1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * 7 * This file is part of the SCTP kernel reference Implementation 8 * 9 * These functions implement the sctp_outq class. The outqueue handles 10 * bundling and queueing of outgoing SCTP chunks. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Perry Melange <pmelange@null.cc.uic.edu> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Jon Grimm <jgrimm@us.ibm.com> 44 * 45 * Any bugs reported given to us we will try to fix... any fixes shared will 46 * be incorporated into the next SCTP release. 47 */ 48 49 #include <linux/types.h> 50 #include <linux/list.h> /* For struct list_head */ 51 #include <linux/socket.h> 52 #include <linux/ip.h> 53 #include <net/sock.h> /* For skb_set_owner_w */ 54 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 /* Declare internal functions here. */ 59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 60 static void sctp_check_transmitted(struct sctp_outq *q, 61 struct list_head *transmitted_queue, 62 struct sctp_transport *transport, 63 struct sctp_sackhdr *sack, 64 __u32 highest_new_tsn); 65 66 static void sctp_mark_missing(struct sctp_outq *q, 67 struct list_head *transmitted_queue, 68 struct sctp_transport *transport, 69 __u32 highest_new_tsn, 70 int count_of_newacks); 71 72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn); 73 74 /* Add data to the front of the queue. */ 75 static inline void sctp_outq_head_data(struct sctp_outq *q, 76 struct sctp_chunk *ch) 77 { 78 list_add(&ch->list, &q->out_chunk_list); 79 q->out_qlen += ch->skb->len; 80 return; 81 } 82 83 /* Take data from the front of the queue. */ 84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 85 { 86 struct sctp_chunk *ch = NULL; 87 88 if (!list_empty(&q->out_chunk_list)) { 89 struct list_head *entry = q->out_chunk_list.next; 90 91 ch = list_entry(entry, struct sctp_chunk, list); 92 list_del_init(entry); 93 q->out_qlen -= ch->skb->len; 94 } 95 return ch; 96 } 97 /* Add data chunk to the end of the queue. */ 98 static inline void sctp_outq_tail_data(struct sctp_outq *q, 99 struct sctp_chunk *ch) 100 { 101 list_add_tail(&ch->list, &q->out_chunk_list); 102 q->out_qlen += ch->skb->len; 103 return; 104 } 105 106 /* 107 * SFR-CACC algorithm: 108 * D) If count_of_newacks is greater than or equal to 2 109 * and t was not sent to the current primary then the 110 * sender MUST NOT increment missing report count for t. 111 */ 112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 113 struct sctp_transport *transport, 114 int count_of_newacks) 115 { 116 if (count_of_newacks >=2 && transport != primary) 117 return 1; 118 return 0; 119 } 120 121 /* 122 * SFR-CACC algorithm: 123 * F) If count_of_newacks is less than 2, let d be the 124 * destination to which t was sent. If cacc_saw_newack 125 * is 0 for destination d, then the sender MUST NOT 126 * increment missing report count for t. 127 */ 128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 129 int count_of_newacks) 130 { 131 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack) 132 return 1; 133 return 0; 134 } 135 136 /* 137 * SFR-CACC algorithm: 138 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 139 * execute steps C, D, F. 140 * 141 * C has been implemented in sctp_outq_sack 142 */ 143 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 144 struct sctp_transport *transport, 145 int count_of_newacks) 146 { 147 if (!primary->cacc.cycling_changeover) { 148 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 149 return 1; 150 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 151 return 1; 152 return 0; 153 } 154 return 0; 155 } 156 157 /* 158 * SFR-CACC algorithm: 159 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 160 * than next_tsn_at_change of the current primary, then 161 * the sender MUST NOT increment missing report count 162 * for t. 163 */ 164 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 165 { 166 if (primary->cacc.cycling_changeover && 167 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 168 return 1; 169 return 0; 170 } 171 172 /* 173 * SFR-CACC algorithm: 174 * 3) If the missing report count for TSN t is to be 175 * incremented according to [RFC2960] and 176 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 177 * then the sender MUST futher execute steps 3.1 and 178 * 3.2 to determine if the missing report count for 179 * TSN t SHOULD NOT be incremented. 180 * 181 * 3.3) If 3.1 and 3.2 do not dictate that the missing 182 * report count for t should not be incremented, then 183 * the sender SOULD increment missing report count for 184 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 185 */ 186 static inline int sctp_cacc_skip(struct sctp_transport *primary, 187 struct sctp_transport *transport, 188 int count_of_newacks, 189 __u32 tsn) 190 { 191 if (primary->cacc.changeover_active && 192 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) 193 || sctp_cacc_skip_3_2(primary, tsn))) 194 return 1; 195 return 0; 196 } 197 198 /* Initialize an existing sctp_outq. This does the boring stuff. 199 * You still need to define handlers if you really want to DO 200 * something with this structure... 201 */ 202 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 203 { 204 q->asoc = asoc; 205 INIT_LIST_HEAD(&q->out_chunk_list); 206 INIT_LIST_HEAD(&q->control_chunk_list); 207 INIT_LIST_HEAD(&q->retransmit); 208 INIT_LIST_HEAD(&q->sacked); 209 INIT_LIST_HEAD(&q->abandoned); 210 211 q->outstanding_bytes = 0; 212 q->empty = 1; 213 q->cork = 0; 214 215 q->malloced = 0; 216 q->out_qlen = 0; 217 } 218 219 /* Free the outqueue structure and any related pending chunks. 220 */ 221 void sctp_outq_teardown(struct sctp_outq *q) 222 { 223 struct sctp_transport *transport; 224 struct list_head *lchunk, *pos, *temp; 225 struct sctp_chunk *chunk, *tmp; 226 227 /* Throw away unacknowledged chunks. */ 228 list_for_each(pos, &q->asoc->peer.transport_addr_list) { 229 transport = list_entry(pos, struct sctp_transport, transports); 230 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 231 chunk = list_entry(lchunk, struct sctp_chunk, 232 transmitted_list); 233 /* Mark as part of a failed message. */ 234 sctp_chunk_fail(chunk, q->error); 235 sctp_chunk_free(chunk); 236 } 237 } 238 239 /* Throw away chunks that have been gap ACKed. */ 240 list_for_each_safe(lchunk, temp, &q->sacked) { 241 list_del_init(lchunk); 242 chunk = list_entry(lchunk, struct sctp_chunk, 243 transmitted_list); 244 sctp_chunk_fail(chunk, q->error); 245 sctp_chunk_free(chunk); 246 } 247 248 /* Throw away any chunks in the retransmit queue. */ 249 list_for_each_safe(lchunk, temp, &q->retransmit) { 250 list_del_init(lchunk); 251 chunk = list_entry(lchunk, struct sctp_chunk, 252 transmitted_list); 253 sctp_chunk_fail(chunk, q->error); 254 sctp_chunk_free(chunk); 255 } 256 257 /* Throw away any chunks that are in the abandoned queue. */ 258 list_for_each_safe(lchunk, temp, &q->abandoned) { 259 list_del_init(lchunk); 260 chunk = list_entry(lchunk, struct sctp_chunk, 261 transmitted_list); 262 sctp_chunk_fail(chunk, q->error); 263 sctp_chunk_free(chunk); 264 } 265 266 /* Throw away any leftover data chunks. */ 267 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 268 269 /* Mark as send failure. */ 270 sctp_chunk_fail(chunk, q->error); 271 sctp_chunk_free(chunk); 272 } 273 274 q->error = 0; 275 276 /* Throw away any leftover control chunks. */ 277 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 278 list_del_init(&chunk->list); 279 sctp_chunk_free(chunk); 280 } 281 } 282 283 /* Free the outqueue structure and any related pending chunks. */ 284 void sctp_outq_free(struct sctp_outq *q) 285 { 286 /* Throw away leftover chunks. */ 287 sctp_outq_teardown(q); 288 289 /* If we were kmalloc()'d, free the memory. */ 290 if (q->malloced) 291 kfree(q); 292 } 293 294 /* Put a new chunk in an sctp_outq. */ 295 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk) 296 { 297 int error = 0; 298 299 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n", 300 q, chunk, chunk && chunk->chunk_hdr ? 301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 302 : "Illegal Chunk"); 303 304 /* If it is data, queue it up, otherwise, send it 305 * immediately. 306 */ 307 if (SCTP_CID_DATA == chunk->chunk_hdr->type) { 308 /* Is it OK to queue data chunks? */ 309 /* From 9. Termination of Association 310 * 311 * When either endpoint performs a shutdown, the 312 * association on each peer will stop accepting new 313 * data from its user and only deliver data in queue 314 * at the time of sending or receiving the SHUTDOWN 315 * chunk. 316 */ 317 switch (q->asoc->state) { 318 case SCTP_STATE_EMPTY: 319 case SCTP_STATE_CLOSED: 320 case SCTP_STATE_SHUTDOWN_PENDING: 321 case SCTP_STATE_SHUTDOWN_SENT: 322 case SCTP_STATE_SHUTDOWN_RECEIVED: 323 case SCTP_STATE_SHUTDOWN_ACK_SENT: 324 /* Cannot send after transport endpoint shutdown */ 325 error = -ESHUTDOWN; 326 break; 327 328 default: 329 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n", 330 q, chunk, chunk && chunk->chunk_hdr ? 331 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 332 : "Illegal Chunk"); 333 334 sctp_outq_tail_data(q, chunk); 335 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 336 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS); 337 else 338 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS); 339 q->empty = 0; 340 break; 341 } 342 } else { 343 list_add_tail(&chunk->list, &q->control_chunk_list); 344 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 345 } 346 347 if (error < 0) 348 return error; 349 350 if (!q->cork) 351 error = sctp_outq_flush(q, 0); 352 353 return error; 354 } 355 356 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 357 * and the abandoned list are in ascending order. 358 */ 359 static void sctp_insert_list(struct list_head *head, struct list_head *new) 360 { 361 struct list_head *pos; 362 struct sctp_chunk *nchunk, *lchunk; 363 __u32 ntsn, ltsn; 364 int done = 0; 365 366 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 367 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 368 369 list_for_each(pos, head) { 370 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 371 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 372 if (TSN_lt(ntsn, ltsn)) { 373 list_add(new, pos->prev); 374 done = 1; 375 break; 376 } 377 } 378 if (!done) 379 list_add_tail(new, head); 380 } 381 382 /* Mark all the eligible packets on a transport for retransmission. */ 383 void sctp_retransmit_mark(struct sctp_outq *q, 384 struct sctp_transport *transport, 385 __u8 fast_retransmit) 386 { 387 struct list_head *lchunk, *ltemp; 388 struct sctp_chunk *chunk; 389 390 /* Walk through the specified transmitted queue. */ 391 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 392 chunk = list_entry(lchunk, struct sctp_chunk, 393 transmitted_list); 394 395 /* If the chunk is abandoned, move it to abandoned list. */ 396 if (sctp_chunk_abandoned(chunk)) { 397 list_del_init(lchunk); 398 sctp_insert_list(&q->abandoned, lchunk); 399 400 /* If this chunk has not been previousely acked, 401 * stop considering it 'outstanding'. Our peer 402 * will most likely never see it since it will 403 * not be retransmitted 404 */ 405 if (!chunk->tsn_gap_acked) { 406 chunk->transport->flight_size -= 407 sctp_data_size(chunk); 408 q->outstanding_bytes -= sctp_data_size(chunk); 409 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 410 sizeof(struct sk_buff)); 411 } 412 continue; 413 } 414 415 /* If we are doing retransmission due to a fast retransmit, 416 * only the chunk's that are marked for fast retransmit 417 * should be added to the retransmit queue. If we are doing 418 * retransmission due to a timeout or pmtu discovery, only the 419 * chunks that are not yet acked should be added to the 420 * retransmit queue. 421 */ 422 if ((fast_retransmit && (chunk->fast_retransmit > 0)) || 423 (!fast_retransmit && !chunk->tsn_gap_acked)) { 424 /* If this chunk was sent less then 1 rto ago, do not 425 * retransmit this chunk, but give the peer time 426 * to acknowlege it. 427 */ 428 if ((jiffies - chunk->sent_at) < transport->rto) 429 continue; 430 431 /* RFC 2960 6.2.1 Processing a Received SACK 432 * 433 * C) Any time a DATA chunk is marked for 434 * retransmission (via either T3-rtx timer expiration 435 * (Section 6.3.3) or via fast retransmit 436 * (Section 7.2.4)), add the data size of those 437 * chunks to the rwnd. 438 */ 439 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 440 sizeof(struct sk_buff)); 441 q->outstanding_bytes -= sctp_data_size(chunk); 442 transport->flight_size -= sctp_data_size(chunk); 443 444 /* sctpimpguide-05 Section 2.8.2 445 * M5) If a T3-rtx timer expires, the 446 * 'TSN.Missing.Report' of all affected TSNs is set 447 * to 0. 448 */ 449 chunk->tsn_missing_report = 0; 450 451 /* If a chunk that is being used for RTT measurement 452 * has to be retransmitted, we cannot use this chunk 453 * anymore for RTT measurements. Reset rto_pending so 454 * that a new RTT measurement is started when a new 455 * data chunk is sent. 456 */ 457 if (chunk->rtt_in_progress) { 458 chunk->rtt_in_progress = 0; 459 transport->rto_pending = 0; 460 } 461 462 /* Move the chunk to the retransmit queue. The chunks 463 * on the retransmit queue are always kept in order. 464 */ 465 list_del_init(lchunk); 466 sctp_insert_list(&q->retransmit, lchunk); 467 } 468 } 469 470 SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, " 471 "cwnd: %d, ssthresh: %d, flight_size: %d, " 472 "pba: %d\n", __FUNCTION__, 473 transport, fast_retransmit, 474 transport->cwnd, transport->ssthresh, 475 transport->flight_size, 476 transport->partial_bytes_acked); 477 478 } 479 480 /* Mark all the eligible packets on a transport for retransmission and force 481 * one packet out. 482 */ 483 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 484 sctp_retransmit_reason_t reason) 485 { 486 int error = 0; 487 __u8 fast_retransmit = 0; 488 489 switch(reason) { 490 case SCTP_RTXR_T3_RTX: 491 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS); 492 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 493 /* Update the retran path if the T3-rtx timer has expired for 494 * the current retran path. 495 */ 496 if (transport == transport->asoc->peer.retran_path) 497 sctp_assoc_update_retran_path(transport->asoc); 498 break; 499 case SCTP_RTXR_FAST_RTX: 500 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS); 501 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 502 fast_retransmit = 1; 503 break; 504 case SCTP_RTXR_PMTUD: 505 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS); 506 break; 507 default: 508 BUG(); 509 } 510 511 sctp_retransmit_mark(q, transport, fast_retransmit); 512 513 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 514 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 515 * following the procedures outlined in C1 - C5. 516 */ 517 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point); 518 519 error = sctp_outq_flush(q, /* rtx_timeout */ 1); 520 521 if (error) 522 q->asoc->base.sk->sk_err = -error; 523 } 524 525 /* 526 * Transmit DATA chunks on the retransmit queue. Upon return from 527 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 528 * need to be transmitted by the caller. 529 * We assume that pkt->transport has already been set. 530 * 531 * The return value is a normal kernel error return value. 532 */ 533 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 534 int rtx_timeout, int *start_timer) 535 { 536 struct list_head *lqueue; 537 struct list_head *lchunk, *lchunk1; 538 struct sctp_transport *transport = pkt->transport; 539 sctp_xmit_t status; 540 struct sctp_chunk *chunk, *chunk1; 541 struct sctp_association *asoc; 542 int error = 0; 543 544 asoc = q->asoc; 545 lqueue = &q->retransmit; 546 547 /* RFC 2960 6.3.3 Handle T3-rtx Expiration 548 * 549 * E3) Determine how many of the earliest (i.e., lowest TSN) 550 * outstanding DATA chunks for the address for which the 551 * T3-rtx has expired will fit into a single packet, subject 552 * to the MTU constraint for the path corresponding to the 553 * destination transport address to which the retransmission 554 * is being sent (this may be different from the address for 555 * which the timer expires [see Section 6.4]). Call this value 556 * K. Bundle and retransmit those K DATA chunks in a single 557 * packet to the destination endpoint. 558 * 559 * [Just to be painfully clear, if we are retransmitting 560 * because a timeout just happened, we should send only ONE 561 * packet of retransmitted data.] 562 */ 563 lchunk = sctp_list_dequeue(lqueue); 564 565 while (lchunk) { 566 chunk = list_entry(lchunk, struct sctp_chunk, 567 transmitted_list); 568 569 /* Make sure that Gap Acked TSNs are not retransmitted. A 570 * simple approach is just to move such TSNs out of the 571 * way and into a 'transmitted' queue and skip to the 572 * next chunk. 573 */ 574 if (chunk->tsn_gap_acked) { 575 list_add_tail(lchunk, &transport->transmitted); 576 lchunk = sctp_list_dequeue(lqueue); 577 continue; 578 } 579 580 /* Attempt to append this chunk to the packet. */ 581 status = sctp_packet_append_chunk(pkt, chunk); 582 583 switch (status) { 584 case SCTP_XMIT_PMTU_FULL: 585 /* Send this packet. */ 586 if ((error = sctp_packet_transmit(pkt)) == 0) 587 *start_timer = 1; 588 589 /* If we are retransmitting, we should only 590 * send a single packet. 591 */ 592 if (rtx_timeout) { 593 list_add(lchunk, lqueue); 594 lchunk = NULL; 595 } 596 597 /* Bundle lchunk in the next round. */ 598 break; 599 600 case SCTP_XMIT_RWND_FULL: 601 /* Send this packet. */ 602 if ((error = sctp_packet_transmit(pkt)) == 0) 603 *start_timer = 1; 604 605 /* Stop sending DATA as there is no more room 606 * at the receiver. 607 */ 608 list_add(lchunk, lqueue); 609 lchunk = NULL; 610 break; 611 612 case SCTP_XMIT_NAGLE_DELAY: 613 /* Send this packet. */ 614 if ((error = sctp_packet_transmit(pkt)) == 0) 615 *start_timer = 1; 616 617 /* Stop sending DATA because of nagle delay. */ 618 list_add(lchunk, lqueue); 619 lchunk = NULL; 620 break; 621 622 default: 623 /* The append was successful, so add this chunk to 624 * the transmitted list. 625 */ 626 list_add_tail(lchunk, &transport->transmitted); 627 628 /* Mark the chunk as ineligible for fast retransmit 629 * after it is retransmitted. 630 */ 631 if (chunk->fast_retransmit > 0) 632 chunk->fast_retransmit = -1; 633 634 *start_timer = 1; 635 q->empty = 0; 636 637 /* Retrieve a new chunk to bundle. */ 638 lchunk = sctp_list_dequeue(lqueue); 639 break; 640 } 641 642 /* If we are here due to a retransmit timeout or a fast 643 * retransmit and if there are any chunks left in the retransmit 644 * queue that could not fit in the PMTU sized packet, they need * to be marked as ineligible for a subsequent fast retransmit. 645 */ 646 if (rtx_timeout && !lchunk) { 647 list_for_each(lchunk1, lqueue) { 648 chunk1 = list_entry(lchunk1, struct sctp_chunk, 649 transmitted_list); 650 if (chunk1->fast_retransmit > 0) 651 chunk1->fast_retransmit = -1; 652 } 653 } 654 } 655 656 return error; 657 } 658 659 /* Cork the outqueue so queued chunks are really queued. */ 660 int sctp_outq_uncork(struct sctp_outq *q) 661 { 662 int error = 0; 663 if (q->cork) { 664 q->cork = 0; 665 error = sctp_outq_flush(q, 0); 666 } 667 return error; 668 } 669 670 /* 671 * Try to flush an outqueue. 672 * 673 * Description: Send everything in q which we legally can, subject to 674 * congestion limitations. 675 * * Note: This function can be called from multiple contexts so appropriate 676 * locking concerns must be made. Today we use the sock lock to protect 677 * this function. 678 */ 679 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) 680 { 681 struct sctp_packet *packet; 682 struct sctp_packet singleton; 683 struct sctp_association *asoc = q->asoc; 684 __u16 sport = asoc->base.bind_addr.port; 685 __u16 dport = asoc->peer.port; 686 __u32 vtag = asoc->peer.i.init_tag; 687 struct sctp_transport *transport = NULL; 688 struct sctp_transport *new_transport; 689 struct sctp_chunk *chunk, *tmp; 690 sctp_xmit_t status; 691 int error = 0; 692 int start_timer = 0; 693 694 /* These transports have chunks to send. */ 695 struct list_head transport_list; 696 struct list_head *ltransport; 697 698 INIT_LIST_HEAD(&transport_list); 699 packet = NULL; 700 701 /* 702 * 6.10 Bundling 703 * ... 704 * When bundling control chunks with DATA chunks, an 705 * endpoint MUST place control chunks first in the outbound 706 * SCTP packet. The transmitter MUST transmit DATA chunks 707 * within a SCTP packet in increasing order of TSN. 708 * ... 709 */ 710 711 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 712 list_del_init(&chunk->list); 713 714 /* Pick the right transport to use. */ 715 new_transport = chunk->transport; 716 717 if (!new_transport) { 718 new_transport = asoc->peer.active_path; 719 } else if ((new_transport->state == SCTP_INACTIVE) || 720 (new_transport->state == SCTP_UNCONFIRMED)) { 721 /* If the chunk is Heartbeat or Heartbeat Ack, 722 * send it to chunk->transport, even if it's 723 * inactive. 724 * 725 * 3.3.6 Heartbeat Acknowledgement: 726 * ... 727 * A HEARTBEAT ACK is always sent to the source IP 728 * address of the IP datagram containing the 729 * HEARTBEAT chunk to which this ack is responding. 730 * ... 731 */ 732 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT && 733 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK) 734 new_transport = asoc->peer.active_path; 735 } 736 737 /* Are we switching transports? 738 * Take care of transport locks. 739 */ 740 if (new_transport != transport) { 741 transport = new_transport; 742 if (list_empty(&transport->send_ready)) { 743 list_add_tail(&transport->send_ready, 744 &transport_list); 745 } 746 packet = &transport->packet; 747 sctp_packet_config(packet, vtag, 748 asoc->peer.ecn_capable); 749 } 750 751 switch (chunk->chunk_hdr->type) { 752 /* 753 * 6.10 Bundling 754 * ... 755 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 756 * COMPLETE with any other chunks. [Send them immediately.] 757 */ 758 case SCTP_CID_INIT: 759 case SCTP_CID_INIT_ACK: 760 case SCTP_CID_SHUTDOWN_COMPLETE: 761 sctp_packet_init(&singleton, transport, sport, dport); 762 sctp_packet_config(&singleton, vtag, 0); 763 sctp_packet_append_chunk(&singleton, chunk); 764 error = sctp_packet_transmit(&singleton); 765 if (error < 0) 766 return error; 767 break; 768 769 case SCTP_CID_ABORT: 770 case SCTP_CID_SACK: 771 case SCTP_CID_HEARTBEAT: 772 case SCTP_CID_HEARTBEAT_ACK: 773 case SCTP_CID_SHUTDOWN: 774 case SCTP_CID_SHUTDOWN_ACK: 775 case SCTP_CID_ERROR: 776 case SCTP_CID_COOKIE_ECHO: 777 case SCTP_CID_COOKIE_ACK: 778 case SCTP_CID_ECN_ECNE: 779 case SCTP_CID_ECN_CWR: 780 case SCTP_CID_ASCONF: 781 case SCTP_CID_ASCONF_ACK: 782 case SCTP_CID_FWD_TSN: 783 sctp_packet_transmit_chunk(packet, chunk); 784 break; 785 786 default: 787 /* We built a chunk with an illegal type! */ 788 BUG(); 789 } 790 } 791 792 /* Is it OK to send data chunks? */ 793 switch (asoc->state) { 794 case SCTP_STATE_COOKIE_ECHOED: 795 /* Only allow bundling when this packet has a COOKIE-ECHO 796 * chunk. 797 */ 798 if (!packet || !packet->has_cookie_echo) 799 break; 800 801 /* fallthru */ 802 case SCTP_STATE_ESTABLISHED: 803 case SCTP_STATE_SHUTDOWN_PENDING: 804 case SCTP_STATE_SHUTDOWN_RECEIVED: 805 /* 806 * RFC 2960 6.1 Transmission of DATA Chunks 807 * 808 * C) When the time comes for the sender to transmit, 809 * before sending new DATA chunks, the sender MUST 810 * first transmit any outstanding DATA chunks which 811 * are marked for retransmission (limited by the 812 * current cwnd). 813 */ 814 if (!list_empty(&q->retransmit)) { 815 if (transport == asoc->peer.retran_path) 816 goto retran; 817 818 /* Switch transports & prepare the packet. */ 819 820 transport = asoc->peer.retran_path; 821 822 if (list_empty(&transport->send_ready)) { 823 list_add_tail(&transport->send_ready, 824 &transport_list); 825 } 826 827 packet = &transport->packet; 828 sctp_packet_config(packet, vtag, 829 asoc->peer.ecn_capable); 830 retran: 831 error = sctp_outq_flush_rtx(q, packet, 832 rtx_timeout, &start_timer); 833 834 if (start_timer) 835 sctp_transport_reset_timers(transport); 836 837 /* This can happen on COOKIE-ECHO resend. Only 838 * one chunk can get bundled with a COOKIE-ECHO. 839 */ 840 if (packet->has_cookie_echo) 841 goto sctp_flush_out; 842 843 /* Don't send new data if there is still data 844 * waiting to retransmit. 845 */ 846 if (!list_empty(&q->retransmit)) 847 goto sctp_flush_out; 848 } 849 850 /* Finally, transmit new packets. */ 851 start_timer = 0; 852 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 853 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid 854 * stream identifier. 855 */ 856 if (chunk->sinfo.sinfo_stream >= 857 asoc->c.sinit_num_ostreams) { 858 859 /* Mark as failed send. */ 860 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM); 861 sctp_chunk_free(chunk); 862 continue; 863 } 864 865 /* Has this chunk expired? */ 866 if (sctp_chunk_abandoned(chunk)) { 867 sctp_chunk_fail(chunk, 0); 868 sctp_chunk_free(chunk); 869 continue; 870 } 871 872 /* If there is a specified transport, use it. 873 * Otherwise, we want to use the active path. 874 */ 875 new_transport = chunk->transport; 876 if (!new_transport || 877 ((new_transport->state == SCTP_INACTIVE) || 878 (new_transport->state == SCTP_UNCONFIRMED))) 879 new_transport = asoc->peer.active_path; 880 881 /* Change packets if necessary. */ 882 if (new_transport != transport) { 883 transport = new_transport; 884 885 /* Schedule to have this transport's 886 * packet flushed. 887 */ 888 if (list_empty(&transport->send_ready)) { 889 list_add_tail(&transport->send_ready, 890 &transport_list); 891 } 892 893 packet = &transport->packet; 894 sctp_packet_config(packet, vtag, 895 asoc->peer.ecn_capable); 896 } 897 898 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ", 899 q, chunk, 900 chunk && chunk->chunk_hdr ? 901 sctp_cname(SCTP_ST_CHUNK( 902 chunk->chunk_hdr->type)) 903 : "Illegal Chunk"); 904 905 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head " 906 "%p skb->users %d.\n", 907 ntohl(chunk->subh.data_hdr->tsn), 908 chunk->skb ?chunk->skb->head : NULL, 909 chunk->skb ? 910 atomic_read(&chunk->skb->users) : -1); 911 912 /* Add the chunk to the packet. */ 913 status = sctp_packet_transmit_chunk(packet, chunk); 914 915 switch (status) { 916 case SCTP_XMIT_PMTU_FULL: 917 case SCTP_XMIT_RWND_FULL: 918 case SCTP_XMIT_NAGLE_DELAY: 919 /* We could not append this chunk, so put 920 * the chunk back on the output queue. 921 */ 922 SCTP_DEBUG_PRINTK("sctp_outq_flush: could " 923 "not transmit TSN: 0x%x, status: %d\n", 924 ntohl(chunk->subh.data_hdr->tsn), 925 status); 926 sctp_outq_head_data(q, chunk); 927 goto sctp_flush_out; 928 break; 929 930 case SCTP_XMIT_OK: 931 break; 932 933 default: 934 BUG(); 935 } 936 937 /* BUG: We assume that the sctp_packet_transmit() 938 * call below will succeed all the time and add the 939 * chunk to the transmitted list and restart the 940 * timers. 941 * It is possible that the call can fail under OOM 942 * conditions. 943 * 944 * Is this really a problem? Won't this behave 945 * like a lost TSN? 946 */ 947 list_add_tail(&chunk->transmitted_list, 948 &transport->transmitted); 949 950 sctp_transport_reset_timers(transport); 951 952 q->empty = 0; 953 954 /* Only let one DATA chunk get bundled with a 955 * COOKIE-ECHO chunk. 956 */ 957 if (packet->has_cookie_echo) 958 goto sctp_flush_out; 959 } 960 break; 961 962 default: 963 /* Do nothing. */ 964 break; 965 } 966 967 sctp_flush_out: 968 969 /* Before returning, examine all the transports touched in 970 * this call. Right now, we bluntly force clear all the 971 * transports. Things might change after we implement Nagle. 972 * But such an examination is still required. 973 * 974 * --xguo 975 */ 976 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) { 977 struct sctp_transport *t = list_entry(ltransport, 978 struct sctp_transport, 979 send_ready); 980 packet = &t->packet; 981 if (!sctp_packet_empty(packet)) 982 error = sctp_packet_transmit(packet); 983 } 984 985 return error; 986 } 987 988 /* Update unack_data based on the incoming SACK chunk */ 989 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 990 struct sctp_sackhdr *sack) 991 { 992 sctp_sack_variable_t *frags; 993 __u16 unack_data; 994 int i; 995 996 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 997 998 frags = sack->variable; 999 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 1000 unack_data -= ((ntohs(frags[i].gab.end) - 1001 ntohs(frags[i].gab.start) + 1)); 1002 } 1003 1004 assoc->unack_data = unack_data; 1005 } 1006 1007 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */ 1008 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack, 1009 struct sctp_association *asoc) 1010 { 1011 struct list_head *ltransport, *lchunk; 1012 struct sctp_transport *transport; 1013 struct sctp_chunk *chunk; 1014 __u32 highest_new_tsn, tsn; 1015 struct list_head *transport_list = &asoc->peer.transport_addr_list; 1016 1017 highest_new_tsn = ntohl(sack->cum_tsn_ack); 1018 1019 list_for_each(ltransport, transport_list) { 1020 transport = list_entry(ltransport, struct sctp_transport, 1021 transports); 1022 list_for_each(lchunk, &transport->transmitted) { 1023 chunk = list_entry(lchunk, struct sctp_chunk, 1024 transmitted_list); 1025 tsn = ntohl(chunk->subh.data_hdr->tsn); 1026 1027 if (!chunk->tsn_gap_acked && 1028 TSN_lt(highest_new_tsn, tsn) && 1029 sctp_acked(sack, tsn)) 1030 highest_new_tsn = tsn; 1031 } 1032 } 1033 1034 return highest_new_tsn; 1035 } 1036 1037 /* This is where we REALLY process a SACK. 1038 * 1039 * Process the SACK against the outqueue. Mostly, this just frees 1040 * things off the transmitted queue. 1041 */ 1042 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack) 1043 { 1044 struct sctp_association *asoc = q->asoc; 1045 struct sctp_transport *transport; 1046 struct sctp_chunk *tchunk = NULL; 1047 struct list_head *lchunk, *transport_list, *pos, *temp; 1048 sctp_sack_variable_t *frags = sack->variable; 1049 __u32 sack_ctsn, ctsn, tsn; 1050 __u32 highest_tsn, highest_new_tsn; 1051 __u32 sack_a_rwnd; 1052 unsigned outstanding; 1053 struct sctp_transport *primary = asoc->peer.primary_path; 1054 int count_of_newacks = 0; 1055 1056 /* Grab the association's destination address list. */ 1057 transport_list = &asoc->peer.transport_addr_list; 1058 1059 sack_ctsn = ntohl(sack->cum_tsn_ack); 1060 1061 /* 1062 * SFR-CACC algorithm: 1063 * On receipt of a SACK the sender SHOULD execute the 1064 * following statements. 1065 * 1066 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1067 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1068 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1069 * all destinations. 1070 */ 1071 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1072 primary->cacc.changeover_active = 0; 1073 list_for_each(pos, transport_list) { 1074 transport = list_entry(pos, struct sctp_transport, 1075 transports); 1076 transport->cacc.cycling_changeover = 0; 1077 } 1078 } 1079 1080 /* 1081 * SFR-CACC algorithm: 1082 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1083 * is set the receiver of the SACK MUST take the following actions: 1084 * 1085 * A) Initialize the cacc_saw_newack to 0 for all destination 1086 * addresses. 1087 */ 1088 if (sack->num_gap_ack_blocks && 1089 primary->cacc.changeover_active) { 1090 list_for_each(pos, transport_list) { 1091 transport = list_entry(pos, struct sctp_transport, 1092 transports); 1093 transport->cacc.cacc_saw_newack = 0; 1094 } 1095 } 1096 1097 /* Get the highest TSN in the sack. */ 1098 highest_tsn = sack_ctsn; 1099 if (sack->num_gap_ack_blocks) 1100 highest_tsn += 1101 ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end); 1102 1103 if (TSN_lt(asoc->highest_sacked, highest_tsn)) { 1104 highest_new_tsn = highest_tsn; 1105 asoc->highest_sacked = highest_tsn; 1106 } else { 1107 highest_new_tsn = sctp_highest_new_tsn(sack, asoc); 1108 } 1109 1110 /* Run through the retransmit queue. Credit bytes received 1111 * and free those chunks that we can. 1112 */ 1113 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn); 1114 sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0); 1115 1116 /* Run through the transmitted queue. 1117 * Credit bytes received and free those chunks which we can. 1118 * 1119 * This is a MASSIVE candidate for optimization. 1120 */ 1121 list_for_each(pos, transport_list) { 1122 transport = list_entry(pos, struct sctp_transport, 1123 transports); 1124 sctp_check_transmitted(q, &transport->transmitted, 1125 transport, sack, highest_new_tsn); 1126 /* 1127 * SFR-CACC algorithm: 1128 * C) Let count_of_newacks be the number of 1129 * destinations for which cacc_saw_newack is set. 1130 */ 1131 if (transport->cacc.cacc_saw_newack) 1132 count_of_newacks ++; 1133 } 1134 1135 list_for_each(pos, transport_list) { 1136 transport = list_entry(pos, struct sctp_transport, 1137 transports); 1138 sctp_mark_missing(q, &transport->transmitted, transport, 1139 highest_new_tsn, count_of_newacks); 1140 } 1141 1142 /* Move the Cumulative TSN Ack Point if appropriate. */ 1143 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) 1144 asoc->ctsn_ack_point = sack_ctsn; 1145 1146 /* Update unack_data field in the assoc. */ 1147 sctp_sack_update_unack_data(asoc, sack); 1148 1149 ctsn = asoc->ctsn_ack_point; 1150 1151 /* Throw away stuff rotting on the sack queue. */ 1152 list_for_each_safe(lchunk, temp, &q->sacked) { 1153 tchunk = list_entry(lchunk, struct sctp_chunk, 1154 transmitted_list); 1155 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1156 if (TSN_lte(tsn, ctsn)) 1157 sctp_chunk_free(tchunk); 1158 } 1159 1160 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1161 * number of bytes still outstanding after processing the 1162 * Cumulative TSN Ack and the Gap Ack Blocks. 1163 */ 1164 1165 sack_a_rwnd = ntohl(sack->a_rwnd); 1166 outstanding = q->outstanding_bytes; 1167 1168 if (outstanding < sack_a_rwnd) 1169 sack_a_rwnd -= outstanding; 1170 else 1171 sack_a_rwnd = 0; 1172 1173 asoc->peer.rwnd = sack_a_rwnd; 1174 1175 sctp_generate_fwdtsn(q, sack_ctsn); 1176 1177 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n", 1178 __FUNCTION__, sack_ctsn); 1179 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, " 1180 "%p is 0x%x. Adv peer ack point: 0x%x\n", 1181 __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point); 1182 1183 /* See if all chunks are acked. 1184 * Make sure the empty queue handler will get run later. 1185 */ 1186 q->empty = (list_empty(&q->out_chunk_list) && 1187 list_empty(&q->control_chunk_list) && 1188 list_empty(&q->retransmit)); 1189 if (!q->empty) 1190 goto finish; 1191 1192 list_for_each(pos, transport_list) { 1193 transport = list_entry(pos, struct sctp_transport, 1194 transports); 1195 q->empty = q->empty && list_empty(&transport->transmitted); 1196 if (!q->empty) 1197 goto finish; 1198 } 1199 1200 SCTP_DEBUG_PRINTK("sack queue is empty.\n"); 1201 finish: 1202 return q->empty; 1203 } 1204 1205 /* Is the outqueue empty? */ 1206 int sctp_outq_is_empty(const struct sctp_outq *q) 1207 { 1208 return q->empty; 1209 } 1210 1211 /******************************************************************** 1212 * 2nd Level Abstractions 1213 ********************************************************************/ 1214 1215 /* Go through a transport's transmitted list or the association's retransmit 1216 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1217 * The retransmit list will not have an associated transport. 1218 * 1219 * I added coherent debug information output. --xguo 1220 * 1221 * Instead of printing 'sacked' or 'kept' for each TSN on the 1222 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1223 * KEPT TSN6-TSN7, etc. 1224 */ 1225 static void sctp_check_transmitted(struct sctp_outq *q, 1226 struct list_head *transmitted_queue, 1227 struct sctp_transport *transport, 1228 struct sctp_sackhdr *sack, 1229 __u32 highest_new_tsn_in_sack) 1230 { 1231 struct list_head *lchunk; 1232 struct sctp_chunk *tchunk; 1233 struct list_head tlist; 1234 __u32 tsn; 1235 __u32 sack_ctsn; 1236 __u32 rtt; 1237 __u8 restart_timer = 0; 1238 int bytes_acked = 0; 1239 1240 /* These state variables are for coherent debug output. --xguo */ 1241 1242 #if SCTP_DEBUG 1243 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */ 1244 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */ 1245 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */ 1246 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */ 1247 1248 /* 0 : The last TSN was ACKed. 1249 * 1 : The last TSN was NOT ACKed (i.e. KEPT). 1250 * -1: We need to initialize. 1251 */ 1252 int dbg_prt_state = -1; 1253 #endif /* SCTP_DEBUG */ 1254 1255 sack_ctsn = ntohl(sack->cum_tsn_ack); 1256 1257 INIT_LIST_HEAD(&tlist); 1258 1259 /* The while loop will skip empty transmitted queues. */ 1260 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1261 tchunk = list_entry(lchunk, struct sctp_chunk, 1262 transmitted_list); 1263 1264 if (sctp_chunk_abandoned(tchunk)) { 1265 /* Move the chunk to abandoned list. */ 1266 sctp_insert_list(&q->abandoned, lchunk); 1267 1268 /* If this chunk has not been acked, stop 1269 * considering it as 'outstanding'. 1270 */ 1271 if (!tchunk->tsn_gap_acked) { 1272 tchunk->transport->flight_size -= 1273 sctp_data_size(tchunk); 1274 q->outstanding_bytes -= sctp_data_size(tchunk); 1275 } 1276 continue; 1277 } 1278 1279 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1280 if (sctp_acked(sack, tsn)) { 1281 /* If this queue is the retransmit queue, the 1282 * retransmit timer has already reclaimed 1283 * the outstanding bytes for this chunk, so only 1284 * count bytes associated with a transport. 1285 */ 1286 if (transport) { 1287 /* If this chunk is being used for RTT 1288 * measurement, calculate the RTT and update 1289 * the RTO using this value. 1290 * 1291 * 6.3.1 C5) Karn's algorithm: RTT measurements 1292 * MUST NOT be made using packets that were 1293 * retransmitted (and thus for which it is 1294 * ambiguous whether the reply was for the 1295 * first instance of the packet or a later 1296 * instance). 1297 */ 1298 if (!tchunk->tsn_gap_acked && 1299 !tchunk->resent && 1300 tchunk->rtt_in_progress) { 1301 tchunk->rtt_in_progress = 0; 1302 rtt = jiffies - tchunk->sent_at; 1303 sctp_transport_update_rto(transport, 1304 rtt); 1305 } 1306 } 1307 if (TSN_lte(tsn, sack_ctsn)) { 1308 /* RFC 2960 6.3.2 Retransmission Timer Rules 1309 * 1310 * R3) Whenever a SACK is received 1311 * that acknowledges the DATA chunk 1312 * with the earliest outstanding TSN 1313 * for that address, restart T3-rtx 1314 * timer for that address with its 1315 * current RTO. 1316 */ 1317 restart_timer = 1; 1318 1319 if (!tchunk->tsn_gap_acked) { 1320 tchunk->tsn_gap_acked = 1; 1321 bytes_acked += sctp_data_size(tchunk); 1322 /* 1323 * SFR-CACC algorithm: 1324 * 2) If the SACK contains gap acks 1325 * and the flag CHANGEOVER_ACTIVE is 1326 * set the receiver of the SACK MUST 1327 * take the following action: 1328 * 1329 * B) For each TSN t being acked that 1330 * has not been acked in any SACK so 1331 * far, set cacc_saw_newack to 1 for 1332 * the destination that the TSN was 1333 * sent to. 1334 */ 1335 if (transport && 1336 sack->num_gap_ack_blocks && 1337 q->asoc->peer.primary_path->cacc. 1338 changeover_active) 1339 transport->cacc.cacc_saw_newack 1340 = 1; 1341 } 1342 1343 list_add_tail(&tchunk->transmitted_list, 1344 &q->sacked); 1345 } else { 1346 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1347 * M2) Each time a SACK arrives reporting 1348 * 'Stray DATA chunk(s)' record the highest TSN 1349 * reported as newly acknowledged, call this 1350 * value 'HighestTSNinSack'. A newly 1351 * acknowledged DATA chunk is one not 1352 * previously acknowledged in a SACK. 1353 * 1354 * When the SCTP sender of data receives a SACK 1355 * chunk that acknowledges, for the first time, 1356 * the receipt of a DATA chunk, all the still 1357 * unacknowledged DATA chunks whose TSN is 1358 * older than that newly acknowledged DATA 1359 * chunk, are qualified as 'Stray DATA chunks'. 1360 */ 1361 if (!tchunk->tsn_gap_acked) { 1362 tchunk->tsn_gap_acked = 1; 1363 bytes_acked += sctp_data_size(tchunk); 1364 } 1365 list_add_tail(lchunk, &tlist); 1366 } 1367 1368 #if SCTP_DEBUG 1369 switch (dbg_prt_state) { 1370 case 0: /* last TSN was ACKed */ 1371 if (dbg_last_ack_tsn + 1 == tsn) { 1372 /* This TSN belongs to the 1373 * current ACK range. 1374 */ 1375 break; 1376 } 1377 1378 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1379 /* Display the end of the 1380 * current range. 1381 */ 1382 SCTP_DEBUG_PRINTK("-%08x", 1383 dbg_last_ack_tsn); 1384 } 1385 1386 /* Start a new range. */ 1387 SCTP_DEBUG_PRINTK(",%08x", tsn); 1388 dbg_ack_tsn = tsn; 1389 break; 1390 1391 case 1: /* The last TSN was NOT ACKed. */ 1392 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1393 /* Display the end of current range. */ 1394 SCTP_DEBUG_PRINTK("-%08x", 1395 dbg_last_kept_tsn); 1396 } 1397 1398 SCTP_DEBUG_PRINTK("\n"); 1399 1400 /* FALL THROUGH... */ 1401 default: 1402 /* This is the first-ever TSN we examined. */ 1403 /* Start a new range of ACK-ed TSNs. */ 1404 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn); 1405 dbg_prt_state = 0; 1406 dbg_ack_tsn = tsn; 1407 } 1408 1409 dbg_last_ack_tsn = tsn; 1410 #endif /* SCTP_DEBUG */ 1411 1412 } else { 1413 if (tchunk->tsn_gap_acked) { 1414 SCTP_DEBUG_PRINTK("%s: Receiver reneged on " 1415 "data TSN: 0x%x\n", 1416 __FUNCTION__, 1417 tsn); 1418 tchunk->tsn_gap_acked = 0; 1419 1420 bytes_acked -= sctp_data_size(tchunk); 1421 1422 /* RFC 2960 6.3.2 Retransmission Timer Rules 1423 * 1424 * R4) Whenever a SACK is received missing a 1425 * TSN that was previously acknowledged via a 1426 * Gap Ack Block, start T3-rtx for the 1427 * destination address to which the DATA 1428 * chunk was originally 1429 * transmitted if it is not already running. 1430 */ 1431 restart_timer = 1; 1432 } 1433 1434 list_add_tail(lchunk, &tlist); 1435 1436 #if SCTP_DEBUG 1437 /* See the above comments on ACK-ed TSNs. */ 1438 switch (dbg_prt_state) { 1439 case 1: 1440 if (dbg_last_kept_tsn + 1 == tsn) 1441 break; 1442 1443 if (dbg_last_kept_tsn != dbg_kept_tsn) 1444 SCTP_DEBUG_PRINTK("-%08x", 1445 dbg_last_kept_tsn); 1446 1447 SCTP_DEBUG_PRINTK(",%08x", tsn); 1448 dbg_kept_tsn = tsn; 1449 break; 1450 1451 case 0: 1452 if (dbg_last_ack_tsn != dbg_ack_tsn) 1453 SCTP_DEBUG_PRINTK("-%08x", 1454 dbg_last_ack_tsn); 1455 SCTP_DEBUG_PRINTK("\n"); 1456 1457 /* FALL THROUGH... */ 1458 default: 1459 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn); 1460 dbg_prt_state = 1; 1461 dbg_kept_tsn = tsn; 1462 } 1463 1464 dbg_last_kept_tsn = tsn; 1465 #endif /* SCTP_DEBUG */ 1466 } 1467 } 1468 1469 #if SCTP_DEBUG 1470 /* Finish off the last range, displaying its ending TSN. */ 1471 switch (dbg_prt_state) { 1472 case 0: 1473 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1474 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn); 1475 } else { 1476 SCTP_DEBUG_PRINTK("\n"); 1477 } 1478 break; 1479 1480 case 1: 1481 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1482 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn); 1483 } else { 1484 SCTP_DEBUG_PRINTK("\n"); 1485 } 1486 } 1487 #endif /* SCTP_DEBUG */ 1488 if (transport) { 1489 if (bytes_acked) { 1490 /* 8.2. When an outstanding TSN is acknowledged, 1491 * the endpoint shall clear the error counter of 1492 * the destination transport address to which the 1493 * DATA chunk was last sent. 1494 * The association's overall error counter is 1495 * also cleared. 1496 */ 1497 transport->error_count = 0; 1498 transport->asoc->overall_error_count = 0; 1499 1500 /* Mark the destination transport address as 1501 * active if it is not so marked. 1502 */ 1503 if ((transport->state == SCTP_INACTIVE) || 1504 (transport->state == SCTP_UNCONFIRMED)) { 1505 sctp_assoc_control_transport( 1506 transport->asoc, 1507 transport, 1508 SCTP_TRANSPORT_UP, 1509 SCTP_RECEIVED_SACK); 1510 } 1511 1512 sctp_transport_raise_cwnd(transport, sack_ctsn, 1513 bytes_acked); 1514 1515 transport->flight_size -= bytes_acked; 1516 q->outstanding_bytes -= bytes_acked; 1517 } else { 1518 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1519 * When a sender is doing zero window probing, it 1520 * should not timeout the association if it continues 1521 * to receive new packets from the receiver. The 1522 * reason is that the receiver MAY keep its window 1523 * closed for an indefinite time. 1524 * A sender is doing zero window probing when the 1525 * receiver's advertised window is zero, and there is 1526 * only one data chunk in flight to the receiver. 1527 */ 1528 if (!q->asoc->peer.rwnd && 1529 !list_empty(&tlist) && 1530 (sack_ctsn+2 == q->asoc->next_tsn)) { 1531 SCTP_DEBUG_PRINTK("%s: SACK received for zero " 1532 "window probe: %u\n", 1533 __FUNCTION__, sack_ctsn); 1534 q->asoc->overall_error_count = 0; 1535 transport->error_count = 0; 1536 } 1537 } 1538 1539 /* RFC 2960 6.3.2 Retransmission Timer Rules 1540 * 1541 * R2) Whenever all outstanding data sent to an address have 1542 * been acknowledged, turn off the T3-rtx timer of that 1543 * address. 1544 */ 1545 if (!transport->flight_size) { 1546 if (timer_pending(&transport->T3_rtx_timer) && 1547 del_timer(&transport->T3_rtx_timer)) { 1548 sctp_transport_put(transport); 1549 } 1550 } else if (restart_timer) { 1551 if (!mod_timer(&transport->T3_rtx_timer, 1552 jiffies + transport->rto)) 1553 sctp_transport_hold(transport); 1554 } 1555 } 1556 1557 list_splice(&tlist, transmitted_queue); 1558 } 1559 1560 /* Mark chunks as missing and consequently may get retransmitted. */ 1561 static void sctp_mark_missing(struct sctp_outq *q, 1562 struct list_head *transmitted_queue, 1563 struct sctp_transport *transport, 1564 __u32 highest_new_tsn_in_sack, 1565 int count_of_newacks) 1566 { 1567 struct sctp_chunk *chunk; 1568 struct list_head *pos; 1569 __u32 tsn; 1570 char do_fast_retransmit = 0; 1571 struct sctp_transport *primary = q->asoc->peer.primary_path; 1572 1573 list_for_each(pos, transmitted_queue) { 1574 1575 chunk = list_entry(pos, struct sctp_chunk, transmitted_list); 1576 tsn = ntohl(chunk->subh.data_hdr->tsn); 1577 1578 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1579 * 'Unacknowledged TSN's', if the TSN number of an 1580 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1581 * value, increment the 'TSN.Missing.Report' count on that 1582 * chunk if it has NOT been fast retransmitted or marked for 1583 * fast retransmit already. 1584 */ 1585 if (!chunk->fast_retransmit && 1586 !chunk->tsn_gap_acked && 1587 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1588 1589 /* SFR-CACC may require us to skip marking 1590 * this chunk as missing. 1591 */ 1592 if (!transport || !sctp_cacc_skip(primary, transport, 1593 count_of_newacks, tsn)) { 1594 chunk->tsn_missing_report++; 1595 1596 SCTP_DEBUG_PRINTK( 1597 "%s: TSN 0x%x missing counter: %d\n", 1598 __FUNCTION__, tsn, 1599 chunk->tsn_missing_report); 1600 } 1601 } 1602 /* 1603 * M4) If any DATA chunk is found to have a 1604 * 'TSN.Missing.Report' 1605 * value larger than or equal to 3, mark that chunk for 1606 * retransmission and start the fast retransmit procedure. 1607 */ 1608 1609 if (chunk->tsn_missing_report >= 3) { 1610 chunk->fast_retransmit = 1; 1611 do_fast_retransmit = 1; 1612 } 1613 } 1614 1615 if (transport) { 1616 if (do_fast_retransmit) 1617 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1618 1619 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " 1620 "ssthresh: %d, flight_size: %d, pba: %d\n", 1621 __FUNCTION__, transport, transport->cwnd, 1622 transport->ssthresh, transport->flight_size, 1623 transport->partial_bytes_acked); 1624 } 1625 } 1626 1627 /* Is the given TSN acked by this packet? */ 1628 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1629 { 1630 int i; 1631 sctp_sack_variable_t *frags; 1632 __u16 gap; 1633 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1634 1635 if (TSN_lte(tsn, ctsn)) 1636 goto pass; 1637 1638 /* 3.3.4 Selective Acknowledgement (SACK) (3): 1639 * 1640 * Gap Ack Blocks: 1641 * These fields contain the Gap Ack Blocks. They are repeated 1642 * for each Gap Ack Block up to the number of Gap Ack Blocks 1643 * defined in the Number of Gap Ack Blocks field. All DATA 1644 * chunks with TSNs greater than or equal to (Cumulative TSN 1645 * Ack + Gap Ack Block Start) and less than or equal to 1646 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1647 * Block are assumed to have been received correctly. 1648 */ 1649 1650 frags = sack->variable; 1651 gap = tsn - ctsn; 1652 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) { 1653 if (TSN_lte(ntohs(frags[i].gab.start), gap) && 1654 TSN_lte(gap, ntohs(frags[i].gab.end))) 1655 goto pass; 1656 } 1657 1658 return 0; 1659 pass: 1660 return 1; 1661 } 1662 1663 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1664 int nskips, __be16 stream) 1665 { 1666 int i; 1667 1668 for (i = 0; i < nskips; i++) { 1669 if (skiplist[i].stream == stream) 1670 return i; 1671 } 1672 return i; 1673 } 1674 1675 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1676 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1677 { 1678 struct sctp_association *asoc = q->asoc; 1679 struct sctp_chunk *ftsn_chunk = NULL; 1680 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1681 int nskips = 0; 1682 int skip_pos = 0; 1683 __u32 tsn; 1684 struct sctp_chunk *chunk; 1685 struct list_head *lchunk, *temp; 1686 1687 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1688 * received SACK. 1689 * 1690 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1691 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1692 */ 1693 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1694 asoc->adv_peer_ack_point = ctsn; 1695 1696 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1697 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1698 * the chunk next in the out-queue space is marked as "abandoned" as 1699 * shown in the following example: 1700 * 1701 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1702 * and the Advanced.Peer.Ack.Point is updated to this value: 1703 * 1704 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1705 * normal SACK processing local advancement 1706 * ... ... 1707 * Adv.Ack.Pt-> 102 acked 102 acked 1708 * 103 abandoned 103 abandoned 1709 * 104 abandoned Adv.Ack.P-> 104 abandoned 1710 * 105 105 1711 * 106 acked 106 acked 1712 * ... ... 1713 * 1714 * In this example, the data sender successfully advanced the 1715 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1716 */ 1717 list_for_each_safe(lchunk, temp, &q->abandoned) { 1718 chunk = list_entry(lchunk, struct sctp_chunk, 1719 transmitted_list); 1720 tsn = ntohl(chunk->subh.data_hdr->tsn); 1721 1722 /* Remove any chunks in the abandoned queue that are acked by 1723 * the ctsn. 1724 */ 1725 if (TSN_lte(tsn, ctsn)) { 1726 list_del_init(lchunk); 1727 sctp_chunk_free(chunk); 1728 } else { 1729 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1730 asoc->adv_peer_ack_point = tsn; 1731 if (chunk->chunk_hdr->flags & 1732 SCTP_DATA_UNORDERED) 1733 continue; 1734 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1735 nskips, 1736 chunk->subh.data_hdr->stream); 1737 ftsn_skip_arr[skip_pos].stream = 1738 chunk->subh.data_hdr->stream; 1739 ftsn_skip_arr[skip_pos].ssn = 1740 chunk->subh.data_hdr->ssn; 1741 if (skip_pos == nskips) 1742 nskips++; 1743 if (nskips == 10) 1744 break; 1745 } else 1746 break; 1747 } 1748 } 1749 1750 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1751 * is greater than the Cumulative TSN ACK carried in the received 1752 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1753 * chunk containing the latest value of the 1754 * "Advanced.Peer.Ack.Point". 1755 * 1756 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1757 * list each stream and sequence number in the forwarded TSN. This 1758 * information will enable the receiver to easily find any 1759 * stranded TSN's waiting on stream reorder queues. Each stream 1760 * SHOULD only be reported once; this means that if multiple 1761 * abandoned messages occur in the same stream then only the 1762 * highest abandoned stream sequence number is reported. If the 1763 * total size of the FORWARD TSN does NOT fit in a single MTU then 1764 * the sender of the FORWARD TSN SHOULD lower the 1765 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1766 * single MTU. 1767 */ 1768 if (asoc->adv_peer_ack_point > ctsn) 1769 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1770 nskips, &ftsn_skip_arr[0]); 1771 1772 if (ftsn_chunk) { 1773 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1774 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 1775 } 1776 } 1777