xref: /linux/net/sctp/outqueue.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #include <linux/types.h>
50 #include <linux/list.h>   /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <linux/slab.h>
54 #include <net/sock.h>	  /* For skb_set_owner_w */
55 
56 #include <net/sctp/sctp.h>
57 #include <net/sctp/sm.h>
58 
59 /* Declare internal functions here.  */
60 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
61 static void sctp_check_transmitted(struct sctp_outq *q,
62 				   struct list_head *transmitted_queue,
63 				   struct sctp_transport *transport,
64 				   struct sctp_sackhdr *sack,
65 				   __u32 highest_new_tsn);
66 
67 static void sctp_mark_missing(struct sctp_outq *q,
68 			      struct list_head *transmitted_queue,
69 			      struct sctp_transport *transport,
70 			      __u32 highest_new_tsn,
71 			      int count_of_newacks);
72 
73 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
74 
75 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
76 
77 /* Add data to the front of the queue. */
78 static inline void sctp_outq_head_data(struct sctp_outq *q,
79 					struct sctp_chunk *ch)
80 {
81 	list_add(&ch->list, &q->out_chunk_list);
82 	q->out_qlen += ch->skb->len;
83 	return;
84 }
85 
86 /* Take data from the front of the queue. */
87 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
88 {
89 	struct sctp_chunk *ch = NULL;
90 
91 	if (!list_empty(&q->out_chunk_list)) {
92 		struct list_head *entry = q->out_chunk_list.next;
93 
94 		ch = list_entry(entry, struct sctp_chunk, list);
95 		list_del_init(entry);
96 		q->out_qlen -= ch->skb->len;
97 	}
98 	return ch;
99 }
100 /* Add data chunk to the end of the queue. */
101 static inline void sctp_outq_tail_data(struct sctp_outq *q,
102 				       struct sctp_chunk *ch)
103 {
104 	list_add_tail(&ch->list, &q->out_chunk_list);
105 	q->out_qlen += ch->skb->len;
106 	return;
107 }
108 
109 /*
110  * SFR-CACC algorithm:
111  * D) If count_of_newacks is greater than or equal to 2
112  * and t was not sent to the current primary then the
113  * sender MUST NOT increment missing report count for t.
114  */
115 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
116 				       struct sctp_transport *transport,
117 				       int count_of_newacks)
118 {
119 	if (count_of_newacks >=2 && transport != primary)
120 		return 1;
121 	return 0;
122 }
123 
124 /*
125  * SFR-CACC algorithm:
126  * F) If count_of_newacks is less than 2, let d be the
127  * destination to which t was sent. If cacc_saw_newack
128  * is 0 for destination d, then the sender MUST NOT
129  * increment missing report count for t.
130  */
131 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
132 				       int count_of_newacks)
133 {
134 	if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
135 		return 1;
136 	return 0;
137 }
138 
139 /*
140  * SFR-CACC algorithm:
141  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142  * execute steps C, D, F.
143  *
144  * C has been implemented in sctp_outq_sack
145  */
146 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
147 				     struct sctp_transport *transport,
148 				     int count_of_newacks)
149 {
150 	if (!primary->cacc.cycling_changeover) {
151 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
152 			return 1;
153 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
154 			return 1;
155 		return 0;
156 	}
157 	return 0;
158 }
159 
160 /*
161  * SFR-CACC algorithm:
162  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163  * than next_tsn_at_change of the current primary, then
164  * the sender MUST NOT increment missing report count
165  * for t.
166  */
167 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
168 {
169 	if (primary->cacc.cycling_changeover &&
170 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
171 		return 1;
172 	return 0;
173 }
174 
175 /*
176  * SFR-CACC algorithm:
177  * 3) If the missing report count for TSN t is to be
178  * incremented according to [RFC2960] and
179  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180  * then the sender MUST futher execute steps 3.1 and
181  * 3.2 to determine if the missing report count for
182  * TSN t SHOULD NOT be incremented.
183  *
184  * 3.3) If 3.1 and 3.2 do not dictate that the missing
185  * report count for t should not be incremented, then
186  * the sender SOULD increment missing report count for
187  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
188  */
189 static inline int sctp_cacc_skip(struct sctp_transport *primary,
190 				 struct sctp_transport *transport,
191 				 int count_of_newacks,
192 				 __u32 tsn)
193 {
194 	if (primary->cacc.changeover_active &&
195 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
196 	     sctp_cacc_skip_3_2(primary, tsn)))
197 		return 1;
198 	return 0;
199 }
200 
201 /* Initialize an existing sctp_outq.  This does the boring stuff.
202  * You still need to define handlers if you really want to DO
203  * something with this structure...
204  */
205 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
206 {
207 	q->asoc = asoc;
208 	INIT_LIST_HEAD(&q->out_chunk_list);
209 	INIT_LIST_HEAD(&q->control_chunk_list);
210 	INIT_LIST_HEAD(&q->retransmit);
211 	INIT_LIST_HEAD(&q->sacked);
212 	INIT_LIST_HEAD(&q->abandoned);
213 
214 	q->fast_rtx = 0;
215 	q->outstanding_bytes = 0;
216 	q->empty = 1;
217 	q->cork  = 0;
218 
219 	q->malloced = 0;
220 	q->out_qlen = 0;
221 }
222 
223 /* Free the outqueue structure and any related pending chunks.
224  */
225 void sctp_outq_teardown(struct sctp_outq *q)
226 {
227 	struct sctp_transport *transport;
228 	struct list_head *lchunk, *temp;
229 	struct sctp_chunk *chunk, *tmp;
230 
231 	/* Throw away unacknowledged chunks. */
232 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
233 			transports) {
234 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
235 			chunk = list_entry(lchunk, struct sctp_chunk,
236 					   transmitted_list);
237 			/* Mark as part of a failed message. */
238 			sctp_chunk_fail(chunk, q->error);
239 			sctp_chunk_free(chunk);
240 		}
241 	}
242 
243 	/* Throw away chunks that have been gap ACKed.  */
244 	list_for_each_safe(lchunk, temp, &q->sacked) {
245 		list_del_init(lchunk);
246 		chunk = list_entry(lchunk, struct sctp_chunk,
247 				   transmitted_list);
248 		sctp_chunk_fail(chunk, q->error);
249 		sctp_chunk_free(chunk);
250 	}
251 
252 	/* Throw away any chunks in the retransmit queue. */
253 	list_for_each_safe(lchunk, temp, &q->retransmit) {
254 		list_del_init(lchunk);
255 		chunk = list_entry(lchunk, struct sctp_chunk,
256 				   transmitted_list);
257 		sctp_chunk_fail(chunk, q->error);
258 		sctp_chunk_free(chunk);
259 	}
260 
261 	/* Throw away any chunks that are in the abandoned queue. */
262 	list_for_each_safe(lchunk, temp, &q->abandoned) {
263 		list_del_init(lchunk);
264 		chunk = list_entry(lchunk, struct sctp_chunk,
265 				   transmitted_list);
266 		sctp_chunk_fail(chunk, q->error);
267 		sctp_chunk_free(chunk);
268 	}
269 
270 	/* Throw away any leftover data chunks. */
271 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
272 
273 		/* Mark as send failure. */
274 		sctp_chunk_fail(chunk, q->error);
275 		sctp_chunk_free(chunk);
276 	}
277 
278 	q->error = 0;
279 
280 	/* Throw away any leftover control chunks. */
281 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
282 		list_del_init(&chunk->list);
283 		sctp_chunk_free(chunk);
284 	}
285 }
286 
287 /* Free the outqueue structure and any related pending chunks.  */
288 void sctp_outq_free(struct sctp_outq *q)
289 {
290 	/* Throw away leftover chunks. */
291 	sctp_outq_teardown(q);
292 
293 	/* If we were kmalloc()'d, free the memory.  */
294 	if (q->malloced)
295 		kfree(q);
296 }
297 
298 /* Put a new chunk in an sctp_outq.  */
299 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
300 {
301 	int error = 0;
302 
303 	SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
304 			  q, chunk, chunk && chunk->chunk_hdr ?
305 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
306 			  : "Illegal Chunk");
307 
308 	/* If it is data, queue it up, otherwise, send it
309 	 * immediately.
310 	 */
311 	if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
312 		/* Is it OK to queue data chunks?  */
313 		/* From 9. Termination of Association
314 		 *
315 		 * When either endpoint performs a shutdown, the
316 		 * association on each peer will stop accepting new
317 		 * data from its user and only deliver data in queue
318 		 * at the time of sending or receiving the SHUTDOWN
319 		 * chunk.
320 		 */
321 		switch (q->asoc->state) {
322 		case SCTP_STATE_EMPTY:
323 		case SCTP_STATE_CLOSED:
324 		case SCTP_STATE_SHUTDOWN_PENDING:
325 		case SCTP_STATE_SHUTDOWN_SENT:
326 		case SCTP_STATE_SHUTDOWN_RECEIVED:
327 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
328 			/* Cannot send after transport endpoint shutdown */
329 			error = -ESHUTDOWN;
330 			break;
331 
332 		default:
333 			SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
334 			  q, chunk, chunk && chunk->chunk_hdr ?
335 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
336 			  : "Illegal Chunk");
337 
338 			sctp_outq_tail_data(q, chunk);
339 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
340 				SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
341 			else
342 				SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
343 			q->empty = 0;
344 			break;
345 		}
346 	} else {
347 		list_add_tail(&chunk->list, &q->control_chunk_list);
348 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
349 	}
350 
351 	if (error < 0)
352 		return error;
353 
354 	if (!q->cork)
355 		error = sctp_outq_flush(q, 0);
356 
357 	return error;
358 }
359 
360 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
361  * and the abandoned list are in ascending order.
362  */
363 static void sctp_insert_list(struct list_head *head, struct list_head *new)
364 {
365 	struct list_head *pos;
366 	struct sctp_chunk *nchunk, *lchunk;
367 	__u32 ntsn, ltsn;
368 	int done = 0;
369 
370 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
371 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
372 
373 	list_for_each(pos, head) {
374 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
375 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
376 		if (TSN_lt(ntsn, ltsn)) {
377 			list_add(new, pos->prev);
378 			done = 1;
379 			break;
380 		}
381 	}
382 	if (!done)
383 		list_add_tail(new, head);
384 }
385 
386 /* Mark all the eligible packets on a transport for retransmission.  */
387 void sctp_retransmit_mark(struct sctp_outq *q,
388 			  struct sctp_transport *transport,
389 			  __u8 reason)
390 {
391 	struct list_head *lchunk, *ltemp;
392 	struct sctp_chunk *chunk;
393 
394 	/* Walk through the specified transmitted queue.  */
395 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
396 		chunk = list_entry(lchunk, struct sctp_chunk,
397 				   transmitted_list);
398 
399 		/* If the chunk is abandoned, move it to abandoned list. */
400 		if (sctp_chunk_abandoned(chunk)) {
401 			list_del_init(lchunk);
402 			sctp_insert_list(&q->abandoned, lchunk);
403 
404 			/* If this chunk has not been previousely acked,
405 			 * stop considering it 'outstanding'.  Our peer
406 			 * will most likely never see it since it will
407 			 * not be retransmitted
408 			 */
409 			if (!chunk->tsn_gap_acked) {
410 				if (chunk->transport)
411 					chunk->transport->flight_size -=
412 							sctp_data_size(chunk);
413 				q->outstanding_bytes -= sctp_data_size(chunk);
414 				q->asoc->peer.rwnd += (sctp_data_size(chunk) +
415 							sizeof(struct sk_buff));
416 			}
417 			continue;
418 		}
419 
420 		/* If we are doing  retransmission due to a timeout or pmtu
421 		 * discovery, only the  chunks that are not yet acked should
422 		 * be added to the retransmit queue.
423 		 */
424 		if ((reason == SCTP_RTXR_FAST_RTX  &&
425 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
426 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
427 			/* RFC 2960 6.2.1 Processing a Received SACK
428 			 *
429 			 * C) Any time a DATA chunk is marked for
430 			 * retransmission (via either T3-rtx timer expiration
431 			 * (Section 6.3.3) or via fast retransmit
432 			 * (Section 7.2.4)), add the data size of those
433 			 * chunks to the rwnd.
434 			 */
435 			q->asoc->peer.rwnd += (sctp_data_size(chunk) +
436 						sizeof(struct sk_buff));
437 			q->outstanding_bytes -= sctp_data_size(chunk);
438 			if (chunk->transport)
439 				transport->flight_size -= sctp_data_size(chunk);
440 
441 			/* sctpimpguide-05 Section 2.8.2
442 			 * M5) If a T3-rtx timer expires, the
443 			 * 'TSN.Missing.Report' of all affected TSNs is set
444 			 * to 0.
445 			 */
446 			chunk->tsn_missing_report = 0;
447 
448 			/* If a chunk that is being used for RTT measurement
449 			 * has to be retransmitted, we cannot use this chunk
450 			 * anymore for RTT measurements. Reset rto_pending so
451 			 * that a new RTT measurement is started when a new
452 			 * data chunk is sent.
453 			 */
454 			if (chunk->rtt_in_progress) {
455 				chunk->rtt_in_progress = 0;
456 				transport->rto_pending = 0;
457 			}
458 
459 			/* Move the chunk to the retransmit queue. The chunks
460 			 * on the retransmit queue are always kept in order.
461 			 */
462 			list_del_init(lchunk);
463 			sctp_insert_list(&q->retransmit, lchunk);
464 		}
465 	}
466 
467 	SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
468 			  "cwnd: %d, ssthresh: %d, flight_size: %d, "
469 			  "pba: %d\n", __func__,
470 			  transport, reason,
471 			  transport->cwnd, transport->ssthresh,
472 			  transport->flight_size,
473 			  transport->partial_bytes_acked);
474 
475 }
476 
477 /* Mark all the eligible packets on a transport for retransmission and force
478  * one packet out.
479  */
480 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
481 		     sctp_retransmit_reason_t reason)
482 {
483 	int error = 0;
484 
485 	switch(reason) {
486 	case SCTP_RTXR_T3_RTX:
487 		SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
488 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
489 		/* Update the retran path if the T3-rtx timer has expired for
490 		 * the current retran path.
491 		 */
492 		if (transport == transport->asoc->peer.retran_path)
493 			sctp_assoc_update_retran_path(transport->asoc);
494 		transport->asoc->rtx_data_chunks +=
495 			transport->asoc->unack_data;
496 		break;
497 	case SCTP_RTXR_FAST_RTX:
498 		SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
499 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
500 		q->fast_rtx = 1;
501 		break;
502 	case SCTP_RTXR_PMTUD:
503 		SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
504 		break;
505 	case SCTP_RTXR_T1_RTX:
506 		SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS);
507 		transport->asoc->init_retries++;
508 		break;
509 	default:
510 		BUG();
511 	}
512 
513 	sctp_retransmit_mark(q, transport, reason);
514 
515 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
516 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
517 	 * following the procedures outlined in C1 - C5.
518 	 */
519 	if (reason == SCTP_RTXR_T3_RTX)
520 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
521 
522 	/* Flush the queues only on timeout, since fast_rtx is only
523 	 * triggered during sack processing and the queue
524 	 * will be flushed at the end.
525 	 */
526 	if (reason != SCTP_RTXR_FAST_RTX)
527 		error = sctp_outq_flush(q, /* rtx_timeout */ 1);
528 
529 	if (error)
530 		q->asoc->base.sk->sk_err = -error;
531 }
532 
533 /*
534  * Transmit DATA chunks on the retransmit queue.  Upon return from
535  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
536  * need to be transmitted by the caller.
537  * We assume that pkt->transport has already been set.
538  *
539  * The return value is a normal kernel error return value.
540  */
541 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
542 			       int rtx_timeout, int *start_timer)
543 {
544 	struct list_head *lqueue;
545 	struct sctp_transport *transport = pkt->transport;
546 	sctp_xmit_t status;
547 	struct sctp_chunk *chunk, *chunk1;
548 	struct sctp_association *asoc;
549 	int fast_rtx;
550 	int error = 0;
551 	int timer = 0;
552 	int done = 0;
553 
554 	asoc = q->asoc;
555 	lqueue = &q->retransmit;
556 	fast_rtx = q->fast_rtx;
557 
558 	/* This loop handles time-out retransmissions, fast retransmissions,
559 	 * and retransmissions due to opening of whindow.
560 	 *
561 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
562 	 *
563 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
564 	 * outstanding DATA chunks for the address for which the
565 	 * T3-rtx has expired will fit into a single packet, subject
566 	 * to the MTU constraint for the path corresponding to the
567 	 * destination transport address to which the retransmission
568 	 * is being sent (this may be different from the address for
569 	 * which the timer expires [see Section 6.4]). Call this value
570 	 * K. Bundle and retransmit those K DATA chunks in a single
571 	 * packet to the destination endpoint.
572 	 *
573 	 * [Just to be painfully clear, if we are retransmitting
574 	 * because a timeout just happened, we should send only ONE
575 	 * packet of retransmitted data.]
576 	 *
577 	 * For fast retransmissions we also send only ONE packet.  However,
578 	 * if we are just flushing the queue due to open window, we'll
579 	 * try to send as much as possible.
580 	 */
581 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
582 
583 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
584 		 * simple approach is just to move such TSNs out of the
585 		 * way and into a 'transmitted' queue and skip to the
586 		 * next chunk.
587 		 */
588 		if (chunk->tsn_gap_acked) {
589 			list_del(&chunk->transmitted_list);
590 			list_add_tail(&chunk->transmitted_list,
591 					&transport->transmitted);
592 			continue;
593 		}
594 
595 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
596 		 * chunks
597 		 */
598 		if (fast_rtx && !chunk->fast_retransmit)
599 			continue;
600 
601 		/* Attempt to append this chunk to the packet. */
602 		status = sctp_packet_append_chunk(pkt, chunk);
603 
604 		switch (status) {
605 		case SCTP_XMIT_PMTU_FULL:
606 			/* Send this packet.  */
607 			error = sctp_packet_transmit(pkt);
608 
609 			/* If we are retransmitting, we should only
610 			 * send a single packet.
611 			 */
612 			if (rtx_timeout || fast_rtx)
613 				done = 1;
614 
615 			/* Bundle next chunk in the next round.  */
616 			break;
617 
618 		case SCTP_XMIT_RWND_FULL:
619 			/* Send this packet. */
620 			error = sctp_packet_transmit(pkt);
621 
622 			/* Stop sending DATA as there is no more room
623 			 * at the receiver.
624 			 */
625 			done = 1;
626 			break;
627 
628 		case SCTP_XMIT_NAGLE_DELAY:
629 			/* Send this packet. */
630 			error = sctp_packet_transmit(pkt);
631 
632 			/* Stop sending DATA because of nagle delay. */
633 			done = 1;
634 			break;
635 
636 		default:
637 			/* The append was successful, so add this chunk to
638 			 * the transmitted list.
639 			 */
640 			list_del(&chunk->transmitted_list);
641 			list_add_tail(&chunk->transmitted_list,
642 					&transport->transmitted);
643 
644 			/* Mark the chunk as ineligible for fast retransmit
645 			 * after it is retransmitted.
646 			 */
647 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
648 				chunk->fast_retransmit = SCTP_DONT_FRTX;
649 
650 			/* Force start T3-rtx timer when fast retransmitting
651 			 * the earliest outstanding TSN
652 			 */
653 			if (!timer && fast_rtx &&
654 			    ntohl(chunk->subh.data_hdr->tsn) ==
655 					     asoc->ctsn_ack_point + 1)
656 				timer = 2;
657 
658 			q->empty = 0;
659 			break;
660 		}
661 
662 		/* Set the timer if there were no errors */
663 		if (!error && !timer)
664 			timer = 1;
665 
666 		if (done)
667 			break;
668 	}
669 
670 	/* If we are here due to a retransmit timeout or a fast
671 	 * retransmit and if there are any chunks left in the retransmit
672 	 * queue that could not fit in the PMTU sized packet, they need
673 	 * to be marked as ineligible for a subsequent fast retransmit.
674 	 */
675 	if (rtx_timeout || fast_rtx) {
676 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
677 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
678 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
679 		}
680 	}
681 
682 	*start_timer = timer;
683 
684 	/* Clear fast retransmit hint */
685 	if (fast_rtx)
686 		q->fast_rtx = 0;
687 
688 	return error;
689 }
690 
691 /* Cork the outqueue so queued chunks are really queued. */
692 int sctp_outq_uncork(struct sctp_outq *q)
693 {
694 	int error = 0;
695 	if (q->cork)
696 		q->cork = 0;
697 	error = sctp_outq_flush(q, 0);
698 	return error;
699 }
700 
701 
702 /*
703  * Try to flush an outqueue.
704  *
705  * Description: Send everything in q which we legally can, subject to
706  * congestion limitations.
707  * * Note: This function can be called from multiple contexts so appropriate
708  * locking concerns must be made.  Today we use the sock lock to protect
709  * this function.
710  */
711 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
712 {
713 	struct sctp_packet *packet;
714 	struct sctp_packet singleton;
715 	struct sctp_association *asoc = q->asoc;
716 	__u16 sport = asoc->base.bind_addr.port;
717 	__u16 dport = asoc->peer.port;
718 	__u32 vtag = asoc->peer.i.init_tag;
719 	struct sctp_transport *transport = NULL;
720 	struct sctp_transport *new_transport;
721 	struct sctp_chunk *chunk, *tmp;
722 	sctp_xmit_t status;
723 	int error = 0;
724 	int start_timer = 0;
725 	int one_packet = 0;
726 
727 	/* These transports have chunks to send. */
728 	struct list_head transport_list;
729 	struct list_head *ltransport;
730 
731 	INIT_LIST_HEAD(&transport_list);
732 	packet = NULL;
733 
734 	/*
735 	 * 6.10 Bundling
736 	 *   ...
737 	 *   When bundling control chunks with DATA chunks, an
738 	 *   endpoint MUST place control chunks first in the outbound
739 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
740 	 *   within a SCTP packet in increasing order of TSN.
741 	 *   ...
742 	 */
743 
744 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
745 		list_del_init(&chunk->list);
746 
747 		/* Pick the right transport to use. */
748 		new_transport = chunk->transport;
749 
750 		if (!new_transport) {
751 			/*
752 			 * If we have a prior transport pointer, see if
753 			 * the destination address of the chunk
754 			 * matches the destination address of the
755 			 * current transport.  If not a match, then
756 			 * try to look up the transport with a given
757 			 * destination address.  We do this because
758 			 * after processing ASCONFs, we may have new
759 			 * transports created.
760 			 */
761 			if (transport &&
762 			    sctp_cmp_addr_exact(&chunk->dest,
763 						&transport->ipaddr))
764 					new_transport = transport;
765 			else
766 				new_transport = sctp_assoc_lookup_paddr(asoc,
767 								&chunk->dest);
768 
769 			/* if we still don't have a new transport, then
770 			 * use the current active path.
771 			 */
772 			if (!new_transport)
773 				new_transport = asoc->peer.active_path;
774 		} else if ((new_transport->state == SCTP_INACTIVE) ||
775 			   (new_transport->state == SCTP_UNCONFIRMED)) {
776 			/* If the chunk is Heartbeat or Heartbeat Ack,
777 			 * send it to chunk->transport, even if it's
778 			 * inactive.
779 			 *
780 			 * 3.3.6 Heartbeat Acknowledgement:
781 			 * ...
782 			 * A HEARTBEAT ACK is always sent to the source IP
783 			 * address of the IP datagram containing the
784 			 * HEARTBEAT chunk to which this ack is responding.
785 			 * ...
786 			 *
787 			 * ASCONF_ACKs also must be sent to the source.
788 			 */
789 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
790 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
791 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
792 				new_transport = asoc->peer.active_path;
793 		}
794 
795 		/* Are we switching transports?
796 		 * Take care of transport locks.
797 		 */
798 		if (new_transport != transport) {
799 			transport = new_transport;
800 			if (list_empty(&transport->send_ready)) {
801 				list_add_tail(&transport->send_ready,
802 					      &transport_list);
803 			}
804 			packet = &transport->packet;
805 			sctp_packet_config(packet, vtag,
806 					   asoc->peer.ecn_capable);
807 		}
808 
809 		switch (chunk->chunk_hdr->type) {
810 		/*
811 		 * 6.10 Bundling
812 		 *   ...
813 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
814 		 *   COMPLETE with any other chunks.  [Send them immediately.]
815 		 */
816 		case SCTP_CID_INIT:
817 		case SCTP_CID_INIT_ACK:
818 		case SCTP_CID_SHUTDOWN_COMPLETE:
819 			sctp_packet_init(&singleton, transport, sport, dport);
820 			sctp_packet_config(&singleton, vtag, 0);
821 			sctp_packet_append_chunk(&singleton, chunk);
822 			error = sctp_packet_transmit(&singleton);
823 			if (error < 0)
824 				return error;
825 			break;
826 
827 		case SCTP_CID_ABORT:
828 			if (sctp_test_T_bit(chunk)) {
829 				packet->vtag = asoc->c.my_vtag;
830 			}
831 		/* The following chunks are "response" chunks, i.e.
832 		 * they are generated in response to something we
833 		 * received.  If we are sending these, then we can
834 		 * send only 1 packet containing these chunks.
835 		 */
836 		case SCTP_CID_HEARTBEAT_ACK:
837 		case SCTP_CID_SHUTDOWN_ACK:
838 		case SCTP_CID_COOKIE_ACK:
839 		case SCTP_CID_COOKIE_ECHO:
840 		case SCTP_CID_ERROR:
841 		case SCTP_CID_ECN_CWR:
842 		case SCTP_CID_ASCONF_ACK:
843 			one_packet = 1;
844 			/* Fall throught */
845 
846 		case SCTP_CID_SACK:
847 		case SCTP_CID_HEARTBEAT:
848 		case SCTP_CID_SHUTDOWN:
849 		case SCTP_CID_ECN_ECNE:
850 		case SCTP_CID_ASCONF:
851 		case SCTP_CID_FWD_TSN:
852 			status = sctp_packet_transmit_chunk(packet, chunk,
853 							    one_packet);
854 			if (status  != SCTP_XMIT_OK) {
855 				/* put the chunk back */
856 				list_add(&chunk->list, &q->control_chunk_list);
857 			}
858 			break;
859 
860 		default:
861 			/* We built a chunk with an illegal type! */
862 			BUG();
863 		}
864 	}
865 
866 	/* Is it OK to send data chunks?  */
867 	switch (asoc->state) {
868 	case SCTP_STATE_COOKIE_ECHOED:
869 		/* Only allow bundling when this packet has a COOKIE-ECHO
870 		 * chunk.
871 		 */
872 		if (!packet || !packet->has_cookie_echo)
873 			break;
874 
875 		/* fallthru */
876 	case SCTP_STATE_ESTABLISHED:
877 	case SCTP_STATE_SHUTDOWN_PENDING:
878 	case SCTP_STATE_SHUTDOWN_RECEIVED:
879 		/*
880 		 * RFC 2960 6.1  Transmission of DATA Chunks
881 		 *
882 		 * C) When the time comes for the sender to transmit,
883 		 * before sending new DATA chunks, the sender MUST
884 		 * first transmit any outstanding DATA chunks which
885 		 * are marked for retransmission (limited by the
886 		 * current cwnd).
887 		 */
888 		if (!list_empty(&q->retransmit)) {
889 			if (transport == asoc->peer.retran_path)
890 				goto retran;
891 
892 			/* Switch transports & prepare the packet.  */
893 
894 			transport = asoc->peer.retran_path;
895 
896 			if (list_empty(&transport->send_ready)) {
897 				list_add_tail(&transport->send_ready,
898 					      &transport_list);
899 			}
900 
901 			packet = &transport->packet;
902 			sctp_packet_config(packet, vtag,
903 					   asoc->peer.ecn_capable);
904 		retran:
905 			error = sctp_outq_flush_rtx(q, packet,
906 						    rtx_timeout, &start_timer);
907 
908 			if (start_timer)
909 				sctp_transport_reset_timers(transport,
910 							    start_timer-1);
911 
912 			/* This can happen on COOKIE-ECHO resend.  Only
913 			 * one chunk can get bundled with a COOKIE-ECHO.
914 			 */
915 			if (packet->has_cookie_echo)
916 				goto sctp_flush_out;
917 
918 			/* Don't send new data if there is still data
919 			 * waiting to retransmit.
920 			 */
921 			if (!list_empty(&q->retransmit))
922 				goto sctp_flush_out;
923 		}
924 
925 		/* Apply Max.Burst limitation to the current transport in
926 		 * case it will be used for new data.  We are going to
927 		 * rest it before we return, but we want to apply the limit
928 		 * to the currently queued data.
929 		 */
930 		if (transport)
931 			sctp_transport_burst_limited(transport);
932 
933 		/* Finally, transmit new packets.  */
934 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
935 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
936 			 * stream identifier.
937 			 */
938 			if (chunk->sinfo.sinfo_stream >=
939 			    asoc->c.sinit_num_ostreams) {
940 
941 				/* Mark as failed send. */
942 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
943 				sctp_chunk_free(chunk);
944 				continue;
945 			}
946 
947 			/* Has this chunk expired? */
948 			if (sctp_chunk_abandoned(chunk)) {
949 				sctp_chunk_fail(chunk, 0);
950 				sctp_chunk_free(chunk);
951 				continue;
952 			}
953 
954 			/* If there is a specified transport, use it.
955 			 * Otherwise, we want to use the active path.
956 			 */
957 			new_transport = chunk->transport;
958 			if (!new_transport ||
959 			    ((new_transport->state == SCTP_INACTIVE) ||
960 			     (new_transport->state == SCTP_UNCONFIRMED)))
961 				new_transport = asoc->peer.active_path;
962 
963 			/* Change packets if necessary.  */
964 			if (new_transport != transport) {
965 				transport = new_transport;
966 
967 				/* Schedule to have this transport's
968 				 * packet flushed.
969 				 */
970 				if (list_empty(&transport->send_ready)) {
971 					list_add_tail(&transport->send_ready,
972 						      &transport_list);
973 				}
974 
975 				packet = &transport->packet;
976 				sctp_packet_config(packet, vtag,
977 						   asoc->peer.ecn_capable);
978 				/* We've switched transports, so apply the
979 				 * Burst limit to the new transport.
980 				 */
981 				sctp_transport_burst_limited(transport);
982 			}
983 
984 			SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
985 					  q, chunk,
986 					  chunk && chunk->chunk_hdr ?
987 					  sctp_cname(SCTP_ST_CHUNK(
988 						  chunk->chunk_hdr->type))
989 					  : "Illegal Chunk");
990 
991 			SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
992 					"%p skb->users %d.\n",
993 					ntohl(chunk->subh.data_hdr->tsn),
994 					chunk->skb ?chunk->skb->head : NULL,
995 					chunk->skb ?
996 					atomic_read(&chunk->skb->users) : -1);
997 
998 			/* Add the chunk to the packet.  */
999 			status = sctp_packet_transmit_chunk(packet, chunk, 0);
1000 
1001 			switch (status) {
1002 			case SCTP_XMIT_PMTU_FULL:
1003 			case SCTP_XMIT_RWND_FULL:
1004 			case SCTP_XMIT_NAGLE_DELAY:
1005 				/* We could not append this chunk, so put
1006 				 * the chunk back on the output queue.
1007 				 */
1008 				SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1009 					"not transmit TSN: 0x%x, status: %d\n",
1010 					ntohl(chunk->subh.data_hdr->tsn),
1011 					status);
1012 				sctp_outq_head_data(q, chunk);
1013 				goto sctp_flush_out;
1014 				break;
1015 
1016 			case SCTP_XMIT_OK:
1017 				/* The sender is in the SHUTDOWN-PENDING state,
1018 				 * The sender MAY set the I-bit in the DATA
1019 				 * chunk header.
1020 				 */
1021 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1022 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1023 
1024 				break;
1025 
1026 			default:
1027 				BUG();
1028 			}
1029 
1030 			/* BUG: We assume that the sctp_packet_transmit()
1031 			 * call below will succeed all the time and add the
1032 			 * chunk to the transmitted list and restart the
1033 			 * timers.
1034 			 * It is possible that the call can fail under OOM
1035 			 * conditions.
1036 			 *
1037 			 * Is this really a problem?  Won't this behave
1038 			 * like a lost TSN?
1039 			 */
1040 			list_add_tail(&chunk->transmitted_list,
1041 				      &transport->transmitted);
1042 
1043 			sctp_transport_reset_timers(transport, 0);
1044 
1045 			q->empty = 0;
1046 
1047 			/* Only let one DATA chunk get bundled with a
1048 			 * COOKIE-ECHO chunk.
1049 			 */
1050 			if (packet->has_cookie_echo)
1051 				goto sctp_flush_out;
1052 		}
1053 		break;
1054 
1055 	default:
1056 		/* Do nothing.  */
1057 		break;
1058 	}
1059 
1060 sctp_flush_out:
1061 
1062 	/* Before returning, examine all the transports touched in
1063 	 * this call.  Right now, we bluntly force clear all the
1064 	 * transports.  Things might change after we implement Nagle.
1065 	 * But such an examination is still required.
1066 	 *
1067 	 * --xguo
1068 	 */
1069 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1070 		struct sctp_transport *t = list_entry(ltransport,
1071 						      struct sctp_transport,
1072 						      send_ready);
1073 		packet = &t->packet;
1074 		if (!sctp_packet_empty(packet))
1075 			error = sctp_packet_transmit(packet);
1076 
1077 		/* Clear the burst limited state, if any */
1078 		sctp_transport_burst_reset(t);
1079 	}
1080 
1081 	return error;
1082 }
1083 
1084 /* Update unack_data based on the incoming SACK chunk */
1085 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1086 					struct sctp_sackhdr *sack)
1087 {
1088 	sctp_sack_variable_t *frags;
1089 	__u16 unack_data;
1090 	int i;
1091 
1092 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1093 
1094 	frags = sack->variable;
1095 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1096 		unack_data -= ((ntohs(frags[i].gab.end) -
1097 				ntohs(frags[i].gab.start) + 1));
1098 	}
1099 
1100 	assoc->unack_data = unack_data;
1101 }
1102 
1103 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1104 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
1105 				  struct sctp_association *asoc)
1106 {
1107 	struct sctp_transport *transport;
1108 	struct sctp_chunk *chunk;
1109 	__u32 highest_new_tsn, tsn;
1110 	struct list_head *transport_list = &asoc->peer.transport_addr_list;
1111 
1112 	highest_new_tsn = ntohl(sack->cum_tsn_ack);
1113 
1114 	list_for_each_entry(transport, transport_list, transports) {
1115 		list_for_each_entry(chunk, &transport->transmitted,
1116 				transmitted_list) {
1117 			tsn = ntohl(chunk->subh.data_hdr->tsn);
1118 
1119 			if (!chunk->tsn_gap_acked &&
1120 			    TSN_lt(highest_new_tsn, tsn) &&
1121 			    sctp_acked(sack, tsn))
1122 				highest_new_tsn = tsn;
1123 		}
1124 	}
1125 
1126 	return highest_new_tsn;
1127 }
1128 
1129 /* This is where we REALLY process a SACK.
1130  *
1131  * Process the SACK against the outqueue.  Mostly, this just frees
1132  * things off the transmitted queue.
1133  */
1134 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1135 {
1136 	struct sctp_association *asoc = q->asoc;
1137 	struct sctp_transport *transport;
1138 	struct sctp_chunk *tchunk = NULL;
1139 	struct list_head *lchunk, *transport_list, *temp;
1140 	sctp_sack_variable_t *frags = sack->variable;
1141 	__u32 sack_ctsn, ctsn, tsn;
1142 	__u32 highest_tsn, highest_new_tsn;
1143 	__u32 sack_a_rwnd;
1144 	unsigned outstanding;
1145 	struct sctp_transport *primary = asoc->peer.primary_path;
1146 	int count_of_newacks = 0;
1147 	int gap_ack_blocks;
1148 
1149 	/* Grab the association's destination address list. */
1150 	transport_list = &asoc->peer.transport_addr_list;
1151 
1152 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1153 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1154 	/*
1155 	 * SFR-CACC algorithm:
1156 	 * On receipt of a SACK the sender SHOULD execute the
1157 	 * following statements.
1158 	 *
1159 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1160 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1161 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1162 	 * all destinations.
1163 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1164 	 * is set the receiver of the SACK MUST take the following actions:
1165 	 *
1166 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1167 	 * addresses.
1168 	 *
1169 	 * Only bother if changeover_active is set. Otherwise, this is
1170 	 * totally suboptimal to do on every SACK.
1171 	 */
1172 	if (primary->cacc.changeover_active) {
1173 		u8 clear_cycling = 0;
1174 
1175 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1176 			primary->cacc.changeover_active = 0;
1177 			clear_cycling = 1;
1178 		}
1179 
1180 		if (clear_cycling || gap_ack_blocks) {
1181 			list_for_each_entry(transport, transport_list,
1182 					transports) {
1183 				if (clear_cycling)
1184 					transport->cacc.cycling_changeover = 0;
1185 				if (gap_ack_blocks)
1186 					transport->cacc.cacc_saw_newack = 0;
1187 			}
1188 		}
1189 	}
1190 
1191 	/* Get the highest TSN in the sack. */
1192 	highest_tsn = sack_ctsn;
1193 	if (gap_ack_blocks)
1194 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1195 
1196 	if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1197 		highest_new_tsn = highest_tsn;
1198 		asoc->highest_sacked = highest_tsn;
1199 	} else {
1200 		highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1201 	}
1202 
1203 
1204 	/* Run through the retransmit queue.  Credit bytes received
1205 	 * and free those chunks that we can.
1206 	 */
1207 	sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1208 
1209 	/* Run through the transmitted queue.
1210 	 * Credit bytes received and free those chunks which we can.
1211 	 *
1212 	 * This is a MASSIVE candidate for optimization.
1213 	 */
1214 	list_for_each_entry(transport, transport_list, transports) {
1215 		sctp_check_transmitted(q, &transport->transmitted,
1216 				       transport, sack, highest_new_tsn);
1217 		/*
1218 		 * SFR-CACC algorithm:
1219 		 * C) Let count_of_newacks be the number of
1220 		 * destinations for which cacc_saw_newack is set.
1221 		 */
1222 		if (transport->cacc.cacc_saw_newack)
1223 			count_of_newacks ++;
1224 	}
1225 
1226 	if (gap_ack_blocks) {
1227 		list_for_each_entry(transport, transport_list, transports)
1228 			sctp_mark_missing(q, &transport->transmitted, transport,
1229 					  highest_new_tsn, count_of_newacks);
1230 	}
1231 
1232 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1233 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1234 		asoc->ctsn_ack_point = sack_ctsn;
1235 
1236 	/* Update unack_data field in the assoc. */
1237 	sctp_sack_update_unack_data(asoc, sack);
1238 
1239 	ctsn = asoc->ctsn_ack_point;
1240 
1241 	/* Throw away stuff rotting on the sack queue.  */
1242 	list_for_each_safe(lchunk, temp, &q->sacked) {
1243 		tchunk = list_entry(lchunk, struct sctp_chunk,
1244 				    transmitted_list);
1245 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1246 		if (TSN_lte(tsn, ctsn)) {
1247 			list_del_init(&tchunk->transmitted_list);
1248 			sctp_chunk_free(tchunk);
1249 		}
1250 	}
1251 
1252 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1253 	 *     number of bytes still outstanding after processing the
1254 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1255 	 */
1256 
1257 	sack_a_rwnd = ntohl(sack->a_rwnd);
1258 	outstanding = q->outstanding_bytes;
1259 
1260 	if (outstanding < sack_a_rwnd)
1261 		sack_a_rwnd -= outstanding;
1262 	else
1263 		sack_a_rwnd = 0;
1264 
1265 	asoc->peer.rwnd = sack_a_rwnd;
1266 
1267 	sctp_generate_fwdtsn(q, sack_ctsn);
1268 
1269 	SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1270 			  __func__, sack_ctsn);
1271 	SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1272 			  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1273 			  __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1274 
1275 	/* See if all chunks are acked.
1276 	 * Make sure the empty queue handler will get run later.
1277 	 */
1278 	q->empty = (list_empty(&q->out_chunk_list) &&
1279 		    list_empty(&q->retransmit));
1280 	if (!q->empty)
1281 		goto finish;
1282 
1283 	list_for_each_entry(transport, transport_list, transports) {
1284 		q->empty = q->empty && list_empty(&transport->transmitted);
1285 		if (!q->empty)
1286 			goto finish;
1287 	}
1288 
1289 	SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1290 finish:
1291 	return q->empty;
1292 }
1293 
1294 /* Is the outqueue empty?  */
1295 int sctp_outq_is_empty(const struct sctp_outq *q)
1296 {
1297 	return q->empty;
1298 }
1299 
1300 /********************************************************************
1301  * 2nd Level Abstractions
1302  ********************************************************************/
1303 
1304 /* Go through a transport's transmitted list or the association's retransmit
1305  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1306  * The retransmit list will not have an associated transport.
1307  *
1308  * I added coherent debug information output.	--xguo
1309  *
1310  * Instead of printing 'sacked' or 'kept' for each TSN on the
1311  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1312  * KEPT TSN6-TSN7, etc.
1313  */
1314 static void sctp_check_transmitted(struct sctp_outq *q,
1315 				   struct list_head *transmitted_queue,
1316 				   struct sctp_transport *transport,
1317 				   struct sctp_sackhdr *sack,
1318 				   __u32 highest_new_tsn_in_sack)
1319 {
1320 	struct list_head *lchunk;
1321 	struct sctp_chunk *tchunk;
1322 	struct list_head tlist;
1323 	__u32 tsn;
1324 	__u32 sack_ctsn;
1325 	__u32 rtt;
1326 	__u8 restart_timer = 0;
1327 	int bytes_acked = 0;
1328 	int migrate_bytes = 0;
1329 
1330 	/* These state variables are for coherent debug output. --xguo */
1331 
1332 #if SCTP_DEBUG
1333 	__u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */
1334 	__u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */
1335 	__u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */
1336 	__u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */
1337 
1338 	/* 0 : The last TSN was ACKed.
1339 	 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1340 	 * -1: We need to initialize.
1341 	 */
1342 	int dbg_prt_state = -1;
1343 #endif /* SCTP_DEBUG */
1344 
1345 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1346 
1347 	INIT_LIST_HEAD(&tlist);
1348 
1349 	/* The while loop will skip empty transmitted queues. */
1350 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1351 		tchunk = list_entry(lchunk, struct sctp_chunk,
1352 				    transmitted_list);
1353 
1354 		if (sctp_chunk_abandoned(tchunk)) {
1355 			/* Move the chunk to abandoned list. */
1356 			sctp_insert_list(&q->abandoned, lchunk);
1357 
1358 			/* If this chunk has not been acked, stop
1359 			 * considering it as 'outstanding'.
1360 			 */
1361 			if (!tchunk->tsn_gap_acked) {
1362 				if (tchunk->transport)
1363 					tchunk->transport->flight_size -=
1364 							sctp_data_size(tchunk);
1365 				q->outstanding_bytes -= sctp_data_size(tchunk);
1366 			}
1367 			continue;
1368 		}
1369 
1370 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1371 		if (sctp_acked(sack, tsn)) {
1372 			/* If this queue is the retransmit queue, the
1373 			 * retransmit timer has already reclaimed
1374 			 * the outstanding bytes for this chunk, so only
1375 			 * count bytes associated with a transport.
1376 			 */
1377 			if (transport) {
1378 				/* If this chunk is being used for RTT
1379 				 * measurement, calculate the RTT and update
1380 				 * the RTO using this value.
1381 				 *
1382 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1383 				 * MUST NOT be made using packets that were
1384 				 * retransmitted (and thus for which it is
1385 				 * ambiguous whether the reply was for the
1386 				 * first instance of the packet or a later
1387 				 * instance).
1388 				 */
1389 				if (!tchunk->tsn_gap_acked &&
1390 				    !tchunk->resent &&
1391 				    tchunk->rtt_in_progress) {
1392 					tchunk->rtt_in_progress = 0;
1393 					rtt = jiffies - tchunk->sent_at;
1394 					sctp_transport_update_rto(transport,
1395 								  rtt);
1396 				}
1397 			}
1398 
1399 			/* If the chunk hasn't been marked as ACKED,
1400 			 * mark it and account bytes_acked if the
1401 			 * chunk had a valid transport (it will not
1402 			 * have a transport if ASCONF had deleted it
1403 			 * while DATA was outstanding).
1404 			 */
1405 			if (!tchunk->tsn_gap_acked) {
1406 				tchunk->tsn_gap_acked = 1;
1407 				bytes_acked += sctp_data_size(tchunk);
1408 				if (!tchunk->transport)
1409 					migrate_bytes += sctp_data_size(tchunk);
1410 			}
1411 
1412 			if (TSN_lte(tsn, sack_ctsn)) {
1413 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1414 				 *
1415 				 * R3) Whenever a SACK is received
1416 				 * that acknowledges the DATA chunk
1417 				 * with the earliest outstanding TSN
1418 				 * for that address, restart T3-rtx
1419 				 * timer for that address with its
1420 				 * current RTO.
1421 				 */
1422 				restart_timer = 1;
1423 
1424 				if (!tchunk->tsn_gap_acked) {
1425 					/*
1426 					 * SFR-CACC algorithm:
1427 					 * 2) If the SACK contains gap acks
1428 					 * and the flag CHANGEOVER_ACTIVE is
1429 					 * set the receiver of the SACK MUST
1430 					 * take the following action:
1431 					 *
1432 					 * B) For each TSN t being acked that
1433 					 * has not been acked in any SACK so
1434 					 * far, set cacc_saw_newack to 1 for
1435 					 * the destination that the TSN was
1436 					 * sent to.
1437 					 */
1438 					if (transport &&
1439 					    sack->num_gap_ack_blocks &&
1440 					    q->asoc->peer.primary_path->cacc.
1441 					    changeover_active)
1442 						transport->cacc.cacc_saw_newack
1443 							= 1;
1444 				}
1445 
1446 				list_add_tail(&tchunk->transmitted_list,
1447 					      &q->sacked);
1448 			} else {
1449 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1450 				 * M2) Each time a SACK arrives reporting
1451 				 * 'Stray DATA chunk(s)' record the highest TSN
1452 				 * reported as newly acknowledged, call this
1453 				 * value 'HighestTSNinSack'. A newly
1454 				 * acknowledged DATA chunk is one not
1455 				 * previously acknowledged in a SACK.
1456 				 *
1457 				 * When the SCTP sender of data receives a SACK
1458 				 * chunk that acknowledges, for the first time,
1459 				 * the receipt of a DATA chunk, all the still
1460 				 * unacknowledged DATA chunks whose TSN is
1461 				 * older than that newly acknowledged DATA
1462 				 * chunk, are qualified as 'Stray DATA chunks'.
1463 				 */
1464 				list_add_tail(lchunk, &tlist);
1465 			}
1466 
1467 #if SCTP_DEBUG
1468 			switch (dbg_prt_state) {
1469 			case 0:	/* last TSN was ACKed */
1470 				if (dbg_last_ack_tsn + 1 == tsn) {
1471 					/* This TSN belongs to the
1472 					 * current ACK range.
1473 					 */
1474 					break;
1475 				}
1476 
1477 				if (dbg_last_ack_tsn != dbg_ack_tsn) {
1478 					/* Display the end of the
1479 					 * current range.
1480 					 */
1481 					SCTP_DEBUG_PRINTK("-%08x",
1482 							  dbg_last_ack_tsn);
1483 				}
1484 
1485 				/* Start a new range.  */
1486 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1487 				dbg_ack_tsn = tsn;
1488 				break;
1489 
1490 			case 1:	/* The last TSN was NOT ACKed. */
1491 				if (dbg_last_kept_tsn != dbg_kept_tsn) {
1492 					/* Display the end of current range. */
1493 					SCTP_DEBUG_PRINTK("-%08x",
1494 							  dbg_last_kept_tsn);
1495 				}
1496 
1497 				SCTP_DEBUG_PRINTK("\n");
1498 
1499 				/* FALL THROUGH... */
1500 			default:
1501 				/* This is the first-ever TSN we examined.  */
1502 				/* Start a new range of ACK-ed TSNs.  */
1503 				SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1504 				dbg_prt_state = 0;
1505 				dbg_ack_tsn = tsn;
1506 			}
1507 
1508 			dbg_last_ack_tsn = tsn;
1509 #endif /* SCTP_DEBUG */
1510 
1511 		} else {
1512 			if (tchunk->tsn_gap_acked) {
1513 				SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1514 						  "data TSN: 0x%x\n",
1515 						  __func__,
1516 						  tsn);
1517 				tchunk->tsn_gap_acked = 0;
1518 
1519 				if (tchunk->transport)
1520 					bytes_acked -= sctp_data_size(tchunk);
1521 
1522 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1523 				 *
1524 				 * R4) Whenever a SACK is received missing a
1525 				 * TSN that was previously acknowledged via a
1526 				 * Gap Ack Block, start T3-rtx for the
1527 				 * destination address to which the DATA
1528 				 * chunk was originally
1529 				 * transmitted if it is not already running.
1530 				 */
1531 				restart_timer = 1;
1532 			}
1533 
1534 			list_add_tail(lchunk, &tlist);
1535 
1536 #if SCTP_DEBUG
1537 			/* See the above comments on ACK-ed TSNs. */
1538 			switch (dbg_prt_state) {
1539 			case 1:
1540 				if (dbg_last_kept_tsn + 1 == tsn)
1541 					break;
1542 
1543 				if (dbg_last_kept_tsn != dbg_kept_tsn)
1544 					SCTP_DEBUG_PRINTK("-%08x",
1545 							  dbg_last_kept_tsn);
1546 
1547 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1548 				dbg_kept_tsn = tsn;
1549 				break;
1550 
1551 			case 0:
1552 				if (dbg_last_ack_tsn != dbg_ack_tsn)
1553 					SCTP_DEBUG_PRINTK("-%08x",
1554 							  dbg_last_ack_tsn);
1555 				SCTP_DEBUG_PRINTK("\n");
1556 
1557 				/* FALL THROUGH... */
1558 			default:
1559 				SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1560 				dbg_prt_state = 1;
1561 				dbg_kept_tsn = tsn;
1562 			}
1563 
1564 			dbg_last_kept_tsn = tsn;
1565 #endif /* SCTP_DEBUG */
1566 		}
1567 	}
1568 
1569 #if SCTP_DEBUG
1570 	/* Finish off the last range, displaying its ending TSN.  */
1571 	switch (dbg_prt_state) {
1572 	case 0:
1573 		if (dbg_last_ack_tsn != dbg_ack_tsn) {
1574 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1575 		} else {
1576 			SCTP_DEBUG_PRINTK("\n");
1577 		}
1578 	break;
1579 
1580 	case 1:
1581 		if (dbg_last_kept_tsn != dbg_kept_tsn) {
1582 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1583 		} else {
1584 			SCTP_DEBUG_PRINTK("\n");
1585 		}
1586 	}
1587 #endif /* SCTP_DEBUG */
1588 	if (transport) {
1589 		if (bytes_acked) {
1590 			/* We may have counted DATA that was migrated
1591 			 * to this transport due to DEL-IP operation.
1592 			 * Subtract those bytes, since the were never
1593 			 * send on this transport and shouldn't be
1594 			 * credited to this transport.
1595 			 */
1596 			bytes_acked -= migrate_bytes;
1597 
1598 			/* 8.2. When an outstanding TSN is acknowledged,
1599 			 * the endpoint shall clear the error counter of
1600 			 * the destination transport address to which the
1601 			 * DATA chunk was last sent.
1602 			 * The association's overall error counter is
1603 			 * also cleared.
1604 			 */
1605 			transport->error_count = 0;
1606 			transport->asoc->overall_error_count = 0;
1607 
1608 			/* Mark the destination transport address as
1609 			 * active if it is not so marked.
1610 			 */
1611 			if ((transport->state == SCTP_INACTIVE) ||
1612 			    (transport->state == SCTP_UNCONFIRMED)) {
1613 				sctp_assoc_control_transport(
1614 					transport->asoc,
1615 					transport,
1616 					SCTP_TRANSPORT_UP,
1617 					SCTP_RECEIVED_SACK);
1618 			}
1619 
1620 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1621 						  bytes_acked);
1622 
1623 			transport->flight_size -= bytes_acked;
1624 			if (transport->flight_size == 0)
1625 				transport->partial_bytes_acked = 0;
1626 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1627 		} else {
1628 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1629 			 * When a sender is doing zero window probing, it
1630 			 * should not timeout the association if it continues
1631 			 * to receive new packets from the receiver. The
1632 			 * reason is that the receiver MAY keep its window
1633 			 * closed for an indefinite time.
1634 			 * A sender is doing zero window probing when the
1635 			 * receiver's advertised window is zero, and there is
1636 			 * only one data chunk in flight to the receiver.
1637 			 */
1638 			if (!q->asoc->peer.rwnd &&
1639 			    !list_empty(&tlist) &&
1640 			    (sack_ctsn+2 == q->asoc->next_tsn)) {
1641 				SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1642 						  "window probe: %u\n",
1643 						  __func__, sack_ctsn);
1644 				q->asoc->overall_error_count = 0;
1645 				transport->error_count = 0;
1646 			}
1647 		}
1648 
1649 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1650 		 *
1651 		 * R2) Whenever all outstanding data sent to an address have
1652 		 * been acknowledged, turn off the T3-rtx timer of that
1653 		 * address.
1654 		 */
1655 		if (!transport->flight_size) {
1656 			if (timer_pending(&transport->T3_rtx_timer) &&
1657 			    del_timer(&transport->T3_rtx_timer)) {
1658 				sctp_transport_put(transport);
1659 			}
1660 		} else if (restart_timer) {
1661 			if (!mod_timer(&transport->T3_rtx_timer,
1662 				       jiffies + transport->rto))
1663 				sctp_transport_hold(transport);
1664 		}
1665 	}
1666 
1667 	list_splice(&tlist, transmitted_queue);
1668 }
1669 
1670 /* Mark chunks as missing and consequently may get retransmitted. */
1671 static void sctp_mark_missing(struct sctp_outq *q,
1672 			      struct list_head *transmitted_queue,
1673 			      struct sctp_transport *transport,
1674 			      __u32 highest_new_tsn_in_sack,
1675 			      int count_of_newacks)
1676 {
1677 	struct sctp_chunk *chunk;
1678 	__u32 tsn;
1679 	char do_fast_retransmit = 0;
1680 	struct sctp_transport *primary = q->asoc->peer.primary_path;
1681 
1682 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1683 
1684 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1685 
1686 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1687 		 * 'Unacknowledged TSN's', if the TSN number of an
1688 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1689 		 * value, increment the 'TSN.Missing.Report' count on that
1690 		 * chunk if it has NOT been fast retransmitted or marked for
1691 		 * fast retransmit already.
1692 		 */
1693 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1694 		    !chunk->tsn_gap_acked &&
1695 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1696 
1697 			/* SFR-CACC may require us to skip marking
1698 			 * this chunk as missing.
1699 			 */
1700 			if (!transport || !sctp_cacc_skip(primary, transport,
1701 					    count_of_newacks, tsn)) {
1702 				chunk->tsn_missing_report++;
1703 
1704 				SCTP_DEBUG_PRINTK(
1705 					"%s: TSN 0x%x missing counter: %d\n",
1706 					__func__, tsn,
1707 					chunk->tsn_missing_report);
1708 			}
1709 		}
1710 		/*
1711 		 * M4) If any DATA chunk is found to have a
1712 		 * 'TSN.Missing.Report'
1713 		 * value larger than or equal to 3, mark that chunk for
1714 		 * retransmission and start the fast retransmit procedure.
1715 		 */
1716 
1717 		if (chunk->tsn_missing_report >= 3) {
1718 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1719 			do_fast_retransmit = 1;
1720 		}
1721 	}
1722 
1723 	if (transport) {
1724 		if (do_fast_retransmit)
1725 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1726 
1727 		SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1728 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
1729 				  __func__, transport, transport->cwnd,
1730 				  transport->ssthresh, transport->flight_size,
1731 				  transport->partial_bytes_acked);
1732 	}
1733 }
1734 
1735 /* Is the given TSN acked by this packet?  */
1736 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1737 {
1738 	int i;
1739 	sctp_sack_variable_t *frags;
1740 	__u16 gap;
1741 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1742 
1743 	if (TSN_lte(tsn, ctsn))
1744 		goto pass;
1745 
1746 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1747 	 *
1748 	 * Gap Ack Blocks:
1749 	 *  These fields contain the Gap Ack Blocks. They are repeated
1750 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1751 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1752 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1753 	 *  Ack + Gap Ack Block Start) and less than or equal to
1754 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1755 	 *  Block are assumed to have been received correctly.
1756 	 */
1757 
1758 	frags = sack->variable;
1759 	gap = tsn - ctsn;
1760 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1761 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1762 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1763 			goto pass;
1764 	}
1765 
1766 	return 0;
1767 pass:
1768 	return 1;
1769 }
1770 
1771 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1772 				    int nskips, __be16 stream)
1773 {
1774 	int i;
1775 
1776 	for (i = 0; i < nskips; i++) {
1777 		if (skiplist[i].stream == stream)
1778 			return i;
1779 	}
1780 	return i;
1781 }
1782 
1783 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1784 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1785 {
1786 	struct sctp_association *asoc = q->asoc;
1787 	struct sctp_chunk *ftsn_chunk = NULL;
1788 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1789 	int nskips = 0;
1790 	int skip_pos = 0;
1791 	__u32 tsn;
1792 	struct sctp_chunk *chunk;
1793 	struct list_head *lchunk, *temp;
1794 
1795 	if (!asoc->peer.prsctp_capable)
1796 		return;
1797 
1798 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1799 	 * received SACK.
1800 	 *
1801 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1802 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1803 	 */
1804 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1805 		asoc->adv_peer_ack_point = ctsn;
1806 
1807 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1808 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1809 	 * the chunk next in the out-queue space is marked as "abandoned" as
1810 	 * shown in the following example:
1811 	 *
1812 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1813 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1814 	 *
1815 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1816 	 *   normal SACK processing           local advancement
1817 	 *                ...                           ...
1818 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1819 	 *                103 abandoned                 103 abandoned
1820 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1821 	 *                105                           105
1822 	 *                106 acked                     106 acked
1823 	 *                ...                           ...
1824 	 *
1825 	 * In this example, the data sender successfully advanced the
1826 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1827 	 */
1828 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1829 		chunk = list_entry(lchunk, struct sctp_chunk,
1830 					transmitted_list);
1831 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1832 
1833 		/* Remove any chunks in the abandoned queue that are acked by
1834 		 * the ctsn.
1835 		 */
1836 		if (TSN_lte(tsn, ctsn)) {
1837 			list_del_init(lchunk);
1838 			sctp_chunk_free(chunk);
1839 		} else {
1840 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1841 				asoc->adv_peer_ack_point = tsn;
1842 				if (chunk->chunk_hdr->flags &
1843 					 SCTP_DATA_UNORDERED)
1844 					continue;
1845 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1846 						nskips,
1847 						chunk->subh.data_hdr->stream);
1848 				ftsn_skip_arr[skip_pos].stream =
1849 					chunk->subh.data_hdr->stream;
1850 				ftsn_skip_arr[skip_pos].ssn =
1851 					 chunk->subh.data_hdr->ssn;
1852 				if (skip_pos == nskips)
1853 					nskips++;
1854 				if (nskips == 10)
1855 					break;
1856 			} else
1857 				break;
1858 		}
1859 	}
1860 
1861 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1862 	 * is greater than the Cumulative TSN ACK carried in the received
1863 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1864 	 * chunk containing the latest value of the
1865 	 * "Advanced.Peer.Ack.Point".
1866 	 *
1867 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1868 	 * list each stream and sequence number in the forwarded TSN. This
1869 	 * information will enable the receiver to easily find any
1870 	 * stranded TSN's waiting on stream reorder queues. Each stream
1871 	 * SHOULD only be reported once; this means that if multiple
1872 	 * abandoned messages occur in the same stream then only the
1873 	 * highest abandoned stream sequence number is reported. If the
1874 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1875 	 * the sender of the FORWARD TSN SHOULD lower the
1876 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1877 	 * single MTU.
1878 	 */
1879 	if (asoc->adv_peer_ack_point > ctsn)
1880 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1881 					      nskips, &ftsn_skip_arr[0]);
1882 
1883 	if (ftsn_chunk) {
1884 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1885 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
1886 	}
1887 }
1888