1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * These functions implement the sctp_outq class. The outqueue handles 11 * bundling and queueing of outgoing SCTP chunks. 12 * 13 * Please send any bug reports or fixes you make to the 14 * email address(es): 15 * lksctp developers <linux-sctp@vger.kernel.org> 16 * 17 * Written or modified by: 18 * La Monte H.P. Yarroll <piggy@acm.org> 19 * Karl Knutson <karl@athena.chicago.il.us> 20 * Perry Melange <pmelange@null.cc.uic.edu> 21 * Xingang Guo <xingang.guo@intel.com> 22 * Hui Huang <hui.huang@nokia.com> 23 * Sridhar Samudrala <sri@us.ibm.com> 24 * Jon Grimm <jgrimm@us.ibm.com> 25 */ 26 27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 28 29 #include <linux/types.h> 30 #include <linux/list.h> /* For struct list_head */ 31 #include <linux/socket.h> 32 #include <linux/ip.h> 33 #include <linux/slab.h> 34 #include <net/sock.h> /* For skb_set_owner_w */ 35 36 #include <net/sctp/sctp.h> 37 #include <net/sctp/sm.h> 38 #include <net/sctp/stream_sched.h> 39 40 /* Declare internal functions here. */ 41 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 42 static void sctp_check_transmitted(struct sctp_outq *q, 43 struct list_head *transmitted_queue, 44 struct sctp_transport *transport, 45 union sctp_addr *saddr, 46 struct sctp_sackhdr *sack, 47 __u32 *highest_new_tsn); 48 49 static void sctp_mark_missing(struct sctp_outq *q, 50 struct list_head *transmitted_queue, 51 struct sctp_transport *transport, 52 __u32 highest_new_tsn, 53 int count_of_newacks); 54 55 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp); 56 57 /* Add data to the front of the queue. */ 58 static inline void sctp_outq_head_data(struct sctp_outq *q, 59 struct sctp_chunk *ch) 60 { 61 struct sctp_stream_out_ext *oute; 62 __u16 stream; 63 64 list_add(&ch->list, &q->out_chunk_list); 65 q->out_qlen += ch->skb->len; 66 67 stream = sctp_chunk_stream_no(ch); 68 oute = SCTP_SO(&q->asoc->stream, stream)->ext; 69 list_add(&ch->stream_list, &oute->outq); 70 } 71 72 /* Take data from the front of the queue. */ 73 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 74 { 75 return q->sched->dequeue(q); 76 } 77 78 /* Add data chunk to the end of the queue. */ 79 static inline void sctp_outq_tail_data(struct sctp_outq *q, 80 struct sctp_chunk *ch) 81 { 82 struct sctp_stream_out_ext *oute; 83 __u16 stream; 84 85 list_add_tail(&ch->list, &q->out_chunk_list); 86 q->out_qlen += ch->skb->len; 87 88 stream = sctp_chunk_stream_no(ch); 89 oute = SCTP_SO(&q->asoc->stream, stream)->ext; 90 list_add_tail(&ch->stream_list, &oute->outq); 91 } 92 93 /* 94 * SFR-CACC algorithm: 95 * D) If count_of_newacks is greater than or equal to 2 96 * and t was not sent to the current primary then the 97 * sender MUST NOT increment missing report count for t. 98 */ 99 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 100 struct sctp_transport *transport, 101 int count_of_newacks) 102 { 103 if (count_of_newacks >= 2 && transport != primary) 104 return 1; 105 return 0; 106 } 107 108 /* 109 * SFR-CACC algorithm: 110 * F) If count_of_newacks is less than 2, let d be the 111 * destination to which t was sent. If cacc_saw_newack 112 * is 0 for destination d, then the sender MUST NOT 113 * increment missing report count for t. 114 */ 115 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 116 int count_of_newacks) 117 { 118 if (count_of_newacks < 2 && 119 (transport && !transport->cacc.cacc_saw_newack)) 120 return 1; 121 return 0; 122 } 123 124 /* 125 * SFR-CACC algorithm: 126 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 127 * execute steps C, D, F. 128 * 129 * C has been implemented in sctp_outq_sack 130 */ 131 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 132 struct sctp_transport *transport, 133 int count_of_newacks) 134 { 135 if (!primary->cacc.cycling_changeover) { 136 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 137 return 1; 138 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 139 return 1; 140 return 0; 141 } 142 return 0; 143 } 144 145 /* 146 * SFR-CACC algorithm: 147 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 148 * than next_tsn_at_change of the current primary, then 149 * the sender MUST NOT increment missing report count 150 * for t. 151 */ 152 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 153 { 154 if (primary->cacc.cycling_changeover && 155 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 156 return 1; 157 return 0; 158 } 159 160 /* 161 * SFR-CACC algorithm: 162 * 3) If the missing report count for TSN t is to be 163 * incremented according to [RFC2960] and 164 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 165 * then the sender MUST further execute steps 3.1 and 166 * 3.2 to determine if the missing report count for 167 * TSN t SHOULD NOT be incremented. 168 * 169 * 3.3) If 3.1 and 3.2 do not dictate that the missing 170 * report count for t should not be incremented, then 171 * the sender SHOULD increment missing report count for 172 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 173 */ 174 static inline int sctp_cacc_skip(struct sctp_transport *primary, 175 struct sctp_transport *transport, 176 int count_of_newacks, 177 __u32 tsn) 178 { 179 if (primary->cacc.changeover_active && 180 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) || 181 sctp_cacc_skip_3_2(primary, tsn))) 182 return 1; 183 return 0; 184 } 185 186 /* Initialize an existing sctp_outq. This does the boring stuff. 187 * You still need to define handlers if you really want to DO 188 * something with this structure... 189 */ 190 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 191 { 192 memset(q, 0, sizeof(struct sctp_outq)); 193 194 q->asoc = asoc; 195 INIT_LIST_HEAD(&q->out_chunk_list); 196 INIT_LIST_HEAD(&q->control_chunk_list); 197 INIT_LIST_HEAD(&q->retransmit); 198 INIT_LIST_HEAD(&q->sacked); 199 INIT_LIST_HEAD(&q->abandoned); 200 sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss); 201 } 202 203 /* Free the outqueue structure and any related pending chunks. 204 */ 205 static void __sctp_outq_teardown(struct sctp_outq *q) 206 { 207 struct sctp_transport *transport; 208 struct list_head *lchunk, *temp; 209 struct sctp_chunk *chunk, *tmp; 210 211 /* Throw away unacknowledged chunks. */ 212 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, 213 transports) { 214 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 215 chunk = list_entry(lchunk, struct sctp_chunk, 216 transmitted_list); 217 /* Mark as part of a failed message. */ 218 sctp_chunk_fail(chunk, q->error); 219 sctp_chunk_free(chunk); 220 } 221 } 222 223 /* Throw away chunks that have been gap ACKed. */ 224 list_for_each_safe(lchunk, temp, &q->sacked) { 225 list_del_init(lchunk); 226 chunk = list_entry(lchunk, struct sctp_chunk, 227 transmitted_list); 228 sctp_chunk_fail(chunk, q->error); 229 sctp_chunk_free(chunk); 230 } 231 232 /* Throw away any chunks in the retransmit queue. */ 233 list_for_each_safe(lchunk, temp, &q->retransmit) { 234 list_del_init(lchunk); 235 chunk = list_entry(lchunk, struct sctp_chunk, 236 transmitted_list); 237 sctp_chunk_fail(chunk, q->error); 238 sctp_chunk_free(chunk); 239 } 240 241 /* Throw away any chunks that are in the abandoned queue. */ 242 list_for_each_safe(lchunk, temp, &q->abandoned) { 243 list_del_init(lchunk); 244 chunk = list_entry(lchunk, struct sctp_chunk, 245 transmitted_list); 246 sctp_chunk_fail(chunk, q->error); 247 sctp_chunk_free(chunk); 248 } 249 250 /* Throw away any leftover data chunks. */ 251 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 252 sctp_sched_dequeue_done(q, chunk); 253 254 /* Mark as send failure. */ 255 sctp_chunk_fail(chunk, q->error); 256 sctp_chunk_free(chunk); 257 } 258 259 /* Throw away any leftover control chunks. */ 260 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 261 list_del_init(&chunk->list); 262 sctp_chunk_free(chunk); 263 } 264 } 265 266 void sctp_outq_teardown(struct sctp_outq *q) 267 { 268 __sctp_outq_teardown(q); 269 sctp_outq_init(q->asoc, q); 270 } 271 272 /* Free the outqueue structure and any related pending chunks. */ 273 void sctp_outq_free(struct sctp_outq *q) 274 { 275 /* Throw away leftover chunks. */ 276 __sctp_outq_teardown(q); 277 } 278 279 /* Put a new chunk in an sctp_outq. */ 280 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp) 281 { 282 struct net *net = q->asoc->base.net; 283 284 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk, 285 chunk && chunk->chunk_hdr ? 286 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : 287 "illegal chunk"); 288 289 /* If it is data, queue it up, otherwise, send it 290 * immediately. 291 */ 292 if (sctp_chunk_is_data(chunk)) { 293 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n", 294 __func__, q, chunk, chunk && chunk->chunk_hdr ? 295 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : 296 "illegal chunk"); 297 298 sctp_outq_tail_data(q, chunk); 299 if (chunk->asoc->peer.prsctp_capable && 300 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) 301 chunk->asoc->sent_cnt_removable++; 302 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 303 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS); 304 else 305 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS); 306 } else { 307 list_add_tail(&chunk->list, &q->control_chunk_list); 308 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS); 309 } 310 311 if (!q->cork) 312 sctp_outq_flush(q, 0, gfp); 313 } 314 315 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 316 * and the abandoned list are in ascending order. 317 */ 318 static void sctp_insert_list(struct list_head *head, struct list_head *new) 319 { 320 struct list_head *pos; 321 struct sctp_chunk *nchunk, *lchunk; 322 __u32 ntsn, ltsn; 323 int done = 0; 324 325 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 326 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 327 328 list_for_each(pos, head) { 329 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 330 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 331 if (TSN_lt(ntsn, ltsn)) { 332 list_add(new, pos->prev); 333 done = 1; 334 break; 335 } 336 } 337 if (!done) 338 list_add_tail(new, head); 339 } 340 341 static int sctp_prsctp_prune_sent(struct sctp_association *asoc, 342 struct sctp_sndrcvinfo *sinfo, 343 struct list_head *queue, int msg_len) 344 { 345 struct sctp_chunk *chk, *temp; 346 347 list_for_each_entry_safe(chk, temp, queue, transmitted_list) { 348 struct sctp_stream_out *streamout; 349 350 if (!chk->msg->abandoned && 351 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || 352 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) 353 continue; 354 355 chk->msg->abandoned = 1; 356 list_del_init(&chk->transmitted_list); 357 sctp_insert_list(&asoc->outqueue.abandoned, 358 &chk->transmitted_list); 359 360 streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); 361 asoc->sent_cnt_removable--; 362 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; 363 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; 364 365 if (queue != &asoc->outqueue.retransmit && 366 !chk->tsn_gap_acked) { 367 if (chk->transport) 368 chk->transport->flight_size -= 369 sctp_data_size(chk); 370 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk); 371 } 372 373 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk); 374 if (msg_len <= 0) 375 break; 376 } 377 378 return msg_len; 379 } 380 381 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc, 382 struct sctp_sndrcvinfo *sinfo, int msg_len) 383 { 384 struct sctp_outq *q = &asoc->outqueue; 385 struct sctp_chunk *chk, *temp; 386 387 q->sched->unsched_all(&asoc->stream); 388 389 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) { 390 if (!chk->msg->abandoned && 391 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) || 392 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || 393 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) 394 continue; 395 396 chk->msg->abandoned = 1; 397 sctp_sched_dequeue_common(q, chk); 398 asoc->sent_cnt_removable--; 399 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; 400 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) { 401 struct sctp_stream_out *streamout = 402 SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); 403 404 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; 405 } 406 407 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk); 408 sctp_chunk_free(chk); 409 if (msg_len <= 0) 410 break; 411 } 412 413 q->sched->sched_all(&asoc->stream); 414 415 return msg_len; 416 } 417 418 /* Abandon the chunks according their priorities */ 419 void sctp_prsctp_prune(struct sctp_association *asoc, 420 struct sctp_sndrcvinfo *sinfo, int msg_len) 421 { 422 struct sctp_transport *transport; 423 424 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable) 425 return; 426 427 msg_len = sctp_prsctp_prune_sent(asoc, sinfo, 428 &asoc->outqueue.retransmit, 429 msg_len); 430 if (msg_len <= 0) 431 return; 432 433 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 434 transports) { 435 msg_len = sctp_prsctp_prune_sent(asoc, sinfo, 436 &transport->transmitted, 437 msg_len); 438 if (msg_len <= 0) 439 return; 440 } 441 442 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len); 443 } 444 445 /* Mark all the eligible packets on a transport for retransmission. */ 446 void sctp_retransmit_mark(struct sctp_outq *q, 447 struct sctp_transport *transport, 448 __u8 reason) 449 { 450 struct list_head *lchunk, *ltemp; 451 struct sctp_chunk *chunk; 452 453 /* Walk through the specified transmitted queue. */ 454 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 455 chunk = list_entry(lchunk, struct sctp_chunk, 456 transmitted_list); 457 458 /* If the chunk is abandoned, move it to abandoned list. */ 459 if (sctp_chunk_abandoned(chunk)) { 460 list_del_init(lchunk); 461 sctp_insert_list(&q->abandoned, lchunk); 462 463 /* If this chunk has not been previousely acked, 464 * stop considering it 'outstanding'. Our peer 465 * will most likely never see it since it will 466 * not be retransmitted 467 */ 468 if (!chunk->tsn_gap_acked) { 469 if (chunk->transport) 470 chunk->transport->flight_size -= 471 sctp_data_size(chunk); 472 q->outstanding_bytes -= sctp_data_size(chunk); 473 q->asoc->peer.rwnd += sctp_data_size(chunk); 474 } 475 continue; 476 } 477 478 /* If we are doing retransmission due to a timeout or pmtu 479 * discovery, only the chunks that are not yet acked should 480 * be added to the retransmit queue. 481 */ 482 if ((reason == SCTP_RTXR_FAST_RTX && 483 (chunk->fast_retransmit == SCTP_NEED_FRTX)) || 484 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { 485 /* RFC 2960 6.2.1 Processing a Received SACK 486 * 487 * C) Any time a DATA chunk is marked for 488 * retransmission (via either T3-rtx timer expiration 489 * (Section 6.3.3) or via fast retransmit 490 * (Section 7.2.4)), add the data size of those 491 * chunks to the rwnd. 492 */ 493 q->asoc->peer.rwnd += sctp_data_size(chunk); 494 q->outstanding_bytes -= sctp_data_size(chunk); 495 if (chunk->transport) 496 transport->flight_size -= sctp_data_size(chunk); 497 498 /* sctpimpguide-05 Section 2.8.2 499 * M5) If a T3-rtx timer expires, the 500 * 'TSN.Missing.Report' of all affected TSNs is set 501 * to 0. 502 */ 503 chunk->tsn_missing_report = 0; 504 505 /* If a chunk that is being used for RTT measurement 506 * has to be retransmitted, we cannot use this chunk 507 * anymore for RTT measurements. Reset rto_pending so 508 * that a new RTT measurement is started when a new 509 * data chunk is sent. 510 */ 511 if (chunk->rtt_in_progress) { 512 chunk->rtt_in_progress = 0; 513 transport->rto_pending = 0; 514 } 515 516 /* Move the chunk to the retransmit queue. The chunks 517 * on the retransmit queue are always kept in order. 518 */ 519 list_del_init(lchunk); 520 sctp_insert_list(&q->retransmit, lchunk); 521 } 522 } 523 524 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, " 525 "flight_size:%d, pba:%d\n", __func__, transport, reason, 526 transport->cwnd, transport->ssthresh, transport->flight_size, 527 transport->partial_bytes_acked); 528 } 529 530 /* Mark all the eligible packets on a transport for retransmission and force 531 * one packet out. 532 */ 533 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 534 enum sctp_retransmit_reason reason) 535 { 536 struct net *net = q->asoc->base.net; 537 538 switch (reason) { 539 case SCTP_RTXR_T3_RTX: 540 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS); 541 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 542 /* Update the retran path if the T3-rtx timer has expired for 543 * the current retran path. 544 */ 545 if (transport == transport->asoc->peer.retran_path) 546 sctp_assoc_update_retran_path(transport->asoc); 547 transport->asoc->rtx_data_chunks += 548 transport->asoc->unack_data; 549 break; 550 case SCTP_RTXR_FAST_RTX: 551 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS); 552 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 553 q->fast_rtx = 1; 554 break; 555 case SCTP_RTXR_PMTUD: 556 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS); 557 break; 558 case SCTP_RTXR_T1_RTX: 559 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS); 560 transport->asoc->init_retries++; 561 break; 562 default: 563 BUG(); 564 } 565 566 sctp_retransmit_mark(q, transport, reason); 567 568 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 569 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 570 * following the procedures outlined in C1 - C5. 571 */ 572 if (reason == SCTP_RTXR_T3_RTX) 573 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point); 574 575 /* Flush the queues only on timeout, since fast_rtx is only 576 * triggered during sack processing and the queue 577 * will be flushed at the end. 578 */ 579 if (reason != SCTP_RTXR_FAST_RTX) 580 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC); 581 } 582 583 /* 584 * Transmit DATA chunks on the retransmit queue. Upon return from 585 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 586 * need to be transmitted by the caller. 587 * We assume that pkt->transport has already been set. 588 * 589 * The return value is a normal kernel error return value. 590 */ 591 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 592 int rtx_timeout, int *start_timer, gfp_t gfp) 593 { 594 struct sctp_transport *transport = pkt->transport; 595 struct sctp_chunk *chunk, *chunk1; 596 struct list_head *lqueue; 597 enum sctp_xmit status; 598 int error = 0; 599 int timer = 0; 600 int done = 0; 601 int fast_rtx; 602 603 lqueue = &q->retransmit; 604 fast_rtx = q->fast_rtx; 605 606 /* This loop handles time-out retransmissions, fast retransmissions, 607 * and retransmissions due to opening of whindow. 608 * 609 * RFC 2960 6.3.3 Handle T3-rtx Expiration 610 * 611 * E3) Determine how many of the earliest (i.e., lowest TSN) 612 * outstanding DATA chunks for the address for which the 613 * T3-rtx has expired will fit into a single packet, subject 614 * to the MTU constraint for the path corresponding to the 615 * destination transport address to which the retransmission 616 * is being sent (this may be different from the address for 617 * which the timer expires [see Section 6.4]). Call this value 618 * K. Bundle and retransmit those K DATA chunks in a single 619 * packet to the destination endpoint. 620 * 621 * [Just to be painfully clear, if we are retransmitting 622 * because a timeout just happened, we should send only ONE 623 * packet of retransmitted data.] 624 * 625 * For fast retransmissions we also send only ONE packet. However, 626 * if we are just flushing the queue due to open window, we'll 627 * try to send as much as possible. 628 */ 629 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) { 630 /* If the chunk is abandoned, move it to abandoned list. */ 631 if (sctp_chunk_abandoned(chunk)) { 632 list_del_init(&chunk->transmitted_list); 633 sctp_insert_list(&q->abandoned, 634 &chunk->transmitted_list); 635 continue; 636 } 637 638 /* Make sure that Gap Acked TSNs are not retransmitted. A 639 * simple approach is just to move such TSNs out of the 640 * way and into a 'transmitted' queue and skip to the 641 * next chunk. 642 */ 643 if (chunk->tsn_gap_acked) { 644 list_move_tail(&chunk->transmitted_list, 645 &transport->transmitted); 646 continue; 647 } 648 649 /* If we are doing fast retransmit, ignore non-fast_rtransmit 650 * chunks 651 */ 652 if (fast_rtx && !chunk->fast_retransmit) 653 continue; 654 655 redo: 656 /* Attempt to append this chunk to the packet. */ 657 status = sctp_packet_append_chunk(pkt, chunk); 658 659 switch (status) { 660 case SCTP_XMIT_PMTU_FULL: 661 if (!pkt->has_data && !pkt->has_cookie_echo) { 662 /* If this packet did not contain DATA then 663 * retransmission did not happen, so do it 664 * again. We'll ignore the error here since 665 * control chunks are already freed so there 666 * is nothing we can do. 667 */ 668 sctp_packet_transmit(pkt, gfp); 669 goto redo; 670 } 671 672 /* Send this packet. */ 673 error = sctp_packet_transmit(pkt, gfp); 674 675 /* If we are retransmitting, we should only 676 * send a single packet. 677 * Otherwise, try appending this chunk again. 678 */ 679 if (rtx_timeout || fast_rtx) 680 done = 1; 681 else 682 goto redo; 683 684 /* Bundle next chunk in the next round. */ 685 break; 686 687 case SCTP_XMIT_RWND_FULL: 688 /* Send this packet. */ 689 error = sctp_packet_transmit(pkt, gfp); 690 691 /* Stop sending DATA as there is no more room 692 * at the receiver. 693 */ 694 done = 1; 695 break; 696 697 case SCTP_XMIT_DELAY: 698 /* Send this packet. */ 699 error = sctp_packet_transmit(pkt, gfp); 700 701 /* Stop sending DATA because of nagle delay. */ 702 done = 1; 703 break; 704 705 default: 706 /* The append was successful, so add this chunk to 707 * the transmitted list. 708 */ 709 list_move_tail(&chunk->transmitted_list, 710 &transport->transmitted); 711 712 /* Mark the chunk as ineligible for fast retransmit 713 * after it is retransmitted. 714 */ 715 if (chunk->fast_retransmit == SCTP_NEED_FRTX) 716 chunk->fast_retransmit = SCTP_DONT_FRTX; 717 718 q->asoc->stats.rtxchunks++; 719 break; 720 } 721 722 /* Set the timer if there were no errors */ 723 if (!error && !timer) 724 timer = 1; 725 726 if (done) 727 break; 728 } 729 730 /* If we are here due to a retransmit timeout or a fast 731 * retransmit and if there are any chunks left in the retransmit 732 * queue that could not fit in the PMTU sized packet, they need 733 * to be marked as ineligible for a subsequent fast retransmit. 734 */ 735 if (rtx_timeout || fast_rtx) { 736 list_for_each_entry(chunk1, lqueue, transmitted_list) { 737 if (chunk1->fast_retransmit == SCTP_NEED_FRTX) 738 chunk1->fast_retransmit = SCTP_DONT_FRTX; 739 } 740 } 741 742 *start_timer = timer; 743 744 /* Clear fast retransmit hint */ 745 if (fast_rtx) 746 q->fast_rtx = 0; 747 748 return error; 749 } 750 751 /* Cork the outqueue so queued chunks are really queued. */ 752 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp) 753 { 754 if (q->cork) 755 q->cork = 0; 756 757 sctp_outq_flush(q, 0, gfp); 758 } 759 760 static int sctp_packet_singleton(struct sctp_transport *transport, 761 struct sctp_chunk *chunk, gfp_t gfp) 762 { 763 const struct sctp_association *asoc = transport->asoc; 764 const __u16 sport = asoc->base.bind_addr.port; 765 const __u16 dport = asoc->peer.port; 766 const __u32 vtag = asoc->peer.i.init_tag; 767 struct sctp_packet singleton; 768 769 sctp_packet_init(&singleton, transport, sport, dport); 770 sctp_packet_config(&singleton, vtag, 0); 771 sctp_packet_append_chunk(&singleton, chunk); 772 return sctp_packet_transmit(&singleton, gfp); 773 } 774 775 /* Struct to hold the context during sctp outq flush */ 776 struct sctp_flush_ctx { 777 struct sctp_outq *q; 778 /* Current transport being used. It's NOT the same as curr active one */ 779 struct sctp_transport *transport; 780 /* These transports have chunks to send. */ 781 struct list_head transport_list; 782 struct sctp_association *asoc; 783 /* Packet on the current transport above */ 784 struct sctp_packet *packet; 785 gfp_t gfp; 786 }; 787 788 /* transport: current transport */ 789 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx, 790 struct sctp_chunk *chunk) 791 { 792 struct sctp_transport *new_transport = chunk->transport; 793 794 if (!new_transport) { 795 if (!sctp_chunk_is_data(chunk)) { 796 /* If we have a prior transport pointer, see if 797 * the destination address of the chunk 798 * matches the destination address of the 799 * current transport. If not a match, then 800 * try to look up the transport with a given 801 * destination address. We do this because 802 * after processing ASCONFs, we may have new 803 * transports created. 804 */ 805 if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest, 806 &ctx->transport->ipaddr)) 807 new_transport = ctx->transport; 808 else 809 new_transport = sctp_assoc_lookup_paddr(ctx->asoc, 810 &chunk->dest); 811 } 812 813 /* if we still don't have a new transport, then 814 * use the current active path. 815 */ 816 if (!new_transport) 817 new_transport = ctx->asoc->peer.active_path; 818 } else { 819 __u8 type; 820 821 switch (new_transport->state) { 822 case SCTP_INACTIVE: 823 case SCTP_UNCONFIRMED: 824 case SCTP_PF: 825 /* If the chunk is Heartbeat or Heartbeat Ack, 826 * send it to chunk->transport, even if it's 827 * inactive. 828 * 829 * 3.3.6 Heartbeat Acknowledgement: 830 * ... 831 * A HEARTBEAT ACK is always sent to the source IP 832 * address of the IP datagram containing the 833 * HEARTBEAT chunk to which this ack is responding. 834 * ... 835 * 836 * ASCONF_ACKs also must be sent to the source. 837 */ 838 type = chunk->chunk_hdr->type; 839 if (type != SCTP_CID_HEARTBEAT && 840 type != SCTP_CID_HEARTBEAT_ACK && 841 type != SCTP_CID_ASCONF_ACK) 842 new_transport = ctx->asoc->peer.active_path; 843 break; 844 default: 845 break; 846 } 847 } 848 849 /* Are we switching transports? Take care of transport locks. */ 850 if (new_transport != ctx->transport) { 851 ctx->transport = new_transport; 852 ctx->packet = &ctx->transport->packet; 853 854 if (list_empty(&ctx->transport->send_ready)) 855 list_add_tail(&ctx->transport->send_ready, 856 &ctx->transport_list); 857 858 sctp_packet_config(ctx->packet, 859 ctx->asoc->peer.i.init_tag, 860 ctx->asoc->peer.ecn_capable); 861 /* We've switched transports, so apply the 862 * Burst limit to the new transport. 863 */ 864 sctp_transport_burst_limited(ctx->transport); 865 } 866 } 867 868 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx) 869 { 870 struct sctp_chunk *chunk, *tmp; 871 enum sctp_xmit status; 872 int one_packet, error; 873 874 list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) { 875 one_packet = 0; 876 877 /* RFC 5061, 5.3 878 * F1) This means that until such time as the ASCONF 879 * containing the add is acknowledged, the sender MUST 880 * NOT use the new IP address as a source for ANY SCTP 881 * packet except on carrying an ASCONF Chunk. 882 */ 883 if (ctx->asoc->src_out_of_asoc_ok && 884 chunk->chunk_hdr->type != SCTP_CID_ASCONF) 885 continue; 886 887 list_del_init(&chunk->list); 888 889 /* Pick the right transport to use. Should always be true for 890 * the first chunk as we don't have a transport by then. 891 */ 892 sctp_outq_select_transport(ctx, chunk); 893 894 switch (chunk->chunk_hdr->type) { 895 /* 6.10 Bundling 896 * ... 897 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 898 * COMPLETE with any other chunks. [Send them immediately.] 899 */ 900 case SCTP_CID_INIT: 901 case SCTP_CID_INIT_ACK: 902 case SCTP_CID_SHUTDOWN_COMPLETE: 903 error = sctp_packet_singleton(ctx->transport, chunk, 904 ctx->gfp); 905 if (error < 0) { 906 ctx->asoc->base.sk->sk_err = -error; 907 return; 908 } 909 break; 910 911 case SCTP_CID_ABORT: 912 if (sctp_test_T_bit(chunk)) 913 ctx->packet->vtag = ctx->asoc->c.my_vtag; 914 /* fallthru */ 915 916 /* The following chunks are "response" chunks, i.e. 917 * they are generated in response to something we 918 * received. If we are sending these, then we can 919 * send only 1 packet containing these chunks. 920 */ 921 case SCTP_CID_HEARTBEAT_ACK: 922 case SCTP_CID_SHUTDOWN_ACK: 923 case SCTP_CID_COOKIE_ACK: 924 case SCTP_CID_COOKIE_ECHO: 925 case SCTP_CID_ERROR: 926 case SCTP_CID_ECN_CWR: 927 case SCTP_CID_ASCONF_ACK: 928 one_packet = 1; 929 /* Fall through */ 930 931 case SCTP_CID_SACK: 932 case SCTP_CID_HEARTBEAT: 933 case SCTP_CID_SHUTDOWN: 934 case SCTP_CID_ECN_ECNE: 935 case SCTP_CID_ASCONF: 936 case SCTP_CID_FWD_TSN: 937 case SCTP_CID_I_FWD_TSN: 938 case SCTP_CID_RECONF: 939 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 940 one_packet, ctx->gfp); 941 if (status != SCTP_XMIT_OK) { 942 /* put the chunk back */ 943 list_add(&chunk->list, &ctx->q->control_chunk_list); 944 break; 945 } 946 947 ctx->asoc->stats.octrlchunks++; 948 /* PR-SCTP C5) If a FORWARD TSN is sent, the 949 * sender MUST assure that at least one T3-rtx 950 * timer is running. 951 */ 952 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN || 953 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) { 954 sctp_transport_reset_t3_rtx(ctx->transport); 955 ctx->transport->last_time_sent = jiffies; 956 } 957 958 if (chunk == ctx->asoc->strreset_chunk) 959 sctp_transport_reset_reconf_timer(ctx->transport); 960 961 break; 962 963 default: 964 /* We built a chunk with an illegal type! */ 965 BUG(); 966 } 967 } 968 } 969 970 /* Returns false if new data shouldn't be sent */ 971 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx, 972 int rtx_timeout) 973 { 974 int error, start_timer = 0; 975 976 if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED) 977 return false; 978 979 if (ctx->transport != ctx->asoc->peer.retran_path) { 980 /* Switch transports & prepare the packet. */ 981 ctx->transport = ctx->asoc->peer.retran_path; 982 ctx->packet = &ctx->transport->packet; 983 984 if (list_empty(&ctx->transport->send_ready)) 985 list_add_tail(&ctx->transport->send_ready, 986 &ctx->transport_list); 987 988 sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, 989 ctx->asoc->peer.ecn_capable); 990 } 991 992 error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout, 993 &start_timer, ctx->gfp); 994 if (error < 0) 995 ctx->asoc->base.sk->sk_err = -error; 996 997 if (start_timer) { 998 sctp_transport_reset_t3_rtx(ctx->transport); 999 ctx->transport->last_time_sent = jiffies; 1000 } 1001 1002 /* This can happen on COOKIE-ECHO resend. Only 1003 * one chunk can get bundled with a COOKIE-ECHO. 1004 */ 1005 if (ctx->packet->has_cookie_echo) 1006 return false; 1007 1008 /* Don't send new data if there is still data 1009 * waiting to retransmit. 1010 */ 1011 if (!list_empty(&ctx->q->retransmit)) 1012 return false; 1013 1014 return true; 1015 } 1016 1017 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx, 1018 int rtx_timeout) 1019 { 1020 struct sctp_chunk *chunk; 1021 enum sctp_xmit status; 1022 1023 /* Is it OK to send data chunks? */ 1024 switch (ctx->asoc->state) { 1025 case SCTP_STATE_COOKIE_ECHOED: 1026 /* Only allow bundling when this packet has a COOKIE-ECHO 1027 * chunk. 1028 */ 1029 if (!ctx->packet || !ctx->packet->has_cookie_echo) 1030 return; 1031 1032 /* fall through */ 1033 case SCTP_STATE_ESTABLISHED: 1034 case SCTP_STATE_SHUTDOWN_PENDING: 1035 case SCTP_STATE_SHUTDOWN_RECEIVED: 1036 break; 1037 1038 default: 1039 /* Do nothing. */ 1040 return; 1041 } 1042 1043 /* RFC 2960 6.1 Transmission of DATA Chunks 1044 * 1045 * C) When the time comes for the sender to transmit, 1046 * before sending new DATA chunks, the sender MUST 1047 * first transmit any outstanding DATA chunks which 1048 * are marked for retransmission (limited by the 1049 * current cwnd). 1050 */ 1051 if (!list_empty(&ctx->q->retransmit) && 1052 !sctp_outq_flush_rtx(ctx, rtx_timeout)) 1053 return; 1054 1055 /* Apply Max.Burst limitation to the current transport in 1056 * case it will be used for new data. We are going to 1057 * rest it before we return, but we want to apply the limit 1058 * to the currently queued data. 1059 */ 1060 if (ctx->transport) 1061 sctp_transport_burst_limited(ctx->transport); 1062 1063 /* Finally, transmit new packets. */ 1064 while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) { 1065 __u32 sid = ntohs(chunk->subh.data_hdr->stream); 1066 __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state; 1067 1068 /* Has this chunk expired? */ 1069 if (sctp_chunk_abandoned(chunk)) { 1070 sctp_sched_dequeue_done(ctx->q, chunk); 1071 sctp_chunk_fail(chunk, 0); 1072 sctp_chunk_free(chunk); 1073 continue; 1074 } 1075 1076 if (stream_state == SCTP_STREAM_CLOSED) { 1077 sctp_outq_head_data(ctx->q, chunk); 1078 break; 1079 } 1080 1081 sctp_outq_select_transport(ctx, chunk); 1082 1083 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n", 1084 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ? 1085 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : 1086 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn), 1087 chunk->skb ? chunk->skb->head : NULL, chunk->skb ? 1088 refcount_read(&chunk->skb->users) : -1); 1089 1090 /* Add the chunk to the packet. */ 1091 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0, 1092 ctx->gfp); 1093 if (status != SCTP_XMIT_OK) { 1094 /* We could not append this chunk, so put 1095 * the chunk back on the output queue. 1096 */ 1097 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n", 1098 __func__, ntohl(chunk->subh.data_hdr->tsn), 1099 status); 1100 1101 sctp_outq_head_data(ctx->q, chunk); 1102 break; 1103 } 1104 1105 /* The sender is in the SHUTDOWN-PENDING state, 1106 * The sender MAY set the I-bit in the DATA 1107 * chunk header. 1108 */ 1109 if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING) 1110 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM; 1111 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 1112 ctx->asoc->stats.ouodchunks++; 1113 else 1114 ctx->asoc->stats.oodchunks++; 1115 1116 /* Only now it's safe to consider this 1117 * chunk as sent, sched-wise. 1118 */ 1119 sctp_sched_dequeue_done(ctx->q, chunk); 1120 1121 list_add_tail(&chunk->transmitted_list, 1122 &ctx->transport->transmitted); 1123 1124 sctp_transport_reset_t3_rtx(ctx->transport); 1125 ctx->transport->last_time_sent = jiffies; 1126 1127 /* Only let one DATA chunk get bundled with a 1128 * COOKIE-ECHO chunk. 1129 */ 1130 if (ctx->packet->has_cookie_echo) 1131 break; 1132 } 1133 } 1134 1135 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx) 1136 { 1137 struct list_head *ltransport; 1138 struct sctp_packet *packet; 1139 struct sctp_transport *t; 1140 int error = 0; 1141 1142 while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) { 1143 t = list_entry(ltransport, struct sctp_transport, send_ready); 1144 packet = &t->packet; 1145 if (!sctp_packet_empty(packet)) { 1146 error = sctp_packet_transmit(packet, ctx->gfp); 1147 if (error < 0) 1148 ctx->q->asoc->base.sk->sk_err = -error; 1149 } 1150 1151 /* Clear the burst limited state, if any */ 1152 sctp_transport_burst_reset(t); 1153 } 1154 } 1155 1156 /* Try to flush an outqueue. 1157 * 1158 * Description: Send everything in q which we legally can, subject to 1159 * congestion limitations. 1160 * * Note: This function can be called from multiple contexts so appropriate 1161 * locking concerns must be made. Today we use the sock lock to protect 1162 * this function. 1163 */ 1164 1165 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp) 1166 { 1167 struct sctp_flush_ctx ctx = { 1168 .q = q, 1169 .transport = NULL, 1170 .transport_list = LIST_HEAD_INIT(ctx.transport_list), 1171 .asoc = q->asoc, 1172 .packet = NULL, 1173 .gfp = gfp, 1174 }; 1175 1176 /* 6.10 Bundling 1177 * ... 1178 * When bundling control chunks with DATA chunks, an 1179 * endpoint MUST place control chunks first in the outbound 1180 * SCTP packet. The transmitter MUST transmit DATA chunks 1181 * within a SCTP packet in increasing order of TSN. 1182 * ... 1183 */ 1184 1185 sctp_outq_flush_ctrl(&ctx); 1186 1187 if (q->asoc->src_out_of_asoc_ok) 1188 goto sctp_flush_out; 1189 1190 sctp_outq_flush_data(&ctx, rtx_timeout); 1191 1192 sctp_flush_out: 1193 1194 sctp_outq_flush_transports(&ctx); 1195 } 1196 1197 /* Update unack_data based on the incoming SACK chunk */ 1198 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 1199 struct sctp_sackhdr *sack) 1200 { 1201 union sctp_sack_variable *frags; 1202 __u16 unack_data; 1203 int i; 1204 1205 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 1206 1207 frags = sack->variable; 1208 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 1209 unack_data -= ((ntohs(frags[i].gab.end) - 1210 ntohs(frags[i].gab.start) + 1)); 1211 } 1212 1213 assoc->unack_data = unack_data; 1214 } 1215 1216 /* This is where we REALLY process a SACK. 1217 * 1218 * Process the SACK against the outqueue. Mostly, this just frees 1219 * things off the transmitted queue. 1220 */ 1221 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk) 1222 { 1223 struct sctp_association *asoc = q->asoc; 1224 struct sctp_sackhdr *sack = chunk->subh.sack_hdr; 1225 struct sctp_transport *transport; 1226 struct sctp_chunk *tchunk = NULL; 1227 struct list_head *lchunk, *transport_list, *temp; 1228 union sctp_sack_variable *frags = sack->variable; 1229 __u32 sack_ctsn, ctsn, tsn; 1230 __u32 highest_tsn, highest_new_tsn; 1231 __u32 sack_a_rwnd; 1232 unsigned int outstanding; 1233 struct sctp_transport *primary = asoc->peer.primary_path; 1234 int count_of_newacks = 0; 1235 int gap_ack_blocks; 1236 u8 accum_moved = 0; 1237 1238 /* Grab the association's destination address list. */ 1239 transport_list = &asoc->peer.transport_addr_list; 1240 1241 sack_ctsn = ntohl(sack->cum_tsn_ack); 1242 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks); 1243 asoc->stats.gapcnt += gap_ack_blocks; 1244 /* 1245 * SFR-CACC algorithm: 1246 * On receipt of a SACK the sender SHOULD execute the 1247 * following statements. 1248 * 1249 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1250 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1251 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1252 * all destinations. 1253 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1254 * is set the receiver of the SACK MUST take the following actions: 1255 * 1256 * A) Initialize the cacc_saw_newack to 0 for all destination 1257 * addresses. 1258 * 1259 * Only bother if changeover_active is set. Otherwise, this is 1260 * totally suboptimal to do on every SACK. 1261 */ 1262 if (primary->cacc.changeover_active) { 1263 u8 clear_cycling = 0; 1264 1265 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1266 primary->cacc.changeover_active = 0; 1267 clear_cycling = 1; 1268 } 1269 1270 if (clear_cycling || gap_ack_blocks) { 1271 list_for_each_entry(transport, transport_list, 1272 transports) { 1273 if (clear_cycling) 1274 transport->cacc.cycling_changeover = 0; 1275 if (gap_ack_blocks) 1276 transport->cacc.cacc_saw_newack = 0; 1277 } 1278 } 1279 } 1280 1281 /* Get the highest TSN in the sack. */ 1282 highest_tsn = sack_ctsn; 1283 if (gap_ack_blocks) 1284 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end); 1285 1286 if (TSN_lt(asoc->highest_sacked, highest_tsn)) 1287 asoc->highest_sacked = highest_tsn; 1288 1289 highest_new_tsn = sack_ctsn; 1290 1291 /* Run through the retransmit queue. Credit bytes received 1292 * and free those chunks that we can. 1293 */ 1294 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn); 1295 1296 /* Run through the transmitted queue. 1297 * Credit bytes received and free those chunks which we can. 1298 * 1299 * This is a MASSIVE candidate for optimization. 1300 */ 1301 list_for_each_entry(transport, transport_list, transports) { 1302 sctp_check_transmitted(q, &transport->transmitted, 1303 transport, &chunk->source, sack, 1304 &highest_new_tsn); 1305 /* 1306 * SFR-CACC algorithm: 1307 * C) Let count_of_newacks be the number of 1308 * destinations for which cacc_saw_newack is set. 1309 */ 1310 if (transport->cacc.cacc_saw_newack) 1311 count_of_newacks++; 1312 } 1313 1314 /* Move the Cumulative TSN Ack Point if appropriate. */ 1315 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) { 1316 asoc->ctsn_ack_point = sack_ctsn; 1317 accum_moved = 1; 1318 } 1319 1320 if (gap_ack_blocks) { 1321 1322 if (asoc->fast_recovery && accum_moved) 1323 highest_new_tsn = highest_tsn; 1324 1325 list_for_each_entry(transport, transport_list, transports) 1326 sctp_mark_missing(q, &transport->transmitted, transport, 1327 highest_new_tsn, count_of_newacks); 1328 } 1329 1330 /* Update unack_data field in the assoc. */ 1331 sctp_sack_update_unack_data(asoc, sack); 1332 1333 ctsn = asoc->ctsn_ack_point; 1334 1335 /* Throw away stuff rotting on the sack queue. */ 1336 list_for_each_safe(lchunk, temp, &q->sacked) { 1337 tchunk = list_entry(lchunk, struct sctp_chunk, 1338 transmitted_list); 1339 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1340 if (TSN_lte(tsn, ctsn)) { 1341 list_del_init(&tchunk->transmitted_list); 1342 if (asoc->peer.prsctp_capable && 1343 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) 1344 asoc->sent_cnt_removable--; 1345 sctp_chunk_free(tchunk); 1346 } 1347 } 1348 1349 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1350 * number of bytes still outstanding after processing the 1351 * Cumulative TSN Ack and the Gap Ack Blocks. 1352 */ 1353 1354 sack_a_rwnd = ntohl(sack->a_rwnd); 1355 asoc->peer.zero_window_announced = !sack_a_rwnd; 1356 outstanding = q->outstanding_bytes; 1357 1358 if (outstanding < sack_a_rwnd) 1359 sack_a_rwnd -= outstanding; 1360 else 1361 sack_a_rwnd = 0; 1362 1363 asoc->peer.rwnd = sack_a_rwnd; 1364 1365 asoc->stream.si->generate_ftsn(q, sack_ctsn); 1366 1367 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn); 1368 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, " 1369 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn, 1370 asoc->adv_peer_ack_point); 1371 1372 return sctp_outq_is_empty(q); 1373 } 1374 1375 /* Is the outqueue empty? 1376 * The queue is empty when we have not pending data, no in-flight data 1377 * and nothing pending retransmissions. 1378 */ 1379 int sctp_outq_is_empty(const struct sctp_outq *q) 1380 { 1381 return q->out_qlen == 0 && q->outstanding_bytes == 0 && 1382 list_empty(&q->retransmit); 1383 } 1384 1385 /******************************************************************** 1386 * 2nd Level Abstractions 1387 ********************************************************************/ 1388 1389 /* Go through a transport's transmitted list or the association's retransmit 1390 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1391 * The retransmit list will not have an associated transport. 1392 * 1393 * I added coherent debug information output. --xguo 1394 * 1395 * Instead of printing 'sacked' or 'kept' for each TSN on the 1396 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1397 * KEPT TSN6-TSN7, etc. 1398 */ 1399 static void sctp_check_transmitted(struct sctp_outq *q, 1400 struct list_head *transmitted_queue, 1401 struct sctp_transport *transport, 1402 union sctp_addr *saddr, 1403 struct sctp_sackhdr *sack, 1404 __u32 *highest_new_tsn_in_sack) 1405 { 1406 struct list_head *lchunk; 1407 struct sctp_chunk *tchunk; 1408 struct list_head tlist; 1409 __u32 tsn; 1410 __u32 sack_ctsn; 1411 __u32 rtt; 1412 __u8 restart_timer = 0; 1413 int bytes_acked = 0; 1414 int migrate_bytes = 0; 1415 bool forward_progress = false; 1416 1417 sack_ctsn = ntohl(sack->cum_tsn_ack); 1418 1419 INIT_LIST_HEAD(&tlist); 1420 1421 /* The while loop will skip empty transmitted queues. */ 1422 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1423 tchunk = list_entry(lchunk, struct sctp_chunk, 1424 transmitted_list); 1425 1426 if (sctp_chunk_abandoned(tchunk)) { 1427 /* Move the chunk to abandoned list. */ 1428 sctp_insert_list(&q->abandoned, lchunk); 1429 1430 /* If this chunk has not been acked, stop 1431 * considering it as 'outstanding'. 1432 */ 1433 if (transmitted_queue != &q->retransmit && 1434 !tchunk->tsn_gap_acked) { 1435 if (tchunk->transport) 1436 tchunk->transport->flight_size -= 1437 sctp_data_size(tchunk); 1438 q->outstanding_bytes -= sctp_data_size(tchunk); 1439 } 1440 continue; 1441 } 1442 1443 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1444 if (sctp_acked(sack, tsn)) { 1445 /* If this queue is the retransmit queue, the 1446 * retransmit timer has already reclaimed 1447 * the outstanding bytes for this chunk, so only 1448 * count bytes associated with a transport. 1449 */ 1450 if (transport && !tchunk->tsn_gap_acked) { 1451 /* If this chunk is being used for RTT 1452 * measurement, calculate the RTT and update 1453 * the RTO using this value. 1454 * 1455 * 6.3.1 C5) Karn's algorithm: RTT measurements 1456 * MUST NOT be made using packets that were 1457 * retransmitted (and thus for which it is 1458 * ambiguous whether the reply was for the 1459 * first instance of the packet or a later 1460 * instance). 1461 */ 1462 if (!sctp_chunk_retransmitted(tchunk) && 1463 tchunk->rtt_in_progress) { 1464 tchunk->rtt_in_progress = 0; 1465 rtt = jiffies - tchunk->sent_at; 1466 sctp_transport_update_rto(transport, 1467 rtt); 1468 } 1469 1470 if (TSN_lte(tsn, sack_ctsn)) { 1471 /* 1472 * SFR-CACC algorithm: 1473 * 2) If the SACK contains gap acks 1474 * and the flag CHANGEOVER_ACTIVE is 1475 * set the receiver of the SACK MUST 1476 * take the following action: 1477 * 1478 * B) For each TSN t being acked that 1479 * has not been acked in any SACK so 1480 * far, set cacc_saw_newack to 1 for 1481 * the destination that the TSN was 1482 * sent to. 1483 */ 1484 if (sack->num_gap_ack_blocks && 1485 q->asoc->peer.primary_path->cacc. 1486 changeover_active) 1487 transport->cacc.cacc_saw_newack 1488 = 1; 1489 } 1490 } 1491 1492 /* If the chunk hasn't been marked as ACKED, 1493 * mark it and account bytes_acked if the 1494 * chunk had a valid transport (it will not 1495 * have a transport if ASCONF had deleted it 1496 * while DATA was outstanding). 1497 */ 1498 if (!tchunk->tsn_gap_acked) { 1499 tchunk->tsn_gap_acked = 1; 1500 if (TSN_lt(*highest_new_tsn_in_sack, tsn)) 1501 *highest_new_tsn_in_sack = tsn; 1502 bytes_acked += sctp_data_size(tchunk); 1503 if (!tchunk->transport) 1504 migrate_bytes += sctp_data_size(tchunk); 1505 forward_progress = true; 1506 } 1507 1508 if (TSN_lte(tsn, sack_ctsn)) { 1509 /* RFC 2960 6.3.2 Retransmission Timer Rules 1510 * 1511 * R3) Whenever a SACK is received 1512 * that acknowledges the DATA chunk 1513 * with the earliest outstanding TSN 1514 * for that address, restart T3-rtx 1515 * timer for that address with its 1516 * current RTO. 1517 */ 1518 restart_timer = 1; 1519 forward_progress = true; 1520 1521 list_add_tail(&tchunk->transmitted_list, 1522 &q->sacked); 1523 } else { 1524 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1525 * M2) Each time a SACK arrives reporting 1526 * 'Stray DATA chunk(s)' record the highest TSN 1527 * reported as newly acknowledged, call this 1528 * value 'HighestTSNinSack'. A newly 1529 * acknowledged DATA chunk is one not 1530 * previously acknowledged in a SACK. 1531 * 1532 * When the SCTP sender of data receives a SACK 1533 * chunk that acknowledges, for the first time, 1534 * the receipt of a DATA chunk, all the still 1535 * unacknowledged DATA chunks whose TSN is 1536 * older than that newly acknowledged DATA 1537 * chunk, are qualified as 'Stray DATA chunks'. 1538 */ 1539 list_add_tail(lchunk, &tlist); 1540 } 1541 } else { 1542 if (tchunk->tsn_gap_acked) { 1543 pr_debug("%s: receiver reneged on data TSN:0x%x\n", 1544 __func__, tsn); 1545 1546 tchunk->tsn_gap_acked = 0; 1547 1548 if (tchunk->transport) 1549 bytes_acked -= sctp_data_size(tchunk); 1550 1551 /* RFC 2960 6.3.2 Retransmission Timer Rules 1552 * 1553 * R4) Whenever a SACK is received missing a 1554 * TSN that was previously acknowledged via a 1555 * Gap Ack Block, start T3-rtx for the 1556 * destination address to which the DATA 1557 * chunk was originally 1558 * transmitted if it is not already running. 1559 */ 1560 restart_timer = 1; 1561 } 1562 1563 list_add_tail(lchunk, &tlist); 1564 } 1565 } 1566 1567 if (transport) { 1568 if (bytes_acked) { 1569 struct sctp_association *asoc = transport->asoc; 1570 1571 /* We may have counted DATA that was migrated 1572 * to this transport due to DEL-IP operation. 1573 * Subtract those bytes, since the were never 1574 * send on this transport and shouldn't be 1575 * credited to this transport. 1576 */ 1577 bytes_acked -= migrate_bytes; 1578 1579 /* 8.2. When an outstanding TSN is acknowledged, 1580 * the endpoint shall clear the error counter of 1581 * the destination transport address to which the 1582 * DATA chunk was last sent. 1583 * The association's overall error counter is 1584 * also cleared. 1585 */ 1586 transport->error_count = 0; 1587 transport->asoc->overall_error_count = 0; 1588 forward_progress = true; 1589 1590 /* 1591 * While in SHUTDOWN PENDING, we may have started 1592 * the T5 shutdown guard timer after reaching the 1593 * retransmission limit. Stop that timer as soon 1594 * as the receiver acknowledged any data. 1595 */ 1596 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING && 1597 del_timer(&asoc->timers 1598 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD])) 1599 sctp_association_put(asoc); 1600 1601 /* Mark the destination transport address as 1602 * active if it is not so marked. 1603 */ 1604 if ((transport->state == SCTP_INACTIVE || 1605 transport->state == SCTP_UNCONFIRMED) && 1606 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) { 1607 sctp_assoc_control_transport( 1608 transport->asoc, 1609 transport, 1610 SCTP_TRANSPORT_UP, 1611 SCTP_RECEIVED_SACK); 1612 } 1613 1614 sctp_transport_raise_cwnd(transport, sack_ctsn, 1615 bytes_acked); 1616 1617 transport->flight_size -= bytes_acked; 1618 if (transport->flight_size == 0) 1619 transport->partial_bytes_acked = 0; 1620 q->outstanding_bytes -= bytes_acked + migrate_bytes; 1621 } else { 1622 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1623 * When a sender is doing zero window probing, it 1624 * should not timeout the association if it continues 1625 * to receive new packets from the receiver. The 1626 * reason is that the receiver MAY keep its window 1627 * closed for an indefinite time. 1628 * A sender is doing zero window probing when the 1629 * receiver's advertised window is zero, and there is 1630 * only one data chunk in flight to the receiver. 1631 * 1632 * Allow the association to timeout while in SHUTDOWN 1633 * PENDING or SHUTDOWN RECEIVED in case the receiver 1634 * stays in zero window mode forever. 1635 */ 1636 if (!q->asoc->peer.rwnd && 1637 !list_empty(&tlist) && 1638 (sack_ctsn+2 == q->asoc->next_tsn) && 1639 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) { 1640 pr_debug("%s: sack received for zero window " 1641 "probe:%u\n", __func__, sack_ctsn); 1642 1643 q->asoc->overall_error_count = 0; 1644 transport->error_count = 0; 1645 } 1646 } 1647 1648 /* RFC 2960 6.3.2 Retransmission Timer Rules 1649 * 1650 * R2) Whenever all outstanding data sent to an address have 1651 * been acknowledged, turn off the T3-rtx timer of that 1652 * address. 1653 */ 1654 if (!transport->flight_size) { 1655 if (del_timer(&transport->T3_rtx_timer)) 1656 sctp_transport_put(transport); 1657 } else if (restart_timer) { 1658 if (!mod_timer(&transport->T3_rtx_timer, 1659 jiffies + transport->rto)) 1660 sctp_transport_hold(transport); 1661 } 1662 1663 if (forward_progress) { 1664 if (transport->dst) 1665 sctp_transport_dst_confirm(transport); 1666 } 1667 } 1668 1669 list_splice(&tlist, transmitted_queue); 1670 } 1671 1672 /* Mark chunks as missing and consequently may get retransmitted. */ 1673 static void sctp_mark_missing(struct sctp_outq *q, 1674 struct list_head *transmitted_queue, 1675 struct sctp_transport *transport, 1676 __u32 highest_new_tsn_in_sack, 1677 int count_of_newacks) 1678 { 1679 struct sctp_chunk *chunk; 1680 __u32 tsn; 1681 char do_fast_retransmit = 0; 1682 struct sctp_association *asoc = q->asoc; 1683 struct sctp_transport *primary = asoc->peer.primary_path; 1684 1685 list_for_each_entry(chunk, transmitted_queue, transmitted_list) { 1686 1687 tsn = ntohl(chunk->subh.data_hdr->tsn); 1688 1689 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1690 * 'Unacknowledged TSN's', if the TSN number of an 1691 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1692 * value, increment the 'TSN.Missing.Report' count on that 1693 * chunk if it has NOT been fast retransmitted or marked for 1694 * fast retransmit already. 1695 */ 1696 if (chunk->fast_retransmit == SCTP_CAN_FRTX && 1697 !chunk->tsn_gap_acked && 1698 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1699 1700 /* SFR-CACC may require us to skip marking 1701 * this chunk as missing. 1702 */ 1703 if (!transport || !sctp_cacc_skip(primary, 1704 chunk->transport, 1705 count_of_newacks, tsn)) { 1706 chunk->tsn_missing_report++; 1707 1708 pr_debug("%s: tsn:0x%x missing counter:%d\n", 1709 __func__, tsn, chunk->tsn_missing_report); 1710 } 1711 } 1712 /* 1713 * M4) If any DATA chunk is found to have a 1714 * 'TSN.Missing.Report' 1715 * value larger than or equal to 3, mark that chunk for 1716 * retransmission and start the fast retransmit procedure. 1717 */ 1718 1719 if (chunk->tsn_missing_report >= 3) { 1720 chunk->fast_retransmit = SCTP_NEED_FRTX; 1721 do_fast_retransmit = 1; 1722 } 1723 } 1724 1725 if (transport) { 1726 if (do_fast_retransmit) 1727 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1728 1729 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, " 1730 "flight_size:%d, pba:%d\n", __func__, transport, 1731 transport->cwnd, transport->ssthresh, 1732 transport->flight_size, transport->partial_bytes_acked); 1733 } 1734 } 1735 1736 /* Is the given TSN acked by this packet? */ 1737 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1738 { 1739 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1740 union sctp_sack_variable *frags; 1741 __u16 tsn_offset, blocks; 1742 int i; 1743 1744 if (TSN_lte(tsn, ctsn)) 1745 goto pass; 1746 1747 /* 3.3.4 Selective Acknowledgment (SACK) (3): 1748 * 1749 * Gap Ack Blocks: 1750 * These fields contain the Gap Ack Blocks. They are repeated 1751 * for each Gap Ack Block up to the number of Gap Ack Blocks 1752 * defined in the Number of Gap Ack Blocks field. All DATA 1753 * chunks with TSNs greater than or equal to (Cumulative TSN 1754 * Ack + Gap Ack Block Start) and less than or equal to 1755 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1756 * Block are assumed to have been received correctly. 1757 */ 1758 1759 frags = sack->variable; 1760 blocks = ntohs(sack->num_gap_ack_blocks); 1761 tsn_offset = tsn - ctsn; 1762 for (i = 0; i < blocks; ++i) { 1763 if (tsn_offset >= ntohs(frags[i].gab.start) && 1764 tsn_offset <= ntohs(frags[i].gab.end)) 1765 goto pass; 1766 } 1767 1768 return 0; 1769 pass: 1770 return 1; 1771 } 1772 1773 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1774 int nskips, __be16 stream) 1775 { 1776 int i; 1777 1778 for (i = 0; i < nskips; i++) { 1779 if (skiplist[i].stream == stream) 1780 return i; 1781 } 1782 return i; 1783 } 1784 1785 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1786 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1787 { 1788 struct sctp_association *asoc = q->asoc; 1789 struct sctp_chunk *ftsn_chunk = NULL; 1790 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1791 int nskips = 0; 1792 int skip_pos = 0; 1793 __u32 tsn; 1794 struct sctp_chunk *chunk; 1795 struct list_head *lchunk, *temp; 1796 1797 if (!asoc->peer.prsctp_capable) 1798 return; 1799 1800 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1801 * received SACK. 1802 * 1803 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1804 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1805 */ 1806 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1807 asoc->adv_peer_ack_point = ctsn; 1808 1809 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1810 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1811 * the chunk next in the out-queue space is marked as "abandoned" as 1812 * shown in the following example: 1813 * 1814 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1815 * and the Advanced.Peer.Ack.Point is updated to this value: 1816 * 1817 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1818 * normal SACK processing local advancement 1819 * ... ... 1820 * Adv.Ack.Pt-> 102 acked 102 acked 1821 * 103 abandoned 103 abandoned 1822 * 104 abandoned Adv.Ack.P-> 104 abandoned 1823 * 105 105 1824 * 106 acked 106 acked 1825 * ... ... 1826 * 1827 * In this example, the data sender successfully advanced the 1828 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1829 */ 1830 list_for_each_safe(lchunk, temp, &q->abandoned) { 1831 chunk = list_entry(lchunk, struct sctp_chunk, 1832 transmitted_list); 1833 tsn = ntohl(chunk->subh.data_hdr->tsn); 1834 1835 /* Remove any chunks in the abandoned queue that are acked by 1836 * the ctsn. 1837 */ 1838 if (TSN_lte(tsn, ctsn)) { 1839 list_del_init(lchunk); 1840 sctp_chunk_free(chunk); 1841 } else { 1842 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1843 asoc->adv_peer_ack_point = tsn; 1844 if (chunk->chunk_hdr->flags & 1845 SCTP_DATA_UNORDERED) 1846 continue; 1847 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1848 nskips, 1849 chunk->subh.data_hdr->stream); 1850 ftsn_skip_arr[skip_pos].stream = 1851 chunk->subh.data_hdr->stream; 1852 ftsn_skip_arr[skip_pos].ssn = 1853 chunk->subh.data_hdr->ssn; 1854 if (skip_pos == nskips) 1855 nskips++; 1856 if (nskips == 10) 1857 break; 1858 } else 1859 break; 1860 } 1861 } 1862 1863 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1864 * is greater than the Cumulative TSN ACK carried in the received 1865 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1866 * chunk containing the latest value of the 1867 * "Advanced.Peer.Ack.Point". 1868 * 1869 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1870 * list each stream and sequence number in the forwarded TSN. This 1871 * information will enable the receiver to easily find any 1872 * stranded TSN's waiting on stream reorder queues. Each stream 1873 * SHOULD only be reported once; this means that if multiple 1874 * abandoned messages occur in the same stream then only the 1875 * highest abandoned stream sequence number is reported. If the 1876 * total size of the FORWARD TSN does NOT fit in a single MTU then 1877 * the sender of the FORWARD TSN SHOULD lower the 1878 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1879 * single MTU. 1880 */ 1881 if (asoc->adv_peer_ack_point > ctsn) 1882 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1883 nskips, &ftsn_skip_arr[0]); 1884 1885 if (ftsn_chunk) { 1886 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1887 SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS); 1888 } 1889 } 1890