xref: /linux/net/sctp/outqueue.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Perry Melange         <pmelange@null.cc.uic.edu>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang 	    <hui.huang@nokia.com>
38  *    Sridhar Samudrala     <sri@us.ibm.com>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/types.h>
45 #include <linux/list.h>   /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h>	  /* For skb_set_owner_w */
50 
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 
54 /* Declare internal functions here.  */
55 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
56 static void sctp_check_transmitted(struct sctp_outq *q,
57 				   struct list_head *transmitted_queue,
58 				   struct sctp_transport *transport,
59 				   union sctp_addr *saddr,
60 				   struct sctp_sackhdr *sack,
61 				   __u32 *highest_new_tsn);
62 
63 static void sctp_mark_missing(struct sctp_outq *q,
64 			      struct list_head *transmitted_queue,
65 			      struct sctp_transport *transport,
66 			      __u32 highest_new_tsn,
67 			      int count_of_newacks);
68 
69 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
70 
71 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
72 
73 /* Add data to the front of the queue. */
74 static inline void sctp_outq_head_data(struct sctp_outq *q,
75 					struct sctp_chunk *ch)
76 {
77 	list_add(&ch->list, &q->out_chunk_list);
78 	q->out_qlen += ch->skb->len;
79 }
80 
81 /* Take data from the front of the queue. */
82 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
83 {
84 	struct sctp_chunk *ch = NULL;
85 
86 	if (!list_empty(&q->out_chunk_list)) {
87 		struct list_head *entry = q->out_chunk_list.next;
88 
89 		ch = list_entry(entry, struct sctp_chunk, list);
90 		list_del_init(entry);
91 		q->out_qlen -= ch->skb->len;
92 	}
93 	return ch;
94 }
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq *q,
97 				       struct sctp_chunk *ch)
98 {
99 	list_add_tail(&ch->list, &q->out_chunk_list);
100 	q->out_qlen += ch->skb->len;
101 }
102 
103 /*
104  * SFR-CACC algorithm:
105  * D) If count_of_newacks is greater than or equal to 2
106  * and t was not sent to the current primary then the
107  * sender MUST NOT increment missing report count for t.
108  */
109 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
110 				       struct sctp_transport *transport,
111 				       int count_of_newacks)
112 {
113 	if (count_of_newacks >= 2 && transport != primary)
114 		return 1;
115 	return 0;
116 }
117 
118 /*
119  * SFR-CACC algorithm:
120  * F) If count_of_newacks is less than 2, let d be the
121  * destination to which t was sent. If cacc_saw_newack
122  * is 0 for destination d, then the sender MUST NOT
123  * increment missing report count for t.
124  */
125 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
126 				       int count_of_newacks)
127 {
128 	if (count_of_newacks < 2 &&
129 			(transport && !transport->cacc.cacc_saw_newack))
130 		return 1;
131 	return 0;
132 }
133 
134 /*
135  * SFR-CACC algorithm:
136  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
137  * execute steps C, D, F.
138  *
139  * C has been implemented in sctp_outq_sack
140  */
141 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
142 				     struct sctp_transport *transport,
143 				     int count_of_newacks)
144 {
145 	if (!primary->cacc.cycling_changeover) {
146 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
147 			return 1;
148 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
149 			return 1;
150 		return 0;
151 	}
152 	return 0;
153 }
154 
155 /*
156  * SFR-CACC algorithm:
157  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
158  * than next_tsn_at_change of the current primary, then
159  * the sender MUST NOT increment missing report count
160  * for t.
161  */
162 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
163 {
164 	if (primary->cacc.cycling_changeover &&
165 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
166 		return 1;
167 	return 0;
168 }
169 
170 /*
171  * SFR-CACC algorithm:
172  * 3) If the missing report count for TSN t is to be
173  * incremented according to [RFC2960] and
174  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
175  * then the sender MUST further execute steps 3.1 and
176  * 3.2 to determine if the missing report count for
177  * TSN t SHOULD NOT be incremented.
178  *
179  * 3.3) If 3.1 and 3.2 do not dictate that the missing
180  * report count for t should not be incremented, then
181  * the sender SHOULD increment missing report count for
182  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
183  */
184 static inline int sctp_cacc_skip(struct sctp_transport *primary,
185 				 struct sctp_transport *transport,
186 				 int count_of_newacks,
187 				 __u32 tsn)
188 {
189 	if (primary->cacc.changeover_active &&
190 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
191 	     sctp_cacc_skip_3_2(primary, tsn)))
192 		return 1;
193 	return 0;
194 }
195 
196 /* Initialize an existing sctp_outq.  This does the boring stuff.
197  * You still need to define handlers if you really want to DO
198  * something with this structure...
199  */
200 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
201 {
202 	memset(q, 0, sizeof(struct sctp_outq));
203 
204 	q->asoc = asoc;
205 	INIT_LIST_HEAD(&q->out_chunk_list);
206 	INIT_LIST_HEAD(&q->control_chunk_list);
207 	INIT_LIST_HEAD(&q->retransmit);
208 	INIT_LIST_HEAD(&q->sacked);
209 	INIT_LIST_HEAD(&q->abandoned);
210 }
211 
212 /* Free the outqueue structure and any related pending chunks.
213  */
214 static void __sctp_outq_teardown(struct sctp_outq *q)
215 {
216 	struct sctp_transport *transport;
217 	struct list_head *lchunk, *temp;
218 	struct sctp_chunk *chunk, *tmp;
219 
220 	/* Throw away unacknowledged chunks. */
221 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
222 			transports) {
223 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
224 			chunk = list_entry(lchunk, struct sctp_chunk,
225 					   transmitted_list);
226 			/* Mark as part of a failed message. */
227 			sctp_chunk_fail(chunk, q->error);
228 			sctp_chunk_free(chunk);
229 		}
230 	}
231 
232 	/* Throw away chunks that have been gap ACKed.  */
233 	list_for_each_safe(lchunk, temp, &q->sacked) {
234 		list_del_init(lchunk);
235 		chunk = list_entry(lchunk, struct sctp_chunk,
236 				   transmitted_list);
237 		sctp_chunk_fail(chunk, q->error);
238 		sctp_chunk_free(chunk);
239 	}
240 
241 	/* Throw away any chunks in the retransmit queue. */
242 	list_for_each_safe(lchunk, temp, &q->retransmit) {
243 		list_del_init(lchunk);
244 		chunk = list_entry(lchunk, struct sctp_chunk,
245 				   transmitted_list);
246 		sctp_chunk_fail(chunk, q->error);
247 		sctp_chunk_free(chunk);
248 	}
249 
250 	/* Throw away any chunks that are in the abandoned queue. */
251 	list_for_each_safe(lchunk, temp, &q->abandoned) {
252 		list_del_init(lchunk);
253 		chunk = list_entry(lchunk, struct sctp_chunk,
254 				   transmitted_list);
255 		sctp_chunk_fail(chunk, q->error);
256 		sctp_chunk_free(chunk);
257 	}
258 
259 	/* Throw away any leftover data chunks. */
260 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
261 
262 		/* Mark as send failure. */
263 		sctp_chunk_fail(chunk, q->error);
264 		sctp_chunk_free(chunk);
265 	}
266 
267 	/* Throw away any leftover control chunks. */
268 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
269 		list_del_init(&chunk->list);
270 		sctp_chunk_free(chunk);
271 	}
272 }
273 
274 void sctp_outq_teardown(struct sctp_outq *q)
275 {
276 	__sctp_outq_teardown(q);
277 	sctp_outq_init(q->asoc, q);
278 }
279 
280 /* Free the outqueue structure and any related pending chunks.  */
281 void sctp_outq_free(struct sctp_outq *q)
282 {
283 	/* Throw away leftover chunks. */
284 	__sctp_outq_teardown(q);
285 }
286 
287 /* Put a new chunk in an sctp_outq.  */
288 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
289 {
290 	struct net *net = sock_net(q->asoc->base.sk);
291 
292 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
293 		 chunk && chunk->chunk_hdr ?
294 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
295 		 "illegal chunk");
296 
297 	/* If it is data, queue it up, otherwise, send it
298 	 * immediately.
299 	 */
300 	if (sctp_chunk_is_data(chunk)) {
301 		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
302 			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
303 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
304 			 "illegal chunk");
305 
306 		sctp_outq_tail_data(q, chunk);
307 		if (chunk->asoc->peer.prsctp_capable &&
308 		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
309 			chunk->asoc->sent_cnt_removable++;
310 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
311 			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
312 		else
313 			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
314 	} else {
315 		list_add_tail(&chunk->list, &q->control_chunk_list);
316 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
317 	}
318 
319 	if (!q->cork)
320 		sctp_outq_flush(q, 0, gfp);
321 }
322 
323 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
324  * and the abandoned list are in ascending order.
325  */
326 static void sctp_insert_list(struct list_head *head, struct list_head *new)
327 {
328 	struct list_head *pos;
329 	struct sctp_chunk *nchunk, *lchunk;
330 	__u32 ntsn, ltsn;
331 	int done = 0;
332 
333 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
334 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
335 
336 	list_for_each(pos, head) {
337 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
338 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
339 		if (TSN_lt(ntsn, ltsn)) {
340 			list_add(new, pos->prev);
341 			done = 1;
342 			break;
343 		}
344 	}
345 	if (!done)
346 		list_add_tail(new, head);
347 }
348 
349 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
350 				  struct sctp_sndrcvinfo *sinfo,
351 				  struct list_head *queue, int msg_len)
352 {
353 	struct sctp_chunk *chk, *temp;
354 
355 	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
356 		struct sctp_stream_out *streamout;
357 
358 		if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
359 		    chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)
360 			continue;
361 
362 		list_del_init(&chk->transmitted_list);
363 		sctp_insert_list(&asoc->outqueue.abandoned,
364 				 &chk->transmitted_list);
365 
366 		streamout = &asoc->stream.out[chk->sinfo.sinfo_stream];
367 		asoc->sent_cnt_removable--;
368 		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
369 		streamout->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
370 
371 		if (!chk->tsn_gap_acked) {
372 			if (chk->transport)
373 				chk->transport->flight_size -=
374 						sctp_data_size(chk);
375 			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
376 		}
377 
378 		msg_len -= SCTP_DATA_SNDSIZE(chk) +
379 			   sizeof(struct sk_buff) +
380 			   sizeof(struct sctp_chunk);
381 		if (msg_len <= 0)
382 			break;
383 	}
384 
385 	return msg_len;
386 }
387 
388 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
389 				    struct sctp_sndrcvinfo *sinfo, int msg_len)
390 {
391 	struct sctp_outq *q = &asoc->outqueue;
392 	struct sctp_chunk *chk, *temp;
393 
394 	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
395 		if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
396 		    chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)
397 			continue;
398 
399 		list_del_init(&chk->list);
400 		q->out_qlen -= chk->skb->len;
401 		asoc->sent_cnt_removable--;
402 		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
403 		if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
404 			struct sctp_stream_out *streamout =
405 				&asoc->stream.out[chk->sinfo.sinfo_stream];
406 
407 			streamout->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
408 		}
409 
410 		msg_len -= SCTP_DATA_SNDSIZE(chk) +
411 			   sizeof(struct sk_buff) +
412 			   sizeof(struct sctp_chunk);
413 		sctp_chunk_free(chk);
414 		if (msg_len <= 0)
415 			break;
416 	}
417 
418 	return msg_len;
419 }
420 
421 /* Abandon the chunks according their priorities */
422 void sctp_prsctp_prune(struct sctp_association *asoc,
423 		       struct sctp_sndrcvinfo *sinfo, int msg_len)
424 {
425 	struct sctp_transport *transport;
426 
427 	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
428 		return;
429 
430 	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
431 					 &asoc->outqueue.retransmit,
432 					 msg_len);
433 	if (msg_len <= 0)
434 		return;
435 
436 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
437 			    transports) {
438 		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
439 						 &transport->transmitted,
440 						 msg_len);
441 		if (msg_len <= 0)
442 			return;
443 	}
444 
445 	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
446 }
447 
448 /* Mark all the eligible packets on a transport for retransmission.  */
449 void sctp_retransmit_mark(struct sctp_outq *q,
450 			  struct sctp_transport *transport,
451 			  __u8 reason)
452 {
453 	struct list_head *lchunk, *ltemp;
454 	struct sctp_chunk *chunk;
455 
456 	/* Walk through the specified transmitted queue.  */
457 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
458 		chunk = list_entry(lchunk, struct sctp_chunk,
459 				   transmitted_list);
460 
461 		/* If the chunk is abandoned, move it to abandoned list. */
462 		if (sctp_chunk_abandoned(chunk)) {
463 			list_del_init(lchunk);
464 			sctp_insert_list(&q->abandoned, lchunk);
465 
466 			/* If this chunk has not been previousely acked,
467 			 * stop considering it 'outstanding'.  Our peer
468 			 * will most likely never see it since it will
469 			 * not be retransmitted
470 			 */
471 			if (!chunk->tsn_gap_acked) {
472 				if (chunk->transport)
473 					chunk->transport->flight_size -=
474 							sctp_data_size(chunk);
475 				q->outstanding_bytes -= sctp_data_size(chunk);
476 				q->asoc->peer.rwnd += sctp_data_size(chunk);
477 			}
478 			continue;
479 		}
480 
481 		/* If we are doing  retransmission due to a timeout or pmtu
482 		 * discovery, only the  chunks that are not yet acked should
483 		 * be added to the retransmit queue.
484 		 */
485 		if ((reason == SCTP_RTXR_FAST_RTX  &&
486 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
487 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
488 			/* RFC 2960 6.2.1 Processing a Received SACK
489 			 *
490 			 * C) Any time a DATA chunk is marked for
491 			 * retransmission (via either T3-rtx timer expiration
492 			 * (Section 6.3.3) or via fast retransmit
493 			 * (Section 7.2.4)), add the data size of those
494 			 * chunks to the rwnd.
495 			 */
496 			q->asoc->peer.rwnd += sctp_data_size(chunk);
497 			q->outstanding_bytes -= sctp_data_size(chunk);
498 			if (chunk->transport)
499 				transport->flight_size -= sctp_data_size(chunk);
500 
501 			/* sctpimpguide-05 Section 2.8.2
502 			 * M5) If a T3-rtx timer expires, the
503 			 * 'TSN.Missing.Report' of all affected TSNs is set
504 			 * to 0.
505 			 */
506 			chunk->tsn_missing_report = 0;
507 
508 			/* If a chunk that is being used for RTT measurement
509 			 * has to be retransmitted, we cannot use this chunk
510 			 * anymore for RTT measurements. Reset rto_pending so
511 			 * that a new RTT measurement is started when a new
512 			 * data chunk is sent.
513 			 */
514 			if (chunk->rtt_in_progress) {
515 				chunk->rtt_in_progress = 0;
516 				transport->rto_pending = 0;
517 			}
518 
519 			/* Move the chunk to the retransmit queue. The chunks
520 			 * on the retransmit queue are always kept in order.
521 			 */
522 			list_del_init(lchunk);
523 			sctp_insert_list(&q->retransmit, lchunk);
524 		}
525 	}
526 
527 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
528 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
529 		 transport->cwnd, transport->ssthresh, transport->flight_size,
530 		 transport->partial_bytes_acked);
531 }
532 
533 /* Mark all the eligible packets on a transport for retransmission and force
534  * one packet out.
535  */
536 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
537 		     enum sctp_retransmit_reason reason)
538 {
539 	struct net *net = sock_net(q->asoc->base.sk);
540 
541 	switch (reason) {
542 	case SCTP_RTXR_T3_RTX:
543 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
544 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
545 		/* Update the retran path if the T3-rtx timer has expired for
546 		 * the current retran path.
547 		 */
548 		if (transport == transport->asoc->peer.retran_path)
549 			sctp_assoc_update_retran_path(transport->asoc);
550 		transport->asoc->rtx_data_chunks +=
551 			transport->asoc->unack_data;
552 		break;
553 	case SCTP_RTXR_FAST_RTX:
554 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
555 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
556 		q->fast_rtx = 1;
557 		break;
558 	case SCTP_RTXR_PMTUD:
559 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
560 		break;
561 	case SCTP_RTXR_T1_RTX:
562 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
563 		transport->asoc->init_retries++;
564 		break;
565 	default:
566 		BUG();
567 	}
568 
569 	sctp_retransmit_mark(q, transport, reason);
570 
571 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
572 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
573 	 * following the procedures outlined in C1 - C5.
574 	 */
575 	if (reason == SCTP_RTXR_T3_RTX)
576 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
577 
578 	/* Flush the queues only on timeout, since fast_rtx is only
579 	 * triggered during sack processing and the queue
580 	 * will be flushed at the end.
581 	 */
582 	if (reason != SCTP_RTXR_FAST_RTX)
583 		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
584 }
585 
586 /*
587  * Transmit DATA chunks on the retransmit queue.  Upon return from
588  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
589  * need to be transmitted by the caller.
590  * We assume that pkt->transport has already been set.
591  *
592  * The return value is a normal kernel error return value.
593  */
594 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
595 			       int rtx_timeout, int *start_timer)
596 {
597 	struct sctp_transport *transport = pkt->transport;
598 	struct sctp_chunk *chunk, *chunk1;
599 	struct list_head *lqueue;
600 	enum sctp_xmit status;
601 	int error = 0;
602 	int timer = 0;
603 	int done = 0;
604 	int fast_rtx;
605 
606 	lqueue = &q->retransmit;
607 	fast_rtx = q->fast_rtx;
608 
609 	/* This loop handles time-out retransmissions, fast retransmissions,
610 	 * and retransmissions due to opening of whindow.
611 	 *
612 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
613 	 *
614 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
615 	 * outstanding DATA chunks for the address for which the
616 	 * T3-rtx has expired will fit into a single packet, subject
617 	 * to the MTU constraint for the path corresponding to the
618 	 * destination transport address to which the retransmission
619 	 * is being sent (this may be different from the address for
620 	 * which the timer expires [see Section 6.4]). Call this value
621 	 * K. Bundle and retransmit those K DATA chunks in a single
622 	 * packet to the destination endpoint.
623 	 *
624 	 * [Just to be painfully clear, if we are retransmitting
625 	 * because a timeout just happened, we should send only ONE
626 	 * packet of retransmitted data.]
627 	 *
628 	 * For fast retransmissions we also send only ONE packet.  However,
629 	 * if we are just flushing the queue due to open window, we'll
630 	 * try to send as much as possible.
631 	 */
632 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
633 		/* If the chunk is abandoned, move it to abandoned list. */
634 		if (sctp_chunk_abandoned(chunk)) {
635 			list_del_init(&chunk->transmitted_list);
636 			sctp_insert_list(&q->abandoned,
637 					 &chunk->transmitted_list);
638 			continue;
639 		}
640 
641 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
642 		 * simple approach is just to move such TSNs out of the
643 		 * way and into a 'transmitted' queue and skip to the
644 		 * next chunk.
645 		 */
646 		if (chunk->tsn_gap_acked) {
647 			list_move_tail(&chunk->transmitted_list,
648 				       &transport->transmitted);
649 			continue;
650 		}
651 
652 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
653 		 * chunks
654 		 */
655 		if (fast_rtx && !chunk->fast_retransmit)
656 			continue;
657 
658 redo:
659 		/* Attempt to append this chunk to the packet. */
660 		status = sctp_packet_append_chunk(pkt, chunk);
661 
662 		switch (status) {
663 		case SCTP_XMIT_PMTU_FULL:
664 			if (!pkt->has_data && !pkt->has_cookie_echo) {
665 				/* If this packet did not contain DATA then
666 				 * retransmission did not happen, so do it
667 				 * again.  We'll ignore the error here since
668 				 * control chunks are already freed so there
669 				 * is nothing we can do.
670 				 */
671 				sctp_packet_transmit(pkt, GFP_ATOMIC);
672 				goto redo;
673 			}
674 
675 			/* Send this packet.  */
676 			error = sctp_packet_transmit(pkt, GFP_ATOMIC);
677 
678 			/* If we are retransmitting, we should only
679 			 * send a single packet.
680 			 * Otherwise, try appending this chunk again.
681 			 */
682 			if (rtx_timeout || fast_rtx)
683 				done = 1;
684 			else
685 				goto redo;
686 
687 			/* Bundle next chunk in the next round.  */
688 			break;
689 
690 		case SCTP_XMIT_RWND_FULL:
691 			/* Send this packet. */
692 			error = sctp_packet_transmit(pkt, GFP_ATOMIC);
693 
694 			/* Stop sending DATA as there is no more room
695 			 * at the receiver.
696 			 */
697 			done = 1;
698 			break;
699 
700 		case SCTP_XMIT_DELAY:
701 			/* Send this packet. */
702 			error = sctp_packet_transmit(pkt, GFP_ATOMIC);
703 
704 			/* Stop sending DATA because of nagle delay. */
705 			done = 1;
706 			break;
707 
708 		default:
709 			/* The append was successful, so add this chunk to
710 			 * the transmitted list.
711 			 */
712 			list_move_tail(&chunk->transmitted_list,
713 				       &transport->transmitted);
714 
715 			/* Mark the chunk as ineligible for fast retransmit
716 			 * after it is retransmitted.
717 			 */
718 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
719 				chunk->fast_retransmit = SCTP_DONT_FRTX;
720 
721 			q->asoc->stats.rtxchunks++;
722 			break;
723 		}
724 
725 		/* Set the timer if there were no errors */
726 		if (!error && !timer)
727 			timer = 1;
728 
729 		if (done)
730 			break;
731 	}
732 
733 	/* If we are here due to a retransmit timeout or a fast
734 	 * retransmit and if there are any chunks left in the retransmit
735 	 * queue that could not fit in the PMTU sized packet, they need
736 	 * to be marked as ineligible for a subsequent fast retransmit.
737 	 */
738 	if (rtx_timeout || fast_rtx) {
739 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
740 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
741 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
742 		}
743 	}
744 
745 	*start_timer = timer;
746 
747 	/* Clear fast retransmit hint */
748 	if (fast_rtx)
749 		q->fast_rtx = 0;
750 
751 	return error;
752 }
753 
754 /* Cork the outqueue so queued chunks are really queued. */
755 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
756 {
757 	if (q->cork)
758 		q->cork = 0;
759 
760 	sctp_outq_flush(q, 0, gfp);
761 }
762 
763 
764 /*
765  * Try to flush an outqueue.
766  *
767  * Description: Send everything in q which we legally can, subject to
768  * congestion limitations.
769  * * Note: This function can be called from multiple contexts so appropriate
770  * locking concerns must be made.  Today we use the sock lock to protect
771  * this function.
772  */
773 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
774 {
775 	struct sctp_packet *packet;
776 	struct sctp_packet singleton;
777 	struct sctp_association *asoc = q->asoc;
778 	__u16 sport = asoc->base.bind_addr.port;
779 	__u16 dport = asoc->peer.port;
780 	__u32 vtag = asoc->peer.i.init_tag;
781 	struct sctp_transport *transport = NULL;
782 	struct sctp_transport *new_transport;
783 	struct sctp_chunk *chunk, *tmp;
784 	enum sctp_xmit status;
785 	int error = 0;
786 	int start_timer = 0;
787 	int one_packet = 0;
788 
789 	/* These transports have chunks to send. */
790 	struct list_head transport_list;
791 	struct list_head *ltransport;
792 
793 	INIT_LIST_HEAD(&transport_list);
794 	packet = NULL;
795 
796 	/*
797 	 * 6.10 Bundling
798 	 *   ...
799 	 *   When bundling control chunks with DATA chunks, an
800 	 *   endpoint MUST place control chunks first in the outbound
801 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
802 	 *   within a SCTP packet in increasing order of TSN.
803 	 *   ...
804 	 */
805 
806 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
807 		/* RFC 5061, 5.3
808 		 * F1) This means that until such time as the ASCONF
809 		 * containing the add is acknowledged, the sender MUST
810 		 * NOT use the new IP address as a source for ANY SCTP
811 		 * packet except on carrying an ASCONF Chunk.
812 		 */
813 		if (asoc->src_out_of_asoc_ok &&
814 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
815 			continue;
816 
817 		list_del_init(&chunk->list);
818 
819 		/* Pick the right transport to use. */
820 		new_transport = chunk->transport;
821 
822 		if (!new_transport) {
823 			/*
824 			 * If we have a prior transport pointer, see if
825 			 * the destination address of the chunk
826 			 * matches the destination address of the
827 			 * current transport.  If not a match, then
828 			 * try to look up the transport with a given
829 			 * destination address.  We do this because
830 			 * after processing ASCONFs, we may have new
831 			 * transports created.
832 			 */
833 			if (transport &&
834 			    sctp_cmp_addr_exact(&chunk->dest,
835 						&transport->ipaddr))
836 					new_transport = transport;
837 			else
838 				new_transport = sctp_assoc_lookup_paddr(asoc,
839 								&chunk->dest);
840 
841 			/* if we still don't have a new transport, then
842 			 * use the current active path.
843 			 */
844 			if (!new_transport)
845 				new_transport = asoc->peer.active_path;
846 		} else if ((new_transport->state == SCTP_INACTIVE) ||
847 			   (new_transport->state == SCTP_UNCONFIRMED) ||
848 			   (new_transport->state == SCTP_PF)) {
849 			/* If the chunk is Heartbeat or Heartbeat Ack,
850 			 * send it to chunk->transport, even if it's
851 			 * inactive.
852 			 *
853 			 * 3.3.6 Heartbeat Acknowledgement:
854 			 * ...
855 			 * A HEARTBEAT ACK is always sent to the source IP
856 			 * address of the IP datagram containing the
857 			 * HEARTBEAT chunk to which this ack is responding.
858 			 * ...
859 			 *
860 			 * ASCONF_ACKs also must be sent to the source.
861 			 */
862 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
863 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
864 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
865 				new_transport = asoc->peer.active_path;
866 		}
867 
868 		/* Are we switching transports?
869 		 * Take care of transport locks.
870 		 */
871 		if (new_transport != transport) {
872 			transport = new_transport;
873 			if (list_empty(&transport->send_ready)) {
874 				list_add_tail(&transport->send_ready,
875 					      &transport_list);
876 			}
877 			packet = &transport->packet;
878 			sctp_packet_config(packet, vtag,
879 					   asoc->peer.ecn_capable);
880 		}
881 
882 		switch (chunk->chunk_hdr->type) {
883 		/*
884 		 * 6.10 Bundling
885 		 *   ...
886 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
887 		 *   COMPLETE with any other chunks.  [Send them immediately.]
888 		 */
889 		case SCTP_CID_INIT:
890 		case SCTP_CID_INIT_ACK:
891 		case SCTP_CID_SHUTDOWN_COMPLETE:
892 			sctp_packet_init(&singleton, transport, sport, dport);
893 			sctp_packet_config(&singleton, vtag, 0);
894 			sctp_packet_append_chunk(&singleton, chunk);
895 			error = sctp_packet_transmit(&singleton, gfp);
896 			if (error < 0) {
897 				asoc->base.sk->sk_err = -error;
898 				return;
899 			}
900 			break;
901 
902 		case SCTP_CID_ABORT:
903 			if (sctp_test_T_bit(chunk)) {
904 				packet->vtag = asoc->c.my_vtag;
905 			}
906 		/* The following chunks are "response" chunks, i.e.
907 		 * they are generated in response to something we
908 		 * received.  If we are sending these, then we can
909 		 * send only 1 packet containing these chunks.
910 		 */
911 		case SCTP_CID_HEARTBEAT_ACK:
912 		case SCTP_CID_SHUTDOWN_ACK:
913 		case SCTP_CID_COOKIE_ACK:
914 		case SCTP_CID_COOKIE_ECHO:
915 		case SCTP_CID_ERROR:
916 		case SCTP_CID_ECN_CWR:
917 		case SCTP_CID_ASCONF_ACK:
918 			one_packet = 1;
919 			/* Fall through */
920 
921 		case SCTP_CID_SACK:
922 		case SCTP_CID_HEARTBEAT:
923 		case SCTP_CID_SHUTDOWN:
924 		case SCTP_CID_ECN_ECNE:
925 		case SCTP_CID_ASCONF:
926 		case SCTP_CID_FWD_TSN:
927 		case SCTP_CID_RECONF:
928 			status = sctp_packet_transmit_chunk(packet, chunk,
929 							    one_packet, gfp);
930 			if (status  != SCTP_XMIT_OK) {
931 				/* put the chunk back */
932 				list_add(&chunk->list, &q->control_chunk_list);
933 				break;
934 			}
935 
936 			asoc->stats.octrlchunks++;
937 			/* PR-SCTP C5) If a FORWARD TSN is sent, the
938 			 * sender MUST assure that at least one T3-rtx
939 			 * timer is running.
940 			 */
941 			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
942 				sctp_transport_reset_t3_rtx(transport);
943 				transport->last_time_sent = jiffies;
944 			}
945 
946 			if (chunk == asoc->strreset_chunk)
947 				sctp_transport_reset_reconf_timer(transport);
948 
949 			break;
950 
951 		default:
952 			/* We built a chunk with an illegal type! */
953 			BUG();
954 		}
955 	}
956 
957 	if (q->asoc->src_out_of_asoc_ok)
958 		goto sctp_flush_out;
959 
960 	/* Is it OK to send data chunks?  */
961 	switch (asoc->state) {
962 	case SCTP_STATE_COOKIE_ECHOED:
963 		/* Only allow bundling when this packet has a COOKIE-ECHO
964 		 * chunk.
965 		 */
966 		if (!packet || !packet->has_cookie_echo)
967 			break;
968 
969 		/* fallthru */
970 	case SCTP_STATE_ESTABLISHED:
971 	case SCTP_STATE_SHUTDOWN_PENDING:
972 	case SCTP_STATE_SHUTDOWN_RECEIVED:
973 		/*
974 		 * RFC 2960 6.1  Transmission of DATA Chunks
975 		 *
976 		 * C) When the time comes for the sender to transmit,
977 		 * before sending new DATA chunks, the sender MUST
978 		 * first transmit any outstanding DATA chunks which
979 		 * are marked for retransmission (limited by the
980 		 * current cwnd).
981 		 */
982 		if (!list_empty(&q->retransmit)) {
983 			if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
984 				goto sctp_flush_out;
985 			if (transport == asoc->peer.retran_path)
986 				goto retran;
987 
988 			/* Switch transports & prepare the packet.  */
989 
990 			transport = asoc->peer.retran_path;
991 
992 			if (list_empty(&transport->send_ready)) {
993 				list_add_tail(&transport->send_ready,
994 					      &transport_list);
995 			}
996 
997 			packet = &transport->packet;
998 			sctp_packet_config(packet, vtag,
999 					   asoc->peer.ecn_capable);
1000 		retran:
1001 			error = sctp_outq_flush_rtx(q, packet,
1002 						    rtx_timeout, &start_timer);
1003 			if (error < 0)
1004 				asoc->base.sk->sk_err = -error;
1005 
1006 			if (start_timer) {
1007 				sctp_transport_reset_t3_rtx(transport);
1008 				transport->last_time_sent = jiffies;
1009 			}
1010 
1011 			/* This can happen on COOKIE-ECHO resend.  Only
1012 			 * one chunk can get bundled with a COOKIE-ECHO.
1013 			 */
1014 			if (packet->has_cookie_echo)
1015 				goto sctp_flush_out;
1016 
1017 			/* Don't send new data if there is still data
1018 			 * waiting to retransmit.
1019 			 */
1020 			if (!list_empty(&q->retransmit))
1021 				goto sctp_flush_out;
1022 		}
1023 
1024 		/* Apply Max.Burst limitation to the current transport in
1025 		 * case it will be used for new data.  We are going to
1026 		 * rest it before we return, but we want to apply the limit
1027 		 * to the currently queued data.
1028 		 */
1029 		if (transport)
1030 			sctp_transport_burst_limited(transport);
1031 
1032 		/* Finally, transmit new packets.  */
1033 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
1034 			__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1035 
1036 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
1037 			 * stream identifier.
1038 			 */
1039 			if (chunk->sinfo.sinfo_stream >= asoc->stream.outcnt) {
1040 
1041 				/* Mark as failed send. */
1042 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
1043 				if (asoc->peer.prsctp_capable &&
1044 				    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1045 					asoc->sent_cnt_removable--;
1046 				sctp_chunk_free(chunk);
1047 				continue;
1048 			}
1049 
1050 			/* Has this chunk expired? */
1051 			if (sctp_chunk_abandoned(chunk)) {
1052 				sctp_chunk_fail(chunk, 0);
1053 				sctp_chunk_free(chunk);
1054 				continue;
1055 			}
1056 
1057 			if (asoc->stream.out[sid].state == SCTP_STREAM_CLOSED) {
1058 				sctp_outq_head_data(q, chunk);
1059 				goto sctp_flush_out;
1060 			}
1061 
1062 			/* If there is a specified transport, use it.
1063 			 * Otherwise, we want to use the active path.
1064 			 */
1065 			new_transport = chunk->transport;
1066 			if (!new_transport ||
1067 			    ((new_transport->state == SCTP_INACTIVE) ||
1068 			     (new_transport->state == SCTP_UNCONFIRMED) ||
1069 			     (new_transport->state == SCTP_PF)))
1070 				new_transport = asoc->peer.active_path;
1071 			if (new_transport->state == SCTP_UNCONFIRMED) {
1072 				WARN_ONCE(1, "Attempt to send packet on unconfirmed path.");
1073 				sctp_chunk_fail(chunk, 0);
1074 				sctp_chunk_free(chunk);
1075 				continue;
1076 			}
1077 
1078 			/* Change packets if necessary.  */
1079 			if (new_transport != transport) {
1080 				transport = new_transport;
1081 
1082 				/* Schedule to have this transport's
1083 				 * packet flushed.
1084 				 */
1085 				if (list_empty(&transport->send_ready)) {
1086 					list_add_tail(&transport->send_ready,
1087 						      &transport_list);
1088 				}
1089 
1090 				packet = &transport->packet;
1091 				sctp_packet_config(packet, vtag,
1092 						   asoc->peer.ecn_capable);
1093 				/* We've switched transports, so apply the
1094 				 * Burst limit to the new transport.
1095 				 */
1096 				sctp_transport_burst_limited(transport);
1097 			}
1098 
1099 			pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1100 				 "skb->users:%d\n",
1101 				 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1102 				 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1103 				 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1104 				 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1105 				 refcount_read(&chunk->skb->users) : -1);
1106 
1107 			/* Add the chunk to the packet.  */
1108 			status = sctp_packet_transmit_chunk(packet, chunk, 0, gfp);
1109 
1110 			switch (status) {
1111 			case SCTP_XMIT_PMTU_FULL:
1112 			case SCTP_XMIT_RWND_FULL:
1113 			case SCTP_XMIT_DELAY:
1114 				/* We could not append this chunk, so put
1115 				 * the chunk back on the output queue.
1116 				 */
1117 				pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1118 					 __func__, ntohl(chunk->subh.data_hdr->tsn),
1119 					 status);
1120 
1121 				sctp_outq_head_data(q, chunk);
1122 				goto sctp_flush_out;
1123 
1124 			case SCTP_XMIT_OK:
1125 				/* The sender is in the SHUTDOWN-PENDING state,
1126 				 * The sender MAY set the I-bit in the DATA
1127 				 * chunk header.
1128 				 */
1129 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1130 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1131 				if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1132 					asoc->stats.ouodchunks++;
1133 				else
1134 					asoc->stats.oodchunks++;
1135 
1136 				break;
1137 
1138 			default:
1139 				BUG();
1140 			}
1141 
1142 			/* BUG: We assume that the sctp_packet_transmit()
1143 			 * call below will succeed all the time and add the
1144 			 * chunk to the transmitted list and restart the
1145 			 * timers.
1146 			 * It is possible that the call can fail under OOM
1147 			 * conditions.
1148 			 *
1149 			 * Is this really a problem?  Won't this behave
1150 			 * like a lost TSN?
1151 			 */
1152 			list_add_tail(&chunk->transmitted_list,
1153 				      &transport->transmitted);
1154 
1155 			sctp_transport_reset_t3_rtx(transport);
1156 			transport->last_time_sent = jiffies;
1157 
1158 			/* Only let one DATA chunk get bundled with a
1159 			 * COOKIE-ECHO chunk.
1160 			 */
1161 			if (packet->has_cookie_echo)
1162 				goto sctp_flush_out;
1163 		}
1164 		break;
1165 
1166 	default:
1167 		/* Do nothing.  */
1168 		break;
1169 	}
1170 
1171 sctp_flush_out:
1172 
1173 	/* Before returning, examine all the transports touched in
1174 	 * this call.  Right now, we bluntly force clear all the
1175 	 * transports.  Things might change after we implement Nagle.
1176 	 * But such an examination is still required.
1177 	 *
1178 	 * --xguo
1179 	 */
1180 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1181 		struct sctp_transport *t = list_entry(ltransport,
1182 						      struct sctp_transport,
1183 						      send_ready);
1184 		packet = &t->packet;
1185 		if (!sctp_packet_empty(packet)) {
1186 			error = sctp_packet_transmit(packet, gfp);
1187 			if (error < 0)
1188 				asoc->base.sk->sk_err = -error;
1189 		}
1190 
1191 		/* Clear the burst limited state, if any */
1192 		sctp_transport_burst_reset(t);
1193 	}
1194 }
1195 
1196 /* Update unack_data based on the incoming SACK chunk */
1197 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1198 					struct sctp_sackhdr *sack)
1199 {
1200 	union sctp_sack_variable *frags;
1201 	__u16 unack_data;
1202 	int i;
1203 
1204 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1205 
1206 	frags = sack->variable;
1207 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1208 		unack_data -= ((ntohs(frags[i].gab.end) -
1209 				ntohs(frags[i].gab.start) + 1));
1210 	}
1211 
1212 	assoc->unack_data = unack_data;
1213 }
1214 
1215 /* This is where we REALLY process a SACK.
1216  *
1217  * Process the SACK against the outqueue.  Mostly, this just frees
1218  * things off the transmitted queue.
1219  */
1220 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1221 {
1222 	struct sctp_association *asoc = q->asoc;
1223 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1224 	struct sctp_transport *transport;
1225 	struct sctp_chunk *tchunk = NULL;
1226 	struct list_head *lchunk, *transport_list, *temp;
1227 	union sctp_sack_variable *frags = sack->variable;
1228 	__u32 sack_ctsn, ctsn, tsn;
1229 	__u32 highest_tsn, highest_new_tsn;
1230 	__u32 sack_a_rwnd;
1231 	unsigned int outstanding;
1232 	struct sctp_transport *primary = asoc->peer.primary_path;
1233 	int count_of_newacks = 0;
1234 	int gap_ack_blocks;
1235 	u8 accum_moved = 0;
1236 
1237 	/* Grab the association's destination address list. */
1238 	transport_list = &asoc->peer.transport_addr_list;
1239 
1240 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1241 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1242 	asoc->stats.gapcnt += gap_ack_blocks;
1243 	/*
1244 	 * SFR-CACC algorithm:
1245 	 * On receipt of a SACK the sender SHOULD execute the
1246 	 * following statements.
1247 	 *
1248 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1249 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1250 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1251 	 * all destinations.
1252 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1253 	 * is set the receiver of the SACK MUST take the following actions:
1254 	 *
1255 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1256 	 * addresses.
1257 	 *
1258 	 * Only bother if changeover_active is set. Otherwise, this is
1259 	 * totally suboptimal to do on every SACK.
1260 	 */
1261 	if (primary->cacc.changeover_active) {
1262 		u8 clear_cycling = 0;
1263 
1264 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1265 			primary->cacc.changeover_active = 0;
1266 			clear_cycling = 1;
1267 		}
1268 
1269 		if (clear_cycling || gap_ack_blocks) {
1270 			list_for_each_entry(transport, transport_list,
1271 					transports) {
1272 				if (clear_cycling)
1273 					transport->cacc.cycling_changeover = 0;
1274 				if (gap_ack_blocks)
1275 					transport->cacc.cacc_saw_newack = 0;
1276 			}
1277 		}
1278 	}
1279 
1280 	/* Get the highest TSN in the sack. */
1281 	highest_tsn = sack_ctsn;
1282 	if (gap_ack_blocks)
1283 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1284 
1285 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1286 		asoc->highest_sacked = highest_tsn;
1287 
1288 	highest_new_tsn = sack_ctsn;
1289 
1290 	/* Run through the retransmit queue.  Credit bytes received
1291 	 * and free those chunks that we can.
1292 	 */
1293 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1294 
1295 	/* Run through the transmitted queue.
1296 	 * Credit bytes received and free those chunks which we can.
1297 	 *
1298 	 * This is a MASSIVE candidate for optimization.
1299 	 */
1300 	list_for_each_entry(transport, transport_list, transports) {
1301 		sctp_check_transmitted(q, &transport->transmitted,
1302 				       transport, &chunk->source, sack,
1303 				       &highest_new_tsn);
1304 		/*
1305 		 * SFR-CACC algorithm:
1306 		 * C) Let count_of_newacks be the number of
1307 		 * destinations for which cacc_saw_newack is set.
1308 		 */
1309 		if (transport->cacc.cacc_saw_newack)
1310 			count_of_newacks++;
1311 	}
1312 
1313 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1314 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1315 		asoc->ctsn_ack_point = sack_ctsn;
1316 		accum_moved = 1;
1317 	}
1318 
1319 	if (gap_ack_blocks) {
1320 
1321 		if (asoc->fast_recovery && accum_moved)
1322 			highest_new_tsn = highest_tsn;
1323 
1324 		list_for_each_entry(transport, transport_list, transports)
1325 			sctp_mark_missing(q, &transport->transmitted, transport,
1326 					  highest_new_tsn, count_of_newacks);
1327 	}
1328 
1329 	/* Update unack_data field in the assoc. */
1330 	sctp_sack_update_unack_data(asoc, sack);
1331 
1332 	ctsn = asoc->ctsn_ack_point;
1333 
1334 	/* Throw away stuff rotting on the sack queue.  */
1335 	list_for_each_safe(lchunk, temp, &q->sacked) {
1336 		tchunk = list_entry(lchunk, struct sctp_chunk,
1337 				    transmitted_list);
1338 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1339 		if (TSN_lte(tsn, ctsn)) {
1340 			list_del_init(&tchunk->transmitted_list);
1341 			if (asoc->peer.prsctp_capable &&
1342 			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1343 				asoc->sent_cnt_removable--;
1344 			sctp_chunk_free(tchunk);
1345 		}
1346 	}
1347 
1348 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1349 	 *     number of bytes still outstanding after processing the
1350 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1351 	 */
1352 
1353 	sack_a_rwnd = ntohl(sack->a_rwnd);
1354 	asoc->peer.zero_window_announced = !sack_a_rwnd;
1355 	outstanding = q->outstanding_bytes;
1356 
1357 	if (outstanding < sack_a_rwnd)
1358 		sack_a_rwnd -= outstanding;
1359 	else
1360 		sack_a_rwnd = 0;
1361 
1362 	asoc->peer.rwnd = sack_a_rwnd;
1363 
1364 	sctp_generate_fwdtsn(q, sack_ctsn);
1365 
1366 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1367 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1368 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1369 		 asoc->adv_peer_ack_point);
1370 
1371 	return sctp_outq_is_empty(q);
1372 }
1373 
1374 /* Is the outqueue empty?
1375  * The queue is empty when we have not pending data, no in-flight data
1376  * and nothing pending retransmissions.
1377  */
1378 int sctp_outq_is_empty(const struct sctp_outq *q)
1379 {
1380 	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1381 	       list_empty(&q->retransmit);
1382 }
1383 
1384 /********************************************************************
1385  * 2nd Level Abstractions
1386  ********************************************************************/
1387 
1388 /* Go through a transport's transmitted list or the association's retransmit
1389  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1390  * The retransmit list will not have an associated transport.
1391  *
1392  * I added coherent debug information output.	--xguo
1393  *
1394  * Instead of printing 'sacked' or 'kept' for each TSN on the
1395  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1396  * KEPT TSN6-TSN7, etc.
1397  */
1398 static void sctp_check_transmitted(struct sctp_outq *q,
1399 				   struct list_head *transmitted_queue,
1400 				   struct sctp_transport *transport,
1401 				   union sctp_addr *saddr,
1402 				   struct sctp_sackhdr *sack,
1403 				   __u32 *highest_new_tsn_in_sack)
1404 {
1405 	struct list_head *lchunk;
1406 	struct sctp_chunk *tchunk;
1407 	struct list_head tlist;
1408 	__u32 tsn;
1409 	__u32 sack_ctsn;
1410 	__u32 rtt;
1411 	__u8 restart_timer = 0;
1412 	int bytes_acked = 0;
1413 	int migrate_bytes = 0;
1414 	bool forward_progress = false;
1415 
1416 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1417 
1418 	INIT_LIST_HEAD(&tlist);
1419 
1420 	/* The while loop will skip empty transmitted queues. */
1421 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1422 		tchunk = list_entry(lchunk, struct sctp_chunk,
1423 				    transmitted_list);
1424 
1425 		if (sctp_chunk_abandoned(tchunk)) {
1426 			/* Move the chunk to abandoned list. */
1427 			sctp_insert_list(&q->abandoned, lchunk);
1428 
1429 			/* If this chunk has not been acked, stop
1430 			 * considering it as 'outstanding'.
1431 			 */
1432 			if (!tchunk->tsn_gap_acked) {
1433 				if (tchunk->transport)
1434 					tchunk->transport->flight_size -=
1435 							sctp_data_size(tchunk);
1436 				q->outstanding_bytes -= sctp_data_size(tchunk);
1437 			}
1438 			continue;
1439 		}
1440 
1441 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1442 		if (sctp_acked(sack, tsn)) {
1443 			/* If this queue is the retransmit queue, the
1444 			 * retransmit timer has already reclaimed
1445 			 * the outstanding bytes for this chunk, so only
1446 			 * count bytes associated with a transport.
1447 			 */
1448 			if (transport) {
1449 				/* If this chunk is being used for RTT
1450 				 * measurement, calculate the RTT and update
1451 				 * the RTO using this value.
1452 				 *
1453 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1454 				 * MUST NOT be made using packets that were
1455 				 * retransmitted (and thus for which it is
1456 				 * ambiguous whether the reply was for the
1457 				 * first instance of the packet or a later
1458 				 * instance).
1459 				 */
1460 				if (!tchunk->tsn_gap_acked &&
1461 				    !sctp_chunk_retransmitted(tchunk) &&
1462 				    tchunk->rtt_in_progress) {
1463 					tchunk->rtt_in_progress = 0;
1464 					rtt = jiffies - tchunk->sent_at;
1465 					sctp_transport_update_rto(transport,
1466 								  rtt);
1467 				}
1468 			}
1469 
1470 			/* If the chunk hasn't been marked as ACKED,
1471 			 * mark it and account bytes_acked if the
1472 			 * chunk had a valid transport (it will not
1473 			 * have a transport if ASCONF had deleted it
1474 			 * while DATA was outstanding).
1475 			 */
1476 			if (!tchunk->tsn_gap_acked) {
1477 				tchunk->tsn_gap_acked = 1;
1478 				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1479 					*highest_new_tsn_in_sack = tsn;
1480 				bytes_acked += sctp_data_size(tchunk);
1481 				if (!tchunk->transport)
1482 					migrate_bytes += sctp_data_size(tchunk);
1483 				forward_progress = true;
1484 			}
1485 
1486 			if (TSN_lte(tsn, sack_ctsn)) {
1487 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1488 				 *
1489 				 * R3) Whenever a SACK is received
1490 				 * that acknowledges the DATA chunk
1491 				 * with the earliest outstanding TSN
1492 				 * for that address, restart T3-rtx
1493 				 * timer for that address with its
1494 				 * current RTO.
1495 				 */
1496 				restart_timer = 1;
1497 				forward_progress = true;
1498 
1499 				if (!tchunk->tsn_gap_acked) {
1500 					/*
1501 					 * SFR-CACC algorithm:
1502 					 * 2) If the SACK contains gap acks
1503 					 * and the flag CHANGEOVER_ACTIVE is
1504 					 * set the receiver of the SACK MUST
1505 					 * take the following action:
1506 					 *
1507 					 * B) For each TSN t being acked that
1508 					 * has not been acked in any SACK so
1509 					 * far, set cacc_saw_newack to 1 for
1510 					 * the destination that the TSN was
1511 					 * sent to.
1512 					 */
1513 					if (transport &&
1514 					    sack->num_gap_ack_blocks &&
1515 					    q->asoc->peer.primary_path->cacc.
1516 					    changeover_active)
1517 						transport->cacc.cacc_saw_newack
1518 							= 1;
1519 				}
1520 
1521 				list_add_tail(&tchunk->transmitted_list,
1522 					      &q->sacked);
1523 			} else {
1524 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1525 				 * M2) Each time a SACK arrives reporting
1526 				 * 'Stray DATA chunk(s)' record the highest TSN
1527 				 * reported as newly acknowledged, call this
1528 				 * value 'HighestTSNinSack'. A newly
1529 				 * acknowledged DATA chunk is one not
1530 				 * previously acknowledged in a SACK.
1531 				 *
1532 				 * When the SCTP sender of data receives a SACK
1533 				 * chunk that acknowledges, for the first time,
1534 				 * the receipt of a DATA chunk, all the still
1535 				 * unacknowledged DATA chunks whose TSN is
1536 				 * older than that newly acknowledged DATA
1537 				 * chunk, are qualified as 'Stray DATA chunks'.
1538 				 */
1539 				list_add_tail(lchunk, &tlist);
1540 			}
1541 		} else {
1542 			if (tchunk->tsn_gap_acked) {
1543 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1544 					 __func__, tsn);
1545 
1546 				tchunk->tsn_gap_acked = 0;
1547 
1548 				if (tchunk->transport)
1549 					bytes_acked -= sctp_data_size(tchunk);
1550 
1551 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1552 				 *
1553 				 * R4) Whenever a SACK is received missing a
1554 				 * TSN that was previously acknowledged via a
1555 				 * Gap Ack Block, start T3-rtx for the
1556 				 * destination address to which the DATA
1557 				 * chunk was originally
1558 				 * transmitted if it is not already running.
1559 				 */
1560 				restart_timer = 1;
1561 			}
1562 
1563 			list_add_tail(lchunk, &tlist);
1564 		}
1565 	}
1566 
1567 	if (transport) {
1568 		if (bytes_acked) {
1569 			struct sctp_association *asoc = transport->asoc;
1570 
1571 			/* We may have counted DATA that was migrated
1572 			 * to this transport due to DEL-IP operation.
1573 			 * Subtract those bytes, since the were never
1574 			 * send on this transport and shouldn't be
1575 			 * credited to this transport.
1576 			 */
1577 			bytes_acked -= migrate_bytes;
1578 
1579 			/* 8.2. When an outstanding TSN is acknowledged,
1580 			 * the endpoint shall clear the error counter of
1581 			 * the destination transport address to which the
1582 			 * DATA chunk was last sent.
1583 			 * The association's overall error counter is
1584 			 * also cleared.
1585 			 */
1586 			transport->error_count = 0;
1587 			transport->asoc->overall_error_count = 0;
1588 			forward_progress = true;
1589 
1590 			/*
1591 			 * While in SHUTDOWN PENDING, we may have started
1592 			 * the T5 shutdown guard timer after reaching the
1593 			 * retransmission limit. Stop that timer as soon
1594 			 * as the receiver acknowledged any data.
1595 			 */
1596 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1597 			    del_timer(&asoc->timers
1598 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1599 					sctp_association_put(asoc);
1600 
1601 			/* Mark the destination transport address as
1602 			 * active if it is not so marked.
1603 			 */
1604 			if ((transport->state == SCTP_INACTIVE ||
1605 			     transport->state == SCTP_UNCONFIRMED) &&
1606 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1607 				sctp_assoc_control_transport(
1608 					transport->asoc,
1609 					transport,
1610 					SCTP_TRANSPORT_UP,
1611 					SCTP_RECEIVED_SACK);
1612 			}
1613 
1614 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1615 						  bytes_acked);
1616 
1617 			transport->flight_size -= bytes_acked;
1618 			if (transport->flight_size == 0)
1619 				transport->partial_bytes_acked = 0;
1620 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1621 		} else {
1622 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1623 			 * When a sender is doing zero window probing, it
1624 			 * should not timeout the association if it continues
1625 			 * to receive new packets from the receiver. The
1626 			 * reason is that the receiver MAY keep its window
1627 			 * closed for an indefinite time.
1628 			 * A sender is doing zero window probing when the
1629 			 * receiver's advertised window is zero, and there is
1630 			 * only one data chunk in flight to the receiver.
1631 			 *
1632 			 * Allow the association to timeout while in SHUTDOWN
1633 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1634 			 * stays in zero window mode forever.
1635 			 */
1636 			if (!q->asoc->peer.rwnd &&
1637 			    !list_empty(&tlist) &&
1638 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1639 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1640 				pr_debug("%s: sack received for zero window "
1641 					 "probe:%u\n", __func__, sack_ctsn);
1642 
1643 				q->asoc->overall_error_count = 0;
1644 				transport->error_count = 0;
1645 			}
1646 		}
1647 
1648 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1649 		 *
1650 		 * R2) Whenever all outstanding data sent to an address have
1651 		 * been acknowledged, turn off the T3-rtx timer of that
1652 		 * address.
1653 		 */
1654 		if (!transport->flight_size) {
1655 			if (del_timer(&transport->T3_rtx_timer))
1656 				sctp_transport_put(transport);
1657 		} else if (restart_timer) {
1658 			if (!mod_timer(&transport->T3_rtx_timer,
1659 				       jiffies + transport->rto))
1660 				sctp_transport_hold(transport);
1661 		}
1662 
1663 		if (forward_progress) {
1664 			if (transport->dst)
1665 				sctp_transport_dst_confirm(transport);
1666 		}
1667 	}
1668 
1669 	list_splice(&tlist, transmitted_queue);
1670 }
1671 
1672 /* Mark chunks as missing and consequently may get retransmitted. */
1673 static void sctp_mark_missing(struct sctp_outq *q,
1674 			      struct list_head *transmitted_queue,
1675 			      struct sctp_transport *transport,
1676 			      __u32 highest_new_tsn_in_sack,
1677 			      int count_of_newacks)
1678 {
1679 	struct sctp_chunk *chunk;
1680 	__u32 tsn;
1681 	char do_fast_retransmit = 0;
1682 	struct sctp_association *asoc = q->asoc;
1683 	struct sctp_transport *primary = asoc->peer.primary_path;
1684 
1685 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1686 
1687 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1688 
1689 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1690 		 * 'Unacknowledged TSN's', if the TSN number of an
1691 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1692 		 * value, increment the 'TSN.Missing.Report' count on that
1693 		 * chunk if it has NOT been fast retransmitted or marked for
1694 		 * fast retransmit already.
1695 		 */
1696 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1697 		    !chunk->tsn_gap_acked &&
1698 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1699 
1700 			/* SFR-CACC may require us to skip marking
1701 			 * this chunk as missing.
1702 			 */
1703 			if (!transport || !sctp_cacc_skip(primary,
1704 						chunk->transport,
1705 						count_of_newacks, tsn)) {
1706 				chunk->tsn_missing_report++;
1707 
1708 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1709 					 __func__, tsn, chunk->tsn_missing_report);
1710 			}
1711 		}
1712 		/*
1713 		 * M4) If any DATA chunk is found to have a
1714 		 * 'TSN.Missing.Report'
1715 		 * value larger than or equal to 3, mark that chunk for
1716 		 * retransmission and start the fast retransmit procedure.
1717 		 */
1718 
1719 		if (chunk->tsn_missing_report >= 3) {
1720 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1721 			do_fast_retransmit = 1;
1722 		}
1723 	}
1724 
1725 	if (transport) {
1726 		if (do_fast_retransmit)
1727 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1728 
1729 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1730 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1731 			 transport->cwnd, transport->ssthresh,
1732 			 transport->flight_size, transport->partial_bytes_acked);
1733 	}
1734 }
1735 
1736 /* Is the given TSN acked by this packet?  */
1737 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1738 {
1739 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1740 	union sctp_sack_variable *frags;
1741 	__u16 tsn_offset, blocks;
1742 	int i;
1743 
1744 	if (TSN_lte(tsn, ctsn))
1745 		goto pass;
1746 
1747 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1748 	 *
1749 	 * Gap Ack Blocks:
1750 	 *  These fields contain the Gap Ack Blocks. They are repeated
1751 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1752 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1753 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1754 	 *  Ack + Gap Ack Block Start) and less than or equal to
1755 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1756 	 *  Block are assumed to have been received correctly.
1757 	 */
1758 
1759 	frags = sack->variable;
1760 	blocks = ntohs(sack->num_gap_ack_blocks);
1761 	tsn_offset = tsn - ctsn;
1762 	for (i = 0; i < blocks; ++i) {
1763 		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1764 		    tsn_offset <= ntohs(frags[i].gab.end))
1765 			goto pass;
1766 	}
1767 
1768 	return 0;
1769 pass:
1770 	return 1;
1771 }
1772 
1773 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1774 				    int nskips, __be16 stream)
1775 {
1776 	int i;
1777 
1778 	for (i = 0; i < nskips; i++) {
1779 		if (skiplist[i].stream == stream)
1780 			return i;
1781 	}
1782 	return i;
1783 }
1784 
1785 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1786 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1787 {
1788 	struct sctp_association *asoc = q->asoc;
1789 	struct sctp_chunk *ftsn_chunk = NULL;
1790 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1791 	int nskips = 0;
1792 	int skip_pos = 0;
1793 	__u32 tsn;
1794 	struct sctp_chunk *chunk;
1795 	struct list_head *lchunk, *temp;
1796 
1797 	if (!asoc->peer.prsctp_capable)
1798 		return;
1799 
1800 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1801 	 * received SACK.
1802 	 *
1803 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1804 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1805 	 */
1806 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1807 		asoc->adv_peer_ack_point = ctsn;
1808 
1809 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1810 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1811 	 * the chunk next in the out-queue space is marked as "abandoned" as
1812 	 * shown in the following example:
1813 	 *
1814 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1815 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1816 	 *
1817 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1818 	 *   normal SACK processing           local advancement
1819 	 *                ...                           ...
1820 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1821 	 *                103 abandoned                 103 abandoned
1822 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1823 	 *                105                           105
1824 	 *                106 acked                     106 acked
1825 	 *                ...                           ...
1826 	 *
1827 	 * In this example, the data sender successfully advanced the
1828 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1829 	 */
1830 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1831 		chunk = list_entry(lchunk, struct sctp_chunk,
1832 					transmitted_list);
1833 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1834 
1835 		/* Remove any chunks in the abandoned queue that are acked by
1836 		 * the ctsn.
1837 		 */
1838 		if (TSN_lte(tsn, ctsn)) {
1839 			list_del_init(lchunk);
1840 			sctp_chunk_free(chunk);
1841 		} else {
1842 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1843 				asoc->adv_peer_ack_point = tsn;
1844 				if (chunk->chunk_hdr->flags &
1845 					 SCTP_DATA_UNORDERED)
1846 					continue;
1847 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1848 						nskips,
1849 						chunk->subh.data_hdr->stream);
1850 				ftsn_skip_arr[skip_pos].stream =
1851 					chunk->subh.data_hdr->stream;
1852 				ftsn_skip_arr[skip_pos].ssn =
1853 					 chunk->subh.data_hdr->ssn;
1854 				if (skip_pos == nskips)
1855 					nskips++;
1856 				if (nskips == 10)
1857 					break;
1858 			} else
1859 				break;
1860 		}
1861 	}
1862 
1863 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1864 	 * is greater than the Cumulative TSN ACK carried in the received
1865 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1866 	 * chunk containing the latest value of the
1867 	 * "Advanced.Peer.Ack.Point".
1868 	 *
1869 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1870 	 * list each stream and sequence number in the forwarded TSN. This
1871 	 * information will enable the receiver to easily find any
1872 	 * stranded TSN's waiting on stream reorder queues. Each stream
1873 	 * SHOULD only be reported once; this means that if multiple
1874 	 * abandoned messages occur in the same stream then only the
1875 	 * highest abandoned stream sequence number is reported. If the
1876 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1877 	 * the sender of the FORWARD TSN SHOULD lower the
1878 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1879 	 * single MTU.
1880 	 */
1881 	if (asoc->adv_peer_ack_point > ctsn)
1882 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1883 					      nskips, &ftsn_skip_arr[0]);
1884 
1885 	if (ftsn_chunk) {
1886 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1887 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1888 	}
1889 }
1890