1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@austin.ibm.com> 36 * Hui Huang <hui.huang@nokia.com> 37 * Dajiang Zhang <dajiang.zhang@nokia.com> 38 * Daisy Chang <daisyc@us.ibm.com> 39 * Sridhar Samudrala <sri@us.ibm.com> 40 * Ardelle Fan <ardelle.fan@intel.com> 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #include <linux/skbuff.h> 46 #include <linux/types.h> 47 #include <linux/socket.h> 48 #include <linux/ip.h> 49 #include <linux/gfp.h> 50 #include <net/sock.h> 51 #include <net/sctp/sctp.h> 52 #include <net/sctp/sm.h> 53 54 static int sctp_cmd_interpreter(sctp_event_t event_type, 55 sctp_subtype_t subtype, 56 sctp_state_t state, 57 struct sctp_endpoint *ep, 58 struct sctp_association *asoc, 59 void *event_arg, 60 sctp_disposition_t status, 61 sctp_cmd_seq_t *commands, 62 gfp_t gfp); 63 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 64 sctp_state_t state, 65 struct sctp_endpoint *ep, 66 struct sctp_association *asoc, 67 void *event_arg, 68 sctp_disposition_t status, 69 sctp_cmd_seq_t *commands, 70 gfp_t gfp); 71 72 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 73 struct sctp_transport *t); 74 /******************************************************************** 75 * Helper functions 76 ********************************************************************/ 77 78 /* A helper function for delayed processing of INET ECN CE bit. */ 79 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 80 __u32 lowest_tsn) 81 { 82 /* Save the TSN away for comparison when we receive CWR */ 83 84 asoc->last_ecne_tsn = lowest_tsn; 85 asoc->need_ecne = 1; 86 } 87 88 /* Helper function for delayed processing of SCTP ECNE chunk. */ 89 /* RFC 2960 Appendix A 90 * 91 * RFC 2481 details a specific bit for a sender to send in 92 * the header of its next outbound TCP segment to indicate to 93 * its peer that it has reduced its congestion window. This 94 * is termed the CWR bit. For SCTP the same indication is made 95 * by including the CWR chunk. This chunk contains one data 96 * element, i.e. the TSN number that was sent in the ECNE chunk. 97 * This element represents the lowest TSN number in the datagram 98 * that was originally marked with the CE bit. 99 */ 100 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 101 __u32 lowest_tsn, 102 struct sctp_chunk *chunk) 103 { 104 struct sctp_chunk *repl; 105 106 /* Our previously transmitted packet ran into some congestion 107 * so we should take action by reducing cwnd and ssthresh 108 * and then ACK our peer that we we've done so by 109 * sending a CWR. 110 */ 111 112 /* First, try to determine if we want to actually lower 113 * our cwnd variables. Only lower them if the ECNE looks more 114 * recent than the last response. 115 */ 116 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 117 struct sctp_transport *transport; 118 119 /* Find which transport's congestion variables 120 * need to be adjusted. 121 */ 122 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 123 124 /* Update the congestion variables. */ 125 if (transport) 126 sctp_transport_lower_cwnd(transport, 127 SCTP_LOWER_CWND_ECNE); 128 asoc->last_cwr_tsn = lowest_tsn; 129 } 130 131 /* Always try to quiet the other end. In case of lost CWR, 132 * resend last_cwr_tsn. 133 */ 134 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 135 136 /* If we run out of memory, it will look like a lost CWR. We'll 137 * get back in sync eventually. 138 */ 139 return repl; 140 } 141 142 /* Helper function to do delayed processing of ECN CWR chunk. */ 143 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 144 __u32 lowest_tsn) 145 { 146 /* Turn off ECNE getting auto-prepended to every outgoing 147 * packet 148 */ 149 asoc->need_ecne = 0; 150 } 151 152 /* Generate SACK if necessary. We call this at the end of a packet. */ 153 static int sctp_gen_sack(struct sctp_association *asoc, int force, 154 sctp_cmd_seq_t *commands) 155 { 156 __u32 ctsn, max_tsn_seen; 157 struct sctp_chunk *sack; 158 struct sctp_transport *trans = asoc->peer.last_data_from; 159 int error = 0; 160 161 if (force || 162 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 163 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 164 asoc->peer.sack_needed = 1; 165 166 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 167 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 168 169 /* From 12.2 Parameters necessary per association (i.e. the TCB): 170 * 171 * Ack State : This flag indicates if the next received packet 172 * : is to be responded to with a SACK. ... 173 * : When DATA chunks are out of order, SACK's 174 * : are not delayed (see Section 6). 175 * 176 * [This is actually not mentioned in Section 6, but we 177 * implement it here anyway. --piggy] 178 */ 179 if (max_tsn_seen != ctsn) 180 asoc->peer.sack_needed = 1; 181 182 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 183 * 184 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 185 * an acknowledgement SHOULD be generated for at least every 186 * second packet (not every second DATA chunk) received, and 187 * SHOULD be generated within 200 ms of the arrival of any 188 * unacknowledged DATA chunk. ... 189 */ 190 if (!asoc->peer.sack_needed) { 191 asoc->peer.sack_cnt++; 192 193 /* Set the SACK delay timeout based on the 194 * SACK delay for the last transport 195 * data was received from, or the default 196 * for the association. 197 */ 198 if (trans) { 199 /* We will need a SACK for the next packet. */ 200 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 201 asoc->peer.sack_needed = 1; 202 203 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 204 trans->sackdelay; 205 } else { 206 /* We will need a SACK for the next packet. */ 207 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 208 asoc->peer.sack_needed = 1; 209 210 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 211 asoc->sackdelay; 212 } 213 214 /* Restart the SACK timer. */ 215 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 216 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 217 } else { 218 asoc->a_rwnd = asoc->rwnd; 219 sack = sctp_make_sack(asoc); 220 if (!sack) 221 goto nomem; 222 223 asoc->peer.sack_needed = 0; 224 asoc->peer.sack_cnt = 0; 225 226 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 227 228 /* Stop the SACK timer. */ 229 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 230 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 231 } 232 233 return error; 234 nomem: 235 error = -ENOMEM; 236 return error; 237 } 238 239 /* When the T3-RTX timer expires, it calls this function to create the 240 * relevant state machine event. 241 */ 242 void sctp_generate_t3_rtx_event(unsigned long peer) 243 { 244 int error; 245 struct sctp_transport *transport = (struct sctp_transport *) peer; 246 struct sctp_association *asoc = transport->asoc; 247 struct net *net = sock_net(asoc->base.sk); 248 249 /* Check whether a task is in the sock. */ 250 251 bh_lock_sock(asoc->base.sk); 252 if (sock_owned_by_user(asoc->base.sk)) { 253 pr_debug("%s: sock is busy\n", __func__); 254 255 /* Try again later. */ 256 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 257 sctp_transport_hold(transport); 258 goto out_unlock; 259 } 260 261 /* Is this transport really dead and just waiting around for 262 * the timer to let go of the reference? 263 */ 264 if (transport->dead) 265 goto out_unlock; 266 267 /* Run through the state machine. */ 268 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 269 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 270 asoc->state, 271 asoc->ep, asoc, 272 transport, GFP_ATOMIC); 273 274 if (error) 275 asoc->base.sk->sk_err = -error; 276 277 out_unlock: 278 bh_unlock_sock(asoc->base.sk); 279 sctp_transport_put(transport); 280 } 281 282 /* This is a sa interface for producing timeout events. It works 283 * for timeouts which use the association as their parameter. 284 */ 285 static void sctp_generate_timeout_event(struct sctp_association *asoc, 286 sctp_event_timeout_t timeout_type) 287 { 288 struct net *net = sock_net(asoc->base.sk); 289 int error = 0; 290 291 bh_lock_sock(asoc->base.sk); 292 if (sock_owned_by_user(asoc->base.sk)) { 293 pr_debug("%s: sock is busy: timer %d\n", __func__, 294 timeout_type); 295 296 /* Try again later. */ 297 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 298 sctp_association_hold(asoc); 299 goto out_unlock; 300 } 301 302 /* Is this association really dead and just waiting around for 303 * the timer to let go of the reference? 304 */ 305 if (asoc->base.dead) 306 goto out_unlock; 307 308 /* Run through the state machine. */ 309 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 310 SCTP_ST_TIMEOUT(timeout_type), 311 asoc->state, asoc->ep, asoc, 312 (void *)timeout_type, GFP_ATOMIC); 313 314 if (error) 315 asoc->base.sk->sk_err = -error; 316 317 out_unlock: 318 bh_unlock_sock(asoc->base.sk); 319 sctp_association_put(asoc); 320 } 321 322 static void sctp_generate_t1_cookie_event(unsigned long data) 323 { 324 struct sctp_association *asoc = (struct sctp_association *) data; 325 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 326 } 327 328 static void sctp_generate_t1_init_event(unsigned long data) 329 { 330 struct sctp_association *asoc = (struct sctp_association *) data; 331 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 332 } 333 334 static void sctp_generate_t2_shutdown_event(unsigned long data) 335 { 336 struct sctp_association *asoc = (struct sctp_association *) data; 337 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 338 } 339 340 static void sctp_generate_t4_rto_event(unsigned long data) 341 { 342 struct sctp_association *asoc = (struct sctp_association *) data; 343 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 344 } 345 346 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 347 { 348 struct sctp_association *asoc = (struct sctp_association *)data; 349 sctp_generate_timeout_event(asoc, 350 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 351 352 } /* sctp_generate_t5_shutdown_guard_event() */ 353 354 static void sctp_generate_autoclose_event(unsigned long data) 355 { 356 struct sctp_association *asoc = (struct sctp_association *) data; 357 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 358 } 359 360 /* Generate a heart beat event. If the sock is busy, reschedule. Make 361 * sure that the transport is still valid. 362 */ 363 void sctp_generate_heartbeat_event(unsigned long data) 364 { 365 int error = 0; 366 struct sctp_transport *transport = (struct sctp_transport *) data; 367 struct sctp_association *asoc = transport->asoc; 368 struct net *net = sock_net(asoc->base.sk); 369 370 bh_lock_sock(asoc->base.sk); 371 if (sock_owned_by_user(asoc->base.sk)) { 372 pr_debug("%s: sock is busy\n", __func__); 373 374 /* Try again later. */ 375 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 376 sctp_transport_hold(transport); 377 goto out_unlock; 378 } 379 380 /* Is this structure just waiting around for us to actually 381 * get destroyed? 382 */ 383 if (transport->dead) 384 goto out_unlock; 385 386 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 387 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 388 asoc->state, asoc->ep, asoc, 389 transport, GFP_ATOMIC); 390 391 if (error) 392 asoc->base.sk->sk_err = -error; 393 394 out_unlock: 395 bh_unlock_sock(asoc->base.sk); 396 sctp_transport_put(transport); 397 } 398 399 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger 400 * the correct state machine transition that will close the association. 401 */ 402 void sctp_generate_proto_unreach_event(unsigned long data) 403 { 404 struct sctp_transport *transport = (struct sctp_transport *) data; 405 struct sctp_association *asoc = transport->asoc; 406 struct net *net = sock_net(asoc->base.sk); 407 408 bh_lock_sock(asoc->base.sk); 409 if (sock_owned_by_user(asoc->base.sk)) { 410 pr_debug("%s: sock is busy\n", __func__); 411 412 /* Try again later. */ 413 if (!mod_timer(&transport->proto_unreach_timer, 414 jiffies + (HZ/20))) 415 sctp_association_hold(asoc); 416 goto out_unlock; 417 } 418 419 /* Is this structure just waiting around for us to actually 420 * get destroyed? 421 */ 422 if (asoc->base.dead) 423 goto out_unlock; 424 425 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 426 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 427 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); 428 429 out_unlock: 430 bh_unlock_sock(asoc->base.sk); 431 sctp_association_put(asoc); 432 } 433 434 435 /* Inject a SACK Timeout event into the state machine. */ 436 static void sctp_generate_sack_event(unsigned long data) 437 { 438 struct sctp_association *asoc = (struct sctp_association *) data; 439 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 440 } 441 442 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 443 NULL, 444 sctp_generate_t1_cookie_event, 445 sctp_generate_t1_init_event, 446 sctp_generate_t2_shutdown_event, 447 NULL, 448 sctp_generate_t4_rto_event, 449 sctp_generate_t5_shutdown_guard_event, 450 NULL, 451 sctp_generate_sack_event, 452 sctp_generate_autoclose_event, 453 }; 454 455 456 /* RFC 2960 8.2 Path Failure Detection 457 * 458 * When its peer endpoint is multi-homed, an endpoint should keep a 459 * error counter for each of the destination transport addresses of the 460 * peer endpoint. 461 * 462 * Each time the T3-rtx timer expires on any address, or when a 463 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 464 * the error counter of that destination address will be incremented. 465 * When the value in the error counter exceeds the protocol parameter 466 * 'Path.Max.Retrans' of that destination address, the endpoint should 467 * mark the destination transport address as inactive, and a 468 * notification SHOULD be sent to the upper layer. 469 * 470 */ 471 static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands, 472 struct sctp_association *asoc, 473 struct sctp_transport *transport, 474 int is_hb) 475 { 476 /* The check for association's overall error counter exceeding the 477 * threshold is done in the state function. 478 */ 479 /* We are here due to a timer expiration. If the timer was 480 * not a HEARTBEAT, then normal error tracking is done. 481 * If the timer was a heartbeat, we only increment error counts 482 * when we already have an outstanding HEARTBEAT that has not 483 * been acknowledged. 484 * Additionally, some tranport states inhibit error increments. 485 */ 486 if (!is_hb) { 487 asoc->overall_error_count++; 488 if (transport->state != SCTP_INACTIVE) 489 transport->error_count++; 490 } else if (transport->hb_sent) { 491 if (transport->state != SCTP_UNCONFIRMED) 492 asoc->overall_error_count++; 493 if (transport->state != SCTP_INACTIVE) 494 transport->error_count++; 495 } 496 497 /* If the transport error count is greater than the pf_retrans 498 * threshold, and less than pathmaxrtx, and if the current state 499 * is SCTP_ACTIVE, then mark this transport as Partially Failed, 500 * see SCTP Quick Failover Draft, section 5.1 501 */ 502 if ((transport->state == SCTP_ACTIVE) && 503 (asoc->pf_retrans < transport->pathmaxrxt) && 504 (transport->error_count > asoc->pf_retrans)) { 505 506 sctp_assoc_control_transport(asoc, transport, 507 SCTP_TRANSPORT_PF, 508 0); 509 510 /* Update the hb timer to resend a heartbeat every rto */ 511 sctp_cmd_hb_timer_update(commands, transport); 512 } 513 514 if (transport->state != SCTP_INACTIVE && 515 (transport->error_count > transport->pathmaxrxt)) { 516 pr_debug("%s: association:%p transport addr:%pISpc failed\n", 517 __func__, asoc, &transport->ipaddr.sa); 518 519 sctp_assoc_control_transport(asoc, transport, 520 SCTP_TRANSPORT_DOWN, 521 SCTP_FAILED_THRESHOLD); 522 } 523 524 /* E2) For the destination address for which the timer 525 * expires, set RTO <- RTO * 2 ("back off the timer"). The 526 * maximum value discussed in rule C7 above (RTO.max) may be 527 * used to provide an upper bound to this doubling operation. 528 * 529 * Special Case: the first HB doesn't trigger exponential backoff. 530 * The first unacknowledged HB triggers it. We do this with a flag 531 * that indicates that we have an outstanding HB. 532 */ 533 if (!is_hb || transport->hb_sent) { 534 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 535 sctp_max_rto(asoc, transport); 536 } 537 } 538 539 /* Worker routine to handle INIT command failure. */ 540 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 541 struct sctp_association *asoc, 542 unsigned int error) 543 { 544 struct sctp_ulpevent *event; 545 546 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC, 547 (__u16)error, 0, 0, NULL, 548 GFP_ATOMIC); 549 550 if (event) 551 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 552 SCTP_ULPEVENT(event)); 553 554 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 555 SCTP_STATE(SCTP_STATE_CLOSED)); 556 557 /* SEND_FAILED sent later when cleaning up the association. */ 558 asoc->outqueue.error = error; 559 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 560 } 561 562 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 563 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 564 struct sctp_association *asoc, 565 sctp_event_t event_type, 566 sctp_subtype_t subtype, 567 struct sctp_chunk *chunk, 568 unsigned int error) 569 { 570 struct sctp_ulpevent *event; 571 struct sctp_chunk *abort; 572 /* Cancel any partial delivery in progress. */ 573 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 574 575 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 576 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 577 (__u16)error, 0, 0, chunk, 578 GFP_ATOMIC); 579 else 580 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 581 (__u16)error, 0, 0, NULL, 582 GFP_ATOMIC); 583 if (event) 584 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 585 SCTP_ULPEVENT(event)); 586 587 if (asoc->overall_error_count >= asoc->max_retrans) { 588 abort = sctp_make_violation_max_retrans(asoc, chunk); 589 if (abort) 590 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 591 SCTP_CHUNK(abort)); 592 } 593 594 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 595 SCTP_STATE(SCTP_STATE_CLOSED)); 596 597 /* SEND_FAILED sent later when cleaning up the association. */ 598 asoc->outqueue.error = error; 599 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 600 } 601 602 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 603 * inside the cookie. In reality, this is only used for INIT-ACK processing 604 * since all other cases use "temporary" associations and can do all 605 * their work in statefuns directly. 606 */ 607 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 608 struct sctp_association *asoc, 609 struct sctp_chunk *chunk, 610 sctp_init_chunk_t *peer_init, 611 gfp_t gfp) 612 { 613 int error; 614 615 /* We only process the init as a sideeffect in a single 616 * case. This is when we process the INIT-ACK. If we 617 * fail during INIT processing (due to malloc problems), 618 * just return the error and stop processing the stack. 619 */ 620 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) 621 error = -ENOMEM; 622 else 623 error = 0; 624 625 return error; 626 } 627 628 /* Helper function to break out starting up of heartbeat timers. */ 629 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 630 struct sctp_association *asoc) 631 { 632 struct sctp_transport *t; 633 634 /* Start a heartbeat timer for each transport on the association. 635 * hold a reference on the transport to make sure none of 636 * the needed data structures go away. 637 */ 638 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 639 640 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 641 sctp_transport_hold(t); 642 } 643 } 644 645 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 646 struct sctp_association *asoc) 647 { 648 struct sctp_transport *t; 649 650 /* Stop all heartbeat timers. */ 651 652 list_for_each_entry(t, &asoc->peer.transport_addr_list, 653 transports) { 654 if (del_timer(&t->hb_timer)) 655 sctp_transport_put(t); 656 } 657 } 658 659 /* Helper function to stop any pending T3-RTX timers */ 660 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 661 struct sctp_association *asoc) 662 { 663 struct sctp_transport *t; 664 665 list_for_each_entry(t, &asoc->peer.transport_addr_list, 666 transports) { 667 if (del_timer(&t->T3_rtx_timer)) 668 sctp_transport_put(t); 669 } 670 } 671 672 673 /* Helper function to update the heartbeat timer. */ 674 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 675 struct sctp_transport *t) 676 { 677 /* Update the heartbeat timer. */ 678 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 679 sctp_transport_hold(t); 680 } 681 682 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 683 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 684 struct sctp_association *asoc, 685 struct sctp_transport *t, 686 struct sctp_chunk *chunk) 687 { 688 sctp_sender_hb_info_t *hbinfo; 689 int was_unconfirmed = 0; 690 691 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 692 * HEARTBEAT should clear the error counter of the destination 693 * transport address to which the HEARTBEAT was sent. 694 */ 695 t->error_count = 0; 696 697 /* 698 * Although RFC4960 specifies that the overall error count must 699 * be cleared when a HEARTBEAT ACK is received, we make an 700 * exception while in SHUTDOWN PENDING. If the peer keeps its 701 * window shut forever, we may never be able to transmit our 702 * outstanding data and rely on the retransmission limit be reached 703 * to shutdown the association. 704 */ 705 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) 706 t->asoc->overall_error_count = 0; 707 708 /* Clear the hb_sent flag to signal that we had a good 709 * acknowledgement. 710 */ 711 t->hb_sent = 0; 712 713 /* Mark the destination transport address as active if it is not so 714 * marked. 715 */ 716 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { 717 was_unconfirmed = 1; 718 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 719 SCTP_HEARTBEAT_SUCCESS); 720 } 721 722 if (t->state == SCTP_PF) 723 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 724 SCTP_HEARTBEAT_SUCCESS); 725 726 /* HB-ACK was received for a the proper HB. Consider this 727 * forward progress. 728 */ 729 if (t->dst) 730 dst_confirm(t->dst); 731 732 /* The receiver of the HEARTBEAT ACK should also perform an 733 * RTT measurement for that destination transport address 734 * using the time value carried in the HEARTBEAT ACK chunk. 735 * If the transport's rto_pending variable has been cleared, 736 * it was most likely due to a retransmit. However, we want 737 * to re-enable it to properly update the rto. 738 */ 739 if (t->rto_pending == 0) 740 t->rto_pending = 1; 741 742 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 743 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 744 745 /* Update the heartbeat timer. */ 746 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 747 sctp_transport_hold(t); 748 749 if (was_unconfirmed && asoc->peer.transport_count == 1) 750 sctp_transport_immediate_rtx(t); 751 } 752 753 754 /* Helper function to process the process SACK command. */ 755 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 756 struct sctp_association *asoc, 757 struct sctp_chunk *chunk) 758 { 759 int err = 0; 760 761 if (sctp_outq_sack(&asoc->outqueue, chunk)) { 762 struct net *net = sock_net(asoc->base.sk); 763 764 /* There are no more TSNs awaiting SACK. */ 765 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, 766 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 767 asoc->state, asoc->ep, asoc, NULL, 768 GFP_ATOMIC); 769 } 770 771 return err; 772 } 773 774 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 775 * the transport for a shutdown chunk. 776 */ 777 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 778 struct sctp_association *asoc, 779 struct sctp_chunk *chunk) 780 { 781 struct sctp_transport *t; 782 783 if (chunk->transport) 784 t = chunk->transport; 785 else { 786 t = sctp_assoc_choose_alter_transport(asoc, 787 asoc->shutdown_last_sent_to); 788 chunk->transport = t; 789 } 790 asoc->shutdown_last_sent_to = t; 791 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 792 } 793 794 /* Helper function to change the state of an association. */ 795 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 796 struct sctp_association *asoc, 797 sctp_state_t state) 798 { 799 struct sock *sk = asoc->base.sk; 800 801 asoc->state = state; 802 803 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); 804 805 if (sctp_style(sk, TCP)) { 806 /* Change the sk->sk_state of a TCP-style socket that has 807 * successfully completed a connect() call. 808 */ 809 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 810 sk->sk_state = SCTP_SS_ESTABLISHED; 811 812 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 813 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 814 sctp_sstate(sk, ESTABLISHED)) 815 sk->sk_shutdown |= RCV_SHUTDOWN; 816 } 817 818 if (sctp_state(asoc, COOKIE_WAIT)) { 819 /* Reset init timeouts since they may have been 820 * increased due to timer expirations. 821 */ 822 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 823 asoc->rto_initial; 824 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 825 asoc->rto_initial; 826 } 827 828 if (sctp_state(asoc, ESTABLISHED) || 829 sctp_state(asoc, CLOSED) || 830 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 831 /* Wake up any processes waiting in the asoc's wait queue in 832 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 833 */ 834 if (waitqueue_active(&asoc->wait)) 835 wake_up_interruptible(&asoc->wait); 836 837 /* Wake up any processes waiting in the sk's sleep queue of 838 * a TCP-style or UDP-style peeled-off socket in 839 * sctp_wait_for_accept() or sctp_wait_for_packet(). 840 * For a UDP-style socket, the waiters are woken up by the 841 * notifications. 842 */ 843 if (!sctp_style(sk, UDP)) 844 sk->sk_state_change(sk); 845 } 846 } 847 848 /* Helper function to delete an association. */ 849 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 850 struct sctp_association *asoc) 851 { 852 struct sock *sk = asoc->base.sk; 853 854 /* If it is a non-temporary association belonging to a TCP-style 855 * listening socket that is not closed, do not free it so that accept() 856 * can pick it up later. 857 */ 858 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 859 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 860 return; 861 862 sctp_unhash_established(asoc); 863 sctp_association_free(asoc); 864 } 865 866 /* 867 * ADDIP Section 4.1 ASCONF Chunk Procedures 868 * A4) Start a T-4 RTO timer, using the RTO value of the selected 869 * destination address (we use active path instead of primary path just 870 * because primary path may be inactive. 871 */ 872 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 873 struct sctp_association *asoc, 874 struct sctp_chunk *chunk) 875 { 876 struct sctp_transport *t; 877 878 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 879 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 880 chunk->transport = t; 881 } 882 883 /* Process an incoming Operation Error Chunk. */ 884 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 885 struct sctp_association *asoc, 886 struct sctp_chunk *chunk) 887 { 888 struct sctp_errhdr *err_hdr; 889 struct sctp_ulpevent *ev; 890 891 while (chunk->chunk_end > chunk->skb->data) { 892 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 893 894 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 895 GFP_ATOMIC); 896 if (!ev) 897 return; 898 899 sctp_ulpq_tail_event(&asoc->ulpq, ev); 900 901 switch (err_hdr->cause) { 902 case SCTP_ERROR_UNKNOWN_CHUNK: 903 { 904 sctp_chunkhdr_t *unk_chunk_hdr; 905 906 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 907 switch (unk_chunk_hdr->type) { 908 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 909 * an ERROR chunk reporting that it did not recognized 910 * the ASCONF chunk type, the sender of the ASCONF MUST 911 * NOT send any further ASCONF chunks and MUST stop its 912 * T-4 timer. 913 */ 914 case SCTP_CID_ASCONF: 915 if (asoc->peer.asconf_capable == 0) 916 break; 917 918 asoc->peer.asconf_capable = 0; 919 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 920 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 921 break; 922 default: 923 break; 924 } 925 break; 926 } 927 default: 928 break; 929 } 930 } 931 } 932 933 /* Process variable FWDTSN chunk information. */ 934 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 935 struct sctp_chunk *chunk) 936 { 937 struct sctp_fwdtsn_skip *skip; 938 /* Walk through all the skipped SSNs */ 939 sctp_walk_fwdtsn(skip, chunk) { 940 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 941 } 942 } 943 944 /* Helper function to remove the association non-primary peer 945 * transports. 946 */ 947 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 948 { 949 struct sctp_transport *t; 950 struct list_head *pos; 951 struct list_head *temp; 952 953 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 954 t = list_entry(pos, struct sctp_transport, transports); 955 if (!sctp_cmp_addr_exact(&t->ipaddr, 956 &asoc->peer.primary_addr)) { 957 sctp_assoc_del_peer(asoc, &t->ipaddr); 958 } 959 } 960 } 961 962 /* Helper function to set sk_err on a 1-1 style socket. */ 963 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 964 { 965 struct sock *sk = asoc->base.sk; 966 967 if (!sctp_style(sk, UDP)) 968 sk->sk_err = error; 969 } 970 971 /* Helper function to generate an association change event */ 972 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 973 struct sctp_association *asoc, 974 u8 state) 975 { 976 struct sctp_ulpevent *ev; 977 978 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 979 asoc->c.sinit_num_ostreams, 980 asoc->c.sinit_max_instreams, 981 NULL, GFP_ATOMIC); 982 if (ev) 983 sctp_ulpq_tail_event(&asoc->ulpq, ev); 984 } 985 986 /* Helper function to generate an adaptation indication event */ 987 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 988 struct sctp_association *asoc) 989 { 990 struct sctp_ulpevent *ev; 991 992 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 993 994 if (ev) 995 sctp_ulpq_tail_event(&asoc->ulpq, ev); 996 } 997 998 999 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 1000 sctp_event_timeout_t timer, 1001 char *name) 1002 { 1003 struct sctp_transport *t; 1004 1005 t = asoc->init_last_sent_to; 1006 asoc->init_err_counter++; 1007 1008 if (t->init_sent_count > (asoc->init_cycle + 1)) { 1009 asoc->timeouts[timer] *= 2; 1010 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 1011 asoc->timeouts[timer] = asoc->max_init_timeo; 1012 } 1013 asoc->init_cycle++; 1014 1015 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" 1016 " cycle:%d timeout:%ld\n", __func__, name, 1017 asoc->init_err_counter, asoc->init_cycle, 1018 asoc->timeouts[timer]); 1019 } 1020 1021 } 1022 1023 /* Send the whole message, chunk by chunk, to the outqueue. 1024 * This way the whole message is queued up and bundling if 1025 * encouraged for small fragments. 1026 */ 1027 static int sctp_cmd_send_msg(struct sctp_association *asoc, 1028 struct sctp_datamsg *msg) 1029 { 1030 struct sctp_chunk *chunk; 1031 int error = 0; 1032 1033 list_for_each_entry(chunk, &msg->chunks, frag_list) { 1034 error = sctp_outq_tail(&asoc->outqueue, chunk); 1035 if (error) 1036 break; 1037 } 1038 1039 return error; 1040 } 1041 1042 1043 /* Sent the next ASCONF packet currently stored in the association. 1044 * This happens after the ASCONF_ACK was succeffully processed. 1045 */ 1046 static void sctp_cmd_send_asconf(struct sctp_association *asoc) 1047 { 1048 struct net *net = sock_net(asoc->base.sk); 1049 1050 /* Send the next asconf chunk from the addip chunk 1051 * queue. 1052 */ 1053 if (!list_empty(&asoc->addip_chunk_list)) { 1054 struct list_head *entry = asoc->addip_chunk_list.next; 1055 struct sctp_chunk *asconf = list_entry(entry, 1056 struct sctp_chunk, list); 1057 list_del_init(entry); 1058 1059 /* Hold the chunk until an ASCONF_ACK is received. */ 1060 sctp_chunk_hold(asconf); 1061 if (sctp_primitive_ASCONF(net, asoc, asconf)) 1062 sctp_chunk_free(asconf); 1063 else 1064 asoc->addip_last_asconf = asconf; 1065 } 1066 } 1067 1068 1069 /* These three macros allow us to pull the debugging code out of the 1070 * main flow of sctp_do_sm() to keep attention focused on the real 1071 * functionality there. 1072 */ 1073 #define debug_pre_sfn() \ 1074 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ 1075 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \ 1076 asoc, sctp_state_tbl[state], state_fn->name) 1077 1078 #define debug_post_sfn() \ 1079 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ 1080 sctp_status_tbl[status]) 1081 1082 #define debug_post_sfx() \ 1083 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ 1084 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 1085 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) 1086 1087 /* 1088 * This is the master state machine processing function. 1089 * 1090 * If you want to understand all of lksctp, this is a 1091 * good place to start. 1092 */ 1093 int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype, 1094 sctp_state_t state, 1095 struct sctp_endpoint *ep, 1096 struct sctp_association *asoc, 1097 void *event_arg, 1098 gfp_t gfp) 1099 { 1100 sctp_cmd_seq_t commands; 1101 const sctp_sm_table_entry_t *state_fn; 1102 sctp_disposition_t status; 1103 int error = 0; 1104 typedef const char *(printfn_t)(sctp_subtype_t); 1105 static printfn_t *table[] = { 1106 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1107 }; 1108 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1109 1110 /* Look up the state function, run it, and then process the 1111 * side effects. These three steps are the heart of lksctp. 1112 */ 1113 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); 1114 1115 sctp_init_cmd_seq(&commands); 1116 1117 debug_pre_sfn(); 1118 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands); 1119 debug_post_sfn(); 1120 1121 error = sctp_side_effects(event_type, subtype, state, 1122 ep, asoc, event_arg, status, 1123 &commands, gfp); 1124 debug_post_sfx(); 1125 1126 return error; 1127 } 1128 1129 /***************************************************************** 1130 * This the master state function side effect processing function. 1131 *****************************************************************/ 1132 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1133 sctp_state_t state, 1134 struct sctp_endpoint *ep, 1135 struct sctp_association *asoc, 1136 void *event_arg, 1137 sctp_disposition_t status, 1138 sctp_cmd_seq_t *commands, 1139 gfp_t gfp) 1140 { 1141 int error; 1142 1143 /* FIXME - Most of the dispositions left today would be categorized 1144 * as "exceptional" dispositions. For those dispositions, it 1145 * may not be proper to run through any of the commands at all. 1146 * For example, the command interpreter might be run only with 1147 * disposition SCTP_DISPOSITION_CONSUME. 1148 */ 1149 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1150 ep, asoc, 1151 event_arg, status, 1152 commands, gfp))) 1153 goto bail; 1154 1155 switch (status) { 1156 case SCTP_DISPOSITION_DISCARD: 1157 pr_debug("%s: ignored sctp protocol event - state:%d, " 1158 "event_type:%d, event_id:%d\n", __func__, state, 1159 event_type, subtype.chunk); 1160 break; 1161 1162 case SCTP_DISPOSITION_NOMEM: 1163 /* We ran out of memory, so we need to discard this 1164 * packet. 1165 */ 1166 /* BUG--we should now recover some memory, probably by 1167 * reneging... 1168 */ 1169 error = -ENOMEM; 1170 break; 1171 1172 case SCTP_DISPOSITION_DELETE_TCB: 1173 /* This should now be a command. */ 1174 break; 1175 1176 case SCTP_DISPOSITION_CONSUME: 1177 case SCTP_DISPOSITION_ABORT: 1178 /* 1179 * We should no longer have much work to do here as the 1180 * real work has been done as explicit commands above. 1181 */ 1182 break; 1183 1184 case SCTP_DISPOSITION_VIOLATION: 1185 net_err_ratelimited("protocol violation state %d chunkid %d\n", 1186 state, subtype.chunk); 1187 break; 1188 1189 case SCTP_DISPOSITION_NOT_IMPL: 1190 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", 1191 state, event_type, subtype.chunk); 1192 break; 1193 1194 case SCTP_DISPOSITION_BUG: 1195 pr_err("bug in state %d, event_type %d, event_id %d\n", 1196 state, event_type, subtype.chunk); 1197 BUG(); 1198 break; 1199 1200 default: 1201 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", 1202 status, state, event_type, subtype.chunk); 1203 BUG(); 1204 break; 1205 } 1206 1207 bail: 1208 return error; 1209 } 1210 1211 /******************************************************************** 1212 * 2nd Level Abstractions 1213 ********************************************************************/ 1214 1215 /* This is the side-effect interpreter. */ 1216 static int sctp_cmd_interpreter(sctp_event_t event_type, 1217 sctp_subtype_t subtype, 1218 sctp_state_t state, 1219 struct sctp_endpoint *ep, 1220 struct sctp_association *asoc, 1221 void *event_arg, 1222 sctp_disposition_t status, 1223 sctp_cmd_seq_t *commands, 1224 gfp_t gfp) 1225 { 1226 int error = 0; 1227 int force; 1228 sctp_cmd_t *cmd; 1229 struct sctp_chunk *new_obj; 1230 struct sctp_chunk *chunk = NULL; 1231 struct sctp_packet *packet; 1232 struct timer_list *timer; 1233 unsigned long timeout; 1234 struct sctp_transport *t; 1235 struct sctp_sackhdr sackh; 1236 int local_cork = 0; 1237 1238 if (SCTP_EVENT_T_TIMEOUT != event_type) 1239 chunk = event_arg; 1240 1241 /* Note: This whole file is a huge candidate for rework. 1242 * For example, each command could either have its own handler, so 1243 * the loop would look like: 1244 * while (cmds) 1245 * cmd->handle(x, y, z) 1246 * --jgrimm 1247 */ 1248 while (NULL != (cmd = sctp_next_cmd(commands))) { 1249 switch (cmd->verb) { 1250 case SCTP_CMD_NOP: 1251 /* Do nothing. */ 1252 break; 1253 1254 case SCTP_CMD_NEW_ASOC: 1255 /* Register a new association. */ 1256 if (local_cork) { 1257 sctp_outq_uncork(&asoc->outqueue); 1258 local_cork = 0; 1259 } 1260 1261 /* Register with the endpoint. */ 1262 asoc = cmd->obj.asoc; 1263 BUG_ON(asoc->peer.primary_path == NULL); 1264 sctp_endpoint_add_asoc(ep, asoc); 1265 sctp_hash_established(asoc); 1266 break; 1267 1268 case SCTP_CMD_UPDATE_ASSOC: 1269 sctp_assoc_update(asoc, cmd->obj.asoc); 1270 break; 1271 1272 case SCTP_CMD_PURGE_OUTQUEUE: 1273 sctp_outq_teardown(&asoc->outqueue); 1274 break; 1275 1276 case SCTP_CMD_DELETE_TCB: 1277 if (local_cork) { 1278 sctp_outq_uncork(&asoc->outqueue); 1279 local_cork = 0; 1280 } 1281 /* Delete the current association. */ 1282 sctp_cmd_delete_tcb(commands, asoc); 1283 asoc = NULL; 1284 break; 1285 1286 case SCTP_CMD_NEW_STATE: 1287 /* Enter a new state. */ 1288 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1289 break; 1290 1291 case SCTP_CMD_REPORT_TSN: 1292 /* Record the arrival of a TSN. */ 1293 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1294 cmd->obj.u32, NULL); 1295 break; 1296 1297 case SCTP_CMD_REPORT_FWDTSN: 1298 /* Move the Cumulattive TSN Ack ahead. */ 1299 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1300 1301 /* purge the fragmentation queue */ 1302 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1303 1304 /* Abort any in progress partial delivery. */ 1305 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1306 break; 1307 1308 case SCTP_CMD_PROCESS_FWDTSN: 1309 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk); 1310 break; 1311 1312 case SCTP_CMD_GEN_SACK: 1313 /* Generate a Selective ACK. 1314 * The argument tells us whether to just count 1315 * the packet and MAYBE generate a SACK, or 1316 * force a SACK out. 1317 */ 1318 force = cmd->obj.i32; 1319 error = sctp_gen_sack(asoc, force, commands); 1320 break; 1321 1322 case SCTP_CMD_PROCESS_SACK: 1323 /* Process an inbound SACK. */ 1324 error = sctp_cmd_process_sack(commands, asoc, 1325 cmd->obj.chunk); 1326 break; 1327 1328 case SCTP_CMD_GEN_INIT_ACK: 1329 /* Generate an INIT ACK chunk. */ 1330 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1331 0); 1332 if (!new_obj) 1333 goto nomem; 1334 1335 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1336 SCTP_CHUNK(new_obj)); 1337 break; 1338 1339 case SCTP_CMD_PEER_INIT: 1340 /* Process a unified INIT from the peer. 1341 * Note: Only used during INIT-ACK processing. If 1342 * there is an error just return to the outter 1343 * layer which will bail. 1344 */ 1345 error = sctp_cmd_process_init(commands, asoc, chunk, 1346 cmd->obj.init, gfp); 1347 break; 1348 1349 case SCTP_CMD_GEN_COOKIE_ECHO: 1350 /* Generate a COOKIE ECHO chunk. */ 1351 new_obj = sctp_make_cookie_echo(asoc, chunk); 1352 if (!new_obj) { 1353 if (cmd->obj.chunk) 1354 sctp_chunk_free(cmd->obj.chunk); 1355 goto nomem; 1356 } 1357 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1358 SCTP_CHUNK(new_obj)); 1359 1360 /* If there is an ERROR chunk to be sent along with 1361 * the COOKIE_ECHO, send it, too. 1362 */ 1363 if (cmd->obj.chunk) 1364 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1365 SCTP_CHUNK(cmd->obj.chunk)); 1366 1367 if (new_obj->transport) { 1368 new_obj->transport->init_sent_count++; 1369 asoc->init_last_sent_to = new_obj->transport; 1370 } 1371 1372 /* FIXME - Eventually come up with a cleaner way to 1373 * enabling COOKIE-ECHO + DATA bundling during 1374 * multihoming stale cookie scenarios, the following 1375 * command plays with asoc->peer.retran_path to 1376 * avoid the problem of sending the COOKIE-ECHO and 1377 * DATA in different paths, which could result 1378 * in the association being ABORTed if the DATA chunk 1379 * is processed first by the server. Checking the 1380 * init error counter simply causes this command 1381 * to be executed only during failed attempts of 1382 * association establishment. 1383 */ 1384 if ((asoc->peer.retran_path != 1385 asoc->peer.primary_path) && 1386 (asoc->init_err_counter > 0)) { 1387 sctp_add_cmd_sf(commands, 1388 SCTP_CMD_FORCE_PRIM_RETRAN, 1389 SCTP_NULL()); 1390 } 1391 1392 break; 1393 1394 case SCTP_CMD_GEN_SHUTDOWN: 1395 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1396 * Reset error counts. 1397 */ 1398 asoc->overall_error_count = 0; 1399 1400 /* Generate a SHUTDOWN chunk. */ 1401 new_obj = sctp_make_shutdown(asoc, chunk); 1402 if (!new_obj) 1403 goto nomem; 1404 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1405 SCTP_CHUNK(new_obj)); 1406 break; 1407 1408 case SCTP_CMD_CHUNK_ULP: 1409 /* Send a chunk to the sockets layer. */ 1410 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", 1411 __func__, cmd->obj.chunk, &asoc->ulpq); 1412 1413 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk, 1414 GFP_ATOMIC); 1415 break; 1416 1417 case SCTP_CMD_EVENT_ULP: 1418 /* Send a notification to the sockets layer. */ 1419 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", 1420 __func__, cmd->obj.ulpevent, &asoc->ulpq); 1421 1422 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent); 1423 break; 1424 1425 case SCTP_CMD_REPLY: 1426 /* If an caller has not already corked, do cork. */ 1427 if (!asoc->outqueue.cork) { 1428 sctp_outq_cork(&asoc->outqueue); 1429 local_cork = 1; 1430 } 1431 /* Send a chunk to our peer. */ 1432 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk); 1433 break; 1434 1435 case SCTP_CMD_SEND_PKT: 1436 /* Send a full packet to our peer. */ 1437 packet = cmd->obj.packet; 1438 sctp_packet_transmit(packet); 1439 sctp_ootb_pkt_free(packet); 1440 break; 1441 1442 case SCTP_CMD_T1_RETRAN: 1443 /* Mark a transport for retransmission. */ 1444 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1445 SCTP_RTXR_T1_RTX); 1446 break; 1447 1448 case SCTP_CMD_RETRAN: 1449 /* Mark a transport for retransmission. */ 1450 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1451 SCTP_RTXR_T3_RTX); 1452 break; 1453 1454 case SCTP_CMD_ECN_CE: 1455 /* Do delayed CE processing. */ 1456 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1457 break; 1458 1459 case SCTP_CMD_ECN_ECNE: 1460 /* Do delayed ECNE processing. */ 1461 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1462 chunk); 1463 if (new_obj) 1464 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1465 SCTP_CHUNK(new_obj)); 1466 break; 1467 1468 case SCTP_CMD_ECN_CWR: 1469 /* Do delayed CWR processing. */ 1470 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1471 break; 1472 1473 case SCTP_CMD_SETUP_T2: 1474 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); 1475 break; 1476 1477 case SCTP_CMD_TIMER_START_ONCE: 1478 timer = &asoc->timers[cmd->obj.to]; 1479 1480 if (timer_pending(timer)) 1481 break; 1482 /* fall through */ 1483 1484 case SCTP_CMD_TIMER_START: 1485 timer = &asoc->timers[cmd->obj.to]; 1486 timeout = asoc->timeouts[cmd->obj.to]; 1487 BUG_ON(!timeout); 1488 1489 timer->expires = jiffies + timeout; 1490 sctp_association_hold(asoc); 1491 add_timer(timer); 1492 break; 1493 1494 case SCTP_CMD_TIMER_RESTART: 1495 timer = &asoc->timers[cmd->obj.to]; 1496 timeout = asoc->timeouts[cmd->obj.to]; 1497 if (!mod_timer(timer, jiffies + timeout)) 1498 sctp_association_hold(asoc); 1499 break; 1500 1501 case SCTP_CMD_TIMER_STOP: 1502 timer = &asoc->timers[cmd->obj.to]; 1503 if (del_timer(timer)) 1504 sctp_association_put(asoc); 1505 break; 1506 1507 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1508 chunk = cmd->obj.chunk; 1509 t = sctp_assoc_choose_alter_transport(asoc, 1510 asoc->init_last_sent_to); 1511 asoc->init_last_sent_to = t; 1512 chunk->transport = t; 1513 t->init_sent_count++; 1514 /* Set the new transport as primary */ 1515 sctp_assoc_set_primary(asoc, t); 1516 break; 1517 1518 case SCTP_CMD_INIT_RESTART: 1519 /* Do the needed accounting and updates 1520 * associated with restarting an initialization 1521 * timer. Only multiply the timeout by two if 1522 * all transports have been tried at the current 1523 * timeout. 1524 */ 1525 sctp_cmd_t1_timer_update(asoc, 1526 SCTP_EVENT_TIMEOUT_T1_INIT, 1527 "INIT"); 1528 1529 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1530 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1531 break; 1532 1533 case SCTP_CMD_COOKIEECHO_RESTART: 1534 /* Do the needed accounting and updates 1535 * associated with restarting an initialization 1536 * timer. Only multiply the timeout by two if 1537 * all transports have been tried at the current 1538 * timeout. 1539 */ 1540 sctp_cmd_t1_timer_update(asoc, 1541 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1542 "COOKIE"); 1543 1544 /* If we've sent any data bundled with 1545 * COOKIE-ECHO we need to resend. 1546 */ 1547 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1548 transports) { 1549 sctp_retransmit_mark(&asoc->outqueue, t, 1550 SCTP_RTXR_T1_RTX); 1551 } 1552 1553 sctp_add_cmd_sf(commands, 1554 SCTP_CMD_TIMER_RESTART, 1555 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1556 break; 1557 1558 case SCTP_CMD_INIT_FAILED: 1559 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1560 break; 1561 1562 case SCTP_CMD_ASSOC_FAILED: 1563 sctp_cmd_assoc_failed(commands, asoc, event_type, 1564 subtype, chunk, cmd->obj.err); 1565 break; 1566 1567 case SCTP_CMD_INIT_COUNTER_INC: 1568 asoc->init_err_counter++; 1569 break; 1570 1571 case SCTP_CMD_INIT_COUNTER_RESET: 1572 asoc->init_err_counter = 0; 1573 asoc->init_cycle = 0; 1574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1575 transports) { 1576 t->init_sent_count = 0; 1577 } 1578 break; 1579 1580 case SCTP_CMD_REPORT_DUP: 1581 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1582 cmd->obj.u32); 1583 break; 1584 1585 case SCTP_CMD_REPORT_BAD_TAG: 1586 pr_debug("%s: vtag mismatch!\n", __func__); 1587 break; 1588 1589 case SCTP_CMD_STRIKE: 1590 /* Mark one strike against a transport. */ 1591 sctp_do_8_2_transport_strike(commands, asoc, 1592 cmd->obj.transport, 0); 1593 break; 1594 1595 case SCTP_CMD_TRANSPORT_IDLE: 1596 t = cmd->obj.transport; 1597 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1598 break; 1599 1600 case SCTP_CMD_TRANSPORT_HB_SENT: 1601 t = cmd->obj.transport; 1602 sctp_do_8_2_transport_strike(commands, asoc, 1603 t, 1); 1604 t->hb_sent = 1; 1605 break; 1606 1607 case SCTP_CMD_TRANSPORT_ON: 1608 t = cmd->obj.transport; 1609 sctp_cmd_transport_on(commands, asoc, t, chunk); 1610 break; 1611 1612 case SCTP_CMD_HB_TIMERS_START: 1613 sctp_cmd_hb_timers_start(commands, asoc); 1614 break; 1615 1616 case SCTP_CMD_HB_TIMER_UPDATE: 1617 t = cmd->obj.transport; 1618 sctp_cmd_hb_timer_update(commands, t); 1619 break; 1620 1621 case SCTP_CMD_HB_TIMERS_STOP: 1622 sctp_cmd_hb_timers_stop(commands, asoc); 1623 break; 1624 1625 case SCTP_CMD_REPORT_ERROR: 1626 error = cmd->obj.error; 1627 break; 1628 1629 case SCTP_CMD_PROCESS_CTSN: 1630 /* Dummy up a SACK for processing. */ 1631 sackh.cum_tsn_ack = cmd->obj.be32; 1632 sackh.a_rwnd = asoc->peer.rwnd + 1633 asoc->outqueue.outstanding_bytes; 1634 sackh.num_gap_ack_blocks = 0; 1635 sackh.num_dup_tsns = 0; 1636 chunk->subh.sack_hdr = &sackh; 1637 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1638 SCTP_CHUNK(chunk)); 1639 break; 1640 1641 case SCTP_CMD_DISCARD_PACKET: 1642 /* We need to discard the whole packet. 1643 * Uncork the queue since there might be 1644 * responses pending 1645 */ 1646 chunk->pdiscard = 1; 1647 if (asoc) { 1648 sctp_outq_uncork(&asoc->outqueue); 1649 local_cork = 0; 1650 } 1651 break; 1652 1653 case SCTP_CMD_RTO_PENDING: 1654 t = cmd->obj.transport; 1655 t->rto_pending = 1; 1656 break; 1657 1658 case SCTP_CMD_PART_DELIVER: 1659 sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC); 1660 break; 1661 1662 case SCTP_CMD_RENEGE: 1663 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk, 1664 GFP_ATOMIC); 1665 break; 1666 1667 case SCTP_CMD_SETUP_T4: 1668 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); 1669 break; 1670 1671 case SCTP_CMD_PROCESS_OPERR: 1672 sctp_cmd_process_operr(commands, asoc, chunk); 1673 break; 1674 case SCTP_CMD_CLEAR_INIT_TAG: 1675 asoc->peer.i.init_tag = 0; 1676 break; 1677 case SCTP_CMD_DEL_NON_PRIMARY: 1678 sctp_cmd_del_non_primary(asoc); 1679 break; 1680 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1681 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1682 break; 1683 case SCTP_CMD_FORCE_PRIM_RETRAN: 1684 t = asoc->peer.retran_path; 1685 asoc->peer.retran_path = asoc->peer.primary_path; 1686 error = sctp_outq_uncork(&asoc->outqueue); 1687 local_cork = 0; 1688 asoc->peer.retran_path = t; 1689 break; 1690 case SCTP_CMD_SET_SK_ERR: 1691 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1692 break; 1693 case SCTP_CMD_ASSOC_CHANGE: 1694 sctp_cmd_assoc_change(commands, asoc, 1695 cmd->obj.u8); 1696 break; 1697 case SCTP_CMD_ADAPTATION_IND: 1698 sctp_cmd_adaptation_ind(commands, asoc); 1699 break; 1700 1701 case SCTP_CMD_ASSOC_SHKEY: 1702 error = sctp_auth_asoc_init_active_key(asoc, 1703 GFP_ATOMIC); 1704 break; 1705 case SCTP_CMD_UPDATE_INITTAG: 1706 asoc->peer.i.init_tag = cmd->obj.u32; 1707 break; 1708 case SCTP_CMD_SEND_MSG: 1709 if (!asoc->outqueue.cork) { 1710 sctp_outq_cork(&asoc->outqueue); 1711 local_cork = 1; 1712 } 1713 error = sctp_cmd_send_msg(asoc, cmd->obj.msg); 1714 break; 1715 case SCTP_CMD_SEND_NEXT_ASCONF: 1716 sctp_cmd_send_asconf(asoc); 1717 break; 1718 case SCTP_CMD_PURGE_ASCONF_QUEUE: 1719 sctp_asconf_queue_teardown(asoc); 1720 break; 1721 1722 case SCTP_CMD_SET_ASOC: 1723 asoc = cmd->obj.asoc; 1724 break; 1725 1726 default: 1727 pr_warn("Impossible command: %u\n", 1728 cmd->verb); 1729 break; 1730 } 1731 1732 if (error) 1733 break; 1734 } 1735 1736 out: 1737 /* If this is in response to a received chunk, wait until 1738 * we are done with the packet to open the queue so that we don't 1739 * send multiple packets in response to a single request. 1740 */ 1741 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1742 if (chunk->end_of_packet || chunk->singleton) 1743 error = sctp_outq_uncork(&asoc->outqueue); 1744 } else if (local_cork) 1745 error = sctp_outq_uncork(&asoc->outqueue); 1746 return error; 1747 nomem: 1748 error = -ENOMEM; 1749 goto out; 1750 } 1751 1752