1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * 7 * This file is part of the SCTP kernel implementation 8 * 9 * These functions implement the sctp_outq class. The outqueue handles 10 * bundling and queueing of outgoing SCTP chunks. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Perry Melange <pmelange@null.cc.uic.edu> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Hui Huang <hui.huang@nokia.com> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/slab.h> 49 #include <net/sock.h> /* For skb_set_owner_w */ 50 51 #include <net/sctp/sctp.h> 52 #include <net/sctp/sm.h> 53 #include <net/sctp/stream_sched.h> 54 55 /* Declare internal functions here. */ 56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 57 static void sctp_check_transmitted(struct sctp_outq *q, 58 struct list_head *transmitted_queue, 59 struct sctp_transport *transport, 60 union sctp_addr *saddr, 61 struct sctp_sackhdr *sack, 62 __u32 *highest_new_tsn); 63 64 static void sctp_mark_missing(struct sctp_outq *q, 65 struct list_head *transmitted_queue, 66 struct sctp_transport *transport, 67 __u32 highest_new_tsn, 68 int count_of_newacks); 69 70 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp); 71 72 /* Add data to the front of the queue. */ 73 static inline void sctp_outq_head_data(struct sctp_outq *q, 74 struct sctp_chunk *ch) 75 { 76 struct sctp_stream_out_ext *oute; 77 __u16 stream; 78 79 list_add(&ch->list, &q->out_chunk_list); 80 q->out_qlen += ch->skb->len; 81 82 stream = sctp_chunk_stream_no(ch); 83 oute = q->asoc->stream.out[stream].ext; 84 list_add(&ch->stream_list, &oute->outq); 85 } 86 87 /* Take data from the front of the queue. */ 88 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 89 { 90 return q->sched->dequeue(q); 91 } 92 93 /* Add data chunk to the end of the queue. */ 94 static inline void sctp_outq_tail_data(struct sctp_outq *q, 95 struct sctp_chunk *ch) 96 { 97 struct sctp_stream_out_ext *oute; 98 __u16 stream; 99 100 list_add_tail(&ch->list, &q->out_chunk_list); 101 q->out_qlen += ch->skb->len; 102 103 stream = sctp_chunk_stream_no(ch); 104 oute = q->asoc->stream.out[stream].ext; 105 list_add_tail(&ch->stream_list, &oute->outq); 106 } 107 108 /* 109 * SFR-CACC algorithm: 110 * D) If count_of_newacks is greater than or equal to 2 111 * and t was not sent to the current primary then the 112 * sender MUST NOT increment missing report count for t. 113 */ 114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 115 struct sctp_transport *transport, 116 int count_of_newacks) 117 { 118 if (count_of_newacks >= 2 && transport != primary) 119 return 1; 120 return 0; 121 } 122 123 /* 124 * SFR-CACC algorithm: 125 * F) If count_of_newacks is less than 2, let d be the 126 * destination to which t was sent. If cacc_saw_newack 127 * is 0 for destination d, then the sender MUST NOT 128 * increment missing report count for t. 129 */ 130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 131 int count_of_newacks) 132 { 133 if (count_of_newacks < 2 && 134 (transport && !transport->cacc.cacc_saw_newack)) 135 return 1; 136 return 0; 137 } 138 139 /* 140 * SFR-CACC algorithm: 141 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 142 * execute steps C, D, F. 143 * 144 * C has been implemented in sctp_outq_sack 145 */ 146 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 147 struct sctp_transport *transport, 148 int count_of_newacks) 149 { 150 if (!primary->cacc.cycling_changeover) { 151 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 152 return 1; 153 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 154 return 1; 155 return 0; 156 } 157 return 0; 158 } 159 160 /* 161 * SFR-CACC algorithm: 162 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 163 * than next_tsn_at_change of the current primary, then 164 * the sender MUST NOT increment missing report count 165 * for t. 166 */ 167 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 168 { 169 if (primary->cacc.cycling_changeover && 170 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 171 return 1; 172 return 0; 173 } 174 175 /* 176 * SFR-CACC algorithm: 177 * 3) If the missing report count for TSN t is to be 178 * incremented according to [RFC2960] and 179 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 180 * then the sender MUST further execute steps 3.1 and 181 * 3.2 to determine if the missing report count for 182 * TSN t SHOULD NOT be incremented. 183 * 184 * 3.3) If 3.1 and 3.2 do not dictate that the missing 185 * report count for t should not be incremented, then 186 * the sender SHOULD increment missing report count for 187 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 188 */ 189 static inline int sctp_cacc_skip(struct sctp_transport *primary, 190 struct sctp_transport *transport, 191 int count_of_newacks, 192 __u32 tsn) 193 { 194 if (primary->cacc.changeover_active && 195 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) || 196 sctp_cacc_skip_3_2(primary, tsn))) 197 return 1; 198 return 0; 199 } 200 201 /* Initialize an existing sctp_outq. This does the boring stuff. 202 * You still need to define handlers if you really want to DO 203 * something with this structure... 204 */ 205 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 206 { 207 memset(q, 0, sizeof(struct sctp_outq)); 208 209 q->asoc = asoc; 210 INIT_LIST_HEAD(&q->out_chunk_list); 211 INIT_LIST_HEAD(&q->control_chunk_list); 212 INIT_LIST_HEAD(&q->retransmit); 213 INIT_LIST_HEAD(&q->sacked); 214 INIT_LIST_HEAD(&q->abandoned); 215 sctp_sched_set_sched(asoc, SCTP_SS_FCFS); 216 } 217 218 /* Free the outqueue structure and any related pending chunks. 219 */ 220 static void __sctp_outq_teardown(struct sctp_outq *q) 221 { 222 struct sctp_transport *transport; 223 struct list_head *lchunk, *temp; 224 struct sctp_chunk *chunk, *tmp; 225 226 /* Throw away unacknowledged chunks. */ 227 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, 228 transports) { 229 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 230 chunk = list_entry(lchunk, struct sctp_chunk, 231 transmitted_list); 232 /* Mark as part of a failed message. */ 233 sctp_chunk_fail(chunk, q->error); 234 sctp_chunk_free(chunk); 235 } 236 } 237 238 /* Throw away chunks that have been gap ACKed. */ 239 list_for_each_safe(lchunk, temp, &q->sacked) { 240 list_del_init(lchunk); 241 chunk = list_entry(lchunk, struct sctp_chunk, 242 transmitted_list); 243 sctp_chunk_fail(chunk, q->error); 244 sctp_chunk_free(chunk); 245 } 246 247 /* Throw away any chunks in the retransmit queue. */ 248 list_for_each_safe(lchunk, temp, &q->retransmit) { 249 list_del_init(lchunk); 250 chunk = list_entry(lchunk, struct sctp_chunk, 251 transmitted_list); 252 sctp_chunk_fail(chunk, q->error); 253 sctp_chunk_free(chunk); 254 } 255 256 /* Throw away any chunks that are in the abandoned queue. */ 257 list_for_each_safe(lchunk, temp, &q->abandoned) { 258 list_del_init(lchunk); 259 chunk = list_entry(lchunk, struct sctp_chunk, 260 transmitted_list); 261 sctp_chunk_fail(chunk, q->error); 262 sctp_chunk_free(chunk); 263 } 264 265 /* Throw away any leftover data chunks. */ 266 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 267 sctp_sched_dequeue_done(q, chunk); 268 269 /* Mark as send failure. */ 270 sctp_chunk_fail(chunk, q->error); 271 sctp_chunk_free(chunk); 272 } 273 274 /* Throw away any leftover control chunks. */ 275 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 276 list_del_init(&chunk->list); 277 sctp_chunk_free(chunk); 278 } 279 } 280 281 void sctp_outq_teardown(struct sctp_outq *q) 282 { 283 __sctp_outq_teardown(q); 284 sctp_outq_init(q->asoc, q); 285 } 286 287 /* Free the outqueue structure and any related pending chunks. */ 288 void sctp_outq_free(struct sctp_outq *q) 289 { 290 /* Throw away leftover chunks. */ 291 __sctp_outq_teardown(q); 292 } 293 294 /* Put a new chunk in an sctp_outq. */ 295 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp) 296 { 297 struct net *net = sock_net(q->asoc->base.sk); 298 299 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk, 300 chunk && chunk->chunk_hdr ? 301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : 302 "illegal chunk"); 303 304 /* If it is data, queue it up, otherwise, send it 305 * immediately. 306 */ 307 if (sctp_chunk_is_data(chunk)) { 308 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n", 309 __func__, q, chunk, chunk && chunk->chunk_hdr ? 310 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : 311 "illegal chunk"); 312 313 sctp_outq_tail_data(q, chunk); 314 if (chunk->asoc->peer.prsctp_capable && 315 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) 316 chunk->asoc->sent_cnt_removable++; 317 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 318 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS); 319 else 320 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS); 321 } else { 322 list_add_tail(&chunk->list, &q->control_chunk_list); 323 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS); 324 } 325 326 if (!q->cork) 327 sctp_outq_flush(q, 0, gfp); 328 } 329 330 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 331 * and the abandoned list are in ascending order. 332 */ 333 static void sctp_insert_list(struct list_head *head, struct list_head *new) 334 { 335 struct list_head *pos; 336 struct sctp_chunk *nchunk, *lchunk; 337 __u32 ntsn, ltsn; 338 int done = 0; 339 340 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 341 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 342 343 list_for_each(pos, head) { 344 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 345 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 346 if (TSN_lt(ntsn, ltsn)) { 347 list_add(new, pos->prev); 348 done = 1; 349 break; 350 } 351 } 352 if (!done) 353 list_add_tail(new, head); 354 } 355 356 static int sctp_prsctp_prune_sent(struct sctp_association *asoc, 357 struct sctp_sndrcvinfo *sinfo, 358 struct list_head *queue, int msg_len) 359 { 360 struct sctp_chunk *chk, *temp; 361 362 list_for_each_entry_safe(chk, temp, queue, transmitted_list) { 363 struct sctp_stream_out *streamout; 364 365 if (!chk->msg->abandoned && 366 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || 367 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) 368 continue; 369 370 chk->msg->abandoned = 1; 371 list_del_init(&chk->transmitted_list); 372 sctp_insert_list(&asoc->outqueue.abandoned, 373 &chk->transmitted_list); 374 375 streamout = &asoc->stream.out[chk->sinfo.sinfo_stream]; 376 asoc->sent_cnt_removable--; 377 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; 378 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; 379 380 if (queue != &asoc->outqueue.retransmit && 381 !chk->tsn_gap_acked) { 382 if (chk->transport) 383 chk->transport->flight_size -= 384 sctp_data_size(chk); 385 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk); 386 } 387 388 msg_len -= SCTP_DATA_SNDSIZE(chk) + 389 sizeof(struct sk_buff) + 390 sizeof(struct sctp_chunk); 391 if (msg_len <= 0) 392 break; 393 } 394 395 return msg_len; 396 } 397 398 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc, 399 struct sctp_sndrcvinfo *sinfo, int msg_len) 400 { 401 struct sctp_outq *q = &asoc->outqueue; 402 struct sctp_chunk *chk, *temp; 403 404 q->sched->unsched_all(&asoc->stream); 405 406 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) { 407 if (!chk->msg->abandoned && 408 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) || 409 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || 410 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) 411 continue; 412 413 chk->msg->abandoned = 1; 414 sctp_sched_dequeue_common(q, chk); 415 asoc->sent_cnt_removable--; 416 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; 417 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) { 418 struct sctp_stream_out *streamout = 419 &asoc->stream.out[chk->sinfo.sinfo_stream]; 420 421 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; 422 } 423 424 msg_len -= SCTP_DATA_SNDSIZE(chk) + 425 sizeof(struct sk_buff) + 426 sizeof(struct sctp_chunk); 427 sctp_chunk_free(chk); 428 if (msg_len <= 0) 429 break; 430 } 431 432 q->sched->sched_all(&asoc->stream); 433 434 return msg_len; 435 } 436 437 /* Abandon the chunks according their priorities */ 438 void sctp_prsctp_prune(struct sctp_association *asoc, 439 struct sctp_sndrcvinfo *sinfo, int msg_len) 440 { 441 struct sctp_transport *transport; 442 443 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable) 444 return; 445 446 msg_len = sctp_prsctp_prune_sent(asoc, sinfo, 447 &asoc->outqueue.retransmit, 448 msg_len); 449 if (msg_len <= 0) 450 return; 451 452 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 453 transports) { 454 msg_len = sctp_prsctp_prune_sent(asoc, sinfo, 455 &transport->transmitted, 456 msg_len); 457 if (msg_len <= 0) 458 return; 459 } 460 461 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len); 462 } 463 464 /* Mark all the eligible packets on a transport for retransmission. */ 465 void sctp_retransmit_mark(struct sctp_outq *q, 466 struct sctp_transport *transport, 467 __u8 reason) 468 { 469 struct list_head *lchunk, *ltemp; 470 struct sctp_chunk *chunk; 471 472 /* Walk through the specified transmitted queue. */ 473 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 474 chunk = list_entry(lchunk, struct sctp_chunk, 475 transmitted_list); 476 477 /* If the chunk is abandoned, move it to abandoned list. */ 478 if (sctp_chunk_abandoned(chunk)) { 479 list_del_init(lchunk); 480 sctp_insert_list(&q->abandoned, lchunk); 481 482 /* If this chunk has not been previousely acked, 483 * stop considering it 'outstanding'. Our peer 484 * will most likely never see it since it will 485 * not be retransmitted 486 */ 487 if (!chunk->tsn_gap_acked) { 488 if (chunk->transport) 489 chunk->transport->flight_size -= 490 sctp_data_size(chunk); 491 q->outstanding_bytes -= sctp_data_size(chunk); 492 q->asoc->peer.rwnd += sctp_data_size(chunk); 493 } 494 continue; 495 } 496 497 /* If we are doing retransmission due to a timeout or pmtu 498 * discovery, only the chunks that are not yet acked should 499 * be added to the retransmit queue. 500 */ 501 if ((reason == SCTP_RTXR_FAST_RTX && 502 (chunk->fast_retransmit == SCTP_NEED_FRTX)) || 503 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { 504 /* RFC 2960 6.2.1 Processing a Received SACK 505 * 506 * C) Any time a DATA chunk is marked for 507 * retransmission (via either T3-rtx timer expiration 508 * (Section 6.3.3) or via fast retransmit 509 * (Section 7.2.4)), add the data size of those 510 * chunks to the rwnd. 511 */ 512 q->asoc->peer.rwnd += sctp_data_size(chunk); 513 q->outstanding_bytes -= sctp_data_size(chunk); 514 if (chunk->transport) 515 transport->flight_size -= sctp_data_size(chunk); 516 517 /* sctpimpguide-05 Section 2.8.2 518 * M5) If a T3-rtx timer expires, the 519 * 'TSN.Missing.Report' of all affected TSNs is set 520 * to 0. 521 */ 522 chunk->tsn_missing_report = 0; 523 524 /* If a chunk that is being used for RTT measurement 525 * has to be retransmitted, we cannot use this chunk 526 * anymore for RTT measurements. Reset rto_pending so 527 * that a new RTT measurement is started when a new 528 * data chunk is sent. 529 */ 530 if (chunk->rtt_in_progress) { 531 chunk->rtt_in_progress = 0; 532 transport->rto_pending = 0; 533 } 534 535 /* Move the chunk to the retransmit queue. The chunks 536 * on the retransmit queue are always kept in order. 537 */ 538 list_del_init(lchunk); 539 sctp_insert_list(&q->retransmit, lchunk); 540 } 541 } 542 543 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, " 544 "flight_size:%d, pba:%d\n", __func__, transport, reason, 545 transport->cwnd, transport->ssthresh, transport->flight_size, 546 transport->partial_bytes_acked); 547 } 548 549 /* Mark all the eligible packets on a transport for retransmission and force 550 * one packet out. 551 */ 552 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 553 enum sctp_retransmit_reason reason) 554 { 555 struct net *net = sock_net(q->asoc->base.sk); 556 557 switch (reason) { 558 case SCTP_RTXR_T3_RTX: 559 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS); 560 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 561 /* Update the retran path if the T3-rtx timer has expired for 562 * the current retran path. 563 */ 564 if (transport == transport->asoc->peer.retran_path) 565 sctp_assoc_update_retran_path(transport->asoc); 566 transport->asoc->rtx_data_chunks += 567 transport->asoc->unack_data; 568 break; 569 case SCTP_RTXR_FAST_RTX: 570 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS); 571 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 572 q->fast_rtx = 1; 573 break; 574 case SCTP_RTXR_PMTUD: 575 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS); 576 break; 577 case SCTP_RTXR_T1_RTX: 578 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS); 579 transport->asoc->init_retries++; 580 break; 581 default: 582 BUG(); 583 } 584 585 sctp_retransmit_mark(q, transport, reason); 586 587 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 588 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 589 * following the procedures outlined in C1 - C5. 590 */ 591 if (reason == SCTP_RTXR_T3_RTX) 592 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point); 593 594 /* Flush the queues only on timeout, since fast_rtx is only 595 * triggered during sack processing and the queue 596 * will be flushed at the end. 597 */ 598 if (reason != SCTP_RTXR_FAST_RTX) 599 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC); 600 } 601 602 /* 603 * Transmit DATA chunks on the retransmit queue. Upon return from 604 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 605 * need to be transmitted by the caller. 606 * We assume that pkt->transport has already been set. 607 * 608 * The return value is a normal kernel error return value. 609 */ 610 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 611 int rtx_timeout, int *start_timer, gfp_t gfp) 612 { 613 struct sctp_transport *transport = pkt->transport; 614 struct sctp_chunk *chunk, *chunk1; 615 struct list_head *lqueue; 616 enum sctp_xmit status; 617 int error = 0; 618 int timer = 0; 619 int done = 0; 620 int fast_rtx; 621 622 lqueue = &q->retransmit; 623 fast_rtx = q->fast_rtx; 624 625 /* This loop handles time-out retransmissions, fast retransmissions, 626 * and retransmissions due to opening of whindow. 627 * 628 * RFC 2960 6.3.3 Handle T3-rtx Expiration 629 * 630 * E3) Determine how many of the earliest (i.e., lowest TSN) 631 * outstanding DATA chunks for the address for which the 632 * T3-rtx has expired will fit into a single packet, subject 633 * to the MTU constraint for the path corresponding to the 634 * destination transport address to which the retransmission 635 * is being sent (this may be different from the address for 636 * which the timer expires [see Section 6.4]). Call this value 637 * K. Bundle and retransmit those K DATA chunks in a single 638 * packet to the destination endpoint. 639 * 640 * [Just to be painfully clear, if we are retransmitting 641 * because a timeout just happened, we should send only ONE 642 * packet of retransmitted data.] 643 * 644 * For fast retransmissions we also send only ONE packet. However, 645 * if we are just flushing the queue due to open window, we'll 646 * try to send as much as possible. 647 */ 648 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) { 649 /* If the chunk is abandoned, move it to abandoned list. */ 650 if (sctp_chunk_abandoned(chunk)) { 651 list_del_init(&chunk->transmitted_list); 652 sctp_insert_list(&q->abandoned, 653 &chunk->transmitted_list); 654 continue; 655 } 656 657 /* Make sure that Gap Acked TSNs are not retransmitted. A 658 * simple approach is just to move such TSNs out of the 659 * way and into a 'transmitted' queue and skip to the 660 * next chunk. 661 */ 662 if (chunk->tsn_gap_acked) { 663 list_move_tail(&chunk->transmitted_list, 664 &transport->transmitted); 665 continue; 666 } 667 668 /* If we are doing fast retransmit, ignore non-fast_rtransmit 669 * chunks 670 */ 671 if (fast_rtx && !chunk->fast_retransmit) 672 continue; 673 674 redo: 675 /* Attempt to append this chunk to the packet. */ 676 status = sctp_packet_append_chunk(pkt, chunk); 677 678 switch (status) { 679 case SCTP_XMIT_PMTU_FULL: 680 if (!pkt->has_data && !pkt->has_cookie_echo) { 681 /* If this packet did not contain DATA then 682 * retransmission did not happen, so do it 683 * again. We'll ignore the error here since 684 * control chunks are already freed so there 685 * is nothing we can do. 686 */ 687 sctp_packet_transmit(pkt, gfp); 688 goto redo; 689 } 690 691 /* Send this packet. */ 692 error = sctp_packet_transmit(pkt, gfp); 693 694 /* If we are retransmitting, we should only 695 * send a single packet. 696 * Otherwise, try appending this chunk again. 697 */ 698 if (rtx_timeout || fast_rtx) 699 done = 1; 700 else 701 goto redo; 702 703 /* Bundle next chunk in the next round. */ 704 break; 705 706 case SCTP_XMIT_RWND_FULL: 707 /* Send this packet. */ 708 error = sctp_packet_transmit(pkt, gfp); 709 710 /* Stop sending DATA as there is no more room 711 * at the receiver. 712 */ 713 done = 1; 714 break; 715 716 case SCTP_XMIT_DELAY: 717 /* Send this packet. */ 718 error = sctp_packet_transmit(pkt, gfp); 719 720 /* Stop sending DATA because of nagle delay. */ 721 done = 1; 722 break; 723 724 default: 725 /* The append was successful, so add this chunk to 726 * the transmitted list. 727 */ 728 list_move_tail(&chunk->transmitted_list, 729 &transport->transmitted); 730 731 /* Mark the chunk as ineligible for fast retransmit 732 * after it is retransmitted. 733 */ 734 if (chunk->fast_retransmit == SCTP_NEED_FRTX) 735 chunk->fast_retransmit = SCTP_DONT_FRTX; 736 737 q->asoc->stats.rtxchunks++; 738 break; 739 } 740 741 /* Set the timer if there were no errors */ 742 if (!error && !timer) 743 timer = 1; 744 745 if (done) 746 break; 747 } 748 749 /* If we are here due to a retransmit timeout or a fast 750 * retransmit and if there are any chunks left in the retransmit 751 * queue that could not fit in the PMTU sized packet, they need 752 * to be marked as ineligible for a subsequent fast retransmit. 753 */ 754 if (rtx_timeout || fast_rtx) { 755 list_for_each_entry(chunk1, lqueue, transmitted_list) { 756 if (chunk1->fast_retransmit == SCTP_NEED_FRTX) 757 chunk1->fast_retransmit = SCTP_DONT_FRTX; 758 } 759 } 760 761 *start_timer = timer; 762 763 /* Clear fast retransmit hint */ 764 if (fast_rtx) 765 q->fast_rtx = 0; 766 767 return error; 768 } 769 770 /* Cork the outqueue so queued chunks are really queued. */ 771 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp) 772 { 773 if (q->cork) 774 q->cork = 0; 775 776 sctp_outq_flush(q, 0, gfp); 777 } 778 779 static int sctp_packet_singleton(struct sctp_transport *transport, 780 struct sctp_chunk *chunk, gfp_t gfp) 781 { 782 const struct sctp_association *asoc = transport->asoc; 783 const __u16 sport = asoc->base.bind_addr.port; 784 const __u16 dport = asoc->peer.port; 785 const __u32 vtag = asoc->peer.i.init_tag; 786 struct sctp_packet singleton; 787 788 sctp_packet_init(&singleton, transport, sport, dport); 789 sctp_packet_config(&singleton, vtag, 0); 790 sctp_packet_append_chunk(&singleton, chunk); 791 return sctp_packet_transmit(&singleton, gfp); 792 } 793 794 /* Struct to hold the context during sctp outq flush */ 795 struct sctp_flush_ctx { 796 struct sctp_outq *q; 797 /* Current transport being used. It's NOT the same as curr active one */ 798 struct sctp_transport *transport; 799 /* These transports have chunks to send. */ 800 struct list_head transport_list; 801 struct sctp_association *asoc; 802 /* Packet on the current transport above */ 803 struct sctp_packet *packet; 804 gfp_t gfp; 805 }; 806 807 /* transport: current transport */ 808 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx, 809 struct sctp_chunk *chunk) 810 { 811 struct sctp_transport *new_transport = chunk->transport; 812 813 if (!new_transport) { 814 if (!sctp_chunk_is_data(chunk)) { 815 /* If we have a prior transport pointer, see if 816 * the destination address of the chunk 817 * matches the destination address of the 818 * current transport. If not a match, then 819 * try to look up the transport with a given 820 * destination address. We do this because 821 * after processing ASCONFs, we may have new 822 * transports created. 823 */ 824 if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest, 825 &ctx->transport->ipaddr)) 826 new_transport = ctx->transport; 827 else 828 new_transport = sctp_assoc_lookup_paddr(ctx->asoc, 829 &chunk->dest); 830 } 831 832 /* if we still don't have a new transport, then 833 * use the current active path. 834 */ 835 if (!new_transport) 836 new_transport = ctx->asoc->peer.active_path; 837 } else { 838 __u8 type; 839 840 switch (new_transport->state) { 841 case SCTP_INACTIVE: 842 case SCTP_UNCONFIRMED: 843 case SCTP_PF: 844 /* If the chunk is Heartbeat or Heartbeat Ack, 845 * send it to chunk->transport, even if it's 846 * inactive. 847 * 848 * 3.3.6 Heartbeat Acknowledgement: 849 * ... 850 * A HEARTBEAT ACK is always sent to the source IP 851 * address of the IP datagram containing the 852 * HEARTBEAT chunk to which this ack is responding. 853 * ... 854 * 855 * ASCONF_ACKs also must be sent to the source. 856 */ 857 type = chunk->chunk_hdr->type; 858 if (type != SCTP_CID_HEARTBEAT && 859 type != SCTP_CID_HEARTBEAT_ACK && 860 type != SCTP_CID_ASCONF_ACK) 861 new_transport = ctx->asoc->peer.active_path; 862 break; 863 default: 864 break; 865 } 866 } 867 868 /* Are we switching transports? Take care of transport locks. */ 869 if (new_transport != ctx->transport) { 870 ctx->transport = new_transport; 871 ctx->packet = &ctx->transport->packet; 872 873 if (list_empty(&ctx->transport->send_ready)) 874 list_add_tail(&ctx->transport->send_ready, 875 &ctx->transport_list); 876 877 sctp_packet_config(ctx->packet, 878 ctx->asoc->peer.i.init_tag, 879 ctx->asoc->peer.ecn_capable); 880 /* We've switched transports, so apply the 881 * Burst limit to the new transport. 882 */ 883 sctp_transport_burst_limited(ctx->transport); 884 } 885 } 886 887 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx) 888 { 889 struct sctp_chunk *chunk, *tmp; 890 enum sctp_xmit status; 891 int one_packet, error; 892 893 list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) { 894 one_packet = 0; 895 896 /* RFC 5061, 5.3 897 * F1) This means that until such time as the ASCONF 898 * containing the add is acknowledged, the sender MUST 899 * NOT use the new IP address as a source for ANY SCTP 900 * packet except on carrying an ASCONF Chunk. 901 */ 902 if (ctx->asoc->src_out_of_asoc_ok && 903 chunk->chunk_hdr->type != SCTP_CID_ASCONF) 904 continue; 905 906 list_del_init(&chunk->list); 907 908 /* Pick the right transport to use. Should always be true for 909 * the first chunk as we don't have a transport by then. 910 */ 911 sctp_outq_select_transport(ctx, chunk); 912 913 switch (chunk->chunk_hdr->type) { 914 /* 6.10 Bundling 915 * ... 916 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 917 * COMPLETE with any other chunks. [Send them immediately.] 918 */ 919 case SCTP_CID_INIT: 920 case SCTP_CID_INIT_ACK: 921 case SCTP_CID_SHUTDOWN_COMPLETE: 922 error = sctp_packet_singleton(ctx->transport, chunk, 923 ctx->gfp); 924 if (error < 0) { 925 ctx->asoc->base.sk->sk_err = -error; 926 return; 927 } 928 break; 929 930 case SCTP_CID_ABORT: 931 if (sctp_test_T_bit(chunk)) 932 ctx->packet->vtag = ctx->asoc->c.my_vtag; 933 /* fallthru */ 934 935 /* The following chunks are "response" chunks, i.e. 936 * they are generated in response to something we 937 * received. If we are sending these, then we can 938 * send only 1 packet containing these chunks. 939 */ 940 case SCTP_CID_HEARTBEAT_ACK: 941 case SCTP_CID_SHUTDOWN_ACK: 942 case SCTP_CID_COOKIE_ACK: 943 case SCTP_CID_COOKIE_ECHO: 944 case SCTP_CID_ERROR: 945 case SCTP_CID_ECN_CWR: 946 case SCTP_CID_ASCONF_ACK: 947 one_packet = 1; 948 /* Fall through */ 949 950 case SCTP_CID_SACK: 951 case SCTP_CID_HEARTBEAT: 952 case SCTP_CID_SHUTDOWN: 953 case SCTP_CID_ECN_ECNE: 954 case SCTP_CID_ASCONF: 955 case SCTP_CID_FWD_TSN: 956 case SCTP_CID_I_FWD_TSN: 957 case SCTP_CID_RECONF: 958 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 959 one_packet, ctx->gfp); 960 if (status != SCTP_XMIT_OK) { 961 /* put the chunk back */ 962 list_add(&chunk->list, &ctx->q->control_chunk_list); 963 break; 964 } 965 966 ctx->asoc->stats.octrlchunks++; 967 /* PR-SCTP C5) If a FORWARD TSN is sent, the 968 * sender MUST assure that at least one T3-rtx 969 * timer is running. 970 */ 971 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN || 972 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) { 973 sctp_transport_reset_t3_rtx(ctx->transport); 974 ctx->transport->last_time_sent = jiffies; 975 } 976 977 if (chunk == ctx->asoc->strreset_chunk) 978 sctp_transport_reset_reconf_timer(ctx->transport); 979 980 break; 981 982 default: 983 /* We built a chunk with an illegal type! */ 984 BUG(); 985 } 986 } 987 } 988 989 /* Returns false if new data shouldn't be sent */ 990 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx, 991 int rtx_timeout) 992 { 993 int error, start_timer = 0; 994 995 if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED) 996 return false; 997 998 if (ctx->transport != ctx->asoc->peer.retran_path) { 999 /* Switch transports & prepare the packet. */ 1000 ctx->transport = ctx->asoc->peer.retran_path; 1001 ctx->packet = &ctx->transport->packet; 1002 1003 if (list_empty(&ctx->transport->send_ready)) 1004 list_add_tail(&ctx->transport->send_ready, 1005 &ctx->transport_list); 1006 1007 sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, 1008 ctx->asoc->peer.ecn_capable); 1009 } 1010 1011 error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout, 1012 &start_timer, ctx->gfp); 1013 if (error < 0) 1014 ctx->asoc->base.sk->sk_err = -error; 1015 1016 if (start_timer) { 1017 sctp_transport_reset_t3_rtx(ctx->transport); 1018 ctx->transport->last_time_sent = jiffies; 1019 } 1020 1021 /* This can happen on COOKIE-ECHO resend. Only 1022 * one chunk can get bundled with a COOKIE-ECHO. 1023 */ 1024 if (ctx->packet->has_cookie_echo) 1025 return false; 1026 1027 /* Don't send new data if there is still data 1028 * waiting to retransmit. 1029 */ 1030 if (!list_empty(&ctx->q->retransmit)) 1031 return false; 1032 1033 return true; 1034 } 1035 1036 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx, 1037 int rtx_timeout) 1038 { 1039 struct sctp_chunk *chunk; 1040 enum sctp_xmit status; 1041 1042 /* Is it OK to send data chunks? */ 1043 switch (ctx->asoc->state) { 1044 case SCTP_STATE_COOKIE_ECHOED: 1045 /* Only allow bundling when this packet has a COOKIE-ECHO 1046 * chunk. 1047 */ 1048 if (!ctx->packet || !ctx->packet->has_cookie_echo) 1049 return; 1050 1051 /* fallthru */ 1052 case SCTP_STATE_ESTABLISHED: 1053 case SCTP_STATE_SHUTDOWN_PENDING: 1054 case SCTP_STATE_SHUTDOWN_RECEIVED: 1055 break; 1056 1057 default: 1058 /* Do nothing. */ 1059 return; 1060 } 1061 1062 /* RFC 2960 6.1 Transmission of DATA Chunks 1063 * 1064 * C) When the time comes for the sender to transmit, 1065 * before sending new DATA chunks, the sender MUST 1066 * first transmit any outstanding DATA chunks which 1067 * are marked for retransmission (limited by the 1068 * current cwnd). 1069 */ 1070 if (!list_empty(&ctx->q->retransmit) && 1071 !sctp_outq_flush_rtx(ctx, rtx_timeout)) 1072 return; 1073 1074 /* Apply Max.Burst limitation to the current transport in 1075 * case it will be used for new data. We are going to 1076 * rest it before we return, but we want to apply the limit 1077 * to the currently queued data. 1078 */ 1079 if (ctx->transport) 1080 sctp_transport_burst_limited(ctx->transport); 1081 1082 /* Finally, transmit new packets. */ 1083 while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) { 1084 __u32 sid = ntohs(chunk->subh.data_hdr->stream); 1085 1086 /* Has this chunk expired? */ 1087 if (sctp_chunk_abandoned(chunk)) { 1088 sctp_sched_dequeue_done(ctx->q, chunk); 1089 sctp_chunk_fail(chunk, 0); 1090 sctp_chunk_free(chunk); 1091 continue; 1092 } 1093 1094 if (ctx->asoc->stream.out[sid].state == SCTP_STREAM_CLOSED) { 1095 sctp_outq_head_data(ctx->q, chunk); 1096 break; 1097 } 1098 1099 sctp_outq_select_transport(ctx, chunk); 1100 1101 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n", 1102 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ? 1103 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : 1104 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn), 1105 chunk->skb ? chunk->skb->head : NULL, chunk->skb ? 1106 refcount_read(&chunk->skb->users) : -1); 1107 1108 /* Add the chunk to the packet. */ 1109 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0, 1110 ctx->gfp); 1111 if (status != SCTP_XMIT_OK) { 1112 /* We could not append this chunk, so put 1113 * the chunk back on the output queue. 1114 */ 1115 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n", 1116 __func__, ntohl(chunk->subh.data_hdr->tsn), 1117 status); 1118 1119 sctp_outq_head_data(ctx->q, chunk); 1120 break; 1121 } 1122 1123 /* The sender is in the SHUTDOWN-PENDING state, 1124 * The sender MAY set the I-bit in the DATA 1125 * chunk header. 1126 */ 1127 if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING) 1128 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM; 1129 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 1130 ctx->asoc->stats.ouodchunks++; 1131 else 1132 ctx->asoc->stats.oodchunks++; 1133 1134 /* Only now it's safe to consider this 1135 * chunk as sent, sched-wise. 1136 */ 1137 sctp_sched_dequeue_done(ctx->q, chunk); 1138 1139 list_add_tail(&chunk->transmitted_list, 1140 &ctx->transport->transmitted); 1141 1142 sctp_transport_reset_t3_rtx(ctx->transport); 1143 ctx->transport->last_time_sent = jiffies; 1144 1145 /* Only let one DATA chunk get bundled with a 1146 * COOKIE-ECHO chunk. 1147 */ 1148 if (ctx->packet->has_cookie_echo) 1149 break; 1150 } 1151 } 1152 1153 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx) 1154 { 1155 struct list_head *ltransport; 1156 struct sctp_packet *packet; 1157 struct sctp_transport *t; 1158 int error = 0; 1159 1160 while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) { 1161 t = list_entry(ltransport, struct sctp_transport, send_ready); 1162 packet = &t->packet; 1163 if (!sctp_packet_empty(packet)) { 1164 error = sctp_packet_transmit(packet, ctx->gfp); 1165 if (error < 0) 1166 ctx->q->asoc->base.sk->sk_err = -error; 1167 } 1168 1169 /* Clear the burst limited state, if any */ 1170 sctp_transport_burst_reset(t); 1171 } 1172 } 1173 1174 /* Try to flush an outqueue. 1175 * 1176 * Description: Send everything in q which we legally can, subject to 1177 * congestion limitations. 1178 * * Note: This function can be called from multiple contexts so appropriate 1179 * locking concerns must be made. Today we use the sock lock to protect 1180 * this function. 1181 */ 1182 1183 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp) 1184 { 1185 struct sctp_flush_ctx ctx = { 1186 .q = q, 1187 .transport = NULL, 1188 .transport_list = LIST_HEAD_INIT(ctx.transport_list), 1189 .asoc = q->asoc, 1190 .packet = NULL, 1191 .gfp = gfp, 1192 }; 1193 1194 /* 6.10 Bundling 1195 * ... 1196 * When bundling control chunks with DATA chunks, an 1197 * endpoint MUST place control chunks first in the outbound 1198 * SCTP packet. The transmitter MUST transmit DATA chunks 1199 * within a SCTP packet in increasing order of TSN. 1200 * ... 1201 */ 1202 1203 sctp_outq_flush_ctrl(&ctx); 1204 1205 if (q->asoc->src_out_of_asoc_ok) 1206 goto sctp_flush_out; 1207 1208 sctp_outq_flush_data(&ctx, rtx_timeout); 1209 1210 sctp_flush_out: 1211 1212 sctp_outq_flush_transports(&ctx); 1213 } 1214 1215 /* Update unack_data based on the incoming SACK chunk */ 1216 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 1217 struct sctp_sackhdr *sack) 1218 { 1219 union sctp_sack_variable *frags; 1220 __u16 unack_data; 1221 int i; 1222 1223 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 1224 1225 frags = sack->variable; 1226 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 1227 unack_data -= ((ntohs(frags[i].gab.end) - 1228 ntohs(frags[i].gab.start) + 1)); 1229 } 1230 1231 assoc->unack_data = unack_data; 1232 } 1233 1234 /* This is where we REALLY process a SACK. 1235 * 1236 * Process the SACK against the outqueue. Mostly, this just frees 1237 * things off the transmitted queue. 1238 */ 1239 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk) 1240 { 1241 struct sctp_association *asoc = q->asoc; 1242 struct sctp_sackhdr *sack = chunk->subh.sack_hdr; 1243 struct sctp_transport *transport; 1244 struct sctp_chunk *tchunk = NULL; 1245 struct list_head *lchunk, *transport_list, *temp; 1246 union sctp_sack_variable *frags = sack->variable; 1247 __u32 sack_ctsn, ctsn, tsn; 1248 __u32 highest_tsn, highest_new_tsn; 1249 __u32 sack_a_rwnd; 1250 unsigned int outstanding; 1251 struct sctp_transport *primary = asoc->peer.primary_path; 1252 int count_of_newacks = 0; 1253 int gap_ack_blocks; 1254 u8 accum_moved = 0; 1255 1256 /* Grab the association's destination address list. */ 1257 transport_list = &asoc->peer.transport_addr_list; 1258 1259 sack_ctsn = ntohl(sack->cum_tsn_ack); 1260 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks); 1261 asoc->stats.gapcnt += gap_ack_blocks; 1262 /* 1263 * SFR-CACC algorithm: 1264 * On receipt of a SACK the sender SHOULD execute the 1265 * following statements. 1266 * 1267 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1268 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1269 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1270 * all destinations. 1271 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1272 * is set the receiver of the SACK MUST take the following actions: 1273 * 1274 * A) Initialize the cacc_saw_newack to 0 for all destination 1275 * addresses. 1276 * 1277 * Only bother if changeover_active is set. Otherwise, this is 1278 * totally suboptimal to do on every SACK. 1279 */ 1280 if (primary->cacc.changeover_active) { 1281 u8 clear_cycling = 0; 1282 1283 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1284 primary->cacc.changeover_active = 0; 1285 clear_cycling = 1; 1286 } 1287 1288 if (clear_cycling || gap_ack_blocks) { 1289 list_for_each_entry(transport, transport_list, 1290 transports) { 1291 if (clear_cycling) 1292 transport->cacc.cycling_changeover = 0; 1293 if (gap_ack_blocks) 1294 transport->cacc.cacc_saw_newack = 0; 1295 } 1296 } 1297 } 1298 1299 /* Get the highest TSN in the sack. */ 1300 highest_tsn = sack_ctsn; 1301 if (gap_ack_blocks) 1302 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end); 1303 1304 if (TSN_lt(asoc->highest_sacked, highest_tsn)) 1305 asoc->highest_sacked = highest_tsn; 1306 1307 highest_new_tsn = sack_ctsn; 1308 1309 /* Run through the retransmit queue. Credit bytes received 1310 * and free those chunks that we can. 1311 */ 1312 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn); 1313 1314 /* Run through the transmitted queue. 1315 * Credit bytes received and free those chunks which we can. 1316 * 1317 * This is a MASSIVE candidate for optimization. 1318 */ 1319 list_for_each_entry(transport, transport_list, transports) { 1320 sctp_check_transmitted(q, &transport->transmitted, 1321 transport, &chunk->source, sack, 1322 &highest_new_tsn); 1323 /* 1324 * SFR-CACC algorithm: 1325 * C) Let count_of_newacks be the number of 1326 * destinations for which cacc_saw_newack is set. 1327 */ 1328 if (transport->cacc.cacc_saw_newack) 1329 count_of_newacks++; 1330 } 1331 1332 /* Move the Cumulative TSN Ack Point if appropriate. */ 1333 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) { 1334 asoc->ctsn_ack_point = sack_ctsn; 1335 accum_moved = 1; 1336 } 1337 1338 if (gap_ack_blocks) { 1339 1340 if (asoc->fast_recovery && accum_moved) 1341 highest_new_tsn = highest_tsn; 1342 1343 list_for_each_entry(transport, transport_list, transports) 1344 sctp_mark_missing(q, &transport->transmitted, transport, 1345 highest_new_tsn, count_of_newacks); 1346 } 1347 1348 /* Update unack_data field in the assoc. */ 1349 sctp_sack_update_unack_data(asoc, sack); 1350 1351 ctsn = asoc->ctsn_ack_point; 1352 1353 /* Throw away stuff rotting on the sack queue. */ 1354 list_for_each_safe(lchunk, temp, &q->sacked) { 1355 tchunk = list_entry(lchunk, struct sctp_chunk, 1356 transmitted_list); 1357 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1358 if (TSN_lte(tsn, ctsn)) { 1359 list_del_init(&tchunk->transmitted_list); 1360 if (asoc->peer.prsctp_capable && 1361 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) 1362 asoc->sent_cnt_removable--; 1363 sctp_chunk_free(tchunk); 1364 } 1365 } 1366 1367 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1368 * number of bytes still outstanding after processing the 1369 * Cumulative TSN Ack and the Gap Ack Blocks. 1370 */ 1371 1372 sack_a_rwnd = ntohl(sack->a_rwnd); 1373 asoc->peer.zero_window_announced = !sack_a_rwnd; 1374 outstanding = q->outstanding_bytes; 1375 1376 if (outstanding < sack_a_rwnd) 1377 sack_a_rwnd -= outstanding; 1378 else 1379 sack_a_rwnd = 0; 1380 1381 asoc->peer.rwnd = sack_a_rwnd; 1382 1383 asoc->stream.si->generate_ftsn(q, sack_ctsn); 1384 1385 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn); 1386 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, " 1387 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn, 1388 asoc->adv_peer_ack_point); 1389 1390 return sctp_outq_is_empty(q); 1391 } 1392 1393 /* Is the outqueue empty? 1394 * The queue is empty when we have not pending data, no in-flight data 1395 * and nothing pending retransmissions. 1396 */ 1397 int sctp_outq_is_empty(const struct sctp_outq *q) 1398 { 1399 return q->out_qlen == 0 && q->outstanding_bytes == 0 && 1400 list_empty(&q->retransmit); 1401 } 1402 1403 /******************************************************************** 1404 * 2nd Level Abstractions 1405 ********************************************************************/ 1406 1407 /* Go through a transport's transmitted list or the association's retransmit 1408 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1409 * The retransmit list will not have an associated transport. 1410 * 1411 * I added coherent debug information output. --xguo 1412 * 1413 * Instead of printing 'sacked' or 'kept' for each TSN on the 1414 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1415 * KEPT TSN6-TSN7, etc. 1416 */ 1417 static void sctp_check_transmitted(struct sctp_outq *q, 1418 struct list_head *transmitted_queue, 1419 struct sctp_transport *transport, 1420 union sctp_addr *saddr, 1421 struct sctp_sackhdr *sack, 1422 __u32 *highest_new_tsn_in_sack) 1423 { 1424 struct list_head *lchunk; 1425 struct sctp_chunk *tchunk; 1426 struct list_head tlist; 1427 __u32 tsn; 1428 __u32 sack_ctsn; 1429 __u32 rtt; 1430 __u8 restart_timer = 0; 1431 int bytes_acked = 0; 1432 int migrate_bytes = 0; 1433 bool forward_progress = false; 1434 1435 sack_ctsn = ntohl(sack->cum_tsn_ack); 1436 1437 INIT_LIST_HEAD(&tlist); 1438 1439 /* The while loop will skip empty transmitted queues. */ 1440 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1441 tchunk = list_entry(lchunk, struct sctp_chunk, 1442 transmitted_list); 1443 1444 if (sctp_chunk_abandoned(tchunk)) { 1445 /* Move the chunk to abandoned list. */ 1446 sctp_insert_list(&q->abandoned, lchunk); 1447 1448 /* If this chunk has not been acked, stop 1449 * considering it as 'outstanding'. 1450 */ 1451 if (transmitted_queue != &q->retransmit && 1452 !tchunk->tsn_gap_acked) { 1453 if (tchunk->transport) 1454 tchunk->transport->flight_size -= 1455 sctp_data_size(tchunk); 1456 q->outstanding_bytes -= sctp_data_size(tchunk); 1457 } 1458 continue; 1459 } 1460 1461 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1462 if (sctp_acked(sack, tsn)) { 1463 /* If this queue is the retransmit queue, the 1464 * retransmit timer has already reclaimed 1465 * the outstanding bytes for this chunk, so only 1466 * count bytes associated with a transport. 1467 */ 1468 if (transport && !tchunk->tsn_gap_acked) { 1469 /* If this chunk is being used for RTT 1470 * measurement, calculate the RTT and update 1471 * the RTO using this value. 1472 * 1473 * 6.3.1 C5) Karn's algorithm: RTT measurements 1474 * MUST NOT be made using packets that were 1475 * retransmitted (and thus for which it is 1476 * ambiguous whether the reply was for the 1477 * first instance of the packet or a later 1478 * instance). 1479 */ 1480 if (!sctp_chunk_retransmitted(tchunk) && 1481 tchunk->rtt_in_progress) { 1482 tchunk->rtt_in_progress = 0; 1483 rtt = jiffies - tchunk->sent_at; 1484 sctp_transport_update_rto(transport, 1485 rtt); 1486 } 1487 1488 if (TSN_lte(tsn, sack_ctsn)) { 1489 /* 1490 * SFR-CACC algorithm: 1491 * 2) If the SACK contains gap acks 1492 * and the flag CHANGEOVER_ACTIVE is 1493 * set the receiver of the SACK MUST 1494 * take the following action: 1495 * 1496 * B) For each TSN t being acked that 1497 * has not been acked in any SACK so 1498 * far, set cacc_saw_newack to 1 for 1499 * the destination that the TSN was 1500 * sent to. 1501 */ 1502 if (sack->num_gap_ack_blocks && 1503 q->asoc->peer.primary_path->cacc. 1504 changeover_active) 1505 transport->cacc.cacc_saw_newack 1506 = 1; 1507 } 1508 } 1509 1510 /* If the chunk hasn't been marked as ACKED, 1511 * mark it and account bytes_acked if the 1512 * chunk had a valid transport (it will not 1513 * have a transport if ASCONF had deleted it 1514 * while DATA was outstanding). 1515 */ 1516 if (!tchunk->tsn_gap_acked) { 1517 tchunk->tsn_gap_acked = 1; 1518 if (TSN_lt(*highest_new_tsn_in_sack, tsn)) 1519 *highest_new_tsn_in_sack = tsn; 1520 bytes_acked += sctp_data_size(tchunk); 1521 if (!tchunk->transport) 1522 migrate_bytes += sctp_data_size(tchunk); 1523 forward_progress = true; 1524 } 1525 1526 if (TSN_lte(tsn, sack_ctsn)) { 1527 /* RFC 2960 6.3.2 Retransmission Timer Rules 1528 * 1529 * R3) Whenever a SACK is received 1530 * that acknowledges the DATA chunk 1531 * with the earliest outstanding TSN 1532 * for that address, restart T3-rtx 1533 * timer for that address with its 1534 * current RTO. 1535 */ 1536 restart_timer = 1; 1537 forward_progress = true; 1538 1539 list_add_tail(&tchunk->transmitted_list, 1540 &q->sacked); 1541 } else { 1542 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1543 * M2) Each time a SACK arrives reporting 1544 * 'Stray DATA chunk(s)' record the highest TSN 1545 * reported as newly acknowledged, call this 1546 * value 'HighestTSNinSack'. A newly 1547 * acknowledged DATA chunk is one not 1548 * previously acknowledged in a SACK. 1549 * 1550 * When the SCTP sender of data receives a SACK 1551 * chunk that acknowledges, for the first time, 1552 * the receipt of a DATA chunk, all the still 1553 * unacknowledged DATA chunks whose TSN is 1554 * older than that newly acknowledged DATA 1555 * chunk, are qualified as 'Stray DATA chunks'. 1556 */ 1557 list_add_tail(lchunk, &tlist); 1558 } 1559 } else { 1560 if (tchunk->tsn_gap_acked) { 1561 pr_debug("%s: receiver reneged on data TSN:0x%x\n", 1562 __func__, tsn); 1563 1564 tchunk->tsn_gap_acked = 0; 1565 1566 if (tchunk->transport) 1567 bytes_acked -= sctp_data_size(tchunk); 1568 1569 /* RFC 2960 6.3.2 Retransmission Timer Rules 1570 * 1571 * R4) Whenever a SACK is received missing a 1572 * TSN that was previously acknowledged via a 1573 * Gap Ack Block, start T3-rtx for the 1574 * destination address to which the DATA 1575 * chunk was originally 1576 * transmitted if it is not already running. 1577 */ 1578 restart_timer = 1; 1579 } 1580 1581 list_add_tail(lchunk, &tlist); 1582 } 1583 } 1584 1585 if (transport) { 1586 if (bytes_acked) { 1587 struct sctp_association *asoc = transport->asoc; 1588 1589 /* We may have counted DATA that was migrated 1590 * to this transport due to DEL-IP operation. 1591 * Subtract those bytes, since the were never 1592 * send on this transport and shouldn't be 1593 * credited to this transport. 1594 */ 1595 bytes_acked -= migrate_bytes; 1596 1597 /* 8.2. When an outstanding TSN is acknowledged, 1598 * the endpoint shall clear the error counter of 1599 * the destination transport address to which the 1600 * DATA chunk was last sent. 1601 * The association's overall error counter is 1602 * also cleared. 1603 */ 1604 transport->error_count = 0; 1605 transport->asoc->overall_error_count = 0; 1606 forward_progress = true; 1607 1608 /* 1609 * While in SHUTDOWN PENDING, we may have started 1610 * the T5 shutdown guard timer after reaching the 1611 * retransmission limit. Stop that timer as soon 1612 * as the receiver acknowledged any data. 1613 */ 1614 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING && 1615 del_timer(&asoc->timers 1616 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD])) 1617 sctp_association_put(asoc); 1618 1619 /* Mark the destination transport address as 1620 * active if it is not so marked. 1621 */ 1622 if ((transport->state == SCTP_INACTIVE || 1623 transport->state == SCTP_UNCONFIRMED) && 1624 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) { 1625 sctp_assoc_control_transport( 1626 transport->asoc, 1627 transport, 1628 SCTP_TRANSPORT_UP, 1629 SCTP_RECEIVED_SACK); 1630 } 1631 1632 sctp_transport_raise_cwnd(transport, sack_ctsn, 1633 bytes_acked); 1634 1635 transport->flight_size -= bytes_acked; 1636 if (transport->flight_size == 0) 1637 transport->partial_bytes_acked = 0; 1638 q->outstanding_bytes -= bytes_acked + migrate_bytes; 1639 } else { 1640 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1641 * When a sender is doing zero window probing, it 1642 * should not timeout the association if it continues 1643 * to receive new packets from the receiver. The 1644 * reason is that the receiver MAY keep its window 1645 * closed for an indefinite time. 1646 * A sender is doing zero window probing when the 1647 * receiver's advertised window is zero, and there is 1648 * only one data chunk in flight to the receiver. 1649 * 1650 * Allow the association to timeout while in SHUTDOWN 1651 * PENDING or SHUTDOWN RECEIVED in case the receiver 1652 * stays in zero window mode forever. 1653 */ 1654 if (!q->asoc->peer.rwnd && 1655 !list_empty(&tlist) && 1656 (sack_ctsn+2 == q->asoc->next_tsn) && 1657 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) { 1658 pr_debug("%s: sack received for zero window " 1659 "probe:%u\n", __func__, sack_ctsn); 1660 1661 q->asoc->overall_error_count = 0; 1662 transport->error_count = 0; 1663 } 1664 } 1665 1666 /* RFC 2960 6.3.2 Retransmission Timer Rules 1667 * 1668 * R2) Whenever all outstanding data sent to an address have 1669 * been acknowledged, turn off the T3-rtx timer of that 1670 * address. 1671 */ 1672 if (!transport->flight_size) { 1673 if (del_timer(&transport->T3_rtx_timer)) 1674 sctp_transport_put(transport); 1675 } else if (restart_timer) { 1676 if (!mod_timer(&transport->T3_rtx_timer, 1677 jiffies + transport->rto)) 1678 sctp_transport_hold(transport); 1679 } 1680 1681 if (forward_progress) { 1682 if (transport->dst) 1683 sctp_transport_dst_confirm(transport); 1684 } 1685 } 1686 1687 list_splice(&tlist, transmitted_queue); 1688 } 1689 1690 /* Mark chunks as missing and consequently may get retransmitted. */ 1691 static void sctp_mark_missing(struct sctp_outq *q, 1692 struct list_head *transmitted_queue, 1693 struct sctp_transport *transport, 1694 __u32 highest_new_tsn_in_sack, 1695 int count_of_newacks) 1696 { 1697 struct sctp_chunk *chunk; 1698 __u32 tsn; 1699 char do_fast_retransmit = 0; 1700 struct sctp_association *asoc = q->asoc; 1701 struct sctp_transport *primary = asoc->peer.primary_path; 1702 1703 list_for_each_entry(chunk, transmitted_queue, transmitted_list) { 1704 1705 tsn = ntohl(chunk->subh.data_hdr->tsn); 1706 1707 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1708 * 'Unacknowledged TSN's', if the TSN number of an 1709 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1710 * value, increment the 'TSN.Missing.Report' count on that 1711 * chunk if it has NOT been fast retransmitted or marked for 1712 * fast retransmit already. 1713 */ 1714 if (chunk->fast_retransmit == SCTP_CAN_FRTX && 1715 !chunk->tsn_gap_acked && 1716 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1717 1718 /* SFR-CACC may require us to skip marking 1719 * this chunk as missing. 1720 */ 1721 if (!transport || !sctp_cacc_skip(primary, 1722 chunk->transport, 1723 count_of_newacks, tsn)) { 1724 chunk->tsn_missing_report++; 1725 1726 pr_debug("%s: tsn:0x%x missing counter:%d\n", 1727 __func__, tsn, chunk->tsn_missing_report); 1728 } 1729 } 1730 /* 1731 * M4) If any DATA chunk is found to have a 1732 * 'TSN.Missing.Report' 1733 * value larger than or equal to 3, mark that chunk for 1734 * retransmission and start the fast retransmit procedure. 1735 */ 1736 1737 if (chunk->tsn_missing_report >= 3) { 1738 chunk->fast_retransmit = SCTP_NEED_FRTX; 1739 do_fast_retransmit = 1; 1740 } 1741 } 1742 1743 if (transport) { 1744 if (do_fast_retransmit) 1745 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1746 1747 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, " 1748 "flight_size:%d, pba:%d\n", __func__, transport, 1749 transport->cwnd, transport->ssthresh, 1750 transport->flight_size, transport->partial_bytes_acked); 1751 } 1752 } 1753 1754 /* Is the given TSN acked by this packet? */ 1755 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1756 { 1757 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1758 union sctp_sack_variable *frags; 1759 __u16 tsn_offset, blocks; 1760 int i; 1761 1762 if (TSN_lte(tsn, ctsn)) 1763 goto pass; 1764 1765 /* 3.3.4 Selective Acknowledgment (SACK) (3): 1766 * 1767 * Gap Ack Blocks: 1768 * These fields contain the Gap Ack Blocks. They are repeated 1769 * for each Gap Ack Block up to the number of Gap Ack Blocks 1770 * defined in the Number of Gap Ack Blocks field. All DATA 1771 * chunks with TSNs greater than or equal to (Cumulative TSN 1772 * Ack + Gap Ack Block Start) and less than or equal to 1773 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1774 * Block are assumed to have been received correctly. 1775 */ 1776 1777 frags = sack->variable; 1778 blocks = ntohs(sack->num_gap_ack_blocks); 1779 tsn_offset = tsn - ctsn; 1780 for (i = 0; i < blocks; ++i) { 1781 if (tsn_offset >= ntohs(frags[i].gab.start) && 1782 tsn_offset <= ntohs(frags[i].gab.end)) 1783 goto pass; 1784 } 1785 1786 return 0; 1787 pass: 1788 return 1; 1789 } 1790 1791 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1792 int nskips, __be16 stream) 1793 { 1794 int i; 1795 1796 for (i = 0; i < nskips; i++) { 1797 if (skiplist[i].stream == stream) 1798 return i; 1799 } 1800 return i; 1801 } 1802 1803 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1804 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1805 { 1806 struct sctp_association *asoc = q->asoc; 1807 struct sctp_chunk *ftsn_chunk = NULL; 1808 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1809 int nskips = 0; 1810 int skip_pos = 0; 1811 __u32 tsn; 1812 struct sctp_chunk *chunk; 1813 struct list_head *lchunk, *temp; 1814 1815 if (!asoc->peer.prsctp_capable) 1816 return; 1817 1818 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1819 * received SACK. 1820 * 1821 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1822 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1823 */ 1824 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1825 asoc->adv_peer_ack_point = ctsn; 1826 1827 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1828 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1829 * the chunk next in the out-queue space is marked as "abandoned" as 1830 * shown in the following example: 1831 * 1832 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1833 * and the Advanced.Peer.Ack.Point is updated to this value: 1834 * 1835 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1836 * normal SACK processing local advancement 1837 * ... ... 1838 * Adv.Ack.Pt-> 102 acked 102 acked 1839 * 103 abandoned 103 abandoned 1840 * 104 abandoned Adv.Ack.P-> 104 abandoned 1841 * 105 105 1842 * 106 acked 106 acked 1843 * ... ... 1844 * 1845 * In this example, the data sender successfully advanced the 1846 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1847 */ 1848 list_for_each_safe(lchunk, temp, &q->abandoned) { 1849 chunk = list_entry(lchunk, struct sctp_chunk, 1850 transmitted_list); 1851 tsn = ntohl(chunk->subh.data_hdr->tsn); 1852 1853 /* Remove any chunks in the abandoned queue that are acked by 1854 * the ctsn. 1855 */ 1856 if (TSN_lte(tsn, ctsn)) { 1857 list_del_init(lchunk); 1858 sctp_chunk_free(chunk); 1859 } else { 1860 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1861 asoc->adv_peer_ack_point = tsn; 1862 if (chunk->chunk_hdr->flags & 1863 SCTP_DATA_UNORDERED) 1864 continue; 1865 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1866 nskips, 1867 chunk->subh.data_hdr->stream); 1868 ftsn_skip_arr[skip_pos].stream = 1869 chunk->subh.data_hdr->stream; 1870 ftsn_skip_arr[skip_pos].ssn = 1871 chunk->subh.data_hdr->ssn; 1872 if (skip_pos == nskips) 1873 nskips++; 1874 if (nskips == 10) 1875 break; 1876 } else 1877 break; 1878 } 1879 } 1880 1881 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1882 * is greater than the Cumulative TSN ACK carried in the received 1883 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1884 * chunk containing the latest value of the 1885 * "Advanced.Peer.Ack.Point". 1886 * 1887 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1888 * list each stream and sequence number in the forwarded TSN. This 1889 * information will enable the receiver to easily find any 1890 * stranded TSN's waiting on stream reorder queues. Each stream 1891 * SHOULD only be reported once; this means that if multiple 1892 * abandoned messages occur in the same stream then only the 1893 * highest abandoned stream sequence number is reported. If the 1894 * total size of the FORWARD TSN does NOT fit in a single MTU then 1895 * the sender of the FORWARD TSN SHOULD lower the 1896 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1897 * single MTU. 1898 */ 1899 if (asoc->adv_peer_ack_point > ctsn) 1900 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1901 nskips, &ftsn_skip_arr[0]); 1902 1903 if (ftsn_chunk) { 1904 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1905 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS); 1906 } 1907 } 1908