1 /* SCTP kernel reference Implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * The SCTP reference implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * The SCTP reference implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, write to 27 * the Free Software Foundation, 59 Temple Place - Suite 330, 28 * Boston, MA 02111-1307, USA. 29 * 30 * Please send any bug reports or fixes you make to the 31 * email address(es): 32 * lksctp developers <lksctp-developers@lists.sourceforge.net> 33 * 34 * Or submit a bug report through the following website: 35 * http://www.sf.net/projects/lksctp 36 * 37 * Written or modified by: 38 * La Monte H.P. Yarroll <piggy@acm.org> 39 * Karl Knutson <karl@athena.chicago.il.us> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Hui Huang <hui.huang@nokia.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/list.h> /* For struct list_head */ 53 #include <linux/socket.h> 54 #include <linux/ip.h> 55 #include <linux/time.h> /* For struct timeval */ 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/snmp.h> 59 #include <net/sock.h> 60 #include <net/xfrm.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal helpers. */ 65 static int sctp_rcv_ootb(struct sk_buff *); 66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 67 const union sctp_addr *laddr, 68 const union sctp_addr *paddr, 69 struct sctp_transport **transportp); 70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr); 71 static struct sctp_association *__sctp_lookup_association( 72 const union sctp_addr *local, 73 const union sctp_addr *peer, 74 struct sctp_transport **pt); 75 76 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 77 78 79 /* Calculate the SCTP checksum of an SCTP packet. */ 80 static inline int sctp_rcv_checksum(struct sk_buff *skb) 81 { 82 struct sctphdr *sh; 83 __u32 cmp, val; 84 struct sk_buff *list = skb_shinfo(skb)->frag_list; 85 86 sh = (struct sctphdr *) skb->h.raw; 87 cmp = ntohl(sh->checksum); 88 89 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); 90 91 for (; list; list = list->next) 92 val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), 93 val); 94 95 val = sctp_end_cksum(val); 96 97 if (val != cmp) { 98 /* CRC failure, dump it. */ 99 SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS); 100 return -1; 101 } 102 return 0; 103 } 104 105 struct sctp_input_cb { 106 union { 107 struct inet_skb_parm h4; 108 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE) 109 struct inet6_skb_parm h6; 110 #endif 111 } header; 112 struct sctp_chunk *chunk; 113 }; 114 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 115 116 /* 117 * This is the routine which IP calls when receiving an SCTP packet. 118 */ 119 int sctp_rcv(struct sk_buff *skb) 120 { 121 struct sock *sk; 122 struct sctp_association *asoc; 123 struct sctp_endpoint *ep = NULL; 124 struct sctp_ep_common *rcvr; 125 struct sctp_transport *transport = NULL; 126 struct sctp_chunk *chunk; 127 struct sctphdr *sh; 128 union sctp_addr src; 129 union sctp_addr dest; 130 int family; 131 struct sctp_af *af; 132 133 if (skb->pkt_type!=PACKET_HOST) 134 goto discard_it; 135 136 SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); 137 138 sh = (struct sctphdr *) skb->h.raw; 139 140 /* Pull up the IP and SCTP headers. */ 141 __skb_pull(skb, skb->h.raw - skb->data); 142 if (skb->len < sizeof(struct sctphdr)) 143 goto discard_it; 144 if ((skb->ip_summed != CHECKSUM_UNNECESSARY) && 145 (sctp_rcv_checksum(skb) < 0)) 146 goto discard_it; 147 148 skb_pull(skb, sizeof(struct sctphdr)); 149 150 /* Make sure we at least have chunk headers worth of data left. */ 151 if (skb->len < sizeof(struct sctp_chunkhdr)) 152 goto discard_it; 153 154 family = ipver2af(skb->nh.iph->version); 155 af = sctp_get_af_specific(family); 156 if (unlikely(!af)) 157 goto discard_it; 158 159 /* Initialize local addresses for lookups. */ 160 af->from_skb(&src, skb, 1); 161 af->from_skb(&dest, skb, 0); 162 163 /* If the packet is to or from a non-unicast address, 164 * silently discard the packet. 165 * 166 * This is not clearly defined in the RFC except in section 167 * 8.4 - OOTB handling. However, based on the book "Stream Control 168 * Transmission Protocol" 2.1, "It is important to note that the 169 * IP address of an SCTP transport address must be a routable 170 * unicast address. In other words, IP multicast addresses and 171 * IP broadcast addresses cannot be used in an SCTP transport 172 * address." 173 */ 174 if (!af->addr_valid(&src, NULL, skb) || 175 !af->addr_valid(&dest, NULL, skb)) 176 goto discard_it; 177 178 asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); 179 180 if (!asoc) 181 ep = __sctp_rcv_lookup_endpoint(&dest); 182 183 /* Retrieve the common input handling substructure. */ 184 rcvr = asoc ? &asoc->base : &ep->base; 185 sk = rcvr->sk; 186 187 /* 188 * If a frame arrives on an interface and the receiving socket is 189 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 190 */ 191 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) 192 { 193 if (asoc) { 194 sctp_association_put(asoc); 195 asoc = NULL; 196 } else { 197 sctp_endpoint_put(ep); 198 ep = NULL; 199 } 200 sk = sctp_get_ctl_sock(); 201 ep = sctp_sk(sk)->ep; 202 sctp_endpoint_hold(ep); 203 rcvr = &ep->base; 204 } 205 206 /* 207 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 208 * An SCTP packet is called an "out of the blue" (OOTB) 209 * packet if it is correctly formed, i.e., passed the 210 * receiver's checksum check, but the receiver is not 211 * able to identify the association to which this 212 * packet belongs. 213 */ 214 if (!asoc) { 215 if (sctp_rcv_ootb(skb)) { 216 SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); 217 goto discard_release; 218 } 219 } 220 221 /* SCTP seems to always need a timestamp right now (FIXME) */ 222 if (skb->tstamp.off_sec == 0) { 223 __net_timestamp(skb); 224 sock_enable_timestamp(sk); 225 } 226 227 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 228 goto discard_release; 229 nf_reset(skb); 230 231 if (sk_filter(sk, skb, 1)) 232 goto discard_release; 233 234 /* Create an SCTP packet structure. */ 235 chunk = sctp_chunkify(skb, asoc, sk); 236 if (!chunk) 237 goto discard_release; 238 SCTP_INPUT_CB(skb)->chunk = chunk; 239 240 /* Remember what endpoint is to handle this packet. */ 241 chunk->rcvr = rcvr; 242 243 /* Remember the SCTP header. */ 244 chunk->sctp_hdr = sh; 245 246 /* Set the source and destination addresses of the incoming chunk. */ 247 sctp_init_addrs(chunk, &src, &dest); 248 249 /* Remember where we came from. */ 250 chunk->transport = transport; 251 252 /* Acquire access to the sock lock. Note: We are safe from other 253 * bottom halves on this lock, but a user may be in the lock too, 254 * so check if it is busy. 255 */ 256 sctp_bh_lock_sock(sk); 257 258 if (sock_owned_by_user(sk)) 259 sctp_add_backlog(sk, skb); 260 else 261 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 262 263 sctp_bh_unlock_sock(sk); 264 265 /* Release the asoc/ep ref we took in the lookup calls. */ 266 if (asoc) 267 sctp_association_put(asoc); 268 else 269 sctp_endpoint_put(ep); 270 271 return 0; 272 273 discard_it: 274 kfree_skb(skb); 275 return 0; 276 277 discard_release: 278 /* Release the asoc/ep ref we took in the lookup calls. */ 279 if (asoc) 280 sctp_association_put(asoc); 281 else 282 sctp_endpoint_put(ep); 283 284 goto discard_it; 285 } 286 287 /* Process the backlog queue of the socket. Every skb on 288 * the backlog holds a ref on an association or endpoint. 289 * We hold this ref throughout the state machine to make 290 * sure that the structure we need is still around. 291 */ 292 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 293 { 294 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 295 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 296 struct sctp_ep_common *rcvr = NULL; 297 int backloged = 0; 298 299 rcvr = chunk->rcvr; 300 301 /* If the rcvr is dead then the association or endpoint 302 * has been deleted and we can safely drop the chunk 303 * and refs that we are holding. 304 */ 305 if (rcvr->dead) { 306 sctp_chunk_free(chunk); 307 goto done; 308 } 309 310 if (unlikely(rcvr->sk != sk)) { 311 /* In this case, the association moved from one socket to 312 * another. We are currently sitting on the backlog of the 313 * old socket, so we need to move. 314 * However, since we are here in the process context we 315 * need to take make sure that the user doesn't own 316 * the new socket when we process the packet. 317 * If the new socket is user-owned, queue the chunk to the 318 * backlog of the new socket without dropping any refs. 319 * Otherwise, we can safely push the chunk on the inqueue. 320 */ 321 322 sk = rcvr->sk; 323 sctp_bh_lock_sock(sk); 324 325 if (sock_owned_by_user(sk)) { 326 sk_add_backlog(sk, skb); 327 backloged = 1; 328 } else 329 sctp_inq_push(inqueue, chunk); 330 331 sctp_bh_unlock_sock(sk); 332 333 /* If the chunk was backloged again, don't drop refs */ 334 if (backloged) 335 return 0; 336 } else { 337 sctp_inq_push(inqueue, chunk); 338 } 339 340 done: 341 /* Release the refs we took in sctp_add_backlog */ 342 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 343 sctp_association_put(sctp_assoc(rcvr)); 344 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 345 sctp_endpoint_put(sctp_ep(rcvr)); 346 else 347 BUG(); 348 349 return 0; 350 } 351 352 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 353 { 354 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 355 struct sctp_ep_common *rcvr = chunk->rcvr; 356 357 /* Hold the assoc/ep while hanging on the backlog queue. 358 * This way, we know structures we need will not disappear from us 359 */ 360 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 361 sctp_association_hold(sctp_assoc(rcvr)); 362 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 363 sctp_endpoint_hold(sctp_ep(rcvr)); 364 else 365 BUG(); 366 367 sk_add_backlog(sk, skb); 368 } 369 370 /* Handle icmp frag needed error. */ 371 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 372 struct sctp_transport *t, __u32 pmtu) 373 { 374 if (sock_owned_by_user(sk) || !t || (t->pathmtu == pmtu)) 375 return; 376 377 if (t->param_flags & SPP_PMTUD_ENABLE) { 378 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 379 printk(KERN_WARNING "%s: Reported pmtu %d too low, " 380 "using default minimum of %d\n", 381 __FUNCTION__, pmtu, 382 SCTP_DEFAULT_MINSEGMENT); 383 /* Use default minimum segment size and disable 384 * pmtu discovery on this transport. 385 */ 386 t->pathmtu = SCTP_DEFAULT_MINSEGMENT; 387 t->param_flags = (t->param_flags & ~SPP_HB) | 388 SPP_PMTUD_DISABLE; 389 } else { 390 t->pathmtu = pmtu; 391 } 392 393 /* Update association pmtu. */ 394 sctp_assoc_sync_pmtu(asoc); 395 } 396 397 /* Retransmit with the new pmtu setting. 398 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 399 * Needed will never be sent, but if a message was sent before 400 * PMTU discovery was disabled that was larger than the PMTU, it 401 * would not be fragmented, so it must be re-transmitted fragmented. 402 */ 403 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 404 } 405 406 /* 407 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 408 * 409 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 410 * or a "Protocol Unreachable" treat this message as an abort 411 * with the T bit set. 412 * 413 * This function sends an event to the state machine, which will abort the 414 * association. 415 * 416 */ 417 void sctp_icmp_proto_unreachable(struct sock *sk, 418 struct sctp_association *asoc, 419 struct sctp_transport *t) 420 { 421 SCTP_DEBUG_PRINTK("%s\n", __FUNCTION__); 422 423 sctp_do_sm(SCTP_EVENT_T_OTHER, 424 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 425 asoc->state, asoc->ep, asoc, t, 426 GFP_ATOMIC); 427 428 } 429 430 /* Common lookup code for icmp/icmpv6 error handler. */ 431 struct sock *sctp_err_lookup(int family, struct sk_buff *skb, 432 struct sctphdr *sctphdr, 433 struct sctp_association **app, 434 struct sctp_transport **tpp) 435 { 436 union sctp_addr saddr; 437 union sctp_addr daddr; 438 struct sctp_af *af; 439 struct sock *sk = NULL; 440 struct sctp_association *asoc; 441 struct sctp_transport *transport = NULL; 442 443 *app = NULL; *tpp = NULL; 444 445 af = sctp_get_af_specific(family); 446 if (unlikely(!af)) { 447 return NULL; 448 } 449 450 /* Initialize local addresses for lookups. */ 451 af->from_skb(&saddr, skb, 1); 452 af->from_skb(&daddr, skb, 0); 453 454 /* Look for an association that matches the incoming ICMP error 455 * packet. 456 */ 457 asoc = __sctp_lookup_association(&saddr, &daddr, &transport); 458 if (!asoc) 459 return NULL; 460 461 sk = asoc->base.sk; 462 463 if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) { 464 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 465 goto out; 466 } 467 468 sctp_bh_lock_sock(sk); 469 470 /* If too many ICMPs get dropped on busy 471 * servers this needs to be solved differently. 472 */ 473 if (sock_owned_by_user(sk)) 474 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); 475 476 *app = asoc; 477 *tpp = transport; 478 return sk; 479 480 out: 481 if (asoc) 482 sctp_association_put(asoc); 483 return NULL; 484 } 485 486 /* Common cleanup code for icmp/icmpv6 error handler. */ 487 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 488 { 489 sctp_bh_unlock_sock(sk); 490 if (asoc) 491 sctp_association_put(asoc); 492 } 493 494 /* 495 * This routine is called by the ICMP module when it gets some 496 * sort of error condition. If err < 0 then the socket should 497 * be closed and the error returned to the user. If err > 0 498 * it's just the icmp type << 8 | icmp code. After adjustment 499 * header points to the first 8 bytes of the sctp header. We need 500 * to find the appropriate port. 501 * 502 * The locking strategy used here is very "optimistic". When 503 * someone else accesses the socket the ICMP is just dropped 504 * and for some paths there is no check at all. 505 * A more general error queue to queue errors for later handling 506 * is probably better. 507 * 508 */ 509 void sctp_v4_err(struct sk_buff *skb, __u32 info) 510 { 511 struct iphdr *iph = (struct iphdr *)skb->data; 512 struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2)); 513 int type = skb->h.icmph->type; 514 int code = skb->h.icmph->code; 515 struct sock *sk; 516 struct sctp_association *asoc = NULL; 517 struct sctp_transport *transport; 518 struct inet_sock *inet; 519 char *saveip, *savesctp; 520 int err; 521 522 if (skb->len < ((iph->ihl << 2) + 8)) { 523 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 524 return; 525 } 526 527 /* Fix up skb to look at the embedded net header. */ 528 saveip = skb->nh.raw; 529 savesctp = skb->h.raw; 530 skb->nh.iph = iph; 531 skb->h.raw = (char *)sh; 532 sk = sctp_err_lookup(AF_INET, skb, sh, &asoc, &transport); 533 /* Put back, the original pointers. */ 534 skb->nh.raw = saveip; 535 skb->h.raw = savesctp; 536 if (!sk) { 537 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 538 return; 539 } 540 /* Warning: The sock lock is held. Remember to call 541 * sctp_err_finish! 542 */ 543 544 switch (type) { 545 case ICMP_PARAMETERPROB: 546 err = EPROTO; 547 break; 548 case ICMP_DEST_UNREACH: 549 if (code > NR_ICMP_UNREACH) 550 goto out_unlock; 551 552 /* PMTU discovery (RFC1191) */ 553 if (ICMP_FRAG_NEEDED == code) { 554 sctp_icmp_frag_needed(sk, asoc, transport, info); 555 goto out_unlock; 556 } 557 else { 558 if (ICMP_PROT_UNREACH == code) { 559 sctp_icmp_proto_unreachable(sk, asoc, 560 transport); 561 goto out_unlock; 562 } 563 } 564 err = icmp_err_convert[code].errno; 565 break; 566 case ICMP_TIME_EXCEEDED: 567 /* Ignore any time exceeded errors due to fragment reassembly 568 * timeouts. 569 */ 570 if (ICMP_EXC_FRAGTIME == code) 571 goto out_unlock; 572 573 err = EHOSTUNREACH; 574 break; 575 default: 576 goto out_unlock; 577 } 578 579 inet = inet_sk(sk); 580 if (!sock_owned_by_user(sk) && inet->recverr) { 581 sk->sk_err = err; 582 sk->sk_error_report(sk); 583 } else { /* Only an error on timeout */ 584 sk->sk_err_soft = err; 585 } 586 587 out_unlock: 588 sctp_err_finish(sk, asoc); 589 } 590 591 /* 592 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 593 * 594 * This function scans all the chunks in the OOTB packet to determine if 595 * the packet should be discarded right away. If a response might be needed 596 * for this packet, or, if further processing is possible, the packet will 597 * be queued to a proper inqueue for the next phase of handling. 598 * 599 * Output: 600 * Return 0 - If further processing is needed. 601 * Return 1 - If the packet can be discarded right away. 602 */ 603 int sctp_rcv_ootb(struct sk_buff *skb) 604 { 605 sctp_chunkhdr_t *ch; 606 __u8 *ch_end; 607 sctp_errhdr_t *err; 608 609 ch = (sctp_chunkhdr_t *) skb->data; 610 611 /* Scan through all the chunks in the packet. */ 612 do { 613 /* Break out if chunk length is less then minimal. */ 614 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 615 break; 616 617 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 618 if (ch_end > skb->tail) 619 break; 620 621 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 622 * receiver MUST silently discard the OOTB packet and take no 623 * further action. 624 */ 625 if (SCTP_CID_ABORT == ch->type) 626 goto discard; 627 628 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 629 * chunk, the receiver should silently discard the packet 630 * and take no further action. 631 */ 632 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 633 goto discard; 634 635 /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR 636 * or a COOKIE ACK the SCTP Packet should be silently 637 * discarded. 638 */ 639 if (SCTP_CID_COOKIE_ACK == ch->type) 640 goto discard; 641 642 if (SCTP_CID_ERROR == ch->type) { 643 sctp_walk_errors(err, ch) { 644 if (SCTP_ERROR_STALE_COOKIE == err->cause) 645 goto discard; 646 } 647 } 648 649 ch = (sctp_chunkhdr_t *) ch_end; 650 } while (ch_end < skb->tail); 651 652 return 0; 653 654 discard: 655 return 1; 656 } 657 658 /* Insert endpoint into the hash table. */ 659 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 660 { 661 struct sctp_ep_common **epp; 662 struct sctp_ep_common *epb; 663 struct sctp_hashbucket *head; 664 665 epb = &ep->base; 666 667 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 668 head = &sctp_ep_hashtable[epb->hashent]; 669 670 sctp_write_lock(&head->lock); 671 epp = &head->chain; 672 epb->next = *epp; 673 if (epb->next) 674 (*epp)->pprev = &epb->next; 675 *epp = epb; 676 epb->pprev = epp; 677 sctp_write_unlock(&head->lock); 678 } 679 680 /* Add an endpoint to the hash. Local BH-safe. */ 681 void sctp_hash_endpoint(struct sctp_endpoint *ep) 682 { 683 sctp_local_bh_disable(); 684 __sctp_hash_endpoint(ep); 685 sctp_local_bh_enable(); 686 } 687 688 /* Remove endpoint from the hash table. */ 689 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 690 { 691 struct sctp_hashbucket *head; 692 struct sctp_ep_common *epb; 693 694 epb = &ep->base; 695 696 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 697 698 head = &sctp_ep_hashtable[epb->hashent]; 699 700 sctp_write_lock(&head->lock); 701 702 if (epb->pprev) { 703 if (epb->next) 704 epb->next->pprev = epb->pprev; 705 *epb->pprev = epb->next; 706 epb->pprev = NULL; 707 } 708 709 sctp_write_unlock(&head->lock); 710 } 711 712 /* Remove endpoint from the hash. Local BH-safe. */ 713 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 714 { 715 sctp_local_bh_disable(); 716 __sctp_unhash_endpoint(ep); 717 sctp_local_bh_enable(); 718 } 719 720 /* Look up an endpoint. */ 721 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr) 722 { 723 struct sctp_hashbucket *head; 724 struct sctp_ep_common *epb; 725 struct sctp_endpoint *ep; 726 int hash; 727 728 hash = sctp_ep_hashfn(laddr->v4.sin_port); 729 head = &sctp_ep_hashtable[hash]; 730 read_lock(&head->lock); 731 for (epb = head->chain; epb; epb = epb->next) { 732 ep = sctp_ep(epb); 733 if (sctp_endpoint_is_match(ep, laddr)) 734 goto hit; 735 } 736 737 ep = sctp_sk((sctp_get_ctl_sock()))->ep; 738 epb = &ep->base; 739 740 hit: 741 sctp_endpoint_hold(ep); 742 read_unlock(&head->lock); 743 return ep; 744 } 745 746 /* Insert association into the hash table. */ 747 static void __sctp_hash_established(struct sctp_association *asoc) 748 { 749 struct sctp_ep_common **epp; 750 struct sctp_ep_common *epb; 751 struct sctp_hashbucket *head; 752 753 epb = &asoc->base; 754 755 /* Calculate which chain this entry will belong to. */ 756 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); 757 758 head = &sctp_assoc_hashtable[epb->hashent]; 759 760 sctp_write_lock(&head->lock); 761 epp = &head->chain; 762 epb->next = *epp; 763 if (epb->next) 764 (*epp)->pprev = &epb->next; 765 *epp = epb; 766 epb->pprev = epp; 767 sctp_write_unlock(&head->lock); 768 } 769 770 /* Add an association to the hash. Local BH-safe. */ 771 void sctp_hash_established(struct sctp_association *asoc) 772 { 773 sctp_local_bh_disable(); 774 __sctp_hash_established(asoc); 775 sctp_local_bh_enable(); 776 } 777 778 /* Remove association from the hash table. */ 779 static void __sctp_unhash_established(struct sctp_association *asoc) 780 { 781 struct sctp_hashbucket *head; 782 struct sctp_ep_common *epb; 783 784 epb = &asoc->base; 785 786 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, 787 asoc->peer.port); 788 789 head = &sctp_assoc_hashtable[epb->hashent]; 790 791 sctp_write_lock(&head->lock); 792 793 if (epb->pprev) { 794 if (epb->next) 795 epb->next->pprev = epb->pprev; 796 *epb->pprev = epb->next; 797 epb->pprev = NULL; 798 } 799 800 sctp_write_unlock(&head->lock); 801 } 802 803 /* Remove association from the hash table. Local BH-safe. */ 804 void sctp_unhash_established(struct sctp_association *asoc) 805 { 806 sctp_local_bh_disable(); 807 __sctp_unhash_established(asoc); 808 sctp_local_bh_enable(); 809 } 810 811 /* Look up an association. */ 812 static struct sctp_association *__sctp_lookup_association( 813 const union sctp_addr *local, 814 const union sctp_addr *peer, 815 struct sctp_transport **pt) 816 { 817 struct sctp_hashbucket *head; 818 struct sctp_ep_common *epb; 819 struct sctp_association *asoc; 820 struct sctp_transport *transport; 821 int hash; 822 823 /* Optimize here for direct hit, only listening connections can 824 * have wildcards anyways. 825 */ 826 hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port); 827 head = &sctp_assoc_hashtable[hash]; 828 read_lock(&head->lock); 829 for (epb = head->chain; epb; epb = epb->next) { 830 asoc = sctp_assoc(epb); 831 transport = sctp_assoc_is_match(asoc, local, peer); 832 if (transport) 833 goto hit; 834 } 835 836 read_unlock(&head->lock); 837 838 return NULL; 839 840 hit: 841 *pt = transport; 842 sctp_association_hold(asoc); 843 read_unlock(&head->lock); 844 return asoc; 845 } 846 847 /* Look up an association. BH-safe. */ 848 SCTP_STATIC 849 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr, 850 const union sctp_addr *paddr, 851 struct sctp_transport **transportp) 852 { 853 struct sctp_association *asoc; 854 855 sctp_local_bh_disable(); 856 asoc = __sctp_lookup_association(laddr, paddr, transportp); 857 sctp_local_bh_enable(); 858 859 return asoc; 860 } 861 862 /* Is there an association matching the given local and peer addresses? */ 863 int sctp_has_association(const union sctp_addr *laddr, 864 const union sctp_addr *paddr) 865 { 866 struct sctp_association *asoc; 867 struct sctp_transport *transport; 868 869 if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) { 870 sctp_association_put(asoc); 871 return 1; 872 } 873 874 return 0; 875 } 876 877 /* 878 * SCTP Implementors Guide, 2.18 Handling of address 879 * parameters within the INIT or INIT-ACK. 880 * 881 * D) When searching for a matching TCB upon reception of an INIT 882 * or INIT-ACK chunk the receiver SHOULD use not only the 883 * source address of the packet (containing the INIT or 884 * INIT-ACK) but the receiver SHOULD also use all valid 885 * address parameters contained within the chunk. 886 * 887 * 2.18.3 Solution description 888 * 889 * This new text clearly specifies to an implementor the need 890 * to look within the INIT or INIT-ACK. Any implementation that 891 * does not do this, may not be able to establish associations 892 * in certain circumstances. 893 * 894 */ 895 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb, 896 const union sctp_addr *laddr, struct sctp_transport **transportp) 897 { 898 struct sctp_association *asoc; 899 union sctp_addr addr; 900 union sctp_addr *paddr = &addr; 901 struct sctphdr *sh = (struct sctphdr *) skb->h.raw; 902 sctp_chunkhdr_t *ch; 903 union sctp_params params; 904 sctp_init_chunk_t *init; 905 struct sctp_transport *transport; 906 struct sctp_af *af; 907 908 ch = (sctp_chunkhdr_t *) skb->data; 909 910 /* If this is INIT/INIT-ACK look inside the chunk too. */ 911 switch (ch->type) { 912 case SCTP_CID_INIT: 913 case SCTP_CID_INIT_ACK: 914 break; 915 default: 916 return NULL; 917 } 918 919 /* The code below will attempt to walk the chunk and extract 920 * parameter information. Before we do that, we need to verify 921 * that the chunk length doesn't cause overflow. Otherwise, we'll 922 * walk off the end. 923 */ 924 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 925 return NULL; 926 927 /* 928 * This code will NOT touch anything inside the chunk--it is 929 * strictly READ-ONLY. 930 * 931 * RFC 2960 3 SCTP packet Format 932 * 933 * Multiple chunks can be bundled into one SCTP packet up to 934 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 935 * COMPLETE chunks. These chunks MUST NOT be bundled with any 936 * other chunk in a packet. See Section 6.10 for more details 937 * on chunk bundling. 938 */ 939 940 /* Find the start of the TLVs and the end of the chunk. This is 941 * the region we search for address parameters. 942 */ 943 init = (sctp_init_chunk_t *)skb->data; 944 945 /* Walk the parameters looking for embedded addresses. */ 946 sctp_walk_params(params, init, init_hdr.params) { 947 948 /* Note: Ignoring hostname addresses. */ 949 af = sctp_get_af_specific(param_type2af(params.p->type)); 950 if (!af) 951 continue; 952 953 af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0); 954 955 asoc = __sctp_lookup_association(laddr, paddr, &transport); 956 if (asoc) 957 return asoc; 958 } 959 960 return NULL; 961 } 962 963 /* Lookup an association for an inbound skb. */ 964 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 965 const union sctp_addr *paddr, 966 const union sctp_addr *laddr, 967 struct sctp_transport **transportp) 968 { 969 struct sctp_association *asoc; 970 971 asoc = __sctp_lookup_association(laddr, paddr, transportp); 972 973 /* Further lookup for INIT/INIT-ACK packets. 974 * SCTP Implementors Guide, 2.18 Handling of address 975 * parameters within the INIT or INIT-ACK. 976 */ 977 if (!asoc) 978 asoc = __sctp_rcv_init_lookup(skb, laddr, transportp); 979 980 return asoc; 981 } 982