1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * 7 * This file is part of the SCTP kernel reference Implementation 8 * 9 * These functions implement the sctp_outq class. The outqueue handles 10 * bundling and queueing of outgoing SCTP chunks. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Perry Melange <pmelange@null.cc.uic.edu> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Jon Grimm <jgrimm@us.ibm.com> 44 * 45 * Any bugs reported given to us we will try to fix... any fixes shared will 46 * be incorporated into the next SCTP release. 47 */ 48 49 #include <linux/types.h> 50 #include <linux/list.h> /* For struct list_head */ 51 #include <linux/socket.h> 52 #include <linux/ip.h> 53 #include <net/sock.h> /* For skb_set_owner_w */ 54 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 /* Declare internal functions here. */ 59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 60 static void sctp_check_transmitted(struct sctp_outq *q, 61 struct list_head *transmitted_queue, 62 struct sctp_transport *transport, 63 struct sctp_sackhdr *sack, 64 __u32 highest_new_tsn); 65 66 static void sctp_mark_missing(struct sctp_outq *q, 67 struct list_head *transmitted_queue, 68 struct sctp_transport *transport, 69 __u32 highest_new_tsn, 70 int count_of_newacks); 71 72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn); 73 74 /* Add data to the front of the queue. */ 75 static inline void sctp_outq_head_data(struct sctp_outq *q, 76 struct sctp_chunk *ch) 77 { 78 list_add(&ch->list, &q->out_chunk_list); 79 q->out_qlen += ch->skb->len; 80 return; 81 } 82 83 /* Take data from the front of the queue. */ 84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 85 { 86 struct sctp_chunk *ch = NULL; 87 88 if (!list_empty(&q->out_chunk_list)) { 89 struct list_head *entry = q->out_chunk_list.next; 90 91 ch = list_entry(entry, struct sctp_chunk, list); 92 list_del_init(entry); 93 q->out_qlen -= ch->skb->len; 94 } 95 return ch; 96 } 97 /* Add data chunk to the end of the queue. */ 98 static inline void sctp_outq_tail_data(struct sctp_outq *q, 99 struct sctp_chunk *ch) 100 { 101 list_add_tail(&ch->list, &q->out_chunk_list); 102 q->out_qlen += ch->skb->len; 103 return; 104 } 105 106 /* 107 * SFR-CACC algorithm: 108 * D) If count_of_newacks is greater than or equal to 2 109 * and t was not sent to the current primary then the 110 * sender MUST NOT increment missing report count for t. 111 */ 112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 113 struct sctp_transport *transport, 114 int count_of_newacks) 115 { 116 if (count_of_newacks >=2 && transport != primary) 117 return 1; 118 return 0; 119 } 120 121 /* 122 * SFR-CACC algorithm: 123 * F) If count_of_newacks is less than 2, let d be the 124 * destination to which t was sent. If cacc_saw_newack 125 * is 0 for destination d, then the sender MUST NOT 126 * increment missing report count for t. 127 */ 128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 129 int count_of_newacks) 130 { 131 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack) 132 return 1; 133 return 0; 134 } 135 136 /* 137 * SFR-CACC algorithm: 138 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 139 * execute steps C, D, F. 140 * 141 * C has been implemented in sctp_outq_sack 142 */ 143 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 144 struct sctp_transport *transport, 145 int count_of_newacks) 146 { 147 if (!primary->cacc.cycling_changeover) { 148 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 149 return 1; 150 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 151 return 1; 152 return 0; 153 } 154 return 0; 155 } 156 157 /* 158 * SFR-CACC algorithm: 159 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 160 * than next_tsn_at_change of the current primary, then 161 * the sender MUST NOT increment missing report count 162 * for t. 163 */ 164 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 165 { 166 if (primary->cacc.cycling_changeover && 167 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 168 return 1; 169 return 0; 170 } 171 172 /* 173 * SFR-CACC algorithm: 174 * 3) If the missing report count for TSN t is to be 175 * incremented according to [RFC2960] and 176 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 177 * then the sender MUST futher execute steps 3.1 and 178 * 3.2 to determine if the missing report count for 179 * TSN t SHOULD NOT be incremented. 180 * 181 * 3.3) If 3.1 and 3.2 do not dictate that the missing 182 * report count for t should not be incremented, then 183 * the sender SOULD increment missing report count for 184 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 185 */ 186 static inline int sctp_cacc_skip(struct sctp_transport *primary, 187 struct sctp_transport *transport, 188 int count_of_newacks, 189 __u32 tsn) 190 { 191 if (primary->cacc.changeover_active && 192 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) 193 || sctp_cacc_skip_3_2(primary, tsn))) 194 return 1; 195 return 0; 196 } 197 198 /* Initialize an existing sctp_outq. This does the boring stuff. 199 * You still need to define handlers if you really want to DO 200 * something with this structure... 201 */ 202 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 203 { 204 q->asoc = asoc; 205 INIT_LIST_HEAD(&q->out_chunk_list); 206 INIT_LIST_HEAD(&q->control_chunk_list); 207 INIT_LIST_HEAD(&q->retransmit); 208 INIT_LIST_HEAD(&q->sacked); 209 INIT_LIST_HEAD(&q->abandoned); 210 211 q->outstanding_bytes = 0; 212 q->empty = 1; 213 q->cork = 0; 214 215 q->malloced = 0; 216 q->out_qlen = 0; 217 } 218 219 /* Free the outqueue structure and any related pending chunks. 220 */ 221 void sctp_outq_teardown(struct sctp_outq *q) 222 { 223 struct sctp_transport *transport; 224 struct list_head *lchunk, *pos, *temp; 225 struct sctp_chunk *chunk, *tmp; 226 227 /* Throw away unacknowledged chunks. */ 228 list_for_each(pos, &q->asoc->peer.transport_addr_list) { 229 transport = list_entry(pos, struct sctp_transport, transports); 230 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 231 chunk = list_entry(lchunk, struct sctp_chunk, 232 transmitted_list); 233 /* Mark as part of a failed message. */ 234 sctp_chunk_fail(chunk, q->error); 235 sctp_chunk_free(chunk); 236 } 237 } 238 239 /* Throw away chunks that have been gap ACKed. */ 240 list_for_each_safe(lchunk, temp, &q->sacked) { 241 list_del_init(lchunk); 242 chunk = list_entry(lchunk, struct sctp_chunk, 243 transmitted_list); 244 sctp_chunk_fail(chunk, q->error); 245 sctp_chunk_free(chunk); 246 } 247 248 /* Throw away any chunks in the retransmit queue. */ 249 list_for_each_safe(lchunk, temp, &q->retransmit) { 250 list_del_init(lchunk); 251 chunk = list_entry(lchunk, struct sctp_chunk, 252 transmitted_list); 253 sctp_chunk_fail(chunk, q->error); 254 sctp_chunk_free(chunk); 255 } 256 257 /* Throw away any chunks that are in the abandoned queue. */ 258 list_for_each_safe(lchunk, temp, &q->abandoned) { 259 list_del_init(lchunk); 260 chunk = list_entry(lchunk, struct sctp_chunk, 261 transmitted_list); 262 sctp_chunk_fail(chunk, q->error); 263 sctp_chunk_free(chunk); 264 } 265 266 /* Throw away any leftover data chunks. */ 267 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 268 269 /* Mark as send failure. */ 270 sctp_chunk_fail(chunk, q->error); 271 sctp_chunk_free(chunk); 272 } 273 274 q->error = 0; 275 276 /* Throw away any leftover control chunks. */ 277 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 278 list_del_init(&chunk->list); 279 sctp_chunk_free(chunk); 280 } 281 } 282 283 /* Free the outqueue structure and any related pending chunks. */ 284 void sctp_outq_free(struct sctp_outq *q) 285 { 286 /* Throw away leftover chunks. */ 287 sctp_outq_teardown(q); 288 289 /* If we were kmalloc()'d, free the memory. */ 290 if (q->malloced) 291 kfree(q); 292 } 293 294 /* Put a new chunk in an sctp_outq. */ 295 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk) 296 { 297 int error = 0; 298 299 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n", 300 q, chunk, chunk && chunk->chunk_hdr ? 301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 302 : "Illegal Chunk"); 303 304 /* If it is data, queue it up, otherwise, send it 305 * immediately. 306 */ 307 if (SCTP_CID_DATA == chunk->chunk_hdr->type) { 308 /* Is it OK to queue data chunks? */ 309 /* From 9. Termination of Association 310 * 311 * When either endpoint performs a shutdown, the 312 * association on each peer will stop accepting new 313 * data from its user and only deliver data in queue 314 * at the time of sending or receiving the SHUTDOWN 315 * chunk. 316 */ 317 switch (q->asoc->state) { 318 case SCTP_STATE_EMPTY: 319 case SCTP_STATE_CLOSED: 320 case SCTP_STATE_SHUTDOWN_PENDING: 321 case SCTP_STATE_SHUTDOWN_SENT: 322 case SCTP_STATE_SHUTDOWN_RECEIVED: 323 case SCTP_STATE_SHUTDOWN_ACK_SENT: 324 /* Cannot send after transport endpoint shutdown */ 325 error = -ESHUTDOWN; 326 break; 327 328 default: 329 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n", 330 q, chunk, chunk && chunk->chunk_hdr ? 331 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 332 : "Illegal Chunk"); 333 334 sctp_outq_tail_data(q, chunk); 335 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 336 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS); 337 else 338 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS); 339 q->empty = 0; 340 break; 341 }; 342 } else { 343 list_add_tail(&chunk->list, &q->control_chunk_list); 344 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 345 } 346 347 if (error < 0) 348 return error; 349 350 if (!q->cork) 351 error = sctp_outq_flush(q, 0); 352 353 return error; 354 } 355 356 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 357 * and the abandoned list are in ascending order. 358 */ 359 static void sctp_insert_list(struct list_head *head, struct list_head *new) 360 { 361 struct list_head *pos; 362 struct sctp_chunk *nchunk, *lchunk; 363 __u32 ntsn, ltsn; 364 int done = 0; 365 366 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 367 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 368 369 list_for_each(pos, head) { 370 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 371 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 372 if (TSN_lt(ntsn, ltsn)) { 373 list_add(new, pos->prev); 374 done = 1; 375 break; 376 } 377 } 378 if (!done) 379 list_add_tail(new, head); 380 } 381 382 /* Mark all the eligible packets on a transport for retransmission. */ 383 void sctp_retransmit_mark(struct sctp_outq *q, 384 struct sctp_transport *transport, 385 __u8 fast_retransmit) 386 { 387 struct list_head *lchunk, *ltemp; 388 struct sctp_chunk *chunk; 389 390 /* Walk through the specified transmitted queue. */ 391 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 392 chunk = list_entry(lchunk, struct sctp_chunk, 393 transmitted_list); 394 395 /* If the chunk is abandoned, move it to abandoned list. */ 396 if (sctp_chunk_abandoned(chunk)) { 397 list_del_init(lchunk); 398 sctp_insert_list(&q->abandoned, lchunk); 399 continue; 400 } 401 402 /* If we are doing retransmission due to a fast retransmit, 403 * only the chunk's that are marked for fast retransmit 404 * should be added to the retransmit queue. If we are doing 405 * retransmission due to a timeout or pmtu discovery, only the 406 * chunks that are not yet acked should be added to the 407 * retransmit queue. 408 */ 409 if ((fast_retransmit && (chunk->fast_retransmit > 0)) || 410 (!fast_retransmit && !chunk->tsn_gap_acked)) { 411 /* RFC 2960 6.2.1 Processing a Received SACK 412 * 413 * C) Any time a DATA chunk is marked for 414 * retransmission (via either T3-rtx timer expiration 415 * (Section 6.3.3) or via fast retransmit 416 * (Section 7.2.4)), add the data size of those 417 * chunks to the rwnd. 418 */ 419 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 420 sizeof(struct sk_buff)); 421 q->outstanding_bytes -= sctp_data_size(chunk); 422 transport->flight_size -= sctp_data_size(chunk); 423 424 /* sctpimpguide-05 Section 2.8.2 425 * M5) If a T3-rtx timer expires, the 426 * 'TSN.Missing.Report' of all affected TSNs is set 427 * to 0. 428 */ 429 chunk->tsn_missing_report = 0; 430 431 /* If a chunk that is being used for RTT measurement 432 * has to be retransmitted, we cannot use this chunk 433 * anymore for RTT measurements. Reset rto_pending so 434 * that a new RTT measurement is started when a new 435 * data chunk is sent. 436 */ 437 if (chunk->rtt_in_progress) { 438 chunk->rtt_in_progress = 0; 439 transport->rto_pending = 0; 440 } 441 442 /* Move the chunk to the retransmit queue. The chunks 443 * on the retransmit queue are always kept in order. 444 */ 445 list_del_init(lchunk); 446 sctp_insert_list(&q->retransmit, lchunk); 447 } 448 } 449 450 SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, " 451 "cwnd: %d, ssthresh: %d, flight_size: %d, " 452 "pba: %d\n", __FUNCTION__, 453 transport, fast_retransmit, 454 transport->cwnd, transport->ssthresh, 455 transport->flight_size, 456 transport->partial_bytes_acked); 457 458 } 459 460 /* Mark all the eligible packets on a transport for retransmission and force 461 * one packet out. 462 */ 463 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 464 sctp_retransmit_reason_t reason) 465 { 466 int error = 0; 467 __u8 fast_retransmit = 0; 468 469 switch(reason) { 470 case SCTP_RTXR_T3_RTX: 471 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS); 472 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 473 /* Update the retran path if the T3-rtx timer has expired for 474 * the current retran path. 475 */ 476 if (transport == transport->asoc->peer.retran_path) 477 sctp_assoc_update_retran_path(transport->asoc); 478 break; 479 case SCTP_RTXR_FAST_RTX: 480 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS); 481 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 482 fast_retransmit = 1; 483 break; 484 case SCTP_RTXR_PMTUD: 485 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS); 486 break; 487 default: 488 BUG(); 489 } 490 491 sctp_retransmit_mark(q, transport, fast_retransmit); 492 493 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 494 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 495 * following the procedures outlined in C1 - C5. 496 */ 497 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point); 498 499 error = sctp_outq_flush(q, /* rtx_timeout */ 1); 500 501 if (error) 502 q->asoc->base.sk->sk_err = -error; 503 } 504 505 /* 506 * Transmit DATA chunks on the retransmit queue. Upon return from 507 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 508 * need to be transmitted by the caller. 509 * We assume that pkt->transport has already been set. 510 * 511 * The return value is a normal kernel error return value. 512 */ 513 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 514 int rtx_timeout, int *start_timer) 515 { 516 struct list_head *lqueue; 517 struct list_head *lchunk, *lchunk1; 518 struct sctp_transport *transport = pkt->transport; 519 sctp_xmit_t status; 520 struct sctp_chunk *chunk, *chunk1; 521 struct sctp_association *asoc; 522 int error = 0; 523 524 asoc = q->asoc; 525 lqueue = &q->retransmit; 526 527 /* RFC 2960 6.3.3 Handle T3-rtx Expiration 528 * 529 * E3) Determine how many of the earliest (i.e., lowest TSN) 530 * outstanding DATA chunks for the address for which the 531 * T3-rtx has expired will fit into a single packet, subject 532 * to the MTU constraint for the path corresponding to the 533 * destination transport address to which the retransmission 534 * is being sent (this may be different from the address for 535 * which the timer expires [see Section 6.4]). Call this value 536 * K. Bundle and retransmit those K DATA chunks in a single 537 * packet to the destination endpoint. 538 * 539 * [Just to be painfully clear, if we are retransmitting 540 * because a timeout just happened, we should send only ONE 541 * packet of retransmitted data.] 542 */ 543 lchunk = sctp_list_dequeue(lqueue); 544 545 while (lchunk) { 546 chunk = list_entry(lchunk, struct sctp_chunk, 547 transmitted_list); 548 549 /* Make sure that Gap Acked TSNs are not retransmitted. A 550 * simple approach is just to move such TSNs out of the 551 * way and into a 'transmitted' queue and skip to the 552 * next chunk. 553 */ 554 if (chunk->tsn_gap_acked) { 555 list_add_tail(lchunk, &transport->transmitted); 556 lchunk = sctp_list_dequeue(lqueue); 557 continue; 558 } 559 560 /* Attempt to append this chunk to the packet. */ 561 status = sctp_packet_append_chunk(pkt, chunk); 562 563 switch (status) { 564 case SCTP_XMIT_PMTU_FULL: 565 /* Send this packet. */ 566 if ((error = sctp_packet_transmit(pkt)) == 0) 567 *start_timer = 1; 568 569 /* If we are retransmitting, we should only 570 * send a single packet. 571 */ 572 if (rtx_timeout) { 573 list_add(lchunk, lqueue); 574 lchunk = NULL; 575 } 576 577 /* Bundle lchunk in the next round. */ 578 break; 579 580 case SCTP_XMIT_RWND_FULL: 581 /* Send this packet. */ 582 if ((error = sctp_packet_transmit(pkt)) == 0) 583 *start_timer = 1; 584 585 /* Stop sending DATA as there is no more room 586 * at the receiver. 587 */ 588 list_add(lchunk, lqueue); 589 lchunk = NULL; 590 break; 591 592 case SCTP_XMIT_NAGLE_DELAY: 593 /* Send this packet. */ 594 if ((error = sctp_packet_transmit(pkt)) == 0) 595 *start_timer = 1; 596 597 /* Stop sending DATA because of nagle delay. */ 598 list_add(lchunk, lqueue); 599 lchunk = NULL; 600 break; 601 602 default: 603 /* The append was successful, so add this chunk to 604 * the transmitted list. 605 */ 606 list_add_tail(lchunk, &transport->transmitted); 607 608 /* Mark the chunk as ineligible for fast retransmit 609 * after it is retransmitted. 610 */ 611 if (chunk->fast_retransmit > 0) 612 chunk->fast_retransmit = -1; 613 614 *start_timer = 1; 615 q->empty = 0; 616 617 /* Retrieve a new chunk to bundle. */ 618 lchunk = sctp_list_dequeue(lqueue); 619 break; 620 }; 621 622 /* If we are here due to a retransmit timeout or a fast 623 * retransmit and if there are any chunks left in the retransmit 624 * queue that could not fit in the PMTU sized packet, they need * to be marked as ineligible for a subsequent fast retransmit. 625 */ 626 if (rtx_timeout && !lchunk) { 627 list_for_each(lchunk1, lqueue) { 628 chunk1 = list_entry(lchunk1, struct sctp_chunk, 629 transmitted_list); 630 if (chunk1->fast_retransmit > 0) 631 chunk1->fast_retransmit = -1; 632 } 633 } 634 } 635 636 return error; 637 } 638 639 /* Cork the outqueue so queued chunks are really queued. */ 640 int sctp_outq_uncork(struct sctp_outq *q) 641 { 642 int error = 0; 643 if (q->cork) { 644 q->cork = 0; 645 error = sctp_outq_flush(q, 0); 646 } 647 return error; 648 } 649 650 /* 651 * Try to flush an outqueue. 652 * 653 * Description: Send everything in q which we legally can, subject to 654 * congestion limitations. 655 * * Note: This function can be called from multiple contexts so appropriate 656 * locking concerns must be made. Today we use the sock lock to protect 657 * this function. 658 */ 659 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) 660 { 661 struct sctp_packet *packet; 662 struct sctp_packet singleton; 663 struct sctp_association *asoc = q->asoc; 664 __u16 sport = asoc->base.bind_addr.port; 665 __u16 dport = asoc->peer.port; 666 __u32 vtag = asoc->peer.i.init_tag; 667 struct sctp_transport *transport = NULL; 668 struct sctp_transport *new_transport; 669 struct sctp_chunk *chunk, *tmp; 670 sctp_xmit_t status; 671 int error = 0; 672 int start_timer = 0; 673 674 /* These transports have chunks to send. */ 675 struct list_head transport_list; 676 struct list_head *ltransport; 677 678 INIT_LIST_HEAD(&transport_list); 679 packet = NULL; 680 681 /* 682 * 6.10 Bundling 683 * ... 684 * When bundling control chunks with DATA chunks, an 685 * endpoint MUST place control chunks first in the outbound 686 * SCTP packet. The transmitter MUST transmit DATA chunks 687 * within a SCTP packet in increasing order of TSN. 688 * ... 689 */ 690 691 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 692 list_del_init(&chunk->list); 693 694 /* Pick the right transport to use. */ 695 new_transport = chunk->transport; 696 697 if (!new_transport) { 698 new_transport = asoc->peer.active_path; 699 } else if ((new_transport->state == SCTP_INACTIVE) || 700 (new_transport->state == SCTP_UNCONFIRMED)) { 701 /* If the chunk is Heartbeat or Heartbeat Ack, 702 * send it to chunk->transport, even if it's 703 * inactive. 704 * 705 * 3.3.6 Heartbeat Acknowledgement: 706 * ... 707 * A HEARTBEAT ACK is always sent to the source IP 708 * address of the IP datagram containing the 709 * HEARTBEAT chunk to which this ack is responding. 710 * ... 711 */ 712 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT && 713 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK) 714 new_transport = asoc->peer.active_path; 715 } 716 717 /* Are we switching transports? 718 * Take care of transport locks. 719 */ 720 if (new_transport != transport) { 721 transport = new_transport; 722 if (list_empty(&transport->send_ready)) { 723 list_add_tail(&transport->send_ready, 724 &transport_list); 725 } 726 packet = &transport->packet; 727 sctp_packet_config(packet, vtag, 728 asoc->peer.ecn_capable); 729 } 730 731 switch (chunk->chunk_hdr->type) { 732 /* 733 * 6.10 Bundling 734 * ... 735 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 736 * COMPLETE with any other chunks. [Send them immediately.] 737 */ 738 case SCTP_CID_INIT: 739 case SCTP_CID_INIT_ACK: 740 case SCTP_CID_SHUTDOWN_COMPLETE: 741 sctp_packet_init(&singleton, transport, sport, dport); 742 sctp_packet_config(&singleton, vtag, 0); 743 sctp_packet_append_chunk(&singleton, chunk); 744 error = sctp_packet_transmit(&singleton); 745 if (error < 0) 746 return error; 747 break; 748 749 case SCTP_CID_ABORT: 750 case SCTP_CID_SACK: 751 case SCTP_CID_HEARTBEAT: 752 case SCTP_CID_HEARTBEAT_ACK: 753 case SCTP_CID_SHUTDOWN: 754 case SCTP_CID_SHUTDOWN_ACK: 755 case SCTP_CID_ERROR: 756 case SCTP_CID_COOKIE_ECHO: 757 case SCTP_CID_COOKIE_ACK: 758 case SCTP_CID_ECN_ECNE: 759 case SCTP_CID_ECN_CWR: 760 case SCTP_CID_ASCONF: 761 case SCTP_CID_ASCONF_ACK: 762 case SCTP_CID_FWD_TSN: 763 sctp_packet_transmit_chunk(packet, chunk); 764 break; 765 766 default: 767 /* We built a chunk with an illegal type! */ 768 BUG(); 769 }; 770 } 771 772 /* Is it OK to send data chunks? */ 773 switch (asoc->state) { 774 case SCTP_STATE_COOKIE_ECHOED: 775 /* Only allow bundling when this packet has a COOKIE-ECHO 776 * chunk. 777 */ 778 if (!packet || !packet->has_cookie_echo) 779 break; 780 781 /* fallthru */ 782 case SCTP_STATE_ESTABLISHED: 783 case SCTP_STATE_SHUTDOWN_PENDING: 784 case SCTP_STATE_SHUTDOWN_RECEIVED: 785 /* 786 * RFC 2960 6.1 Transmission of DATA Chunks 787 * 788 * C) When the time comes for the sender to transmit, 789 * before sending new DATA chunks, the sender MUST 790 * first transmit any outstanding DATA chunks which 791 * are marked for retransmission (limited by the 792 * current cwnd). 793 */ 794 if (!list_empty(&q->retransmit)) { 795 if (transport == asoc->peer.retran_path) 796 goto retran; 797 798 /* Switch transports & prepare the packet. */ 799 800 transport = asoc->peer.retran_path; 801 802 if (list_empty(&transport->send_ready)) { 803 list_add_tail(&transport->send_ready, 804 &transport_list); 805 } 806 807 packet = &transport->packet; 808 sctp_packet_config(packet, vtag, 809 asoc->peer.ecn_capable); 810 retran: 811 error = sctp_outq_flush_rtx(q, packet, 812 rtx_timeout, &start_timer); 813 814 if (start_timer) 815 sctp_transport_reset_timers(transport); 816 817 /* This can happen on COOKIE-ECHO resend. Only 818 * one chunk can get bundled with a COOKIE-ECHO. 819 */ 820 if (packet->has_cookie_echo) 821 goto sctp_flush_out; 822 823 /* Don't send new data if there is still data 824 * waiting to retransmit. 825 */ 826 if (!list_empty(&q->retransmit)) 827 goto sctp_flush_out; 828 } 829 830 /* Finally, transmit new packets. */ 831 start_timer = 0; 832 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 833 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid 834 * stream identifier. 835 */ 836 if (chunk->sinfo.sinfo_stream >= 837 asoc->c.sinit_num_ostreams) { 838 839 /* Mark as failed send. */ 840 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM); 841 sctp_chunk_free(chunk); 842 continue; 843 } 844 845 /* Has this chunk expired? */ 846 if (sctp_chunk_abandoned(chunk)) { 847 sctp_chunk_fail(chunk, 0); 848 sctp_chunk_free(chunk); 849 continue; 850 } 851 852 /* If there is a specified transport, use it. 853 * Otherwise, we want to use the active path. 854 */ 855 new_transport = chunk->transport; 856 if (!new_transport || 857 ((new_transport->state == SCTP_INACTIVE) || 858 (new_transport->state == SCTP_UNCONFIRMED))) 859 new_transport = asoc->peer.active_path; 860 861 /* Change packets if necessary. */ 862 if (new_transport != transport) { 863 transport = new_transport; 864 865 /* Schedule to have this transport's 866 * packet flushed. 867 */ 868 if (list_empty(&transport->send_ready)) { 869 list_add_tail(&transport->send_ready, 870 &transport_list); 871 } 872 873 packet = &transport->packet; 874 sctp_packet_config(packet, vtag, 875 asoc->peer.ecn_capable); 876 } 877 878 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ", 879 q, chunk, 880 chunk && chunk->chunk_hdr ? 881 sctp_cname(SCTP_ST_CHUNK( 882 chunk->chunk_hdr->type)) 883 : "Illegal Chunk"); 884 885 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head " 886 "%p skb->users %d.\n", 887 ntohl(chunk->subh.data_hdr->tsn), 888 chunk->skb ?chunk->skb->head : NULL, 889 chunk->skb ? 890 atomic_read(&chunk->skb->users) : -1); 891 892 /* Add the chunk to the packet. */ 893 status = sctp_packet_transmit_chunk(packet, chunk); 894 895 switch (status) { 896 case SCTP_XMIT_PMTU_FULL: 897 case SCTP_XMIT_RWND_FULL: 898 case SCTP_XMIT_NAGLE_DELAY: 899 /* We could not append this chunk, so put 900 * the chunk back on the output queue. 901 */ 902 SCTP_DEBUG_PRINTK("sctp_outq_flush: could " 903 "not transmit TSN: 0x%x, status: %d\n", 904 ntohl(chunk->subh.data_hdr->tsn), 905 status); 906 sctp_outq_head_data(q, chunk); 907 goto sctp_flush_out; 908 break; 909 910 case SCTP_XMIT_OK: 911 break; 912 913 default: 914 BUG(); 915 } 916 917 /* BUG: We assume that the sctp_packet_transmit() 918 * call below will succeed all the time and add the 919 * chunk to the transmitted list and restart the 920 * timers. 921 * It is possible that the call can fail under OOM 922 * conditions. 923 * 924 * Is this really a problem? Won't this behave 925 * like a lost TSN? 926 */ 927 list_add_tail(&chunk->transmitted_list, 928 &transport->transmitted); 929 930 sctp_transport_reset_timers(transport); 931 932 q->empty = 0; 933 934 /* Only let one DATA chunk get bundled with a 935 * COOKIE-ECHO chunk. 936 */ 937 if (packet->has_cookie_echo) 938 goto sctp_flush_out; 939 } 940 break; 941 942 default: 943 /* Do nothing. */ 944 break; 945 } 946 947 sctp_flush_out: 948 949 /* Before returning, examine all the transports touched in 950 * this call. Right now, we bluntly force clear all the 951 * transports. Things might change after we implement Nagle. 952 * But such an examination is still required. 953 * 954 * --xguo 955 */ 956 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) { 957 struct sctp_transport *t = list_entry(ltransport, 958 struct sctp_transport, 959 send_ready); 960 packet = &t->packet; 961 if (!sctp_packet_empty(packet)) 962 error = sctp_packet_transmit(packet); 963 } 964 965 return error; 966 } 967 968 /* Update unack_data based on the incoming SACK chunk */ 969 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 970 struct sctp_sackhdr *sack) 971 { 972 sctp_sack_variable_t *frags; 973 __u16 unack_data; 974 int i; 975 976 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 977 978 frags = sack->variable; 979 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 980 unack_data -= ((ntohs(frags[i].gab.end) - 981 ntohs(frags[i].gab.start) + 1)); 982 } 983 984 assoc->unack_data = unack_data; 985 } 986 987 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */ 988 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack, 989 struct sctp_association *asoc) 990 { 991 struct list_head *ltransport, *lchunk; 992 struct sctp_transport *transport; 993 struct sctp_chunk *chunk; 994 __u32 highest_new_tsn, tsn; 995 struct list_head *transport_list = &asoc->peer.transport_addr_list; 996 997 highest_new_tsn = ntohl(sack->cum_tsn_ack); 998 999 list_for_each(ltransport, transport_list) { 1000 transport = list_entry(ltransport, struct sctp_transport, 1001 transports); 1002 list_for_each(lchunk, &transport->transmitted) { 1003 chunk = list_entry(lchunk, struct sctp_chunk, 1004 transmitted_list); 1005 tsn = ntohl(chunk->subh.data_hdr->tsn); 1006 1007 if (!chunk->tsn_gap_acked && 1008 TSN_lt(highest_new_tsn, tsn) && 1009 sctp_acked(sack, tsn)) 1010 highest_new_tsn = tsn; 1011 } 1012 } 1013 1014 return highest_new_tsn; 1015 } 1016 1017 /* This is where we REALLY process a SACK. 1018 * 1019 * Process the SACK against the outqueue. Mostly, this just frees 1020 * things off the transmitted queue. 1021 */ 1022 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack) 1023 { 1024 struct sctp_association *asoc = q->asoc; 1025 struct sctp_transport *transport; 1026 struct sctp_chunk *tchunk = NULL; 1027 struct list_head *lchunk, *transport_list, *pos, *temp; 1028 sctp_sack_variable_t *frags = sack->variable; 1029 __u32 sack_ctsn, ctsn, tsn; 1030 __u32 highest_tsn, highest_new_tsn; 1031 __u32 sack_a_rwnd; 1032 unsigned outstanding; 1033 struct sctp_transport *primary = asoc->peer.primary_path; 1034 int count_of_newacks = 0; 1035 1036 /* Grab the association's destination address list. */ 1037 transport_list = &asoc->peer.transport_addr_list; 1038 1039 sack_ctsn = ntohl(sack->cum_tsn_ack); 1040 1041 /* 1042 * SFR-CACC algorithm: 1043 * On receipt of a SACK the sender SHOULD execute the 1044 * following statements. 1045 * 1046 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1047 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1048 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1049 * all destinations. 1050 */ 1051 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1052 primary->cacc.changeover_active = 0; 1053 list_for_each(pos, transport_list) { 1054 transport = list_entry(pos, struct sctp_transport, 1055 transports); 1056 transport->cacc.cycling_changeover = 0; 1057 } 1058 } 1059 1060 /* 1061 * SFR-CACC algorithm: 1062 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1063 * is set the receiver of the SACK MUST take the following actions: 1064 * 1065 * A) Initialize the cacc_saw_newack to 0 for all destination 1066 * addresses. 1067 */ 1068 if (sack->num_gap_ack_blocks && 1069 primary->cacc.changeover_active) { 1070 list_for_each(pos, transport_list) { 1071 transport = list_entry(pos, struct sctp_transport, 1072 transports); 1073 transport->cacc.cacc_saw_newack = 0; 1074 } 1075 } 1076 1077 /* Get the highest TSN in the sack. */ 1078 highest_tsn = sack_ctsn; 1079 if (sack->num_gap_ack_blocks) 1080 highest_tsn += 1081 ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end); 1082 1083 if (TSN_lt(asoc->highest_sacked, highest_tsn)) { 1084 highest_new_tsn = highest_tsn; 1085 asoc->highest_sacked = highest_tsn; 1086 } else { 1087 highest_new_tsn = sctp_highest_new_tsn(sack, asoc); 1088 } 1089 1090 /* Run through the retransmit queue. Credit bytes received 1091 * and free those chunks that we can. 1092 */ 1093 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn); 1094 sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0); 1095 1096 /* Run through the transmitted queue. 1097 * Credit bytes received and free those chunks which we can. 1098 * 1099 * This is a MASSIVE candidate for optimization. 1100 */ 1101 list_for_each(pos, transport_list) { 1102 transport = list_entry(pos, struct sctp_transport, 1103 transports); 1104 sctp_check_transmitted(q, &transport->transmitted, 1105 transport, sack, highest_new_tsn); 1106 /* 1107 * SFR-CACC algorithm: 1108 * C) Let count_of_newacks be the number of 1109 * destinations for which cacc_saw_newack is set. 1110 */ 1111 if (transport->cacc.cacc_saw_newack) 1112 count_of_newacks ++; 1113 } 1114 1115 list_for_each(pos, transport_list) { 1116 transport = list_entry(pos, struct sctp_transport, 1117 transports); 1118 sctp_mark_missing(q, &transport->transmitted, transport, 1119 highest_new_tsn, count_of_newacks); 1120 } 1121 1122 /* Move the Cumulative TSN Ack Point if appropriate. */ 1123 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) 1124 asoc->ctsn_ack_point = sack_ctsn; 1125 1126 /* Update unack_data field in the assoc. */ 1127 sctp_sack_update_unack_data(asoc, sack); 1128 1129 ctsn = asoc->ctsn_ack_point; 1130 1131 /* Throw away stuff rotting on the sack queue. */ 1132 list_for_each_safe(lchunk, temp, &q->sacked) { 1133 tchunk = list_entry(lchunk, struct sctp_chunk, 1134 transmitted_list); 1135 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1136 if (TSN_lte(tsn, ctsn)) 1137 sctp_chunk_free(tchunk); 1138 } 1139 1140 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1141 * number of bytes still outstanding after processing the 1142 * Cumulative TSN Ack and the Gap Ack Blocks. 1143 */ 1144 1145 sack_a_rwnd = ntohl(sack->a_rwnd); 1146 outstanding = q->outstanding_bytes; 1147 1148 if (outstanding < sack_a_rwnd) 1149 sack_a_rwnd -= outstanding; 1150 else 1151 sack_a_rwnd = 0; 1152 1153 asoc->peer.rwnd = sack_a_rwnd; 1154 1155 sctp_generate_fwdtsn(q, sack_ctsn); 1156 1157 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n", 1158 __FUNCTION__, sack_ctsn); 1159 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, " 1160 "%p is 0x%x. Adv peer ack point: 0x%x\n", 1161 __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point); 1162 1163 /* See if all chunks are acked. 1164 * Make sure the empty queue handler will get run later. 1165 */ 1166 q->empty = (list_empty(&q->out_chunk_list) && 1167 list_empty(&q->control_chunk_list) && 1168 list_empty(&q->retransmit)); 1169 if (!q->empty) 1170 goto finish; 1171 1172 list_for_each(pos, transport_list) { 1173 transport = list_entry(pos, struct sctp_transport, 1174 transports); 1175 q->empty = q->empty && list_empty(&transport->transmitted); 1176 if (!q->empty) 1177 goto finish; 1178 } 1179 1180 SCTP_DEBUG_PRINTK("sack queue is empty.\n"); 1181 finish: 1182 return q->empty; 1183 } 1184 1185 /* Is the outqueue empty? */ 1186 int sctp_outq_is_empty(const struct sctp_outq *q) 1187 { 1188 return q->empty; 1189 } 1190 1191 /******************************************************************** 1192 * 2nd Level Abstractions 1193 ********************************************************************/ 1194 1195 /* Go through a transport's transmitted list or the association's retransmit 1196 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1197 * The retransmit list will not have an associated transport. 1198 * 1199 * I added coherent debug information output. --xguo 1200 * 1201 * Instead of printing 'sacked' or 'kept' for each TSN on the 1202 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1203 * KEPT TSN6-TSN7, etc. 1204 */ 1205 static void sctp_check_transmitted(struct sctp_outq *q, 1206 struct list_head *transmitted_queue, 1207 struct sctp_transport *transport, 1208 struct sctp_sackhdr *sack, 1209 __u32 highest_new_tsn_in_sack) 1210 { 1211 struct list_head *lchunk; 1212 struct sctp_chunk *tchunk; 1213 struct list_head tlist; 1214 __u32 tsn; 1215 __u32 sack_ctsn; 1216 __u32 rtt; 1217 __u8 restart_timer = 0; 1218 int bytes_acked = 0; 1219 1220 /* These state variables are for coherent debug output. --xguo */ 1221 1222 #if SCTP_DEBUG 1223 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */ 1224 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */ 1225 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */ 1226 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */ 1227 1228 /* 0 : The last TSN was ACKed. 1229 * 1 : The last TSN was NOT ACKed (i.e. KEPT). 1230 * -1: We need to initialize. 1231 */ 1232 int dbg_prt_state = -1; 1233 #endif /* SCTP_DEBUG */ 1234 1235 sack_ctsn = ntohl(sack->cum_tsn_ack); 1236 1237 INIT_LIST_HEAD(&tlist); 1238 1239 /* The while loop will skip empty transmitted queues. */ 1240 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1241 tchunk = list_entry(lchunk, struct sctp_chunk, 1242 transmitted_list); 1243 1244 if (sctp_chunk_abandoned(tchunk)) { 1245 /* Move the chunk to abandoned list. */ 1246 sctp_insert_list(&q->abandoned, lchunk); 1247 continue; 1248 } 1249 1250 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1251 if (sctp_acked(sack, tsn)) { 1252 /* If this queue is the retransmit queue, the 1253 * retransmit timer has already reclaimed 1254 * the outstanding bytes for this chunk, so only 1255 * count bytes associated with a transport. 1256 */ 1257 if (transport) { 1258 /* If this chunk is being used for RTT 1259 * measurement, calculate the RTT and update 1260 * the RTO using this value. 1261 * 1262 * 6.3.1 C5) Karn's algorithm: RTT measurements 1263 * MUST NOT be made using packets that were 1264 * retransmitted (and thus for which it is 1265 * ambiguous whether the reply was for the 1266 * first instance of the packet or a later 1267 * instance). 1268 */ 1269 if (!tchunk->tsn_gap_acked && 1270 !tchunk->resent && 1271 tchunk->rtt_in_progress) { 1272 tchunk->rtt_in_progress = 0; 1273 rtt = jiffies - tchunk->sent_at; 1274 sctp_transport_update_rto(transport, 1275 rtt); 1276 } 1277 } 1278 if (TSN_lte(tsn, sack_ctsn)) { 1279 /* RFC 2960 6.3.2 Retransmission Timer Rules 1280 * 1281 * R3) Whenever a SACK is received 1282 * that acknowledges the DATA chunk 1283 * with the earliest outstanding TSN 1284 * for that address, restart T3-rtx 1285 * timer for that address with its 1286 * current RTO. 1287 */ 1288 restart_timer = 1; 1289 1290 if (!tchunk->tsn_gap_acked) { 1291 tchunk->tsn_gap_acked = 1; 1292 bytes_acked += sctp_data_size(tchunk); 1293 /* 1294 * SFR-CACC algorithm: 1295 * 2) If the SACK contains gap acks 1296 * and the flag CHANGEOVER_ACTIVE is 1297 * set the receiver of the SACK MUST 1298 * take the following action: 1299 * 1300 * B) For each TSN t being acked that 1301 * has not been acked in any SACK so 1302 * far, set cacc_saw_newack to 1 for 1303 * the destination that the TSN was 1304 * sent to. 1305 */ 1306 if (transport && 1307 sack->num_gap_ack_blocks && 1308 q->asoc->peer.primary_path->cacc. 1309 changeover_active) 1310 transport->cacc.cacc_saw_newack 1311 = 1; 1312 } 1313 1314 list_add_tail(&tchunk->transmitted_list, 1315 &q->sacked); 1316 } else { 1317 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1318 * M2) Each time a SACK arrives reporting 1319 * 'Stray DATA chunk(s)' record the highest TSN 1320 * reported as newly acknowledged, call this 1321 * value 'HighestTSNinSack'. A newly 1322 * acknowledged DATA chunk is one not 1323 * previously acknowledged in a SACK. 1324 * 1325 * When the SCTP sender of data receives a SACK 1326 * chunk that acknowledges, for the first time, 1327 * the receipt of a DATA chunk, all the still 1328 * unacknowledged DATA chunks whose TSN is 1329 * older than that newly acknowledged DATA 1330 * chunk, are qualified as 'Stray DATA chunks'. 1331 */ 1332 if (!tchunk->tsn_gap_acked) { 1333 tchunk->tsn_gap_acked = 1; 1334 bytes_acked += sctp_data_size(tchunk); 1335 } 1336 list_add_tail(lchunk, &tlist); 1337 } 1338 1339 #if SCTP_DEBUG 1340 switch (dbg_prt_state) { 1341 case 0: /* last TSN was ACKed */ 1342 if (dbg_last_ack_tsn + 1 == tsn) { 1343 /* This TSN belongs to the 1344 * current ACK range. 1345 */ 1346 break; 1347 } 1348 1349 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1350 /* Display the end of the 1351 * current range. 1352 */ 1353 SCTP_DEBUG_PRINTK("-%08x", 1354 dbg_last_ack_tsn); 1355 } 1356 1357 /* Start a new range. */ 1358 SCTP_DEBUG_PRINTK(",%08x", tsn); 1359 dbg_ack_tsn = tsn; 1360 break; 1361 1362 case 1: /* The last TSN was NOT ACKed. */ 1363 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1364 /* Display the end of current range. */ 1365 SCTP_DEBUG_PRINTK("-%08x", 1366 dbg_last_kept_tsn); 1367 } 1368 1369 SCTP_DEBUG_PRINTK("\n"); 1370 1371 /* FALL THROUGH... */ 1372 default: 1373 /* This is the first-ever TSN we examined. */ 1374 /* Start a new range of ACK-ed TSNs. */ 1375 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn); 1376 dbg_prt_state = 0; 1377 dbg_ack_tsn = tsn; 1378 }; 1379 1380 dbg_last_ack_tsn = tsn; 1381 #endif /* SCTP_DEBUG */ 1382 1383 } else { 1384 if (tchunk->tsn_gap_acked) { 1385 SCTP_DEBUG_PRINTK("%s: Receiver reneged on " 1386 "data TSN: 0x%x\n", 1387 __FUNCTION__, 1388 tsn); 1389 tchunk->tsn_gap_acked = 0; 1390 1391 bytes_acked -= sctp_data_size(tchunk); 1392 1393 /* RFC 2960 6.3.2 Retransmission Timer Rules 1394 * 1395 * R4) Whenever a SACK is received missing a 1396 * TSN that was previously acknowledged via a 1397 * Gap Ack Block, start T3-rtx for the 1398 * destination address to which the DATA 1399 * chunk was originally 1400 * transmitted if it is not already running. 1401 */ 1402 restart_timer = 1; 1403 } 1404 1405 list_add_tail(lchunk, &tlist); 1406 1407 #if SCTP_DEBUG 1408 /* See the above comments on ACK-ed TSNs. */ 1409 switch (dbg_prt_state) { 1410 case 1: 1411 if (dbg_last_kept_tsn + 1 == tsn) 1412 break; 1413 1414 if (dbg_last_kept_tsn != dbg_kept_tsn) 1415 SCTP_DEBUG_PRINTK("-%08x", 1416 dbg_last_kept_tsn); 1417 1418 SCTP_DEBUG_PRINTK(",%08x", tsn); 1419 dbg_kept_tsn = tsn; 1420 break; 1421 1422 case 0: 1423 if (dbg_last_ack_tsn != dbg_ack_tsn) 1424 SCTP_DEBUG_PRINTK("-%08x", 1425 dbg_last_ack_tsn); 1426 SCTP_DEBUG_PRINTK("\n"); 1427 1428 /* FALL THROUGH... */ 1429 default: 1430 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn); 1431 dbg_prt_state = 1; 1432 dbg_kept_tsn = tsn; 1433 }; 1434 1435 dbg_last_kept_tsn = tsn; 1436 #endif /* SCTP_DEBUG */ 1437 } 1438 } 1439 1440 #if SCTP_DEBUG 1441 /* Finish off the last range, displaying its ending TSN. */ 1442 switch (dbg_prt_state) { 1443 case 0: 1444 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1445 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn); 1446 } else { 1447 SCTP_DEBUG_PRINTK("\n"); 1448 } 1449 break; 1450 1451 case 1: 1452 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1453 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn); 1454 } else { 1455 SCTP_DEBUG_PRINTK("\n"); 1456 } 1457 }; 1458 #endif /* SCTP_DEBUG */ 1459 if (transport) { 1460 if (bytes_acked) { 1461 /* 8.2. When an outstanding TSN is acknowledged, 1462 * the endpoint shall clear the error counter of 1463 * the destination transport address to which the 1464 * DATA chunk was last sent. 1465 * The association's overall error counter is 1466 * also cleared. 1467 */ 1468 transport->error_count = 0; 1469 transport->asoc->overall_error_count = 0; 1470 1471 /* Mark the destination transport address as 1472 * active if it is not so marked. 1473 */ 1474 if ((transport->state == SCTP_INACTIVE) || 1475 (transport->state == SCTP_UNCONFIRMED)) { 1476 sctp_assoc_control_transport( 1477 transport->asoc, 1478 transport, 1479 SCTP_TRANSPORT_UP, 1480 SCTP_RECEIVED_SACK); 1481 } 1482 1483 sctp_transport_raise_cwnd(transport, sack_ctsn, 1484 bytes_acked); 1485 1486 transport->flight_size -= bytes_acked; 1487 q->outstanding_bytes -= bytes_acked; 1488 } else { 1489 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1490 * When a sender is doing zero window probing, it 1491 * should not timeout the association if it continues 1492 * to receive new packets from the receiver. The 1493 * reason is that the receiver MAY keep its window 1494 * closed for an indefinite time. 1495 * A sender is doing zero window probing when the 1496 * receiver's advertised window is zero, and there is 1497 * only one data chunk in flight to the receiver. 1498 */ 1499 if (!q->asoc->peer.rwnd && 1500 !list_empty(&tlist) && 1501 (sack_ctsn+2 == q->asoc->next_tsn)) { 1502 SCTP_DEBUG_PRINTK("%s: SACK received for zero " 1503 "window probe: %u\n", 1504 __FUNCTION__, sack_ctsn); 1505 q->asoc->overall_error_count = 0; 1506 transport->error_count = 0; 1507 } 1508 } 1509 1510 /* RFC 2960 6.3.2 Retransmission Timer Rules 1511 * 1512 * R2) Whenever all outstanding data sent to an address have 1513 * been acknowledged, turn off the T3-rtx timer of that 1514 * address. 1515 */ 1516 if (!transport->flight_size) { 1517 if (timer_pending(&transport->T3_rtx_timer) && 1518 del_timer(&transport->T3_rtx_timer)) { 1519 sctp_transport_put(transport); 1520 } 1521 } else if (restart_timer) { 1522 if (!mod_timer(&transport->T3_rtx_timer, 1523 jiffies + transport->rto)) 1524 sctp_transport_hold(transport); 1525 } 1526 } 1527 1528 list_splice(&tlist, transmitted_queue); 1529 } 1530 1531 /* Mark chunks as missing and consequently may get retransmitted. */ 1532 static void sctp_mark_missing(struct sctp_outq *q, 1533 struct list_head *transmitted_queue, 1534 struct sctp_transport *transport, 1535 __u32 highest_new_tsn_in_sack, 1536 int count_of_newacks) 1537 { 1538 struct sctp_chunk *chunk; 1539 struct list_head *pos; 1540 __u32 tsn; 1541 char do_fast_retransmit = 0; 1542 struct sctp_transport *primary = q->asoc->peer.primary_path; 1543 1544 list_for_each(pos, transmitted_queue) { 1545 1546 chunk = list_entry(pos, struct sctp_chunk, transmitted_list); 1547 tsn = ntohl(chunk->subh.data_hdr->tsn); 1548 1549 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1550 * 'Unacknowledged TSN's', if the TSN number of an 1551 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1552 * value, increment the 'TSN.Missing.Report' count on that 1553 * chunk if it has NOT been fast retransmitted or marked for 1554 * fast retransmit already. 1555 */ 1556 if (!chunk->fast_retransmit && 1557 !chunk->tsn_gap_acked && 1558 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1559 1560 /* SFR-CACC may require us to skip marking 1561 * this chunk as missing. 1562 */ 1563 if (!transport || !sctp_cacc_skip(primary, transport, 1564 count_of_newacks, tsn)) { 1565 chunk->tsn_missing_report++; 1566 1567 SCTP_DEBUG_PRINTK( 1568 "%s: TSN 0x%x missing counter: %d\n", 1569 __FUNCTION__, tsn, 1570 chunk->tsn_missing_report); 1571 } 1572 } 1573 /* 1574 * M4) If any DATA chunk is found to have a 1575 * 'TSN.Missing.Report' 1576 * value larger than or equal to 3, mark that chunk for 1577 * retransmission and start the fast retransmit procedure. 1578 */ 1579 1580 if (chunk->tsn_missing_report >= 3) { 1581 chunk->fast_retransmit = 1; 1582 do_fast_retransmit = 1; 1583 } 1584 } 1585 1586 if (transport) { 1587 if (do_fast_retransmit) 1588 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1589 1590 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " 1591 "ssthresh: %d, flight_size: %d, pba: %d\n", 1592 __FUNCTION__, transport, transport->cwnd, 1593 transport->ssthresh, transport->flight_size, 1594 transport->partial_bytes_acked); 1595 } 1596 } 1597 1598 /* Is the given TSN acked by this packet? */ 1599 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1600 { 1601 int i; 1602 sctp_sack_variable_t *frags; 1603 __u16 gap; 1604 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1605 1606 if (TSN_lte(tsn, ctsn)) 1607 goto pass; 1608 1609 /* 3.3.4 Selective Acknowledgement (SACK) (3): 1610 * 1611 * Gap Ack Blocks: 1612 * These fields contain the Gap Ack Blocks. They are repeated 1613 * for each Gap Ack Block up to the number of Gap Ack Blocks 1614 * defined in the Number of Gap Ack Blocks field. All DATA 1615 * chunks with TSNs greater than or equal to (Cumulative TSN 1616 * Ack + Gap Ack Block Start) and less than or equal to 1617 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1618 * Block are assumed to have been received correctly. 1619 */ 1620 1621 frags = sack->variable; 1622 gap = tsn - ctsn; 1623 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) { 1624 if (TSN_lte(ntohs(frags[i].gab.start), gap) && 1625 TSN_lte(gap, ntohs(frags[i].gab.end))) 1626 goto pass; 1627 } 1628 1629 return 0; 1630 pass: 1631 return 1; 1632 } 1633 1634 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1635 int nskips, __be16 stream) 1636 { 1637 int i; 1638 1639 for (i = 0; i < nskips; i++) { 1640 if (skiplist[i].stream == stream) 1641 return i; 1642 } 1643 return i; 1644 } 1645 1646 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1647 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1648 { 1649 struct sctp_association *asoc = q->asoc; 1650 struct sctp_chunk *ftsn_chunk = NULL; 1651 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1652 int nskips = 0; 1653 int skip_pos = 0; 1654 __u32 tsn; 1655 struct sctp_chunk *chunk; 1656 struct list_head *lchunk, *temp; 1657 1658 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1659 * received SACK. 1660 * 1661 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1662 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1663 */ 1664 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1665 asoc->adv_peer_ack_point = ctsn; 1666 1667 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1668 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1669 * the chunk next in the out-queue space is marked as "abandoned" as 1670 * shown in the following example: 1671 * 1672 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1673 * and the Advanced.Peer.Ack.Point is updated to this value: 1674 * 1675 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1676 * normal SACK processing local advancement 1677 * ... ... 1678 * Adv.Ack.Pt-> 102 acked 102 acked 1679 * 103 abandoned 103 abandoned 1680 * 104 abandoned Adv.Ack.P-> 104 abandoned 1681 * 105 105 1682 * 106 acked 106 acked 1683 * ... ... 1684 * 1685 * In this example, the data sender successfully advanced the 1686 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1687 */ 1688 list_for_each_safe(lchunk, temp, &q->abandoned) { 1689 chunk = list_entry(lchunk, struct sctp_chunk, 1690 transmitted_list); 1691 tsn = ntohl(chunk->subh.data_hdr->tsn); 1692 1693 /* Remove any chunks in the abandoned queue that are acked by 1694 * the ctsn. 1695 */ 1696 if (TSN_lte(tsn, ctsn)) { 1697 list_del_init(lchunk); 1698 if (!chunk->tsn_gap_acked) { 1699 chunk->transport->flight_size -= 1700 sctp_data_size(chunk); 1701 q->outstanding_bytes -= sctp_data_size(chunk); 1702 } 1703 sctp_chunk_free(chunk); 1704 } else { 1705 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1706 asoc->adv_peer_ack_point = tsn; 1707 if (chunk->chunk_hdr->flags & 1708 SCTP_DATA_UNORDERED) 1709 continue; 1710 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1711 nskips, 1712 chunk->subh.data_hdr->stream); 1713 ftsn_skip_arr[skip_pos].stream = 1714 chunk->subh.data_hdr->stream; 1715 ftsn_skip_arr[skip_pos].ssn = 1716 chunk->subh.data_hdr->ssn; 1717 if (skip_pos == nskips) 1718 nskips++; 1719 if (nskips == 10) 1720 break; 1721 } else 1722 break; 1723 } 1724 } 1725 1726 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1727 * is greater than the Cumulative TSN ACK carried in the received 1728 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1729 * chunk containing the latest value of the 1730 * "Advanced.Peer.Ack.Point". 1731 * 1732 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1733 * list each stream and sequence number in the forwarded TSN. This 1734 * information will enable the receiver to easily find any 1735 * stranded TSN's waiting on stream reorder queues. Each stream 1736 * SHOULD only be reported once; this means that if multiple 1737 * abandoned messages occur in the same stream then only the 1738 * highest abandoned stream sequence number is reported. If the 1739 * total size of the FORWARD TSN does NOT fit in a single MTU then 1740 * the sender of the FORWARD TSN SHOULD lower the 1741 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1742 * single MTU. 1743 */ 1744 if (asoc->adv_peer_ack_point > ctsn) 1745 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1746 nskips, &ftsn_skip_arr[0]); 1747 1748 if (ftsn_chunk) { 1749 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1750 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 1751 } 1752 } 1753