1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@austin.ibm.com> 36 * Hui Huang <hui.huang@nokia.com> 37 * Dajiang Zhang <dajiang.zhang@nokia.com> 38 * Daisy Chang <daisyc@us.ibm.com> 39 * Sridhar Samudrala <sri@us.ibm.com> 40 * Ardelle Fan <ardelle.fan@intel.com> 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #include <linux/skbuff.h> 46 #include <linux/types.h> 47 #include <linux/socket.h> 48 #include <linux/ip.h> 49 #include <linux/gfp.h> 50 #include <net/sock.h> 51 #include <net/sctp/sctp.h> 52 #include <net/sctp/sm.h> 53 54 static int sctp_cmd_interpreter(sctp_event_t event_type, 55 sctp_subtype_t subtype, 56 sctp_state_t state, 57 struct sctp_endpoint *ep, 58 struct sctp_association *asoc, 59 void *event_arg, 60 sctp_disposition_t status, 61 sctp_cmd_seq_t *commands, 62 gfp_t gfp); 63 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 64 sctp_state_t state, 65 struct sctp_endpoint *ep, 66 struct sctp_association **asoc, 67 void *event_arg, 68 sctp_disposition_t status, 69 sctp_cmd_seq_t *commands, 70 gfp_t gfp); 71 72 /******************************************************************** 73 * Helper functions 74 ********************************************************************/ 75 76 /* A helper function for delayed processing of INET ECN CE bit. */ 77 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 78 __u32 lowest_tsn) 79 { 80 /* Save the TSN away for comparison when we receive CWR */ 81 82 asoc->last_ecne_tsn = lowest_tsn; 83 asoc->need_ecne = 1; 84 } 85 86 /* Helper function for delayed processing of SCTP ECNE chunk. */ 87 /* RFC 2960 Appendix A 88 * 89 * RFC 2481 details a specific bit for a sender to send in 90 * the header of its next outbound TCP segment to indicate to 91 * its peer that it has reduced its congestion window. This 92 * is termed the CWR bit. For SCTP the same indication is made 93 * by including the CWR chunk. This chunk contains one data 94 * element, i.e. the TSN number that was sent in the ECNE chunk. 95 * This element represents the lowest TSN number in the datagram 96 * that was originally marked with the CE bit. 97 */ 98 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 99 __u32 lowest_tsn, 100 struct sctp_chunk *chunk) 101 { 102 struct sctp_chunk *repl; 103 104 /* Our previously transmitted packet ran into some congestion 105 * so we should take action by reducing cwnd and ssthresh 106 * and then ACK our peer that we we've done so by 107 * sending a CWR. 108 */ 109 110 /* First, try to determine if we want to actually lower 111 * our cwnd variables. Only lower them if the ECNE looks more 112 * recent than the last response. 113 */ 114 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 115 struct sctp_transport *transport; 116 117 /* Find which transport's congestion variables 118 * need to be adjusted. 119 */ 120 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 121 122 /* Update the congestion variables. */ 123 if (transport) 124 sctp_transport_lower_cwnd(transport, 125 SCTP_LOWER_CWND_ECNE); 126 asoc->last_cwr_tsn = lowest_tsn; 127 } 128 129 /* Always try to quiet the other end. In case of lost CWR, 130 * resend last_cwr_tsn. 131 */ 132 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 133 134 /* If we run out of memory, it will look like a lost CWR. We'll 135 * get back in sync eventually. 136 */ 137 return repl; 138 } 139 140 /* Helper function to do delayed processing of ECN CWR chunk. */ 141 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 142 __u32 lowest_tsn) 143 { 144 /* Turn off ECNE getting auto-prepended to every outgoing 145 * packet 146 */ 147 asoc->need_ecne = 0; 148 } 149 150 /* Generate SACK if necessary. We call this at the end of a packet. */ 151 static int sctp_gen_sack(struct sctp_association *asoc, int force, 152 sctp_cmd_seq_t *commands) 153 { 154 __u32 ctsn, max_tsn_seen; 155 struct sctp_chunk *sack; 156 struct sctp_transport *trans = asoc->peer.last_data_from; 157 int error = 0; 158 159 if (force || 160 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 161 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 162 asoc->peer.sack_needed = 1; 163 164 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 165 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 166 167 /* From 12.2 Parameters necessary per association (i.e. the TCB): 168 * 169 * Ack State : This flag indicates if the next received packet 170 * : is to be responded to with a SACK. ... 171 * : When DATA chunks are out of order, SACK's 172 * : are not delayed (see Section 6). 173 * 174 * [This is actually not mentioned in Section 6, but we 175 * implement it here anyway. --piggy] 176 */ 177 if (max_tsn_seen != ctsn) 178 asoc->peer.sack_needed = 1; 179 180 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 181 * 182 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 183 * an acknowledgement SHOULD be generated for at least every 184 * second packet (not every second DATA chunk) received, and 185 * SHOULD be generated within 200 ms of the arrival of any 186 * unacknowledged DATA chunk. ... 187 */ 188 if (!asoc->peer.sack_needed) { 189 asoc->peer.sack_cnt++; 190 191 /* Set the SACK delay timeout based on the 192 * SACK delay for the last transport 193 * data was received from, or the default 194 * for the association. 195 */ 196 if (trans) { 197 /* We will need a SACK for the next packet. */ 198 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 199 asoc->peer.sack_needed = 1; 200 201 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 202 trans->sackdelay; 203 } else { 204 /* We will need a SACK for the next packet. */ 205 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 206 asoc->peer.sack_needed = 1; 207 208 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 209 asoc->sackdelay; 210 } 211 212 /* Restart the SACK timer. */ 213 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 214 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 215 } else { 216 __u32 old_a_rwnd = asoc->a_rwnd; 217 218 asoc->a_rwnd = asoc->rwnd; 219 sack = sctp_make_sack(asoc); 220 if (!sack) { 221 asoc->a_rwnd = old_a_rwnd; 222 goto nomem; 223 } 224 225 asoc->peer.sack_needed = 0; 226 asoc->peer.sack_cnt = 0; 227 228 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 229 230 /* Stop the SACK timer. */ 231 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 232 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 233 } 234 235 return error; 236 nomem: 237 error = -ENOMEM; 238 return error; 239 } 240 241 /* When the T3-RTX timer expires, it calls this function to create the 242 * relevant state machine event. 243 */ 244 void sctp_generate_t3_rtx_event(unsigned long peer) 245 { 246 int error; 247 struct sctp_transport *transport = (struct sctp_transport *) peer; 248 struct sctp_association *asoc = transport->asoc; 249 struct sock *sk = asoc->base.sk; 250 struct net *net = sock_net(sk); 251 252 /* Check whether a task is in the sock. */ 253 254 bh_lock_sock(sk); 255 if (sock_owned_by_user(sk)) { 256 pr_debug("%s: sock is busy\n", __func__); 257 258 /* Try again later. */ 259 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 260 sctp_transport_hold(transport); 261 goto out_unlock; 262 } 263 264 /* Run through the state machine. */ 265 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 266 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 267 asoc->state, 268 asoc->ep, asoc, 269 transport, GFP_ATOMIC); 270 271 if (error) 272 sk->sk_err = -error; 273 274 out_unlock: 275 bh_unlock_sock(sk); 276 sctp_transport_put(transport); 277 } 278 279 /* This is a sa interface for producing timeout events. It works 280 * for timeouts which use the association as their parameter. 281 */ 282 static void sctp_generate_timeout_event(struct sctp_association *asoc, 283 sctp_event_timeout_t timeout_type) 284 { 285 struct sock *sk = asoc->base.sk; 286 struct net *net = sock_net(sk); 287 int error = 0; 288 289 bh_lock_sock(sk); 290 if (sock_owned_by_user(sk)) { 291 pr_debug("%s: sock is busy: timer %d\n", __func__, 292 timeout_type); 293 294 /* Try again later. */ 295 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 296 sctp_association_hold(asoc); 297 goto out_unlock; 298 } 299 300 /* Is this association really dead and just waiting around for 301 * the timer to let go of the reference? 302 */ 303 if (asoc->base.dead) 304 goto out_unlock; 305 306 /* Run through the state machine. */ 307 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 308 SCTP_ST_TIMEOUT(timeout_type), 309 asoc->state, asoc->ep, asoc, 310 (void *)timeout_type, GFP_ATOMIC); 311 312 if (error) 313 sk->sk_err = -error; 314 315 out_unlock: 316 bh_unlock_sock(sk); 317 sctp_association_put(asoc); 318 } 319 320 static void sctp_generate_t1_cookie_event(unsigned long data) 321 { 322 struct sctp_association *asoc = (struct sctp_association *) data; 323 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 324 } 325 326 static void sctp_generate_t1_init_event(unsigned long data) 327 { 328 struct sctp_association *asoc = (struct sctp_association *) data; 329 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 330 } 331 332 static void sctp_generate_t2_shutdown_event(unsigned long data) 333 { 334 struct sctp_association *asoc = (struct sctp_association *) data; 335 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 336 } 337 338 static void sctp_generate_t4_rto_event(unsigned long data) 339 { 340 struct sctp_association *asoc = (struct sctp_association *) data; 341 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 342 } 343 344 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 345 { 346 struct sctp_association *asoc = (struct sctp_association *)data; 347 sctp_generate_timeout_event(asoc, 348 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 349 350 } /* sctp_generate_t5_shutdown_guard_event() */ 351 352 static void sctp_generate_autoclose_event(unsigned long data) 353 { 354 struct sctp_association *asoc = (struct sctp_association *) data; 355 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 356 } 357 358 /* Generate a heart beat event. If the sock is busy, reschedule. Make 359 * sure that the transport is still valid. 360 */ 361 void sctp_generate_heartbeat_event(unsigned long data) 362 { 363 int error = 0; 364 struct sctp_transport *transport = (struct sctp_transport *) data; 365 struct sctp_association *asoc = transport->asoc; 366 struct sock *sk = asoc->base.sk; 367 struct net *net = sock_net(sk); 368 u32 elapsed, timeout; 369 370 bh_lock_sock(sk); 371 if (sock_owned_by_user(sk)) { 372 pr_debug("%s: sock is busy\n", __func__); 373 374 /* Try again later. */ 375 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 376 sctp_transport_hold(transport); 377 goto out_unlock; 378 } 379 380 /* Check if we should still send the heartbeat or reschedule */ 381 elapsed = jiffies - transport->last_time_sent; 382 timeout = sctp_transport_timeout(transport); 383 if (elapsed < timeout) { 384 elapsed = timeout - elapsed; 385 if (!mod_timer(&transport->hb_timer, jiffies + elapsed)) 386 sctp_transport_hold(transport); 387 goto out_unlock; 388 } 389 390 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 391 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 392 asoc->state, asoc->ep, asoc, 393 transport, GFP_ATOMIC); 394 395 if (error) 396 sk->sk_err = -error; 397 398 out_unlock: 399 bh_unlock_sock(sk); 400 sctp_transport_put(transport); 401 } 402 403 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger 404 * the correct state machine transition that will close the association. 405 */ 406 void sctp_generate_proto_unreach_event(unsigned long data) 407 { 408 struct sctp_transport *transport = (struct sctp_transport *) data; 409 struct sctp_association *asoc = transport->asoc; 410 struct sock *sk = asoc->base.sk; 411 struct net *net = sock_net(sk); 412 413 bh_lock_sock(sk); 414 if (sock_owned_by_user(sk)) { 415 pr_debug("%s: sock is busy\n", __func__); 416 417 /* Try again later. */ 418 if (!mod_timer(&transport->proto_unreach_timer, 419 jiffies + (HZ/20))) 420 sctp_association_hold(asoc); 421 goto out_unlock; 422 } 423 424 /* Is this structure just waiting around for us to actually 425 * get destroyed? 426 */ 427 if (asoc->base.dead) 428 goto out_unlock; 429 430 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 431 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 432 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); 433 434 out_unlock: 435 bh_unlock_sock(sk); 436 sctp_association_put(asoc); 437 } 438 439 /* Handle the timeout of the RE-CONFIG timer. */ 440 void sctp_generate_reconf_event(unsigned long data) 441 { 442 struct sctp_transport *transport = (struct sctp_transport *)data; 443 struct sctp_association *asoc = transport->asoc; 444 struct sock *sk = asoc->base.sk; 445 struct net *net = sock_net(sk); 446 int error = 0; 447 448 bh_lock_sock(sk); 449 if (sock_owned_by_user(sk)) { 450 pr_debug("%s: sock is busy\n", __func__); 451 452 /* Try again later. */ 453 if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20))) 454 sctp_transport_hold(transport); 455 goto out_unlock; 456 } 457 458 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 459 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF), 460 asoc->state, asoc->ep, asoc, 461 transport, GFP_ATOMIC); 462 463 if (error) 464 sk->sk_err = -error; 465 466 out_unlock: 467 bh_unlock_sock(sk); 468 sctp_transport_put(transport); 469 } 470 471 /* Inject a SACK Timeout event into the state machine. */ 472 static void sctp_generate_sack_event(unsigned long data) 473 { 474 struct sctp_association *asoc = (struct sctp_association *) data; 475 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 476 } 477 478 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 479 NULL, 480 sctp_generate_t1_cookie_event, 481 sctp_generate_t1_init_event, 482 sctp_generate_t2_shutdown_event, 483 NULL, 484 sctp_generate_t4_rto_event, 485 sctp_generate_t5_shutdown_guard_event, 486 NULL, 487 NULL, 488 sctp_generate_sack_event, 489 sctp_generate_autoclose_event, 490 }; 491 492 493 /* RFC 2960 8.2 Path Failure Detection 494 * 495 * When its peer endpoint is multi-homed, an endpoint should keep a 496 * error counter for each of the destination transport addresses of the 497 * peer endpoint. 498 * 499 * Each time the T3-rtx timer expires on any address, or when a 500 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 501 * the error counter of that destination address will be incremented. 502 * When the value in the error counter exceeds the protocol parameter 503 * 'Path.Max.Retrans' of that destination address, the endpoint should 504 * mark the destination transport address as inactive, and a 505 * notification SHOULD be sent to the upper layer. 506 * 507 */ 508 static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands, 509 struct sctp_association *asoc, 510 struct sctp_transport *transport, 511 int is_hb) 512 { 513 struct net *net = sock_net(asoc->base.sk); 514 515 /* The check for association's overall error counter exceeding the 516 * threshold is done in the state function. 517 */ 518 /* We are here due to a timer expiration. If the timer was 519 * not a HEARTBEAT, then normal error tracking is done. 520 * If the timer was a heartbeat, we only increment error counts 521 * when we already have an outstanding HEARTBEAT that has not 522 * been acknowledged. 523 * Additionally, some tranport states inhibit error increments. 524 */ 525 if (!is_hb) { 526 asoc->overall_error_count++; 527 if (transport->state != SCTP_INACTIVE) 528 transport->error_count++; 529 } else if (transport->hb_sent) { 530 if (transport->state != SCTP_UNCONFIRMED) 531 asoc->overall_error_count++; 532 if (transport->state != SCTP_INACTIVE) 533 transport->error_count++; 534 } 535 536 /* If the transport error count is greater than the pf_retrans 537 * threshold, and less than pathmaxrtx, and if the current state 538 * is SCTP_ACTIVE, then mark this transport as Partially Failed, 539 * see SCTP Quick Failover Draft, section 5.1 540 */ 541 if (net->sctp.pf_enable && 542 (transport->state == SCTP_ACTIVE) && 543 (asoc->pf_retrans < transport->pathmaxrxt) && 544 (transport->error_count > asoc->pf_retrans)) { 545 546 sctp_assoc_control_transport(asoc, transport, 547 SCTP_TRANSPORT_PF, 548 0); 549 550 /* Update the hb timer to resend a heartbeat every rto */ 551 sctp_transport_reset_hb_timer(transport); 552 } 553 554 if (transport->state != SCTP_INACTIVE && 555 (transport->error_count > transport->pathmaxrxt)) { 556 pr_debug("%s: association:%p transport addr:%pISpc failed\n", 557 __func__, asoc, &transport->ipaddr.sa); 558 559 sctp_assoc_control_transport(asoc, transport, 560 SCTP_TRANSPORT_DOWN, 561 SCTP_FAILED_THRESHOLD); 562 } 563 564 /* E2) For the destination address for which the timer 565 * expires, set RTO <- RTO * 2 ("back off the timer"). The 566 * maximum value discussed in rule C7 above (RTO.max) may be 567 * used to provide an upper bound to this doubling operation. 568 * 569 * Special Case: the first HB doesn't trigger exponential backoff. 570 * The first unacknowledged HB triggers it. We do this with a flag 571 * that indicates that we have an outstanding HB. 572 */ 573 if (!is_hb || transport->hb_sent) { 574 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 575 sctp_max_rto(asoc, transport); 576 } 577 } 578 579 /* Worker routine to handle INIT command failure. */ 580 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 581 struct sctp_association *asoc, 582 unsigned int error) 583 { 584 struct sctp_ulpevent *event; 585 586 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC, 587 (__u16)error, 0, 0, NULL, 588 GFP_ATOMIC); 589 590 if (event) 591 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 592 SCTP_ULPEVENT(event)); 593 594 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 595 SCTP_STATE(SCTP_STATE_CLOSED)); 596 597 /* SEND_FAILED sent later when cleaning up the association. */ 598 asoc->outqueue.error = error; 599 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 600 } 601 602 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 603 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 604 struct sctp_association *asoc, 605 sctp_event_t event_type, 606 sctp_subtype_t subtype, 607 struct sctp_chunk *chunk, 608 unsigned int error) 609 { 610 struct sctp_ulpevent *event; 611 struct sctp_chunk *abort; 612 /* Cancel any partial delivery in progress. */ 613 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 614 615 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 616 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 617 (__u16)error, 0, 0, chunk, 618 GFP_ATOMIC); 619 else 620 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 621 (__u16)error, 0, 0, NULL, 622 GFP_ATOMIC); 623 if (event) 624 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 625 SCTP_ULPEVENT(event)); 626 627 if (asoc->overall_error_count >= asoc->max_retrans) { 628 abort = sctp_make_violation_max_retrans(asoc, chunk); 629 if (abort) 630 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 631 SCTP_CHUNK(abort)); 632 } 633 634 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 635 SCTP_STATE(SCTP_STATE_CLOSED)); 636 637 /* SEND_FAILED sent later when cleaning up the association. */ 638 asoc->outqueue.error = error; 639 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 640 } 641 642 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 643 * inside the cookie. In reality, this is only used for INIT-ACK processing 644 * since all other cases use "temporary" associations and can do all 645 * their work in statefuns directly. 646 */ 647 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 648 struct sctp_association *asoc, 649 struct sctp_chunk *chunk, 650 sctp_init_chunk_t *peer_init, 651 gfp_t gfp) 652 { 653 int error; 654 655 /* We only process the init as a sideeffect in a single 656 * case. This is when we process the INIT-ACK. If we 657 * fail during INIT processing (due to malloc problems), 658 * just return the error and stop processing the stack. 659 */ 660 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) 661 error = -ENOMEM; 662 else 663 error = 0; 664 665 return error; 666 } 667 668 /* Helper function to break out starting up of heartbeat timers. */ 669 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 670 struct sctp_association *asoc) 671 { 672 struct sctp_transport *t; 673 674 /* Start a heartbeat timer for each transport on the association. 675 * hold a reference on the transport to make sure none of 676 * the needed data structures go away. 677 */ 678 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 679 sctp_transport_reset_hb_timer(t); 680 } 681 682 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 683 struct sctp_association *asoc) 684 { 685 struct sctp_transport *t; 686 687 /* Stop all heartbeat timers. */ 688 689 list_for_each_entry(t, &asoc->peer.transport_addr_list, 690 transports) { 691 if (del_timer(&t->hb_timer)) 692 sctp_transport_put(t); 693 } 694 } 695 696 /* Helper function to stop any pending T3-RTX timers */ 697 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 698 struct sctp_association *asoc) 699 { 700 struct sctp_transport *t; 701 702 list_for_each_entry(t, &asoc->peer.transport_addr_list, 703 transports) { 704 if (del_timer(&t->T3_rtx_timer)) 705 sctp_transport_put(t); 706 } 707 } 708 709 710 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 711 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 712 struct sctp_association *asoc, 713 struct sctp_transport *t, 714 struct sctp_chunk *chunk) 715 { 716 sctp_sender_hb_info_t *hbinfo; 717 int was_unconfirmed = 0; 718 719 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 720 * HEARTBEAT should clear the error counter of the destination 721 * transport address to which the HEARTBEAT was sent. 722 */ 723 t->error_count = 0; 724 725 /* 726 * Although RFC4960 specifies that the overall error count must 727 * be cleared when a HEARTBEAT ACK is received, we make an 728 * exception while in SHUTDOWN PENDING. If the peer keeps its 729 * window shut forever, we may never be able to transmit our 730 * outstanding data and rely on the retransmission limit be reached 731 * to shutdown the association. 732 */ 733 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) 734 t->asoc->overall_error_count = 0; 735 736 /* Clear the hb_sent flag to signal that we had a good 737 * acknowledgement. 738 */ 739 t->hb_sent = 0; 740 741 /* Mark the destination transport address as active if it is not so 742 * marked. 743 */ 744 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { 745 was_unconfirmed = 1; 746 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 747 SCTP_HEARTBEAT_SUCCESS); 748 } 749 750 if (t->state == SCTP_PF) 751 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 752 SCTP_HEARTBEAT_SUCCESS); 753 754 /* HB-ACK was received for a the proper HB. Consider this 755 * forward progress. 756 */ 757 if (t->dst) 758 sctp_transport_dst_confirm(t); 759 760 /* The receiver of the HEARTBEAT ACK should also perform an 761 * RTT measurement for that destination transport address 762 * using the time value carried in the HEARTBEAT ACK chunk. 763 * If the transport's rto_pending variable has been cleared, 764 * it was most likely due to a retransmit. However, we want 765 * to re-enable it to properly update the rto. 766 */ 767 if (t->rto_pending == 0) 768 t->rto_pending = 1; 769 770 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 771 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 772 773 /* Update the heartbeat timer. */ 774 sctp_transport_reset_hb_timer(t); 775 776 if (was_unconfirmed && asoc->peer.transport_count == 1) 777 sctp_transport_immediate_rtx(t); 778 } 779 780 781 /* Helper function to process the process SACK command. */ 782 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 783 struct sctp_association *asoc, 784 struct sctp_chunk *chunk) 785 { 786 int err = 0; 787 788 if (sctp_outq_sack(&asoc->outqueue, chunk)) { 789 struct net *net = sock_net(asoc->base.sk); 790 791 /* There are no more TSNs awaiting SACK. */ 792 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, 793 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 794 asoc->state, asoc->ep, asoc, NULL, 795 GFP_ATOMIC); 796 } 797 798 return err; 799 } 800 801 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 802 * the transport for a shutdown chunk. 803 */ 804 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 805 struct sctp_association *asoc, 806 struct sctp_chunk *chunk) 807 { 808 struct sctp_transport *t; 809 810 if (chunk->transport) 811 t = chunk->transport; 812 else { 813 t = sctp_assoc_choose_alter_transport(asoc, 814 asoc->shutdown_last_sent_to); 815 chunk->transport = t; 816 } 817 asoc->shutdown_last_sent_to = t; 818 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 819 } 820 821 /* Helper function to change the state of an association. */ 822 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 823 struct sctp_association *asoc, 824 sctp_state_t state) 825 { 826 struct sock *sk = asoc->base.sk; 827 828 asoc->state = state; 829 830 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); 831 832 if (sctp_style(sk, TCP)) { 833 /* Change the sk->sk_state of a TCP-style socket that has 834 * successfully completed a connect() call. 835 */ 836 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 837 sk->sk_state = SCTP_SS_ESTABLISHED; 838 839 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 840 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 841 sctp_sstate(sk, ESTABLISHED)) { 842 sk->sk_state = SCTP_SS_CLOSING; 843 sk->sk_shutdown |= RCV_SHUTDOWN; 844 } 845 } 846 847 if (sctp_state(asoc, COOKIE_WAIT)) { 848 /* Reset init timeouts since they may have been 849 * increased due to timer expirations. 850 */ 851 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 852 asoc->rto_initial; 853 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 854 asoc->rto_initial; 855 } 856 857 if (sctp_state(asoc, ESTABLISHED) || 858 sctp_state(asoc, CLOSED) || 859 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 860 /* Wake up any processes waiting in the asoc's wait queue in 861 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 862 */ 863 if (waitqueue_active(&asoc->wait)) 864 wake_up_interruptible(&asoc->wait); 865 866 /* Wake up any processes waiting in the sk's sleep queue of 867 * a TCP-style or UDP-style peeled-off socket in 868 * sctp_wait_for_accept() or sctp_wait_for_packet(). 869 * For a UDP-style socket, the waiters are woken up by the 870 * notifications. 871 */ 872 if (!sctp_style(sk, UDP)) 873 sk->sk_state_change(sk); 874 } 875 } 876 877 /* Helper function to delete an association. */ 878 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 879 struct sctp_association *asoc) 880 { 881 struct sock *sk = asoc->base.sk; 882 883 /* If it is a non-temporary association belonging to a TCP-style 884 * listening socket that is not closed, do not free it so that accept() 885 * can pick it up later. 886 */ 887 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 888 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 889 return; 890 891 sctp_association_free(asoc); 892 } 893 894 /* 895 * ADDIP Section 4.1 ASCONF Chunk Procedures 896 * A4) Start a T-4 RTO timer, using the RTO value of the selected 897 * destination address (we use active path instead of primary path just 898 * because primary path may be inactive. 899 */ 900 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 901 struct sctp_association *asoc, 902 struct sctp_chunk *chunk) 903 { 904 struct sctp_transport *t; 905 906 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 907 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 908 chunk->transport = t; 909 } 910 911 /* Process an incoming Operation Error Chunk. */ 912 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 913 struct sctp_association *asoc, 914 struct sctp_chunk *chunk) 915 { 916 struct sctp_errhdr *err_hdr; 917 struct sctp_ulpevent *ev; 918 919 while (chunk->chunk_end > chunk->skb->data) { 920 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 921 922 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 923 GFP_ATOMIC); 924 if (!ev) 925 return; 926 927 sctp_ulpq_tail_event(&asoc->ulpq, ev); 928 929 switch (err_hdr->cause) { 930 case SCTP_ERROR_UNKNOWN_CHUNK: 931 { 932 sctp_chunkhdr_t *unk_chunk_hdr; 933 934 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 935 switch (unk_chunk_hdr->type) { 936 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 937 * an ERROR chunk reporting that it did not recognized 938 * the ASCONF chunk type, the sender of the ASCONF MUST 939 * NOT send any further ASCONF chunks and MUST stop its 940 * T-4 timer. 941 */ 942 case SCTP_CID_ASCONF: 943 if (asoc->peer.asconf_capable == 0) 944 break; 945 946 asoc->peer.asconf_capable = 0; 947 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 948 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 949 break; 950 default: 951 break; 952 } 953 break; 954 } 955 default: 956 break; 957 } 958 } 959 } 960 961 /* Process variable FWDTSN chunk information. */ 962 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 963 struct sctp_chunk *chunk) 964 { 965 struct sctp_fwdtsn_skip *skip; 966 /* Walk through all the skipped SSNs */ 967 sctp_walk_fwdtsn(skip, chunk) { 968 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 969 } 970 } 971 972 /* Helper function to remove the association non-primary peer 973 * transports. 974 */ 975 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 976 { 977 struct sctp_transport *t; 978 struct list_head *pos; 979 struct list_head *temp; 980 981 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 982 t = list_entry(pos, struct sctp_transport, transports); 983 if (!sctp_cmp_addr_exact(&t->ipaddr, 984 &asoc->peer.primary_addr)) { 985 sctp_assoc_rm_peer(asoc, t); 986 } 987 } 988 } 989 990 /* Helper function to set sk_err on a 1-1 style socket. */ 991 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 992 { 993 struct sock *sk = asoc->base.sk; 994 995 if (!sctp_style(sk, UDP)) 996 sk->sk_err = error; 997 } 998 999 /* Helper function to generate an association change event */ 1000 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 1001 struct sctp_association *asoc, 1002 u8 state) 1003 { 1004 struct sctp_ulpevent *ev; 1005 1006 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 1007 asoc->c.sinit_num_ostreams, 1008 asoc->c.sinit_max_instreams, 1009 NULL, GFP_ATOMIC); 1010 if (ev) 1011 sctp_ulpq_tail_event(&asoc->ulpq, ev); 1012 } 1013 1014 /* Helper function to generate an adaptation indication event */ 1015 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 1016 struct sctp_association *asoc) 1017 { 1018 struct sctp_ulpevent *ev; 1019 1020 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 1021 1022 if (ev) 1023 sctp_ulpq_tail_event(&asoc->ulpq, ev); 1024 } 1025 1026 1027 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 1028 sctp_event_timeout_t timer, 1029 char *name) 1030 { 1031 struct sctp_transport *t; 1032 1033 t = asoc->init_last_sent_to; 1034 asoc->init_err_counter++; 1035 1036 if (t->init_sent_count > (asoc->init_cycle + 1)) { 1037 asoc->timeouts[timer] *= 2; 1038 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 1039 asoc->timeouts[timer] = asoc->max_init_timeo; 1040 } 1041 asoc->init_cycle++; 1042 1043 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" 1044 " cycle:%d timeout:%ld\n", __func__, name, 1045 asoc->init_err_counter, asoc->init_cycle, 1046 asoc->timeouts[timer]); 1047 } 1048 1049 } 1050 1051 /* Send the whole message, chunk by chunk, to the outqueue. 1052 * This way the whole message is queued up and bundling if 1053 * encouraged for small fragments. 1054 */ 1055 static void sctp_cmd_send_msg(struct sctp_association *asoc, 1056 struct sctp_datamsg *msg, gfp_t gfp) 1057 { 1058 struct sctp_chunk *chunk; 1059 1060 list_for_each_entry(chunk, &msg->chunks, frag_list) 1061 sctp_outq_tail(&asoc->outqueue, chunk, gfp); 1062 } 1063 1064 1065 /* Sent the next ASCONF packet currently stored in the association. 1066 * This happens after the ASCONF_ACK was succeffully processed. 1067 */ 1068 static void sctp_cmd_send_asconf(struct sctp_association *asoc) 1069 { 1070 struct net *net = sock_net(asoc->base.sk); 1071 1072 /* Send the next asconf chunk from the addip chunk 1073 * queue. 1074 */ 1075 if (!list_empty(&asoc->addip_chunk_list)) { 1076 struct list_head *entry = asoc->addip_chunk_list.next; 1077 struct sctp_chunk *asconf = list_entry(entry, 1078 struct sctp_chunk, list); 1079 list_del_init(entry); 1080 1081 /* Hold the chunk until an ASCONF_ACK is received. */ 1082 sctp_chunk_hold(asconf); 1083 if (sctp_primitive_ASCONF(net, asoc, asconf)) 1084 sctp_chunk_free(asconf); 1085 else 1086 asoc->addip_last_asconf = asconf; 1087 } 1088 } 1089 1090 1091 /* These three macros allow us to pull the debugging code out of the 1092 * main flow of sctp_do_sm() to keep attention focused on the real 1093 * functionality there. 1094 */ 1095 #define debug_pre_sfn() \ 1096 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ 1097 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \ 1098 asoc, sctp_state_tbl[state], state_fn->name) 1099 1100 #define debug_post_sfn() \ 1101 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ 1102 sctp_status_tbl[status]) 1103 1104 #define debug_post_sfx() \ 1105 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ 1106 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 1107 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) 1108 1109 /* 1110 * This is the master state machine processing function. 1111 * 1112 * If you want to understand all of lksctp, this is a 1113 * good place to start. 1114 */ 1115 int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype, 1116 sctp_state_t state, 1117 struct sctp_endpoint *ep, 1118 struct sctp_association *asoc, 1119 void *event_arg, 1120 gfp_t gfp) 1121 { 1122 sctp_cmd_seq_t commands; 1123 const sctp_sm_table_entry_t *state_fn; 1124 sctp_disposition_t status; 1125 int error = 0; 1126 typedef const char *(printfn_t)(sctp_subtype_t); 1127 static printfn_t *table[] = { 1128 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1129 }; 1130 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1131 1132 /* Look up the state function, run it, and then process the 1133 * side effects. These three steps are the heart of lksctp. 1134 */ 1135 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); 1136 1137 sctp_init_cmd_seq(&commands); 1138 1139 debug_pre_sfn(); 1140 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands); 1141 debug_post_sfn(); 1142 1143 error = sctp_side_effects(event_type, subtype, state, 1144 ep, &asoc, event_arg, status, 1145 &commands, gfp); 1146 debug_post_sfx(); 1147 1148 return error; 1149 } 1150 1151 /***************************************************************** 1152 * This the master state function side effect processing function. 1153 *****************************************************************/ 1154 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1155 sctp_state_t state, 1156 struct sctp_endpoint *ep, 1157 struct sctp_association **asoc, 1158 void *event_arg, 1159 sctp_disposition_t status, 1160 sctp_cmd_seq_t *commands, 1161 gfp_t gfp) 1162 { 1163 int error; 1164 1165 /* FIXME - Most of the dispositions left today would be categorized 1166 * as "exceptional" dispositions. For those dispositions, it 1167 * may not be proper to run through any of the commands at all. 1168 * For example, the command interpreter might be run only with 1169 * disposition SCTP_DISPOSITION_CONSUME. 1170 */ 1171 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1172 ep, *asoc, 1173 event_arg, status, 1174 commands, gfp))) 1175 goto bail; 1176 1177 switch (status) { 1178 case SCTP_DISPOSITION_DISCARD: 1179 pr_debug("%s: ignored sctp protocol event - state:%d, " 1180 "event_type:%d, event_id:%d\n", __func__, state, 1181 event_type, subtype.chunk); 1182 break; 1183 1184 case SCTP_DISPOSITION_NOMEM: 1185 /* We ran out of memory, so we need to discard this 1186 * packet. 1187 */ 1188 /* BUG--we should now recover some memory, probably by 1189 * reneging... 1190 */ 1191 error = -ENOMEM; 1192 break; 1193 1194 case SCTP_DISPOSITION_DELETE_TCB: 1195 case SCTP_DISPOSITION_ABORT: 1196 /* This should now be a command. */ 1197 *asoc = NULL; 1198 break; 1199 1200 case SCTP_DISPOSITION_CONSUME: 1201 /* 1202 * We should no longer have much work to do here as the 1203 * real work has been done as explicit commands above. 1204 */ 1205 break; 1206 1207 case SCTP_DISPOSITION_VIOLATION: 1208 net_err_ratelimited("protocol violation state %d chunkid %d\n", 1209 state, subtype.chunk); 1210 break; 1211 1212 case SCTP_DISPOSITION_NOT_IMPL: 1213 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", 1214 state, event_type, subtype.chunk); 1215 break; 1216 1217 case SCTP_DISPOSITION_BUG: 1218 pr_err("bug in state %d, event_type %d, event_id %d\n", 1219 state, event_type, subtype.chunk); 1220 BUG(); 1221 break; 1222 1223 default: 1224 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", 1225 status, state, event_type, subtype.chunk); 1226 BUG(); 1227 break; 1228 } 1229 1230 bail: 1231 return error; 1232 } 1233 1234 /******************************************************************** 1235 * 2nd Level Abstractions 1236 ********************************************************************/ 1237 1238 /* This is the side-effect interpreter. */ 1239 static int sctp_cmd_interpreter(sctp_event_t event_type, 1240 sctp_subtype_t subtype, 1241 sctp_state_t state, 1242 struct sctp_endpoint *ep, 1243 struct sctp_association *asoc, 1244 void *event_arg, 1245 sctp_disposition_t status, 1246 sctp_cmd_seq_t *commands, 1247 gfp_t gfp) 1248 { 1249 struct sock *sk = ep->base.sk; 1250 struct sctp_sock *sp = sctp_sk(sk); 1251 int error = 0; 1252 int force; 1253 sctp_cmd_t *cmd; 1254 struct sctp_chunk *new_obj; 1255 struct sctp_chunk *chunk = NULL; 1256 struct sctp_packet *packet; 1257 struct timer_list *timer; 1258 unsigned long timeout; 1259 struct sctp_transport *t; 1260 struct sctp_sackhdr sackh; 1261 int local_cork = 0; 1262 1263 if (SCTP_EVENT_T_TIMEOUT != event_type) 1264 chunk = event_arg; 1265 1266 /* Note: This whole file is a huge candidate for rework. 1267 * For example, each command could either have its own handler, so 1268 * the loop would look like: 1269 * while (cmds) 1270 * cmd->handle(x, y, z) 1271 * --jgrimm 1272 */ 1273 while (NULL != (cmd = sctp_next_cmd(commands))) { 1274 switch (cmd->verb) { 1275 case SCTP_CMD_NOP: 1276 /* Do nothing. */ 1277 break; 1278 1279 case SCTP_CMD_NEW_ASOC: 1280 /* Register a new association. */ 1281 if (local_cork) { 1282 sctp_outq_uncork(&asoc->outqueue, gfp); 1283 local_cork = 0; 1284 } 1285 1286 /* Register with the endpoint. */ 1287 asoc = cmd->obj.asoc; 1288 BUG_ON(asoc->peer.primary_path == NULL); 1289 sctp_endpoint_add_asoc(ep, asoc); 1290 break; 1291 1292 case SCTP_CMD_UPDATE_ASSOC: 1293 sctp_assoc_update(asoc, cmd->obj.asoc); 1294 break; 1295 1296 case SCTP_CMD_PURGE_OUTQUEUE: 1297 sctp_outq_teardown(&asoc->outqueue); 1298 break; 1299 1300 case SCTP_CMD_DELETE_TCB: 1301 if (local_cork) { 1302 sctp_outq_uncork(&asoc->outqueue, gfp); 1303 local_cork = 0; 1304 } 1305 /* Delete the current association. */ 1306 sctp_cmd_delete_tcb(commands, asoc); 1307 asoc = NULL; 1308 break; 1309 1310 case SCTP_CMD_NEW_STATE: 1311 /* Enter a new state. */ 1312 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1313 break; 1314 1315 case SCTP_CMD_REPORT_TSN: 1316 /* Record the arrival of a TSN. */ 1317 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1318 cmd->obj.u32, NULL); 1319 break; 1320 1321 case SCTP_CMD_REPORT_FWDTSN: 1322 /* Move the Cumulattive TSN Ack ahead. */ 1323 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1324 1325 /* purge the fragmentation queue */ 1326 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1327 1328 /* Abort any in progress partial delivery. */ 1329 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1330 break; 1331 1332 case SCTP_CMD_PROCESS_FWDTSN: 1333 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk); 1334 break; 1335 1336 case SCTP_CMD_GEN_SACK: 1337 /* Generate a Selective ACK. 1338 * The argument tells us whether to just count 1339 * the packet and MAYBE generate a SACK, or 1340 * force a SACK out. 1341 */ 1342 force = cmd->obj.i32; 1343 error = sctp_gen_sack(asoc, force, commands); 1344 break; 1345 1346 case SCTP_CMD_PROCESS_SACK: 1347 /* Process an inbound SACK. */ 1348 error = sctp_cmd_process_sack(commands, asoc, 1349 cmd->obj.chunk); 1350 break; 1351 1352 case SCTP_CMD_GEN_INIT_ACK: 1353 /* Generate an INIT ACK chunk. */ 1354 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1355 0); 1356 if (!new_obj) 1357 goto nomem; 1358 1359 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1360 SCTP_CHUNK(new_obj)); 1361 break; 1362 1363 case SCTP_CMD_PEER_INIT: 1364 /* Process a unified INIT from the peer. 1365 * Note: Only used during INIT-ACK processing. If 1366 * there is an error just return to the outter 1367 * layer which will bail. 1368 */ 1369 error = sctp_cmd_process_init(commands, asoc, chunk, 1370 cmd->obj.init, gfp); 1371 break; 1372 1373 case SCTP_CMD_GEN_COOKIE_ECHO: 1374 /* Generate a COOKIE ECHO chunk. */ 1375 new_obj = sctp_make_cookie_echo(asoc, chunk); 1376 if (!new_obj) { 1377 if (cmd->obj.chunk) 1378 sctp_chunk_free(cmd->obj.chunk); 1379 goto nomem; 1380 } 1381 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1382 SCTP_CHUNK(new_obj)); 1383 1384 /* If there is an ERROR chunk to be sent along with 1385 * the COOKIE_ECHO, send it, too. 1386 */ 1387 if (cmd->obj.chunk) 1388 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1389 SCTP_CHUNK(cmd->obj.chunk)); 1390 1391 if (new_obj->transport) { 1392 new_obj->transport->init_sent_count++; 1393 asoc->init_last_sent_to = new_obj->transport; 1394 } 1395 1396 /* FIXME - Eventually come up with a cleaner way to 1397 * enabling COOKIE-ECHO + DATA bundling during 1398 * multihoming stale cookie scenarios, the following 1399 * command plays with asoc->peer.retran_path to 1400 * avoid the problem of sending the COOKIE-ECHO and 1401 * DATA in different paths, which could result 1402 * in the association being ABORTed if the DATA chunk 1403 * is processed first by the server. Checking the 1404 * init error counter simply causes this command 1405 * to be executed only during failed attempts of 1406 * association establishment. 1407 */ 1408 if ((asoc->peer.retran_path != 1409 asoc->peer.primary_path) && 1410 (asoc->init_err_counter > 0)) { 1411 sctp_add_cmd_sf(commands, 1412 SCTP_CMD_FORCE_PRIM_RETRAN, 1413 SCTP_NULL()); 1414 } 1415 1416 break; 1417 1418 case SCTP_CMD_GEN_SHUTDOWN: 1419 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1420 * Reset error counts. 1421 */ 1422 asoc->overall_error_count = 0; 1423 1424 /* Generate a SHUTDOWN chunk. */ 1425 new_obj = sctp_make_shutdown(asoc, chunk); 1426 if (!new_obj) 1427 goto nomem; 1428 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1429 SCTP_CHUNK(new_obj)); 1430 break; 1431 1432 case SCTP_CMD_CHUNK_ULP: 1433 /* Send a chunk to the sockets layer. */ 1434 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", 1435 __func__, cmd->obj.chunk, &asoc->ulpq); 1436 1437 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk, 1438 GFP_ATOMIC); 1439 break; 1440 1441 case SCTP_CMD_EVENT_ULP: 1442 /* Send a notification to the sockets layer. */ 1443 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", 1444 __func__, cmd->obj.ulpevent, &asoc->ulpq); 1445 1446 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent); 1447 break; 1448 1449 case SCTP_CMD_REPLY: 1450 /* If an caller has not already corked, do cork. */ 1451 if (!asoc->outqueue.cork) { 1452 sctp_outq_cork(&asoc->outqueue); 1453 local_cork = 1; 1454 } 1455 /* Send a chunk to our peer. */ 1456 sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp); 1457 break; 1458 1459 case SCTP_CMD_SEND_PKT: 1460 /* Send a full packet to our peer. */ 1461 packet = cmd->obj.packet; 1462 sctp_packet_transmit(packet, gfp); 1463 sctp_ootb_pkt_free(packet); 1464 break; 1465 1466 case SCTP_CMD_T1_RETRAN: 1467 /* Mark a transport for retransmission. */ 1468 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1469 SCTP_RTXR_T1_RTX); 1470 break; 1471 1472 case SCTP_CMD_RETRAN: 1473 /* Mark a transport for retransmission. */ 1474 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1475 SCTP_RTXR_T3_RTX); 1476 break; 1477 1478 case SCTP_CMD_ECN_CE: 1479 /* Do delayed CE processing. */ 1480 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1481 break; 1482 1483 case SCTP_CMD_ECN_ECNE: 1484 /* Do delayed ECNE processing. */ 1485 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1486 chunk); 1487 if (new_obj) 1488 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1489 SCTP_CHUNK(new_obj)); 1490 break; 1491 1492 case SCTP_CMD_ECN_CWR: 1493 /* Do delayed CWR processing. */ 1494 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1495 break; 1496 1497 case SCTP_CMD_SETUP_T2: 1498 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); 1499 break; 1500 1501 case SCTP_CMD_TIMER_START_ONCE: 1502 timer = &asoc->timers[cmd->obj.to]; 1503 1504 if (timer_pending(timer)) 1505 break; 1506 /* fall through */ 1507 1508 case SCTP_CMD_TIMER_START: 1509 timer = &asoc->timers[cmd->obj.to]; 1510 timeout = asoc->timeouts[cmd->obj.to]; 1511 BUG_ON(!timeout); 1512 1513 timer->expires = jiffies + timeout; 1514 sctp_association_hold(asoc); 1515 add_timer(timer); 1516 break; 1517 1518 case SCTP_CMD_TIMER_RESTART: 1519 timer = &asoc->timers[cmd->obj.to]; 1520 timeout = asoc->timeouts[cmd->obj.to]; 1521 if (!mod_timer(timer, jiffies + timeout)) 1522 sctp_association_hold(asoc); 1523 break; 1524 1525 case SCTP_CMD_TIMER_STOP: 1526 timer = &asoc->timers[cmd->obj.to]; 1527 if (del_timer(timer)) 1528 sctp_association_put(asoc); 1529 break; 1530 1531 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1532 chunk = cmd->obj.chunk; 1533 t = sctp_assoc_choose_alter_transport(asoc, 1534 asoc->init_last_sent_to); 1535 asoc->init_last_sent_to = t; 1536 chunk->transport = t; 1537 t->init_sent_count++; 1538 /* Set the new transport as primary */ 1539 sctp_assoc_set_primary(asoc, t); 1540 break; 1541 1542 case SCTP_CMD_INIT_RESTART: 1543 /* Do the needed accounting and updates 1544 * associated with restarting an initialization 1545 * timer. Only multiply the timeout by two if 1546 * all transports have been tried at the current 1547 * timeout. 1548 */ 1549 sctp_cmd_t1_timer_update(asoc, 1550 SCTP_EVENT_TIMEOUT_T1_INIT, 1551 "INIT"); 1552 1553 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1554 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1555 break; 1556 1557 case SCTP_CMD_COOKIEECHO_RESTART: 1558 /* Do the needed accounting and updates 1559 * associated with restarting an initialization 1560 * timer. Only multiply the timeout by two if 1561 * all transports have been tried at the current 1562 * timeout. 1563 */ 1564 sctp_cmd_t1_timer_update(asoc, 1565 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1566 "COOKIE"); 1567 1568 /* If we've sent any data bundled with 1569 * COOKIE-ECHO we need to resend. 1570 */ 1571 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1572 transports) { 1573 sctp_retransmit_mark(&asoc->outqueue, t, 1574 SCTP_RTXR_T1_RTX); 1575 } 1576 1577 sctp_add_cmd_sf(commands, 1578 SCTP_CMD_TIMER_RESTART, 1579 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1580 break; 1581 1582 case SCTP_CMD_INIT_FAILED: 1583 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1584 break; 1585 1586 case SCTP_CMD_ASSOC_FAILED: 1587 sctp_cmd_assoc_failed(commands, asoc, event_type, 1588 subtype, chunk, cmd->obj.err); 1589 break; 1590 1591 case SCTP_CMD_INIT_COUNTER_INC: 1592 asoc->init_err_counter++; 1593 break; 1594 1595 case SCTP_CMD_INIT_COUNTER_RESET: 1596 asoc->init_err_counter = 0; 1597 asoc->init_cycle = 0; 1598 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1599 transports) { 1600 t->init_sent_count = 0; 1601 } 1602 break; 1603 1604 case SCTP_CMD_REPORT_DUP: 1605 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1606 cmd->obj.u32); 1607 break; 1608 1609 case SCTP_CMD_REPORT_BAD_TAG: 1610 pr_debug("%s: vtag mismatch!\n", __func__); 1611 break; 1612 1613 case SCTP_CMD_STRIKE: 1614 /* Mark one strike against a transport. */ 1615 sctp_do_8_2_transport_strike(commands, asoc, 1616 cmd->obj.transport, 0); 1617 break; 1618 1619 case SCTP_CMD_TRANSPORT_IDLE: 1620 t = cmd->obj.transport; 1621 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1622 break; 1623 1624 case SCTP_CMD_TRANSPORT_HB_SENT: 1625 t = cmd->obj.transport; 1626 sctp_do_8_2_transport_strike(commands, asoc, 1627 t, 1); 1628 t->hb_sent = 1; 1629 break; 1630 1631 case SCTP_CMD_TRANSPORT_ON: 1632 t = cmd->obj.transport; 1633 sctp_cmd_transport_on(commands, asoc, t, chunk); 1634 break; 1635 1636 case SCTP_CMD_HB_TIMERS_START: 1637 sctp_cmd_hb_timers_start(commands, asoc); 1638 break; 1639 1640 case SCTP_CMD_HB_TIMER_UPDATE: 1641 t = cmd->obj.transport; 1642 sctp_transport_reset_hb_timer(t); 1643 break; 1644 1645 case SCTP_CMD_HB_TIMERS_STOP: 1646 sctp_cmd_hb_timers_stop(commands, asoc); 1647 break; 1648 1649 case SCTP_CMD_REPORT_ERROR: 1650 error = cmd->obj.error; 1651 break; 1652 1653 case SCTP_CMD_PROCESS_CTSN: 1654 /* Dummy up a SACK for processing. */ 1655 sackh.cum_tsn_ack = cmd->obj.be32; 1656 sackh.a_rwnd = asoc->peer.rwnd + 1657 asoc->outqueue.outstanding_bytes; 1658 sackh.num_gap_ack_blocks = 0; 1659 sackh.num_dup_tsns = 0; 1660 chunk->subh.sack_hdr = &sackh; 1661 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1662 SCTP_CHUNK(chunk)); 1663 break; 1664 1665 case SCTP_CMD_DISCARD_PACKET: 1666 /* We need to discard the whole packet. 1667 * Uncork the queue since there might be 1668 * responses pending 1669 */ 1670 chunk->pdiscard = 1; 1671 if (asoc) { 1672 sctp_outq_uncork(&asoc->outqueue, gfp); 1673 local_cork = 0; 1674 } 1675 break; 1676 1677 case SCTP_CMD_RTO_PENDING: 1678 t = cmd->obj.transport; 1679 t->rto_pending = 1; 1680 break; 1681 1682 case SCTP_CMD_PART_DELIVER: 1683 sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC); 1684 break; 1685 1686 case SCTP_CMD_RENEGE: 1687 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk, 1688 GFP_ATOMIC); 1689 break; 1690 1691 case SCTP_CMD_SETUP_T4: 1692 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); 1693 break; 1694 1695 case SCTP_CMD_PROCESS_OPERR: 1696 sctp_cmd_process_operr(commands, asoc, chunk); 1697 break; 1698 case SCTP_CMD_CLEAR_INIT_TAG: 1699 asoc->peer.i.init_tag = 0; 1700 break; 1701 case SCTP_CMD_DEL_NON_PRIMARY: 1702 sctp_cmd_del_non_primary(asoc); 1703 break; 1704 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1705 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1706 break; 1707 case SCTP_CMD_FORCE_PRIM_RETRAN: 1708 t = asoc->peer.retran_path; 1709 asoc->peer.retran_path = asoc->peer.primary_path; 1710 sctp_outq_uncork(&asoc->outqueue, gfp); 1711 local_cork = 0; 1712 asoc->peer.retran_path = t; 1713 break; 1714 case SCTP_CMD_SET_SK_ERR: 1715 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1716 break; 1717 case SCTP_CMD_ASSOC_CHANGE: 1718 sctp_cmd_assoc_change(commands, asoc, 1719 cmd->obj.u8); 1720 break; 1721 case SCTP_CMD_ADAPTATION_IND: 1722 sctp_cmd_adaptation_ind(commands, asoc); 1723 break; 1724 1725 case SCTP_CMD_ASSOC_SHKEY: 1726 error = sctp_auth_asoc_init_active_key(asoc, 1727 GFP_ATOMIC); 1728 break; 1729 case SCTP_CMD_UPDATE_INITTAG: 1730 asoc->peer.i.init_tag = cmd->obj.u32; 1731 break; 1732 case SCTP_CMD_SEND_MSG: 1733 if (!asoc->outqueue.cork) { 1734 sctp_outq_cork(&asoc->outqueue); 1735 local_cork = 1; 1736 } 1737 sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp); 1738 break; 1739 case SCTP_CMD_SEND_NEXT_ASCONF: 1740 sctp_cmd_send_asconf(asoc); 1741 break; 1742 case SCTP_CMD_PURGE_ASCONF_QUEUE: 1743 sctp_asconf_queue_teardown(asoc); 1744 break; 1745 1746 case SCTP_CMD_SET_ASOC: 1747 asoc = cmd->obj.asoc; 1748 break; 1749 1750 default: 1751 pr_warn("Impossible command: %u\n", 1752 cmd->verb); 1753 break; 1754 } 1755 1756 if (error) 1757 break; 1758 } 1759 1760 out: 1761 /* If this is in response to a received chunk, wait until 1762 * we are done with the packet to open the queue so that we don't 1763 * send multiple packets in response to a single request. 1764 */ 1765 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1766 if (chunk->end_of_packet || chunk->singleton) 1767 sctp_outq_uncork(&asoc->outqueue, gfp); 1768 } else if (local_cork) 1769 sctp_outq_uncork(&asoc->outqueue, gfp); 1770 1771 if (sp->data_ready_signalled) 1772 sp->data_ready_signalled = 0; 1773 1774 return error; 1775 nomem: 1776 error = -ENOMEM; 1777 goto out; 1778 } 1779 1780