xref: /linux/net/sctp/outqueue.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/types.h>
52 #include <linux/list.h>   /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/slab.h>
56 #include <net/sock.h>	  /* For skb_set_owner_w */
57 
58 #include <net/sctp/sctp.h>
59 #include <net/sctp/sm.h>
60 
61 /* Declare internal functions here.  */
62 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
63 static void sctp_check_transmitted(struct sctp_outq *q,
64 				   struct list_head *transmitted_queue,
65 				   struct sctp_transport *transport,
66 				   struct sctp_sackhdr *sack,
67 				   __u32 *highest_new_tsn);
68 
69 static void sctp_mark_missing(struct sctp_outq *q,
70 			      struct list_head *transmitted_queue,
71 			      struct sctp_transport *transport,
72 			      __u32 highest_new_tsn,
73 			      int count_of_newacks);
74 
75 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
76 
77 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
78 
79 /* Add data to the front of the queue. */
80 static inline void sctp_outq_head_data(struct sctp_outq *q,
81 					struct sctp_chunk *ch)
82 {
83 	list_add(&ch->list, &q->out_chunk_list);
84 	q->out_qlen += ch->skb->len;
85 }
86 
87 /* Take data from the front of the queue. */
88 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
89 {
90 	struct sctp_chunk *ch = NULL;
91 
92 	if (!list_empty(&q->out_chunk_list)) {
93 		struct list_head *entry = q->out_chunk_list.next;
94 
95 		ch = list_entry(entry, struct sctp_chunk, list);
96 		list_del_init(entry);
97 		q->out_qlen -= ch->skb->len;
98 	}
99 	return ch;
100 }
101 /* Add data chunk to the end of the queue. */
102 static inline void sctp_outq_tail_data(struct sctp_outq *q,
103 				       struct sctp_chunk *ch)
104 {
105 	list_add_tail(&ch->list, &q->out_chunk_list);
106 	q->out_qlen += ch->skb->len;
107 }
108 
109 /*
110  * SFR-CACC algorithm:
111  * D) If count_of_newacks is greater than or equal to 2
112  * and t was not sent to the current primary then the
113  * sender MUST NOT increment missing report count for t.
114  */
115 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
116 				       struct sctp_transport *transport,
117 				       int count_of_newacks)
118 {
119 	if (count_of_newacks >=2 && transport != primary)
120 		return 1;
121 	return 0;
122 }
123 
124 /*
125  * SFR-CACC algorithm:
126  * F) If count_of_newacks is less than 2, let d be the
127  * destination to which t was sent. If cacc_saw_newack
128  * is 0 for destination d, then the sender MUST NOT
129  * increment missing report count for t.
130  */
131 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
132 				       int count_of_newacks)
133 {
134 	if (count_of_newacks < 2 &&
135 			(transport && !transport->cacc.cacc_saw_newack))
136 		return 1;
137 	return 0;
138 }
139 
140 /*
141  * SFR-CACC algorithm:
142  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
143  * execute steps C, D, F.
144  *
145  * C has been implemented in sctp_outq_sack
146  */
147 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
148 				     struct sctp_transport *transport,
149 				     int count_of_newacks)
150 {
151 	if (!primary->cacc.cycling_changeover) {
152 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
153 			return 1;
154 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
155 			return 1;
156 		return 0;
157 	}
158 	return 0;
159 }
160 
161 /*
162  * SFR-CACC algorithm:
163  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
164  * than next_tsn_at_change of the current primary, then
165  * the sender MUST NOT increment missing report count
166  * for t.
167  */
168 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
169 {
170 	if (primary->cacc.cycling_changeover &&
171 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
172 		return 1;
173 	return 0;
174 }
175 
176 /*
177  * SFR-CACC algorithm:
178  * 3) If the missing report count for TSN t is to be
179  * incremented according to [RFC2960] and
180  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
181  * then the sender MUST further execute steps 3.1 and
182  * 3.2 to determine if the missing report count for
183  * TSN t SHOULD NOT be incremented.
184  *
185  * 3.3) If 3.1 and 3.2 do not dictate that the missing
186  * report count for t should not be incremented, then
187  * the sender SHOULD increment missing report count for
188  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
189  */
190 static inline int sctp_cacc_skip(struct sctp_transport *primary,
191 				 struct sctp_transport *transport,
192 				 int count_of_newacks,
193 				 __u32 tsn)
194 {
195 	if (primary->cacc.changeover_active &&
196 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
197 	     sctp_cacc_skip_3_2(primary, tsn)))
198 		return 1;
199 	return 0;
200 }
201 
202 /* Initialize an existing sctp_outq.  This does the boring stuff.
203  * You still need to define handlers if you really want to DO
204  * something with this structure...
205  */
206 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
207 {
208 	q->asoc = asoc;
209 	INIT_LIST_HEAD(&q->out_chunk_list);
210 	INIT_LIST_HEAD(&q->control_chunk_list);
211 	INIT_LIST_HEAD(&q->retransmit);
212 	INIT_LIST_HEAD(&q->sacked);
213 	INIT_LIST_HEAD(&q->abandoned);
214 
215 	q->fast_rtx = 0;
216 	q->outstanding_bytes = 0;
217 	q->empty = 1;
218 	q->cork  = 0;
219 
220 	q->malloced = 0;
221 	q->out_qlen = 0;
222 }
223 
224 /* Free the outqueue structure and any related pending chunks.
225  */
226 void sctp_outq_teardown(struct sctp_outq *q)
227 {
228 	struct sctp_transport *transport;
229 	struct list_head *lchunk, *temp;
230 	struct sctp_chunk *chunk, *tmp;
231 
232 	/* Throw away unacknowledged chunks. */
233 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
234 			transports) {
235 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
236 			chunk = list_entry(lchunk, struct sctp_chunk,
237 					   transmitted_list);
238 			/* Mark as part of a failed message. */
239 			sctp_chunk_fail(chunk, q->error);
240 			sctp_chunk_free(chunk);
241 		}
242 	}
243 
244 	/* Throw away chunks that have been gap ACKed.  */
245 	list_for_each_safe(lchunk, temp, &q->sacked) {
246 		list_del_init(lchunk);
247 		chunk = list_entry(lchunk, struct sctp_chunk,
248 				   transmitted_list);
249 		sctp_chunk_fail(chunk, q->error);
250 		sctp_chunk_free(chunk);
251 	}
252 
253 	/* Throw away any chunks in the retransmit queue. */
254 	list_for_each_safe(lchunk, temp, &q->retransmit) {
255 		list_del_init(lchunk);
256 		chunk = list_entry(lchunk, struct sctp_chunk,
257 				   transmitted_list);
258 		sctp_chunk_fail(chunk, q->error);
259 		sctp_chunk_free(chunk);
260 	}
261 
262 	/* Throw away any chunks that are in the abandoned queue. */
263 	list_for_each_safe(lchunk, temp, &q->abandoned) {
264 		list_del_init(lchunk);
265 		chunk = list_entry(lchunk, struct sctp_chunk,
266 				   transmitted_list);
267 		sctp_chunk_fail(chunk, q->error);
268 		sctp_chunk_free(chunk);
269 	}
270 
271 	/* Throw away any leftover data chunks. */
272 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
273 
274 		/* Mark as send failure. */
275 		sctp_chunk_fail(chunk, q->error);
276 		sctp_chunk_free(chunk);
277 	}
278 
279 	q->error = 0;
280 
281 	/* Throw away any leftover control chunks. */
282 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
283 		list_del_init(&chunk->list);
284 		sctp_chunk_free(chunk);
285 	}
286 }
287 
288 /* Free the outqueue structure and any related pending chunks.  */
289 void sctp_outq_free(struct sctp_outq *q)
290 {
291 	/* Throw away leftover chunks. */
292 	sctp_outq_teardown(q);
293 
294 	/* If we were kmalloc()'d, free the memory.  */
295 	if (q->malloced)
296 		kfree(q);
297 }
298 
299 /* Put a new chunk in an sctp_outq.  */
300 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
301 {
302 	int error = 0;
303 
304 	SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
305 			  q, chunk, chunk && chunk->chunk_hdr ?
306 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
307 			  : "Illegal Chunk");
308 
309 	/* If it is data, queue it up, otherwise, send it
310 	 * immediately.
311 	 */
312 	if (sctp_chunk_is_data(chunk)) {
313 		/* Is it OK to queue data chunks?  */
314 		/* From 9. Termination of Association
315 		 *
316 		 * When either endpoint performs a shutdown, the
317 		 * association on each peer will stop accepting new
318 		 * data from its user and only deliver data in queue
319 		 * at the time of sending or receiving the SHUTDOWN
320 		 * chunk.
321 		 */
322 		switch (q->asoc->state) {
323 		case SCTP_STATE_CLOSED:
324 		case SCTP_STATE_SHUTDOWN_PENDING:
325 		case SCTP_STATE_SHUTDOWN_SENT:
326 		case SCTP_STATE_SHUTDOWN_RECEIVED:
327 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
328 			/* Cannot send after transport endpoint shutdown */
329 			error = -ESHUTDOWN;
330 			break;
331 
332 		default:
333 			SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
334 			  q, chunk, chunk && chunk->chunk_hdr ?
335 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
336 			  : "Illegal Chunk");
337 
338 			sctp_outq_tail_data(q, chunk);
339 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
340 				SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
341 			else
342 				SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
343 			q->empty = 0;
344 			break;
345 		}
346 	} else {
347 		list_add_tail(&chunk->list, &q->control_chunk_list);
348 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
349 	}
350 
351 	if (error < 0)
352 		return error;
353 
354 	if (!q->cork)
355 		error = sctp_outq_flush(q, 0);
356 
357 	return error;
358 }
359 
360 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
361  * and the abandoned list are in ascending order.
362  */
363 static void sctp_insert_list(struct list_head *head, struct list_head *new)
364 {
365 	struct list_head *pos;
366 	struct sctp_chunk *nchunk, *lchunk;
367 	__u32 ntsn, ltsn;
368 	int done = 0;
369 
370 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
371 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
372 
373 	list_for_each(pos, head) {
374 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
375 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
376 		if (TSN_lt(ntsn, ltsn)) {
377 			list_add(new, pos->prev);
378 			done = 1;
379 			break;
380 		}
381 	}
382 	if (!done)
383 		list_add_tail(new, head);
384 }
385 
386 /* Mark all the eligible packets on a transport for retransmission.  */
387 void sctp_retransmit_mark(struct sctp_outq *q,
388 			  struct sctp_transport *transport,
389 			  __u8 reason)
390 {
391 	struct list_head *lchunk, *ltemp;
392 	struct sctp_chunk *chunk;
393 
394 	/* Walk through the specified transmitted queue.  */
395 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
396 		chunk = list_entry(lchunk, struct sctp_chunk,
397 				   transmitted_list);
398 
399 		/* If the chunk is abandoned, move it to abandoned list. */
400 		if (sctp_chunk_abandoned(chunk)) {
401 			list_del_init(lchunk);
402 			sctp_insert_list(&q->abandoned, lchunk);
403 
404 			/* If this chunk has not been previousely acked,
405 			 * stop considering it 'outstanding'.  Our peer
406 			 * will most likely never see it since it will
407 			 * not be retransmitted
408 			 */
409 			if (!chunk->tsn_gap_acked) {
410 				if (chunk->transport)
411 					chunk->transport->flight_size -=
412 							sctp_data_size(chunk);
413 				q->outstanding_bytes -= sctp_data_size(chunk);
414 				q->asoc->peer.rwnd += (sctp_data_size(chunk) +
415 							sizeof(struct sk_buff));
416 			}
417 			continue;
418 		}
419 
420 		/* If we are doing  retransmission due to a timeout or pmtu
421 		 * discovery, only the  chunks that are not yet acked should
422 		 * be added to the retransmit queue.
423 		 */
424 		if ((reason == SCTP_RTXR_FAST_RTX  &&
425 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
426 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
427 			/* RFC 2960 6.2.1 Processing a Received SACK
428 			 *
429 			 * C) Any time a DATA chunk is marked for
430 			 * retransmission (via either T3-rtx timer expiration
431 			 * (Section 6.3.3) or via fast retransmit
432 			 * (Section 7.2.4)), add the data size of those
433 			 * chunks to the rwnd.
434 			 */
435 			q->asoc->peer.rwnd += (sctp_data_size(chunk) +
436 						sizeof(struct sk_buff));
437 			q->outstanding_bytes -= sctp_data_size(chunk);
438 			if (chunk->transport)
439 				transport->flight_size -= sctp_data_size(chunk);
440 
441 			/* sctpimpguide-05 Section 2.8.2
442 			 * M5) If a T3-rtx timer expires, the
443 			 * 'TSN.Missing.Report' of all affected TSNs is set
444 			 * to 0.
445 			 */
446 			chunk->tsn_missing_report = 0;
447 
448 			/* If a chunk that is being used for RTT measurement
449 			 * has to be retransmitted, we cannot use this chunk
450 			 * anymore for RTT measurements. Reset rto_pending so
451 			 * that a new RTT measurement is started when a new
452 			 * data chunk is sent.
453 			 */
454 			if (chunk->rtt_in_progress) {
455 				chunk->rtt_in_progress = 0;
456 				transport->rto_pending = 0;
457 			}
458 
459 			/* Move the chunk to the retransmit queue. The chunks
460 			 * on the retransmit queue are always kept in order.
461 			 */
462 			list_del_init(lchunk);
463 			sctp_insert_list(&q->retransmit, lchunk);
464 		}
465 	}
466 
467 	SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
468 			  "cwnd: %d, ssthresh: %d, flight_size: %d, "
469 			  "pba: %d\n", __func__,
470 			  transport, reason,
471 			  transport->cwnd, transport->ssthresh,
472 			  transport->flight_size,
473 			  transport->partial_bytes_acked);
474 
475 }
476 
477 /* Mark all the eligible packets on a transport for retransmission and force
478  * one packet out.
479  */
480 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
481 		     sctp_retransmit_reason_t reason)
482 {
483 	int error = 0;
484 
485 	switch(reason) {
486 	case SCTP_RTXR_T3_RTX:
487 		SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
488 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
489 		/* Update the retran path if the T3-rtx timer has expired for
490 		 * the current retran path.
491 		 */
492 		if (transport == transport->asoc->peer.retran_path)
493 			sctp_assoc_update_retran_path(transport->asoc);
494 		transport->asoc->rtx_data_chunks +=
495 			transport->asoc->unack_data;
496 		break;
497 	case SCTP_RTXR_FAST_RTX:
498 		SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
499 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
500 		q->fast_rtx = 1;
501 		break;
502 	case SCTP_RTXR_PMTUD:
503 		SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
504 		break;
505 	case SCTP_RTXR_T1_RTX:
506 		SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS);
507 		transport->asoc->init_retries++;
508 		break;
509 	default:
510 		BUG();
511 	}
512 
513 	sctp_retransmit_mark(q, transport, reason);
514 
515 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
516 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
517 	 * following the procedures outlined in C1 - C5.
518 	 */
519 	if (reason == SCTP_RTXR_T3_RTX)
520 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
521 
522 	/* Flush the queues only on timeout, since fast_rtx is only
523 	 * triggered during sack processing and the queue
524 	 * will be flushed at the end.
525 	 */
526 	if (reason != SCTP_RTXR_FAST_RTX)
527 		error = sctp_outq_flush(q, /* rtx_timeout */ 1);
528 
529 	if (error)
530 		q->asoc->base.sk->sk_err = -error;
531 }
532 
533 /*
534  * Transmit DATA chunks on the retransmit queue.  Upon return from
535  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
536  * need to be transmitted by the caller.
537  * We assume that pkt->transport has already been set.
538  *
539  * The return value is a normal kernel error return value.
540  */
541 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
542 			       int rtx_timeout, int *start_timer)
543 {
544 	struct list_head *lqueue;
545 	struct sctp_transport *transport = pkt->transport;
546 	sctp_xmit_t status;
547 	struct sctp_chunk *chunk, *chunk1;
548 	int fast_rtx;
549 	int error = 0;
550 	int timer = 0;
551 	int done = 0;
552 
553 	lqueue = &q->retransmit;
554 	fast_rtx = q->fast_rtx;
555 
556 	/* This loop handles time-out retransmissions, fast retransmissions,
557 	 * and retransmissions due to opening of whindow.
558 	 *
559 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
560 	 *
561 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
562 	 * outstanding DATA chunks for the address for which the
563 	 * T3-rtx has expired will fit into a single packet, subject
564 	 * to the MTU constraint for the path corresponding to the
565 	 * destination transport address to which the retransmission
566 	 * is being sent (this may be different from the address for
567 	 * which the timer expires [see Section 6.4]). Call this value
568 	 * K. Bundle and retransmit those K DATA chunks in a single
569 	 * packet to the destination endpoint.
570 	 *
571 	 * [Just to be painfully clear, if we are retransmitting
572 	 * because a timeout just happened, we should send only ONE
573 	 * packet of retransmitted data.]
574 	 *
575 	 * For fast retransmissions we also send only ONE packet.  However,
576 	 * if we are just flushing the queue due to open window, we'll
577 	 * try to send as much as possible.
578 	 */
579 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
580 		/* If the chunk is abandoned, move it to abandoned list. */
581 		if (sctp_chunk_abandoned(chunk)) {
582 			list_del_init(&chunk->transmitted_list);
583 			sctp_insert_list(&q->abandoned,
584 					 &chunk->transmitted_list);
585 			continue;
586 		}
587 
588 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
589 		 * simple approach is just to move such TSNs out of the
590 		 * way and into a 'transmitted' queue and skip to the
591 		 * next chunk.
592 		 */
593 		if (chunk->tsn_gap_acked) {
594 			list_del(&chunk->transmitted_list);
595 			list_add_tail(&chunk->transmitted_list,
596 					&transport->transmitted);
597 			continue;
598 		}
599 
600 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
601 		 * chunks
602 		 */
603 		if (fast_rtx && !chunk->fast_retransmit)
604 			continue;
605 
606 redo:
607 		/* Attempt to append this chunk to the packet. */
608 		status = sctp_packet_append_chunk(pkt, chunk);
609 
610 		switch (status) {
611 		case SCTP_XMIT_PMTU_FULL:
612 			if (!pkt->has_data && !pkt->has_cookie_echo) {
613 				/* If this packet did not contain DATA then
614 				 * retransmission did not happen, so do it
615 				 * again.  We'll ignore the error here since
616 				 * control chunks are already freed so there
617 				 * is nothing we can do.
618 				 */
619 				sctp_packet_transmit(pkt);
620 				goto redo;
621 			}
622 
623 			/* Send this packet.  */
624 			error = sctp_packet_transmit(pkt);
625 
626 			/* If we are retransmitting, we should only
627 			 * send a single packet.
628 			 * Otherwise, try appending this chunk again.
629 			 */
630 			if (rtx_timeout || fast_rtx)
631 				done = 1;
632 			else
633 				goto redo;
634 
635 			/* Bundle next chunk in the next round.  */
636 			break;
637 
638 		case SCTP_XMIT_RWND_FULL:
639 			/* Send this packet. */
640 			error = sctp_packet_transmit(pkt);
641 
642 			/* Stop sending DATA as there is no more room
643 			 * at the receiver.
644 			 */
645 			done = 1;
646 			break;
647 
648 		case SCTP_XMIT_NAGLE_DELAY:
649 			/* Send this packet. */
650 			error = sctp_packet_transmit(pkt);
651 
652 			/* Stop sending DATA because of nagle delay. */
653 			done = 1;
654 			break;
655 
656 		default:
657 			/* The append was successful, so add this chunk to
658 			 * the transmitted list.
659 			 */
660 			list_del(&chunk->transmitted_list);
661 			list_add_tail(&chunk->transmitted_list,
662 					&transport->transmitted);
663 
664 			/* Mark the chunk as ineligible for fast retransmit
665 			 * after it is retransmitted.
666 			 */
667 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
668 				chunk->fast_retransmit = SCTP_DONT_FRTX;
669 
670 			q->empty = 0;
671 			break;
672 		}
673 
674 		/* Set the timer if there were no errors */
675 		if (!error && !timer)
676 			timer = 1;
677 
678 		if (done)
679 			break;
680 	}
681 
682 	/* If we are here due to a retransmit timeout or a fast
683 	 * retransmit and if there are any chunks left in the retransmit
684 	 * queue that could not fit in the PMTU sized packet, they need
685 	 * to be marked as ineligible for a subsequent fast retransmit.
686 	 */
687 	if (rtx_timeout || fast_rtx) {
688 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
689 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
690 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
691 		}
692 	}
693 
694 	*start_timer = timer;
695 
696 	/* Clear fast retransmit hint */
697 	if (fast_rtx)
698 		q->fast_rtx = 0;
699 
700 	return error;
701 }
702 
703 /* Cork the outqueue so queued chunks are really queued. */
704 int sctp_outq_uncork(struct sctp_outq *q)
705 {
706 	int error = 0;
707 	if (q->cork)
708 		q->cork = 0;
709 	error = sctp_outq_flush(q, 0);
710 	return error;
711 }
712 
713 
714 /*
715  * Try to flush an outqueue.
716  *
717  * Description: Send everything in q which we legally can, subject to
718  * congestion limitations.
719  * * Note: This function can be called from multiple contexts so appropriate
720  * locking concerns must be made.  Today we use the sock lock to protect
721  * this function.
722  */
723 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
724 {
725 	struct sctp_packet *packet;
726 	struct sctp_packet singleton;
727 	struct sctp_association *asoc = q->asoc;
728 	__u16 sport = asoc->base.bind_addr.port;
729 	__u16 dport = asoc->peer.port;
730 	__u32 vtag = asoc->peer.i.init_tag;
731 	struct sctp_transport *transport = NULL;
732 	struct sctp_transport *new_transport;
733 	struct sctp_chunk *chunk, *tmp;
734 	sctp_xmit_t status;
735 	int error = 0;
736 	int start_timer = 0;
737 	int one_packet = 0;
738 
739 	/* These transports have chunks to send. */
740 	struct list_head transport_list;
741 	struct list_head *ltransport;
742 
743 	INIT_LIST_HEAD(&transport_list);
744 	packet = NULL;
745 
746 	/*
747 	 * 6.10 Bundling
748 	 *   ...
749 	 *   When bundling control chunks with DATA chunks, an
750 	 *   endpoint MUST place control chunks first in the outbound
751 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
752 	 *   within a SCTP packet in increasing order of TSN.
753 	 *   ...
754 	 */
755 
756 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
757 		/* RFC 5061, 5.3
758 		 * F1) This means that until such time as the ASCONF
759 		 * containing the add is acknowledged, the sender MUST
760 		 * NOT use the new IP address as a source for ANY SCTP
761 		 * packet except on carrying an ASCONF Chunk.
762 		 */
763 		if (asoc->src_out_of_asoc_ok &&
764 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
765 			continue;
766 
767 		list_del_init(&chunk->list);
768 
769 		/* Pick the right transport to use. */
770 		new_transport = chunk->transport;
771 
772 		if (!new_transport) {
773 			/*
774 			 * If we have a prior transport pointer, see if
775 			 * the destination address of the chunk
776 			 * matches the destination address of the
777 			 * current transport.  If not a match, then
778 			 * try to look up the transport with a given
779 			 * destination address.  We do this because
780 			 * after processing ASCONFs, we may have new
781 			 * transports created.
782 			 */
783 			if (transport &&
784 			    sctp_cmp_addr_exact(&chunk->dest,
785 						&transport->ipaddr))
786 					new_transport = transport;
787 			else
788 				new_transport = sctp_assoc_lookup_paddr(asoc,
789 								&chunk->dest);
790 
791 			/* if we still don't have a new transport, then
792 			 * use the current active path.
793 			 */
794 			if (!new_transport)
795 				new_transport = asoc->peer.active_path;
796 		} else if ((new_transport->state == SCTP_INACTIVE) ||
797 			   (new_transport->state == SCTP_UNCONFIRMED)) {
798 			/* If the chunk is Heartbeat or Heartbeat Ack,
799 			 * send it to chunk->transport, even if it's
800 			 * inactive.
801 			 *
802 			 * 3.3.6 Heartbeat Acknowledgement:
803 			 * ...
804 			 * A HEARTBEAT ACK is always sent to the source IP
805 			 * address of the IP datagram containing the
806 			 * HEARTBEAT chunk to which this ack is responding.
807 			 * ...
808 			 *
809 			 * ASCONF_ACKs also must be sent to the source.
810 			 */
811 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
812 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
813 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
814 				new_transport = asoc->peer.active_path;
815 		}
816 
817 		/* Are we switching transports?
818 		 * Take care of transport locks.
819 		 */
820 		if (new_transport != transport) {
821 			transport = new_transport;
822 			if (list_empty(&transport->send_ready)) {
823 				list_add_tail(&transport->send_ready,
824 					      &transport_list);
825 			}
826 			packet = &transport->packet;
827 			sctp_packet_config(packet, vtag,
828 					   asoc->peer.ecn_capable);
829 		}
830 
831 		switch (chunk->chunk_hdr->type) {
832 		/*
833 		 * 6.10 Bundling
834 		 *   ...
835 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
836 		 *   COMPLETE with any other chunks.  [Send them immediately.]
837 		 */
838 		case SCTP_CID_INIT:
839 		case SCTP_CID_INIT_ACK:
840 		case SCTP_CID_SHUTDOWN_COMPLETE:
841 			sctp_packet_init(&singleton, transport, sport, dport);
842 			sctp_packet_config(&singleton, vtag, 0);
843 			sctp_packet_append_chunk(&singleton, chunk);
844 			error = sctp_packet_transmit(&singleton);
845 			if (error < 0)
846 				return error;
847 			break;
848 
849 		case SCTP_CID_ABORT:
850 			if (sctp_test_T_bit(chunk)) {
851 				packet->vtag = asoc->c.my_vtag;
852 			}
853 		/* The following chunks are "response" chunks, i.e.
854 		 * they are generated in response to something we
855 		 * received.  If we are sending these, then we can
856 		 * send only 1 packet containing these chunks.
857 		 */
858 		case SCTP_CID_HEARTBEAT_ACK:
859 		case SCTP_CID_SHUTDOWN_ACK:
860 		case SCTP_CID_COOKIE_ACK:
861 		case SCTP_CID_COOKIE_ECHO:
862 		case SCTP_CID_ERROR:
863 		case SCTP_CID_ECN_CWR:
864 		case SCTP_CID_ASCONF_ACK:
865 			one_packet = 1;
866 			/* Fall through */
867 
868 		case SCTP_CID_SACK:
869 		case SCTP_CID_HEARTBEAT:
870 		case SCTP_CID_SHUTDOWN:
871 		case SCTP_CID_ECN_ECNE:
872 		case SCTP_CID_ASCONF:
873 		case SCTP_CID_FWD_TSN:
874 			status = sctp_packet_transmit_chunk(packet, chunk,
875 							    one_packet);
876 			if (status  != SCTP_XMIT_OK) {
877 				/* put the chunk back */
878 				list_add(&chunk->list, &q->control_chunk_list);
879 			} else if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
880 				/* PR-SCTP C5) If a FORWARD TSN is sent, the
881 				 * sender MUST assure that at least one T3-rtx
882 				 * timer is running.
883 				 */
884 				sctp_transport_reset_timers(transport);
885 			}
886 			break;
887 
888 		default:
889 			/* We built a chunk with an illegal type! */
890 			BUG();
891 		}
892 	}
893 
894 	if (q->asoc->src_out_of_asoc_ok)
895 		goto sctp_flush_out;
896 
897 	/* Is it OK to send data chunks?  */
898 	switch (asoc->state) {
899 	case SCTP_STATE_COOKIE_ECHOED:
900 		/* Only allow bundling when this packet has a COOKIE-ECHO
901 		 * chunk.
902 		 */
903 		if (!packet || !packet->has_cookie_echo)
904 			break;
905 
906 		/* fallthru */
907 	case SCTP_STATE_ESTABLISHED:
908 	case SCTP_STATE_SHUTDOWN_PENDING:
909 	case SCTP_STATE_SHUTDOWN_RECEIVED:
910 		/*
911 		 * RFC 2960 6.1  Transmission of DATA Chunks
912 		 *
913 		 * C) When the time comes for the sender to transmit,
914 		 * before sending new DATA chunks, the sender MUST
915 		 * first transmit any outstanding DATA chunks which
916 		 * are marked for retransmission (limited by the
917 		 * current cwnd).
918 		 */
919 		if (!list_empty(&q->retransmit)) {
920 			if (transport == asoc->peer.retran_path)
921 				goto retran;
922 
923 			/* Switch transports & prepare the packet.  */
924 
925 			transport = asoc->peer.retran_path;
926 
927 			if (list_empty(&transport->send_ready)) {
928 				list_add_tail(&transport->send_ready,
929 					      &transport_list);
930 			}
931 
932 			packet = &transport->packet;
933 			sctp_packet_config(packet, vtag,
934 					   asoc->peer.ecn_capable);
935 		retran:
936 			error = sctp_outq_flush_rtx(q, packet,
937 						    rtx_timeout, &start_timer);
938 
939 			if (start_timer)
940 				sctp_transport_reset_timers(transport);
941 
942 			/* This can happen on COOKIE-ECHO resend.  Only
943 			 * one chunk can get bundled with a COOKIE-ECHO.
944 			 */
945 			if (packet->has_cookie_echo)
946 				goto sctp_flush_out;
947 
948 			/* Don't send new data if there is still data
949 			 * waiting to retransmit.
950 			 */
951 			if (!list_empty(&q->retransmit))
952 				goto sctp_flush_out;
953 		}
954 
955 		/* Apply Max.Burst limitation to the current transport in
956 		 * case it will be used for new data.  We are going to
957 		 * rest it before we return, but we want to apply the limit
958 		 * to the currently queued data.
959 		 */
960 		if (transport)
961 			sctp_transport_burst_limited(transport);
962 
963 		/* Finally, transmit new packets.  */
964 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
965 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
966 			 * stream identifier.
967 			 */
968 			if (chunk->sinfo.sinfo_stream >=
969 			    asoc->c.sinit_num_ostreams) {
970 
971 				/* Mark as failed send. */
972 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
973 				sctp_chunk_free(chunk);
974 				continue;
975 			}
976 
977 			/* Has this chunk expired? */
978 			if (sctp_chunk_abandoned(chunk)) {
979 				sctp_chunk_fail(chunk, 0);
980 				sctp_chunk_free(chunk);
981 				continue;
982 			}
983 
984 			/* If there is a specified transport, use it.
985 			 * Otherwise, we want to use the active path.
986 			 */
987 			new_transport = chunk->transport;
988 			if (!new_transport ||
989 			    ((new_transport->state == SCTP_INACTIVE) ||
990 			     (new_transport->state == SCTP_UNCONFIRMED)))
991 				new_transport = asoc->peer.active_path;
992 
993 			/* Change packets if necessary.  */
994 			if (new_transport != transport) {
995 				transport = new_transport;
996 
997 				/* Schedule to have this transport's
998 				 * packet flushed.
999 				 */
1000 				if (list_empty(&transport->send_ready)) {
1001 					list_add_tail(&transport->send_ready,
1002 						      &transport_list);
1003 				}
1004 
1005 				packet = &transport->packet;
1006 				sctp_packet_config(packet, vtag,
1007 						   asoc->peer.ecn_capable);
1008 				/* We've switched transports, so apply the
1009 				 * Burst limit to the new transport.
1010 				 */
1011 				sctp_transport_burst_limited(transport);
1012 			}
1013 
1014 			SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
1015 					  q, chunk,
1016 					  chunk && chunk->chunk_hdr ?
1017 					  sctp_cname(SCTP_ST_CHUNK(
1018 						  chunk->chunk_hdr->type))
1019 					  : "Illegal Chunk");
1020 
1021 			SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
1022 					"%p skb->users %d.\n",
1023 					ntohl(chunk->subh.data_hdr->tsn),
1024 					chunk->skb ?chunk->skb->head : NULL,
1025 					chunk->skb ?
1026 					atomic_read(&chunk->skb->users) : -1);
1027 
1028 			/* Add the chunk to the packet.  */
1029 			status = sctp_packet_transmit_chunk(packet, chunk, 0);
1030 
1031 			switch (status) {
1032 			case SCTP_XMIT_PMTU_FULL:
1033 			case SCTP_XMIT_RWND_FULL:
1034 			case SCTP_XMIT_NAGLE_DELAY:
1035 				/* We could not append this chunk, so put
1036 				 * the chunk back on the output queue.
1037 				 */
1038 				SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1039 					"not transmit TSN: 0x%x, status: %d\n",
1040 					ntohl(chunk->subh.data_hdr->tsn),
1041 					status);
1042 				sctp_outq_head_data(q, chunk);
1043 				goto sctp_flush_out;
1044 				break;
1045 
1046 			case SCTP_XMIT_OK:
1047 				/* The sender is in the SHUTDOWN-PENDING state,
1048 				 * The sender MAY set the I-bit in the DATA
1049 				 * chunk header.
1050 				 */
1051 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1052 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1053 
1054 				break;
1055 
1056 			default:
1057 				BUG();
1058 			}
1059 
1060 			/* BUG: We assume that the sctp_packet_transmit()
1061 			 * call below will succeed all the time and add the
1062 			 * chunk to the transmitted list and restart the
1063 			 * timers.
1064 			 * It is possible that the call can fail under OOM
1065 			 * conditions.
1066 			 *
1067 			 * Is this really a problem?  Won't this behave
1068 			 * like a lost TSN?
1069 			 */
1070 			list_add_tail(&chunk->transmitted_list,
1071 				      &transport->transmitted);
1072 
1073 			sctp_transport_reset_timers(transport);
1074 
1075 			q->empty = 0;
1076 
1077 			/* Only let one DATA chunk get bundled with a
1078 			 * COOKIE-ECHO chunk.
1079 			 */
1080 			if (packet->has_cookie_echo)
1081 				goto sctp_flush_out;
1082 		}
1083 		break;
1084 
1085 	default:
1086 		/* Do nothing.  */
1087 		break;
1088 	}
1089 
1090 sctp_flush_out:
1091 
1092 	/* Before returning, examine all the transports touched in
1093 	 * this call.  Right now, we bluntly force clear all the
1094 	 * transports.  Things might change after we implement Nagle.
1095 	 * But such an examination is still required.
1096 	 *
1097 	 * --xguo
1098 	 */
1099 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1100 		struct sctp_transport *t = list_entry(ltransport,
1101 						      struct sctp_transport,
1102 						      send_ready);
1103 		packet = &t->packet;
1104 		if (!sctp_packet_empty(packet))
1105 			error = sctp_packet_transmit(packet);
1106 
1107 		/* Clear the burst limited state, if any */
1108 		sctp_transport_burst_reset(t);
1109 	}
1110 
1111 	return error;
1112 }
1113 
1114 /* Update unack_data based on the incoming SACK chunk */
1115 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1116 					struct sctp_sackhdr *sack)
1117 {
1118 	sctp_sack_variable_t *frags;
1119 	__u16 unack_data;
1120 	int i;
1121 
1122 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1123 
1124 	frags = sack->variable;
1125 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1126 		unack_data -= ((ntohs(frags[i].gab.end) -
1127 				ntohs(frags[i].gab.start) + 1));
1128 	}
1129 
1130 	assoc->unack_data = unack_data;
1131 }
1132 
1133 /* This is where we REALLY process a SACK.
1134  *
1135  * Process the SACK against the outqueue.  Mostly, this just frees
1136  * things off the transmitted queue.
1137  */
1138 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1139 {
1140 	struct sctp_association *asoc = q->asoc;
1141 	struct sctp_transport *transport;
1142 	struct sctp_chunk *tchunk = NULL;
1143 	struct list_head *lchunk, *transport_list, *temp;
1144 	sctp_sack_variable_t *frags = sack->variable;
1145 	__u32 sack_ctsn, ctsn, tsn;
1146 	__u32 highest_tsn, highest_new_tsn;
1147 	__u32 sack_a_rwnd;
1148 	unsigned outstanding;
1149 	struct sctp_transport *primary = asoc->peer.primary_path;
1150 	int count_of_newacks = 0;
1151 	int gap_ack_blocks;
1152 	u8 accum_moved = 0;
1153 
1154 	/* Grab the association's destination address list. */
1155 	transport_list = &asoc->peer.transport_addr_list;
1156 
1157 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1158 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1159 	/*
1160 	 * SFR-CACC algorithm:
1161 	 * On receipt of a SACK the sender SHOULD execute the
1162 	 * following statements.
1163 	 *
1164 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1165 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1166 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1167 	 * all destinations.
1168 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1169 	 * is set the receiver of the SACK MUST take the following actions:
1170 	 *
1171 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1172 	 * addresses.
1173 	 *
1174 	 * Only bother if changeover_active is set. Otherwise, this is
1175 	 * totally suboptimal to do on every SACK.
1176 	 */
1177 	if (primary->cacc.changeover_active) {
1178 		u8 clear_cycling = 0;
1179 
1180 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1181 			primary->cacc.changeover_active = 0;
1182 			clear_cycling = 1;
1183 		}
1184 
1185 		if (clear_cycling || gap_ack_blocks) {
1186 			list_for_each_entry(transport, transport_list,
1187 					transports) {
1188 				if (clear_cycling)
1189 					transport->cacc.cycling_changeover = 0;
1190 				if (gap_ack_blocks)
1191 					transport->cacc.cacc_saw_newack = 0;
1192 			}
1193 		}
1194 	}
1195 
1196 	/* Get the highest TSN in the sack. */
1197 	highest_tsn = sack_ctsn;
1198 	if (gap_ack_blocks)
1199 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1200 
1201 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1202 		asoc->highest_sacked = highest_tsn;
1203 
1204 	highest_new_tsn = sack_ctsn;
1205 
1206 	/* Run through the retransmit queue.  Credit bytes received
1207 	 * and free those chunks that we can.
1208 	 */
1209 	sctp_check_transmitted(q, &q->retransmit, NULL, sack, &highest_new_tsn);
1210 
1211 	/* Run through the transmitted queue.
1212 	 * Credit bytes received and free those chunks which we can.
1213 	 *
1214 	 * This is a MASSIVE candidate for optimization.
1215 	 */
1216 	list_for_each_entry(transport, transport_list, transports) {
1217 		sctp_check_transmitted(q, &transport->transmitted,
1218 				       transport, sack, &highest_new_tsn);
1219 		/*
1220 		 * SFR-CACC algorithm:
1221 		 * C) Let count_of_newacks be the number of
1222 		 * destinations for which cacc_saw_newack is set.
1223 		 */
1224 		if (transport->cacc.cacc_saw_newack)
1225 			count_of_newacks ++;
1226 	}
1227 
1228 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1229 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1230 		asoc->ctsn_ack_point = sack_ctsn;
1231 		accum_moved = 1;
1232 	}
1233 
1234 	if (gap_ack_blocks) {
1235 
1236 		if (asoc->fast_recovery && accum_moved)
1237 			highest_new_tsn = highest_tsn;
1238 
1239 		list_for_each_entry(transport, transport_list, transports)
1240 			sctp_mark_missing(q, &transport->transmitted, transport,
1241 					  highest_new_tsn, count_of_newacks);
1242 	}
1243 
1244 	/* Update unack_data field in the assoc. */
1245 	sctp_sack_update_unack_data(asoc, sack);
1246 
1247 	ctsn = asoc->ctsn_ack_point;
1248 
1249 	/* Throw away stuff rotting on the sack queue.  */
1250 	list_for_each_safe(lchunk, temp, &q->sacked) {
1251 		tchunk = list_entry(lchunk, struct sctp_chunk,
1252 				    transmitted_list);
1253 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1254 		if (TSN_lte(tsn, ctsn)) {
1255 			list_del_init(&tchunk->transmitted_list);
1256 			sctp_chunk_free(tchunk);
1257 		}
1258 	}
1259 
1260 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1261 	 *     number of bytes still outstanding after processing the
1262 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1263 	 */
1264 
1265 	sack_a_rwnd = ntohl(sack->a_rwnd);
1266 	outstanding = q->outstanding_bytes;
1267 
1268 	if (outstanding < sack_a_rwnd)
1269 		sack_a_rwnd -= outstanding;
1270 	else
1271 		sack_a_rwnd = 0;
1272 
1273 	asoc->peer.rwnd = sack_a_rwnd;
1274 
1275 	sctp_generate_fwdtsn(q, sack_ctsn);
1276 
1277 	SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1278 			  __func__, sack_ctsn);
1279 	SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1280 			  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1281 			  __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1282 
1283 	/* See if all chunks are acked.
1284 	 * Make sure the empty queue handler will get run later.
1285 	 */
1286 	q->empty = (list_empty(&q->out_chunk_list) &&
1287 		    list_empty(&q->retransmit));
1288 	if (!q->empty)
1289 		goto finish;
1290 
1291 	list_for_each_entry(transport, transport_list, transports) {
1292 		q->empty = q->empty && list_empty(&transport->transmitted);
1293 		if (!q->empty)
1294 			goto finish;
1295 	}
1296 
1297 	SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1298 finish:
1299 	return q->empty;
1300 }
1301 
1302 /* Is the outqueue empty?  */
1303 int sctp_outq_is_empty(const struct sctp_outq *q)
1304 {
1305 	return q->empty;
1306 }
1307 
1308 /********************************************************************
1309  * 2nd Level Abstractions
1310  ********************************************************************/
1311 
1312 /* Go through a transport's transmitted list or the association's retransmit
1313  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1314  * The retransmit list will not have an associated transport.
1315  *
1316  * I added coherent debug information output.	--xguo
1317  *
1318  * Instead of printing 'sacked' or 'kept' for each TSN on the
1319  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1320  * KEPT TSN6-TSN7, etc.
1321  */
1322 static void sctp_check_transmitted(struct sctp_outq *q,
1323 				   struct list_head *transmitted_queue,
1324 				   struct sctp_transport *transport,
1325 				   struct sctp_sackhdr *sack,
1326 				   __u32 *highest_new_tsn_in_sack)
1327 {
1328 	struct list_head *lchunk;
1329 	struct sctp_chunk *tchunk;
1330 	struct list_head tlist;
1331 	__u32 tsn;
1332 	__u32 sack_ctsn;
1333 	__u32 rtt;
1334 	__u8 restart_timer = 0;
1335 	int bytes_acked = 0;
1336 	int migrate_bytes = 0;
1337 
1338 	/* These state variables are for coherent debug output. --xguo */
1339 
1340 #if SCTP_DEBUG
1341 	__u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */
1342 	__u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */
1343 	__u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */
1344 	__u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */
1345 
1346 	/* 0 : The last TSN was ACKed.
1347 	 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1348 	 * -1: We need to initialize.
1349 	 */
1350 	int dbg_prt_state = -1;
1351 #endif /* SCTP_DEBUG */
1352 
1353 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1354 
1355 	INIT_LIST_HEAD(&tlist);
1356 
1357 	/* The while loop will skip empty transmitted queues. */
1358 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1359 		tchunk = list_entry(lchunk, struct sctp_chunk,
1360 				    transmitted_list);
1361 
1362 		if (sctp_chunk_abandoned(tchunk)) {
1363 			/* Move the chunk to abandoned list. */
1364 			sctp_insert_list(&q->abandoned, lchunk);
1365 
1366 			/* If this chunk has not been acked, stop
1367 			 * considering it as 'outstanding'.
1368 			 */
1369 			if (!tchunk->tsn_gap_acked) {
1370 				if (tchunk->transport)
1371 					tchunk->transport->flight_size -=
1372 							sctp_data_size(tchunk);
1373 				q->outstanding_bytes -= sctp_data_size(tchunk);
1374 			}
1375 			continue;
1376 		}
1377 
1378 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1379 		if (sctp_acked(sack, tsn)) {
1380 			/* If this queue is the retransmit queue, the
1381 			 * retransmit timer has already reclaimed
1382 			 * the outstanding bytes for this chunk, so only
1383 			 * count bytes associated with a transport.
1384 			 */
1385 			if (transport) {
1386 				/* If this chunk is being used for RTT
1387 				 * measurement, calculate the RTT and update
1388 				 * the RTO using this value.
1389 				 *
1390 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1391 				 * MUST NOT be made using packets that were
1392 				 * retransmitted (and thus for which it is
1393 				 * ambiguous whether the reply was for the
1394 				 * first instance of the packet or a later
1395 				 * instance).
1396 				 */
1397 				if (!tchunk->tsn_gap_acked &&
1398 				    tchunk->rtt_in_progress) {
1399 					tchunk->rtt_in_progress = 0;
1400 					rtt = jiffies - tchunk->sent_at;
1401 					sctp_transport_update_rto(transport,
1402 								  rtt);
1403 				}
1404 			}
1405 
1406 			/* If the chunk hasn't been marked as ACKED,
1407 			 * mark it and account bytes_acked if the
1408 			 * chunk had a valid transport (it will not
1409 			 * have a transport if ASCONF had deleted it
1410 			 * while DATA was outstanding).
1411 			 */
1412 			if (!tchunk->tsn_gap_acked) {
1413 				tchunk->tsn_gap_acked = 1;
1414 				*highest_new_tsn_in_sack = tsn;
1415 				bytes_acked += sctp_data_size(tchunk);
1416 				if (!tchunk->transport)
1417 					migrate_bytes += sctp_data_size(tchunk);
1418 			}
1419 
1420 			if (TSN_lte(tsn, sack_ctsn)) {
1421 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1422 				 *
1423 				 * R3) Whenever a SACK is received
1424 				 * that acknowledges the DATA chunk
1425 				 * with the earliest outstanding TSN
1426 				 * for that address, restart T3-rtx
1427 				 * timer for that address with its
1428 				 * current RTO.
1429 				 */
1430 				restart_timer = 1;
1431 
1432 				if (!tchunk->tsn_gap_acked) {
1433 					/*
1434 					 * SFR-CACC algorithm:
1435 					 * 2) If the SACK contains gap acks
1436 					 * and the flag CHANGEOVER_ACTIVE is
1437 					 * set the receiver of the SACK MUST
1438 					 * take the following action:
1439 					 *
1440 					 * B) For each TSN t being acked that
1441 					 * has not been acked in any SACK so
1442 					 * far, set cacc_saw_newack to 1 for
1443 					 * the destination that the TSN was
1444 					 * sent to.
1445 					 */
1446 					if (transport &&
1447 					    sack->num_gap_ack_blocks &&
1448 					    q->asoc->peer.primary_path->cacc.
1449 					    changeover_active)
1450 						transport->cacc.cacc_saw_newack
1451 							= 1;
1452 				}
1453 
1454 				list_add_tail(&tchunk->transmitted_list,
1455 					      &q->sacked);
1456 			} else {
1457 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1458 				 * M2) Each time a SACK arrives reporting
1459 				 * 'Stray DATA chunk(s)' record the highest TSN
1460 				 * reported as newly acknowledged, call this
1461 				 * value 'HighestTSNinSack'. A newly
1462 				 * acknowledged DATA chunk is one not
1463 				 * previously acknowledged in a SACK.
1464 				 *
1465 				 * When the SCTP sender of data receives a SACK
1466 				 * chunk that acknowledges, for the first time,
1467 				 * the receipt of a DATA chunk, all the still
1468 				 * unacknowledged DATA chunks whose TSN is
1469 				 * older than that newly acknowledged DATA
1470 				 * chunk, are qualified as 'Stray DATA chunks'.
1471 				 */
1472 				list_add_tail(lchunk, &tlist);
1473 			}
1474 
1475 #if SCTP_DEBUG
1476 			switch (dbg_prt_state) {
1477 			case 0:	/* last TSN was ACKed */
1478 				if (dbg_last_ack_tsn + 1 == tsn) {
1479 					/* This TSN belongs to the
1480 					 * current ACK range.
1481 					 */
1482 					break;
1483 				}
1484 
1485 				if (dbg_last_ack_tsn != dbg_ack_tsn) {
1486 					/* Display the end of the
1487 					 * current range.
1488 					 */
1489 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1490 							       dbg_last_ack_tsn);
1491 				}
1492 
1493 				/* Start a new range.  */
1494 				SCTP_DEBUG_PRINTK_CONT(",%08x", tsn);
1495 				dbg_ack_tsn = tsn;
1496 				break;
1497 
1498 			case 1:	/* The last TSN was NOT ACKed. */
1499 				if (dbg_last_kept_tsn != dbg_kept_tsn) {
1500 					/* Display the end of current range. */
1501 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1502 							       dbg_last_kept_tsn);
1503 				}
1504 
1505 				SCTP_DEBUG_PRINTK_CONT("\n");
1506 
1507 				/* FALL THROUGH... */
1508 			default:
1509 				/* This is the first-ever TSN we examined.  */
1510 				/* Start a new range of ACK-ed TSNs.  */
1511 				SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1512 				dbg_prt_state = 0;
1513 				dbg_ack_tsn = tsn;
1514 			}
1515 
1516 			dbg_last_ack_tsn = tsn;
1517 #endif /* SCTP_DEBUG */
1518 
1519 		} else {
1520 			if (tchunk->tsn_gap_acked) {
1521 				SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1522 						  "data TSN: 0x%x\n",
1523 						  __func__,
1524 						  tsn);
1525 				tchunk->tsn_gap_acked = 0;
1526 
1527 				if (tchunk->transport)
1528 					bytes_acked -= sctp_data_size(tchunk);
1529 
1530 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1531 				 *
1532 				 * R4) Whenever a SACK is received missing a
1533 				 * TSN that was previously acknowledged via a
1534 				 * Gap Ack Block, start T3-rtx for the
1535 				 * destination address to which the DATA
1536 				 * chunk was originally
1537 				 * transmitted if it is not already running.
1538 				 */
1539 				restart_timer = 1;
1540 			}
1541 
1542 			list_add_tail(lchunk, &tlist);
1543 
1544 #if SCTP_DEBUG
1545 			/* See the above comments on ACK-ed TSNs. */
1546 			switch (dbg_prt_state) {
1547 			case 1:
1548 				if (dbg_last_kept_tsn + 1 == tsn)
1549 					break;
1550 
1551 				if (dbg_last_kept_tsn != dbg_kept_tsn)
1552 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1553 							       dbg_last_kept_tsn);
1554 
1555 				SCTP_DEBUG_PRINTK_CONT(",%08x", tsn);
1556 				dbg_kept_tsn = tsn;
1557 				break;
1558 
1559 			case 0:
1560 				if (dbg_last_ack_tsn != dbg_ack_tsn)
1561 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1562 							       dbg_last_ack_tsn);
1563 				SCTP_DEBUG_PRINTK_CONT("\n");
1564 
1565 				/* FALL THROUGH... */
1566 			default:
1567 				SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1568 				dbg_prt_state = 1;
1569 				dbg_kept_tsn = tsn;
1570 			}
1571 
1572 			dbg_last_kept_tsn = tsn;
1573 #endif /* SCTP_DEBUG */
1574 		}
1575 	}
1576 
1577 #if SCTP_DEBUG
1578 	/* Finish off the last range, displaying its ending TSN.  */
1579 	switch (dbg_prt_state) {
1580 	case 0:
1581 		if (dbg_last_ack_tsn != dbg_ack_tsn) {
1582 			SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_ack_tsn);
1583 		} else {
1584 			SCTP_DEBUG_PRINTK_CONT("\n");
1585 		}
1586 	break;
1587 
1588 	case 1:
1589 		if (dbg_last_kept_tsn != dbg_kept_tsn) {
1590 			SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_kept_tsn);
1591 		} else {
1592 			SCTP_DEBUG_PRINTK_CONT("\n");
1593 		}
1594 	}
1595 #endif /* SCTP_DEBUG */
1596 	if (transport) {
1597 		if (bytes_acked) {
1598 			struct sctp_association *asoc = transport->asoc;
1599 
1600 			/* We may have counted DATA that was migrated
1601 			 * to this transport due to DEL-IP operation.
1602 			 * Subtract those bytes, since the were never
1603 			 * send on this transport and shouldn't be
1604 			 * credited to this transport.
1605 			 */
1606 			bytes_acked -= migrate_bytes;
1607 
1608 			/* 8.2. When an outstanding TSN is acknowledged,
1609 			 * the endpoint shall clear the error counter of
1610 			 * the destination transport address to which the
1611 			 * DATA chunk was last sent.
1612 			 * The association's overall error counter is
1613 			 * also cleared.
1614 			 */
1615 			transport->error_count = 0;
1616 			transport->asoc->overall_error_count = 0;
1617 
1618 			/*
1619 			 * While in SHUTDOWN PENDING, we may have started
1620 			 * the T5 shutdown guard timer after reaching the
1621 			 * retransmission limit. Stop that timer as soon
1622 			 * as the receiver acknowledged any data.
1623 			 */
1624 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1625 			    del_timer(&asoc->timers
1626 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1627 					sctp_association_put(asoc);
1628 
1629 			/* Mark the destination transport address as
1630 			 * active if it is not so marked.
1631 			 */
1632 			if ((transport->state == SCTP_INACTIVE) ||
1633 			    (transport->state == SCTP_UNCONFIRMED)) {
1634 				sctp_assoc_control_transport(
1635 					transport->asoc,
1636 					transport,
1637 					SCTP_TRANSPORT_UP,
1638 					SCTP_RECEIVED_SACK);
1639 			}
1640 
1641 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1642 						  bytes_acked);
1643 
1644 			transport->flight_size -= bytes_acked;
1645 			if (transport->flight_size == 0)
1646 				transport->partial_bytes_acked = 0;
1647 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1648 		} else {
1649 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1650 			 * When a sender is doing zero window probing, it
1651 			 * should not timeout the association if it continues
1652 			 * to receive new packets from the receiver. The
1653 			 * reason is that the receiver MAY keep its window
1654 			 * closed for an indefinite time.
1655 			 * A sender is doing zero window probing when the
1656 			 * receiver's advertised window is zero, and there is
1657 			 * only one data chunk in flight to the receiver.
1658 			 *
1659 			 * Allow the association to timeout while in SHUTDOWN
1660 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1661 			 * stays in zero window mode forever.
1662 			 */
1663 			if (!q->asoc->peer.rwnd &&
1664 			    !list_empty(&tlist) &&
1665 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1666 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1667 				SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1668 						  "window probe: %u\n",
1669 						  __func__, sack_ctsn);
1670 				q->asoc->overall_error_count = 0;
1671 				transport->error_count = 0;
1672 			}
1673 		}
1674 
1675 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1676 		 *
1677 		 * R2) Whenever all outstanding data sent to an address have
1678 		 * been acknowledged, turn off the T3-rtx timer of that
1679 		 * address.
1680 		 */
1681 		if (!transport->flight_size) {
1682 			if (timer_pending(&transport->T3_rtx_timer) &&
1683 			    del_timer(&transport->T3_rtx_timer)) {
1684 				sctp_transport_put(transport);
1685 			}
1686 		} else if (restart_timer) {
1687 			if (!mod_timer(&transport->T3_rtx_timer,
1688 				       jiffies + transport->rto))
1689 				sctp_transport_hold(transport);
1690 		}
1691 	}
1692 
1693 	list_splice(&tlist, transmitted_queue);
1694 }
1695 
1696 /* Mark chunks as missing and consequently may get retransmitted. */
1697 static void sctp_mark_missing(struct sctp_outq *q,
1698 			      struct list_head *transmitted_queue,
1699 			      struct sctp_transport *transport,
1700 			      __u32 highest_new_tsn_in_sack,
1701 			      int count_of_newacks)
1702 {
1703 	struct sctp_chunk *chunk;
1704 	__u32 tsn;
1705 	char do_fast_retransmit = 0;
1706 	struct sctp_association *asoc = q->asoc;
1707 	struct sctp_transport *primary = asoc->peer.primary_path;
1708 
1709 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1710 
1711 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1712 
1713 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1714 		 * 'Unacknowledged TSN's', if the TSN number of an
1715 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1716 		 * value, increment the 'TSN.Missing.Report' count on that
1717 		 * chunk if it has NOT been fast retransmitted or marked for
1718 		 * fast retransmit already.
1719 		 */
1720 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1721 		    !chunk->tsn_gap_acked &&
1722 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1723 
1724 			/* SFR-CACC may require us to skip marking
1725 			 * this chunk as missing.
1726 			 */
1727 			if (!transport || !sctp_cacc_skip(primary,
1728 						chunk->transport,
1729 						count_of_newacks, tsn)) {
1730 				chunk->tsn_missing_report++;
1731 
1732 				SCTP_DEBUG_PRINTK(
1733 					"%s: TSN 0x%x missing counter: %d\n",
1734 					__func__, tsn,
1735 					chunk->tsn_missing_report);
1736 			}
1737 		}
1738 		/*
1739 		 * M4) If any DATA chunk is found to have a
1740 		 * 'TSN.Missing.Report'
1741 		 * value larger than or equal to 3, mark that chunk for
1742 		 * retransmission and start the fast retransmit procedure.
1743 		 */
1744 
1745 		if (chunk->tsn_missing_report >= 3) {
1746 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1747 			do_fast_retransmit = 1;
1748 		}
1749 	}
1750 
1751 	if (transport) {
1752 		if (do_fast_retransmit)
1753 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1754 
1755 		SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1756 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
1757 				  __func__, transport, transport->cwnd,
1758 				  transport->ssthresh, transport->flight_size,
1759 				  transport->partial_bytes_acked);
1760 	}
1761 }
1762 
1763 /* Is the given TSN acked by this packet?  */
1764 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1765 {
1766 	int i;
1767 	sctp_sack_variable_t *frags;
1768 	__u16 gap;
1769 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1770 
1771 	if (TSN_lte(tsn, ctsn))
1772 		goto pass;
1773 
1774 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1775 	 *
1776 	 * Gap Ack Blocks:
1777 	 *  These fields contain the Gap Ack Blocks. They are repeated
1778 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1779 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1780 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1781 	 *  Ack + Gap Ack Block Start) and less than or equal to
1782 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1783 	 *  Block are assumed to have been received correctly.
1784 	 */
1785 
1786 	frags = sack->variable;
1787 	gap = tsn - ctsn;
1788 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1789 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1790 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1791 			goto pass;
1792 	}
1793 
1794 	return 0;
1795 pass:
1796 	return 1;
1797 }
1798 
1799 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1800 				    int nskips, __be16 stream)
1801 {
1802 	int i;
1803 
1804 	for (i = 0; i < nskips; i++) {
1805 		if (skiplist[i].stream == stream)
1806 			return i;
1807 	}
1808 	return i;
1809 }
1810 
1811 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1812 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1813 {
1814 	struct sctp_association *asoc = q->asoc;
1815 	struct sctp_chunk *ftsn_chunk = NULL;
1816 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1817 	int nskips = 0;
1818 	int skip_pos = 0;
1819 	__u32 tsn;
1820 	struct sctp_chunk *chunk;
1821 	struct list_head *lchunk, *temp;
1822 
1823 	if (!asoc->peer.prsctp_capable)
1824 		return;
1825 
1826 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1827 	 * received SACK.
1828 	 *
1829 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1830 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1831 	 */
1832 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1833 		asoc->adv_peer_ack_point = ctsn;
1834 
1835 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1836 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1837 	 * the chunk next in the out-queue space is marked as "abandoned" as
1838 	 * shown in the following example:
1839 	 *
1840 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1841 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1842 	 *
1843 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1844 	 *   normal SACK processing           local advancement
1845 	 *                ...                           ...
1846 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1847 	 *                103 abandoned                 103 abandoned
1848 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1849 	 *                105                           105
1850 	 *                106 acked                     106 acked
1851 	 *                ...                           ...
1852 	 *
1853 	 * In this example, the data sender successfully advanced the
1854 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1855 	 */
1856 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1857 		chunk = list_entry(lchunk, struct sctp_chunk,
1858 					transmitted_list);
1859 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1860 
1861 		/* Remove any chunks in the abandoned queue that are acked by
1862 		 * the ctsn.
1863 		 */
1864 		if (TSN_lte(tsn, ctsn)) {
1865 			list_del_init(lchunk);
1866 			sctp_chunk_free(chunk);
1867 		} else {
1868 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1869 				asoc->adv_peer_ack_point = tsn;
1870 				if (chunk->chunk_hdr->flags &
1871 					 SCTP_DATA_UNORDERED)
1872 					continue;
1873 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1874 						nskips,
1875 						chunk->subh.data_hdr->stream);
1876 				ftsn_skip_arr[skip_pos].stream =
1877 					chunk->subh.data_hdr->stream;
1878 				ftsn_skip_arr[skip_pos].ssn =
1879 					 chunk->subh.data_hdr->ssn;
1880 				if (skip_pos == nskips)
1881 					nskips++;
1882 				if (nskips == 10)
1883 					break;
1884 			} else
1885 				break;
1886 		}
1887 	}
1888 
1889 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1890 	 * is greater than the Cumulative TSN ACK carried in the received
1891 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1892 	 * chunk containing the latest value of the
1893 	 * "Advanced.Peer.Ack.Point".
1894 	 *
1895 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1896 	 * list each stream and sequence number in the forwarded TSN. This
1897 	 * information will enable the receiver to easily find any
1898 	 * stranded TSN's waiting on stream reorder queues. Each stream
1899 	 * SHOULD only be reported once; this means that if multiple
1900 	 * abandoned messages occur in the same stream then only the
1901 	 * highest abandoned stream sequence number is reported. If the
1902 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1903 	 * the sender of the FORWARD TSN SHOULD lower the
1904 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1905 	 * single MTU.
1906 	 */
1907 	if (asoc->adv_peer_ack_point > ctsn)
1908 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1909 					      nskips, &ftsn_skip_arr[0]);
1910 
1911 	if (ftsn_chunk) {
1912 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1913 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
1914 	}
1915 }
1916