
635 	void *addr_buf;
636 	union sctp_addr *sa_addr;
637 	struct sctp_af *af;
638 
639 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
640 		 __func__, sk, addrs, addrcnt);
641 
642 	addr_buf = addrs;
643 	for (cnt = 0; cnt < addrcnt; cnt++) {
644 		/* If the bind address list is empty or if there is only one
645 		 * bind address, there is nothing more to be removed (we need
646 		 * at least one address here).
647 		 */
648 		if (list_empty(&bp->address_list) ||
649 		    (sctp_list_single_entry(&bp->address_list))) {
650 			retval = -EBUSY;
651 			goto err_bindx_rem;
652 		}
653 
654 		sa_addr = addr_buf;
655 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
656 		if (!af) {
657 			retval = -EINVAL;
658 			goto err_bindx_rem;
659 		}
660 
661 		if (!af->addr_valid(sa_addr, sp, NULL)) {
662 			retval = -EADDRNOTAVAIL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (sa_addr->v4.sin_port &&
667 		    sa_addr->v4.sin_port != htons(bp->port)) {
668 			retval = -EINVAL;
669 			goto err_bindx_rem;
670 		}
671 
672 		if (!sa_addr->v4.sin_port)
673 			sa_addr->v4.sin_port = htons(bp->port);
674 
675 		/* FIXME - There is probably a need to check if sk->sk_saddr and
676 		 * sk->sk_rcv_addr are currently set to one of the addresses to
677 		 * be removed. This is something which needs to be looked into
678 		 * when we are fixing the outstanding issues with multi-homing
679 		 * socket routing and failover schemes. Refer to comments in
680 		 * sctp_do_bind(). -daisy
681 		 */
682 		retval = sctp_del_bind_addr(bp, sa_addr);
683 
684 		addr_buf += af->sockaddr_len;
685 err_bindx_rem:
686 		if (retval < 0) {
687 			/* Failed. Add the ones that has been removed back */
688 			if (cnt > 0)
689 				sctp_bindx_add(sk, addrs, cnt);
690 			return retval;
691 		}
692 	}
693 
694 	return retval;
695 }
696 
697 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
698  * the associations that are part of the endpoint indicating that a list of
699  * local addresses are removed from the endpoint.
700  *
701  * If any of the addresses is already in the bind address list of the
702  * association, we do not send the chunk for that association.  But it will not
703  * affect other associations.
704  *
705  * Only sctp_setsockopt_bindx() is supposed to call this function.
706  */
707 static int sctp_send_asconf_del_ip(struct sock		*sk,
708 				   struct sockaddr	*addrs,
709 				   int			addrcnt)
710 {
711 	struct net *net = sock_net(sk);
712 	struct sctp_sock	*sp;
713 	struct sctp_endpoint	*ep;
714 	struct sctp_association	*asoc;
715 	struct sctp_transport	*transport;
716 	struct sctp_bind_addr	*bp;
717 	struct sctp_chunk	*chunk;
718 	union sctp_addr		*laddr;
719 	void			*addr_buf;
720 	struct sctp_af		*af;
721 	struct sctp_sockaddr_entry *saddr;
722 	int 			i;
723 	int 			retval = 0;
724 	int			stored = 0;
725 
726 	chunk = NULL;
727 	if (!net->sctp.addip_enable)
728 		return retval;
729 
730 	sp = sctp_sk(sk);
731 	ep = sp->ep;
732 
733 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
734 		 __func__, sk, addrs, addrcnt);
735 
736 	list_for_each_entry(asoc, &ep->asocs, asocs) {
737 
738 		if (!asoc->peer.asconf_capable)
739 			continue;
740 
741 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
742 			continue;
743 
744 		if (!sctp_state(asoc, ESTABLISHED))
745 			continue;
746 
747 		/* Check if any address in the packed array of addresses is
748 		 * not present in the bind address list of the association.
749 		 * If so, do not send the asconf chunk to its peer, but
750 		 * continue with other associations.
751 		 */
752 		addr_buf = addrs;
753 		for (i = 0; i < addrcnt; i++) {
754 			laddr = addr_buf;
755 			af = sctp_get_af_specific(laddr->v4.sin_family);
756 			if (!af) {
757 				retval = -EINVAL;
758 				goto out;
759 			}
760 
761 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
762 				break;
763 
764 			addr_buf += af->sockaddr_len;
765 		}
766 		if (i < addrcnt)
767 			continue;
768 
769 		/* Find one address in the association's bind address list
770 		 * that is not in the packed array of addresses. This is to
771 		 * make sure that we do not delete all the addresses in the
772 		 * association.
773 		 */
774 		bp = &asoc->base.bind_addr;
775 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
776 					       addrcnt, sp);
777 		if ((laddr == NULL) && (addrcnt == 1)) {
778 			if (asoc->asconf_addr_del_pending)
779 				continue;
780 			asoc->asconf_addr_del_pending =
781 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
782 			if (asoc->asconf_addr_del_pending == NULL) {
783 				retval = -ENOMEM;
784 				goto out;
785 			}
786 			asoc->asconf_addr_del_pending->sa.sa_family =
787 				    addrs->sa_family;
788 			asoc->asconf_addr_del_pending->v4.sin_port =
789 				    htons(bp->port);
790 			if (addrs->sa_family == AF_INET) {
791 				struct sockaddr_in *sin;
792 
793 				sin = (struct sockaddr_in *)addrs;
794 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
795 			} else if (addrs->sa_family == AF_INET6) {
796 				struct sockaddr_in6 *sin6;
797 
798 				sin6 = (struct sockaddr_in6 *)addrs;
799 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
800 			}
801 
802 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
803 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
804 				 asoc->asconf_addr_del_pending);
805 
806 			asoc->src_out_of_asoc_ok = 1;
807 			stored = 1;
808 			goto skip_mkasconf;
809 		}
810 
811 		if (laddr == NULL)
812 			return -EINVAL;
813 
814 		/* We do not need RCU protection throughout this loop
815 		 * because this is done under a socket lock from the
816 		 * setsockopt call.
817 		 */
818 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
819 						   SCTP_PARAM_DEL_IP);
820 		if (!chunk) {
821 			retval = -ENOMEM;
822 			goto out;
823 		}
824 
825 skip_mkasconf:
826 		/* Reset use_as_src flag for the addresses in the bind address
827 		 * list that are to be deleted.
828 		 */
829 		addr_buf = addrs;
830 		for (i = 0; i < addrcnt; i++) {
831 			laddr = addr_buf;
832 			af = sctp_get_af_specific(laddr->v4.sin_family);
833 			list_for_each_entry(saddr, &bp->address_list, list) {
834 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
835 					saddr->state = SCTP_ADDR_DEL;
836 			}
837 			addr_buf += af->sockaddr_len;
838 		}
839 
840 		/* Update the route and saddr entries for all the transports
841 		 * as some of the addresses in the bind address list are
842 		 * about to be deleted and cannot be used as source addresses.
843 		 */
844 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
845 					transports) {
846 			sctp_transport_dst_release(transport);
847 			sctp_transport_route(transport, NULL,
848 					     sctp_sk(asoc->base.sk));
849 		}
850 
851 		if (stored)
852 			/* We don't need to transmit ASCONF */
853 			continue;
854 		retval = sctp_send_asconf(asoc, chunk);
855 	}
856 out:
857 	return retval;
858 }
859 
860 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
861 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
862 {
863 	struct sock *sk = sctp_opt2sk(sp);
864 	union sctp_addr *addr;
865 	struct sctp_af *af;
866 
867 	/* It is safe to write port space in caller. */
868 	addr = &addrw->a;
869 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
870 	af = sctp_get_af_specific(addr->sa.sa_family);
871 	if (!af)
872 		return -EINVAL;
873 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
874 		return -EINVAL;
875 
876 	if (addrw->state == SCTP_ADDR_NEW)
877 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
878 	else
879 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
880 }
881 
882 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
883  *
884  * API 8.1
885  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
886  *                int flags);
887  *
888  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
889  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
890  * or IPv6 addresses.
891  *
892  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
893  * Section 3.1.2 for this usage.
894  *
895  * addrs is a pointer to an array of one or more socket addresses. Each
896  * address is contained in its appropriate structure (i.e. struct
897  * sockaddr_in or struct sockaddr_in6) the family of the address type
898  * must be used to distinguish the address length (note that this
899  * representation is termed a "packed array" of addresses). The caller
900  * specifies the number of addresses in the array with addrcnt.
901  *
902  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
903  * -1, and sets errno to the appropriate error code.
904  *
905  * For SCTP, the port given in each socket address must be the same, or
906  * sctp_bindx() will fail, setting errno to EINVAL.
907  *
908  * The flags parameter is formed from the bitwise OR of zero or more of
909  * the following currently defined flags:
910  *
911  * SCTP_BINDX_ADD_ADDR
912  *
913  * SCTP_BINDX_REM_ADDR
914  *
915  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
916  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
917  * addresses from the association. The two flags are mutually exclusive;
918  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
919  * not remove all addresses from an association; sctp_bindx() will
920  * reject such an attempt with EINVAL.
921  *
922  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
923  * additional addresses with an endpoint after calling bind().  Or use
924  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
925  * socket is associated with so that no new association accepted will be
926  * associated with those addresses. If the endpoint supports dynamic
927  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
928  * endpoint to send the appropriate message to the peer to change the
929  * peers address lists.
930  *
931  * Adding and removing addresses from a connected association is
932  * optional functionality. Implementations that do not support this
933  * functionality should return EOPNOTSUPP.
934  *
935  * Basically do nothing but copying the addresses from user to kernel
936  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
937  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
938  * from userspace.
939  *
940  * We don't use copy_from_user() for optimization: we first do the
941  * sanity checks (buffer size -fast- and access check-healthy
942  * pointer); if all of those succeed, then we can alloc the memory
943  * (expensive operation) needed to copy the data to kernel. Then we do
944  * the copying without checking the user space area
945  * (__copy_from_user()).
946  *
947  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
948  * it.
949  *
950  * sk        The sk of the socket
951  * addrs     The pointer to the addresses in user land
952  * addrssize Size of the addrs buffer
953  * op        Operation to perform (add or remove, see the flags of
954  *           sctp_bindx)
955  *
956  * Returns 0 if ok, <0 errno code on error.
957  */
958 static int sctp_setsockopt_bindx(struct sock *sk,
959 				 struct sockaddr __user *addrs,
960 				 int addrs_size, int op)
961 {
962 	struct sockaddr *kaddrs;
963 	int err;
964 	int addrcnt = 0;
965 	int walk_size = 0;
966 	struct sockaddr *sa_addr;
967 	void *addr_buf;
968 	struct sctp_af *af;
969 
970 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
971 		 __func__, sk, addrs, addrs_size, op);
972 
973 	if (unlikely(addrs_size <= 0))
974 		return -EINVAL;
975 
976 	/* Check the user passed a healthy pointer.  */
977 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
978 		return -EFAULT;
979 
980 	/* Alloc space for the address array in kernel memory.  */
981 	kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
982 	if (unlikely(!kaddrs))
983 		return -ENOMEM;
984 
985 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
986 		kfree(kaddrs);
987 		return -EFAULT;
988 	}
989 
990 	/* Walk through the addrs buffer and count the number of addresses. */
991 	addr_buf = kaddrs;
992 	while (walk_size < addrs_size) {
993 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 			kfree(kaddrs);
995 			return -EINVAL;
996 		}
997 
998 		sa_addr = addr_buf;
999 		af = sctp_get_af_specific(sa_addr->sa_family);
1000 
1001 		/* If the address family is not supported or if this address
1002 		 * causes the address buffer to overflow return EINVAL.
1003 		 */
1004 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 			kfree(kaddrs);
1006 			return -EINVAL;
1007 		}
1008 		addrcnt++;
1009 		addr_buf += af->sockaddr_len;
1010 		walk_size += af->sockaddr_len;
1011 	}
1012 
1013 	/* Do the work. */
1014 	switch (op) {
1015 	case SCTP_BINDX_ADD_ADDR:
1016 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1017 		if (err)
1018 			goto out;
1019 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1020 		break;
1021 
1022 	case SCTP_BINDX_REM_ADDR:
1023 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1024 		if (err)
1025 			goto out;
1026 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1027 		break;
1028 
1029 	default:
1030 		err = -EINVAL;
1031 		break;
1032 	}
1033 
1034 out:
1035 	kfree(kaddrs);
1036 
1037 	return err;
1038 }
1039 
1040 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1041  *
1042  * Common routine for handling connect() and sctp_connectx().
1043  * Connect will come in with just a single address.
1044  */
1045 static int __sctp_connect(struct sock *sk,
1046 			  struct sockaddr *kaddrs,
1047 			  int addrs_size,
1048 			  sctp_assoc_t *assoc_id)
1049 {
1050 	struct net *net = sock_net(sk);
1051 	struct sctp_sock *sp;
1052 	struct sctp_endpoint *ep;
1053 	struct sctp_association *asoc = NULL;
1054 	struct sctp_association *asoc2;
1055 	struct sctp_transport *transport;
1056 	union sctp_addr to;
1057 	sctp_scope_t scope;
1058 	long timeo;
1059 	int err = 0;
1060 	int addrcnt = 0;
1061 	int walk_size = 0;
1062 	union sctp_addr *sa_addr = NULL;
1063 	void *addr_buf;
1064 	unsigned short port;
1065 	unsigned int f_flags = 0;
1066 
1067 	sp = sctp_sk(sk);
1068 	ep = sp->ep;
1069 
1070 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1071 	 * state - UDP-style peeled off socket or a TCP-style socket that
1072 	 * is already connected.
1073 	 * It cannot be done even on a TCP-style listening socket.
1074 	 */
1075 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1076 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 		err = -EISCONN;
1078 		goto out_free;
1079 	}
1080 
1081 	/* Walk through the addrs buffer and count the number of addresses. */
1082 	addr_buf = kaddrs;
1083 	while (walk_size < addrs_size) {
1084 		struct sctp_af *af;
1085 
1086 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 			err = -EINVAL;
1088 			goto out_free;
1089 		}
1090 
1091 		sa_addr = addr_buf;
1092 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093 
1094 		/* If the address family is not supported or if this address
1095 		 * causes the address buffer to overflow return EINVAL.
1096 		 */
1097 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 			err = -EINVAL;
1099 			goto out_free;
1100 		}
1101 
1102 		port = ntohs(sa_addr->v4.sin_port);
1103 
1104 		/* Save current address so we can work with it */
1105 		memcpy(&to, sa_addr, af->sockaddr_len);
1106 
1107 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 		if (err)
1109 			goto out_free;
1110 
1111 		/* Make sure the destination port is correctly set
1112 		 * in all addresses.
1113 		 */
1114 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 			err = -EINVAL;
1116 			goto out_free;
1117 		}
1118 
1119 		/* Check if there already is a matching association on the
1120 		 * endpoint (other than the one created here).
1121 		 */
1122 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 		if (asoc2 && asoc2 != asoc) {
1124 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 				err = -EISCONN;
1126 			else
1127 				err = -EALREADY;
1128 			goto out_free;
1129 		}
1130 
1131 		/* If we could not find a matching association on the endpoint,
1132 		 * make sure that there is no peeled-off association matching
1133 		 * the peer address even on another socket.
1134 		 */
1135 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 			err = -EADDRNOTAVAIL;
1137 			goto out_free;
1138 		}
1139 
1140 		if (!asoc) {
1141 			/* If a bind() or sctp_bindx() is not called prior to
1142 			 * an sctp_connectx() call, the system picks an
1143 			 * ephemeral port and will choose an address set
1144 			 * equivalent to binding with a wildcard address.
1145 			 */
1146 			if (!ep->base.bind_addr.port) {
1147 				if (sctp_autobind(sk)) {
1148 					err = -EAGAIN;
1149 					goto out_free;
1150 				}
1151 			} else {
1152 				/*
1153 				 * If an unprivileged user inherits a 1-many
1154 				 * style socket with open associations on a
1155 				 * privileged port, it MAY be permitted to
1156 				 * accept new associations, but it SHOULD NOT
1157 				 * be permitted to open new associations.
1158 				 */
1159 				if (ep->base.bind_addr.port <
1160 				    inet_prot_sock(net) &&
1161 				    !ns_capable(net->user_ns,
1162 				    CAP_NET_BIND_SERVICE)) {
1163 					err = -EACCES;
1164 					goto out_free;
1165 				}
1166 			}
1167 
1168 			scope = sctp_scope(&to);
1169 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1170 			if (!asoc) {
1171 				err = -ENOMEM;
1172 				goto out_free;
1173 			}
1174 
1175 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1176 							      GFP_KERNEL);
1177 			if (err < 0) {
1178 				goto out_free;
1179 			}
1180 
1181 		}
1182 
1183 		/* Prime the peer's transport structures.  */
1184 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1185 						SCTP_UNKNOWN);
1186 		if (!transport) {
1187 			err = -ENOMEM;
1188 			goto out_free;
1189 		}
1190 
1191 		addrcnt++;
1192 		addr_buf += af->sockaddr_len;
1193 		walk_size += af->sockaddr_len;
1194 	}
1195 
1196 	/* In case the user of sctp_connectx() wants an association
1197 	 * id back, assign one now.
1198 	 */
1199 	if (assoc_id) {
1200 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1201 		if (err < 0)
1202 			goto out_free;
1203 	}
1204 
1205 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1206 	if (err < 0) {
1207 		goto out_free;
1208 	}
1209 
1210 	/* Initialize sk's dport and daddr for getpeername() */
1211 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1212 	sp->pf->to_sk_daddr(sa_addr, sk);
1213 	sk->sk_err = 0;
1214 
1215 	/* in-kernel sockets don't generally have a file allocated to them
1216 	 * if all they do is call sock_create_kern().
1217 	 */
1218 	if (sk->sk_socket->file)
1219 		f_flags = sk->sk_socket->file->f_flags;
1220 
1221 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1222 
1223 	if (assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 	err = sctp_wait_for_connect(asoc, &timeo);
1226 	/* Note: the asoc may be freed after the return of
1227 	 * sctp_wait_for_connect.
1228 	 */
1229 
1230 	/* Don't free association on exit. */
1231 	asoc = NULL;
1232 
1233 out_free:
1234 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1235 		 __func__, asoc, kaddrs, err);
1236 
1237 	if (asoc) {
1238 		/* sctp_primitive_ASSOCIATE may have added this association
1239 		 * To the hash table, try to unhash it, just in case, its a noop
1240 		 * if it wasn't hashed so we're safe
1241 		 */
1242 		sctp_association_free(asoc);
1243 	}
1244 	return err;
1245 }
1246 
1247 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1248  *
1249  * API 8.9
1250  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1251  * 			sctp_assoc_t *asoc);
1252  *
1253  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1254  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1255  * or IPv6 addresses.
1256  *
1257  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1258  * Section 3.1.2 for this usage.
1259  *
1260  * addrs is a pointer to an array of one or more socket addresses. Each
1261  * address is contained in its appropriate structure (i.e. struct
1262  * sockaddr_in or struct sockaddr_in6) the family of the address type
1263  * must be used to distengish the address length (note that this
1264  * representation is termed a "packed array" of addresses). The caller
1265  * specifies the number of addresses in the array with addrcnt.
1266  *
1267  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1268  * the association id of the new association.  On failure, sctp_connectx()
1269  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1270  * is not touched by the kernel.
1271  *
1272  * For SCTP, the port given in each socket address must be the same, or
1273  * sctp_connectx() will fail, setting errno to EINVAL.
1274  *
1275  * An application can use sctp_connectx to initiate an association with
1276  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1277  * allows a caller to specify multiple addresses at which a peer can be
1278  * reached.  The way the SCTP stack uses the list of addresses to set up
1279  * the association is implementation dependent.  This function only
1280  * specifies that the stack will try to make use of all the addresses in
1281  * the list when needed.
1282  *
1283  * Note that the list of addresses passed in is only used for setting up
1284  * the association.  It does not necessarily equal the set of addresses
1285  * the peer uses for the resulting association.  If the caller wants to
1286  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1287  * retrieve them after the association has been set up.
1288  *
1289  * Basically do nothing but copying the addresses from user to kernel
1290  * land and invoking either sctp_connectx(). This is used for tunneling
1291  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1292  *
1293  * We don't use copy_from_user() for optimization: we first do the
1294  * sanity checks (buffer size -fast- and access check-healthy
1295  * pointer); if all of those succeed, then we can alloc the memory
1296  * (expensive operation) needed to copy the data to kernel. Then we do
1297  * the copying without checking the user space area
1298  * (__copy_from_user()).
1299  *
1300  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1301  * it.
1302  *
1303  * sk        The sk of the socket
1304  * addrs     The pointer to the addresses in user land
1305  * addrssize Size of the addrs buffer
1306  *
1307  * Returns >=0 if ok, <0 errno code on error.
1308  */
1309 static int __sctp_setsockopt_connectx(struct sock *sk,
1310 				      struct sockaddr __user *addrs,
1311 				      int addrs_size,
1312 				      sctp_assoc_t *assoc_id)
1313 {
1314 	struct sockaddr *kaddrs;
1315 	gfp_t gfp = GFP_KERNEL;
1316 	int err = 0;
1317 
1318 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1319 		 __func__, sk, addrs, addrs_size);
1320 
1321 	if (unlikely(addrs_size <= 0))
1322 		return -EINVAL;
1323 
1324 	/* Check the user passed a healthy pointer.  */
1325 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1326 		return -EFAULT;
1327 
1328 	/* Alloc space for the address array in kernel memory.  */
1329 	if (sk->sk_socket->file)
1330 		gfp = GFP_USER | __GFP_NOWARN;
1331 	kaddrs = kmalloc(addrs_size, gfp);
1332 	if (unlikely(!kaddrs))
1333 		return -ENOMEM;
1334 
1335 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1336 		err = -EFAULT;
1337 	} else {
1338 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1339 	}
1340 
1341 	kfree(kaddrs);
1342 
1343 	return err;
1344 }
1345 
1346 /*
1347  * This is an older interface.  It's kept for backward compatibility
1348  * to the option that doesn't provide association id.
1349  */
1350 static int sctp_setsockopt_connectx_old(struct sock *sk,
1351 					struct sockaddr __user *addrs,
1352 					int addrs_size)
1353 {
1354 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1355 }
1356 
1357 /*
1358  * New interface for the API.  The since the API is done with a socket
1359  * option, to make it simple we feed back the association id is as a return
1360  * indication to the call.  Error is always negative and association id is
1361  * always positive.
1362  */
1363 static int sctp_setsockopt_connectx(struct sock *sk,
1364 				    struct sockaddr __user *addrs,
1365 				    int addrs_size)
1366 {
1367 	sctp_assoc_t assoc_id = 0;
1368 	int err = 0;
1369 
1370 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1371 
1372 	if (err)
1373 		return err;
1374 	else
1375 		return assoc_id;
1376 }
1377 
1378 /*
1379  * New (hopefully final) interface for the API.
1380  * We use the sctp_getaddrs_old structure so that use-space library
1381  * can avoid any unnecessary allocations. The only different part
1382  * is that we store the actual length of the address buffer into the
1383  * addrs_num structure member. That way we can re-use the existing
1384  * code.
1385  */
1386 #ifdef CONFIG_COMPAT
1387 struct compat_sctp_getaddrs_old {
1388 	sctp_assoc_t	assoc_id;
1389 	s32		addr_num;
1390 	compat_uptr_t	addrs;		/* struct sockaddr * */
1391 };
1392 #endif
1393 
1394 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1395 				     char __user *optval,
1396 				     int __user *optlen)
1397 {
1398 	struct sctp_getaddrs_old param;
1399 	sctp_assoc_t assoc_id = 0;
1400 	int err = 0;
1401 
1402 #ifdef CONFIG_COMPAT
1403 	if (in_compat_syscall()) {
1404 		struct compat_sctp_getaddrs_old param32;
1405 
1406 		if (len < sizeof(param32))
1407 			return -EINVAL;
1408 		if (copy_from_user(&param32, optval, sizeof(param32)))
1409 			return -EFAULT;
1410 
1411 		param.assoc_id = param32.assoc_id;
1412 		param.addr_num = param32.addr_num;
1413 		param.addrs = compat_ptr(param32.addrs);
1414 	} else
1415 #endif
1416 	{
1417 		if (len < sizeof(param))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param, optval, sizeof(param)))
1420 			return -EFAULT;
1421 	}
1422 
1423 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1424 					 param.addrs, param.addr_num,
1425 					 &assoc_id);
1426 	if (err == 0 || err == -EINPROGRESS) {
1427 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1428 			return -EFAULT;
1429 		if (put_user(sizeof(assoc_id), optlen))
1430 			return -EFAULT;
1431 	}
1432 
1433 	return err;
1434 }
1435 
1436 /* API 3.1.4 close() - UDP Style Syntax
1437  * Applications use close() to perform graceful shutdown (as described in
1438  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1439  * by a UDP-style socket.
1440  *
1441  * The syntax is
1442  *
1443  *   ret = close(int sd);
1444  *
1445  *   sd      - the socket descriptor of the associations to be closed.
1446  *
1447  * To gracefully shutdown a specific association represented by the
1448  * UDP-style socket, an application should use the sendmsg() call,
1449  * passing no user data, but including the appropriate flag in the
1450  * ancillary data (see Section xxxx).
1451  *
1452  * If sd in the close() call is a branched-off socket representing only
1453  * one association, the shutdown is performed on that association only.
1454  *
1455  * 4.1.6 close() - TCP Style Syntax
1456  *
1457  * Applications use close() to gracefully close down an association.
1458  *
1459  * The syntax is:
1460  *
1461  *    int close(int sd);
1462  *
1463  *      sd      - the socket descriptor of the association to be closed.
1464  *
1465  * After an application calls close() on a socket descriptor, no further
1466  * socket operations will succeed on that descriptor.
1467  *
1468  * API 7.1.4 SO_LINGER
1469  *
1470  * An application using the TCP-style socket can use this option to
1471  * perform the SCTP ABORT primitive.  The linger option structure is:
1472  *
1473  *  struct  linger {
1474  *     int     l_onoff;                // option on/off
1475  *     int     l_linger;               // linger time
1476  * };
1477  *
1478  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1479  * to 0, calling close() is the same as the ABORT primitive.  If the
1480  * value is set to a negative value, the setsockopt() call will return
1481  * an error.  If the value is set to a positive value linger_time, the
1482  * close() can be blocked for at most linger_time ms.  If the graceful
1483  * shutdown phase does not finish during this period, close() will
1484  * return but the graceful shutdown phase continues in the system.
1485  */
1486 static void sctp_close(struct sock *sk, long timeout)
1487 {
1488 	struct net *net = sock_net(sk);
1489 	struct sctp_endpoint *ep;
1490 	struct sctp_association *asoc;
1491 	struct list_head *pos, *temp;
1492 	unsigned int data_was_unread;
1493 
1494 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1495 
1496 	lock_sock(sk);
1497 	sk->sk_shutdown = SHUTDOWN_MASK;
1498 	sk->sk_state = SCTP_SS_CLOSING;
1499 
1500 	ep = sctp_sk(sk)->ep;
1501 
1502 	/* Clean up any skbs sitting on the receive queue.  */
1503 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1504 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1505 
1506 	/* Walk all associations on an endpoint.  */
1507 	list_for_each_safe(pos, temp, &ep->asocs) {
1508 		asoc = list_entry(pos, struct sctp_association, asocs);
1509 
1510 		if (sctp_style(sk, TCP)) {
1511 			/* A closed association can still be in the list if
1512 			 * it belongs to a TCP-style listening socket that is
1513 			 * not yet accepted. If so, free it. If not, send an
1514 			 * ABORT or SHUTDOWN based on the linger options.
1515 			 */
1516 			if (sctp_state(asoc, CLOSED)) {
1517 				sctp_association_free(asoc);
1518 				continue;
1519 			}
1520 		}
1521 
1522 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1523 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1524 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1525 			struct sctp_chunk *chunk;
1526 
1527 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1528 			sctp_primitive_ABORT(net, asoc, chunk);
1529 		} else
1530 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1531 	}
1532 
1533 	/* On a TCP-style socket, block for at most linger_time if set. */
1534 	if (sctp_style(sk, TCP) && timeout)
1535 		sctp_wait_for_close(sk, timeout);
1536 
1537 	/* This will run the backlog queue.  */
1538 	release_sock(sk);
1539 
1540 	/* Supposedly, no process has access to the socket, but
1541 	 * the net layers still may.
1542 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1543 	 * held and that should be grabbed before socket lock.
1544 	 */
1545 	spin_lock_bh(&net->sctp.addr_wq_lock);
1546 	bh_lock_sock(sk);
1547 
1548 	/* Hold the sock, since sk_common_release() will put sock_put()
1549 	 * and we have just a little more cleanup.
1550 	 */
1551 	sock_hold(sk);
1552 	sk_common_release(sk);
1553 
1554 	bh_unlock_sock(sk);
1555 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1556 
1557 	sock_put(sk);
1558 
1559 	SCTP_DBG_OBJCNT_DEC(sock);
1560 }
1561 
1562 /* Handle EPIPE error. */
1563 static int sctp_error(struct sock *sk, int flags, int err)
1564 {
1565 	if (err == -EPIPE)
1566 		err = sock_error(sk) ? : -EPIPE;
1567 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1568 		send_sig(SIGPIPE, current, 0);
1569 	return err;
1570 }
1571 
1572 /* API 3.1.3 sendmsg() - UDP Style Syntax
1573  *
1574  * An application uses sendmsg() and recvmsg() calls to transmit data to
1575  * and receive data from its peer.
1576  *
1577  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1578  *                  int flags);
1579  *
1580  *  socket  - the socket descriptor of the endpoint.
1581  *  message - pointer to the msghdr structure which contains a single
1582  *            user message and possibly some ancillary data.
1583  *
1584  *            See Section 5 for complete description of the data
1585  *            structures.
1586  *
1587  *  flags   - flags sent or received with the user message, see Section
1588  *            5 for complete description of the flags.
1589  *
1590  * Note:  This function could use a rewrite especially when explicit
1591  * connect support comes in.
1592  */
1593 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1594 
1595 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1596 
1597 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1598 {
1599 	struct net *net = sock_net(sk);
1600 	struct sctp_sock *sp;
1601 	struct sctp_endpoint *ep;
1602 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1603 	struct sctp_transport *transport, *chunk_tp;
1604 	struct sctp_chunk *chunk;
1605 	union sctp_addr to;
1606 	struct sockaddr *msg_name = NULL;
1607 	struct sctp_sndrcvinfo default_sinfo;
1608 	struct sctp_sndrcvinfo *sinfo;
1609 	struct sctp_initmsg *sinit;
1610 	sctp_assoc_t associd = 0;
1611 	sctp_cmsgs_t cmsgs = { NULL };
1612 	sctp_scope_t scope;
1613 	bool fill_sinfo_ttl = false, wait_connect = false;
1614 	struct sctp_datamsg *datamsg;
1615 	int msg_flags = msg->msg_flags;
1616 	__u16 sinfo_flags = 0;
1617 	long timeo;
1618 	int err;
1619 
1620 	err = 0;
1621 	sp = sctp_sk(sk);
1622 	ep = sp->ep;
1623 
1624 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1625 		 msg, msg_len, ep);
1626 
1627 	/* We cannot send a message over a TCP-style listening socket. */
1628 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1629 		err = -EPIPE;
1630 		goto out_nounlock;
1631 	}
1632 
1633 	/* Parse out the SCTP CMSGs.  */
1634 	err = sctp_msghdr_parse(msg, &cmsgs);
1635 	if (err) {
1636 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1637 		goto out_nounlock;
1638 	}
1639 
1640 	/* Fetch the destination address for this packet.  This
1641 	 * address only selects the association--it is not necessarily
1642 	 * the address we will send to.
1643 	 * For a peeled-off socket, msg_name is ignored.
1644 	 */
1645 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1646 		int msg_namelen = msg->msg_namelen;
1647 
1648 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1649 				       msg_namelen);
1650 		if (err)
1651 			return err;
1652 
1653 		if (msg_namelen > sizeof(to))
1654 			msg_namelen = sizeof(to);
1655 		memcpy(&to, msg->msg_name, msg_namelen);
1656 		msg_name = msg->msg_name;
1657 	}
1658 
1659 	sinit = cmsgs.init;
1660 	if (cmsgs.sinfo != NULL) {
1661 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1662 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1663 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1664 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1665 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1666 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1667 
1668 		sinfo = &default_sinfo;
1669 		fill_sinfo_ttl = true;
1670 	} else {
1671 		sinfo = cmsgs.srinfo;
1672 	}
1673 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1674 	if (sinfo) {
1675 		sinfo_flags = sinfo->sinfo_flags;
1676 		associd = sinfo->sinfo_assoc_id;
1677 	}
1678 
1679 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1680 		 msg_len, sinfo_flags);
1681 
1682 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1683 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1684 		err = -EINVAL;
1685 		goto out_nounlock;
1686 	}
1687 
1688 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1689 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1690 	 * If SCTP_ABORT is set, the message length could be non zero with
1691 	 * the msg_iov set to the user abort reason.
1692 	 */
1693 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1694 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1695 		err = -EINVAL;
1696 		goto out_nounlock;
1697 	}
1698 
1699 	/* If SCTP_ADDR_OVER is set, there must be an address
1700 	 * specified in msg_name.
1701 	 */
1702 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1703 		err = -EINVAL;
1704 		goto out_nounlock;
1705 	}
1706 
1707 	transport = NULL;
1708 
1709 	pr_debug("%s: about to look up association\n", __func__);
1710 
1711 	lock_sock(sk);
1712 
1713 	/* If a msg_name has been specified, assume this is to be used.  */
1714 	if (msg_name) {
1715 		/* Look for a matching association on the endpoint. */
1716 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1717 
1718 		/* If we could not find a matching association on the
1719 		 * endpoint, make sure that it is not a TCP-style
1720 		 * socket that already has an association or there is
1721 		 * no peeled-off association on another socket.
1722 		 */
1723 		if (!asoc &&
1724 		    ((sctp_style(sk, TCP) &&
1725 		      (sctp_sstate(sk, ESTABLISHED) ||
1726 		       sctp_sstate(sk, CLOSING))) ||
1727 		     sctp_endpoint_is_peeled_off(ep, &to))) {
1728 			err = -EADDRNOTAVAIL;
1729 			goto out_unlock;
1730 		}
1731 	} else {
1732 		asoc = sctp_id2assoc(sk, associd);
1733 		if (!asoc) {
1734 			err = -EPIPE;
1735 			goto out_unlock;
1736 		}
1737 	}
1738 
1739 	if (asoc) {
1740 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1741 
1742 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1743 		 * socket that has an association in CLOSED state. This can
1744 		 * happen when an accepted socket has an association that is
1745 		 * already CLOSED.
1746 		 */
1747 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1748 			err = -EPIPE;
1749 			goto out_unlock;
1750 		}
1751 
1752 		if (sinfo_flags & SCTP_EOF) {
1753 			pr_debug("%s: shutting down association:%p\n",
1754 				 __func__, asoc);
1755 
1756 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1757 			err = 0;
1758 			goto out_unlock;
1759 		}
1760 		if (sinfo_flags & SCTP_ABORT) {
1761 
1762 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1763 			if (!chunk) {
1764 				err = -ENOMEM;
1765 				goto out_unlock;
1766 			}
1767 
1768 			pr_debug("%s: aborting association:%p\n",
1769 				 __func__, asoc);
1770 
1771 			sctp_primitive_ABORT(net, asoc, chunk);
1772 			err = 0;
1773 			goto out_unlock;
1774 		}
1775 	}
1776 
1777 	/* Do we need to create the association?  */
1778 	if (!asoc) {
1779 		pr_debug("%s: there is no association yet\n", __func__);
1780 
1781 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1782 			err = -EINVAL;
1783 			goto out_unlock;
1784 		}
1785 
1786 		/* Check for invalid stream against the stream counts,
1787 		 * either the default or the user specified stream counts.
1788 		 */
1789 		if (sinfo) {
1790 			if (!sinit || !sinit->sinit_num_ostreams) {
1791 				/* Check against the defaults. */
1792 				if (sinfo->sinfo_stream >=
1793 				    sp->initmsg.sinit_num_ostreams) {
1794 					err = -EINVAL;
1795 					goto out_unlock;
1796 				}
1797 			} else {
1798 				/* Check against the requested.  */
1799 				if (sinfo->sinfo_stream >=
1800 				    sinit->sinit_num_ostreams) {
1801 					err = -EINVAL;
1802 					goto out_unlock;
1803 				}
1804 			}
1805 		}
1806 
1807 		/*
1808 		 * API 3.1.2 bind() - UDP Style Syntax
1809 		 * If a bind() or sctp_bindx() is not called prior to a
1810 		 * sendmsg() call that initiates a new association, the
1811 		 * system picks an ephemeral port and will choose an address
1812 		 * set equivalent to binding with a wildcard address.
1813 		 */
1814 		if (!ep->base.bind_addr.port) {
1815 			if (sctp_autobind(sk)) {
1816 				err = -EAGAIN;
1817 				goto out_unlock;
1818 			}
1819 		} else {
1820 			/*
1821 			 * If an unprivileged user inherits a one-to-many
1822 			 * style socket with open associations on a privileged
1823 			 * port, it MAY be permitted to accept new associations,
1824 			 * but it SHOULD NOT be permitted to open new
1825 			 * associations.
1826 			 */
1827 			if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1828 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1829 				err = -EACCES;
1830 				goto out_unlock;
1831 			}
1832 		}
1833 
1834 		scope = sctp_scope(&to);
1835 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1836 		if (!new_asoc) {
1837 			err = -ENOMEM;
1838 			goto out_unlock;
1839 		}
1840 		asoc = new_asoc;
1841 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1842 		if (err < 0) {
1843 			err = -ENOMEM;
1844 			goto out_free;
1845 		}
1846 
1847 		/* If the SCTP_INIT ancillary data is specified, set all
1848 		 * the association init values accordingly.
1849 		 */
1850 		if (sinit) {
1851 			if (sinit->sinit_num_ostreams) {
1852 				asoc->c.sinit_num_ostreams =
1853 					sinit->sinit_num_ostreams;
1854 			}
1855 			if (sinit->sinit_max_instreams) {
1856 				asoc->c.sinit_max_instreams =
1857 					sinit->sinit_max_instreams;
1858 			}
1859 			if (sinit->sinit_max_attempts) {
1860 				asoc->max_init_attempts
1861 					= sinit->sinit_max_attempts;
1862 			}
1863 			if (sinit->sinit_max_init_timeo) {
1864 				asoc->max_init_timeo =
1865 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1866 			}
1867 		}
1868 
1869 		/* Prime the peer's transport structures.  */
1870 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1871 		if (!transport) {
1872 			err = -ENOMEM;
1873 			goto out_free;
1874 		}
1875 	}
1876 
1877 	/* ASSERT: we have a valid association at this point.  */
1878 	pr_debug("%s: we have a valid association\n", __func__);
1879 
1880 	if (!sinfo) {
1881 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1882 		 * one with some defaults.
1883 		 */
1884 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1885 		default_sinfo.sinfo_stream = asoc->default_stream;
1886 		default_sinfo.sinfo_flags = asoc->default_flags;
1887 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1888 		default_sinfo.sinfo_context = asoc->default_context;
1889 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1890 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1891 
1892 		sinfo = &default_sinfo;
1893 	} else if (fill_sinfo_ttl) {
1894 		/* In case SNDINFO was specified, we still need to fill
1895 		 * it with a default ttl from the assoc here.
1896 		 */
1897 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1898 	}
1899 
1900 	/* API 7.1.7, the sndbuf size per association bounds the
1901 	 * maximum size of data that can be sent in a single send call.
1902 	 */
1903 	if (msg_len > sk->sk_sndbuf) {
1904 		err = -EMSGSIZE;
1905 		goto out_free;
1906 	}
1907 
1908 	if (asoc->pmtu_pending)
1909 		sctp_assoc_pending_pmtu(sk, asoc);
1910 
1911 	/* If fragmentation is disabled and the message length exceeds the
1912 	 * association fragmentation point, return EMSGSIZE.  The I-D
1913 	 * does not specify what this error is, but this looks like
1914 	 * a great fit.
1915 	 */
1916 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1917 		err = -EMSGSIZE;
1918 		goto out_free;
1919 	}
1920 
1921 	/* Check for invalid stream. */
1922 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1923 		err = -EINVAL;
1924 		goto out_free;
1925 	}
1926 
1927 	if (sctp_wspace(asoc) < msg_len)
1928 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1929 
1930 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1931 	if (!sctp_wspace(asoc)) {
1932 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1933 		if (err)
1934 			goto out_free;
1935 	}
1936 
1937 	/* If an address is passed with the sendto/sendmsg call, it is used
1938 	 * to override the primary destination address in the TCP model, or
1939 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1940 	 */
1941 	if ((sctp_style(sk, TCP) && msg_name) ||
1942 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1943 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1944 		if (!chunk_tp) {
1945 			err = -EINVAL;
1946 			goto out_free;
1947 		}
1948 	} else
1949 		chunk_tp = NULL;
1950 
1951 	/* Auto-connect, if we aren't connected already. */
1952 	if (sctp_state(asoc, CLOSED)) {
1953 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1954 		if (err < 0)
1955 			goto out_free;
1956 
1957 		wait_connect = true;
1958 		pr_debug("%s: we associated primitively\n", __func__);
1959 	}
1960 
1961 	/* Break the message into multiple chunks of maximum size. */
1962 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1963 	if (IS_ERR(datamsg)) {
1964 		err = PTR_ERR(datamsg);
1965 		goto out_free;
1966 	}
1967 
1968 	/* Now send the (possibly) fragmented message. */
1969 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1970 		sctp_chunk_hold(chunk);
1971 
1972 		/* Do accounting for the write space.  */
1973 		sctp_set_owner_w(chunk);
1974 
1975 		chunk->transport = chunk_tp;
1976 	}
1977 
1978 	/* Send it to the lower layers.  Note:  all chunks
1979 	 * must either fail or succeed.   The lower layer
1980 	 * works that way today.  Keep it that way or this
1981 	 * breaks.
1982 	 */
1983 	err = sctp_primitive_SEND(net, asoc, datamsg);
1984 	/* Did the lower layer accept the chunk? */
1985 	if (err) {
1986 		sctp_datamsg_free(datamsg);
1987 		goto out_free;
1988 	}
1989 
1990 	pr_debug("%s: we sent primitively\n", __func__);
1991 
1992 	sctp_datamsg_put(datamsg);
1993 	err = msg_len;
1994 
1995 	if (unlikely(wait_connect)) {
1996 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1997 		sctp_wait_for_connect(asoc, &timeo);
1998 	}
1999 
2000 	/* If we are already past ASSOCIATE, the lower
2001 	 * layers are responsible for association cleanup.
2002 	 */
2003 	goto out_unlock;
2004 
2005 out_free:
2006 	if (new_asoc)
2007 		sctp_association_free(asoc);
2008 out_unlock:
2009 	release_sock(sk);
2010 
2011 out_nounlock:
2012 	return sctp_error(sk, msg_flags, err);
2013 
2014 #if 0
2015 do_sock_err:
2016 	if (msg_len)
2017 		err = msg_len;
2018 	else
2019 		err = sock_error(sk);
2020 	goto out;
2021 
2022 do_interrupted:
2023 	if (msg_len)
2024 		err = msg_len;
2025 	goto out;
2026 #endif /* 0 */
2027 }
2028 
2029 /* This is an extended version of skb_pull() that removes the data from the
2030  * start of a skb even when data is spread across the list of skb's in the
2031  * frag_list. len specifies the total amount of data that needs to be removed.
2032  * when 'len' bytes could be removed from the skb, it returns 0.
2033  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2034  * could not be removed.
2035  */
2036 static int sctp_skb_pull(struct sk_buff *skb, int len)
2037 {
2038 	struct sk_buff *list;
2039 	int skb_len = skb_headlen(skb);
2040 	int rlen;
2041 
2042 	if (len <= skb_len) {
2043 		__skb_pull(skb, len);
2044 		return 0;
2045 	}
2046 	len -= skb_len;
2047 	__skb_pull(skb, skb_len);
2048 
2049 	skb_walk_frags(skb, list) {
2050 		rlen = sctp_skb_pull(list, len);
2051 		skb->len -= (len-rlen);
2052 		skb->data_len -= (len-rlen);
2053 
2054 		if (!rlen)
2055 			return 0;
2056 
2057 		len = rlen;
2058 	}
2059 
2060 	return len;
2061 }
2062 
2063 /* API 3.1.3  recvmsg() - UDP Style Syntax
2064  *
2065  *  ssize_t recvmsg(int socket, struct msghdr *message,
2066  *                    int flags);
2067  *
2068  *  socket  - the socket descriptor of the endpoint.
2069  *  message - pointer to the msghdr structure which contains a single
2070  *            user message and possibly some ancillary data.
2071  *
2072  *            See Section 5 for complete description of the data
2073  *            structures.
2074  *
2075  *  flags   - flags sent or received with the user message, see Section
2076  *            5 for complete description of the flags.
2077  */
2078 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2079 			int noblock, int flags, int *addr_len)
2080 {
2081 	struct sctp_ulpevent *event = NULL;
2082 	struct sctp_sock *sp = sctp_sk(sk);
2083 	struct sk_buff *skb, *head_skb;
2084 	int copied;
2085 	int err = 0;
2086 	int skb_len;
2087 
2088 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2089 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2090 		 addr_len);
2091 
2092 	lock_sock(sk);
2093 
2094 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2095 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2096 		err = -ENOTCONN;
2097 		goto out;
2098 	}
2099 
2100 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2101 	if (!skb)
2102 		goto out;
2103 
2104 	/* Get the total length of the skb including any skb's in the
2105 	 * frag_list.
2106 	 */
2107 	skb_len = skb->len;
2108 
2109 	copied = skb_len;
2110 	if (copied > len)
2111 		copied = len;
2112 
2113 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2114 
2115 	event = sctp_skb2event(skb);
2116 
2117 	if (err)
2118 		goto out_free;
2119 
2120 	if (event->chunk && event->chunk->head_skb)
2121 		head_skb = event->chunk->head_skb;
2122 	else
2123 		head_skb = skb;
2124 	sock_recv_ts_and_drops(msg, sk, head_skb);
2125 	if (sctp_ulpevent_is_notification(event)) {
2126 		msg->msg_flags |= MSG_NOTIFICATION;
2127 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2128 	} else {
2129 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2130 	}
2131 
2132 	/* Check if we allow SCTP_NXTINFO. */
2133 	if (sp->recvnxtinfo)
2134 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2135 	/* Check if we allow SCTP_RCVINFO. */
2136 	if (sp->recvrcvinfo)
2137 		sctp_ulpevent_read_rcvinfo(event, msg);
2138 	/* Check if we allow SCTP_SNDRCVINFO. */
2139 	if (sp->subscribe.sctp_data_io_event)
2140 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2141 
2142 	err = copied;
2143 
2144 	/* If skb's length exceeds the user's buffer, update the skb and
2145 	 * push it back to the receive_queue so that the next call to
2146 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2147 	 */
2148 	if (skb_len > copied) {
2149 		msg->msg_flags &= ~MSG_EOR;
2150 		if (flags & MSG_PEEK)
2151 			goto out_free;
2152 		sctp_skb_pull(skb, copied);
2153 		skb_queue_head(&sk->sk_receive_queue, skb);
2154 
2155 		/* When only partial message is copied to the user, increase
2156 		 * rwnd by that amount. If all the data in the skb is read,
2157 		 * rwnd is updated when the event is freed.
2158 		 */
2159 		if (!sctp_ulpevent_is_notification(event))
2160 			sctp_assoc_rwnd_increase(event->asoc, copied);
2161 		goto out;
2162 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2163 		   (event->msg_flags & MSG_EOR))
2164 		msg->msg_flags |= MSG_EOR;
2165 	else
2166 		msg->msg_flags &= ~MSG_EOR;
2167 
2168 out_free:
2169 	if (flags & MSG_PEEK) {
2170 		/* Release the skb reference acquired after peeking the skb in
2171 		 * sctp_skb_recv_datagram().
2172 		 */
2173 		kfree_skb(skb);
2174 	} else {
2175 		/* Free the event which includes releasing the reference to
2176 		 * the owner of the skb, freeing the skb and updating the
2177 		 * rwnd.
2178 		 */
2179 		sctp_ulpevent_free(event);
2180 	}
2181 out:
2182 	release_sock(sk);
2183 	return err;
2184 }
2185 
2186 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2187  *
2188  * This option is a on/off flag.  If enabled no SCTP message
2189  * fragmentation will be performed.  Instead if a message being sent
2190  * exceeds the current PMTU size, the message will NOT be sent and
2191  * instead a error will be indicated to the user.
2192  */
2193 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2194 					     char __user *optval,
2195 					     unsigned int optlen)
2196 {
2197 	int val;
2198 
2199 	if (optlen < sizeof(int))
2200 		return -EINVAL;
2201 
2202 	if (get_user(val, (int __user *)optval))
2203 		return -EFAULT;
2204 
2205 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2206 
2207 	return 0;
2208 }
2209 
2210 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2211 				  unsigned int optlen)
2212 {
2213 	struct sctp_association *asoc;
2214 	struct sctp_ulpevent *event;
2215 
2216 	if (optlen > sizeof(struct sctp_event_subscribe))
2217 		return -EINVAL;
2218 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2219 		return -EFAULT;
2220 
2221 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2222 	 * if there is no data to be sent or retransmit, the stack will
2223 	 * immediately send up this notification.
2224 	 */
2225 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2226 				       &sctp_sk(sk)->subscribe)) {
2227 		asoc = sctp_id2assoc(sk, 0);
2228 
2229 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2230 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2231 					GFP_ATOMIC);
2232 			if (!event)
2233 				return -ENOMEM;
2234 
2235 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2236 		}
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2243  *
2244  * This socket option is applicable to the UDP-style socket only.  When
2245  * set it will cause associations that are idle for more than the
2246  * specified number of seconds to automatically close.  An association
2247  * being idle is defined an association that has NOT sent or received
2248  * user data.  The special value of '0' indicates that no automatic
2249  * close of any associations should be performed.  The option expects an
2250  * integer defining the number of seconds of idle time before an
2251  * association is closed.
2252  */
2253 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2254 				     unsigned int optlen)
2255 {
2256 	struct sctp_sock *sp = sctp_sk(sk);
2257 	struct net *net = sock_net(sk);
2258 
2259 	/* Applicable to UDP-style socket only */
2260 	if (sctp_style(sk, TCP))
2261 		return -EOPNOTSUPP;
2262 	if (optlen != sizeof(int))
2263 		return -EINVAL;
2264 	if (copy_from_user(&sp->autoclose, optval, optlen))
2265 		return -EFAULT;
2266 
2267 	if (sp->autoclose > net->sctp.max_autoclose)
2268 		sp->autoclose = net->sctp.max_autoclose;
2269 
2270 	return 0;
2271 }
2272 
2273 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2274  *
2275  * Applications can enable or disable heartbeats for any peer address of
2276  * an association, modify an address's heartbeat interval, force a
2277  * heartbeat to be sent immediately, and adjust the address's maximum
2278  * number of retransmissions sent before an address is considered
2279  * unreachable.  The following structure is used to access and modify an
2280  * address's parameters:
2281  *
2282  *  struct sctp_paddrparams {
2283  *     sctp_assoc_t            spp_assoc_id;
2284  *     struct sockaddr_storage spp_address;
2285  *     uint32_t                spp_hbinterval;
2286  *     uint16_t                spp_pathmaxrxt;
2287  *     uint32_t                spp_pathmtu;
2288  *     uint32_t                spp_sackdelay;
2289  *     uint32_t                spp_flags;
2290  * };
2291  *
2292  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2293  *                     application, and identifies the association for
2294  *                     this query.
2295  *   spp_address     - This specifies which address is of interest.
2296  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2297  *                     in milliseconds.  If a  value of zero
2298  *                     is present in this field then no changes are to
2299  *                     be made to this parameter.
2300  *   spp_pathmaxrxt  - This contains the maximum number of
2301  *                     retransmissions before this address shall be
2302  *                     considered unreachable. If a  value of zero
2303  *                     is present in this field then no changes are to
2304  *                     be made to this parameter.
2305  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2306  *                     specified here will be the "fixed" path mtu.
2307  *                     Note that if the spp_address field is empty
2308  *                     then all associations on this address will
2309  *                     have this fixed path mtu set upon them.
2310  *
2311  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2312  *                     the number of milliseconds that sacks will be delayed
2313  *                     for. This value will apply to all addresses of an
2314  *                     association if the spp_address field is empty. Note
2315  *                     also, that if delayed sack is enabled and this
2316  *                     value is set to 0, no change is made to the last
2317  *                     recorded delayed sack timer value.
2318  *
2319  *   spp_flags       - These flags are used to control various features
2320  *                     on an association. The flag field may contain
2321  *                     zero or more of the following options.
2322  *
2323  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2324  *                     specified address. Note that if the address
2325  *                     field is empty all addresses for the association
2326  *                     have heartbeats enabled upon them.
2327  *
2328  *                     SPP_HB_DISABLE - Disable heartbeats on the
2329  *                     speicifed address. Note that if the address
2330  *                     field is empty all addresses for the association
2331  *                     will have their heartbeats disabled. Note also
2332  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2333  *                     mutually exclusive, only one of these two should
2334  *                     be specified. Enabling both fields will have
2335  *                     undetermined results.
2336  *
2337  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2338  *                     to be made immediately.
2339  *
2340  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2341  *                     heartbeat delayis to be set to the value of 0
2342  *                     milliseconds.
2343  *
2344  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2345  *                     discovery upon the specified address. Note that
2346  *                     if the address feild is empty then all addresses
2347  *                     on the association are effected.
2348  *
2349  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2350  *                     discovery upon the specified address. Note that
2351  *                     if the address feild is empty then all addresses
2352  *                     on the association are effected. Not also that
2353  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2354  *                     exclusive. Enabling both will have undetermined
2355  *                     results.
2356  *
2357  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2358  *                     on delayed sack. The time specified in spp_sackdelay
2359  *                     is used to specify the sack delay for this address. Note
2360  *                     that if spp_address is empty then all addresses will
2361  *                     enable delayed sack and take on the sack delay
2362  *                     value specified in spp_sackdelay.
2363  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2364  *                     off delayed sack. If the spp_address field is blank then
2365  *                     delayed sack is disabled for the entire association. Note
2366  *                     also that this field is mutually exclusive to
2367  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2368  *                     results.
2369  */
2370 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2371 				       struct sctp_transport   *trans,
2372 				       struct sctp_association *asoc,
2373 				       struct sctp_sock        *sp,
2374 				       int                      hb_change,
2375 				       int                      pmtud_change,
2376 				       int                      sackdelay_change)
2377 {
2378 	int error;
2379 
2380 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2381 		struct net *net = sock_net(trans->asoc->base.sk);
2382 
2383 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2384 		if (error)
2385 			return error;
2386 	}
2387 
2388 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2389 	 * this field is ignored.  Note also that a value of zero indicates
2390 	 * the current setting should be left unchanged.
2391 	 */
2392 	if (params->spp_flags & SPP_HB_ENABLE) {
2393 
2394 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2395 		 * set.  This lets us use 0 value when this flag
2396 		 * is set.
2397 		 */
2398 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2399 			params->spp_hbinterval = 0;
2400 
2401 		if (params->spp_hbinterval ||
2402 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2403 			if (trans) {
2404 				trans->hbinterval =
2405 				    msecs_to_jiffies(params->spp_hbinterval);
2406 			} else if (asoc) {
2407 				asoc->hbinterval =
2408 				    msecs_to_jiffies(params->spp_hbinterval);
2409 			} else {
2410 				sp->hbinterval = params->spp_hbinterval;
2411 			}
2412 		}
2413 	}
2414 
2415 	if (hb_change) {
2416 		if (trans) {
2417 			trans->param_flags =
2418 				(trans->param_flags & ~SPP_HB) | hb_change;
2419 		} else if (asoc) {
2420 			asoc->param_flags =
2421 				(asoc->param_flags & ~SPP_HB) | hb_change;
2422 		} else {
2423 			sp->param_flags =
2424 				(sp->param_flags & ~SPP_HB) | hb_change;
2425 		}
2426 	}
2427 
2428 	/* When Path MTU discovery is disabled the value specified here will
2429 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2430 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2431 	 * effect).
2432 	 */
2433 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2434 		if (trans) {
2435 			trans->pathmtu = params->spp_pathmtu;
2436 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2437 		} else if (asoc) {
2438 			asoc->pathmtu = params->spp_pathmtu;
2439 		} else {
2440 			sp->pathmtu = params->spp_pathmtu;
2441 		}
2442 	}
2443 
2444 	if (pmtud_change) {
2445 		if (trans) {
2446 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2447 				(params->spp_flags & SPP_PMTUD_ENABLE);
2448 			trans->param_flags =
2449 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2450 			if (update) {
2451 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2452 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2453 			}
2454 		} else if (asoc) {
2455 			asoc->param_flags =
2456 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2457 		} else {
2458 			sp->param_flags =
2459 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2460 		}
2461 	}
2462 
2463 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2464 	 * value of this field is ignored.  Note also that a value of zero
2465 	 * indicates the current setting should be left unchanged.
2466 	 */
2467 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2468 		if (trans) {
2469 			trans->sackdelay =
2470 				msecs_to_jiffies(params->spp_sackdelay);
2471 		} else if (asoc) {
2472 			asoc->sackdelay =
2473 				msecs_to_jiffies(params->spp_sackdelay);
2474 		} else {
2475 			sp->sackdelay = params->spp_sackdelay;
2476 		}
2477 	}
2478 
2479 	if (sackdelay_change) {
2480 		if (trans) {
2481 			trans->param_flags =
2482 				(trans->param_flags & ~SPP_SACKDELAY) |
2483 				sackdelay_change;
2484 		} else if (asoc) {
2485 			asoc->param_flags =
2486 				(asoc->param_flags & ~SPP_SACKDELAY) |
2487 				sackdelay_change;
2488 		} else {
2489 			sp->param_flags =
2490 				(sp->param_flags & ~SPP_SACKDELAY) |
2491 				sackdelay_change;
2492 		}
2493 	}
2494 
2495 	/* Note that a value of zero indicates the current setting should be
2496 	   left unchanged.
2497 	 */
2498 	if (params->spp_pathmaxrxt) {
2499 		if (trans) {
2500 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2501 		} else if (asoc) {
2502 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2503 		} else {
2504 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2505 		}
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2512 					    char __user *optval,
2513 					    unsigned int optlen)
2514 {
2515 	struct sctp_paddrparams  params;
2516 	struct sctp_transport   *trans = NULL;
2517 	struct sctp_association *asoc = NULL;
2518 	struct sctp_sock        *sp = sctp_sk(sk);
2519 	int error;
2520 	int hb_change, pmtud_change, sackdelay_change;
2521 
2522 	if (optlen != sizeof(struct sctp_paddrparams))
2523 		return -EINVAL;
2524 
2525 	if (copy_from_user(&params, optval, optlen))
2526 		return -EFAULT;
2527 
2528 	/* Validate flags and value parameters. */
2529 	hb_change        = params.spp_flags & SPP_HB;
2530 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2531 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2532 
2533 	if (hb_change        == SPP_HB ||
2534 	    pmtud_change     == SPP_PMTUD ||
2535 	    sackdelay_change == SPP_SACKDELAY ||
2536 	    params.spp_sackdelay > 500 ||
2537 	    (params.spp_pathmtu &&
2538 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2539 		return -EINVAL;
2540 
2541 	/* If an address other than INADDR_ANY is specified, and
2542 	 * no transport is found, then the request is invalid.
2543 	 */
2544 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2545 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2546 					       params.spp_assoc_id);
2547 		if (!trans)
2548 			return -EINVAL;
2549 	}
2550 
2551 	/* Get association, if assoc_id != 0 and the socket is a one
2552 	 * to many style socket, and an association was not found, then
2553 	 * the id was invalid.
2554 	 */
2555 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2556 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2557 		return -EINVAL;
2558 
2559 	/* Heartbeat demand can only be sent on a transport or
2560 	 * association, but not a socket.
2561 	 */
2562 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2563 		return -EINVAL;
2564 
2565 	/* Process parameters. */
2566 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2567 					    hb_change, pmtud_change,
2568 					    sackdelay_change);
2569 
2570 	if (error)
2571 		return error;
2572 
2573 	/* If changes are for association, also apply parameters to each
2574 	 * transport.
2575 	 */
2576 	if (!trans && asoc) {
2577 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2578 				transports) {
2579 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2580 						    hb_change, pmtud_change,
2581 						    sackdelay_change);
2582 		}
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2589 {
2590 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2591 }
2592 
2593 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2594 {
2595 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2596 }
2597 
2598 /*
2599  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2600  *
2601  * This option will effect the way delayed acks are performed.  This
2602  * option allows you to get or set the delayed ack time, in
2603  * milliseconds.  It also allows changing the delayed ack frequency.
2604  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2605  * the assoc_id is 0, then this sets or gets the endpoints default
2606  * values.  If the assoc_id field is non-zero, then the set or get
2607  * effects the specified association for the one to many model (the
2608  * assoc_id field is ignored by the one to one model).  Note that if
2609  * sack_delay or sack_freq are 0 when setting this option, then the
2610  * current values will remain unchanged.
2611  *
2612  * struct sctp_sack_info {
2613  *     sctp_assoc_t            sack_assoc_id;
2614  *     uint32_t                sack_delay;
2615  *     uint32_t                sack_freq;
2616  * };
2617  *
2618  * sack_assoc_id -  This parameter, indicates which association the user
2619  *    is performing an action upon.  Note that if this field's value is
2620  *    zero then the endpoints default value is changed (effecting future
2621  *    associations only).
2622  *
2623  * sack_delay -  This parameter contains the number of milliseconds that
2624  *    the user is requesting the delayed ACK timer be set to.  Note that
2625  *    this value is defined in the standard to be between 200 and 500
2626  *    milliseconds.
2627  *
2628  * sack_freq -  This parameter contains the number of packets that must
2629  *    be received before a sack is sent without waiting for the delay
2630  *    timer to expire.  The default value for this is 2, setting this
2631  *    value to 1 will disable the delayed sack algorithm.
2632  */
2633 
2634 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2635 				       char __user *optval, unsigned int optlen)
2636 {
2637 	struct sctp_sack_info    params;
2638 	struct sctp_transport   *trans = NULL;
2639 	struct sctp_association *asoc = NULL;
2640 	struct sctp_sock        *sp = sctp_sk(sk);
2641 
2642 	if (optlen == sizeof(struct sctp_sack_info)) {
2643 		if (copy_from_user(&params, optval, optlen))
2644 			return -EFAULT;
2645 
2646 		if (params.sack_delay == 0 && params.sack_freq == 0)
2647 			return 0;
2648 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2649 		pr_warn_ratelimited(DEPRECATED
2650 				    "%s (pid %d) "
2651 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2652 				    "Use struct sctp_sack_info instead\n",
2653 				    current->comm, task_pid_nr(current));
2654 		if (copy_from_user(&params, optval, optlen))
2655 			return -EFAULT;
2656 
2657 		if (params.sack_delay == 0)
2658 			params.sack_freq = 1;
2659 		else
2660 			params.sack_freq = 0;
2661 	} else
2662 		return -EINVAL;
2663 
2664 	/* Validate value parameter. */
2665 	if (params.sack_delay > 500)
2666 		return -EINVAL;
2667 
2668 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2669 	 * to many style socket, and an association was not found, then
2670 	 * the id was invalid.
2671 	 */
2672 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2673 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2674 		return -EINVAL;
2675 
2676 	if (params.sack_delay) {
2677 		if (asoc) {
2678 			asoc->sackdelay =
2679 				msecs_to_jiffies(params.sack_delay);
2680 			asoc->param_flags =
2681 				sctp_spp_sackdelay_enable(asoc->param_flags);
2682 		} else {
2683 			sp->sackdelay = params.sack_delay;
2684 			sp->param_flags =
2685 				sctp_spp_sackdelay_enable(sp->param_flags);
2686 		}
2687 	}
2688 
2689 	if (params.sack_freq == 1) {
2690 		if (asoc) {
2691 			asoc->param_flags =
2692 				sctp_spp_sackdelay_disable(asoc->param_flags);
2693 		} else {
2694 			sp->param_flags =
2695 				sctp_spp_sackdelay_disable(sp->param_flags);
2696 		}
2697 	} else if (params.sack_freq > 1) {
2698 		if (asoc) {
2699 			asoc->sackfreq = params.sack_freq;
2700 			asoc->param_flags =
2701 				sctp_spp_sackdelay_enable(asoc->param_flags);
2702 		} else {
2703 			sp->sackfreq = params.sack_freq;
2704 			sp->param_flags =
2705 				sctp_spp_sackdelay_enable(sp->param_flags);
2706 		}
2707 	}
2708 
2709 	/* If change is for association, also apply to each transport. */
2710 	if (asoc) {
2711 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2712 				transports) {
2713 			if (params.sack_delay) {
2714 				trans->sackdelay =
2715 					msecs_to_jiffies(params.sack_delay);
2716 				trans->param_flags =
2717 					sctp_spp_sackdelay_enable(trans->param_flags);
2718 			}
2719 			if (params.sack_freq == 1) {
2720 				trans->param_flags =
2721 					sctp_spp_sackdelay_disable(trans->param_flags);
2722 			} else if (params.sack_freq > 1) {
2723 				trans->sackfreq = params.sack_freq;
2724 				trans->param_flags =
2725 					sctp_spp_sackdelay_enable(trans->param_flags);
2726 			}
2727 		}
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2734  *
2735  * Applications can specify protocol parameters for the default association
2736  * initialization.  The option name argument to setsockopt() and getsockopt()
2737  * is SCTP_INITMSG.
2738  *
2739  * Setting initialization parameters is effective only on an unconnected
2740  * socket (for UDP-style sockets only future associations are effected
2741  * by the change).  With TCP-style sockets, this option is inherited by
2742  * sockets derived from a listener socket.
2743  */
2744 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2745 {
2746 	struct sctp_initmsg sinit;
2747 	struct sctp_sock *sp = sctp_sk(sk);
2748 
2749 	if (optlen != sizeof(struct sctp_initmsg))
2750 		return -EINVAL;
2751 	if (copy_from_user(&sinit, optval, optlen))
2752 		return -EFAULT;
2753 
2754 	if (sinit.sinit_num_ostreams)
2755 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2756 	if (sinit.sinit_max_instreams)
2757 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2758 	if (sinit.sinit_max_attempts)
2759 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2760 	if (sinit.sinit_max_init_timeo)
2761 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2762 
2763 	return 0;
2764 }
2765 
2766 /*
2767  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2768  *
2769  *   Applications that wish to use the sendto() system call may wish to
2770  *   specify a default set of parameters that would normally be supplied
2771  *   through the inclusion of ancillary data.  This socket option allows
2772  *   such an application to set the default sctp_sndrcvinfo structure.
2773  *   The application that wishes to use this socket option simply passes
2774  *   in to this call the sctp_sndrcvinfo structure defined in Section
2775  *   5.2.2) The input parameters accepted by this call include
2776  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2777  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2778  *   to this call if the caller is using the UDP model.
2779  */
2780 static int sctp_setsockopt_default_send_param(struct sock *sk,
2781 					      char __user *optval,
2782 					      unsigned int optlen)
2783 {
2784 	struct sctp_sock *sp = sctp_sk(sk);
2785 	struct sctp_association *asoc;
2786 	struct sctp_sndrcvinfo info;
2787 
2788 	if (optlen != sizeof(info))
2789 		return -EINVAL;
2790 	if (copy_from_user(&info, optval, optlen))
2791 		return -EFAULT;
2792 	if (info.sinfo_flags &
2793 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2794 	      SCTP_ABORT | SCTP_EOF))
2795 		return -EINVAL;
2796 
2797 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2798 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2799 		return -EINVAL;
2800 	if (asoc) {
2801 		asoc->default_stream = info.sinfo_stream;
2802 		asoc->default_flags = info.sinfo_flags;
2803 		asoc->default_ppid = info.sinfo_ppid;
2804 		asoc->default_context = info.sinfo_context;
2805 		asoc->default_timetolive = info.sinfo_timetolive;
2806 	} else {
2807 		sp->default_stream = info.sinfo_stream;
2808 		sp->default_flags = info.sinfo_flags;
2809 		sp->default_ppid = info.sinfo_ppid;
2810 		sp->default_context = info.sinfo_context;
2811 		sp->default_timetolive = info.sinfo_timetolive;
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2818  * (SCTP_DEFAULT_SNDINFO)
2819  */
2820 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2821 					   char __user *optval,
2822 					   unsigned int optlen)
2823 {
2824 	struct sctp_sock *sp = sctp_sk(sk);
2825 	struct sctp_association *asoc;
2826 	struct sctp_sndinfo info;
2827 
2828 	if (optlen != sizeof(info))
2829 		return -EINVAL;
2830 	if (copy_from_user(&info, optval, optlen))
2831 		return -EFAULT;
2832 	if (info.snd_flags &
2833 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2834 	      SCTP_ABORT | SCTP_EOF))
2835 		return -EINVAL;
2836 
2837 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2838 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2839 		return -EINVAL;
2840 	if (asoc) {
2841 		asoc->default_stream = info.snd_sid;
2842 		asoc->default_flags = info.snd_flags;
2843 		asoc->default_ppid = info.snd_ppid;
2844 		asoc->default_context = info.snd_context;
2845 	} else {
2846 		sp->default_stream = info.snd_sid;
2847 		sp->default_flags = info.snd_flags;
2848 		sp->default_ppid = info.snd_ppid;
2849 		sp->default_context = info.snd_context;
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2856  *
2857  * Requests that the local SCTP stack use the enclosed peer address as
2858  * the association primary.  The enclosed address must be one of the
2859  * association peer's addresses.
2860  */
2861 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2862 					unsigned int optlen)
2863 {
2864 	struct sctp_prim prim;
2865 	struct sctp_transport *trans;
2866 
2867 	if (optlen != sizeof(struct sctp_prim))
2868 		return -EINVAL;
2869 
2870 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2871 		return -EFAULT;
2872 
2873 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2874 	if (!trans)
2875 		return -EINVAL;
2876 
2877 	sctp_assoc_set_primary(trans->asoc, trans);
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * 7.1.5 SCTP_NODELAY
2884  *
2885  * Turn on/off any Nagle-like algorithm.  This means that packets are
2886  * generally sent as soon as possible and no unnecessary delays are
2887  * introduced, at the cost of more packets in the network.  Expects an
2888  *  integer boolean flag.
2889  */
2890 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2891 				   unsigned int optlen)
2892 {
2893 	int val;
2894 
2895 	if (optlen < sizeof(int))
2896 		return -EINVAL;
2897 	if (get_user(val, (int __user *)optval))
2898 		return -EFAULT;
2899 
2900 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2901 	return 0;
2902 }
2903 
2904 /*
2905  *
2906  * 7.1.1 SCTP_RTOINFO
2907  *
2908  * The protocol parameters used to initialize and bound retransmission
2909  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2910  * and modify these parameters.
2911  * All parameters are time values, in milliseconds.  A value of 0, when
2912  * modifying the parameters, indicates that the current value should not
2913  * be changed.
2914  *
2915  */
2916 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2917 {
2918 	struct sctp_rtoinfo rtoinfo;
2919 	struct sctp_association *asoc;
2920 	unsigned long rto_min, rto_max;
2921 	struct sctp_sock *sp = sctp_sk(sk);
2922 
2923 	if (optlen != sizeof (struct sctp_rtoinfo))
2924 		return -EINVAL;
2925 
2926 	if (copy_from_user(&rtoinfo, optval, optlen))
2927 		return -EFAULT;
2928 
2929 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2930 
2931 	/* Set the values to the specific association */
2932 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2933 		return -EINVAL;
2934 
2935 	rto_max = rtoinfo.srto_max;
2936 	rto_min = rtoinfo.srto_min;
2937 
2938 	if (rto_max)
2939 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2940 	else
2941 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2942 
2943 	if (rto_min)
2944 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2945 	else
2946 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2947 
2948 	if (rto_min > rto_max)
2949 		return -EINVAL;
2950 
2951 	if (asoc) {
2952 		if (rtoinfo.srto_initial != 0)
2953 			asoc->rto_initial =
2954 				msecs_to_jiffies(rtoinfo.srto_initial);
2955 		asoc->rto_max = rto_max;
2956 		asoc->rto_min = rto_min;
2957 	} else {
2958 		/* If there is no association or the association-id = 0
2959 		 * set the values to the endpoint.
2960 		 */
2961 		if (rtoinfo.srto_initial != 0)
2962 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2963 		sp->rtoinfo.srto_max = rto_max;
2964 		sp->rtoinfo.srto_min = rto_min;
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 /*
2971  *
2972  * 7.1.2 SCTP_ASSOCINFO
2973  *
2974  * This option is used to tune the maximum retransmission attempts
2975  * of the association.
2976  * Returns an error if the new association retransmission value is
2977  * greater than the sum of the retransmission value  of the peer.
2978  * See [SCTP] for more information.
2979  *
2980  */
2981 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2982 {
2983 
2984 	struct sctp_assocparams assocparams;
2985 	struct sctp_association *asoc;
2986 
2987 	if (optlen != sizeof(struct sctp_assocparams))
2988 		return -EINVAL;
2989 	if (copy_from_user(&assocparams, optval, optlen))
2990 		return -EFAULT;
2991 
2992 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2993 
2994 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2995 		return -EINVAL;
2996 
2997 	/* Set the values to the specific association */
2998 	if (asoc) {
2999 		if (assocparams.sasoc_asocmaxrxt != 0) {
3000 			__u32 path_sum = 0;
3001 			int   paths = 0;
3002 			struct sctp_transport *peer_addr;
3003 
3004 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3005 					transports) {
3006 				path_sum += peer_addr->pathmaxrxt;
3007 				paths++;
3008 			}
3009 
3010 			/* Only validate asocmaxrxt if we have more than
3011 			 * one path/transport.  We do this because path
3012 			 * retransmissions are only counted when we have more
3013 			 * then one path.
3014 			 */
3015 			if (paths > 1 &&
3016 			    assocparams.sasoc_asocmaxrxt > path_sum)
3017 				return -EINVAL;
3018 
3019 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3020 		}
3021 
3022 		if (assocparams.sasoc_cookie_life != 0)
3023 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3024 	} else {
3025 		/* Set the values to the endpoint */
3026 		struct sctp_sock *sp = sctp_sk(sk);
3027 
3028 		if (assocparams.sasoc_asocmaxrxt != 0)
3029 			sp->assocparams.sasoc_asocmaxrxt =
3030 						assocparams.sasoc_asocmaxrxt;
3031 		if (assocparams.sasoc_cookie_life != 0)
3032 			sp->assocparams.sasoc_cookie_life =
3033 						assocparams.sasoc_cookie_life;
3034 	}
3035 	return 0;
3036 }
3037 
3038 /*
3039  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3040  *
3041  * This socket option is a boolean flag which turns on or off mapped V4
3042  * addresses.  If this option is turned on and the socket is type
3043  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3044  * If this option is turned off, then no mapping will be done of V4
3045  * addresses and a user will receive both PF_INET6 and PF_INET type
3046  * addresses on the socket.
3047  */
3048 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3049 {
3050 	int val;
3051 	struct sctp_sock *sp = sctp_sk(sk);
3052 
3053 	if (optlen < sizeof(int))
3054 		return -EINVAL;
3055 	if (get_user(val, (int __user *)optval))
3056 		return -EFAULT;
3057 	if (val)
3058 		sp->v4mapped = 1;
3059 	else
3060 		sp->v4mapped = 0;
3061 
3062 	return 0;
3063 }
3064 
3065 /*
3066  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3067  * This option will get or set the maximum size to put in any outgoing
3068  * SCTP DATA chunk.  If a message is larger than this size it will be
3069  * fragmented by SCTP into the specified size.  Note that the underlying
3070  * SCTP implementation may fragment into smaller sized chunks when the
3071  * PMTU of the underlying association is smaller than the value set by
3072  * the user.  The default value for this option is '0' which indicates
3073  * the user is NOT limiting fragmentation and only the PMTU will effect
3074  * SCTP's choice of DATA chunk size.  Note also that values set larger
3075  * than the maximum size of an IP datagram will effectively let SCTP
3076  * control fragmentation (i.e. the same as setting this option to 0).
3077  *
3078  * The following structure is used to access and modify this parameter:
3079  *
3080  * struct sctp_assoc_value {
3081  *   sctp_assoc_t assoc_id;
3082  *   uint32_t assoc_value;
3083  * };
3084  *
3085  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3086  *    For one-to-many style sockets this parameter indicates which
3087  *    association the user is performing an action upon.  Note that if
3088  *    this field's value is zero then the endpoints default value is
3089  *    changed (effecting future associations only).
3090  * assoc_value:  This parameter specifies the maximum size in bytes.
3091  */
3092 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3093 {
3094 	struct sctp_assoc_value params;
3095 	struct sctp_association *asoc;
3096 	struct sctp_sock *sp = sctp_sk(sk);
3097 	int val;
3098 
3099 	if (optlen == sizeof(int)) {
3100 		pr_warn_ratelimited(DEPRECATED
3101 				    "%s (pid %d) "
3102 				    "Use of int in maxseg socket option.\n"
3103 				    "Use struct sctp_assoc_value instead\n",
3104 				    current->comm, task_pid_nr(current));
3105 		if (copy_from_user(&val, optval, optlen))
3106 			return -EFAULT;
3107 		params.assoc_id = 0;
3108 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3109 		if (copy_from_user(&params, optval, optlen))
3110 			return -EFAULT;
3111 		val = params.assoc_value;
3112 	} else
3113 		return -EINVAL;
3114 
3115 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3116 		return -EINVAL;
3117 
3118 	asoc = sctp_id2assoc(sk, params.assoc_id);
3119 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3120 		return -EINVAL;
3121 
3122 	if (asoc) {
3123 		if (val == 0) {
3124 			val = asoc->pathmtu;
3125 			val -= sp->pf->af->net_header_len;
3126 			val -= sizeof(struct sctphdr) +
3127 					sizeof(struct sctp_data_chunk);
3128 		}
3129 		asoc->user_frag = val;
3130 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3131 	} else {
3132 		sp->user_frag = val;
3133 	}
3134 
3135 	return 0;
3136 }
3137 
3138 
3139 /*
3140  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3141  *
3142  *   Requests that the peer mark the enclosed address as the association
3143  *   primary. The enclosed address must be one of the association's
3144  *   locally bound addresses. The following structure is used to make a
3145  *   set primary request:
3146  */
3147 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3148 					     unsigned int optlen)
3149 {
3150 	struct net *net = sock_net(sk);
3151 	struct sctp_sock	*sp;
3152 	struct sctp_association	*asoc = NULL;
3153 	struct sctp_setpeerprim	prim;
3154 	struct sctp_chunk	*chunk;
3155 	struct sctp_af		*af;
3156 	int 			err;
3157 
3158 	sp = sctp_sk(sk);
3159 
3160 	if (!net->sctp.addip_enable)
3161 		return -EPERM;
3162 
3163 	if (optlen != sizeof(struct sctp_setpeerprim))
3164 		return -EINVAL;
3165 
3166 	if (copy_from_user(&prim, optval, optlen))
3167 		return -EFAULT;
3168 
3169 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3170 	if (!asoc)
3171 		return -EINVAL;
3172 
3173 	if (!asoc->peer.asconf_capable)
3174 		return -EPERM;
3175 
3176 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3177 		return -EPERM;
3178 
3179 	if (!sctp_state(asoc, ESTABLISHED))
3180 		return -ENOTCONN;
3181 
3182 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3183 	if (!af)
3184 		return -EINVAL;
3185 
3186 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3187 		return -EADDRNOTAVAIL;
3188 
3189 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3190 		return -EADDRNOTAVAIL;
3191 
3192 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3193 	chunk = sctp_make_asconf_set_prim(asoc,
3194 					  (union sctp_addr *)&prim.sspp_addr);
3195 	if (!chunk)
3196 		return -ENOMEM;
3197 
3198 	err = sctp_send_asconf(asoc, chunk);
3199 
3200 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3201 
3202 	return err;
3203 }
3204 
3205 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3206 					    unsigned int optlen)
3207 {
3208 	struct sctp_setadaptation adaptation;
3209 
3210 	if (optlen != sizeof(struct sctp_setadaptation))
3211 		return -EINVAL;
3212 	if (copy_from_user(&adaptation, optval, optlen))
3213 		return -EFAULT;
3214 
3215 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3222  *
3223  * The context field in the sctp_sndrcvinfo structure is normally only
3224  * used when a failed message is retrieved holding the value that was
3225  * sent down on the actual send call.  This option allows the setting of
3226  * a default context on an association basis that will be received on
3227  * reading messages from the peer.  This is especially helpful in the
3228  * one-2-many model for an application to keep some reference to an
3229  * internal state machine that is processing messages on the
3230  * association.  Note that the setting of this value only effects
3231  * received messages from the peer and does not effect the value that is
3232  * saved with outbound messages.
3233  */
3234 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3235 				   unsigned int optlen)
3236 {
3237 	struct sctp_assoc_value params;
3238 	struct sctp_sock *sp;
3239 	struct sctp_association *asoc;
3240 
3241 	if (optlen != sizeof(struct sctp_assoc_value))
3242 		return -EINVAL;
3243 	if (copy_from_user(&params, optval, optlen))
3244 		return -EFAULT;
3245 
3246 	sp = sctp_sk(sk);
3247 
3248 	if (params.assoc_id != 0) {
3249 		asoc = sctp_id2assoc(sk, params.assoc_id);
3250 		if (!asoc)
3251 			return -EINVAL;
3252 		asoc->default_rcv_context = params.assoc_value;
3253 	} else {
3254 		sp->default_rcv_context = params.assoc_value;
3255 	}
3256 
3257 	return 0;
3258 }
3259 
3260 /*
3261  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3262  *
3263  * This options will at a minimum specify if the implementation is doing
3264  * fragmented interleave.  Fragmented interleave, for a one to many
3265  * socket, is when subsequent calls to receive a message may return
3266  * parts of messages from different associations.  Some implementations
3267  * may allow you to turn this value on or off.  If so, when turned off,
3268  * no fragment interleave will occur (which will cause a head of line
3269  * blocking amongst multiple associations sharing the same one to many
3270  * socket).  When this option is turned on, then each receive call may
3271  * come from a different association (thus the user must receive data
3272  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3273  * association each receive belongs to.
3274  *
3275  * This option takes a boolean value.  A non-zero value indicates that
3276  * fragmented interleave is on.  A value of zero indicates that
3277  * fragmented interleave is off.
3278  *
3279  * Note that it is important that an implementation that allows this
3280  * option to be turned on, have it off by default.  Otherwise an unaware
3281  * application using the one to many model may become confused and act
3282  * incorrectly.
3283  */
3284 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3285 					       char __user *optval,
3286 					       unsigned int optlen)
3287 {
3288 	int val;
3289 
3290 	if (optlen != sizeof(int))
3291 		return -EINVAL;
3292 	if (get_user(val, (int __user *)optval))
3293 		return -EFAULT;
3294 
3295 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3296 
3297 	return 0;
3298 }
3299 
3300 /*
3301  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3302  *       (SCTP_PARTIAL_DELIVERY_POINT)
3303  *
3304  * This option will set or get the SCTP partial delivery point.  This
3305  * point is the size of a message where the partial delivery API will be
3306  * invoked to help free up rwnd space for the peer.  Setting this to a
3307  * lower value will cause partial deliveries to happen more often.  The
3308  * calls argument is an integer that sets or gets the partial delivery
3309  * point.  Note also that the call will fail if the user attempts to set
3310  * this value larger than the socket receive buffer size.
3311  *
3312  * Note that any single message having a length smaller than or equal to
3313  * the SCTP partial delivery point will be delivered in one single read
3314  * call as long as the user provided buffer is large enough to hold the
3315  * message.
3316  */
3317 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3318 						  char __user *optval,
3319 						  unsigned int optlen)
3320 {
3321 	u32 val;
3322 
3323 	if (optlen != sizeof(u32))
3324 		return -EINVAL;
3325 	if (get_user(val, (int __user *)optval))
3326 		return -EFAULT;
3327 
3328 	/* Note: We double the receive buffer from what the user sets
3329 	 * it to be, also initial rwnd is based on rcvbuf/2.
3330 	 */
3331 	if (val > (sk->sk_rcvbuf >> 1))
3332 		return -EINVAL;
3333 
3334 	sctp_sk(sk)->pd_point = val;
3335 
3336 	return 0; /* is this the right error code? */
3337 }
3338 
3339 /*
3340  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3341  *
3342  * This option will allow a user to change the maximum burst of packets
3343  * that can be emitted by this association.  Note that the default value
3344  * is 4, and some implementations may restrict this setting so that it
3345  * can only be lowered.
3346  *
3347  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3348  * future associations inheriting the socket value.
3349  */
3350 static int sctp_setsockopt_maxburst(struct sock *sk,
3351 				    char __user *optval,
3352 				    unsigned int optlen)
3353 {
3354 	struct sctp_assoc_value params;
3355 	struct sctp_sock *sp;
3356 	struct sctp_association *asoc;
3357 	int val;
3358 	int assoc_id = 0;
3359 
3360 	if (optlen == sizeof(int)) {
3361 		pr_warn_ratelimited(DEPRECATED
3362 				    "%s (pid %d) "
3363 				    "Use of int in max_burst socket option deprecated.\n"
3364 				    "Use struct sctp_assoc_value instead\n",
3365 				    current->comm, task_pid_nr(current));
3366 		if (copy_from_user(&val, optval, optlen))
3367 			return -EFAULT;
3368 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3369 		if (copy_from_user(&params, optval, optlen))
3370 			return -EFAULT;
3371 		val = params.assoc_value;
3372 		assoc_id = params.assoc_id;
3373 	} else
3374 		return -EINVAL;
3375 
3376 	sp = sctp_sk(sk);
3377 
3378 	if (assoc_id != 0) {
3379 		asoc = sctp_id2assoc(sk, assoc_id);
3380 		if (!asoc)
3381 			return -EINVAL;
3382 		asoc->max_burst = val;
3383 	} else
3384 		sp->max_burst = val;
3385 
3386 	return 0;
3387 }
3388 
3389 /*
3390  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3391  *
3392  * This set option adds a chunk type that the user is requesting to be
3393  * received only in an authenticated way.  Changes to the list of chunks
3394  * will only effect future associations on the socket.
3395  */
3396 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3397 				      char __user *optval,
3398 				      unsigned int optlen)
3399 {
3400 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3401 	struct sctp_authchunk val;
3402 
3403 	if (!ep->auth_enable)
3404 		return -EACCES;
3405 
3406 	if (optlen != sizeof(struct sctp_authchunk))
3407 		return -EINVAL;
3408 	if (copy_from_user(&val, optval, optlen))
3409 		return -EFAULT;
3410 
3411 	switch (val.sauth_chunk) {
3412 	case SCTP_CID_INIT:
3413 	case SCTP_CID_INIT_ACK:
3414 	case SCTP_CID_SHUTDOWN_COMPLETE:
3415 	case SCTP_CID_AUTH:
3416 		return -EINVAL;
3417 	}
3418 
3419 	/* add this chunk id to the endpoint */
3420 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3421 }
3422 
3423 /*
3424  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3425  *
3426  * This option gets or sets the list of HMAC algorithms that the local
3427  * endpoint requires the peer to use.
3428  */
3429 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3430 				      char __user *optval,
3431 				      unsigned int optlen)
3432 {
3433 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3434 	struct sctp_hmacalgo *hmacs;
3435 	u32 idents;
3436 	int err;
3437 
3438 	if (!ep->auth_enable)
3439 		return -EACCES;
3440 
3441 	if (optlen < sizeof(struct sctp_hmacalgo))
3442 		return -EINVAL;
3443 
3444 	hmacs = memdup_user(optval, optlen);
3445 	if (IS_ERR(hmacs))
3446 		return PTR_ERR(hmacs);
3447 
3448 	idents = hmacs->shmac_num_idents;
3449 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3450 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3451 		err = -EINVAL;
3452 		goto out;
3453 	}
3454 
3455 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3456 out:
3457 	kfree(hmacs);
3458 	return err;
3459 }
3460 
3461 /*
3462  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3463  *
3464  * This option will set a shared secret key which is used to build an
3465  * association shared key.
3466  */
3467 static int sctp_setsockopt_auth_key(struct sock *sk,
3468 				    char __user *optval,
3469 				    unsigned int optlen)
3470 {
3471 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3472 	struct sctp_authkey *authkey;
3473 	struct sctp_association *asoc;
3474 	int ret;
3475 
3476 	if (!ep->auth_enable)
3477 		return -EACCES;
3478 
3479 	if (optlen <= sizeof(struct sctp_authkey))
3480 		return -EINVAL;
3481 
3482 	authkey = memdup_user(optval, optlen);
3483 	if (IS_ERR(authkey))
3484 		return PTR_ERR(authkey);
3485 
3486 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3487 		ret = -EINVAL;
3488 		goto out;
3489 	}
3490 
3491 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3492 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3493 		ret = -EINVAL;
3494 		goto out;
3495 	}
3496 
3497 	ret = sctp_auth_set_key(ep, asoc, authkey);
3498 out:
3499 	kzfree(authkey);
3500 	return ret;
3501 }
3502 
3503 /*
3504  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3505  *
3506  * This option will get or set the active shared key to be used to build
3507  * the association shared key.
3508  */
3509 static int sctp_setsockopt_active_key(struct sock *sk,
3510 				      char __user *optval,
3511 				      unsigned int optlen)
3512 {
3513 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3514 	struct sctp_authkeyid val;
3515 	struct sctp_association *asoc;
3516 
3517 	if (!ep->auth_enable)
3518 		return -EACCES;
3519 
3520 	if (optlen != sizeof(struct sctp_authkeyid))
3521 		return -EINVAL;
3522 	if (copy_from_user(&val, optval, optlen))
3523 		return -EFAULT;
3524 
3525 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3526 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3527 		return -EINVAL;
3528 
3529 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3530 }
3531 
3532 /*
3533  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3534  *
3535  * This set option will delete a shared secret key from use.
3536  */
3537 static int sctp_setsockopt_del_key(struct sock *sk,
3538 				   char __user *optval,
3539 				   unsigned int optlen)
3540 {
3541 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3542 	struct sctp_authkeyid val;
3543 	struct sctp_association *asoc;
3544 
3545 	if (!ep->auth_enable)
3546 		return -EACCES;
3547 
3548 	if (optlen != sizeof(struct sctp_authkeyid))
3549 		return -EINVAL;
3550 	if (copy_from_user(&val, optval, optlen))
3551 		return -EFAULT;
3552 
3553 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3554 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3555 		return -EINVAL;
3556 
3557 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3558 
3559 }
3560 
3561 /*
3562  * 8.1.23 SCTP_AUTO_ASCONF
3563  *
3564  * This option will enable or disable the use of the automatic generation of
3565  * ASCONF chunks to add and delete addresses to an existing association.  Note
3566  * that this option has two caveats namely: a) it only affects sockets that
3567  * are bound to all addresses available to the SCTP stack, and b) the system
3568  * administrator may have an overriding control that turns the ASCONF feature
3569  * off no matter what setting the socket option may have.
3570  * This option expects an integer boolean flag, where a non-zero value turns on
3571  * the option, and a zero value turns off the option.
3572  * Note. In this implementation, socket operation overrides default parameter
3573  * being set by sysctl as well as FreeBSD implementation
3574  */
3575 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3576 					unsigned int optlen)
3577 {
3578 	int val;
3579 	struct sctp_sock *sp = sctp_sk(sk);
3580 
3581 	if (optlen < sizeof(int))
3582 		return -EINVAL;
3583 	if (get_user(val, (int __user *)optval))
3584 		return -EFAULT;
3585 	if (!sctp_is_ep_boundall(sk) && val)
3586 		return -EINVAL;
3587 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3588 		return 0;
3589 
3590 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3591 	if (val == 0 && sp->do_auto_asconf) {
3592 		list_del(&sp->auto_asconf_list);
3593 		sp->do_auto_asconf = 0;
3594 	} else if (val && !sp->do_auto_asconf) {
3595 		list_add_tail(&sp->auto_asconf_list,
3596 		    &sock_net(sk)->sctp.auto_asconf_splist);
3597 		sp->do_auto_asconf = 1;
3598 	}
3599 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3600 	return 0;
3601 }
3602 
3603 /*
3604  * SCTP_PEER_ADDR_THLDS
3605  *
3606  * This option allows us to alter the partially failed threshold for one or all
3607  * transports in an association.  See Section 6.1 of:
3608  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3609  */
3610 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3611 					    char __user *optval,
3612 					    unsigned int optlen)
3613 {
3614 	struct sctp_paddrthlds val;
3615 	struct sctp_transport *trans;
3616 	struct sctp_association *asoc;
3617 
3618 	if (optlen < sizeof(struct sctp_paddrthlds))
3619 		return -EINVAL;
3620 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3621 			   sizeof(struct sctp_paddrthlds)))
3622 		return -EFAULT;
3623 
3624 
3625 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3626 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3627 		if (!asoc)
3628 			return -ENOENT;
3629 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3630 				    transports) {
3631 			if (val.spt_pathmaxrxt)
3632 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3633 			trans->pf_retrans = val.spt_pathpfthld;
3634 		}
3635 
3636 		if (val.spt_pathmaxrxt)
3637 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3638 		asoc->pf_retrans = val.spt_pathpfthld;
3639 	} else {
3640 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3641 					       val.spt_assoc_id);
3642 		if (!trans)
3643 			return -ENOENT;
3644 
3645 		if (val.spt_pathmaxrxt)
3646 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3647 		trans->pf_retrans = val.spt_pathpfthld;
3648 	}
3649 
3650 	return 0;
3651 }
3652 
3653 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3654 				       char __user *optval,
3655 				       unsigned int optlen)
3656 {
3657 	int val;
3658 
3659 	if (optlen < sizeof(int))
3660 		return -EINVAL;
3661 	if (get_user(val, (int __user *) optval))
3662 		return -EFAULT;
3663 
3664 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3665 
3666 	return 0;
3667 }
3668 
3669 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3670 				       char __user *optval,
3671 				       unsigned int optlen)
3672 {
3673 	int val;
3674 
3675 	if (optlen < sizeof(int))
3676 		return -EINVAL;
3677 	if (get_user(val, (int __user *) optval))
3678 		return -EFAULT;
3679 
3680 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3681 
3682 	return 0;
3683 }
3684 
3685 static int sctp_setsockopt_pr_supported(struct sock *sk,
3686 					char __user *optval,
3687 					unsigned int optlen)
3688 {
3689 	struct sctp_assoc_value params;
3690 	struct sctp_association *asoc;
3691 	int retval = -EINVAL;
3692 
3693 	if (optlen != sizeof(params))
3694 		goto out;
3695 
3696 	if (copy_from_user(&params, optval, optlen)) {
3697 		retval = -EFAULT;
3698 		goto out;
3699 	}
3700 
3701 	asoc = sctp_id2assoc(sk, params.assoc_id);
3702 	if (asoc) {
3703 		asoc->prsctp_enable = !!params.assoc_value;
3704 	} else if (!params.assoc_id) {
3705 		struct sctp_sock *sp = sctp_sk(sk);
3706 
3707 		sp->ep->prsctp_enable = !!params.assoc_value;
3708 	} else {
3709 		goto out;
3710 	}
3711 
3712 	retval = 0;
3713 
3714 out:
3715 	return retval;
3716 }
3717 
3718 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3719 					  char __user *optval,
3720 					  unsigned int optlen)
3721 {
3722 	struct sctp_default_prinfo info;
3723 	struct sctp_association *asoc;
3724 	int retval = -EINVAL;
3725 
3726 	if (optlen != sizeof(info))
3727 		goto out;
3728 
3729 	if (copy_from_user(&info, optval, sizeof(info))) {
3730 		retval = -EFAULT;
3731 		goto out;
3732 	}
3733 
3734 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3735 		goto out;
3736 
3737 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3738 		info.pr_value = 0;
3739 
3740 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3741 	if (asoc) {
3742 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3743 		asoc->default_timetolive = info.pr_value;
3744 	} else if (!info.pr_assoc_id) {
3745 		struct sctp_sock *sp = sctp_sk(sk);
3746 
3747 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3748 		sp->default_timetolive = info.pr_value;
3749 	} else {
3750 		goto out;
3751 	}
3752 
3753 	retval = 0;
3754 
3755 out:
3756 	return retval;
3757 }
3758 
3759 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3760 					   char __user *optval,
3761 					   unsigned int optlen)
3762 {
3763 	struct sctp_assoc_value params;
3764 	struct sctp_association *asoc;
3765 	int retval = -EINVAL;
3766 
3767 	if (optlen != sizeof(params))
3768 		goto out;
3769 
3770 	if (copy_from_user(&params, optval, optlen)) {
3771 		retval = -EFAULT;
3772 		goto out;
3773 	}
3774 
3775 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3776 		goto out;
3777 
3778 	asoc = sctp_id2assoc(sk, params.assoc_id);
3779 	if (asoc) {
3780 		asoc->strreset_enable = params.assoc_value;
3781 	} else if (!params.assoc_id) {
3782 		struct sctp_sock *sp = sctp_sk(sk);
3783 
3784 		sp->ep->strreset_enable = params.assoc_value;
3785 	} else {
3786 		goto out;
3787 	}
3788 
3789 	retval = 0;
3790 
3791 out:
3792 	return retval;
3793 }
3794 
3795 static int sctp_setsockopt_reset_streams(struct sock *sk,
3796 					 char __user *optval,
3797 					 unsigned int optlen)
3798 {
3799 	struct sctp_reset_streams *params;
3800 	struct sctp_association *asoc;
3801 	int retval = -EINVAL;
3802 
3803 	if (optlen < sizeof(struct sctp_reset_streams))
3804 		return -EINVAL;
3805 
3806 	params = memdup_user(optval, optlen);
3807 	if (IS_ERR(params))
3808 		return PTR_ERR(params);
3809 
3810 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3811 	if (!asoc)
3812 		goto out;
3813 
3814 	retval = sctp_send_reset_streams(asoc, params);
3815 
3816 out:
3817 	kfree(params);
3818 	return retval;
3819 }
3820 
3821 /* API 6.2 setsockopt(), getsockopt()
3822  *
3823  * Applications use setsockopt() and getsockopt() to set or retrieve
3824  * socket options.  Socket options are used to change the default
3825  * behavior of sockets calls.  They are described in Section 7.
3826  *
3827  * The syntax is:
3828  *
3829  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3830  *                    int __user *optlen);
3831  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3832  *                    int optlen);
3833  *
3834  *   sd      - the socket descript.
3835  *   level   - set to IPPROTO_SCTP for all SCTP options.
3836  *   optname - the option name.
3837  *   optval  - the buffer to store the value of the option.
3838  *   optlen  - the size of the buffer.
3839  */
3840 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3841 			   char __user *optval, unsigned int optlen)
3842 {
3843 	int retval = 0;
3844 
3845 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3846 
3847 	/* I can hardly begin to describe how wrong this is.  This is
3848 	 * so broken as to be worse than useless.  The API draft
3849 	 * REALLY is NOT helpful here...  I am not convinced that the
3850 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3851 	 * are at all well-founded.
3852 	 */
3853 	if (level != SOL_SCTP) {
3854 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3855 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3856 		goto out_nounlock;
3857 	}
3858 
3859 	lock_sock(sk);
3860 
3861 	switch (optname) {
3862 	case SCTP_SOCKOPT_BINDX_ADD:
3863 		/* 'optlen' is the size of the addresses buffer. */
3864 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3865 					       optlen, SCTP_BINDX_ADD_ADDR);
3866 		break;
3867 
3868 	case SCTP_SOCKOPT_BINDX_REM:
3869 		/* 'optlen' is the size of the addresses buffer. */
3870 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3871 					       optlen, SCTP_BINDX_REM_ADDR);
3872 		break;
3873 
3874 	case SCTP_SOCKOPT_CONNECTX_OLD:
3875 		/* 'optlen' is the size of the addresses buffer. */
3876 		retval = sctp_setsockopt_connectx_old(sk,
3877 					    (struct sockaddr __user *)optval,
3878 					    optlen);
3879 		break;
3880 
3881 	case SCTP_SOCKOPT_CONNECTX:
3882 		/* 'optlen' is the size of the addresses buffer. */
3883 		retval = sctp_setsockopt_connectx(sk,
3884 					    (struct sockaddr __user *)optval,
3885 					    optlen);
3886 		break;
3887 
3888 	case SCTP_DISABLE_FRAGMENTS:
3889 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3890 		break;
3891 
3892 	case SCTP_EVENTS:
3893 		retval = sctp_setsockopt_events(sk, optval, optlen);
3894 		break;
3895 
3896 	case SCTP_AUTOCLOSE:
3897 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3898 		break;
3899 
3900 	case SCTP_PEER_ADDR_PARAMS:
3901 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3902 		break;
3903 
3904 	case SCTP_DELAYED_SACK:
3905 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3906 		break;
3907 	case SCTP_PARTIAL_DELIVERY_POINT:
3908 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3909 		break;
3910 
3911 	case SCTP_INITMSG:
3912 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3913 		break;
3914 	case SCTP_DEFAULT_SEND_PARAM:
3915 		retval = sctp_setsockopt_default_send_param(sk, optval,
3916 							    optlen);
3917 		break;
3918 	case SCTP_DEFAULT_SNDINFO:
3919 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3920 		break;
3921 	case SCTP_PRIMARY_ADDR:
3922 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3923 		break;
3924 	case SCTP_SET_PEER_PRIMARY_ADDR:
3925 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3926 		break;
3927 	case SCTP_NODELAY:
3928 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3929 		break;
3930 	case SCTP_RTOINFO:
3931 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3932 		break;
3933 	case SCTP_ASSOCINFO:
3934 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3935 		break;
3936 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3937 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3938 		break;
3939 	case SCTP_MAXSEG:
3940 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3941 		break;
3942 	case SCTP_ADAPTATION_LAYER:
3943 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3944 		break;
3945 	case SCTP_CONTEXT:
3946 		retval = sctp_setsockopt_context(sk, optval, optlen);
3947 		break;
3948 	case SCTP_FRAGMENT_INTERLEAVE:
3949 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3950 		break;
3951 	case SCTP_MAX_BURST:
3952 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3953 		break;
3954 	case SCTP_AUTH_CHUNK:
3955 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3956 		break;
3957 	case SCTP_HMAC_IDENT:
3958 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3959 		break;
3960 	case SCTP_AUTH_KEY:
3961 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3962 		break;
3963 	case SCTP_AUTH_ACTIVE_KEY:
3964 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3965 		break;
3966 	case SCTP_AUTH_DELETE_KEY:
3967 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3968 		break;
3969 	case SCTP_AUTO_ASCONF:
3970 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3971 		break;
3972 	case SCTP_PEER_ADDR_THLDS:
3973 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3974 		break;
3975 	case SCTP_RECVRCVINFO:
3976 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3977 		break;
3978 	case SCTP_RECVNXTINFO:
3979 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3980 		break;
3981 	case SCTP_PR_SUPPORTED:
3982 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3983 		break;
3984 	case SCTP_DEFAULT_PRINFO:
3985 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3986 		break;
3987 	case SCTP_ENABLE_STREAM_RESET:
3988 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
3989 		break;
3990 	case SCTP_RESET_STREAMS:
3991 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
3992 		break;
3993 	default:
3994 		retval = -ENOPROTOOPT;
3995 		break;
3996 	}
3997 
3998 	release_sock(sk);
3999 
4000 out_nounlock:
4001 	return retval;
4002 }
4003 
4004 /* API 3.1.6 connect() - UDP Style Syntax
4005  *
4006  * An application may use the connect() call in the UDP model to initiate an
4007  * association without sending data.
4008  *
4009  * The syntax is:
4010  *
4011  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4012  *
4013  * sd: the socket descriptor to have a new association added to.
4014  *
4015  * nam: the address structure (either struct sockaddr_in or struct
4016  *    sockaddr_in6 defined in RFC2553 [7]).
4017  *
4018  * len: the size of the address.
4019  */
4020 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4021 			int addr_len)
4022 {
4023 	int err = 0;
4024 	struct sctp_af *af;
4025 
4026 	lock_sock(sk);
4027 
4028 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4029 		 addr, addr_len);
4030 
4031 	/* Validate addr_len before calling common connect/connectx routine. */
4032 	af = sctp_get_af_specific(addr->sa_family);
4033 	if (!af || addr_len < af->sockaddr_len) {
4034 		err = -EINVAL;
4035 	} else {
4036 		/* Pass correct addr len to common routine (so it knows there
4037 		 * is only one address being passed.
4038 		 */
4039 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4040 	}
4041 
4042 	release_sock(sk);
4043 	return err;
4044 }
4045 
4046 /* FIXME: Write comments. */
4047 static int sctp_disconnect(struct sock *sk, int flags)
4048 {
4049 	return -EOPNOTSUPP; /* STUB */
4050 }
4051 
4052 /* 4.1.4 accept() - TCP Style Syntax
4053  *
4054  * Applications use accept() call to remove an established SCTP
4055  * association from the accept queue of the endpoint.  A new socket
4056  * descriptor will be returned from accept() to represent the newly
4057  * formed association.
4058  */
4059 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
4060 {
4061 	struct sctp_sock *sp;
4062 	struct sctp_endpoint *ep;
4063 	struct sock *newsk = NULL;
4064 	struct sctp_association *asoc;
4065 	long timeo;
4066 	int error = 0;
4067 
4068 	lock_sock(sk);
4069 
4070 	sp = sctp_sk(sk);
4071 	ep = sp->ep;
4072 
4073 	if (!sctp_style(sk, TCP)) {
4074 		error = -EOPNOTSUPP;
4075 		goto out;
4076 	}
4077 
4078 	if (!sctp_sstate(sk, LISTENING)) {
4079 		error = -EINVAL;
4080 		goto out;
4081 	}
4082 
4083 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4084 
4085 	error = sctp_wait_for_accept(sk, timeo);
4086 	if (error)
4087 		goto out;
4088 
4089 	/* We treat the list of associations on the endpoint as the accept
4090 	 * queue and pick the first association on the list.
4091 	 */
4092 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4093 
4094 	newsk = sp->pf->create_accept_sk(sk, asoc);
4095 	if (!newsk) {
4096 		error = -ENOMEM;
4097 		goto out;
4098 	}
4099 
4100 	/* Populate the fields of the newsk from the oldsk and migrate the
4101 	 * asoc to the newsk.
4102 	 */
4103 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4104 
4105 out:
4106 	release_sock(sk);
4107 	*err = error;
4108 	return newsk;
4109 }
4110 
4111 /* The SCTP ioctl handler. */
4112 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4113 {
4114 	int rc = -ENOTCONN;
4115 
4116 	lock_sock(sk);
4117 
4118 	/*
4119 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4120 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4121 	 */
4122 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4123 		goto out;
4124 
4125 	switch (cmd) {
4126 	case SIOCINQ: {
4127 		struct sk_buff *skb;
4128 		unsigned int amount = 0;
4129 
4130 		skb = skb_peek(&sk->sk_receive_queue);
4131 		if (skb != NULL) {
4132 			/*
4133 			 * We will only return the amount of this packet since
4134 			 * that is all that will be read.
4135 			 */
4136 			amount = skb->len;
4137 		}
4138 		rc = put_user(amount, (int __user *)arg);
4139 		break;
4140 	}
4141 	default:
4142 		rc = -ENOIOCTLCMD;
4143 		break;
4144 	}
4145 out:
4146 	release_sock(sk);
4147 	return rc;
4148 }
4149 
4150 /* This is the function which gets called during socket creation to
4151  * initialized the SCTP-specific portion of the sock.
4152  * The sock structure should already be zero-filled memory.
4153  */
4154 static int sctp_init_sock(struct sock *sk)
4155 {
4156 	struct net *net = sock_net(sk);
4157 	struct sctp_sock *sp;
4158 
4159 	pr_debug("%s: sk:%p\n", __func__, sk);
4160 
4161 	sp = sctp_sk(sk);
4162 
4163 	/* Initialize the SCTP per socket area.  */
4164 	switch (sk->sk_type) {
4165 	case SOCK_SEQPACKET:
4166 		sp->type = SCTP_SOCKET_UDP;
4167 		break;
4168 	case SOCK_STREAM:
4169 		sp->type = SCTP_SOCKET_TCP;
4170 		break;
4171 	default:
4172 		return -ESOCKTNOSUPPORT;
4173 	}
4174 
4175 	sk->sk_gso_type = SKB_GSO_SCTP;
4176 
4177 	/* Initialize default send parameters. These parameters can be
4178 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4179 	 */
4180 	sp->default_stream = 0;
4181 	sp->default_ppid = 0;
4182 	sp->default_flags = 0;
4183 	sp->default_context = 0;
4184 	sp->default_timetolive = 0;
4185 
4186 	sp->default_rcv_context = 0;
4187 	sp->max_burst = net->sctp.max_burst;
4188 
4189 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4190 
4191 	/* Initialize default setup parameters. These parameters
4192 	 * can be modified with the SCTP_INITMSG socket option or
4193 	 * overridden by the SCTP_INIT CMSG.
4194 	 */
4195 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4196 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4197 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4198 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4199 
4200 	/* Initialize default RTO related parameters.  These parameters can
4201 	 * be modified for with the SCTP_RTOINFO socket option.
4202 	 */
4203 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4204 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4205 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4206 
4207 	/* Initialize default association related parameters. These parameters
4208 	 * can be modified with the SCTP_ASSOCINFO socket option.
4209 	 */
4210 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4211 	sp->assocparams.sasoc_number_peer_destinations = 0;
4212 	sp->assocparams.sasoc_peer_rwnd = 0;
4213 	sp->assocparams.sasoc_local_rwnd = 0;
4214 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4215 
4216 	/* Initialize default event subscriptions. By default, all the
4217 	 * options are off.
4218 	 */
4219 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4220 
4221 	/* Default Peer Address Parameters.  These defaults can
4222 	 * be modified via SCTP_PEER_ADDR_PARAMS
4223 	 */
4224 	sp->hbinterval  = net->sctp.hb_interval;
4225 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4226 	sp->pathmtu     = 0; /* allow default discovery */
4227 	sp->sackdelay   = net->sctp.sack_timeout;
4228 	sp->sackfreq	= 2;
4229 	sp->param_flags = SPP_HB_ENABLE |
4230 			  SPP_PMTUD_ENABLE |
4231 			  SPP_SACKDELAY_ENABLE;
4232 
4233 	/* If enabled no SCTP message fragmentation will be performed.
4234 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4235 	 */
4236 	sp->disable_fragments = 0;
4237 
4238 	/* Enable Nagle algorithm by default.  */
4239 	sp->nodelay           = 0;
4240 
4241 	sp->recvrcvinfo = 0;
4242 	sp->recvnxtinfo = 0;
4243 
4244 	/* Enable by default. */
4245 	sp->v4mapped          = 1;
4246 
4247 	/* Auto-close idle associations after the configured
4248 	 * number of seconds.  A value of 0 disables this
4249 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4250 	 * for UDP-style sockets only.
4251 	 */
4252 	sp->autoclose         = 0;
4253 
4254 	/* User specified fragmentation limit. */
4255 	sp->user_frag         = 0;
4256 
4257 	sp->adaptation_ind = 0;
4258 
4259 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4260 
4261 	/* Control variables for partial data delivery. */
4262 	atomic_set(&sp->pd_mode, 0);
4263 	skb_queue_head_init(&sp->pd_lobby);
4264 	sp->frag_interleave = 0;
4265 
4266 	/* Create a per socket endpoint structure.  Even if we
4267 	 * change the data structure relationships, this may still
4268 	 * be useful for storing pre-connect address information.
4269 	 */
4270 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4271 	if (!sp->ep)
4272 		return -ENOMEM;
4273 
4274 	sp->hmac = NULL;
4275 
4276 	sk->sk_destruct = sctp_destruct_sock;
4277 
4278 	SCTP_DBG_OBJCNT_INC(sock);
4279 
4280 	local_bh_disable();
4281 	percpu_counter_inc(&sctp_sockets_allocated);
4282 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4283 
4284 	/* Nothing can fail after this block, otherwise
4285 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4286 	 */
4287 	if (net->sctp.default_auto_asconf) {
4288 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4289 		list_add_tail(&sp->auto_asconf_list,
4290 		    &net->sctp.auto_asconf_splist);
4291 		sp->do_auto_asconf = 1;
4292 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4293 	} else {
4294 		sp->do_auto_asconf = 0;
4295 	}
4296 
4297 	local_bh_enable();
4298 
4299 	return 0;
4300 }
4301 
4302 /* Cleanup any SCTP per socket resources. Must be called with
4303  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4304  */
4305 static void sctp_destroy_sock(struct sock *sk)
4306 {
4307 	struct sctp_sock *sp;
4308 
4309 	pr_debug("%s: sk:%p\n", __func__, sk);
4310 
4311 	/* Release our hold on the endpoint. */
4312 	sp = sctp_sk(sk);
4313 	/* This could happen during socket init, thus we bail out
4314 	 * early, since the rest of the below is not setup either.
4315 	 */
4316 	if (sp->ep == NULL)
4317 		return;
4318 
4319 	if (sp->do_auto_asconf) {
4320 		sp->do_auto_asconf = 0;
4321 		list_del(&sp->auto_asconf_list);
4322 	}
4323 	sctp_endpoint_free(sp->ep);
4324 	local_bh_disable();
4325 	percpu_counter_dec(&sctp_sockets_allocated);
4326 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4327 	local_bh_enable();
4328 }
4329 
4330 /* Triggered when there are no references on the socket anymore */
4331 static void sctp_destruct_sock(struct sock *sk)
4332 {
4333 	struct sctp_sock *sp = sctp_sk(sk);
4334 
4335 	/* Free up the HMAC transform. */
4336 	crypto_free_shash(sp->hmac);
4337 
4338 	inet_sock_destruct(sk);
4339 }
4340 
4341 /* API 4.1.7 shutdown() - TCP Style Syntax
4342  *     int shutdown(int socket, int how);
4343  *
4344  *     sd      - the socket descriptor of the association to be closed.
4345  *     how     - Specifies the type of shutdown.  The  values  are
4346  *               as follows:
4347  *               SHUT_RD
4348  *                     Disables further receive operations. No SCTP
4349  *                     protocol action is taken.
4350  *               SHUT_WR
4351  *                     Disables further send operations, and initiates
4352  *                     the SCTP shutdown sequence.
4353  *               SHUT_RDWR
4354  *                     Disables further send  and  receive  operations
4355  *                     and initiates the SCTP shutdown sequence.
4356  */
4357 static void sctp_shutdown(struct sock *sk, int how)
4358 {
4359 	struct net *net = sock_net(sk);
4360 	struct sctp_endpoint *ep;
4361 
4362 	if (!sctp_style(sk, TCP))
4363 		return;
4364 
4365 	ep = sctp_sk(sk)->ep;
4366 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4367 		struct sctp_association *asoc;
4368 
4369 		sk->sk_state = SCTP_SS_CLOSING;
4370 		asoc = list_entry(ep->asocs.next,
4371 				  struct sctp_association, asocs);
4372 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4373 	}
4374 }
4375 
4376 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4377 		       struct sctp_info *info)
4378 {
4379 	struct sctp_transport *prim;
4380 	struct list_head *pos;
4381 	int mask;
4382 
4383 	memset(info, 0, sizeof(*info));
4384 	if (!asoc) {
4385 		struct sctp_sock *sp = sctp_sk(sk);
4386 
4387 		info->sctpi_s_autoclose = sp->autoclose;
4388 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4389 		info->sctpi_s_pd_point = sp->pd_point;
4390 		info->sctpi_s_nodelay = sp->nodelay;
4391 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4392 		info->sctpi_s_v4mapped = sp->v4mapped;
4393 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4394 		info->sctpi_s_type = sp->type;
4395 
4396 		return 0;
4397 	}
4398 
4399 	info->sctpi_tag = asoc->c.my_vtag;
4400 	info->sctpi_state = asoc->state;
4401 	info->sctpi_rwnd = asoc->a_rwnd;
4402 	info->sctpi_unackdata = asoc->unack_data;
4403 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4404 	info->sctpi_instrms = asoc->c.sinit_max_instreams;
4405 	info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4406 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4407 		info->sctpi_inqueue++;
4408 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4409 		info->sctpi_outqueue++;
4410 	info->sctpi_overall_error = asoc->overall_error_count;
4411 	info->sctpi_max_burst = asoc->max_burst;
4412 	info->sctpi_maxseg = asoc->frag_point;
4413 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4414 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4415 
4416 	mask = asoc->peer.ecn_capable << 1;
4417 	mask = (mask | asoc->peer.ipv4_address) << 1;
4418 	mask = (mask | asoc->peer.ipv6_address) << 1;
4419 	mask = (mask | asoc->peer.hostname_address) << 1;
4420 	mask = (mask | asoc->peer.asconf_capable) << 1;
4421 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4422 	mask = (mask | asoc->peer.auth_capable);
4423 	info->sctpi_peer_capable = mask;
4424 	mask = asoc->peer.sack_needed << 1;
4425 	mask = (mask | asoc->peer.sack_generation) << 1;
4426 	mask = (mask | asoc->peer.zero_window_announced);
4427 	info->sctpi_peer_sack = mask;
4428 
4429 	info->sctpi_isacks = asoc->stats.isacks;
4430 	info->sctpi_osacks = asoc->stats.osacks;
4431 	info->sctpi_opackets = asoc->stats.opackets;
4432 	info->sctpi_ipackets = asoc->stats.ipackets;
4433 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4434 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4435 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4436 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4437 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4438 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4439 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4440 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4441 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4442 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4443 
4444 	prim = asoc->peer.primary_path;
4445 	memcpy(&info->sctpi_p_address, &prim->ipaddr,
4446 	       sizeof(struct sockaddr_storage));
4447 	info->sctpi_p_state = prim->state;
4448 	info->sctpi_p_cwnd = prim->cwnd;
4449 	info->sctpi_p_srtt = prim->srtt;
4450 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4451 	info->sctpi_p_hbinterval = prim->hbinterval;
4452 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4453 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4454 	info->sctpi_p_ssthresh = prim->ssthresh;
4455 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4456 	info->sctpi_p_flight_size = prim->flight_size;
4457 	info->sctpi_p_error = prim->error_count;
4458 
4459 	return 0;
4460 }
4461 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4462 
4463 /* use callback to avoid exporting the core structure */
4464 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4465 {
4466 	int err;
4467 
4468 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4469 
4470 	err = rhashtable_walk_start(iter);
4471 	if (err && err != -EAGAIN) {
4472 		rhashtable_walk_stop(iter);
4473 		rhashtable_walk_exit(iter);
4474 		return err;
4475 	}
4476 
4477 	return 0;
4478 }
4479 
4480 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4481 {
4482 	rhashtable_walk_stop(iter);
4483 	rhashtable_walk_exit(iter);
4484 }
4485 
4486 struct sctp_transport *sctp_transport_get_next(struct net *net,
4487 					       struct rhashtable_iter *iter)
4488 {
4489 	struct sctp_transport *t;
4490 
4491 	t = rhashtable_walk_next(iter);
4492 	for (; t; t = rhashtable_walk_next(iter)) {
4493 		if (IS_ERR(t)) {
4494 			if (PTR_ERR(t) == -EAGAIN)
4495 				continue;
4496 			break;
4497 		}
4498 
4499 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4500 		    t->asoc->peer.primary_path == t)
4501 			break;
4502 	}
4503 
4504 	return t;
4505 }
4506 
4507 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4508 					      struct rhashtable_iter *iter,
4509 					      int pos)
4510 {
4511 	void *obj = SEQ_START_TOKEN;
4512 
4513 	while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4514 	       !IS_ERR(obj))
4515 		pos--;
4516 
4517 	return obj;
4518 }
4519 
4520 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4521 			   void *p) {
4522 	int err = 0;
4523 	int hash = 0;
4524 	struct sctp_ep_common *epb;
4525 	struct sctp_hashbucket *head;
4526 
4527 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4528 	     hash++, head++) {
4529 		read_lock(&head->lock);
4530 		sctp_for_each_hentry(epb, &head->chain) {
4531 			err = cb(sctp_ep(epb), p);
4532 			if (err)
4533 				break;
4534 		}
4535 		read_unlock(&head->lock);
4536 	}
4537 
4538 	return err;
4539 }
4540 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4541 
4542 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4543 				  struct net *net,
4544 				  const union sctp_addr *laddr,
4545 				  const union sctp_addr *paddr, void *p)
4546 {
4547 	struct sctp_transport *transport;
4548 	int err;
4549 
4550 	rcu_read_lock();
4551 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4552 	rcu_read_unlock();
4553 	if (!transport)
4554 		return -ENOENT;
4555 
4556 	err = cb(transport, p);
4557 	sctp_transport_put(transport);
4558 
4559 	return err;
4560 }
4561 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4562 
4563 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4564 			    struct net *net, int pos, void *p) {
4565 	struct rhashtable_iter hti;
4566 	void *obj;
4567 	int err;
4568 
4569 	err = sctp_transport_walk_start(&hti);
4570 	if (err)
4571 		return err;
4572 
4573 	sctp_transport_get_idx(net, &hti, pos);
4574 	obj = sctp_transport_get_next(net, &hti);
4575 	for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4576 		struct sctp_transport *transport = obj;
4577 
4578 		if (!sctp_transport_hold(transport))
4579 			continue;
4580 		err = cb(transport, p);
4581 		sctp_transport_put(transport);
4582 		if (err)
4583 			break;
4584 	}
4585 	sctp_transport_walk_stop(&hti);
4586 
4587 	return err;
4588 }
4589 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4590 
4591 /* 7.2.1 Association Status (SCTP_STATUS)
4592 
4593  * Applications can retrieve current status information about an
4594  * association, including association state, peer receiver window size,
4595  * number of unacked data chunks, and number of data chunks pending
4596  * receipt.  This information is read-only.
4597  */
4598 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4599 				       char __user *optval,
4600 				       int __user *optlen)
4601 {
4602 	struct sctp_status status;
4603 	struct sctp_association *asoc = NULL;
4604 	struct sctp_transport *transport;
4605 	sctp_assoc_t associd;
4606 	int retval = 0;
4607 
4608 	if (len < sizeof(status)) {
4609 		retval = -EINVAL;
4610 		goto out;
4611 	}
4612 
4613 	len = sizeof(status);
4614 	if (copy_from_user(&status, optval, len)) {
4615 		retval = -EFAULT;
4616 		goto out;
4617 	}
4618 
4619 	associd = status.sstat_assoc_id;
4620 	asoc = sctp_id2assoc(sk, associd);
4621 	if (!asoc) {
4622 		retval = -EINVAL;
4623 		goto out;
4624 	}
4625 
4626 	transport = asoc->peer.primary_path;
4627 
4628 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4629 	status.sstat_state = sctp_assoc_to_state(asoc);
4630 	status.sstat_rwnd =  asoc->peer.rwnd;
4631 	status.sstat_unackdata = asoc->unack_data;
4632 
4633 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4634 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4635 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4636 	status.sstat_fragmentation_point = asoc->frag_point;
4637 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4638 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4639 			transport->af_specific->sockaddr_len);
4640 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4641 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4642 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4643 	status.sstat_primary.spinfo_state = transport->state;
4644 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4645 	status.sstat_primary.spinfo_srtt = transport->srtt;
4646 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4647 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4648 
4649 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4650 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4651 
4652 	if (put_user(len, optlen)) {
4653 		retval = -EFAULT;
4654 		goto out;
4655 	}
4656 
4657 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4658 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4659 		 status.sstat_assoc_id);
4660 
4661 	if (copy_to_user(optval, &status, len)) {
4662 		retval = -EFAULT;
4663 		goto out;
4664 	}
4665 
4666 out:
4667 	return retval;
4668 }
4669 
4670 
4671 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4672  *
4673  * Applications can retrieve information about a specific peer address
4674  * of an association, including its reachability state, congestion
4675  * window, and retransmission timer values.  This information is
4676  * read-only.
4677  */
4678 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4679 					  char __user *optval,
4680 					  int __user *optlen)
4681 {
4682 	struct sctp_paddrinfo pinfo;
4683 	struct sctp_transport *transport;
4684 	int retval = 0;
4685 
4686 	if (len < sizeof(pinfo)) {
4687 		retval = -EINVAL;
4688 		goto out;
4689 	}
4690 
4691 	len = sizeof(pinfo);
4692 	if (copy_from_user(&pinfo, optval, len)) {
4693 		retval = -EFAULT;
4694 		goto out;
4695 	}
4696 
4697 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4698 					   pinfo.spinfo_assoc_id);
4699 	if (!transport)
4700 		return -EINVAL;
4701 
4702 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4703 	pinfo.spinfo_state = transport->state;
4704 	pinfo.spinfo_cwnd = transport->cwnd;
4705 	pinfo.spinfo_srtt = transport->srtt;
4706 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4707 	pinfo.spinfo_mtu = transport->pathmtu;
4708 
4709 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4710 		pinfo.spinfo_state = SCTP_ACTIVE;
4711 
4712 	if (put_user(len, optlen)) {
4713 		retval = -EFAULT;
4714 		goto out;
4715 	}
4716 
4717 	if (copy_to_user(optval, &pinfo, len)) {
4718 		retval = -EFAULT;
4719 		goto out;
4720 	}
4721 
4722 out:
4723 	return retval;
4724 }
4725 
4726 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4727  *
4728  * This option is a on/off flag.  If enabled no SCTP message
4729  * fragmentation will be performed.  Instead if a message being sent
4730  * exceeds the current PMTU size, the message will NOT be sent and
4731  * instead a error will be indicated to the user.
4732  */
4733 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4734 					char __user *optval, int __user *optlen)
4735 {
4736 	int val;
4737 
4738 	if (len < sizeof(int))
4739 		return -EINVAL;
4740 
4741 	len = sizeof(int);
4742 	val = (sctp_sk(sk)->disable_fragments == 1);
4743 	if (put_user(len, optlen))
4744 		return -EFAULT;
4745 	if (copy_to_user(optval, &val, len))
4746 		return -EFAULT;
4747 	return 0;
4748 }
4749 
4750 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4751  *
4752  * This socket option is used to specify various notifications and
4753  * ancillary data the user wishes to receive.
4754  */
4755 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4756 				  int __user *optlen)
4757 {
4758 	if (len == 0)
4759 		return -EINVAL;
4760 	if (len > sizeof(struct sctp_event_subscribe))
4761 		len = sizeof(struct sctp_event_subscribe);
4762 	if (put_user(len, optlen))
4763 		return -EFAULT;
4764 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4765 		return -EFAULT;
4766 	return 0;
4767 }
4768 
4769 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4770  *
4771  * This socket option is applicable to the UDP-style socket only.  When
4772  * set it will cause associations that are idle for more than the
4773  * specified number of seconds to automatically close.  An association
4774  * being idle is defined an association that has NOT sent or received
4775  * user data.  The special value of '0' indicates that no automatic
4776  * close of any associations should be performed.  The option expects an
4777  * integer defining the number of seconds of idle time before an
4778  * association is closed.
4779  */
4780 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4781 {
4782 	/* Applicable to UDP-style socket only */
4783 	if (sctp_style(sk, TCP))
4784 		return -EOPNOTSUPP;
4785 	if (len < sizeof(int))
4786 		return -EINVAL;
4787 	len = sizeof(int);
4788 	if (put_user(len, optlen))
4789 		return -EFAULT;
4790 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4791 		return -EFAULT;
4792 	return 0;
4793 }
4794 
4795 /* Helper routine to branch off an association to a new socket.  */
4796 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4797 {
4798 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4799 	struct sctp_sock *sp = sctp_sk(sk);
4800 	struct socket *sock;
4801 	int err = 0;
4802 
4803 	if (!asoc)
4804 		return -EINVAL;
4805 
4806 	/* An association cannot be branched off from an already peeled-off
4807 	 * socket, nor is this supported for tcp style sockets.
4808 	 */
4809 	if (!sctp_style(sk, UDP))
4810 		return -EINVAL;
4811 
4812 	/* Create a new socket.  */
4813 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4814 	if (err < 0)
4815 		return err;
4816 
4817 	sctp_copy_sock(sock->sk, sk, asoc);
4818 
4819 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4820 	 * Set the daddr and initialize id to something more random
4821 	 */
4822 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4823 
4824 	/* Populate the fields of the newsk from the oldsk and migrate the
4825 	 * asoc to the newsk.
4826 	 */
4827 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4828 
4829 	*sockp = sock;
4830 
4831 	return err;
4832 }
4833 EXPORT_SYMBOL(sctp_do_peeloff);
4834 
4835 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4836 {
4837 	sctp_peeloff_arg_t peeloff;
4838 	struct socket *newsock;
4839 	struct file *newfile;
4840 	int retval = 0;
4841 
4842 	if (len < sizeof(sctp_peeloff_arg_t))
4843 		return -EINVAL;
4844 	len = sizeof(sctp_peeloff_arg_t);
4845 	if (copy_from_user(&peeloff, optval, len))
4846 		return -EFAULT;
4847 
4848 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4849 	if (retval < 0)
4850 		goto out;
4851 
4852 	/* Map the socket to an unused fd that can be returned to the user.  */
4853 	retval = get_unused_fd_flags(0);
4854 	if (retval < 0) {
4855 		sock_release(newsock);
4856 		goto out;
4857 	}
4858 
4859 	newfile = sock_alloc_file(newsock, 0, NULL);
4860 	if (IS_ERR(newfile)) {
4861 		put_unused_fd(retval);
4862 		sock_release(newsock);
4863 		return PTR_ERR(newfile);
4864 	}
4865 
4866 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4867 		 retval);
4868 
4869 	/* Return the fd mapped to the new socket.  */
4870 	if (put_user(len, optlen)) {
4871 		fput(newfile);
4872 		put_unused_fd(retval);
4873 		return -EFAULT;
4874 	}
4875 	peeloff.sd = retval;
4876 	if (copy_to_user(optval, &peeloff, len)) {
4877 		fput(newfile);
4878 		put_unused_fd(retval);
4879 		return -EFAULT;
4880 	}
4881 	fd_install(retval, newfile);
4882 out:
4883 	return retval;
4884 }
4885 
4886 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4887  *
4888  * Applications can enable or disable heartbeats for any peer address of
4889  * an association, modify an address's heartbeat interval, force a
4890  * heartbeat to be sent immediately, and adjust the address's maximum
4891  * number of retransmissions sent before an address is considered
4892  * unreachable.  The following structure is used to access and modify an
4893  * address's parameters:
4894  *
4895  *  struct sctp_paddrparams {
4896  *     sctp_assoc_t            spp_assoc_id;
4897  *     struct sockaddr_storage spp_address;
4898  *     uint32_t                spp_hbinterval;
4899  *     uint16_t                spp_pathmaxrxt;
4900  *     uint32_t                spp_pathmtu;
4901  *     uint32_t                spp_sackdelay;
4902  *     uint32_t                spp_flags;
4903  * };
4904  *
4905  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4906  *                     application, and identifies the association for
4907  *                     this query.
4908  *   spp_address     - This specifies which address is of interest.
4909  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4910  *                     in milliseconds.  If a  value of zero
4911  *                     is present in this field then no changes are to
4912  *                     be made to this parameter.
4913  *   spp_pathmaxrxt  - This contains the maximum number of
4914  *                     retransmissions before this address shall be
4915  *                     considered unreachable. If a  value of zero
4916  *                     is present in this field then no changes are to
4917  *                     be made to this parameter.
4918  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4919  *                     specified here will be the "fixed" path mtu.
4920  *                     Note that if the spp_address field is empty
4921  *                     then all associations on this address will
4922  *                     have this fixed path mtu set upon them.
4923  *
4924  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4925  *                     the number of milliseconds that sacks will be delayed
4926  *                     for. This value will apply to all addresses of an
4927  *                     association if the spp_address field is empty. Note
4928  *                     also, that if delayed sack is enabled and this
4929  *                     value is set to 0, no change is made to the last
4930  *                     recorded delayed sack timer value.
4931  *
4932  *   spp_flags       - These flags are used to control various features
4933  *                     on an association. The flag field may contain
4934  *                     zero or more of the following options.
4935  *
4936  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4937  *                     specified address. Note that if the address
4938  *                     field is empty all addresses for the association
4939  *                     have heartbeats enabled upon them.
4940  *
4941  *                     SPP_HB_DISABLE - Disable heartbeats on the
4942  *                     speicifed address. Note that if the address
4943  *                     field is empty all addresses for the association
4944  *                     will have their heartbeats disabled. Note also
4945  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4946  *                     mutually exclusive, only one of these two should
4947  *                     be specified. Enabling both fields will have
4948  *                     undetermined results.
4949  *
4950  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4951  *                     to be made immediately.
4952  *
4953  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4954  *                     discovery upon the specified address. Note that
4955  *                     if the address feild is empty then all addresses
4956  *                     on the association are effected.
4957  *
4958  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4959  *                     discovery upon the specified address. Note that
4960  *                     if the address feild is empty then all addresses
4961  *                     on the association are effected. Not also that
4962  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4963  *                     exclusive. Enabling both will have undetermined
4964  *                     results.
4965  *
4966  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4967  *                     on delayed sack. The time specified in spp_sackdelay
4968  *                     is used to specify the sack delay for this address. Note
4969  *                     that if spp_address is empty then all addresses will
4970  *                     enable delayed sack and take on the sack delay
4971  *                     value specified in spp_sackdelay.
4972  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4973  *                     off delayed sack. If the spp_address field is blank then
4974  *                     delayed sack is disabled for the entire association. Note
4975  *                     also that this field is mutually exclusive to
4976  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4977  *                     results.
4978  */
4979 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4980 					    char __user *optval, int __user *optlen)
4981 {
4982 	struct sctp_paddrparams  params;
4983 	struct sctp_transport   *trans = NULL;
4984 	struct sctp_association *asoc = NULL;
4985 	struct sctp_sock        *sp = sctp_sk(sk);
4986 
4987 	if (len < sizeof(struct sctp_paddrparams))
4988 		return -EINVAL;
4989 	len = sizeof(struct sctp_paddrparams);
4990 	if (copy_from_user(&params, optval, len))
4991 		return -EFAULT;
4992 
4993 	/* If an address other than INADDR_ANY is specified, and
4994 	 * no transport is found, then the request is invalid.
4995 	 */
4996 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4997 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4998 					       params.spp_assoc_id);
4999 		if (!trans) {
5000 			pr_debug("%s: failed no transport\n", __func__);
5001 			return -EINVAL;
5002 		}
5003 	}
5004 
5005 	/* Get association, if assoc_id != 0 and the socket is a one
5006 	 * to many style socket, and an association was not found, then
5007 	 * the id was invalid.
5008 	 */
5009 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5010 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5011 		pr_debug("%s: failed no association\n", __func__);
5012 		return -EINVAL;
5013 	}
5014 
5015 	if (trans) {
5016 		/* Fetch transport values. */
5017 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5018 		params.spp_pathmtu    = trans->pathmtu;
5019 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5020 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5021 
5022 		/*draft-11 doesn't say what to return in spp_flags*/
5023 		params.spp_flags      = trans->param_flags;
5024 	} else if (asoc) {
5025 		/* Fetch association values. */
5026 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5027 		params.spp_pathmtu    = asoc->pathmtu;
5028 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5029 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5030 
5031 		/*draft-11 doesn't say what to return in spp_flags*/
5032 		params.spp_flags      = asoc->param_flags;
5033 	} else {
5034 		/* Fetch socket values. */
5035 		params.spp_hbinterval = sp->hbinterval;
5036 		params.spp_pathmtu    = sp->pathmtu;
5037 		params.spp_sackdelay  = sp->sackdelay;
5038 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5039 
5040 		/*draft-11 doesn't say what to return in spp_flags*/
5041 		params.spp_flags      = sp->param_flags;
5042 	}
5043 
5044 	if (copy_to_user(optval, &params, len))
5045 		return -EFAULT;
5046 
5047 	if (put_user(len, optlen))
5048 		return -EFAULT;
5049 
5050 	return 0;
5051 }
5052 
5053 /*
5054  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5055  *
5056  * This option will effect the way delayed acks are performed.  This
5057  * option allows you to get or set the delayed ack time, in
5058  * milliseconds.  It also allows changing the delayed ack frequency.
5059  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5060  * the assoc_id is 0, then this sets or gets the endpoints default
5061  * values.  If the assoc_id field is non-zero, then the set or get
5062  * effects the specified association for the one to many model (the
5063  * assoc_id field is ignored by the one to one model).  Note that if
5064  * sack_delay or sack_freq are 0 when setting this option, then the
5065  * current values will remain unchanged.
5066  *
5067  * struct sctp_sack_info {
5068  *     sctp_assoc_t            sack_assoc_id;
5069  *     uint32_t                sack_delay;
5070  *     uint32_t                sack_freq;
5071  * };
5072  *
5073  * sack_assoc_id -  This parameter, indicates which association the user
5074  *    is performing an action upon.  Note that if this field's value is
5075  *    zero then the endpoints default value is changed (effecting future
5076  *    associations only).
5077  *
5078  * sack_delay -  This parameter contains the number of milliseconds that
5079  *    the user is requesting the delayed ACK timer be set to.  Note that
5080  *    this value is defined in the standard to be between 200 and 500
5081  *    milliseconds.
5082  *
5083  * sack_freq -  This parameter contains the number of packets that must
5084  *    be received before a sack is sent without waiting for the delay
5085  *    timer to expire.  The default value for this is 2, setting this
5086  *    value to 1 will disable the delayed sack algorithm.
5087  */
5088 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5089 					    char __user *optval,
5090 					    int __user *optlen)
5091 {
5092 	struct sctp_sack_info    params;
5093 	struct sctp_association *asoc = NULL;
5094 	struct sctp_sock        *sp = sctp_sk(sk);
5095 
5096 	if (len >= sizeof(struct sctp_sack_info)) {
5097 		len = sizeof(struct sctp_sack_info);
5098 
5099 		if (copy_from_user(&params, optval, len))
5100 			return -EFAULT;
5101 	} else if (len == sizeof(struct sctp_assoc_value)) {
5102 		pr_warn_ratelimited(DEPRECATED
5103 				    "%s (pid %d) "
5104 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5105 				    "Use struct sctp_sack_info instead\n",
5106 				    current->comm, task_pid_nr(current));
5107 		if (copy_from_user(&params, optval, len))
5108 			return -EFAULT;
5109 	} else
5110 		return -EINVAL;
5111 
5112 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5113 	 * to many style socket, and an association was not found, then
5114 	 * the id was invalid.
5115 	 */
5116 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5117 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5118 		return -EINVAL;
5119 
5120 	if (asoc) {
5121 		/* Fetch association values. */
5122 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5123 			params.sack_delay = jiffies_to_msecs(
5124 				asoc->sackdelay);
5125 			params.sack_freq = asoc->sackfreq;
5126 
5127 		} else {
5128 			params.sack_delay = 0;
5129 			params.sack_freq = 1;
5130 		}
5131 	} else {
5132 		/* Fetch socket values. */
5133 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5134 			params.sack_delay  = sp->sackdelay;
5135 			params.sack_freq = sp->sackfreq;
5136 		} else {
5137 			params.sack_delay  = 0;
5138 			params.sack_freq = 1;
5139 		}
5140 	}
5141 
5142 	if (copy_to_user(optval, &params, len))
5143 		return -EFAULT;
5144 
5145 	if (put_user(len, optlen))
5146 		return -EFAULT;
5147 
5148 	return 0;
5149 }
5150 
5151 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5152  *
5153  * Applications can specify protocol parameters for the default association
5154  * initialization.  The option name argument to setsockopt() and getsockopt()
5155  * is SCTP_INITMSG.
5156  *
5157  * Setting initialization parameters is effective only on an unconnected
5158  * socket (for UDP-style sockets only future associations are effected
5159  * by the change).  With TCP-style sockets, this option is inherited by
5160  * sockets derived from a listener socket.
5161  */
5162 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5163 {
5164 	if (len < sizeof(struct sctp_initmsg))
5165 		return -EINVAL;
5166 	len = sizeof(struct sctp_initmsg);
5167 	if (put_user(len, optlen))
5168 		return -EFAULT;
5169 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5170 		return -EFAULT;
5171 	return 0;
5172 }
5173 
5174 
5175 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5176 				      char __user *optval, int __user *optlen)
5177 {
5178 	struct sctp_association *asoc;
5179 	int cnt = 0;
5180 	struct sctp_getaddrs getaddrs;
5181 	struct sctp_transport *from;
5182 	void __user *to;
5183 	union sctp_addr temp;
5184 	struct sctp_sock *sp = sctp_sk(sk);
5185 	int addrlen;
5186 	size_t space_left;
5187 	int bytes_copied;
5188 
5189 	if (len < sizeof(struct sctp_getaddrs))
5190 		return -EINVAL;
5191 
5192 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5193 		return -EFAULT;
5194 
5195 	/* For UDP-style sockets, id specifies the association to query.  */
5196 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5197 	if (!asoc)
5198 		return -EINVAL;
5199 
5200 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5201 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5202 
5203 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5204 				transports) {
5205 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5206 		addrlen = sctp_get_pf_specific(sk->sk_family)
5207 			      ->addr_to_user(sp, &temp);
5208 		if (space_left < addrlen)
5209 			return -ENOMEM;
5210 		if (copy_to_user(to, &temp, addrlen))
5211 			return -EFAULT;
5212 		to += addrlen;
5213 		cnt++;
5214 		space_left -= addrlen;
5215 	}
5216 
5217 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5218 		return -EFAULT;
5219 	bytes_copied = ((char __user *)to) - optval;
5220 	if (put_user(bytes_copied, optlen))
5221 		return -EFAULT;
5222 
5223 	return 0;
5224 }
5225 
5226 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5227 			    size_t space_left, int *bytes_copied)
5228 {
5229 	struct sctp_sockaddr_entry *addr;
5230 	union sctp_addr temp;
5231 	int cnt = 0;
5232 	int addrlen;
5233 	struct net *net = sock_net(sk);
5234 
5235 	rcu_read_lock();
5236 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5237 		if (!addr->valid)
5238 			continue;
5239 
5240 		if ((PF_INET == sk->sk_family) &&
5241 		    (AF_INET6 == addr->a.sa.sa_family))
5242 			continue;
5243 		if ((PF_INET6 == sk->sk_family) &&
5244 		    inet_v6_ipv6only(sk) &&
5245 		    (AF_INET == addr->a.sa.sa_family))
5246 			continue;
5247 		memcpy(&temp, &addr->a, sizeof(temp));
5248 		if (!temp.v4.sin_port)
5249 			temp.v4.sin_port = htons(port);
5250 
5251 		addrlen = sctp_get_pf_specific(sk->sk_family)
5252 			      ->addr_to_user(sctp_sk(sk), &temp);
5253 
5254 		if (space_left < addrlen) {
5255 			cnt =  -ENOMEM;
5256 			break;
5257 		}
5258 		memcpy(to, &temp, addrlen);
5259 
5260 		to += addrlen;
5261 		cnt++;
5262 		space_left -= addrlen;
5263 		*bytes_copied += addrlen;
5264 	}
5265 	rcu_read_unlock();
5266 
5267 	return cnt;
5268 }
5269 
5270 
5271 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5272 				       char __user *optval, int __user *optlen)
5273 {
5274 	struct sctp_bind_addr *bp;
5275 	struct sctp_association *asoc;
5276 	int cnt = 0;
5277 	struct sctp_getaddrs getaddrs;
5278 	struct sctp_sockaddr_entry *addr;
5279 	void __user *to;
5280 	union sctp_addr temp;
5281 	struct sctp_sock *sp = sctp_sk(sk);
5282 	int addrlen;
5283 	int err = 0;
5284 	size_t space_left;
5285 	int bytes_copied = 0;
5286 	void *addrs;
5287 	void *buf;
5288 
5289 	if (len < sizeof(struct sctp_getaddrs))
5290 		return -EINVAL;
5291 
5292 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5293 		return -EFAULT;
5294 
5295 	/*
5296 	 *  For UDP-style sockets, id specifies the association to query.
5297 	 *  If the id field is set to the value '0' then the locally bound
5298 	 *  addresses are returned without regard to any particular
5299 	 *  association.
5300 	 */
5301 	if (0 == getaddrs.assoc_id) {
5302 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5303 	} else {
5304 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5305 		if (!asoc)
5306 			return -EINVAL;
5307 		bp = &asoc->base.bind_addr;
5308 	}
5309 
5310 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5311 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5312 
5313 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5314 	if (!addrs)
5315 		return -ENOMEM;
5316 
5317 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5318 	 * addresses from the global local address list.
5319 	 */
5320 	if (sctp_list_single_entry(&bp->address_list)) {
5321 		addr = list_entry(bp->address_list.next,
5322 				  struct sctp_sockaddr_entry, list);
5323 		if (sctp_is_any(sk, &addr->a)) {
5324 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5325 						space_left, &bytes_copied);
5326 			if (cnt < 0) {
5327 				err = cnt;
5328 				goto out;
5329 			}
5330 			goto copy_getaddrs;
5331 		}
5332 	}
5333 
5334 	buf = addrs;
5335 	/* Protection on the bound address list is not needed since
5336 	 * in the socket option context we hold a socket lock and
5337 	 * thus the bound address list can't change.
5338 	 */
5339 	list_for_each_entry(addr, &bp->address_list, list) {
5340 		memcpy(&temp, &addr->a, sizeof(temp));
5341 		addrlen = sctp_get_pf_specific(sk->sk_family)
5342 			      ->addr_to_user(sp, &temp);
5343 		if (space_left < addrlen) {
5344 			err =  -ENOMEM; /*fixme: right error?*/
5345 			goto out;
5346 		}
5347 		memcpy(buf, &temp, addrlen);
5348 		buf += addrlen;
5349 		bytes_copied += addrlen;
5350 		cnt++;
5351 		space_left -= addrlen;
5352 	}
5353 
5354 copy_getaddrs:
5355 	if (copy_to_user(to, addrs, bytes_copied)) {
5356 		err = -EFAULT;
5357 		goto out;
5358 	}
5359 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5360 		err = -EFAULT;
5361 		goto out;
5362 	}
5363 	if (put_user(bytes_copied, optlen))
5364 		err = -EFAULT;
5365 out:
5366 	kfree(addrs);
5367 	return err;
5368 }
5369 
5370 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5371  *
5372  * Requests that the local SCTP stack use the enclosed peer address as
5373  * the association primary.  The enclosed address must be one of the
5374  * association peer's addresses.
5375  */
5376 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5377 					char __user *optval, int __user *optlen)
5378 {
5379 	struct sctp_prim prim;
5380 	struct sctp_association *asoc;
5381 	struct sctp_sock *sp = sctp_sk(sk);
5382 
5383 	if (len < sizeof(struct sctp_prim))
5384 		return -EINVAL;
5385 
5386 	len = sizeof(struct sctp_prim);
5387 
5388 	if (copy_from_user(&prim, optval, len))
5389 		return -EFAULT;
5390 
5391 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5392 	if (!asoc)
5393 		return -EINVAL;
5394 
5395 	if (!asoc->peer.primary_path)
5396 		return -ENOTCONN;
5397 
5398 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5399 		asoc->peer.primary_path->af_specific->sockaddr_len);
5400 
5401 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5402 			(union sctp_addr *)&prim.ssp_addr);
5403 
5404 	if (put_user(len, optlen))
5405 		return -EFAULT;
5406 	if (copy_to_user(optval, &prim, len))
5407 		return -EFAULT;
5408 
5409 	return 0;
5410 }
5411 
5412 /*
5413  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5414  *
5415  * Requests that the local endpoint set the specified Adaptation Layer
5416  * Indication parameter for all future INIT and INIT-ACK exchanges.
5417  */
5418 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5419 				  char __user *optval, int __user *optlen)
5420 {
5421 	struct sctp_setadaptation adaptation;
5422 
5423 	if (len < sizeof(struct sctp_setadaptation))
5424 		return -EINVAL;
5425 
5426 	len = sizeof(struct sctp_setadaptation);
5427 
5428 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5429 
5430 	if (put_user(len, optlen))
5431 		return -EFAULT;
5432 	if (copy_to_user(optval, &adaptation, len))
5433 		return -EFAULT;
5434 
5435 	return 0;
5436 }
5437 
5438 /*
5439  *
5440  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5441  *
5442  *   Applications that wish to use the sendto() system call may wish to
5443  *   specify a default set of parameters that would normally be supplied
5444  *   through the inclusion of ancillary data.  This socket option allows
5445  *   such an application to set the default sctp_sndrcvinfo structure.
5446 
5447 
5448  *   The application that wishes to use this socket option simply passes
5449  *   in to this call the sctp_sndrcvinfo structure defined in Section
5450  *   5.2.2) The input parameters accepted by this call include
5451  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5452  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5453  *   to this call if the caller is using the UDP model.
5454  *
5455  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5456  */
5457 static int sctp_getsockopt_default_send_param(struct sock *sk,
5458 					int len, char __user *optval,
5459 					int __user *optlen)
5460 {
5461 	struct sctp_sock *sp = sctp_sk(sk);
5462 	struct sctp_association *asoc;
5463 	struct sctp_sndrcvinfo info;
5464 
5465 	if (len < sizeof(info))
5466 		return -EINVAL;
5467 
5468 	len = sizeof(info);
5469 
5470 	if (copy_from_user(&info, optval, len))
5471 		return -EFAULT;
5472 
5473 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5474 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5475 		return -EINVAL;
5476 	if (asoc) {
5477 		info.sinfo_stream = asoc->default_stream;
5478 		info.sinfo_flags = asoc->default_flags;
5479 		info.sinfo_ppid = asoc->default_ppid;
5480 		info.sinfo_context = asoc->default_context;
5481 		info.sinfo_timetolive = asoc->default_timetolive;
5482 	} else {
5483 		info.sinfo_stream = sp->default_stream;
5484 		info.sinfo_flags = sp->default_flags;
5485 		info.sinfo_ppid = sp->default_ppid;
5486 		info.sinfo_context = sp->default_context;
5487 		info.sinfo_timetolive = sp->default_timetolive;
5488 	}
5489 
5490 	if (put_user(len, optlen))
5491 		return -EFAULT;
5492 	if (copy_to_user(optval, &info, len))
5493 		return -EFAULT;
5494 
5495 	return 0;
5496 }
5497 
5498 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5499  * (SCTP_DEFAULT_SNDINFO)
5500  */
5501 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5502 					   char __user *optval,
5503 					   int __user *optlen)
5504 {
5505 	struct sctp_sock *sp = sctp_sk(sk);
5506 	struct sctp_association *asoc;
5507 	struct sctp_sndinfo info;
5508 
5509 	if (len < sizeof(info))
5510 		return -EINVAL;
5511 
5512 	len = sizeof(info);
5513 
5514 	if (copy_from_user(&info, optval, len))
5515 		return -EFAULT;
5516 
5517 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5518 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5519 		return -EINVAL;
5520 	if (asoc) {
5521 		info.snd_sid = asoc->default_stream;
5522 		info.snd_flags = asoc->default_flags;
5523 		info.snd_ppid = asoc->default_ppid;
5524 		info.snd_context = asoc->default_context;
5525 	} else {
5526 		info.snd_sid = sp->default_stream;
5527 		info.snd_flags = sp->default_flags;
5528 		info.snd_ppid = sp->default_ppid;
5529 		info.snd_context = sp->default_context;
5530 	}
5531 
5532 	if (put_user(len, optlen))
5533 		return -EFAULT;
5534 	if (copy_to_user(optval, &info, len))
5535 		return -EFAULT;
5536 
5537 	return 0;
5538 }
5539 
5540 /*
5541  *
5542  * 7.1.5 SCTP_NODELAY
5543  *
5544  * Turn on/off any Nagle-like algorithm.  This means that packets are
5545  * generally sent as soon as possible and no unnecessary delays are
5546  * introduced, at the cost of more packets in the network.  Expects an
5547  * integer boolean flag.
5548  */
5549 
5550 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5551 				   char __user *optval, int __user *optlen)
5552 {
5553 	int val;
5554 
5555 	if (len < sizeof(int))
5556 		return -EINVAL;
5557 
5558 	len = sizeof(int);
5559 	val = (sctp_sk(sk)->nodelay == 1);
5560 	if (put_user(len, optlen))
5561 		return -EFAULT;
5562 	if (copy_to_user(optval, &val, len))
5563 		return -EFAULT;
5564 	return 0;
5565 }
5566 
5567 /*
5568  *
5569  * 7.1.1 SCTP_RTOINFO
5570  *
5571  * The protocol parameters used to initialize and bound retransmission
5572  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5573  * and modify these parameters.
5574  * All parameters are time values, in milliseconds.  A value of 0, when
5575  * modifying the parameters, indicates that the current value should not
5576  * be changed.
5577  *
5578  */
5579 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5580 				char __user *optval,
5581 				int __user *optlen) {
5582 	struct sctp_rtoinfo rtoinfo;
5583 	struct sctp_association *asoc;
5584 
5585 	if (len < sizeof (struct sctp_rtoinfo))
5586 		return -EINVAL;
5587 
5588 	len = sizeof(struct sctp_rtoinfo);
5589 
5590 	if (copy_from_user(&rtoinfo, optval, len))
5591 		return -EFAULT;
5592 
5593 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5594 
5595 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5596 		return -EINVAL;
5597 
5598 	/* Values corresponding to the specific association. */
5599 	if (asoc) {
5600 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5601 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5602 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5603 	} else {
5604 		/* Values corresponding to the endpoint. */
5605 		struct sctp_sock *sp = sctp_sk(sk);
5606 
5607 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5608 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5609 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5610 	}
5611 
5612 	if (put_user(len, optlen))
5613 		return -EFAULT;
5614 
5615 	if (copy_to_user(optval, &rtoinfo, len))
5616 		return -EFAULT;
5617 
5618 	return 0;
5619 }
5620 
5621 /*
5622  *
5623  * 7.1.2 SCTP_ASSOCINFO
5624  *
5625  * This option is used to tune the maximum retransmission attempts
5626  * of the association.
5627  * Returns an error if the new association retransmission value is
5628  * greater than the sum of the retransmission value  of the peer.
5629  * See [SCTP] for more information.
5630  *
5631  */
5632 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5633 				     char __user *optval,
5634 				     int __user *optlen)
5635 {
5636 
5637 	struct sctp_assocparams assocparams;
5638 	struct sctp_association *asoc;
5639 	struct list_head *pos;
5640 	int cnt = 0;
5641 
5642 	if (len < sizeof (struct sctp_assocparams))
5643 		return -EINVAL;
5644 
5645 	len = sizeof(struct sctp_assocparams);
5646 
5647 	if (copy_from_user(&assocparams, optval, len))
5648 		return -EFAULT;
5649 
5650 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5651 
5652 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5653 		return -EINVAL;
5654 
5655 	/* Values correspoinding to the specific association */
5656 	if (asoc) {
5657 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5658 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5659 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5660 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5661 
5662 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5663 			cnt++;
5664 		}
5665 
5666 		assocparams.sasoc_number_peer_destinations = cnt;
5667 	} else {
5668 		/* Values corresponding to the endpoint */
5669 		struct sctp_sock *sp = sctp_sk(sk);
5670 
5671 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5672 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5673 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5674 		assocparams.sasoc_cookie_life =
5675 					sp->assocparams.sasoc_cookie_life;
5676 		assocparams.sasoc_number_peer_destinations =
5677 					sp->assocparams.
5678 					sasoc_number_peer_destinations;
5679 	}
5680 
5681 	if (put_user(len, optlen))
5682 		return -EFAULT;
5683 
5684 	if (copy_to_user(optval, &assocparams, len))
5685 		return -EFAULT;
5686 
5687 	return 0;
5688 }
5689 
5690 /*
5691  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5692  *
5693  * This socket option is a boolean flag which turns on or off mapped V4
5694  * addresses.  If this option is turned on and the socket is type
5695  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5696  * If this option is turned off, then no mapping will be done of V4
5697  * addresses and a user will receive both PF_INET6 and PF_INET type
5698  * addresses on the socket.
5699  */
5700 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5701 				    char __user *optval, int __user *optlen)
5702 {
5703 	int val;
5704 	struct sctp_sock *sp = sctp_sk(sk);
5705 
5706 	if (len < sizeof(int))
5707 		return -EINVAL;
5708 
5709 	len = sizeof(int);
5710 	val = sp->v4mapped;
5711 	if (put_user(len, optlen))
5712 		return -EFAULT;
5713 	if (copy_to_user(optval, &val, len))
5714 		return -EFAULT;
5715 
5716 	return 0;
5717 }
5718 
5719 /*
5720  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5721  * (chapter and verse is quoted at sctp_setsockopt_context())
5722  */
5723 static int sctp_getsockopt_context(struct sock *sk, int len,
5724 				   char __user *optval, int __user *optlen)
5725 {
5726 	struct sctp_assoc_value params;
5727 	struct sctp_sock *sp;
5728 	struct sctp_association *asoc;
5729 
5730 	if (len < sizeof(struct sctp_assoc_value))
5731 		return -EINVAL;
5732 
5733 	len = sizeof(struct sctp_assoc_value);
5734 
5735 	if (copy_from_user(&params, optval, len))
5736 		return -EFAULT;
5737 
5738 	sp = sctp_sk(sk);
5739 
5740 	if (params.assoc_id != 0) {
5741 		asoc = sctp_id2assoc(sk, params.assoc_id);
5742 		if (!asoc)
5743 			return -EINVAL;
5744 		params.assoc_value = asoc->default_rcv_context;
5745 	} else {
5746 		params.assoc_value = sp->default_rcv_context;
5747 	}
5748 
5749 	if (put_user(len, optlen))
5750 		return -EFAULT;
5751 	if (copy_to_user(optval, &params, len))
5752 		return -EFAULT;
5753 
5754 	return 0;
5755 }
5756 
5757 /*
5758  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5759  * This option will get or set the maximum size to put in any outgoing
5760  * SCTP DATA chunk.  If a message is larger than this size it will be
5761  * fragmented by SCTP into the specified size.  Note that the underlying
5762  * SCTP implementation may fragment into smaller sized chunks when the
5763  * PMTU of the underlying association is smaller than the value set by
5764  * the user.  The default value for this option is '0' which indicates
5765  * the user is NOT limiting fragmentation and only the PMTU will effect
5766  * SCTP's choice of DATA chunk size.  Note also that values set larger
5767  * than the maximum size of an IP datagram will effectively let SCTP
5768  * control fragmentation (i.e. the same as setting this option to 0).
5769  *
5770  * The following structure is used to access and modify this parameter:
5771  *
5772  * struct sctp_assoc_value {
5773  *   sctp_assoc_t assoc_id;
5774  *   uint32_t assoc_value;
5775  * };
5776  *
5777  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5778  *    For one-to-many style sockets this parameter indicates which
5779  *    association the user is performing an action upon.  Note that if
5780  *    this field's value is zero then the endpoints default value is
5781  *    changed (effecting future associations only).
5782  * assoc_value:  This parameter specifies the maximum size in bytes.
5783  */
5784 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5785 				  char __user *optval, int __user *optlen)
5786 {
5787 	struct sctp_assoc_value params;
5788 	struct sctp_association *asoc;
5789 
5790 	if (len == sizeof(int)) {
5791 		pr_warn_ratelimited(DEPRECATED
5792 				    "%s (pid %d) "
5793 				    "Use of int in maxseg socket option.\n"
5794 				    "Use struct sctp_assoc_value instead\n",
5795 				    current->comm, task_pid_nr(current));
5796 		params.assoc_id = 0;
5797 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5798 		len = sizeof(struct sctp_assoc_value);
5799 		if (copy_from_user(&params, optval, sizeof(params)))
5800 			return -EFAULT;
5801 	} else
5802 		return -EINVAL;
5803 
5804 	asoc = sctp_id2assoc(sk, params.assoc_id);
5805 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5806 		return -EINVAL;
5807 
5808 	if (asoc)
5809 		params.assoc_value = asoc->frag_point;
5810 	else
5811 		params.assoc_value = sctp_sk(sk)->user_frag;
5812 
5813 	if (put_user(len, optlen))
5814 		return -EFAULT;
5815 	if (len == sizeof(int)) {
5816 		if (copy_to_user(optval, &params.assoc_value, len))
5817 			return -EFAULT;
5818 	} else {
5819 		if (copy_to_user(optval, &params, len))
5820 			return -EFAULT;
5821 	}
5822 
5823 	return 0;
5824 }
5825 
5826 /*
5827  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5828  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5829  */
5830 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5831 					       char __user *optval, int __user *optlen)
5832 {
5833 	int val;
5834 
5835 	if (len < sizeof(int))
5836 		return -EINVAL;
5837 
5838 	len = sizeof(int);
5839 
5840 	val = sctp_sk(sk)->frag_interleave;
5841 	if (put_user(len, optlen))
5842 		return -EFAULT;
5843 	if (copy_to_user(optval, &val, len))
5844 		return -EFAULT;
5845 
5846 	return 0;
5847 }
5848 
5849 /*
5850  * 7.1.25.  Set or Get the sctp partial delivery point
5851  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5852  */
5853 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5854 						  char __user *optval,
5855 						  int __user *optlen)
5856 {
5857 	u32 val;
5858 
5859 	if (len < sizeof(u32))
5860 		return -EINVAL;
5861 
5862 	len = sizeof(u32);
5863 
5864 	val = sctp_sk(sk)->pd_point;
5865 	if (put_user(len, optlen))
5866 		return -EFAULT;
5867 	if (copy_to_user(optval, &val, len))
5868 		return -EFAULT;
5869 
5870 	return 0;
5871 }
5872 
5873 /*
5874  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5875  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5876  */
5877 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5878 				    char __user *optval,
5879 				    int __user *optlen)
5880 {
5881 	struct sctp_assoc_value params;
5882 	struct sctp_sock *sp;
5883 	struct sctp_association *asoc;
5884 
5885 	if (len == sizeof(int)) {
5886 		pr_warn_ratelimited(DEPRECATED
5887 				    "%s (pid %d) "
5888 				    "Use of int in max_burst socket option.\n"
5889 				    "Use struct sctp_assoc_value instead\n",
5890 				    current->comm, task_pid_nr(current));
5891 		params.assoc_id = 0;
5892 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5893 		len = sizeof(struct sctp_assoc_value);
5894 		if (copy_from_user(&params, optval, len))
5895 			return -EFAULT;
5896 	} else
5897 		return -EINVAL;
5898 
5899 	sp = sctp_sk(sk);
5900 
5901 	if (params.assoc_id != 0) {
5902 		asoc = sctp_id2assoc(sk, params.assoc_id);
5903 		if (!asoc)
5904 			return -EINVAL;
5905 		params.assoc_value = asoc->max_burst;
5906 	} else
5907 		params.assoc_value = sp->max_burst;
5908 
5909 	if (len == sizeof(int)) {
5910 		if (copy_to_user(optval, &params.assoc_value, len))
5911 			return -EFAULT;
5912 	} else {
5913 		if (copy_to_user(optval, &params, len))
5914 			return -EFAULT;
5915 	}
5916 
5917 	return 0;
5918 
5919 }
5920 
5921 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5922 				    char __user *optval, int __user *optlen)
5923 {
5924 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5925 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5926 	struct sctp_hmac_algo_param *hmacs;
5927 	__u16 data_len = 0;
5928 	u32 num_idents;
5929 	int i;
5930 
5931 	if (!ep->auth_enable)
5932 		return -EACCES;
5933 
5934 	hmacs = ep->auth_hmacs_list;
5935 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5936 
5937 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5938 		return -EINVAL;
5939 
5940 	len = sizeof(struct sctp_hmacalgo) + data_len;
5941 	num_idents = data_len / sizeof(u16);
5942 
5943 	if (put_user(len, optlen))
5944 		return -EFAULT;
5945 	if (put_user(num_idents, &p->shmac_num_idents))
5946 		return -EFAULT;
5947 	for (i = 0; i < num_idents; i++) {
5948 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5949 
5950 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5951 			return -EFAULT;
5952 	}
5953 	return 0;
5954 }
5955 
5956 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5957 				    char __user *optval, int __user *optlen)
5958 {
5959 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5960 	struct sctp_authkeyid val;
5961 	struct sctp_association *asoc;
5962 
5963 	if (!ep->auth_enable)
5964 		return -EACCES;
5965 
5966 	if (len < sizeof(struct sctp_authkeyid))
5967 		return -EINVAL;
5968 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5969 		return -EFAULT;
5970 
5971 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5972 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5973 		return -EINVAL;
5974 
5975 	if (asoc)
5976 		val.scact_keynumber = asoc->active_key_id;
5977 	else
5978 		val.scact_keynumber = ep->active_key_id;
5979 
5980 	len = sizeof(struct sctp_authkeyid);
5981 	if (put_user(len, optlen))
5982 		return -EFAULT;
5983 	if (copy_to_user(optval, &val, len))
5984 		return -EFAULT;
5985 
5986 	return 0;
5987 }
5988 
5989 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5990 				    char __user *optval, int __user *optlen)
5991 {
5992 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5993 	struct sctp_authchunks __user *p = (void __user *)optval;
5994 	struct sctp_authchunks val;
5995 	struct sctp_association *asoc;
5996 	struct sctp_chunks_param *ch;
5997 	u32    num_chunks = 0;
5998 	char __user *to;
5999 
6000 	if (!ep->auth_enable)
6001 		return -EACCES;
6002 
6003 	if (len < sizeof(struct sctp_authchunks))
6004 		return -EINVAL;
6005 
6006 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6007 		return -EFAULT;
6008 
6009 	to = p->gauth_chunks;
6010 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6011 	if (!asoc)
6012 		return -EINVAL;
6013 
6014 	ch = asoc->peer.peer_chunks;
6015 	if (!ch)
6016 		goto num;
6017 
6018 	/* See if the user provided enough room for all the data */
6019 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6020 	if (len < num_chunks)
6021 		return -EINVAL;
6022 
6023 	if (copy_to_user(to, ch->chunks, num_chunks))
6024 		return -EFAULT;
6025 num:
6026 	len = sizeof(struct sctp_authchunks) + num_chunks;
6027 	if (put_user(len, optlen))
6028 		return -EFAULT;
6029 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6030 		return -EFAULT;
6031 	return 0;
6032 }
6033 
6034 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6035 				    char __user *optval, int __user *optlen)
6036 {
6037 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6038 	struct sctp_authchunks __user *p = (void __user *)optval;
6039 	struct sctp_authchunks val;
6040 	struct sctp_association *asoc;
6041 	struct sctp_chunks_param *ch;
6042 	u32    num_chunks = 0;
6043 	char __user *to;
6044 
6045 	if (!ep->auth_enable)
6046 		return -EACCES;
6047 
6048 	if (len < sizeof(struct sctp_authchunks))
6049 		return -EINVAL;
6050 
6051 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6052 		return -EFAULT;
6053 
6054 	to = p->gauth_chunks;
6055 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6056 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6057 		return -EINVAL;
6058 
6059 	if (asoc)
6060 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6061 	else
6062 		ch = ep->auth_chunk_list;
6063 
6064 	if (!ch)
6065 		goto num;
6066 
6067 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6068 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6069 		return -EINVAL;
6070 
6071 	if (copy_to_user(to, ch->chunks, num_chunks))
6072 		return -EFAULT;
6073 num:
6074 	len = sizeof(struct sctp_authchunks) + num_chunks;
6075 	if (put_user(len, optlen))
6076 		return -EFAULT;
6077 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6078 		return -EFAULT;
6079 
6080 	return 0;
6081 }
6082 
6083 /*
6084  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6085  * This option gets the current number of associations that are attached
6086  * to a one-to-many style socket.  The option value is an uint32_t.
6087  */
6088 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6089 				    char __user *optval, int __user *optlen)
6090 {
6091 	struct sctp_sock *sp = sctp_sk(sk);
6092 	struct sctp_association *asoc;
6093 	u32 val = 0;
6094 
6095 	if (sctp_style(sk, TCP))
6096 		return -EOPNOTSUPP;
6097 
6098 	if (len < sizeof(u32))
6099 		return -EINVAL;
6100 
6101 	len = sizeof(u32);
6102 
6103 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6104 		val++;
6105 	}
6106 
6107 	if (put_user(len, optlen))
6108 		return -EFAULT;
6109 	if (copy_to_user(optval, &val, len))
6110 		return -EFAULT;
6111 
6112 	return 0;
6113 }
6114 
6115 /*
6116  * 8.1.23 SCTP_AUTO_ASCONF
6117  * See the corresponding setsockopt entry as description
6118  */
6119 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6120 				   char __user *optval, int __user *optlen)
6121 {
6122 	int val = 0;
6123 
6124 	if (len < sizeof(int))
6125 		return -EINVAL;
6126 
6127 	len = sizeof(int);
6128 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6129 		val = 1;
6130 	if (put_user(len, optlen))
6131 		return -EFAULT;
6132 	if (copy_to_user(optval, &val, len))
6133 		return -EFAULT;
6134 	return 0;
6135 }
6136 
6137 /*
6138  * 8.2.6. Get the Current Identifiers of Associations
6139  *        (SCTP_GET_ASSOC_ID_LIST)
6140  *
6141  * This option gets the current list of SCTP association identifiers of
6142  * the SCTP associations handled by a one-to-many style socket.
6143  */
6144 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6145 				    char __user *optval, int __user *optlen)
6146 {
6147 	struct sctp_sock *sp = sctp_sk(sk);
6148 	struct sctp_association *asoc;
6149 	struct sctp_assoc_ids *ids;
6150 	u32 num = 0;
6151 
6152 	if (sctp_style(sk, TCP))
6153 		return -EOPNOTSUPP;
6154 
6155 	if (len < sizeof(struct sctp_assoc_ids))
6156 		return -EINVAL;
6157 
6158 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6159 		num++;
6160 	}
6161 
6162 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6163 		return -EINVAL;
6164 
6165 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6166 
6167 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6168 	if (unlikely(!ids))
6169 		return -ENOMEM;
6170 
6171 	ids->gaids_number_of_ids = num;
6172 	num = 0;
6173 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6174 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6175 	}
6176 
6177 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6178 		kfree(ids);
6179 		return -EFAULT;
6180 	}
6181 
6182 	kfree(ids);
6183 	return 0;
6184 }
6185 
6186 /*
6187  * SCTP_PEER_ADDR_THLDS
6188  *
6189  * This option allows us to fetch the partially failed threshold for one or all
6190  * transports in an association.  See Section 6.1 of:
6191  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6192  */
6193 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6194 					    char __user *optval,
6195 					    int len,
6196 					    int __user *optlen)
6197 {
6198 	struct sctp_paddrthlds val;
6199 	struct sctp_transport *trans;
6200 	struct sctp_association *asoc;
6201 
6202 	if (len < sizeof(struct sctp_paddrthlds))
6203 		return -EINVAL;
6204 	len = sizeof(struct sctp_paddrthlds);
6205 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6206 		return -EFAULT;
6207 
6208 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6209 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6210 		if (!asoc)
6211 			return -ENOENT;
6212 
6213 		val.spt_pathpfthld = asoc->pf_retrans;
6214 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6215 	} else {
6216 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6217 					       val.spt_assoc_id);
6218 		if (!trans)
6219 			return -ENOENT;
6220 
6221 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6222 		val.spt_pathpfthld = trans->pf_retrans;
6223 	}
6224 
6225 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6226 		return -EFAULT;
6227 
6228 	return 0;
6229 }
6230 
6231 /*
6232  * SCTP_GET_ASSOC_STATS
6233  *
6234  * This option retrieves local per endpoint statistics. It is modeled
6235  * after OpenSolaris' implementation
6236  */
6237 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6238 				       char __user *optval,
6239 				       int __user *optlen)
6240 {
6241 	struct sctp_assoc_stats sas;
6242 	struct sctp_association *asoc = NULL;
6243 
6244 	/* User must provide at least the assoc id */
6245 	if (len < sizeof(sctp_assoc_t))
6246 		return -EINVAL;
6247 
6248 	/* Allow the struct to grow and fill in as much as possible */
6249 	len = min_t(size_t, len, sizeof(sas));
6250 
6251 	if (copy_from_user(&sas, optval, len))
6252 		return -EFAULT;
6253 
6254 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6255 	if (!asoc)
6256 		return -EINVAL;
6257 
6258 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6259 	sas.sas_gapcnt = asoc->stats.gapcnt;
6260 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6261 	sas.sas_osacks = asoc->stats.osacks;
6262 	sas.sas_isacks = asoc->stats.isacks;
6263 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6264 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6265 	sas.sas_oodchunks = asoc->stats.oodchunks;
6266 	sas.sas_iodchunks = asoc->stats.iodchunks;
6267 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6268 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6269 	sas.sas_idupchunks = asoc->stats.idupchunks;
6270 	sas.sas_opackets = asoc->stats.opackets;
6271 	sas.sas_ipackets = asoc->stats.ipackets;
6272 
6273 	/* New high max rto observed, will return 0 if not a single
6274 	 * RTO update took place. obs_rto_ipaddr will be bogus
6275 	 * in such a case
6276 	 */
6277 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6278 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6279 		sizeof(struct sockaddr_storage));
6280 
6281 	/* Mark beginning of a new observation period */
6282 	asoc->stats.max_obs_rto = asoc->rto_min;
6283 
6284 	if (put_user(len, optlen))
6285 		return -EFAULT;
6286 
6287 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6288 
6289 	if (copy_to_user(optval, &sas, len))
6290 		return -EFAULT;
6291 
6292 	return 0;
6293 }
6294 
6295 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6296 				       char __user *optval,
6297 				       int __user *optlen)
6298 {
6299 	int val = 0;
6300 
6301 	if (len < sizeof(int))
6302 		return -EINVAL;
6303 
6304 	len = sizeof(int);
6305 	if (sctp_sk(sk)->recvrcvinfo)
6306 		val = 1;
6307 	if (put_user(len, optlen))
6308 		return -EFAULT;
6309 	if (copy_to_user(optval, &val, len))
6310 		return -EFAULT;
6311 
6312 	return 0;
6313 }
6314 
6315 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6316 				       char __user *optval,
6317 				       int __user *optlen)
6318 {
6319 	int val = 0;
6320 
6321 	if (len < sizeof(int))
6322 		return -EINVAL;
6323 
6324 	len = sizeof(int);
6325 	if (sctp_sk(sk)->recvnxtinfo)
6326 		val = 1;
6327 	if (put_user(len, optlen))
6328 		return -EFAULT;
6329 	if (copy_to_user(optval, &val, len))
6330 		return -EFAULT;
6331 
6332 	return 0;
6333 }
6334 
6335 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6336 					char __user *optval,
6337 					int __user *optlen)
6338 {
6339 	struct sctp_assoc_value params;
6340 	struct sctp_association *asoc;
6341 	int retval = -EFAULT;
6342 
6343 	if (len < sizeof(params)) {
6344 		retval = -EINVAL;
6345 		goto out;
6346 	}
6347 
6348 	len = sizeof(params);
6349 	if (copy_from_user(&params, optval, len))
6350 		goto out;
6351 
6352 	asoc = sctp_id2assoc(sk, params.assoc_id);
6353 	if (asoc) {
6354 		params.assoc_value = asoc->prsctp_enable;
6355 	} else if (!params.assoc_id) {
6356 		struct sctp_sock *sp = sctp_sk(sk);
6357 
6358 		params.assoc_value = sp->ep->prsctp_enable;
6359 	} else {
6360 		retval = -EINVAL;
6361 		goto out;
6362 	}
6363 
6364 	if (put_user(len, optlen))
6365 		goto out;
6366 
6367 	if (copy_to_user(optval, &params, len))
6368 		goto out;
6369 
6370 	retval = 0;
6371 
6372 out:
6373 	return retval;
6374 }
6375 
6376 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6377 					  char __user *optval,
6378 					  int __user *optlen)
6379 {
6380 	struct sctp_default_prinfo info;
6381 	struct sctp_association *asoc;
6382 	int retval = -EFAULT;
6383 
6384 	if (len < sizeof(info)) {
6385 		retval = -EINVAL;
6386 		goto out;
6387 	}
6388 
6389 	len = sizeof(info);
6390 	if (copy_from_user(&info, optval, len))
6391 		goto out;
6392 
6393 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6394 	if (asoc) {
6395 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6396 		info.pr_value = asoc->default_timetolive;
6397 	} else if (!info.pr_assoc_id) {
6398 		struct sctp_sock *sp = sctp_sk(sk);
6399 
6400 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6401 		info.pr_value = sp->default_timetolive;
6402 	} else {
6403 		retval = -EINVAL;
6404 		goto out;
6405 	}
6406 
6407 	if (put_user(len, optlen))
6408 		goto out;
6409 
6410 	if (copy_to_user(optval, &info, len))
6411 		goto out;
6412 
6413 	retval = 0;
6414 
6415 out:
6416 	return retval;
6417 }
6418 
6419 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6420 					  char __user *optval,
6421 					  int __user *optlen)
6422 {
6423 	struct sctp_prstatus params;
6424 	struct sctp_association *asoc;
6425 	int policy;
6426 	int retval = -EINVAL;
6427 
6428 	if (len < sizeof(params))
6429 		goto out;
6430 
6431 	len = sizeof(params);
6432 	if (copy_from_user(&params, optval, len)) {
6433 		retval = -EFAULT;
6434 		goto out;
6435 	}
6436 
6437 	policy = params.sprstat_policy;
6438 	if (policy & ~SCTP_PR_SCTP_MASK)
6439 		goto out;
6440 
6441 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6442 	if (!asoc)
6443 		goto out;
6444 
6445 	if (policy == SCTP_PR_SCTP_NONE) {
6446 		params.sprstat_abandoned_unsent = 0;
6447 		params.sprstat_abandoned_sent = 0;
6448 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6449 			params.sprstat_abandoned_unsent +=
6450 				asoc->abandoned_unsent[policy];
6451 			params.sprstat_abandoned_sent +=
6452 				asoc->abandoned_sent[policy];
6453 		}
6454 	} else {
6455 		params.sprstat_abandoned_unsent =
6456 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6457 		params.sprstat_abandoned_sent =
6458 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6459 	}
6460 
6461 	if (put_user(len, optlen)) {
6462 		retval = -EFAULT;
6463 		goto out;
6464 	}
6465 
6466 	if (copy_to_user(optval, &params, len)) {
6467 		retval = -EFAULT;
6468 		goto out;
6469 	}
6470 
6471 	retval = 0;
6472 
6473 out:
6474 	return retval;
6475 }
6476 
6477 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6478 					   char __user *optval,
6479 					   int __user *optlen)
6480 {
6481 	struct sctp_assoc_value params;
6482 	struct sctp_association *asoc;
6483 	int retval = -EFAULT;
6484 
6485 	if (len < sizeof(params)) {
6486 		retval = -EINVAL;
6487 		goto out;
6488 	}
6489 
6490 	len = sizeof(params);
6491 	if (copy_from_user(&params, optval, len))
6492 		goto out;
6493 
6494 	asoc = sctp_id2assoc(sk, params.assoc_id);
6495 	if (asoc) {
6496 		params.assoc_value = asoc->strreset_enable;
6497 	} else if (!params.assoc_id) {
6498 		struct sctp_sock *sp = sctp_sk(sk);
6499 
6500 		params.assoc_value = sp->ep->strreset_enable;
6501 	} else {
6502 		retval = -EINVAL;
6503 		goto out;
6504 	}
6505 
6506 	if (put_user(len, optlen))
6507 		goto out;
6508 
6509 	if (copy_to_user(optval, &params, len))
6510 		goto out;
6511 
6512 	retval = 0;
6513 
6514 out:
6515 	return retval;
6516 }
6517 
6518 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6519 			   char __user *optval, int __user *optlen)
6520 {
6521 	int retval = 0;
6522 	int len;
6523 
6524 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6525 
6526 	/* I can hardly begin to describe how wrong this is.  This is
6527 	 * so broken as to be worse than useless.  The API draft
6528 	 * REALLY is NOT helpful here...  I am not convinced that the
6529 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6530 	 * are at all well-founded.
6531 	 */
6532 	if (level != SOL_SCTP) {
6533 		struct sctp_af *af = sctp_sk(sk)->pf->af;
6534 
6535 		retval = af->getsockopt(sk, level, optname, optval, optlen);
6536 		return retval;
6537 	}
6538 
6539 	if (get_user(len, optlen))
6540 		return -EFAULT;
6541 
6542 	if (len < 0)
6543 		return -EINVAL;
6544 
6545 	lock_sock(sk);
6546 
6547 	switch (optname) {
6548 	case SCTP_STATUS:
6549 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6550 		break;
6551 	case SCTP_DISABLE_FRAGMENTS:
6552 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6553 							   optlen);
6554 		break;
6555 	case SCTP_EVENTS:
6556 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
6557 		break;
6558 	case SCTP_AUTOCLOSE:
6559 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6560 		break;
6561 	case SCTP_SOCKOPT_PEELOFF:
6562 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6563 		break;
6564 	case SCTP_PEER_ADDR_PARAMS:
6565 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6566 							  optlen);
6567 		break;
6568 	case SCTP_DELAYED_SACK:
6569 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6570 							  optlen);
6571 		break;
6572 	case SCTP_INITMSG:
6573 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6574 		break;
6575 	case SCTP_GET_PEER_ADDRS:
6576 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6577 						    optlen);
6578 		break;
6579 	case SCTP_GET_LOCAL_ADDRS:
6580 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6581 						     optlen);
6582 		break;
6583 	case SCTP_SOCKOPT_CONNECTX3:
6584 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6585 		break;
6586 	case SCTP_DEFAULT_SEND_PARAM:
6587 		retval = sctp_getsockopt_default_send_param(sk, len,
6588 							    optval, optlen);
6589 		break;
6590 	case SCTP_DEFAULT_SNDINFO:
6591 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6592 							 optval, optlen);
6593 		break;
6594 	case SCTP_PRIMARY_ADDR:
6595 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6596 		break;
6597 	case SCTP_NODELAY:
6598 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6599 		break;
6600 	case SCTP_RTOINFO:
6601 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6602 		break;
6603 	case SCTP_ASSOCINFO:
6604 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6605 		break;
6606 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6607 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6608 		break;
6609 	case SCTP_MAXSEG:
6610 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6611 		break;
6612 	case SCTP_GET_PEER_ADDR_INFO:
6613 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6614 							optlen);
6615 		break;
6616 	case SCTP_ADAPTATION_LAYER:
6617 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6618 							optlen);
6619 		break;
6620 	case SCTP_CONTEXT:
6621 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6622 		break;
6623 	case SCTP_FRAGMENT_INTERLEAVE:
6624 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6625 							     optlen);
6626 		break;
6627 	case SCTP_PARTIAL_DELIVERY_POINT:
6628 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6629 								optlen);
6630 		break;
6631 	case SCTP_MAX_BURST:
6632 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6633 		break;
6634 	case SCTP_AUTH_KEY:
6635 	case SCTP_AUTH_CHUNK:
6636 	case SCTP_AUTH_DELETE_KEY:
6637 		retval = -EOPNOTSUPP;
6638 		break;
6639 	case SCTP_HMAC_IDENT:
6640 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6641 		break;
6642 	case SCTP_AUTH_ACTIVE_KEY:
6643 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6644 		break;
6645 	case SCTP_PEER_AUTH_CHUNKS:
6646 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6647 							optlen);
6648 		break;
6649 	case SCTP_LOCAL_AUTH_CHUNKS:
6650 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6651 							optlen);
6652 		break;
6653 	case SCTP_GET_ASSOC_NUMBER:
6654 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6655 		break;
6656 	case SCTP_GET_ASSOC_ID_LIST:
6657 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6658 		break;
6659 	case SCTP_AUTO_ASCONF:
6660 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6661 		break;
6662 	case SCTP_PEER_ADDR_THLDS:
6663 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6664 		break;
6665 	case SCTP_GET_ASSOC_STATS:
6666 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6667 		break;
6668 	case SCTP_RECVRCVINFO:
6669 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6670 		break;
6671 	case SCTP_RECVNXTINFO:
6672 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6673 		break;
6674 	case SCTP_PR_SUPPORTED:
6675 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6676 		break;
6677 	case SCTP_DEFAULT_PRINFO:
6678 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6679 							optlen);
6680 		break;
6681 	case SCTP_PR_ASSOC_STATUS:
6682 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6683 							optlen);
6684 		break;
6685 	case SCTP_ENABLE_STREAM_RESET:
6686 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6687 							 optlen);
6688 		break;
6689 	default:
6690 		retval = -ENOPROTOOPT;
6691 		break;
6692 	}
6693 
6694 	release_sock(sk);
6695 	return retval;
6696 }
6697 
6698 static int sctp_hash(struct sock *sk)
6699 {
6700 	/* STUB */
6701 	return 0;
6702 }
6703 
6704 static void sctp_unhash(struct sock *sk)
6705 {
6706 	/* STUB */
6707 }
6708 
6709 /* Check if port is acceptable.  Possibly find first available port.
6710  *
6711  * The port hash table (contained in the 'global' SCTP protocol storage
6712  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6713  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6714  * list (the list number is the port number hashed out, so as you
6715  * would expect from a hash function, all the ports in a given list have
6716  * such a number that hashes out to the same list number; you were
6717  * expecting that, right?); so each list has a set of ports, with a
6718  * link to the socket (struct sock) that uses it, the port number and
6719  * a fastreuse flag (FIXME: NPI ipg).
6720  */
6721 static struct sctp_bind_bucket *sctp_bucket_create(
6722 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6723 
6724 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6725 {
6726 	struct sctp_bind_hashbucket *head; /* hash list */
6727 	struct sctp_bind_bucket *pp;
6728 	unsigned short snum;
6729 	int ret;
6730 
6731 	snum = ntohs(addr->v4.sin_port);
6732 
6733 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6734 
6735 	local_bh_disable();
6736 
6737 	if (snum == 0) {
6738 		/* Search for an available port. */
6739 		int low, high, remaining, index;
6740 		unsigned int rover;
6741 		struct net *net = sock_net(sk);
6742 
6743 		inet_get_local_port_range(net, &low, &high);
6744 		remaining = (high - low) + 1;
6745 		rover = prandom_u32() % remaining + low;
6746 
6747 		do {
6748 			rover++;
6749 			if ((rover < low) || (rover > high))
6750 				rover = low;
6751 			if (inet_is_local_reserved_port(net, rover))
6752 				continue;
6753 			index = sctp_phashfn(sock_net(sk), rover);
6754 			head = &sctp_port_hashtable[index];
6755 			spin_lock(&head->lock);
6756 			sctp_for_each_hentry(pp, &head->chain)
6757 				if ((pp->port == rover) &&
6758 				    net_eq(sock_net(sk), pp->net))
6759 					goto next;
6760 			break;
6761 		next:
6762 			spin_unlock(&head->lock);
6763 		} while (--remaining > 0);
6764 
6765 		/* Exhausted local port range during search? */
6766 		ret = 1;
6767 		if (remaining <= 0)
6768 			goto fail;
6769 
6770 		/* OK, here is the one we will use.  HEAD (the port
6771 		 * hash table list entry) is non-NULL and we hold it's
6772 		 * mutex.
6773 		 */
6774 		snum = rover;
6775 	} else {
6776 		/* We are given an specific port number; we verify
6777 		 * that it is not being used. If it is used, we will
6778 		 * exahust the search in the hash list corresponding
6779 		 * to the port number (snum) - we detect that with the
6780 		 * port iterator, pp being NULL.
6781 		 */
6782 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6783 		spin_lock(&head->lock);
6784 		sctp_for_each_hentry(pp, &head->chain) {
6785 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6786 				goto pp_found;
6787 		}
6788 	}
6789 	pp = NULL;
6790 	goto pp_not_found;
6791 pp_found:
6792 	if (!hlist_empty(&pp->owner)) {
6793 		/* We had a port hash table hit - there is an
6794 		 * available port (pp != NULL) and it is being
6795 		 * used by other socket (pp->owner not empty); that other
6796 		 * socket is going to be sk2.
6797 		 */
6798 		int reuse = sk->sk_reuse;
6799 		struct sock *sk2;
6800 
6801 		pr_debug("%s: found a possible match\n", __func__);
6802 
6803 		if (pp->fastreuse && sk->sk_reuse &&
6804 			sk->sk_state != SCTP_SS_LISTENING)
6805 			goto success;
6806 
6807 		/* Run through the list of sockets bound to the port
6808 		 * (pp->port) [via the pointers bind_next and
6809 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6810 		 * we get the endpoint they describe and run through
6811 		 * the endpoint's list of IP (v4 or v6) addresses,
6812 		 * comparing each of the addresses with the address of
6813 		 * the socket sk. If we find a match, then that means
6814 		 * that this port/socket (sk) combination are already
6815 		 * in an endpoint.
6816 		 */
6817 		sk_for_each_bound(sk2, &pp->owner) {
6818 			struct sctp_endpoint *ep2;
6819 			ep2 = sctp_sk(sk2)->ep;
6820 
6821 			if (sk == sk2 ||
6822 			    (reuse && sk2->sk_reuse &&
6823 			     sk2->sk_state != SCTP_SS_LISTENING))
6824 				continue;
6825 
6826 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6827 						 sctp_sk(sk2), sctp_sk(sk))) {
6828 				ret = (long)sk2;
6829 				goto fail_unlock;
6830 			}
6831 		}
6832 
6833 		pr_debug("%s: found a match\n", __func__);
6834 	}
6835 pp_not_found:
6836 	/* If there was a hash table miss, create a new port.  */
6837 	ret = 1;
6838 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6839 		goto fail_unlock;
6840 
6841 	/* In either case (hit or miss), make sure fastreuse is 1 only
6842 	 * if sk->sk_reuse is too (that is, if the caller requested
6843 	 * SO_REUSEADDR on this socket -sk-).
6844 	 */
6845 	if (hlist_empty(&pp->owner)) {
6846 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6847 			pp->fastreuse = 1;
6848 		else
6849 			pp->fastreuse = 0;
6850 	} else if (pp->fastreuse &&
6851 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6852 		pp->fastreuse = 0;
6853 
6854 	/* We are set, so fill up all the data in the hash table
6855 	 * entry, tie the socket list information with the rest of the
6856 	 * sockets FIXME: Blurry, NPI (ipg).
6857 	 */
6858 success:
6859 	if (!sctp_sk(sk)->bind_hash) {
6860 		inet_sk(sk)->inet_num = snum;
6861 		sk_add_bind_node(sk, &pp->owner);
6862 		sctp_sk(sk)->bind_hash = pp;
6863 	}
6864 	ret = 0;
6865 
6866 fail_unlock:
6867 	spin_unlock(&head->lock);
6868 
6869 fail:
6870 	local_bh_enable();
6871 	return ret;
6872 }
6873 
6874 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6875  * port is requested.
6876  */
6877 static int sctp_get_port(struct sock *sk, unsigned short snum)
6878 {
6879 	union sctp_addr addr;
6880 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6881 
6882 	/* Set up a dummy address struct from the sk. */
6883 	af->from_sk(&addr, sk);
6884 	addr.v4.sin_port = htons(snum);
6885 
6886 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6887 	return !!sctp_get_port_local(sk, &addr);
6888 }
6889 
6890 /*
6891  *  Move a socket to LISTENING state.
6892  */
6893 static int sctp_listen_start(struct sock *sk, int backlog)
6894 {
6895 	struct sctp_sock *sp = sctp_sk(sk);
6896 	struct sctp_endpoint *ep = sp->ep;
6897 	struct crypto_shash *tfm = NULL;
6898 	char alg[32];
6899 
6900 	/* Allocate HMAC for generating cookie. */
6901 	if (!sp->hmac && sp->sctp_hmac_alg) {
6902 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6903 		tfm = crypto_alloc_shash(alg, 0, 0);
6904 		if (IS_ERR(tfm)) {
6905 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6906 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6907 			return -ENOSYS;
6908 		}
6909 		sctp_sk(sk)->hmac = tfm;
6910 	}
6911 
6912 	/*
6913 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6914 	 * call that allows new associations to be accepted, the system
6915 	 * picks an ephemeral port and will choose an address set equivalent
6916 	 * to binding with a wildcard address.
6917 	 *
6918 	 * This is not currently spelled out in the SCTP sockets
6919 	 * extensions draft, but follows the practice as seen in TCP
6920 	 * sockets.
6921 	 *
6922 	 */
6923 	sk->sk_state = SCTP_SS_LISTENING;
6924 	if (!ep->base.bind_addr.port) {
6925 		if (sctp_autobind(sk))
6926 			return -EAGAIN;
6927 	} else {
6928 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6929 			sk->sk_state = SCTP_SS_CLOSED;
6930 			return -EADDRINUSE;
6931 		}
6932 	}
6933 
6934 	sk->sk_max_ack_backlog = backlog;
6935 	sctp_hash_endpoint(ep);
6936 	return 0;
6937 }
6938 
6939 /*
6940  * 4.1.3 / 5.1.3 listen()
6941  *
6942  *   By default, new associations are not accepted for UDP style sockets.
6943  *   An application uses listen() to mark a socket as being able to
6944  *   accept new associations.
6945  *
6946  *   On TCP style sockets, applications use listen() to ready the SCTP
6947  *   endpoint for accepting inbound associations.
6948  *
6949  *   On both types of endpoints a backlog of '0' disables listening.
6950  *
6951  *  Move a socket to LISTENING state.
6952  */
6953 int sctp_inet_listen(struct socket *sock, int backlog)
6954 {
6955 	struct sock *sk = sock->sk;
6956 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6957 	int err = -EINVAL;
6958 
6959 	if (unlikely(backlog < 0))
6960 		return err;
6961 
6962 	lock_sock(sk);
6963 
6964 	/* Peeled-off sockets are not allowed to listen().  */
6965 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6966 		goto out;
6967 
6968 	if (sock->state != SS_UNCONNECTED)
6969 		goto out;
6970 
6971 	/* If backlog is zero, disable listening. */
6972 	if (!backlog) {
6973 		if (sctp_sstate(sk, CLOSED))
6974 			goto out;
6975 
6976 		err = 0;
6977 		sctp_unhash_endpoint(ep);
6978 		sk->sk_state = SCTP_SS_CLOSED;
6979 		if (sk->sk_reuse)
6980 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6981 		goto out;
6982 	}
6983 
6984 	/* If we are already listening, just update the backlog */
6985 	if (sctp_sstate(sk, LISTENING))
6986 		sk->sk_max_ack_backlog = backlog;
6987 	else {
6988 		err = sctp_listen_start(sk, backlog);
6989 		if (err)
6990 			goto out;
6991 	}
6992 
6993 	err = 0;
6994 out:
6995 	release_sock(sk);
6996 	return err;
6997 }
6998 
6999 /*
7000  * This function is done by modeling the current datagram_poll() and the
7001  * tcp_poll().  Note that, based on these implementations, we don't
7002  * lock the socket in this function, even though it seems that,
7003  * ideally, locking or some other mechanisms can be used to ensure
7004  * the integrity of the counters (sndbuf and wmem_alloc) used
7005  * in this place.  We assume that we don't need locks either until proven
7006  * otherwise.
7007  *
7008  * Another thing to note is that we include the Async I/O support
7009  * here, again, by modeling the current TCP/UDP code.  We don't have
7010  * a good way to test with it yet.
7011  */
7012 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7013 {
7014 	struct sock *sk = sock->sk;
7015 	struct sctp_sock *sp = sctp_sk(sk);
7016 	unsigned int mask;
7017 
7018 	poll_wait(file, sk_sleep(sk), wait);
7019 
7020 	sock_rps_record_flow(sk);
7021 
7022 	/* A TCP-style listening socket becomes readable when the accept queue
7023 	 * is not empty.
7024 	 */
7025 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7026 		return (!list_empty(&sp->ep->asocs)) ?
7027 			(POLLIN | POLLRDNORM) : 0;
7028 
7029 	mask = 0;
7030 
7031 	/* Is there any exceptional events?  */
7032 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7033 		mask |= POLLERR |
7034 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7035 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7036 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7037 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7038 		mask |= POLLHUP;
7039 
7040 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7041 	if (!skb_queue_empty(&sk->sk_receive_queue))
7042 		mask |= POLLIN | POLLRDNORM;
7043 
7044 	/* The association is either gone or not ready.  */
7045 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7046 		return mask;
7047 
7048 	/* Is it writable?  */
7049 	if (sctp_writeable(sk)) {
7050 		mask |= POLLOUT | POLLWRNORM;
7051 	} else {
7052 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7053 		/*
7054 		 * Since the socket is not locked, the buffer
7055 		 * might be made available after the writeable check and
7056 		 * before the bit is set.  This could cause a lost I/O
7057 		 * signal.  tcp_poll() has a race breaker for this race
7058 		 * condition.  Based on their implementation, we put
7059 		 * in the following code to cover it as well.
7060 		 */
7061 		if (sctp_writeable(sk))
7062 			mask |= POLLOUT | POLLWRNORM;
7063 	}
7064 	return mask;
7065 }
7066 
7067 /********************************************************************
7068  * 2nd Level Abstractions
7069  ********************************************************************/
7070 
7071 static struct sctp_bind_bucket *sctp_bucket_create(
7072 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7073 {
7074 	struct sctp_bind_bucket *pp;
7075 
7076 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7077 	if (pp) {
7078 		SCTP_DBG_OBJCNT_INC(bind_bucket);
7079 		pp->port = snum;
7080 		pp->fastreuse = 0;
7081 		INIT_HLIST_HEAD(&pp->owner);
7082 		pp->net = net;
7083 		hlist_add_head(&pp->node, &head->chain);
7084 	}
7085 	return pp;
7086 }
7087 
7088 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7089 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7090 {
7091 	if (pp && hlist_empty(&pp->owner)) {
7092 		__hlist_del(&pp->node);
7093 		kmem_cache_free(sctp_bucket_cachep, pp);
7094 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
7095 	}
7096 }
7097 
7098 /* Release this socket's reference to a local port.  */
7099 static inline void __sctp_put_port(struct sock *sk)
7100 {
7101 	struct sctp_bind_hashbucket *head =
7102 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7103 						  inet_sk(sk)->inet_num)];
7104 	struct sctp_bind_bucket *pp;
7105 
7106 	spin_lock(&head->lock);
7107 	pp = sctp_sk(sk)->bind_hash;
7108 	__sk_del_bind_node(sk);
7109 	sctp_sk(sk)->bind_hash = NULL;
7110 	inet_sk(sk)->inet_num = 0;
7111 	sctp_bucket_destroy(pp);
7112 	spin_unlock(&head->lock);
7113 }
7114 
7115 void sctp_put_port(struct sock *sk)
7116 {
7117 	local_bh_disable();
7118 	__sctp_put_port(sk);
7119 	local_bh_enable();
7120 }
7121 
7122 /*
7123  * The system picks an ephemeral port and choose an address set equivalent
7124  * to binding with a wildcard address.
7125  * One of those addresses will be the primary address for the association.
7126  * This automatically enables the multihoming capability of SCTP.
7127  */
7128 static int sctp_autobind(struct sock *sk)
7129 {
7130 	union sctp_addr autoaddr;
7131 	struct sctp_af *af;
7132 	__be16 port;
7133 
7134 	/* Initialize a local sockaddr structure to INADDR_ANY. */
7135 	af = sctp_sk(sk)->pf->af;
7136 
7137 	port = htons(inet_sk(sk)->inet_num);
7138 	af->inaddr_any(&autoaddr, port);
7139 
7140 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7141 }
7142 
7143 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
7144  *
7145  * From RFC 2292
7146  * 4.2 The cmsghdr Structure *
7147  *
7148  * When ancillary data is sent or received, any number of ancillary data
7149  * objects can be specified by the msg_control and msg_controllen members of
7150  * the msghdr structure, because each object is preceded by
7151  * a cmsghdr structure defining the object's length (the cmsg_len member).
7152  * Historically Berkeley-derived implementations have passed only one object
7153  * at a time, but this API allows multiple objects to be
7154  * passed in a single call to sendmsg() or recvmsg(). The following example
7155  * shows two ancillary data objects in a control buffer.
7156  *
7157  *   |<--------------------------- msg_controllen -------------------------->|
7158  *   |                                                                       |
7159  *
7160  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
7161  *
7162  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7163  *   |                                   |                                   |
7164  *
7165  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
7166  *
7167  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
7168  *   |                                |  |                                |  |
7169  *
7170  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7171  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
7172  *
7173  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
7174  *
7175  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7176  *    ^
7177  *    |
7178  *
7179  * msg_control
7180  * points here
7181  */
7182 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7183 {
7184 	struct cmsghdr *cmsg;
7185 	struct msghdr *my_msg = (struct msghdr *)msg;
7186 
7187 	for_each_cmsghdr(cmsg, my_msg) {
7188 		if (!CMSG_OK(my_msg, cmsg))
7189 			return -EINVAL;
7190 
7191 		/* Should we parse this header or ignore?  */
7192 		if (cmsg->cmsg_level != IPPROTO_SCTP)
7193 			continue;
7194 
7195 		/* Strictly check lengths following example in SCM code.  */
7196 		switch (cmsg->cmsg_type) {
7197 		case SCTP_INIT:
7198 			/* SCTP Socket API Extension
7199 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7200 			 *
7201 			 * This cmsghdr structure provides information for
7202 			 * initializing new SCTP associations with sendmsg().
7203 			 * The SCTP_INITMSG socket option uses this same data
7204 			 * structure.  This structure is not used for
7205 			 * recvmsg().
7206 			 *
7207 			 * cmsg_level    cmsg_type      cmsg_data[]
7208 			 * ------------  ------------   ----------------------
7209 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
7210 			 */
7211 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7212 				return -EINVAL;
7213 
7214 			cmsgs->init = CMSG_DATA(cmsg);
7215 			break;
7216 
7217 		case SCTP_SNDRCV:
7218 			/* SCTP Socket API Extension
7219 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7220 			 *
7221 			 * This cmsghdr structure specifies SCTP options for
7222 			 * sendmsg() and describes SCTP header information
7223 			 * about a received message through recvmsg().
7224 			 *
7225 			 * cmsg_level    cmsg_type      cmsg_data[]
7226 			 * ------------  ------------   ----------------------
7227 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
7228 			 */
7229 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7230 				return -EINVAL;
7231 
7232 			cmsgs->srinfo = CMSG_DATA(cmsg);
7233 
7234 			if (cmsgs->srinfo->sinfo_flags &
7235 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7236 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7237 			      SCTP_ABORT | SCTP_EOF))
7238 				return -EINVAL;
7239 			break;
7240 
7241 		case SCTP_SNDINFO:
7242 			/* SCTP Socket API Extension
7243 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7244 			 *
7245 			 * This cmsghdr structure specifies SCTP options for
7246 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
7247 			 * SCTP_SNDRCV which has been deprecated.
7248 			 *
7249 			 * cmsg_level    cmsg_type      cmsg_data[]
7250 			 * ------------  ------------   ---------------------
7251 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
7252 			 */
7253 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7254 				return -EINVAL;
7255 
7256 			cmsgs->sinfo = CMSG_DATA(cmsg);
7257 
7258 			if (cmsgs->sinfo->snd_flags &
7259 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7260 			      SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7261 			      SCTP_ABORT | SCTP_EOF))
7262 				return -EINVAL;
7263 			break;
7264 		default:
7265 			return -EINVAL;
7266 		}
7267 	}
7268 
7269 	return 0;
7270 }
7271 
7272 /*
7273  * Wait for a packet..
7274  * Note: This function is the same function as in core/datagram.c
7275  * with a few modifications to make lksctp work.
7276  */
7277 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7278 {
7279 	int error;
7280 	DEFINE_WAIT(wait);
7281 
7282 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7283 
7284 	/* Socket errors? */
7285 	error = sock_error(sk);
7286 	if (error)
7287 		goto out;
7288 
7289 	if (!skb_queue_empty(&sk->sk_receive_queue))
7290 		goto ready;
7291 
7292 	/* Socket shut down?  */
7293 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7294 		goto out;
7295 
7296 	/* Sequenced packets can come disconnected.  If so we report the
7297 	 * problem.
7298 	 */
7299 	error = -ENOTCONN;
7300 
7301 	/* Is there a good reason to think that we may receive some data?  */
7302 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7303 		goto out;
7304 
7305 	/* Handle signals.  */
7306 	if (signal_pending(current))
7307 		goto interrupted;
7308 
7309 	/* Let another process have a go.  Since we are going to sleep
7310 	 * anyway.  Note: This may cause odd behaviors if the message
7311 	 * does not fit in the user's buffer, but this seems to be the
7312 	 * only way to honor MSG_DONTWAIT realistically.
7313 	 */
7314 	release_sock(sk);
7315 	*timeo_p = schedule_timeout(*timeo_p);
7316 	lock_sock(sk);
7317 
7318 ready:
7319 	finish_wait(sk_sleep(sk), &wait);
7320 	return 0;
7321 
7322 interrupted:
7323 	error = sock_intr_errno(*timeo_p);
7324 
7325 out:
7326 	finish_wait(sk_sleep(sk), &wait);
7327 	*err = error;
7328 	return error;
7329 }
7330 
7331 /* Receive a datagram.
7332  * Note: This is pretty much the same routine as in core/datagram.c
7333  * with a few changes to make lksctp work.
7334  */
7335 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7336 				       int noblock, int *err)
7337 {
7338 	int error;
7339 	struct sk_buff *skb;
7340 	long timeo;
7341 
7342 	timeo = sock_rcvtimeo(sk, noblock);
7343 
7344 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7345 		 MAX_SCHEDULE_TIMEOUT);
7346 
7347 	do {
7348 		/* Again only user level code calls this function,
7349 		 * so nothing interrupt level
7350 		 * will suddenly eat the receive_queue.
7351 		 *
7352 		 *  Look at current nfs client by the way...
7353 		 *  However, this function was correct in any case. 8)
7354 		 */
7355 		if (flags & MSG_PEEK) {
7356 			skb = skb_peek(&sk->sk_receive_queue);
7357 			if (skb)
7358 				atomic_inc(&skb->users);
7359 		} else {
7360 			skb = __skb_dequeue(&sk->sk_receive_queue);
7361 		}
7362 
7363 		if (skb)
7364 			return skb;
7365 
7366 		/* Caller is allowed not to check sk->sk_err before calling. */
7367 		error = sock_error(sk);
7368 		if (error)
7369 			goto no_packet;
7370 
7371 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7372 			break;
7373 
7374 		if (sk_can_busy_loop(sk) &&
7375 		    sk_busy_loop(sk, noblock))
7376 			continue;
7377 
7378 		/* User doesn't want to wait.  */
7379 		error = -EAGAIN;
7380 		if (!timeo)
7381 			goto no_packet;
7382 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7383 
7384 	return NULL;
7385 
7386 no_packet:
7387 	*err = error;
7388 	return NULL;
7389 }
7390 
7391 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
7392 static void __sctp_write_space(struct sctp_association *asoc)
7393 {
7394 	struct sock *sk = asoc->base.sk;
7395 
7396 	if (sctp_wspace(asoc) <= 0)
7397 		return;
7398 
7399 	if (waitqueue_active(&asoc->wait))
7400 		wake_up_interruptible(&asoc->wait);
7401 
7402 	if (sctp_writeable(sk)) {
7403 		struct socket_wq *wq;
7404 
7405 		rcu_read_lock();
7406 		wq = rcu_dereference(sk->sk_wq);
7407 		if (wq) {
7408 			if (waitqueue_active(&wq->wait))
7409 				wake_up_interruptible(&wq->wait);
7410 
7411 			/* Note that we try to include the Async I/O support
7412 			 * here by modeling from the current TCP/UDP code.
7413 			 * We have not tested with it yet.
7414 			 */
7415 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7416 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7417 		}
7418 		rcu_read_unlock();
7419 	}
7420 }
7421 
7422 static void sctp_wake_up_waiters(struct sock *sk,
7423 				 struct sctp_association *asoc)
7424 {
7425 	struct sctp_association *tmp = asoc;
7426 
7427 	/* We do accounting for the sndbuf space per association,
7428 	 * so we only need to wake our own association.
7429 	 */
7430 	if (asoc->ep->sndbuf_policy)
7431 		return __sctp_write_space(asoc);
7432 
7433 	/* If association goes down and is just flushing its
7434 	 * outq, then just normally notify others.
7435 	 */
7436 	if (asoc->base.dead)
7437 		return sctp_write_space(sk);
7438 
7439 	/* Accounting for the sndbuf space is per socket, so we
7440 	 * need to wake up others, try to be fair and in case of
7441 	 * other associations, let them have a go first instead
7442 	 * of just doing a sctp_write_space() call.
7443 	 *
7444 	 * Note that we reach sctp_wake_up_waiters() only when
7445 	 * associations free up queued chunks, thus we are under
7446 	 * lock and the list of associations on a socket is
7447 	 * guaranteed not to change.
7448 	 */
7449 	for (tmp = list_next_entry(tmp, asocs); 1;
7450 	     tmp = list_next_entry(tmp, asocs)) {
7451 		/* Manually skip the head element. */
7452 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7453 			continue;
7454 		/* Wake up association. */
7455 		__sctp_write_space(tmp);
7456 		/* We've reached the end. */
7457 		if (tmp == asoc)
7458 			break;
7459 	}
7460 }
7461 
7462 /* Do accounting for the sndbuf space.
7463  * Decrement the used sndbuf space of the corresponding association by the
7464  * data size which was just transmitted(freed).
7465  */
7466 static void sctp_wfree(struct sk_buff *skb)
7467 {
7468 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7469 	struct sctp_association *asoc = chunk->asoc;
7470 	struct sock *sk = asoc->base.sk;
7471 
7472 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7473 				sizeof(struct sk_buff) +
7474 				sizeof(struct sctp_chunk);
7475 
7476 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7477 
7478 	/*
7479 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7480 	 */
7481 	sk->sk_wmem_queued   -= skb->truesize;
7482 	sk_mem_uncharge(sk, skb->truesize);
7483 
7484 	sock_wfree(skb);
7485 	sctp_wake_up_waiters(sk, asoc);
7486 
7487 	sctp_association_put(asoc);
7488 }
7489 
7490 /* Do accounting for the receive space on the socket.
7491  * Accounting for the association is done in ulpevent.c
7492  * We set this as a destructor for the cloned data skbs so that
7493  * accounting is done at the correct time.
7494  */
7495 void sctp_sock_rfree(struct sk_buff *skb)
7496 {
7497 	struct sock *sk = skb->sk;
7498 	struct sctp_ulpevent *event = sctp_skb2event(skb);
7499 
7500 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7501 
7502 	/*
7503 	 * Mimic the behavior of sock_rfree
7504 	 */
7505 	sk_mem_uncharge(sk, event->rmem_len);
7506 }
7507 
7508 
7509 /* Helper function to wait for space in the sndbuf.  */
7510 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7511 				size_t msg_len)
7512 {
7513 	struct sock *sk = asoc->base.sk;
7514 	int err = 0;
7515 	long current_timeo = *timeo_p;
7516 	DEFINE_WAIT(wait);
7517 
7518 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7519 		 *timeo_p, msg_len);
7520 
7521 	/* Increment the association's refcnt.  */
7522 	sctp_association_hold(asoc);
7523 
7524 	/* Wait on the association specific sndbuf space. */
7525 	for (;;) {
7526 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7527 					  TASK_INTERRUPTIBLE);
7528 		if (!*timeo_p)
7529 			goto do_nonblock;
7530 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7531 		    asoc->base.dead)
7532 			goto do_error;
7533 		if (signal_pending(current))
7534 			goto do_interrupted;
7535 		if (msg_len <= sctp_wspace(asoc))
7536 			break;
7537 
7538 		/* Let another process have a go.  Since we are going
7539 		 * to sleep anyway.
7540 		 */
7541 		release_sock(sk);
7542 		current_timeo = schedule_timeout(current_timeo);
7543 		if (sk != asoc->base.sk)
7544 			goto do_error;
7545 		lock_sock(sk);
7546 
7547 		*timeo_p = current_timeo;
7548 	}
7549 
7550 out:
7551 	finish_wait(&asoc->wait, &wait);
7552 
7553 	/* Release the association's refcnt.  */
7554 	sctp_association_put(asoc);
7555 
7556 	return err;
7557 
7558 do_error:
7559 	err = -EPIPE;
7560 	goto out;
7561 
7562 do_interrupted:
7563 	err = sock_intr_errno(*timeo_p);
7564 	goto out;
7565 
7566 do_nonblock:
7567 	err = -EAGAIN;
7568 	goto out;
7569 }
7570 
7571 void sctp_data_ready(struct sock *sk)
7572 {
7573 	struct socket_wq *wq;
7574 
7575 	rcu_read_lock();
7576 	wq = rcu_dereference(sk->sk_wq);
7577 	if (skwq_has_sleeper(wq))
7578 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7579 						POLLRDNORM | POLLRDBAND);
7580 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7581 	rcu_read_unlock();
7582 }
7583 
7584 /* If socket sndbuf has changed, wake up all per association waiters.  */
7585 void sctp_write_space(struct sock *sk)
7586 {
7587 	struct sctp_association *asoc;
7588 
7589 	/* Wake up the tasks in each wait queue.  */
7590 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7591 		__sctp_write_space(asoc);
7592 	}
7593 }
7594 
7595 /* Is there any sndbuf space available on the socket?
7596  *
7597  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7598  * associations on the same socket.  For a UDP-style socket with
7599  * multiple associations, it is possible for it to be "unwriteable"
7600  * prematurely.  I assume that this is acceptable because
7601  * a premature "unwriteable" is better than an accidental "writeable" which
7602  * would cause an unwanted block under certain circumstances.  For the 1-1
7603  * UDP-style sockets or TCP-style sockets, this code should work.
7604  *  - Daisy
7605  */
7606 static int sctp_writeable(struct sock *sk)
7607 {
7608 	int amt = 0;
7609 
7610 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7611 	if (amt < 0)
7612 		amt = 0;
7613 	return amt;
7614 }
7615 
7616 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7617  * returns immediately with EINPROGRESS.
7618  */
7619 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7620 {
7621 	struct sock *sk = asoc->base.sk;
7622 	int err = 0;
7623 	long current_timeo = *timeo_p;
7624 	DEFINE_WAIT(wait);
7625 
7626 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7627 
7628 	/* Increment the association's refcnt.  */
7629 	sctp_association_hold(asoc);
7630 
7631 	for (;;) {
7632 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7633 					  TASK_INTERRUPTIBLE);
7634 		if (!*timeo_p)
7635 			goto do_nonblock;
7636 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7637 			break;
7638 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7639 		    asoc->base.dead)
7640 			goto do_error;
7641 		if (signal_pending(current))
7642 			goto do_interrupted;
7643 
7644 		if (sctp_state(asoc, ESTABLISHED))
7645 			break;
7646 
7647 		/* Let another process have a go.  Since we are going
7648 		 * to sleep anyway.
7649 		 */
7650 		release_sock(sk);
7651 		current_timeo = schedule_timeout(current_timeo);
7652 		lock_sock(sk);
7653 
7654 		*timeo_p = current_timeo;
7655 	}
7656 
7657 out:
7658 	finish_wait(&asoc->wait, &wait);
7659 
7660 	/* Release the association's refcnt.  */
7661 	sctp_association_put(asoc);
7662 
7663 	return err;
7664 
7665 do_error:
7666 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7667 		err = -ETIMEDOUT;
7668 	else
7669 		err = -ECONNREFUSED;
7670 	goto out;
7671 
7672 do_interrupted:
7673 	err = sock_intr_errno(*timeo_p);
7674 	goto out;
7675 
7676 do_nonblock:
7677 	err = -EINPROGRESS;
7678 	goto out;
7679 }
7680 
7681 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7682 {
7683 	struct sctp_endpoint *ep;
7684 	int err = 0;
7685 	DEFINE_WAIT(wait);
7686 
7687 	ep = sctp_sk(sk)->ep;
7688 
7689 
7690 	for (;;) {
7691 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7692 					  TASK_INTERRUPTIBLE);
7693 
7694 		if (list_empty(&ep->asocs)) {
7695 			release_sock(sk);
7696 			timeo = schedule_timeout(timeo);
7697 			lock_sock(sk);
7698 		}
7699 
7700 		err = -EINVAL;
7701 		if (!sctp_sstate(sk, LISTENING))
7702 			break;
7703 
7704 		err = 0;
7705 		if (!list_empty(&ep->asocs))
7706 			break;
7707 
7708 		err = sock_intr_errno(timeo);
7709 		if (signal_pending(current))
7710 			break;
7711 
7712 		err = -EAGAIN;
7713 		if (!timeo)
7714 			break;
7715 	}
7716 
7717 	finish_wait(sk_sleep(sk), &wait);
7718 
7719 	return err;
7720 }
7721 
7722 static void sctp_wait_for_close(struct sock *sk, long timeout)
7723 {
7724 	DEFINE_WAIT(wait);
7725 
7726 	do {
7727 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7728 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7729 			break;
7730 		release_sock(sk);
7731 		timeout = schedule_timeout(timeout);
7732 		lock_sock(sk);
7733 	} while (!signal_pending(current) && timeout);
7734 
7735 	finish_wait(sk_sleep(sk), &wait);
7736 }
7737 
7738 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7739 {
7740 	struct sk_buff *frag;
7741 
7742 	if (!skb->data_len)
7743 		goto done;
7744 
7745 	/* Don't forget the fragments. */
7746 	skb_walk_frags(skb, frag)
7747 		sctp_skb_set_owner_r_frag(frag, sk);
7748 
7749 done:
7750 	sctp_skb_set_owner_r(skb, sk);
7751 }
7752 
7753 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7754 		    struct sctp_association *asoc)
7755 {
7756 	struct inet_sock *inet = inet_sk(sk);
7757 	struct inet_sock *newinet;
7758 
7759 	newsk->sk_type = sk->sk_type;
7760 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7761 	newsk->sk_flags = sk->sk_flags;
7762 	newsk->sk_tsflags = sk->sk_tsflags;
7763 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7764 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7765 	newsk->sk_reuse = sk->sk_reuse;
7766 
7767 	newsk->sk_shutdown = sk->sk_shutdown;
7768 	newsk->sk_destruct = sctp_destruct_sock;
7769 	newsk->sk_family = sk->sk_family;
7770 	newsk->sk_protocol = IPPROTO_SCTP;
7771 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7772 	newsk->sk_sndbuf = sk->sk_sndbuf;
7773 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7774 	newsk->sk_lingertime = sk->sk_lingertime;
7775 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7776 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7777 	newsk->sk_rxhash = sk->sk_rxhash;
7778 
7779 	newinet = inet_sk(newsk);
7780 
7781 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7782 	 * getsockname() and getpeername()
7783 	 */
7784 	newinet->inet_sport = inet->inet_sport;
7785 	newinet->inet_saddr = inet->inet_saddr;
7786 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7787 	newinet->inet_dport = htons(asoc->peer.port);
7788 	newinet->pmtudisc = inet->pmtudisc;
7789 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7790 
7791 	newinet->uc_ttl = inet->uc_ttl;
7792 	newinet->mc_loop = 1;
7793 	newinet->mc_ttl = 1;
7794 	newinet->mc_index = 0;
7795 	newinet->mc_list = NULL;
7796 
7797 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7798 		net_enable_timestamp();
7799 
7800 	security_sk_clone(sk, newsk);
7801 }
7802 
7803 static inline void sctp_copy_descendant(struct sock *sk_to,
7804 					const struct sock *sk_from)
7805 {
7806 	int ancestor_size = sizeof(struct inet_sock) +
7807 			    sizeof(struct sctp_sock) -
7808 			    offsetof(struct sctp_sock, auto_asconf_list);
7809 
7810 	if (sk_from->sk_family == PF_INET6)
7811 		ancestor_size += sizeof(struct ipv6_pinfo);
7812 
7813 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7814 }
7815 
7816 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7817  * and its messages to the newsk.
7818  */
7819 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7820 			      struct sctp_association *assoc,
7821 			      sctp_socket_type_t type)
7822 {
7823 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7824 	struct sctp_sock *newsp = sctp_sk(newsk);
7825 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7826 	struct sctp_endpoint *newep = newsp->ep;
7827 	struct sk_buff *skb, *tmp;
7828 	struct sctp_ulpevent *event;
7829 	struct sctp_bind_hashbucket *head;
7830 
7831 	/* Migrate socket buffer sizes and all the socket level options to the
7832 	 * new socket.
7833 	 */
7834 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7835 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7836 	/* Brute force copy old sctp opt. */
7837 	sctp_copy_descendant(newsk, oldsk);
7838 
7839 	/* Restore the ep value that was overwritten with the above structure
7840 	 * copy.
7841 	 */
7842 	newsp->ep = newep;
7843 	newsp->hmac = NULL;
7844 
7845 	/* Hook this new socket in to the bind_hash list. */
7846 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7847 						 inet_sk(oldsk)->inet_num)];
7848 	spin_lock_bh(&head->lock);
7849 	pp = sctp_sk(oldsk)->bind_hash;
7850 	sk_add_bind_node(newsk, &pp->owner);
7851 	sctp_sk(newsk)->bind_hash = pp;
7852 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7853 	spin_unlock_bh(&head->lock);
7854 
7855 	/* Copy the bind_addr list from the original endpoint to the new
7856 	 * endpoint so that we can handle restarts properly
7857 	 */
7858 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7859 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7860 
7861 	/* Move any messages in the old socket's receive queue that are for the
7862 	 * peeled off association to the new socket's receive queue.
7863 	 */
7864 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7865 		event = sctp_skb2event(skb);
7866 		if (event->asoc == assoc) {
7867 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7868 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7869 			sctp_skb_set_owner_r_frag(skb, newsk);
7870 		}
7871 	}
7872 
7873 	/* Clean up any messages pending delivery due to partial
7874 	 * delivery.   Three cases:
7875 	 * 1) No partial deliver;  no work.
7876 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7877 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7878 	 */
7879 	skb_queue_head_init(&newsp->pd_lobby);
7880 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7881 
7882 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7883 		struct sk_buff_head *queue;
7884 
7885 		/* Decide which queue to move pd_lobby skbs to. */
7886 		if (assoc->ulpq.pd_mode) {
7887 			queue = &newsp->pd_lobby;
7888 		} else
7889 			queue = &newsk->sk_receive_queue;
7890 
7891 		/* Walk through the pd_lobby, looking for skbs that
7892 		 * need moved to the new socket.
7893 		 */
7894 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7895 			event = sctp_skb2event(skb);
7896 			if (event->asoc == assoc) {
7897 				__skb_unlink(skb, &oldsp->pd_lobby);
7898 				__skb_queue_tail(queue, skb);
7899 				sctp_skb_set_owner_r_frag(skb, newsk);
7900 			}
7901 		}
7902 
7903 		/* Clear up any skbs waiting for the partial
7904 		 * delivery to finish.
7905 		 */
7906 		if (assoc->ulpq.pd_mode)
7907 			sctp_clear_pd(oldsk, NULL);
7908 
7909 	}
7910 
7911 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7912 		sctp_skb_set_owner_r_frag(skb, newsk);
7913 
7914 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7915 		sctp_skb_set_owner_r_frag(skb, newsk);
7916 
7917 	/* Set the type of socket to indicate that it is peeled off from the
7918 	 * original UDP-style socket or created with the accept() call on a
7919 	 * TCP-style socket..
7920 	 */
7921 	newsp->type = type;
7922 
7923 	/* Mark the new socket "in-use" by the user so that any packets
7924 	 * that may arrive on the association after we've moved it are
7925 	 * queued to the backlog.  This prevents a potential race between
7926 	 * backlog processing on the old socket and new-packet processing
7927 	 * on the new socket.
7928 	 *
7929 	 * The caller has just allocated newsk so we can guarantee that other
7930 	 * paths won't try to lock it and then oldsk.
7931 	 */
7932 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7933 	sctp_assoc_migrate(assoc, newsk);
7934 
7935 	/* If the association on the newsk is already closed before accept()
7936 	 * is called, set RCV_SHUTDOWN flag.
7937 	 */
7938 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7939 		newsk->sk_state = SCTP_SS_CLOSED;
7940 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7941 	} else {
7942 		newsk->sk_state = SCTP_SS_ESTABLISHED;
7943 	}
7944 
7945 	release_sock(newsk);
7946 }
7947 
7948 
7949 /* This proto struct describes the ULP interface for SCTP.  */
7950 struct proto sctp_prot = {
7951 	.name        =	"SCTP",
7952 	.owner       =	THIS_MODULE,
7953 	.close       =	sctp_close,
7954 	.connect     =	sctp_connect,
7955 	.disconnect  =	sctp_disconnect,
7956 	.accept      =	sctp_accept,
7957 	.ioctl       =	sctp_ioctl,
7958 	.init        =	sctp_init_sock,
7959 	.destroy     =	sctp_destroy_sock,
7960 	.shutdown    =	sctp_shutdown,
7961 	.setsockopt  =	sctp_setsockopt,
7962 	.getsockopt  =	sctp_getsockopt,
7963 	.sendmsg     =	sctp_sendmsg,
7964 	.recvmsg     =	sctp_recvmsg,
7965 	.bind        =	sctp_bind,
7966 	.backlog_rcv =	sctp_backlog_rcv,
7967 	.hash        =	sctp_hash,
7968 	.unhash      =	sctp_unhash,
7969 	.get_port    =	sctp_get_port,
7970 	.obj_size    =  sizeof(struct sctp_sock),
7971 	.sysctl_mem  =  sysctl_sctp_mem,
7972 	.sysctl_rmem =  sysctl_sctp_rmem,
7973 	.sysctl_wmem =  sysctl_sctp_wmem,
7974 	.memory_pressure = &sctp_memory_pressure,
7975 	.enter_memory_pressure = sctp_enter_memory_pressure,
7976 	.memory_allocated = &sctp_memory_allocated,
7977 	.sockets_allocated = &sctp_sockets_allocated,
7978 };
7979 
7980 #if IS_ENABLED(CONFIG_IPV6)
7981 
7982 #include <net/transp_v6.h>
7983 static void sctp_v6_destroy_sock(struct sock *sk)
7984 {
7985 	sctp_destroy_sock(sk);
7986 	inet6_destroy_sock(sk);
7987 }
7988 
7989 struct proto sctpv6_prot = {
7990 	.name		= "SCTPv6",
7991 	.owner		= THIS_MODULE,
7992 	.close		= sctp_close,
7993 	.connect	= sctp_connect,
7994 	.disconnect	= sctp_disconnect,
7995 	.accept		= sctp_accept,
7996 	.ioctl		= sctp_ioctl,
7997 	.init		= sctp_init_sock,
7998 	.destroy	= sctp_v6_destroy_sock,
7999 	.shutdown	= sctp_shutdown,
8000 	.setsockopt	= sctp_setsockopt,
8001 	.getsockopt	= sctp_getsockopt,
8002 	.sendmsg	= sctp_sendmsg,
8003 	.recvmsg	= sctp_recvmsg,
8004 	.bind		= sctp_bind,
8005 	.backlog_rcv	= sctp_backlog_rcv,
8006 	.hash		= sctp_hash,
8007 	.unhash		= sctp_unhash,
8008 	.get_port	= sctp_get_port,
8009 	.obj_size	= sizeof(struct sctp6_sock),
8010 	.sysctl_mem	= sysctl_sctp_mem,
8011 	.sysctl_rmem	= sysctl_sctp_rmem,
8012 	.sysctl_wmem	= sysctl_sctp_wmem,
8013 	.memory_pressure = &sctp_memory_pressure,
8014 	.enter_memory_pressure = sctp_enter_memory_pressure,
8015 	.memory_allocated = &sctp_memory_allocated,
8016 	.sockets_allocated = &sctp_sockets_allocated,
8017 };
8018 #endif /* IS_ENABLED(CONFIG_IPV6) */
8019