1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * 7 * This file is part of the SCTP kernel reference Implementation 8 * 9 * These functions implement the sctp_outq class. The outqueue handles 10 * bundling and queueing of outgoing SCTP chunks. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Perry Melange <pmelange@null.cc.uic.edu> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Jon Grimm <jgrimm@us.ibm.com> 44 * 45 * Any bugs reported given to us we will try to fix... any fixes shared will 46 * be incorporated into the next SCTP release. 47 */ 48 49 #include <linux/types.h> 50 #include <linux/list.h> /* For struct list_head */ 51 #include <linux/socket.h> 52 #include <linux/ip.h> 53 #include <net/sock.h> /* For skb_set_owner_w */ 54 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 /* Declare internal functions here. */ 59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 60 static void sctp_check_transmitted(struct sctp_outq *q, 61 struct list_head *transmitted_queue, 62 struct sctp_transport *transport, 63 struct sctp_sackhdr *sack, 64 __u32 highest_new_tsn); 65 66 static void sctp_mark_missing(struct sctp_outq *q, 67 struct list_head *transmitted_queue, 68 struct sctp_transport *transport, 69 __u32 highest_new_tsn, 70 int count_of_newacks); 71 72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn); 73 74 /* Add data to the front of the queue. */ 75 static inline void sctp_outq_head_data(struct sctp_outq *q, 76 struct sctp_chunk *ch) 77 { 78 list_add(&ch->list, &q->out_chunk_list); 79 q->out_qlen += ch->skb->len; 80 return; 81 } 82 83 /* Take data from the front of the queue. */ 84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 85 { 86 struct sctp_chunk *ch = NULL; 87 88 if (!list_empty(&q->out_chunk_list)) { 89 struct list_head *entry = q->out_chunk_list.next; 90 91 ch = list_entry(entry, struct sctp_chunk, list); 92 list_del_init(entry); 93 q->out_qlen -= ch->skb->len; 94 } 95 return ch; 96 } 97 /* Add data chunk to the end of the queue. */ 98 static inline void sctp_outq_tail_data(struct sctp_outq *q, 99 struct sctp_chunk *ch) 100 { 101 list_add_tail(&ch->list, &q->out_chunk_list); 102 q->out_qlen += ch->skb->len; 103 return; 104 } 105 106 /* 107 * SFR-CACC algorithm: 108 * D) If count_of_newacks is greater than or equal to 2 109 * and t was not sent to the current primary then the 110 * sender MUST NOT increment missing report count for t. 111 */ 112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 113 struct sctp_transport *transport, 114 int count_of_newacks) 115 { 116 if (count_of_newacks >=2 && transport != primary) 117 return 1; 118 return 0; 119 } 120 121 /* 122 * SFR-CACC algorithm: 123 * F) If count_of_newacks is less than 2, let d be the 124 * destination to which t was sent. If cacc_saw_newack 125 * is 0 for destination d, then the sender MUST NOT 126 * increment missing report count for t. 127 */ 128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 129 int count_of_newacks) 130 { 131 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack) 132 return 1; 133 return 0; 134 } 135 136 /* 137 * SFR-CACC algorithm: 138 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 139 * execute steps C, D, F. 140 * 141 * C has been implemented in sctp_outq_sack 142 */ 143 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 144 struct sctp_transport *transport, 145 int count_of_newacks) 146 { 147 if (!primary->cacc.cycling_changeover) { 148 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 149 return 1; 150 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 151 return 1; 152 return 0; 153 } 154 return 0; 155 } 156 157 /* 158 * SFR-CACC algorithm: 159 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 160 * than next_tsn_at_change of the current primary, then 161 * the sender MUST NOT increment missing report count 162 * for t. 163 */ 164 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 165 { 166 if (primary->cacc.cycling_changeover && 167 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 168 return 1; 169 return 0; 170 } 171 172 /* 173 * SFR-CACC algorithm: 174 * 3) If the missing report count for TSN t is to be 175 * incremented according to [RFC2960] and 176 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 177 * then the sender MUST futher execute steps 3.1 and 178 * 3.2 to determine if the missing report count for 179 * TSN t SHOULD NOT be incremented. 180 * 181 * 3.3) If 3.1 and 3.2 do not dictate that the missing 182 * report count for t should not be incremented, then 183 * the sender SOULD increment missing report count for 184 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 185 */ 186 static inline int sctp_cacc_skip(struct sctp_transport *primary, 187 struct sctp_transport *transport, 188 int count_of_newacks, 189 __u32 tsn) 190 { 191 if (primary->cacc.changeover_active && 192 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) 193 || sctp_cacc_skip_3_2(primary, tsn))) 194 return 1; 195 return 0; 196 } 197 198 /* Initialize an existing sctp_outq. This does the boring stuff. 199 * You still need to define handlers if you really want to DO 200 * something with this structure... 201 */ 202 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 203 { 204 q->asoc = asoc; 205 INIT_LIST_HEAD(&q->out_chunk_list); 206 INIT_LIST_HEAD(&q->control_chunk_list); 207 INIT_LIST_HEAD(&q->retransmit); 208 INIT_LIST_HEAD(&q->sacked); 209 INIT_LIST_HEAD(&q->abandoned); 210 211 q->outstanding_bytes = 0; 212 q->empty = 1; 213 q->cork = 0; 214 215 q->malloced = 0; 216 q->out_qlen = 0; 217 } 218 219 /* Free the outqueue structure and any related pending chunks. 220 */ 221 void sctp_outq_teardown(struct sctp_outq *q) 222 { 223 struct sctp_transport *transport; 224 struct list_head *lchunk, *pos, *temp; 225 struct sctp_chunk *chunk, *tmp; 226 227 /* Throw away unacknowledged chunks. */ 228 list_for_each(pos, &q->asoc->peer.transport_addr_list) { 229 transport = list_entry(pos, struct sctp_transport, transports); 230 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 231 chunk = list_entry(lchunk, struct sctp_chunk, 232 transmitted_list); 233 /* Mark as part of a failed message. */ 234 sctp_chunk_fail(chunk, q->error); 235 sctp_chunk_free(chunk); 236 } 237 } 238 239 /* Throw away chunks that have been gap ACKed. */ 240 list_for_each_safe(lchunk, temp, &q->sacked) { 241 list_del_init(lchunk); 242 chunk = list_entry(lchunk, struct sctp_chunk, 243 transmitted_list); 244 sctp_chunk_fail(chunk, q->error); 245 sctp_chunk_free(chunk); 246 } 247 248 /* Throw away any chunks in the retransmit queue. */ 249 list_for_each_safe(lchunk, temp, &q->retransmit) { 250 list_del_init(lchunk); 251 chunk = list_entry(lchunk, struct sctp_chunk, 252 transmitted_list); 253 sctp_chunk_fail(chunk, q->error); 254 sctp_chunk_free(chunk); 255 } 256 257 /* Throw away any chunks that are in the abandoned queue. */ 258 list_for_each_safe(lchunk, temp, &q->abandoned) { 259 list_del_init(lchunk); 260 chunk = list_entry(lchunk, struct sctp_chunk, 261 transmitted_list); 262 sctp_chunk_fail(chunk, q->error); 263 sctp_chunk_free(chunk); 264 } 265 266 /* Throw away any leftover data chunks. */ 267 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 268 269 /* Mark as send failure. */ 270 sctp_chunk_fail(chunk, q->error); 271 sctp_chunk_free(chunk); 272 } 273 274 q->error = 0; 275 276 /* Throw away any leftover control chunks. */ 277 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 278 list_del_init(&chunk->list); 279 sctp_chunk_free(chunk); 280 } 281 } 282 283 /* Free the outqueue structure and any related pending chunks. */ 284 void sctp_outq_free(struct sctp_outq *q) 285 { 286 /* Throw away leftover chunks. */ 287 sctp_outq_teardown(q); 288 289 /* If we were kmalloc()'d, free the memory. */ 290 if (q->malloced) 291 kfree(q); 292 } 293 294 /* Put a new chunk in an sctp_outq. */ 295 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk) 296 { 297 int error = 0; 298 299 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n", 300 q, chunk, chunk && chunk->chunk_hdr ? 301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 302 : "Illegal Chunk"); 303 304 /* If it is data, queue it up, otherwise, send it 305 * immediately. 306 */ 307 if (SCTP_CID_DATA == chunk->chunk_hdr->type) { 308 /* Is it OK to queue data chunks? */ 309 /* From 9. Termination of Association 310 * 311 * When either endpoint performs a shutdown, the 312 * association on each peer will stop accepting new 313 * data from its user and only deliver data in queue 314 * at the time of sending or receiving the SHUTDOWN 315 * chunk. 316 */ 317 switch (q->asoc->state) { 318 case SCTP_STATE_EMPTY: 319 case SCTP_STATE_CLOSED: 320 case SCTP_STATE_SHUTDOWN_PENDING: 321 case SCTP_STATE_SHUTDOWN_SENT: 322 case SCTP_STATE_SHUTDOWN_RECEIVED: 323 case SCTP_STATE_SHUTDOWN_ACK_SENT: 324 /* Cannot send after transport endpoint shutdown */ 325 error = -ESHUTDOWN; 326 break; 327 328 default: 329 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n", 330 q, chunk, chunk && chunk->chunk_hdr ? 331 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 332 : "Illegal Chunk"); 333 334 sctp_outq_tail_data(q, chunk); 335 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 336 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS); 337 else 338 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS); 339 q->empty = 0; 340 break; 341 } 342 } else { 343 list_add_tail(&chunk->list, &q->control_chunk_list); 344 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 345 } 346 347 if (error < 0) 348 return error; 349 350 if (!q->cork) 351 error = sctp_outq_flush(q, 0); 352 353 return error; 354 } 355 356 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 357 * and the abandoned list are in ascending order. 358 */ 359 static void sctp_insert_list(struct list_head *head, struct list_head *new) 360 { 361 struct list_head *pos; 362 struct sctp_chunk *nchunk, *lchunk; 363 __u32 ntsn, ltsn; 364 int done = 0; 365 366 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 367 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 368 369 list_for_each(pos, head) { 370 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 371 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 372 if (TSN_lt(ntsn, ltsn)) { 373 list_add(new, pos->prev); 374 done = 1; 375 break; 376 } 377 } 378 if (!done) 379 list_add_tail(new, head); 380 } 381 382 /* Mark all the eligible packets on a transport for retransmission. */ 383 void sctp_retransmit_mark(struct sctp_outq *q, 384 struct sctp_transport *transport, 385 __u8 reason) 386 { 387 struct list_head *lchunk, *ltemp; 388 struct sctp_chunk *chunk; 389 390 /* Walk through the specified transmitted queue. */ 391 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 392 chunk = list_entry(lchunk, struct sctp_chunk, 393 transmitted_list); 394 395 /* If the chunk is abandoned, move it to abandoned list. */ 396 if (sctp_chunk_abandoned(chunk)) { 397 list_del_init(lchunk); 398 sctp_insert_list(&q->abandoned, lchunk); 399 400 /* If this chunk has not been previousely acked, 401 * stop considering it 'outstanding'. Our peer 402 * will most likely never see it since it will 403 * not be retransmitted 404 */ 405 if (!chunk->tsn_gap_acked) { 406 chunk->transport->flight_size -= 407 sctp_data_size(chunk); 408 q->outstanding_bytes -= sctp_data_size(chunk); 409 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 410 sizeof(struct sk_buff)); 411 } 412 continue; 413 } 414 415 /* If we are doing retransmission due to a timeout or pmtu 416 * discovery, only the chunks that are not yet acked should 417 * be added to the retransmit queue. 418 */ 419 if ((reason == SCTP_RTXR_FAST_RTX && 420 (chunk->fast_retransmit > 0)) || 421 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { 422 /* If this chunk was sent less then 1 rto ago, do not 423 * retransmit this chunk, but give the peer time 424 * to acknowlege it. Do this only when 425 * retransmitting due to T3 timeout. 426 */ 427 if (reason == SCTP_RTXR_T3_RTX && 428 (jiffies - chunk->sent_at) < transport->last_rto) 429 continue; 430 431 /* RFC 2960 6.2.1 Processing a Received SACK 432 * 433 * C) Any time a DATA chunk is marked for 434 * retransmission (via either T3-rtx timer expiration 435 * (Section 6.3.3) or via fast retransmit 436 * (Section 7.2.4)), add the data size of those 437 * chunks to the rwnd. 438 */ 439 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 440 sizeof(struct sk_buff)); 441 q->outstanding_bytes -= sctp_data_size(chunk); 442 transport->flight_size -= sctp_data_size(chunk); 443 444 /* sctpimpguide-05 Section 2.8.2 445 * M5) If a T3-rtx timer expires, the 446 * 'TSN.Missing.Report' of all affected TSNs is set 447 * to 0. 448 */ 449 chunk->tsn_missing_report = 0; 450 451 /* If a chunk that is being used for RTT measurement 452 * has to be retransmitted, we cannot use this chunk 453 * anymore for RTT measurements. Reset rto_pending so 454 * that a new RTT measurement is started when a new 455 * data chunk is sent. 456 */ 457 if (chunk->rtt_in_progress) { 458 chunk->rtt_in_progress = 0; 459 transport->rto_pending = 0; 460 } 461 462 /* Move the chunk to the retransmit queue. The chunks 463 * on the retransmit queue are always kept in order. 464 */ 465 list_del_init(lchunk); 466 sctp_insert_list(&q->retransmit, lchunk); 467 } 468 } 469 470 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, " 471 "cwnd: %d, ssthresh: %d, flight_size: %d, " 472 "pba: %d\n", __FUNCTION__, 473 transport, reason, 474 transport->cwnd, transport->ssthresh, 475 transport->flight_size, 476 transport->partial_bytes_acked); 477 478 } 479 480 /* Mark all the eligible packets on a transport for retransmission and force 481 * one packet out. 482 */ 483 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 484 sctp_retransmit_reason_t reason) 485 { 486 int error = 0; 487 488 switch(reason) { 489 case SCTP_RTXR_T3_RTX: 490 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS); 491 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 492 /* Update the retran path if the T3-rtx timer has expired for 493 * the current retran path. 494 */ 495 if (transport == transport->asoc->peer.retran_path) 496 sctp_assoc_update_retran_path(transport->asoc); 497 break; 498 case SCTP_RTXR_FAST_RTX: 499 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS); 500 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 501 break; 502 case SCTP_RTXR_PMTUD: 503 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS); 504 break; 505 case SCTP_RTXR_T1_RTX: 506 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS); 507 break; 508 default: 509 BUG(); 510 } 511 512 sctp_retransmit_mark(q, transport, reason); 513 514 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 515 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 516 * following the procedures outlined in C1 - C5. 517 */ 518 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point); 519 520 error = sctp_outq_flush(q, /* rtx_timeout */ 1); 521 522 if (error) 523 q->asoc->base.sk->sk_err = -error; 524 } 525 526 /* 527 * Transmit DATA chunks on the retransmit queue. Upon return from 528 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 529 * need to be transmitted by the caller. 530 * We assume that pkt->transport has already been set. 531 * 532 * The return value is a normal kernel error return value. 533 */ 534 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 535 int rtx_timeout, int *start_timer) 536 { 537 struct list_head *lqueue; 538 struct list_head *lchunk, *lchunk1; 539 struct sctp_transport *transport = pkt->transport; 540 sctp_xmit_t status; 541 struct sctp_chunk *chunk, *chunk1; 542 struct sctp_association *asoc; 543 int error = 0; 544 545 asoc = q->asoc; 546 lqueue = &q->retransmit; 547 548 /* RFC 2960 6.3.3 Handle T3-rtx Expiration 549 * 550 * E3) Determine how many of the earliest (i.e., lowest TSN) 551 * outstanding DATA chunks for the address for which the 552 * T3-rtx has expired will fit into a single packet, subject 553 * to the MTU constraint for the path corresponding to the 554 * destination transport address to which the retransmission 555 * is being sent (this may be different from the address for 556 * which the timer expires [see Section 6.4]). Call this value 557 * K. Bundle and retransmit those K DATA chunks in a single 558 * packet to the destination endpoint. 559 * 560 * [Just to be painfully clear, if we are retransmitting 561 * because a timeout just happened, we should send only ONE 562 * packet of retransmitted data.] 563 */ 564 lchunk = sctp_list_dequeue(lqueue); 565 566 while (lchunk) { 567 chunk = list_entry(lchunk, struct sctp_chunk, 568 transmitted_list); 569 570 /* Make sure that Gap Acked TSNs are not retransmitted. A 571 * simple approach is just to move such TSNs out of the 572 * way and into a 'transmitted' queue and skip to the 573 * next chunk. 574 */ 575 if (chunk->tsn_gap_acked) { 576 list_add_tail(lchunk, &transport->transmitted); 577 lchunk = sctp_list_dequeue(lqueue); 578 continue; 579 } 580 581 /* Attempt to append this chunk to the packet. */ 582 status = sctp_packet_append_chunk(pkt, chunk); 583 584 switch (status) { 585 case SCTP_XMIT_PMTU_FULL: 586 /* Send this packet. */ 587 if ((error = sctp_packet_transmit(pkt)) == 0) 588 *start_timer = 1; 589 590 /* If we are retransmitting, we should only 591 * send a single packet. 592 */ 593 if (rtx_timeout) { 594 list_add(lchunk, lqueue); 595 lchunk = NULL; 596 } 597 598 /* Bundle lchunk in the next round. */ 599 break; 600 601 case SCTP_XMIT_RWND_FULL: 602 /* Send this packet. */ 603 if ((error = sctp_packet_transmit(pkt)) == 0) 604 *start_timer = 1; 605 606 /* Stop sending DATA as there is no more room 607 * at the receiver. 608 */ 609 list_add(lchunk, lqueue); 610 lchunk = NULL; 611 break; 612 613 case SCTP_XMIT_NAGLE_DELAY: 614 /* Send this packet. */ 615 if ((error = sctp_packet_transmit(pkt)) == 0) 616 *start_timer = 1; 617 618 /* Stop sending DATA because of nagle delay. */ 619 list_add(lchunk, lqueue); 620 lchunk = NULL; 621 break; 622 623 default: 624 /* The append was successful, so add this chunk to 625 * the transmitted list. 626 */ 627 list_add_tail(lchunk, &transport->transmitted); 628 629 /* Mark the chunk as ineligible for fast retransmit 630 * after it is retransmitted. 631 */ 632 if (chunk->fast_retransmit > 0) 633 chunk->fast_retransmit = -1; 634 635 *start_timer = 1; 636 q->empty = 0; 637 638 /* Retrieve a new chunk to bundle. */ 639 lchunk = sctp_list_dequeue(lqueue); 640 break; 641 } 642 643 /* If we are here due to a retransmit timeout or a fast 644 * retransmit and if there are any chunks left in the retransmit 645 * queue that could not fit in the PMTU sized packet, they need 646 * to be marked as ineligible for a subsequent fast retransmit. 647 */ 648 if (rtx_timeout && !lchunk) { 649 list_for_each(lchunk1, lqueue) { 650 chunk1 = list_entry(lchunk1, struct sctp_chunk, 651 transmitted_list); 652 if (chunk1->fast_retransmit > 0) 653 chunk1->fast_retransmit = -1; 654 } 655 } 656 } 657 658 return error; 659 } 660 661 /* Cork the outqueue so queued chunks are really queued. */ 662 int sctp_outq_uncork(struct sctp_outq *q) 663 { 664 int error = 0; 665 if (q->cork) 666 q->cork = 0; 667 error = sctp_outq_flush(q, 0); 668 return error; 669 } 670 671 /* 672 * Try to flush an outqueue. 673 * 674 * Description: Send everything in q which we legally can, subject to 675 * congestion limitations. 676 * * Note: This function can be called from multiple contexts so appropriate 677 * locking concerns must be made. Today we use the sock lock to protect 678 * this function. 679 */ 680 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) 681 { 682 struct sctp_packet *packet; 683 struct sctp_packet singleton; 684 struct sctp_association *asoc = q->asoc; 685 __u16 sport = asoc->base.bind_addr.port; 686 __u16 dport = asoc->peer.port; 687 __u32 vtag = asoc->peer.i.init_tag; 688 struct sctp_transport *transport = NULL; 689 struct sctp_transport *new_transport; 690 struct sctp_chunk *chunk, *tmp; 691 sctp_xmit_t status; 692 int error = 0; 693 int start_timer = 0; 694 695 /* These transports have chunks to send. */ 696 struct list_head transport_list; 697 struct list_head *ltransport; 698 699 INIT_LIST_HEAD(&transport_list); 700 packet = NULL; 701 702 /* 703 * 6.10 Bundling 704 * ... 705 * When bundling control chunks with DATA chunks, an 706 * endpoint MUST place control chunks first in the outbound 707 * SCTP packet. The transmitter MUST transmit DATA chunks 708 * within a SCTP packet in increasing order of TSN. 709 * ... 710 */ 711 712 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 713 list_del_init(&chunk->list); 714 715 /* Pick the right transport to use. */ 716 new_transport = chunk->transport; 717 718 if (!new_transport) { 719 new_transport = asoc->peer.active_path; 720 } else if ((new_transport->state == SCTP_INACTIVE) || 721 (new_transport->state == SCTP_UNCONFIRMED)) { 722 /* If the chunk is Heartbeat or Heartbeat Ack, 723 * send it to chunk->transport, even if it's 724 * inactive. 725 * 726 * 3.3.6 Heartbeat Acknowledgement: 727 * ... 728 * A HEARTBEAT ACK is always sent to the source IP 729 * address of the IP datagram containing the 730 * HEARTBEAT chunk to which this ack is responding. 731 * ... 732 */ 733 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT && 734 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK) 735 new_transport = asoc->peer.active_path; 736 } 737 738 /* Are we switching transports? 739 * Take care of transport locks. 740 */ 741 if (new_transport != transport) { 742 transport = new_transport; 743 if (list_empty(&transport->send_ready)) { 744 list_add_tail(&transport->send_ready, 745 &transport_list); 746 } 747 packet = &transport->packet; 748 sctp_packet_config(packet, vtag, 749 asoc->peer.ecn_capable); 750 } 751 752 switch (chunk->chunk_hdr->type) { 753 /* 754 * 6.10 Bundling 755 * ... 756 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 757 * COMPLETE with any other chunks. [Send them immediately.] 758 */ 759 case SCTP_CID_INIT: 760 case SCTP_CID_INIT_ACK: 761 case SCTP_CID_SHUTDOWN_COMPLETE: 762 sctp_packet_init(&singleton, transport, sport, dport); 763 sctp_packet_config(&singleton, vtag, 0); 764 sctp_packet_append_chunk(&singleton, chunk); 765 error = sctp_packet_transmit(&singleton); 766 if (error < 0) 767 return error; 768 break; 769 770 case SCTP_CID_ABORT: 771 case SCTP_CID_SACK: 772 case SCTP_CID_HEARTBEAT: 773 case SCTP_CID_HEARTBEAT_ACK: 774 case SCTP_CID_SHUTDOWN: 775 case SCTP_CID_SHUTDOWN_ACK: 776 case SCTP_CID_ERROR: 777 case SCTP_CID_COOKIE_ECHO: 778 case SCTP_CID_COOKIE_ACK: 779 case SCTP_CID_ECN_ECNE: 780 case SCTP_CID_ECN_CWR: 781 case SCTP_CID_ASCONF: 782 case SCTP_CID_ASCONF_ACK: 783 case SCTP_CID_FWD_TSN: 784 sctp_packet_transmit_chunk(packet, chunk); 785 break; 786 787 default: 788 /* We built a chunk with an illegal type! */ 789 BUG(); 790 } 791 } 792 793 /* Is it OK to send data chunks? */ 794 switch (asoc->state) { 795 case SCTP_STATE_COOKIE_ECHOED: 796 /* Only allow bundling when this packet has a COOKIE-ECHO 797 * chunk. 798 */ 799 if (!packet || !packet->has_cookie_echo) 800 break; 801 802 /* fallthru */ 803 case SCTP_STATE_ESTABLISHED: 804 case SCTP_STATE_SHUTDOWN_PENDING: 805 case SCTP_STATE_SHUTDOWN_RECEIVED: 806 /* 807 * RFC 2960 6.1 Transmission of DATA Chunks 808 * 809 * C) When the time comes for the sender to transmit, 810 * before sending new DATA chunks, the sender MUST 811 * first transmit any outstanding DATA chunks which 812 * are marked for retransmission (limited by the 813 * current cwnd). 814 */ 815 if (!list_empty(&q->retransmit)) { 816 if (transport == asoc->peer.retran_path) 817 goto retran; 818 819 /* Switch transports & prepare the packet. */ 820 821 transport = asoc->peer.retran_path; 822 823 if (list_empty(&transport->send_ready)) { 824 list_add_tail(&transport->send_ready, 825 &transport_list); 826 } 827 828 packet = &transport->packet; 829 sctp_packet_config(packet, vtag, 830 asoc->peer.ecn_capable); 831 retran: 832 error = sctp_outq_flush_rtx(q, packet, 833 rtx_timeout, &start_timer); 834 835 if (start_timer) 836 sctp_transport_reset_timers(transport); 837 838 /* This can happen on COOKIE-ECHO resend. Only 839 * one chunk can get bundled with a COOKIE-ECHO. 840 */ 841 if (packet->has_cookie_echo) 842 goto sctp_flush_out; 843 844 /* Don't send new data if there is still data 845 * waiting to retransmit. 846 */ 847 if (!list_empty(&q->retransmit)) 848 goto sctp_flush_out; 849 } 850 851 /* Finally, transmit new packets. */ 852 start_timer = 0; 853 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 854 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid 855 * stream identifier. 856 */ 857 if (chunk->sinfo.sinfo_stream >= 858 asoc->c.sinit_num_ostreams) { 859 860 /* Mark as failed send. */ 861 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM); 862 sctp_chunk_free(chunk); 863 continue; 864 } 865 866 /* Has this chunk expired? */ 867 if (sctp_chunk_abandoned(chunk)) { 868 sctp_chunk_fail(chunk, 0); 869 sctp_chunk_free(chunk); 870 continue; 871 } 872 873 /* If there is a specified transport, use it. 874 * Otherwise, we want to use the active path. 875 */ 876 new_transport = chunk->transport; 877 if (!new_transport || 878 ((new_transport->state == SCTP_INACTIVE) || 879 (new_transport->state == SCTP_UNCONFIRMED))) 880 new_transport = asoc->peer.active_path; 881 882 /* Change packets if necessary. */ 883 if (new_transport != transport) { 884 transport = new_transport; 885 886 /* Schedule to have this transport's 887 * packet flushed. 888 */ 889 if (list_empty(&transport->send_ready)) { 890 list_add_tail(&transport->send_ready, 891 &transport_list); 892 } 893 894 packet = &transport->packet; 895 sctp_packet_config(packet, vtag, 896 asoc->peer.ecn_capable); 897 } 898 899 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ", 900 q, chunk, 901 chunk && chunk->chunk_hdr ? 902 sctp_cname(SCTP_ST_CHUNK( 903 chunk->chunk_hdr->type)) 904 : "Illegal Chunk"); 905 906 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head " 907 "%p skb->users %d.\n", 908 ntohl(chunk->subh.data_hdr->tsn), 909 chunk->skb ?chunk->skb->head : NULL, 910 chunk->skb ? 911 atomic_read(&chunk->skb->users) : -1); 912 913 /* Add the chunk to the packet. */ 914 status = sctp_packet_transmit_chunk(packet, chunk); 915 916 switch (status) { 917 case SCTP_XMIT_PMTU_FULL: 918 case SCTP_XMIT_RWND_FULL: 919 case SCTP_XMIT_NAGLE_DELAY: 920 /* We could not append this chunk, so put 921 * the chunk back on the output queue. 922 */ 923 SCTP_DEBUG_PRINTK("sctp_outq_flush: could " 924 "not transmit TSN: 0x%x, status: %d\n", 925 ntohl(chunk->subh.data_hdr->tsn), 926 status); 927 sctp_outq_head_data(q, chunk); 928 goto sctp_flush_out; 929 break; 930 931 case SCTP_XMIT_OK: 932 break; 933 934 default: 935 BUG(); 936 } 937 938 /* BUG: We assume that the sctp_packet_transmit() 939 * call below will succeed all the time and add the 940 * chunk to the transmitted list and restart the 941 * timers. 942 * It is possible that the call can fail under OOM 943 * conditions. 944 * 945 * Is this really a problem? Won't this behave 946 * like a lost TSN? 947 */ 948 list_add_tail(&chunk->transmitted_list, 949 &transport->transmitted); 950 951 sctp_transport_reset_timers(transport); 952 953 q->empty = 0; 954 955 /* Only let one DATA chunk get bundled with a 956 * COOKIE-ECHO chunk. 957 */ 958 if (packet->has_cookie_echo) 959 goto sctp_flush_out; 960 } 961 break; 962 963 default: 964 /* Do nothing. */ 965 break; 966 } 967 968 sctp_flush_out: 969 970 /* Before returning, examine all the transports touched in 971 * this call. Right now, we bluntly force clear all the 972 * transports. Things might change after we implement Nagle. 973 * But such an examination is still required. 974 * 975 * --xguo 976 */ 977 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) { 978 struct sctp_transport *t = list_entry(ltransport, 979 struct sctp_transport, 980 send_ready); 981 packet = &t->packet; 982 if (!sctp_packet_empty(packet)) 983 error = sctp_packet_transmit(packet); 984 } 985 986 return error; 987 } 988 989 /* Update unack_data based on the incoming SACK chunk */ 990 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 991 struct sctp_sackhdr *sack) 992 { 993 sctp_sack_variable_t *frags; 994 __u16 unack_data; 995 int i; 996 997 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 998 999 frags = sack->variable; 1000 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 1001 unack_data -= ((ntohs(frags[i].gab.end) - 1002 ntohs(frags[i].gab.start) + 1)); 1003 } 1004 1005 assoc->unack_data = unack_data; 1006 } 1007 1008 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */ 1009 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack, 1010 struct sctp_association *asoc) 1011 { 1012 struct list_head *ltransport, *lchunk; 1013 struct sctp_transport *transport; 1014 struct sctp_chunk *chunk; 1015 __u32 highest_new_tsn, tsn; 1016 struct list_head *transport_list = &asoc->peer.transport_addr_list; 1017 1018 highest_new_tsn = ntohl(sack->cum_tsn_ack); 1019 1020 list_for_each(ltransport, transport_list) { 1021 transport = list_entry(ltransport, struct sctp_transport, 1022 transports); 1023 list_for_each(lchunk, &transport->transmitted) { 1024 chunk = list_entry(lchunk, struct sctp_chunk, 1025 transmitted_list); 1026 tsn = ntohl(chunk->subh.data_hdr->tsn); 1027 1028 if (!chunk->tsn_gap_acked && 1029 TSN_lt(highest_new_tsn, tsn) && 1030 sctp_acked(sack, tsn)) 1031 highest_new_tsn = tsn; 1032 } 1033 } 1034 1035 return highest_new_tsn; 1036 } 1037 1038 /* This is where we REALLY process a SACK. 1039 * 1040 * Process the SACK against the outqueue. Mostly, this just frees 1041 * things off the transmitted queue. 1042 */ 1043 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack) 1044 { 1045 struct sctp_association *asoc = q->asoc; 1046 struct sctp_transport *transport; 1047 struct sctp_chunk *tchunk = NULL; 1048 struct list_head *lchunk, *transport_list, *pos, *temp; 1049 sctp_sack_variable_t *frags = sack->variable; 1050 __u32 sack_ctsn, ctsn, tsn; 1051 __u32 highest_tsn, highest_new_tsn; 1052 __u32 sack_a_rwnd; 1053 unsigned outstanding; 1054 struct sctp_transport *primary = asoc->peer.primary_path; 1055 int count_of_newacks = 0; 1056 1057 /* Grab the association's destination address list. */ 1058 transport_list = &asoc->peer.transport_addr_list; 1059 1060 sack_ctsn = ntohl(sack->cum_tsn_ack); 1061 1062 /* 1063 * SFR-CACC algorithm: 1064 * On receipt of a SACK the sender SHOULD execute the 1065 * following statements. 1066 * 1067 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1068 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1069 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1070 * all destinations. 1071 */ 1072 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1073 primary->cacc.changeover_active = 0; 1074 list_for_each(pos, transport_list) { 1075 transport = list_entry(pos, struct sctp_transport, 1076 transports); 1077 transport->cacc.cycling_changeover = 0; 1078 } 1079 } 1080 1081 /* 1082 * SFR-CACC algorithm: 1083 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1084 * is set the receiver of the SACK MUST take the following actions: 1085 * 1086 * A) Initialize the cacc_saw_newack to 0 for all destination 1087 * addresses. 1088 */ 1089 if (sack->num_gap_ack_blocks && 1090 primary->cacc.changeover_active) { 1091 list_for_each(pos, transport_list) { 1092 transport = list_entry(pos, struct sctp_transport, 1093 transports); 1094 transport->cacc.cacc_saw_newack = 0; 1095 } 1096 } 1097 1098 /* Get the highest TSN in the sack. */ 1099 highest_tsn = sack_ctsn; 1100 if (sack->num_gap_ack_blocks) 1101 highest_tsn += 1102 ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end); 1103 1104 if (TSN_lt(asoc->highest_sacked, highest_tsn)) { 1105 highest_new_tsn = highest_tsn; 1106 asoc->highest_sacked = highest_tsn; 1107 } else { 1108 highest_new_tsn = sctp_highest_new_tsn(sack, asoc); 1109 } 1110 1111 /* Run through the retransmit queue. Credit bytes received 1112 * and free those chunks that we can. 1113 */ 1114 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn); 1115 sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0); 1116 1117 /* Run through the transmitted queue. 1118 * Credit bytes received and free those chunks which we can. 1119 * 1120 * This is a MASSIVE candidate for optimization. 1121 */ 1122 list_for_each(pos, transport_list) { 1123 transport = list_entry(pos, struct sctp_transport, 1124 transports); 1125 sctp_check_transmitted(q, &transport->transmitted, 1126 transport, sack, highest_new_tsn); 1127 /* 1128 * SFR-CACC algorithm: 1129 * C) Let count_of_newacks be the number of 1130 * destinations for which cacc_saw_newack is set. 1131 */ 1132 if (transport->cacc.cacc_saw_newack) 1133 count_of_newacks ++; 1134 } 1135 1136 list_for_each(pos, transport_list) { 1137 transport = list_entry(pos, struct sctp_transport, 1138 transports); 1139 sctp_mark_missing(q, &transport->transmitted, transport, 1140 highest_new_tsn, count_of_newacks); 1141 } 1142 1143 /* Move the Cumulative TSN Ack Point if appropriate. */ 1144 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) 1145 asoc->ctsn_ack_point = sack_ctsn; 1146 1147 /* Update unack_data field in the assoc. */ 1148 sctp_sack_update_unack_data(asoc, sack); 1149 1150 ctsn = asoc->ctsn_ack_point; 1151 1152 /* Throw away stuff rotting on the sack queue. */ 1153 list_for_each_safe(lchunk, temp, &q->sacked) { 1154 tchunk = list_entry(lchunk, struct sctp_chunk, 1155 transmitted_list); 1156 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1157 if (TSN_lte(tsn, ctsn)) 1158 sctp_chunk_free(tchunk); 1159 } 1160 1161 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1162 * number of bytes still outstanding after processing the 1163 * Cumulative TSN Ack and the Gap Ack Blocks. 1164 */ 1165 1166 sack_a_rwnd = ntohl(sack->a_rwnd); 1167 outstanding = q->outstanding_bytes; 1168 1169 if (outstanding < sack_a_rwnd) 1170 sack_a_rwnd -= outstanding; 1171 else 1172 sack_a_rwnd = 0; 1173 1174 asoc->peer.rwnd = sack_a_rwnd; 1175 1176 sctp_generate_fwdtsn(q, sack_ctsn); 1177 1178 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n", 1179 __FUNCTION__, sack_ctsn); 1180 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, " 1181 "%p is 0x%x. Adv peer ack point: 0x%x\n", 1182 __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point); 1183 1184 /* See if all chunks are acked. 1185 * Make sure the empty queue handler will get run later. 1186 */ 1187 q->empty = (list_empty(&q->out_chunk_list) && 1188 list_empty(&q->control_chunk_list) && 1189 list_empty(&q->retransmit)); 1190 if (!q->empty) 1191 goto finish; 1192 1193 list_for_each(pos, transport_list) { 1194 transport = list_entry(pos, struct sctp_transport, 1195 transports); 1196 q->empty = q->empty && list_empty(&transport->transmitted); 1197 if (!q->empty) 1198 goto finish; 1199 } 1200 1201 SCTP_DEBUG_PRINTK("sack queue is empty.\n"); 1202 finish: 1203 return q->empty; 1204 } 1205 1206 /* Is the outqueue empty? */ 1207 int sctp_outq_is_empty(const struct sctp_outq *q) 1208 { 1209 return q->empty; 1210 } 1211 1212 /******************************************************************** 1213 * 2nd Level Abstractions 1214 ********************************************************************/ 1215 1216 /* Go through a transport's transmitted list or the association's retransmit 1217 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1218 * The retransmit list will not have an associated transport. 1219 * 1220 * I added coherent debug information output. --xguo 1221 * 1222 * Instead of printing 'sacked' or 'kept' for each TSN on the 1223 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1224 * KEPT TSN6-TSN7, etc. 1225 */ 1226 static void sctp_check_transmitted(struct sctp_outq *q, 1227 struct list_head *transmitted_queue, 1228 struct sctp_transport *transport, 1229 struct sctp_sackhdr *sack, 1230 __u32 highest_new_tsn_in_sack) 1231 { 1232 struct list_head *lchunk; 1233 struct sctp_chunk *tchunk; 1234 struct list_head tlist; 1235 __u32 tsn; 1236 __u32 sack_ctsn; 1237 __u32 rtt; 1238 __u8 restart_timer = 0; 1239 int bytes_acked = 0; 1240 1241 /* These state variables are for coherent debug output. --xguo */ 1242 1243 #if SCTP_DEBUG 1244 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */ 1245 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */ 1246 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */ 1247 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */ 1248 1249 /* 0 : The last TSN was ACKed. 1250 * 1 : The last TSN was NOT ACKed (i.e. KEPT). 1251 * -1: We need to initialize. 1252 */ 1253 int dbg_prt_state = -1; 1254 #endif /* SCTP_DEBUG */ 1255 1256 sack_ctsn = ntohl(sack->cum_tsn_ack); 1257 1258 INIT_LIST_HEAD(&tlist); 1259 1260 /* The while loop will skip empty transmitted queues. */ 1261 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1262 tchunk = list_entry(lchunk, struct sctp_chunk, 1263 transmitted_list); 1264 1265 if (sctp_chunk_abandoned(tchunk)) { 1266 /* Move the chunk to abandoned list. */ 1267 sctp_insert_list(&q->abandoned, lchunk); 1268 1269 /* If this chunk has not been acked, stop 1270 * considering it as 'outstanding'. 1271 */ 1272 if (!tchunk->tsn_gap_acked) { 1273 tchunk->transport->flight_size -= 1274 sctp_data_size(tchunk); 1275 q->outstanding_bytes -= sctp_data_size(tchunk); 1276 } 1277 continue; 1278 } 1279 1280 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1281 if (sctp_acked(sack, tsn)) { 1282 /* If this queue is the retransmit queue, the 1283 * retransmit timer has already reclaimed 1284 * the outstanding bytes for this chunk, so only 1285 * count bytes associated with a transport. 1286 */ 1287 if (transport) { 1288 /* If this chunk is being used for RTT 1289 * measurement, calculate the RTT and update 1290 * the RTO using this value. 1291 * 1292 * 6.3.1 C5) Karn's algorithm: RTT measurements 1293 * MUST NOT be made using packets that were 1294 * retransmitted (and thus for which it is 1295 * ambiguous whether the reply was for the 1296 * first instance of the packet or a later 1297 * instance). 1298 */ 1299 if (!tchunk->tsn_gap_acked && 1300 !tchunk->resent && 1301 tchunk->rtt_in_progress) { 1302 tchunk->rtt_in_progress = 0; 1303 rtt = jiffies - tchunk->sent_at; 1304 sctp_transport_update_rto(transport, 1305 rtt); 1306 } 1307 } 1308 if (TSN_lte(tsn, sack_ctsn)) { 1309 /* RFC 2960 6.3.2 Retransmission Timer Rules 1310 * 1311 * R3) Whenever a SACK is received 1312 * that acknowledges the DATA chunk 1313 * with the earliest outstanding TSN 1314 * for that address, restart T3-rtx 1315 * timer for that address with its 1316 * current RTO. 1317 */ 1318 restart_timer = 1; 1319 1320 if (!tchunk->tsn_gap_acked) { 1321 tchunk->tsn_gap_acked = 1; 1322 bytes_acked += sctp_data_size(tchunk); 1323 /* 1324 * SFR-CACC algorithm: 1325 * 2) If the SACK contains gap acks 1326 * and the flag CHANGEOVER_ACTIVE is 1327 * set the receiver of the SACK MUST 1328 * take the following action: 1329 * 1330 * B) For each TSN t being acked that 1331 * has not been acked in any SACK so 1332 * far, set cacc_saw_newack to 1 for 1333 * the destination that the TSN was 1334 * sent to. 1335 */ 1336 if (transport && 1337 sack->num_gap_ack_blocks && 1338 q->asoc->peer.primary_path->cacc. 1339 changeover_active) 1340 transport->cacc.cacc_saw_newack 1341 = 1; 1342 } 1343 1344 list_add_tail(&tchunk->transmitted_list, 1345 &q->sacked); 1346 } else { 1347 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1348 * M2) Each time a SACK arrives reporting 1349 * 'Stray DATA chunk(s)' record the highest TSN 1350 * reported as newly acknowledged, call this 1351 * value 'HighestTSNinSack'. A newly 1352 * acknowledged DATA chunk is one not 1353 * previously acknowledged in a SACK. 1354 * 1355 * When the SCTP sender of data receives a SACK 1356 * chunk that acknowledges, for the first time, 1357 * the receipt of a DATA chunk, all the still 1358 * unacknowledged DATA chunks whose TSN is 1359 * older than that newly acknowledged DATA 1360 * chunk, are qualified as 'Stray DATA chunks'. 1361 */ 1362 if (!tchunk->tsn_gap_acked) { 1363 tchunk->tsn_gap_acked = 1; 1364 bytes_acked += sctp_data_size(tchunk); 1365 } 1366 list_add_tail(lchunk, &tlist); 1367 } 1368 1369 #if SCTP_DEBUG 1370 switch (dbg_prt_state) { 1371 case 0: /* last TSN was ACKed */ 1372 if (dbg_last_ack_tsn + 1 == tsn) { 1373 /* This TSN belongs to the 1374 * current ACK range. 1375 */ 1376 break; 1377 } 1378 1379 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1380 /* Display the end of the 1381 * current range. 1382 */ 1383 SCTP_DEBUG_PRINTK("-%08x", 1384 dbg_last_ack_tsn); 1385 } 1386 1387 /* Start a new range. */ 1388 SCTP_DEBUG_PRINTK(",%08x", tsn); 1389 dbg_ack_tsn = tsn; 1390 break; 1391 1392 case 1: /* The last TSN was NOT ACKed. */ 1393 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1394 /* Display the end of current range. */ 1395 SCTP_DEBUG_PRINTK("-%08x", 1396 dbg_last_kept_tsn); 1397 } 1398 1399 SCTP_DEBUG_PRINTK("\n"); 1400 1401 /* FALL THROUGH... */ 1402 default: 1403 /* This is the first-ever TSN we examined. */ 1404 /* Start a new range of ACK-ed TSNs. */ 1405 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn); 1406 dbg_prt_state = 0; 1407 dbg_ack_tsn = tsn; 1408 } 1409 1410 dbg_last_ack_tsn = tsn; 1411 #endif /* SCTP_DEBUG */ 1412 1413 } else { 1414 if (tchunk->tsn_gap_acked) { 1415 SCTP_DEBUG_PRINTK("%s: Receiver reneged on " 1416 "data TSN: 0x%x\n", 1417 __FUNCTION__, 1418 tsn); 1419 tchunk->tsn_gap_acked = 0; 1420 1421 bytes_acked -= sctp_data_size(tchunk); 1422 1423 /* RFC 2960 6.3.2 Retransmission Timer Rules 1424 * 1425 * R4) Whenever a SACK is received missing a 1426 * TSN that was previously acknowledged via a 1427 * Gap Ack Block, start T3-rtx for the 1428 * destination address to which the DATA 1429 * chunk was originally 1430 * transmitted if it is not already running. 1431 */ 1432 restart_timer = 1; 1433 } 1434 1435 list_add_tail(lchunk, &tlist); 1436 1437 #if SCTP_DEBUG 1438 /* See the above comments on ACK-ed TSNs. */ 1439 switch (dbg_prt_state) { 1440 case 1: 1441 if (dbg_last_kept_tsn + 1 == tsn) 1442 break; 1443 1444 if (dbg_last_kept_tsn != dbg_kept_tsn) 1445 SCTP_DEBUG_PRINTK("-%08x", 1446 dbg_last_kept_tsn); 1447 1448 SCTP_DEBUG_PRINTK(",%08x", tsn); 1449 dbg_kept_tsn = tsn; 1450 break; 1451 1452 case 0: 1453 if (dbg_last_ack_tsn != dbg_ack_tsn) 1454 SCTP_DEBUG_PRINTK("-%08x", 1455 dbg_last_ack_tsn); 1456 SCTP_DEBUG_PRINTK("\n"); 1457 1458 /* FALL THROUGH... */ 1459 default: 1460 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn); 1461 dbg_prt_state = 1; 1462 dbg_kept_tsn = tsn; 1463 } 1464 1465 dbg_last_kept_tsn = tsn; 1466 #endif /* SCTP_DEBUG */ 1467 } 1468 } 1469 1470 #if SCTP_DEBUG 1471 /* Finish off the last range, displaying its ending TSN. */ 1472 switch (dbg_prt_state) { 1473 case 0: 1474 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1475 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn); 1476 } else { 1477 SCTP_DEBUG_PRINTK("\n"); 1478 } 1479 break; 1480 1481 case 1: 1482 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1483 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn); 1484 } else { 1485 SCTP_DEBUG_PRINTK("\n"); 1486 } 1487 } 1488 #endif /* SCTP_DEBUG */ 1489 if (transport) { 1490 if (bytes_acked) { 1491 /* 8.2. When an outstanding TSN is acknowledged, 1492 * the endpoint shall clear the error counter of 1493 * the destination transport address to which the 1494 * DATA chunk was last sent. 1495 * The association's overall error counter is 1496 * also cleared. 1497 */ 1498 transport->error_count = 0; 1499 transport->asoc->overall_error_count = 0; 1500 1501 /* Mark the destination transport address as 1502 * active if it is not so marked. 1503 */ 1504 if ((transport->state == SCTP_INACTIVE) || 1505 (transport->state == SCTP_UNCONFIRMED)) { 1506 sctp_assoc_control_transport( 1507 transport->asoc, 1508 transport, 1509 SCTP_TRANSPORT_UP, 1510 SCTP_RECEIVED_SACK); 1511 } 1512 1513 sctp_transport_raise_cwnd(transport, sack_ctsn, 1514 bytes_acked); 1515 1516 transport->flight_size -= bytes_acked; 1517 q->outstanding_bytes -= bytes_acked; 1518 } else { 1519 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1520 * When a sender is doing zero window probing, it 1521 * should not timeout the association if it continues 1522 * to receive new packets from the receiver. The 1523 * reason is that the receiver MAY keep its window 1524 * closed for an indefinite time. 1525 * A sender is doing zero window probing when the 1526 * receiver's advertised window is zero, and there is 1527 * only one data chunk in flight to the receiver. 1528 */ 1529 if (!q->asoc->peer.rwnd && 1530 !list_empty(&tlist) && 1531 (sack_ctsn+2 == q->asoc->next_tsn)) { 1532 SCTP_DEBUG_PRINTK("%s: SACK received for zero " 1533 "window probe: %u\n", 1534 __FUNCTION__, sack_ctsn); 1535 q->asoc->overall_error_count = 0; 1536 transport->error_count = 0; 1537 } 1538 } 1539 1540 /* RFC 2960 6.3.2 Retransmission Timer Rules 1541 * 1542 * R2) Whenever all outstanding data sent to an address have 1543 * been acknowledged, turn off the T3-rtx timer of that 1544 * address. 1545 */ 1546 if (!transport->flight_size) { 1547 if (timer_pending(&transport->T3_rtx_timer) && 1548 del_timer(&transport->T3_rtx_timer)) { 1549 sctp_transport_put(transport); 1550 } 1551 } else if (restart_timer) { 1552 if (!mod_timer(&transport->T3_rtx_timer, 1553 jiffies + transport->rto)) 1554 sctp_transport_hold(transport); 1555 } 1556 } 1557 1558 list_splice(&tlist, transmitted_queue); 1559 } 1560 1561 /* Mark chunks as missing and consequently may get retransmitted. */ 1562 static void sctp_mark_missing(struct sctp_outq *q, 1563 struct list_head *transmitted_queue, 1564 struct sctp_transport *transport, 1565 __u32 highest_new_tsn_in_sack, 1566 int count_of_newacks) 1567 { 1568 struct sctp_chunk *chunk; 1569 struct list_head *pos; 1570 __u32 tsn; 1571 char do_fast_retransmit = 0; 1572 struct sctp_transport *primary = q->asoc->peer.primary_path; 1573 1574 list_for_each(pos, transmitted_queue) { 1575 1576 chunk = list_entry(pos, struct sctp_chunk, transmitted_list); 1577 tsn = ntohl(chunk->subh.data_hdr->tsn); 1578 1579 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1580 * 'Unacknowledged TSN's', if the TSN number of an 1581 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1582 * value, increment the 'TSN.Missing.Report' count on that 1583 * chunk if it has NOT been fast retransmitted or marked for 1584 * fast retransmit already. 1585 */ 1586 if (!chunk->fast_retransmit && 1587 !chunk->tsn_gap_acked && 1588 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1589 1590 /* SFR-CACC may require us to skip marking 1591 * this chunk as missing. 1592 */ 1593 if (!transport || !sctp_cacc_skip(primary, transport, 1594 count_of_newacks, tsn)) { 1595 chunk->tsn_missing_report++; 1596 1597 SCTP_DEBUG_PRINTK( 1598 "%s: TSN 0x%x missing counter: %d\n", 1599 __FUNCTION__, tsn, 1600 chunk->tsn_missing_report); 1601 } 1602 } 1603 /* 1604 * M4) If any DATA chunk is found to have a 1605 * 'TSN.Missing.Report' 1606 * value larger than or equal to 3, mark that chunk for 1607 * retransmission and start the fast retransmit procedure. 1608 */ 1609 1610 if (chunk->tsn_missing_report >= 3) { 1611 chunk->fast_retransmit = 1; 1612 do_fast_retransmit = 1; 1613 } 1614 } 1615 1616 if (transport) { 1617 if (do_fast_retransmit) 1618 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1619 1620 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " 1621 "ssthresh: %d, flight_size: %d, pba: %d\n", 1622 __FUNCTION__, transport, transport->cwnd, 1623 transport->ssthresh, transport->flight_size, 1624 transport->partial_bytes_acked); 1625 } 1626 } 1627 1628 /* Is the given TSN acked by this packet? */ 1629 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1630 { 1631 int i; 1632 sctp_sack_variable_t *frags; 1633 __u16 gap; 1634 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1635 1636 if (TSN_lte(tsn, ctsn)) 1637 goto pass; 1638 1639 /* 3.3.4 Selective Acknowledgement (SACK) (3): 1640 * 1641 * Gap Ack Blocks: 1642 * These fields contain the Gap Ack Blocks. They are repeated 1643 * for each Gap Ack Block up to the number of Gap Ack Blocks 1644 * defined in the Number of Gap Ack Blocks field. All DATA 1645 * chunks with TSNs greater than or equal to (Cumulative TSN 1646 * Ack + Gap Ack Block Start) and less than or equal to 1647 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1648 * Block are assumed to have been received correctly. 1649 */ 1650 1651 frags = sack->variable; 1652 gap = tsn - ctsn; 1653 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) { 1654 if (TSN_lte(ntohs(frags[i].gab.start), gap) && 1655 TSN_lte(gap, ntohs(frags[i].gab.end))) 1656 goto pass; 1657 } 1658 1659 return 0; 1660 pass: 1661 return 1; 1662 } 1663 1664 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1665 int nskips, __be16 stream) 1666 { 1667 int i; 1668 1669 for (i = 0; i < nskips; i++) { 1670 if (skiplist[i].stream == stream) 1671 return i; 1672 } 1673 return i; 1674 } 1675 1676 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1677 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1678 { 1679 struct sctp_association *asoc = q->asoc; 1680 struct sctp_chunk *ftsn_chunk = NULL; 1681 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1682 int nskips = 0; 1683 int skip_pos = 0; 1684 __u32 tsn; 1685 struct sctp_chunk *chunk; 1686 struct list_head *lchunk, *temp; 1687 1688 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1689 * received SACK. 1690 * 1691 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1692 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1693 */ 1694 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1695 asoc->adv_peer_ack_point = ctsn; 1696 1697 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1698 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1699 * the chunk next in the out-queue space is marked as "abandoned" as 1700 * shown in the following example: 1701 * 1702 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1703 * and the Advanced.Peer.Ack.Point is updated to this value: 1704 * 1705 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1706 * normal SACK processing local advancement 1707 * ... ... 1708 * Adv.Ack.Pt-> 102 acked 102 acked 1709 * 103 abandoned 103 abandoned 1710 * 104 abandoned Adv.Ack.P-> 104 abandoned 1711 * 105 105 1712 * 106 acked 106 acked 1713 * ... ... 1714 * 1715 * In this example, the data sender successfully advanced the 1716 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1717 */ 1718 list_for_each_safe(lchunk, temp, &q->abandoned) { 1719 chunk = list_entry(lchunk, struct sctp_chunk, 1720 transmitted_list); 1721 tsn = ntohl(chunk->subh.data_hdr->tsn); 1722 1723 /* Remove any chunks in the abandoned queue that are acked by 1724 * the ctsn. 1725 */ 1726 if (TSN_lte(tsn, ctsn)) { 1727 list_del_init(lchunk); 1728 sctp_chunk_free(chunk); 1729 } else { 1730 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1731 asoc->adv_peer_ack_point = tsn; 1732 if (chunk->chunk_hdr->flags & 1733 SCTP_DATA_UNORDERED) 1734 continue; 1735 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1736 nskips, 1737 chunk->subh.data_hdr->stream); 1738 ftsn_skip_arr[skip_pos].stream = 1739 chunk->subh.data_hdr->stream; 1740 ftsn_skip_arr[skip_pos].ssn = 1741 chunk->subh.data_hdr->ssn; 1742 if (skip_pos == nskips) 1743 nskips++; 1744 if (nskips == 10) 1745 break; 1746 } else 1747 break; 1748 } 1749 } 1750 1751 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1752 * is greater than the Cumulative TSN ACK carried in the received 1753 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1754 * chunk containing the latest value of the 1755 * "Advanced.Peer.Ack.Point". 1756 * 1757 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1758 * list each stream and sequence number in the forwarded TSN. This 1759 * information will enable the receiver to easily find any 1760 * stranded TSN's waiting on stream reorder queues. Each stream 1761 * SHOULD only be reported once; this means that if multiple 1762 * abandoned messages occur in the same stream then only the 1763 * highest abandoned stream sequence number is reported. If the 1764 * total size of the FORWARD TSN does NOT fit in a single MTU then 1765 * the sender of the FORWARD TSN SHOULD lower the 1766 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1767 * single MTU. 1768 */ 1769 if (asoc->adv_peer_ack_point > ctsn) 1770 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1771 nskips, &ftsn_skip_arr[0]); 1772 1773 if (ftsn_chunk) { 1774 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1775 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 1776 } 1777 } 1778