1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@austin.ibm.com> 40 * Hui Huang <hui.huang@nokia.com> 41 * Dajiang Zhang <dajiang.zhang@nokia.com> 42 * Daisy Chang <daisyc@us.ibm.com> 43 * Sridhar Samudrala <sri@us.ibm.com> 44 * Ardelle Fan <ardelle.fan@intel.com> 45 * 46 * Any bugs reported given to us we will try to fix... any fixes shared will 47 * be incorporated into the next SCTP release. 48 */ 49 50 #include <linux/skbuff.h> 51 #include <linux/types.h> 52 #include <linux/socket.h> 53 #include <linux/ip.h> 54 #include <linux/gfp.h> 55 #include <net/sock.h> 56 #include <net/sctp/sctp.h> 57 #include <net/sctp/sm.h> 58 59 static int sctp_cmd_interpreter(sctp_event_t event_type, 60 sctp_subtype_t subtype, 61 sctp_state_t state, 62 struct sctp_endpoint *ep, 63 struct sctp_association *asoc, 64 void *event_arg, 65 sctp_disposition_t status, 66 sctp_cmd_seq_t *commands, 67 gfp_t gfp); 68 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 69 sctp_state_t state, 70 struct sctp_endpoint *ep, 71 struct sctp_association *asoc, 72 void *event_arg, 73 sctp_disposition_t status, 74 sctp_cmd_seq_t *commands, 75 gfp_t gfp); 76 77 /******************************************************************** 78 * Helper functions 79 ********************************************************************/ 80 81 /* A helper function for delayed processing of INET ECN CE bit. */ 82 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 83 __u32 lowest_tsn) 84 { 85 /* Save the TSN away for comparison when we receive CWR */ 86 87 asoc->last_ecne_tsn = lowest_tsn; 88 asoc->need_ecne = 1; 89 } 90 91 /* Helper function for delayed processing of SCTP ECNE chunk. */ 92 /* RFC 2960 Appendix A 93 * 94 * RFC 2481 details a specific bit for a sender to send in 95 * the header of its next outbound TCP segment to indicate to 96 * its peer that it has reduced its congestion window. This 97 * is termed the CWR bit. For SCTP the same indication is made 98 * by including the CWR chunk. This chunk contains one data 99 * element, i.e. the TSN number that was sent in the ECNE chunk. 100 * This element represents the lowest TSN number in the datagram 101 * that was originally marked with the CE bit. 102 */ 103 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 104 __u32 lowest_tsn, 105 struct sctp_chunk *chunk) 106 { 107 struct sctp_chunk *repl; 108 109 /* Our previously transmitted packet ran into some congestion 110 * so we should take action by reducing cwnd and ssthresh 111 * and then ACK our peer that we we've done so by 112 * sending a CWR. 113 */ 114 115 /* First, try to determine if we want to actually lower 116 * our cwnd variables. Only lower them if the ECNE looks more 117 * recent than the last response. 118 */ 119 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 120 struct sctp_transport *transport; 121 122 /* Find which transport's congestion variables 123 * need to be adjusted. 124 */ 125 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 126 127 /* Update the congestion variables. */ 128 if (transport) 129 sctp_transport_lower_cwnd(transport, 130 SCTP_LOWER_CWND_ECNE); 131 asoc->last_cwr_tsn = lowest_tsn; 132 } 133 134 /* Always try to quiet the other end. In case of lost CWR, 135 * resend last_cwr_tsn. 136 */ 137 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 138 139 /* If we run out of memory, it will look like a lost CWR. We'll 140 * get back in sync eventually. 141 */ 142 return repl; 143 } 144 145 /* Helper function to do delayed processing of ECN CWR chunk. */ 146 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 147 __u32 lowest_tsn) 148 { 149 /* Turn off ECNE getting auto-prepended to every outgoing 150 * packet 151 */ 152 asoc->need_ecne = 0; 153 } 154 155 /* Generate SACK if necessary. We call this at the end of a packet. */ 156 static int sctp_gen_sack(struct sctp_association *asoc, int force, 157 sctp_cmd_seq_t *commands) 158 { 159 __u32 ctsn, max_tsn_seen; 160 struct sctp_chunk *sack; 161 struct sctp_transport *trans = asoc->peer.last_data_from; 162 int error = 0; 163 164 if (force || 165 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 166 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 167 asoc->peer.sack_needed = 1; 168 169 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 170 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 171 172 /* From 12.2 Parameters necessary per association (i.e. the TCB): 173 * 174 * Ack State : This flag indicates if the next received packet 175 * : is to be responded to with a SACK. ... 176 * : When DATA chunks are out of order, SACK's 177 * : are not delayed (see Section 6). 178 * 179 * [This is actually not mentioned in Section 6, but we 180 * implement it here anyway. --piggy] 181 */ 182 if (max_tsn_seen != ctsn) 183 asoc->peer.sack_needed = 1; 184 185 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 186 * 187 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 188 * an acknowledgement SHOULD be generated for at least every 189 * second packet (not every second DATA chunk) received, and 190 * SHOULD be generated within 200 ms of the arrival of any 191 * unacknowledged DATA chunk. ... 192 */ 193 if (!asoc->peer.sack_needed) { 194 asoc->peer.sack_cnt++; 195 196 /* Set the SACK delay timeout based on the 197 * SACK delay for the last transport 198 * data was received from, or the default 199 * for the association. 200 */ 201 if (trans) { 202 /* We will need a SACK for the next packet. */ 203 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 204 asoc->peer.sack_needed = 1; 205 206 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 207 trans->sackdelay; 208 } else { 209 /* We will need a SACK for the next packet. */ 210 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 211 asoc->peer.sack_needed = 1; 212 213 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 214 asoc->sackdelay; 215 } 216 217 /* Restart the SACK timer. */ 218 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 219 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 220 } else { 221 asoc->a_rwnd = asoc->rwnd; 222 sack = sctp_make_sack(asoc); 223 if (!sack) 224 goto nomem; 225 226 asoc->peer.sack_needed = 0; 227 asoc->peer.sack_cnt = 0; 228 229 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 230 231 /* Stop the SACK timer. */ 232 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 233 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 234 } 235 236 return error; 237 nomem: 238 error = -ENOMEM; 239 return error; 240 } 241 242 /* When the T3-RTX timer expires, it calls this function to create the 243 * relevant state machine event. 244 */ 245 void sctp_generate_t3_rtx_event(unsigned long peer) 246 { 247 int error; 248 struct sctp_transport *transport = (struct sctp_transport *) peer; 249 struct sctp_association *asoc = transport->asoc; 250 251 /* Check whether a task is in the sock. */ 252 253 sctp_bh_lock_sock(asoc->base.sk); 254 if (sock_owned_by_user(asoc->base.sk)) { 255 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 256 257 /* Try again later. */ 258 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 259 sctp_transport_hold(transport); 260 goto out_unlock; 261 } 262 263 /* Is this transport really dead and just waiting around for 264 * the timer to let go of the reference? 265 */ 266 if (transport->dead) 267 goto out_unlock; 268 269 /* Run through the state machine. */ 270 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 271 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 272 asoc->state, 273 asoc->ep, asoc, 274 transport, GFP_ATOMIC); 275 276 if (error) 277 asoc->base.sk->sk_err = -error; 278 279 out_unlock: 280 sctp_bh_unlock_sock(asoc->base.sk); 281 sctp_transport_put(transport); 282 } 283 284 /* This is a sa interface for producing timeout events. It works 285 * for timeouts which use the association as their parameter. 286 */ 287 static void sctp_generate_timeout_event(struct sctp_association *asoc, 288 sctp_event_timeout_t timeout_type) 289 { 290 int error = 0; 291 292 sctp_bh_lock_sock(asoc->base.sk); 293 if (sock_owned_by_user(asoc->base.sk)) { 294 SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", 295 __func__, 296 timeout_type); 297 298 /* Try again later. */ 299 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 300 sctp_association_hold(asoc); 301 goto out_unlock; 302 } 303 304 /* Is this association really dead and just waiting around for 305 * the timer to let go of the reference? 306 */ 307 if (asoc->base.dead) 308 goto out_unlock; 309 310 /* Run through the state machine. */ 311 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 312 SCTP_ST_TIMEOUT(timeout_type), 313 asoc->state, asoc->ep, asoc, 314 (void *)timeout_type, GFP_ATOMIC); 315 316 if (error) 317 asoc->base.sk->sk_err = -error; 318 319 out_unlock: 320 sctp_bh_unlock_sock(asoc->base.sk); 321 sctp_association_put(asoc); 322 } 323 324 static void sctp_generate_t1_cookie_event(unsigned long data) 325 { 326 struct sctp_association *asoc = (struct sctp_association *) data; 327 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 328 } 329 330 static void sctp_generate_t1_init_event(unsigned long data) 331 { 332 struct sctp_association *asoc = (struct sctp_association *) data; 333 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 334 } 335 336 static void sctp_generate_t2_shutdown_event(unsigned long data) 337 { 338 struct sctp_association *asoc = (struct sctp_association *) data; 339 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 340 } 341 342 static void sctp_generate_t4_rto_event(unsigned long data) 343 { 344 struct sctp_association *asoc = (struct sctp_association *) data; 345 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 346 } 347 348 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 349 { 350 struct sctp_association *asoc = (struct sctp_association *)data; 351 sctp_generate_timeout_event(asoc, 352 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 353 354 } /* sctp_generate_t5_shutdown_guard_event() */ 355 356 static void sctp_generate_autoclose_event(unsigned long data) 357 { 358 struct sctp_association *asoc = (struct sctp_association *) data; 359 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 360 } 361 362 /* Generate a heart beat event. If the sock is busy, reschedule. Make 363 * sure that the transport is still valid. 364 */ 365 void sctp_generate_heartbeat_event(unsigned long data) 366 { 367 int error = 0; 368 struct sctp_transport *transport = (struct sctp_transport *) data; 369 struct sctp_association *asoc = transport->asoc; 370 371 sctp_bh_lock_sock(asoc->base.sk); 372 if (sock_owned_by_user(asoc->base.sk)) { 373 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 374 375 /* Try again later. */ 376 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 377 sctp_transport_hold(transport); 378 goto out_unlock; 379 } 380 381 /* Is this structure just waiting around for us to actually 382 * get destroyed? 383 */ 384 if (transport->dead) 385 goto out_unlock; 386 387 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 388 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 389 asoc->state, asoc->ep, asoc, 390 transport, GFP_ATOMIC); 391 392 if (error) 393 asoc->base.sk->sk_err = -error; 394 395 out_unlock: 396 sctp_bh_unlock_sock(asoc->base.sk); 397 sctp_transport_put(transport); 398 } 399 400 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger 401 * the correct state machine transition that will close the association. 402 */ 403 void sctp_generate_proto_unreach_event(unsigned long data) 404 { 405 struct sctp_transport *transport = (struct sctp_transport *) data; 406 struct sctp_association *asoc = transport->asoc; 407 408 sctp_bh_lock_sock(asoc->base.sk); 409 if (sock_owned_by_user(asoc->base.sk)) { 410 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 411 412 /* Try again later. */ 413 if (!mod_timer(&transport->proto_unreach_timer, 414 jiffies + (HZ/20))) 415 sctp_association_hold(asoc); 416 goto out_unlock; 417 } 418 419 /* Is this structure just waiting around for us to actually 420 * get destroyed? 421 */ 422 if (asoc->base.dead) 423 goto out_unlock; 424 425 sctp_do_sm(SCTP_EVENT_T_OTHER, 426 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 427 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); 428 429 out_unlock: 430 sctp_bh_unlock_sock(asoc->base.sk); 431 sctp_association_put(asoc); 432 } 433 434 435 /* Inject a SACK Timeout event into the state machine. */ 436 static void sctp_generate_sack_event(unsigned long data) 437 { 438 struct sctp_association *asoc = (struct sctp_association *) data; 439 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 440 } 441 442 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 443 NULL, 444 sctp_generate_t1_cookie_event, 445 sctp_generate_t1_init_event, 446 sctp_generate_t2_shutdown_event, 447 NULL, 448 sctp_generate_t4_rto_event, 449 sctp_generate_t5_shutdown_guard_event, 450 NULL, 451 sctp_generate_sack_event, 452 sctp_generate_autoclose_event, 453 }; 454 455 456 /* RFC 2960 8.2 Path Failure Detection 457 * 458 * When its peer endpoint is multi-homed, an endpoint should keep a 459 * error counter for each of the destination transport addresses of the 460 * peer endpoint. 461 * 462 * Each time the T3-rtx timer expires on any address, or when a 463 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 464 * the error counter of that destination address will be incremented. 465 * When the value in the error counter exceeds the protocol parameter 466 * 'Path.Max.Retrans' of that destination address, the endpoint should 467 * mark the destination transport address as inactive, and a 468 * notification SHOULD be sent to the upper layer. 469 * 470 */ 471 static void sctp_do_8_2_transport_strike(struct sctp_association *asoc, 472 struct sctp_transport *transport, 473 int is_hb) 474 { 475 /* The check for association's overall error counter exceeding the 476 * threshold is done in the state function. 477 */ 478 /* We are here due to a timer expiration. If the timer was 479 * not a HEARTBEAT, then normal error tracking is done. 480 * If the timer was a heartbeat, we only increment error counts 481 * when we already have an outstanding HEARTBEAT that has not 482 * been acknowledged. 483 * Additionaly, some tranport states inhibit error increments. 484 */ 485 if (!is_hb) { 486 asoc->overall_error_count++; 487 if (transport->state != SCTP_INACTIVE) 488 transport->error_count++; 489 } else if (transport->hb_sent) { 490 if (transport->state != SCTP_UNCONFIRMED) 491 asoc->overall_error_count++; 492 if (transport->state != SCTP_INACTIVE) 493 transport->error_count++; 494 } 495 496 if (transport->state != SCTP_INACTIVE && 497 (transport->error_count > transport->pathmaxrxt)) { 498 SCTP_DEBUG_PRINTK_IPADDR("transport_strike:association %p", 499 " transport IP: port:%d failed.\n", 500 asoc, 501 (&transport->ipaddr), 502 ntohs(transport->ipaddr.v4.sin_port)); 503 sctp_assoc_control_transport(asoc, transport, 504 SCTP_TRANSPORT_DOWN, 505 SCTP_FAILED_THRESHOLD); 506 } 507 508 /* E2) For the destination address for which the timer 509 * expires, set RTO <- RTO * 2 ("back off the timer"). The 510 * maximum value discussed in rule C7 above (RTO.max) may be 511 * used to provide an upper bound to this doubling operation. 512 * 513 * Special Case: the first HB doesn't trigger exponential backoff. 514 * The first unacknowledged HB triggers it. We do this with a flag 515 * that indicates that we have an outstanding HB. 516 */ 517 if (!is_hb || transport->hb_sent) { 518 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 519 } 520 } 521 522 /* Worker routine to handle INIT command failure. */ 523 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 524 struct sctp_association *asoc, 525 unsigned error) 526 { 527 struct sctp_ulpevent *event; 528 529 event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, 530 (__u16)error, 0, 0, NULL, 531 GFP_ATOMIC); 532 533 if (event) 534 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 535 SCTP_ULPEVENT(event)); 536 537 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 538 SCTP_STATE(SCTP_STATE_CLOSED)); 539 540 /* SEND_FAILED sent later when cleaning up the association. */ 541 asoc->outqueue.error = error; 542 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 543 } 544 545 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 546 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 547 struct sctp_association *asoc, 548 sctp_event_t event_type, 549 sctp_subtype_t subtype, 550 struct sctp_chunk *chunk, 551 unsigned error) 552 { 553 struct sctp_ulpevent *event; 554 555 /* Cancel any partial delivery in progress. */ 556 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 557 558 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 559 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 560 (__u16)error, 0, 0, chunk, 561 GFP_ATOMIC); 562 else 563 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 564 (__u16)error, 0, 0, NULL, 565 GFP_ATOMIC); 566 if (event) 567 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 568 SCTP_ULPEVENT(event)); 569 570 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 571 SCTP_STATE(SCTP_STATE_CLOSED)); 572 573 /* SEND_FAILED sent later when cleaning up the association. */ 574 asoc->outqueue.error = error; 575 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 576 } 577 578 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 579 * inside the cookie. In reality, this is only used for INIT-ACK processing 580 * since all other cases use "temporary" associations and can do all 581 * their work in statefuns directly. 582 */ 583 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 584 struct sctp_association *asoc, 585 struct sctp_chunk *chunk, 586 sctp_init_chunk_t *peer_init, 587 gfp_t gfp) 588 { 589 int error; 590 591 /* We only process the init as a sideeffect in a single 592 * case. This is when we process the INIT-ACK. If we 593 * fail during INIT processing (due to malloc problems), 594 * just return the error and stop processing the stack. 595 */ 596 if (!sctp_process_init(asoc, chunk->chunk_hdr->type, 597 sctp_source(chunk), peer_init, gfp)) 598 error = -ENOMEM; 599 else 600 error = 0; 601 602 return error; 603 } 604 605 /* Helper function to break out starting up of heartbeat timers. */ 606 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 607 struct sctp_association *asoc) 608 { 609 struct sctp_transport *t; 610 611 /* Start a heartbeat timer for each transport on the association. 612 * hold a reference on the transport to make sure none of 613 * the needed data structures go away. 614 */ 615 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 616 617 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 618 sctp_transport_hold(t); 619 } 620 } 621 622 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 623 struct sctp_association *asoc) 624 { 625 struct sctp_transport *t; 626 627 /* Stop all heartbeat timers. */ 628 629 list_for_each_entry(t, &asoc->peer.transport_addr_list, 630 transports) { 631 if (del_timer(&t->hb_timer)) 632 sctp_transport_put(t); 633 } 634 } 635 636 /* Helper function to stop any pending T3-RTX timers */ 637 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 638 struct sctp_association *asoc) 639 { 640 struct sctp_transport *t; 641 642 list_for_each_entry(t, &asoc->peer.transport_addr_list, 643 transports) { 644 if (timer_pending(&t->T3_rtx_timer) && 645 del_timer(&t->T3_rtx_timer)) { 646 sctp_transport_put(t); 647 } 648 } 649 } 650 651 652 /* Helper function to update the heartbeat timer. */ 653 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 654 struct sctp_transport *t) 655 { 656 /* Update the heartbeat timer. */ 657 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 658 sctp_transport_hold(t); 659 } 660 661 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 662 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 663 struct sctp_association *asoc, 664 struct sctp_transport *t, 665 struct sctp_chunk *chunk) 666 { 667 sctp_sender_hb_info_t *hbinfo; 668 669 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 670 * HEARTBEAT should clear the error counter of the destination 671 * transport address to which the HEARTBEAT was sent. 672 * The association's overall error count is also cleared. 673 */ 674 t->error_count = 0; 675 t->asoc->overall_error_count = 0; 676 677 /* Clear the hb_sent flag to signal that we had a good 678 * acknowledgement. 679 */ 680 t->hb_sent = 0; 681 682 /* Mark the destination transport address as active if it is not so 683 * marked. 684 */ 685 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) 686 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 687 SCTP_HEARTBEAT_SUCCESS); 688 689 /* The receiver of the HEARTBEAT ACK should also perform an 690 * RTT measurement for that destination transport address 691 * using the time value carried in the HEARTBEAT ACK chunk. 692 * If the transport's rto_pending variable has been cleared, 693 * it was most likely due to a retransmit. However, we want 694 * to re-enable it to properly update the rto. 695 */ 696 if (t->rto_pending == 0) 697 t->rto_pending = 1; 698 699 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 700 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 701 702 /* Update the heartbeat timer. */ 703 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 704 sctp_transport_hold(t); 705 } 706 707 708 /* Helper function to process the process SACK command. */ 709 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 710 struct sctp_association *asoc, 711 struct sctp_sackhdr *sackh) 712 { 713 int err = 0; 714 715 if (sctp_outq_sack(&asoc->outqueue, sackh)) { 716 /* There are no more TSNs awaiting SACK. */ 717 err = sctp_do_sm(SCTP_EVENT_T_OTHER, 718 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 719 asoc->state, asoc->ep, asoc, NULL, 720 GFP_ATOMIC); 721 } 722 723 return err; 724 } 725 726 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 727 * the transport for a shutdown chunk. 728 */ 729 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 730 struct sctp_association *asoc, 731 struct sctp_chunk *chunk) 732 { 733 struct sctp_transport *t; 734 735 if (chunk->transport) 736 t = chunk->transport; 737 else { 738 t = sctp_assoc_choose_alter_transport(asoc, 739 asoc->shutdown_last_sent_to); 740 chunk->transport = t; 741 } 742 asoc->shutdown_last_sent_to = t; 743 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 744 } 745 746 /* Helper function to change the state of an association. */ 747 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 748 struct sctp_association *asoc, 749 sctp_state_t state) 750 { 751 struct sock *sk = asoc->base.sk; 752 753 asoc->state = state; 754 755 SCTP_DEBUG_PRINTK("sctp_cmd_new_state: asoc %p[%s]\n", 756 asoc, sctp_state_tbl[state]); 757 758 if (sctp_style(sk, TCP)) { 759 /* Change the sk->sk_state of a TCP-style socket that has 760 * successfully completed a connect() call. 761 */ 762 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 763 sk->sk_state = SCTP_SS_ESTABLISHED; 764 765 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 766 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 767 sctp_sstate(sk, ESTABLISHED)) 768 sk->sk_shutdown |= RCV_SHUTDOWN; 769 } 770 771 if (sctp_state(asoc, COOKIE_WAIT)) { 772 /* Reset init timeouts since they may have been 773 * increased due to timer expirations. 774 */ 775 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 776 asoc->rto_initial; 777 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 778 asoc->rto_initial; 779 } 780 781 if (sctp_state(asoc, ESTABLISHED) || 782 sctp_state(asoc, CLOSED) || 783 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 784 /* Wake up any processes waiting in the asoc's wait queue in 785 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 786 */ 787 if (waitqueue_active(&asoc->wait)) 788 wake_up_interruptible(&asoc->wait); 789 790 /* Wake up any processes waiting in the sk's sleep queue of 791 * a TCP-style or UDP-style peeled-off socket in 792 * sctp_wait_for_accept() or sctp_wait_for_packet(). 793 * For a UDP-style socket, the waiters are woken up by the 794 * notifications. 795 */ 796 if (!sctp_style(sk, UDP)) 797 sk->sk_state_change(sk); 798 } 799 } 800 801 /* Helper function to delete an association. */ 802 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 803 struct sctp_association *asoc) 804 { 805 struct sock *sk = asoc->base.sk; 806 807 /* If it is a non-temporary association belonging to a TCP-style 808 * listening socket that is not closed, do not free it so that accept() 809 * can pick it up later. 810 */ 811 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 812 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 813 return; 814 815 sctp_unhash_established(asoc); 816 sctp_association_free(asoc); 817 } 818 819 /* 820 * ADDIP Section 4.1 ASCONF Chunk Procedures 821 * A4) Start a T-4 RTO timer, using the RTO value of the selected 822 * destination address (we use active path instead of primary path just 823 * because primary path may be inactive. 824 */ 825 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 826 struct sctp_association *asoc, 827 struct sctp_chunk *chunk) 828 { 829 struct sctp_transport *t; 830 831 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 832 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 833 chunk->transport = t; 834 } 835 836 /* Process an incoming Operation Error Chunk. */ 837 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 838 struct sctp_association *asoc, 839 struct sctp_chunk *chunk) 840 { 841 struct sctp_errhdr *err_hdr; 842 struct sctp_ulpevent *ev; 843 844 while (chunk->chunk_end > chunk->skb->data) { 845 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 846 847 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 848 GFP_ATOMIC); 849 if (!ev) 850 return; 851 852 sctp_ulpq_tail_event(&asoc->ulpq, ev); 853 854 switch (err_hdr->cause) { 855 case SCTP_ERROR_UNKNOWN_CHUNK: 856 { 857 sctp_chunkhdr_t *unk_chunk_hdr; 858 859 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 860 switch (unk_chunk_hdr->type) { 861 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 862 * an ERROR chunk reporting that it did not recognized 863 * the ASCONF chunk type, the sender of the ASCONF MUST 864 * NOT send any further ASCONF chunks and MUST stop its 865 * T-4 timer. 866 */ 867 case SCTP_CID_ASCONF: 868 if (asoc->peer.asconf_capable == 0) 869 break; 870 871 asoc->peer.asconf_capable = 0; 872 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 873 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 874 break; 875 default: 876 break; 877 } 878 break; 879 } 880 default: 881 break; 882 } 883 } 884 } 885 886 /* Process variable FWDTSN chunk information. */ 887 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 888 struct sctp_chunk *chunk) 889 { 890 struct sctp_fwdtsn_skip *skip; 891 /* Walk through all the skipped SSNs */ 892 sctp_walk_fwdtsn(skip, chunk) { 893 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 894 } 895 } 896 897 /* Helper function to remove the association non-primary peer 898 * transports. 899 */ 900 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 901 { 902 struct sctp_transport *t; 903 struct list_head *pos; 904 struct list_head *temp; 905 906 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 907 t = list_entry(pos, struct sctp_transport, transports); 908 if (!sctp_cmp_addr_exact(&t->ipaddr, 909 &asoc->peer.primary_addr)) { 910 sctp_assoc_del_peer(asoc, &t->ipaddr); 911 } 912 } 913 } 914 915 /* Helper function to set sk_err on a 1-1 style socket. */ 916 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 917 { 918 struct sock *sk = asoc->base.sk; 919 920 if (!sctp_style(sk, UDP)) 921 sk->sk_err = error; 922 } 923 924 /* Helper function to generate an association change event */ 925 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 926 struct sctp_association *asoc, 927 u8 state) 928 { 929 struct sctp_ulpevent *ev; 930 931 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 932 asoc->c.sinit_num_ostreams, 933 asoc->c.sinit_max_instreams, 934 NULL, GFP_ATOMIC); 935 if (ev) 936 sctp_ulpq_tail_event(&asoc->ulpq, ev); 937 } 938 939 /* Helper function to generate an adaptation indication event */ 940 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 941 struct sctp_association *asoc) 942 { 943 struct sctp_ulpevent *ev; 944 945 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 946 947 if (ev) 948 sctp_ulpq_tail_event(&asoc->ulpq, ev); 949 } 950 951 952 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 953 sctp_event_timeout_t timer, 954 char *name) 955 { 956 struct sctp_transport *t; 957 958 t = asoc->init_last_sent_to; 959 asoc->init_err_counter++; 960 961 if (t->init_sent_count > (asoc->init_cycle + 1)) { 962 asoc->timeouts[timer] *= 2; 963 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 964 asoc->timeouts[timer] = asoc->max_init_timeo; 965 } 966 asoc->init_cycle++; 967 SCTP_DEBUG_PRINTK( 968 "T1 %s Timeout adjustment" 969 " init_err_counter: %d" 970 " cycle: %d" 971 " timeout: %ld\n", 972 name, 973 asoc->init_err_counter, 974 asoc->init_cycle, 975 asoc->timeouts[timer]); 976 } 977 978 } 979 980 /* Send the whole message, chunk by chunk, to the outqueue. 981 * This way the whole message is queued up and bundling if 982 * encouraged for small fragments. 983 */ 984 static int sctp_cmd_send_msg(struct sctp_association *asoc, 985 struct sctp_datamsg *msg) 986 { 987 struct sctp_chunk *chunk; 988 int error = 0; 989 990 list_for_each_entry(chunk, &msg->chunks, frag_list) { 991 error = sctp_outq_tail(&asoc->outqueue, chunk); 992 if (error) 993 break; 994 } 995 996 return error; 997 } 998 999 1000 /* Sent the next ASCONF packet currently stored in the association. 1001 * This happens after the ASCONF_ACK was succeffully processed. 1002 */ 1003 static void sctp_cmd_send_asconf(struct sctp_association *asoc) 1004 { 1005 /* Send the next asconf chunk from the addip chunk 1006 * queue. 1007 */ 1008 if (!list_empty(&asoc->addip_chunk_list)) { 1009 struct list_head *entry = asoc->addip_chunk_list.next; 1010 struct sctp_chunk *asconf = list_entry(entry, 1011 struct sctp_chunk, list); 1012 list_del_init(entry); 1013 1014 /* Hold the chunk until an ASCONF_ACK is received. */ 1015 sctp_chunk_hold(asconf); 1016 if (sctp_primitive_ASCONF(asoc, asconf)) 1017 sctp_chunk_free(asconf); 1018 else 1019 asoc->addip_last_asconf = asconf; 1020 } 1021 } 1022 1023 1024 /* These three macros allow us to pull the debugging code out of the 1025 * main flow of sctp_do_sm() to keep attention focused on the real 1026 * functionality there. 1027 */ 1028 #define DEBUG_PRE \ 1029 SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \ 1030 "ep %p, %s, %s, asoc %p[%s], %s\n", \ 1031 ep, sctp_evttype_tbl[event_type], \ 1032 (*debug_fn)(subtype), asoc, \ 1033 sctp_state_tbl[state], state_fn->name) 1034 1035 #define DEBUG_POST \ 1036 SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ 1037 "asoc %p, status: %s\n", \ 1038 asoc, sctp_status_tbl[status]) 1039 1040 #define DEBUG_POST_SFX \ 1041 SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ 1042 error, asoc, \ 1043 sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 1044 sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED]) 1045 1046 /* 1047 * This is the master state machine processing function. 1048 * 1049 * If you want to understand all of lksctp, this is a 1050 * good place to start. 1051 */ 1052 int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, 1053 sctp_state_t state, 1054 struct sctp_endpoint *ep, 1055 struct sctp_association *asoc, 1056 void *event_arg, 1057 gfp_t gfp) 1058 { 1059 sctp_cmd_seq_t commands; 1060 const sctp_sm_table_entry_t *state_fn; 1061 sctp_disposition_t status; 1062 int error = 0; 1063 typedef const char *(printfn_t)(sctp_subtype_t); 1064 1065 static printfn_t *table[] = { 1066 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1067 }; 1068 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1069 1070 /* Look up the state function, run it, and then process the 1071 * side effects. These three steps are the heart of lksctp. 1072 */ 1073 state_fn = sctp_sm_lookup_event(event_type, state, subtype); 1074 1075 sctp_init_cmd_seq(&commands); 1076 1077 DEBUG_PRE; 1078 status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); 1079 DEBUG_POST; 1080 1081 error = sctp_side_effects(event_type, subtype, state, 1082 ep, asoc, event_arg, status, 1083 &commands, gfp); 1084 DEBUG_POST_SFX; 1085 1086 return error; 1087 } 1088 1089 #undef DEBUG_PRE 1090 #undef DEBUG_POST 1091 1092 /***************************************************************** 1093 * This the master state function side effect processing function. 1094 *****************************************************************/ 1095 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1096 sctp_state_t state, 1097 struct sctp_endpoint *ep, 1098 struct sctp_association *asoc, 1099 void *event_arg, 1100 sctp_disposition_t status, 1101 sctp_cmd_seq_t *commands, 1102 gfp_t gfp) 1103 { 1104 int error; 1105 1106 /* FIXME - Most of the dispositions left today would be categorized 1107 * as "exceptional" dispositions. For those dispositions, it 1108 * may not be proper to run through any of the commands at all. 1109 * For example, the command interpreter might be run only with 1110 * disposition SCTP_DISPOSITION_CONSUME. 1111 */ 1112 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1113 ep, asoc, 1114 event_arg, status, 1115 commands, gfp))) 1116 goto bail; 1117 1118 switch (status) { 1119 case SCTP_DISPOSITION_DISCARD: 1120 SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, " 1121 "event_type %d, event_id %d\n", 1122 state, event_type, subtype.chunk); 1123 break; 1124 1125 case SCTP_DISPOSITION_NOMEM: 1126 /* We ran out of memory, so we need to discard this 1127 * packet. 1128 */ 1129 /* BUG--we should now recover some memory, probably by 1130 * reneging... 1131 */ 1132 error = -ENOMEM; 1133 break; 1134 1135 case SCTP_DISPOSITION_DELETE_TCB: 1136 /* This should now be a command. */ 1137 break; 1138 1139 case SCTP_DISPOSITION_CONSUME: 1140 case SCTP_DISPOSITION_ABORT: 1141 /* 1142 * We should no longer have much work to do here as the 1143 * real work has been done as explicit commands above. 1144 */ 1145 break; 1146 1147 case SCTP_DISPOSITION_VIOLATION: 1148 if (net_ratelimit()) 1149 printk(KERN_ERR "sctp protocol violation state %d " 1150 "chunkid %d\n", state, subtype.chunk); 1151 break; 1152 1153 case SCTP_DISPOSITION_NOT_IMPL: 1154 printk(KERN_WARNING "sctp unimplemented feature in state %d, " 1155 "event_type %d, event_id %d\n", 1156 state, event_type, subtype.chunk); 1157 break; 1158 1159 case SCTP_DISPOSITION_BUG: 1160 printk(KERN_ERR "sctp bug in state %d, " 1161 "event_type %d, event_id %d\n", 1162 state, event_type, subtype.chunk); 1163 BUG(); 1164 break; 1165 1166 default: 1167 printk(KERN_ERR "sctp impossible disposition %d " 1168 "in state %d, event_type %d, event_id %d\n", 1169 status, state, event_type, subtype.chunk); 1170 BUG(); 1171 break; 1172 } 1173 1174 bail: 1175 return error; 1176 } 1177 1178 /******************************************************************** 1179 * 2nd Level Abstractions 1180 ********************************************************************/ 1181 1182 /* This is the side-effect interpreter. */ 1183 static int sctp_cmd_interpreter(sctp_event_t event_type, 1184 sctp_subtype_t subtype, 1185 sctp_state_t state, 1186 struct sctp_endpoint *ep, 1187 struct sctp_association *asoc, 1188 void *event_arg, 1189 sctp_disposition_t status, 1190 sctp_cmd_seq_t *commands, 1191 gfp_t gfp) 1192 { 1193 int error = 0; 1194 int force; 1195 sctp_cmd_t *cmd; 1196 struct sctp_chunk *new_obj; 1197 struct sctp_chunk *chunk = NULL; 1198 struct sctp_packet *packet; 1199 struct timer_list *timer; 1200 unsigned long timeout; 1201 struct sctp_transport *t; 1202 struct sctp_sackhdr sackh; 1203 int local_cork = 0; 1204 1205 if (SCTP_EVENT_T_TIMEOUT != event_type) 1206 chunk = (struct sctp_chunk *) event_arg; 1207 1208 /* Note: This whole file is a huge candidate for rework. 1209 * For example, each command could either have its own handler, so 1210 * the loop would look like: 1211 * while (cmds) 1212 * cmd->handle(x, y, z) 1213 * --jgrimm 1214 */ 1215 while (NULL != (cmd = sctp_next_cmd(commands))) { 1216 switch (cmd->verb) { 1217 case SCTP_CMD_NOP: 1218 /* Do nothing. */ 1219 break; 1220 1221 case SCTP_CMD_NEW_ASOC: 1222 /* Register a new association. */ 1223 if (local_cork) { 1224 sctp_outq_uncork(&asoc->outqueue); 1225 local_cork = 0; 1226 } 1227 asoc = cmd->obj.ptr; 1228 /* Register with the endpoint. */ 1229 sctp_endpoint_add_asoc(ep, asoc); 1230 sctp_hash_established(asoc); 1231 break; 1232 1233 case SCTP_CMD_UPDATE_ASSOC: 1234 sctp_assoc_update(asoc, cmd->obj.ptr); 1235 break; 1236 1237 case SCTP_CMD_PURGE_OUTQUEUE: 1238 sctp_outq_teardown(&asoc->outqueue); 1239 break; 1240 1241 case SCTP_CMD_DELETE_TCB: 1242 if (local_cork) { 1243 sctp_outq_uncork(&asoc->outqueue); 1244 local_cork = 0; 1245 } 1246 /* Delete the current association. */ 1247 sctp_cmd_delete_tcb(commands, asoc); 1248 asoc = NULL; 1249 break; 1250 1251 case SCTP_CMD_NEW_STATE: 1252 /* Enter a new state. */ 1253 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1254 break; 1255 1256 case SCTP_CMD_REPORT_TSN: 1257 /* Record the arrival of a TSN. */ 1258 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1259 cmd->obj.u32); 1260 break; 1261 1262 case SCTP_CMD_REPORT_FWDTSN: 1263 /* Move the Cumulattive TSN Ack ahead. */ 1264 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1265 1266 /* purge the fragmentation queue */ 1267 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1268 1269 /* Abort any in progress partial delivery. */ 1270 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1271 break; 1272 1273 case SCTP_CMD_PROCESS_FWDTSN: 1274 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.ptr); 1275 break; 1276 1277 case SCTP_CMD_GEN_SACK: 1278 /* Generate a Selective ACK. 1279 * The argument tells us whether to just count 1280 * the packet and MAYBE generate a SACK, or 1281 * force a SACK out. 1282 */ 1283 force = cmd->obj.i32; 1284 error = sctp_gen_sack(asoc, force, commands); 1285 break; 1286 1287 case SCTP_CMD_PROCESS_SACK: 1288 /* Process an inbound SACK. */ 1289 error = sctp_cmd_process_sack(commands, asoc, 1290 cmd->obj.ptr); 1291 break; 1292 1293 case SCTP_CMD_GEN_INIT_ACK: 1294 /* Generate an INIT ACK chunk. */ 1295 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1296 0); 1297 if (!new_obj) 1298 goto nomem; 1299 1300 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1301 SCTP_CHUNK(new_obj)); 1302 break; 1303 1304 case SCTP_CMD_PEER_INIT: 1305 /* Process a unified INIT from the peer. 1306 * Note: Only used during INIT-ACK processing. If 1307 * there is an error just return to the outter 1308 * layer which will bail. 1309 */ 1310 error = sctp_cmd_process_init(commands, asoc, chunk, 1311 cmd->obj.ptr, gfp); 1312 break; 1313 1314 case SCTP_CMD_GEN_COOKIE_ECHO: 1315 /* Generate a COOKIE ECHO chunk. */ 1316 new_obj = sctp_make_cookie_echo(asoc, chunk); 1317 if (!new_obj) { 1318 if (cmd->obj.ptr) 1319 sctp_chunk_free(cmd->obj.ptr); 1320 goto nomem; 1321 } 1322 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1323 SCTP_CHUNK(new_obj)); 1324 1325 /* If there is an ERROR chunk to be sent along with 1326 * the COOKIE_ECHO, send it, too. 1327 */ 1328 if (cmd->obj.ptr) 1329 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1330 SCTP_CHUNK(cmd->obj.ptr)); 1331 1332 if (new_obj->transport) { 1333 new_obj->transport->init_sent_count++; 1334 asoc->init_last_sent_to = new_obj->transport; 1335 } 1336 1337 /* FIXME - Eventually come up with a cleaner way to 1338 * enabling COOKIE-ECHO + DATA bundling during 1339 * multihoming stale cookie scenarios, the following 1340 * command plays with asoc->peer.retran_path to 1341 * avoid the problem of sending the COOKIE-ECHO and 1342 * DATA in different paths, which could result 1343 * in the association being ABORTed if the DATA chunk 1344 * is processed first by the server. Checking the 1345 * init error counter simply causes this command 1346 * to be executed only during failed attempts of 1347 * association establishment. 1348 */ 1349 if ((asoc->peer.retran_path != 1350 asoc->peer.primary_path) && 1351 (asoc->init_err_counter > 0)) { 1352 sctp_add_cmd_sf(commands, 1353 SCTP_CMD_FORCE_PRIM_RETRAN, 1354 SCTP_NULL()); 1355 } 1356 1357 break; 1358 1359 case SCTP_CMD_GEN_SHUTDOWN: 1360 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1361 * Reset error counts. 1362 */ 1363 asoc->overall_error_count = 0; 1364 1365 /* Generate a SHUTDOWN chunk. */ 1366 new_obj = sctp_make_shutdown(asoc, chunk); 1367 if (!new_obj) 1368 goto nomem; 1369 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1370 SCTP_CHUNK(new_obj)); 1371 break; 1372 1373 case SCTP_CMD_CHUNK_ULP: 1374 /* Send a chunk to the sockets layer. */ 1375 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1376 "chunk_up:", cmd->obj.ptr, 1377 "ulpq:", &asoc->ulpq); 1378 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr, 1379 GFP_ATOMIC); 1380 break; 1381 1382 case SCTP_CMD_EVENT_ULP: 1383 /* Send a notification to the sockets layer. */ 1384 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1385 "event_up:",cmd->obj.ptr, 1386 "ulpq:",&asoc->ulpq); 1387 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr); 1388 break; 1389 1390 case SCTP_CMD_REPLY: 1391 /* If an caller has not already corked, do cork. */ 1392 if (!asoc->outqueue.cork) { 1393 sctp_outq_cork(&asoc->outqueue); 1394 local_cork = 1; 1395 } 1396 /* Send a chunk to our peer. */ 1397 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.ptr); 1398 break; 1399 1400 case SCTP_CMD_SEND_PKT: 1401 /* Send a full packet to our peer. */ 1402 packet = cmd->obj.ptr; 1403 sctp_packet_transmit(packet); 1404 sctp_ootb_pkt_free(packet); 1405 break; 1406 1407 case SCTP_CMD_T1_RETRAN: 1408 /* Mark a transport for retransmission. */ 1409 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1410 SCTP_RTXR_T1_RTX); 1411 break; 1412 1413 case SCTP_CMD_RETRAN: 1414 /* Mark a transport for retransmission. */ 1415 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1416 SCTP_RTXR_T3_RTX); 1417 break; 1418 1419 case SCTP_CMD_TRANSMIT: 1420 /* Kick start transmission. */ 1421 error = sctp_outq_uncork(&asoc->outqueue); 1422 local_cork = 0; 1423 break; 1424 1425 case SCTP_CMD_ECN_CE: 1426 /* Do delayed CE processing. */ 1427 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1428 break; 1429 1430 case SCTP_CMD_ECN_ECNE: 1431 /* Do delayed ECNE processing. */ 1432 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1433 chunk); 1434 if (new_obj) 1435 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1436 SCTP_CHUNK(new_obj)); 1437 break; 1438 1439 case SCTP_CMD_ECN_CWR: 1440 /* Do delayed CWR processing. */ 1441 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1442 break; 1443 1444 case SCTP_CMD_SETUP_T2: 1445 sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); 1446 break; 1447 1448 case SCTP_CMD_TIMER_START: 1449 timer = &asoc->timers[cmd->obj.to]; 1450 timeout = asoc->timeouts[cmd->obj.to]; 1451 BUG_ON(!timeout); 1452 1453 timer->expires = jiffies + timeout; 1454 sctp_association_hold(asoc); 1455 add_timer(timer); 1456 break; 1457 1458 case SCTP_CMD_TIMER_RESTART: 1459 timer = &asoc->timers[cmd->obj.to]; 1460 timeout = asoc->timeouts[cmd->obj.to]; 1461 if (!mod_timer(timer, jiffies + timeout)) 1462 sctp_association_hold(asoc); 1463 break; 1464 1465 case SCTP_CMD_TIMER_STOP: 1466 timer = &asoc->timers[cmd->obj.to]; 1467 if (timer_pending(timer) && del_timer(timer)) 1468 sctp_association_put(asoc); 1469 break; 1470 1471 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1472 chunk = cmd->obj.ptr; 1473 t = sctp_assoc_choose_alter_transport(asoc, 1474 asoc->init_last_sent_to); 1475 asoc->init_last_sent_to = t; 1476 chunk->transport = t; 1477 t->init_sent_count++; 1478 /* Set the new transport as primary */ 1479 sctp_assoc_set_primary(asoc, t); 1480 break; 1481 1482 case SCTP_CMD_INIT_RESTART: 1483 /* Do the needed accounting and updates 1484 * associated with restarting an initialization 1485 * timer. Only multiply the timeout by two if 1486 * all transports have been tried at the current 1487 * timeout. 1488 */ 1489 sctp_cmd_t1_timer_update(asoc, 1490 SCTP_EVENT_TIMEOUT_T1_INIT, 1491 "INIT"); 1492 1493 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1494 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1495 break; 1496 1497 case SCTP_CMD_COOKIEECHO_RESTART: 1498 /* Do the needed accounting and updates 1499 * associated with restarting an initialization 1500 * timer. Only multiply the timeout by two if 1501 * all transports have been tried at the current 1502 * timeout. 1503 */ 1504 sctp_cmd_t1_timer_update(asoc, 1505 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1506 "COOKIE"); 1507 1508 /* If we've sent any data bundled with 1509 * COOKIE-ECHO we need to resend. 1510 */ 1511 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1512 transports) { 1513 sctp_retransmit_mark(&asoc->outqueue, t, 1514 SCTP_RTXR_T1_RTX); 1515 } 1516 1517 sctp_add_cmd_sf(commands, 1518 SCTP_CMD_TIMER_RESTART, 1519 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1520 break; 1521 1522 case SCTP_CMD_INIT_FAILED: 1523 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1524 break; 1525 1526 case SCTP_CMD_ASSOC_FAILED: 1527 sctp_cmd_assoc_failed(commands, asoc, event_type, 1528 subtype, chunk, cmd->obj.err); 1529 break; 1530 1531 case SCTP_CMD_INIT_COUNTER_INC: 1532 asoc->init_err_counter++; 1533 break; 1534 1535 case SCTP_CMD_INIT_COUNTER_RESET: 1536 asoc->init_err_counter = 0; 1537 asoc->init_cycle = 0; 1538 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1539 transports) { 1540 t->init_sent_count = 0; 1541 } 1542 break; 1543 1544 case SCTP_CMD_REPORT_DUP: 1545 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1546 cmd->obj.u32); 1547 break; 1548 1549 case SCTP_CMD_REPORT_BAD_TAG: 1550 SCTP_DEBUG_PRINTK("vtag mismatch!\n"); 1551 break; 1552 1553 case SCTP_CMD_STRIKE: 1554 /* Mark one strike against a transport. */ 1555 sctp_do_8_2_transport_strike(asoc, cmd->obj.transport, 1556 0); 1557 break; 1558 1559 case SCTP_CMD_TRANSPORT_IDLE: 1560 t = cmd->obj.transport; 1561 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1562 break; 1563 1564 case SCTP_CMD_TRANSPORT_HB_SENT: 1565 t = cmd->obj.transport; 1566 sctp_do_8_2_transport_strike(asoc, t, 1); 1567 t->hb_sent = 1; 1568 break; 1569 1570 case SCTP_CMD_TRANSPORT_ON: 1571 t = cmd->obj.transport; 1572 sctp_cmd_transport_on(commands, asoc, t, chunk); 1573 break; 1574 1575 case SCTP_CMD_HB_TIMERS_START: 1576 sctp_cmd_hb_timers_start(commands, asoc); 1577 break; 1578 1579 case SCTP_CMD_HB_TIMER_UPDATE: 1580 t = cmd->obj.transport; 1581 sctp_cmd_hb_timer_update(commands, t); 1582 break; 1583 1584 case SCTP_CMD_HB_TIMERS_STOP: 1585 sctp_cmd_hb_timers_stop(commands, asoc); 1586 break; 1587 1588 case SCTP_CMD_REPORT_ERROR: 1589 error = cmd->obj.error; 1590 break; 1591 1592 case SCTP_CMD_PROCESS_CTSN: 1593 /* Dummy up a SACK for processing. */ 1594 sackh.cum_tsn_ack = cmd->obj.be32; 1595 sackh.a_rwnd = asoc->peer.rwnd + 1596 asoc->outqueue.outstanding_bytes; 1597 sackh.num_gap_ack_blocks = 0; 1598 sackh.num_dup_tsns = 0; 1599 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1600 SCTP_SACKH(&sackh)); 1601 break; 1602 1603 case SCTP_CMD_DISCARD_PACKET: 1604 /* We need to discard the whole packet. 1605 * Uncork the queue since there might be 1606 * responses pending 1607 */ 1608 chunk->pdiscard = 1; 1609 if (asoc) { 1610 sctp_outq_uncork(&asoc->outqueue); 1611 local_cork = 0; 1612 } 1613 break; 1614 1615 case SCTP_CMD_RTO_PENDING: 1616 t = cmd->obj.transport; 1617 t->rto_pending = 1; 1618 break; 1619 1620 case SCTP_CMD_PART_DELIVER: 1621 sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, 1622 GFP_ATOMIC); 1623 break; 1624 1625 case SCTP_CMD_RENEGE: 1626 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr, 1627 GFP_ATOMIC); 1628 break; 1629 1630 case SCTP_CMD_SETUP_T4: 1631 sctp_cmd_setup_t4(commands, asoc, cmd->obj.ptr); 1632 break; 1633 1634 case SCTP_CMD_PROCESS_OPERR: 1635 sctp_cmd_process_operr(commands, asoc, chunk); 1636 break; 1637 case SCTP_CMD_CLEAR_INIT_TAG: 1638 asoc->peer.i.init_tag = 0; 1639 break; 1640 case SCTP_CMD_DEL_NON_PRIMARY: 1641 sctp_cmd_del_non_primary(asoc); 1642 break; 1643 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1644 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1645 break; 1646 case SCTP_CMD_FORCE_PRIM_RETRAN: 1647 t = asoc->peer.retran_path; 1648 asoc->peer.retran_path = asoc->peer.primary_path; 1649 error = sctp_outq_uncork(&asoc->outqueue); 1650 local_cork = 0; 1651 asoc->peer.retran_path = t; 1652 break; 1653 case SCTP_CMD_SET_SK_ERR: 1654 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1655 break; 1656 case SCTP_CMD_ASSOC_CHANGE: 1657 sctp_cmd_assoc_change(commands, asoc, 1658 cmd->obj.u8); 1659 break; 1660 case SCTP_CMD_ADAPTATION_IND: 1661 sctp_cmd_adaptation_ind(commands, asoc); 1662 break; 1663 1664 case SCTP_CMD_ASSOC_SHKEY: 1665 error = sctp_auth_asoc_init_active_key(asoc, 1666 GFP_ATOMIC); 1667 break; 1668 case SCTP_CMD_UPDATE_INITTAG: 1669 asoc->peer.i.init_tag = cmd->obj.u32; 1670 break; 1671 case SCTP_CMD_SEND_MSG: 1672 if (!asoc->outqueue.cork) { 1673 sctp_outq_cork(&asoc->outqueue); 1674 local_cork = 1; 1675 } 1676 error = sctp_cmd_send_msg(asoc, cmd->obj.msg); 1677 break; 1678 case SCTP_CMD_SEND_NEXT_ASCONF: 1679 sctp_cmd_send_asconf(asoc); 1680 break; 1681 default: 1682 printk(KERN_WARNING "Impossible command: %u, %p\n", 1683 cmd->verb, cmd->obj.ptr); 1684 break; 1685 } 1686 1687 if (error) 1688 break; 1689 } 1690 1691 out: 1692 /* If this is in response to a received chunk, wait until 1693 * we are done with the packet to open the queue so that we don't 1694 * send multiple packets in response to a single request. 1695 */ 1696 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1697 if (chunk->end_of_packet || chunk->singleton) 1698 error = sctp_outq_uncork(&asoc->outqueue); 1699 } else if (local_cork) 1700 error = sctp_outq_uncork(&asoc->outqueue); 1701 return error; 1702 nomem: 1703 error = -ENOMEM; 1704 goto out; 1705 } 1706 1707