xref: /linux/net/sctp/input.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /* SCTP kernel reference Implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * The SCTP reference implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * The SCTP reference implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal helpers. */
65 static int sctp_rcv_ootb(struct sk_buff *);
66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
67 				      const union sctp_addr *laddr,
68 				      const union sctp_addr *paddr,
69 				      struct sctp_transport **transportp);
70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
71 static struct sctp_association *__sctp_lookup_association(
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77 
78 
79 /* Calculate the SCTP checksum of an SCTP packet.  */
80 static inline int sctp_rcv_checksum(struct sk_buff *skb)
81 {
82 	struct sctphdr *sh;
83 	__u32 cmp, val;
84 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
85 
86 	sh = (struct sctphdr *) skb->h.raw;
87 	cmp = ntohl(sh->checksum);
88 
89 	val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90 
91 	for (; list; list = list->next)
92 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
93 					val);
94 
95 	val = sctp_end_cksum(val);
96 
97 	if (val != cmp) {
98 		/* CRC failure, dump it. */
99 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
100 		return -1;
101 	}
102 	return 0;
103 }
104 
105 struct sctp_input_cb {
106 	union {
107 		struct inet_skb_parm	h4;
108 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
109 		struct inet6_skb_parm	h6;
110 #endif
111 	} header;
112 	struct sctp_chunk *chunk;
113 };
114 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
115 
116 /*
117  * This is the routine which IP calls when receiving an SCTP packet.
118  */
119 int sctp_rcv(struct sk_buff *skb)
120 {
121 	struct sock *sk;
122 	struct sctp_association *asoc;
123 	struct sctp_endpoint *ep = NULL;
124 	struct sctp_ep_common *rcvr;
125 	struct sctp_transport *transport = NULL;
126 	struct sctp_chunk *chunk;
127 	struct sctphdr *sh;
128 	union sctp_addr src;
129 	union sctp_addr dest;
130 	int family;
131 	struct sctp_af *af;
132 
133 	if (skb->pkt_type!=PACKET_HOST)
134 		goto discard_it;
135 
136 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137 
138 	sh = (struct sctphdr *) skb->h.raw;
139 
140 	/* Pull up the IP and SCTP headers. */
141 	__skb_pull(skb, skb->h.raw - skb->data);
142 	if (skb->len < sizeof(struct sctphdr))
143 		goto discard_it;
144 	if ((skb->ip_summed != CHECKSUM_UNNECESSARY) &&
145 	    (sctp_rcv_checksum(skb) < 0))
146 		goto discard_it;
147 
148 	skb_pull(skb, sizeof(struct sctphdr));
149 
150 	/* Make sure we at least have chunk headers worth of data left. */
151 	if (skb->len < sizeof(struct sctp_chunkhdr))
152 		goto discard_it;
153 
154 	family = ipver2af(skb->nh.iph->version);
155 	af = sctp_get_af_specific(family);
156 	if (unlikely(!af))
157 		goto discard_it;
158 
159 	/* Initialize local addresses for lookups. */
160 	af->from_skb(&src, skb, 1);
161 	af->from_skb(&dest, skb, 0);
162 
163 	/* If the packet is to or from a non-unicast address,
164 	 * silently discard the packet.
165 	 *
166 	 * This is not clearly defined in the RFC except in section
167 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
168 	 * Transmission Protocol" 2.1, "It is important to note that the
169 	 * IP address of an SCTP transport address must be a routable
170 	 * unicast address.  In other words, IP multicast addresses and
171 	 * IP broadcast addresses cannot be used in an SCTP transport
172 	 * address."
173 	 */
174 	if (!af->addr_valid(&src, NULL, skb) ||
175 	    !af->addr_valid(&dest, NULL, skb))
176 		goto discard_it;
177 
178 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
179 
180 	if (!asoc)
181 		ep = __sctp_rcv_lookup_endpoint(&dest);
182 
183 	/* Retrieve the common input handling substructure. */
184 	rcvr = asoc ? &asoc->base : &ep->base;
185 	sk = rcvr->sk;
186 
187 	/*
188 	 * If a frame arrives on an interface and the receiving socket is
189 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
190 	 */
191 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
192 	{
193 		if (asoc) {
194 			sctp_association_put(asoc);
195 			asoc = NULL;
196 		} else {
197 			sctp_endpoint_put(ep);
198 			ep = NULL;
199 		}
200 		sk = sctp_get_ctl_sock();
201 		ep = sctp_sk(sk)->ep;
202 		sctp_endpoint_hold(ep);
203 		rcvr = &ep->base;
204 	}
205 
206 	/*
207 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
208 	 * An SCTP packet is called an "out of the blue" (OOTB)
209 	 * packet if it is correctly formed, i.e., passed the
210 	 * receiver's checksum check, but the receiver is not
211 	 * able to identify the association to which this
212 	 * packet belongs.
213 	 */
214 	if (!asoc) {
215 		if (sctp_rcv_ootb(skb)) {
216 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
217 			goto discard_release;
218 		}
219 	}
220 
221 	/* SCTP seems to always need a timestamp right now (FIXME) */
222 	if (skb->tstamp.off_sec == 0) {
223 		__net_timestamp(skb);
224 		sock_enable_timestamp(sk);
225 	}
226 
227 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
228 		goto discard_release;
229 	nf_reset(skb);
230 
231 	if (sk_filter(sk, skb, 1))
232                 goto discard_release;
233 
234 	/* Create an SCTP packet structure. */
235 	chunk = sctp_chunkify(skb, asoc, sk);
236 	if (!chunk)
237 		goto discard_release;
238 	SCTP_INPUT_CB(skb)->chunk = chunk;
239 
240 	/* Remember what endpoint is to handle this packet. */
241 	chunk->rcvr = rcvr;
242 
243 	/* Remember the SCTP header. */
244 	chunk->sctp_hdr = sh;
245 
246 	/* Set the source and destination addresses of the incoming chunk.  */
247 	sctp_init_addrs(chunk, &src, &dest);
248 
249 	/* Remember where we came from.  */
250 	chunk->transport = transport;
251 
252 	/* Acquire access to the sock lock. Note: We are safe from other
253 	 * bottom halves on this lock, but a user may be in the lock too,
254 	 * so check if it is busy.
255 	 */
256 	sctp_bh_lock_sock(sk);
257 
258 	if (sock_owned_by_user(sk))
259 		sctp_add_backlog(sk, skb);
260 	else
261 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
262 
263 	sctp_bh_unlock_sock(sk);
264 
265 	/* Release the asoc/ep ref we took in the lookup calls. */
266 	if (asoc)
267 		sctp_association_put(asoc);
268 	else
269 		sctp_endpoint_put(ep);
270 
271 	return 0;
272 
273 discard_it:
274 	kfree_skb(skb);
275 	return 0;
276 
277 discard_release:
278 	/* Release the asoc/ep ref we took in the lookup calls. */
279 	if (asoc)
280 		sctp_association_put(asoc);
281 	else
282 		sctp_endpoint_put(ep);
283 
284 	goto discard_it;
285 }
286 
287 /* Process the backlog queue of the socket.  Every skb on
288  * the backlog holds a ref on an association or endpoint.
289  * We hold this ref throughout the state machine to make
290  * sure that the structure we need is still around.
291  */
292 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
293 {
294 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
295  	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
296  	struct sctp_ep_common *rcvr = NULL;
297 	int backloged = 0;
298 
299  	rcvr = chunk->rcvr;
300 
301 	/* If the rcvr is dead then the association or endpoint
302 	 * has been deleted and we can safely drop the chunk
303 	 * and refs that we are holding.
304 	 */
305 	if (rcvr->dead) {
306 		sctp_chunk_free(chunk);
307 		goto done;
308 	}
309 
310 	if (unlikely(rcvr->sk != sk)) {
311 		/* In this case, the association moved from one socket to
312 		 * another.  We are currently sitting on the backlog of the
313 		 * old socket, so we need to move.
314 		 * However, since we are here in the process context we
315 		 * need to take make sure that the user doesn't own
316 		 * the new socket when we process the packet.
317 		 * If the new socket is user-owned, queue the chunk to the
318 		 * backlog of the new socket without dropping any refs.
319 		 * Otherwise, we can safely push the chunk on the inqueue.
320 		 */
321 
322 		sk = rcvr->sk;
323 		sctp_bh_lock_sock(sk);
324 
325 		if (sock_owned_by_user(sk)) {
326 			sk_add_backlog(sk, skb);
327 			backloged = 1;
328 		} else
329 			sctp_inq_push(inqueue, chunk);
330 
331 		sctp_bh_unlock_sock(sk);
332 
333 		/* If the chunk was backloged again, don't drop refs */
334 		if (backloged)
335 			return 0;
336 	} else {
337 		sctp_inq_push(inqueue, chunk);
338 	}
339 
340 done:
341 	/* Release the refs we took in sctp_add_backlog */
342 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
343 		sctp_association_put(sctp_assoc(rcvr));
344 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
345 		sctp_endpoint_put(sctp_ep(rcvr));
346 	else
347 		BUG();
348 
349         return 0;
350 }
351 
352 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
353 {
354 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
355 	struct sctp_ep_common *rcvr = chunk->rcvr;
356 
357 	/* Hold the assoc/ep while hanging on the backlog queue.
358 	 * This way, we know structures we need will not disappear from us
359 	 */
360 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
361 		sctp_association_hold(sctp_assoc(rcvr));
362 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
363 		sctp_endpoint_hold(sctp_ep(rcvr));
364 	else
365 		BUG();
366 
367 	sk_add_backlog(sk, skb);
368 }
369 
370 /* Handle icmp frag needed error. */
371 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
372 			   struct sctp_transport *t, __u32 pmtu)
373 {
374 	if (sock_owned_by_user(sk) || !t || (t->pathmtu == pmtu))
375 		return;
376 
377 	if (t->param_flags & SPP_PMTUD_ENABLE) {
378 		if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
379 			printk(KERN_WARNING "%s: Reported pmtu %d too low, "
380 			       "using default minimum of %d\n",
381 			       __FUNCTION__, pmtu,
382 			       SCTP_DEFAULT_MINSEGMENT);
383 			/* Use default minimum segment size and disable
384 			 * pmtu discovery on this transport.
385 			 */
386 			t->pathmtu = SCTP_DEFAULT_MINSEGMENT;
387 			t->param_flags = (t->param_flags & ~SPP_HB) |
388 				SPP_PMTUD_DISABLE;
389 		} else {
390 			t->pathmtu = pmtu;
391 		}
392 
393 		/* Update association pmtu. */
394 		sctp_assoc_sync_pmtu(asoc);
395 	}
396 
397 	/* Retransmit with the new pmtu setting.
398 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
399 	 * Needed will never be sent, but if a message was sent before
400 	 * PMTU discovery was disabled that was larger than the PMTU, it
401 	 * would not be fragmented, so it must be re-transmitted fragmented.
402 	 */
403 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
404 }
405 
406 /*
407  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
408  *
409  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
410  *        or a "Protocol Unreachable" treat this message as an abort
411  *        with the T bit set.
412  *
413  * This function sends an event to the state machine, which will abort the
414  * association.
415  *
416  */
417 void sctp_icmp_proto_unreachable(struct sock *sk,
418                            struct sctp_association *asoc,
419                            struct sctp_transport *t)
420 {
421 	SCTP_DEBUG_PRINTK("%s\n",  __FUNCTION__);
422 
423 	sctp_do_sm(SCTP_EVENT_T_OTHER,
424 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
425 		   asoc->state, asoc->ep, asoc, t,
426 		   GFP_ATOMIC);
427 
428 }
429 
430 /* Common lookup code for icmp/icmpv6 error handler. */
431 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
432 			     struct sctphdr *sctphdr,
433 			     struct sctp_association **app,
434 			     struct sctp_transport **tpp)
435 {
436 	union sctp_addr saddr;
437 	union sctp_addr daddr;
438 	struct sctp_af *af;
439 	struct sock *sk = NULL;
440 	struct sctp_association *asoc;
441 	struct sctp_transport *transport = NULL;
442 
443 	*app = NULL; *tpp = NULL;
444 
445 	af = sctp_get_af_specific(family);
446 	if (unlikely(!af)) {
447 		return NULL;
448 	}
449 
450 	/* Initialize local addresses for lookups. */
451 	af->from_skb(&saddr, skb, 1);
452 	af->from_skb(&daddr, skb, 0);
453 
454 	/* Look for an association that matches the incoming ICMP error
455 	 * packet.
456 	 */
457 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
458 	if (!asoc)
459 		return NULL;
460 
461 	sk = asoc->base.sk;
462 
463 	if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
464 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
465 		goto out;
466 	}
467 
468 	sctp_bh_lock_sock(sk);
469 
470 	/* If too many ICMPs get dropped on busy
471 	 * servers this needs to be solved differently.
472 	 */
473 	if (sock_owned_by_user(sk))
474 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
475 
476 	*app = asoc;
477 	*tpp = transport;
478 	return sk;
479 
480 out:
481 	if (asoc)
482 		sctp_association_put(asoc);
483 	return NULL;
484 }
485 
486 /* Common cleanup code for icmp/icmpv6 error handler. */
487 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
488 {
489 	sctp_bh_unlock_sock(sk);
490 	if (asoc)
491 		sctp_association_put(asoc);
492 }
493 
494 /*
495  * This routine is called by the ICMP module when it gets some
496  * sort of error condition.  If err < 0 then the socket should
497  * be closed and the error returned to the user.  If err > 0
498  * it's just the icmp type << 8 | icmp code.  After adjustment
499  * header points to the first 8 bytes of the sctp header.  We need
500  * to find the appropriate port.
501  *
502  * The locking strategy used here is very "optimistic". When
503  * someone else accesses the socket the ICMP is just dropped
504  * and for some paths there is no check at all.
505  * A more general error queue to queue errors for later handling
506  * is probably better.
507  *
508  */
509 void sctp_v4_err(struct sk_buff *skb, __u32 info)
510 {
511 	struct iphdr *iph = (struct iphdr *)skb->data;
512 	struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
513 	int type = skb->h.icmph->type;
514 	int code = skb->h.icmph->code;
515 	struct sock *sk;
516 	struct sctp_association *asoc = NULL;
517 	struct sctp_transport *transport;
518 	struct inet_sock *inet;
519 	char *saveip, *savesctp;
520 	int err;
521 
522 	if (skb->len < ((iph->ihl << 2) + 8)) {
523 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
524 		return;
525 	}
526 
527 	/* Fix up skb to look at the embedded net header. */
528 	saveip = skb->nh.raw;
529 	savesctp  = skb->h.raw;
530 	skb->nh.iph = iph;
531 	skb->h.raw = (char *)sh;
532 	sk = sctp_err_lookup(AF_INET, skb, sh, &asoc, &transport);
533 	/* Put back, the original pointers. */
534 	skb->nh.raw = saveip;
535 	skb->h.raw = savesctp;
536 	if (!sk) {
537 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
538 		return;
539 	}
540 	/* Warning:  The sock lock is held.  Remember to call
541 	 * sctp_err_finish!
542 	 */
543 
544 	switch (type) {
545 	case ICMP_PARAMETERPROB:
546 		err = EPROTO;
547 		break;
548 	case ICMP_DEST_UNREACH:
549 		if (code > NR_ICMP_UNREACH)
550 			goto out_unlock;
551 
552 		/* PMTU discovery (RFC1191) */
553 		if (ICMP_FRAG_NEEDED == code) {
554 			sctp_icmp_frag_needed(sk, asoc, transport, info);
555 			goto out_unlock;
556 		}
557 		else {
558 			if (ICMP_PROT_UNREACH == code) {
559 				sctp_icmp_proto_unreachable(sk, asoc,
560 							    transport);
561 				goto out_unlock;
562 			}
563 		}
564 		err = icmp_err_convert[code].errno;
565 		break;
566 	case ICMP_TIME_EXCEEDED:
567 		/* Ignore any time exceeded errors due to fragment reassembly
568 		 * timeouts.
569 		 */
570 		if (ICMP_EXC_FRAGTIME == code)
571 			goto out_unlock;
572 
573 		err = EHOSTUNREACH;
574 		break;
575 	default:
576 		goto out_unlock;
577 	}
578 
579 	inet = inet_sk(sk);
580 	if (!sock_owned_by_user(sk) && inet->recverr) {
581 		sk->sk_err = err;
582 		sk->sk_error_report(sk);
583 	} else {  /* Only an error on timeout */
584 		sk->sk_err_soft = err;
585 	}
586 
587 out_unlock:
588 	sctp_err_finish(sk, asoc);
589 }
590 
591 /*
592  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
593  *
594  * This function scans all the chunks in the OOTB packet to determine if
595  * the packet should be discarded right away.  If a response might be needed
596  * for this packet, or, if further processing is possible, the packet will
597  * be queued to a proper inqueue for the next phase of handling.
598  *
599  * Output:
600  * Return 0 - If further processing is needed.
601  * Return 1 - If the packet can be discarded right away.
602  */
603 int sctp_rcv_ootb(struct sk_buff *skb)
604 {
605 	sctp_chunkhdr_t *ch;
606 	__u8 *ch_end;
607 	sctp_errhdr_t *err;
608 
609 	ch = (sctp_chunkhdr_t *) skb->data;
610 
611 	/* Scan through all the chunks in the packet.  */
612 	do {
613 		/* Break out if chunk length is less then minimal. */
614 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
615 			break;
616 
617 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
618 		if (ch_end > skb->tail)
619 			break;
620 
621 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
622 		 * receiver MUST silently discard the OOTB packet and take no
623 		 * further action.
624 		 */
625 		if (SCTP_CID_ABORT == ch->type)
626 			goto discard;
627 
628 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
629 		 * chunk, the receiver should silently discard the packet
630 		 * and take no further action.
631 		 */
632 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
633 			goto discard;
634 
635 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
636 		 * or a COOKIE ACK the SCTP Packet should be silently
637 		 * discarded.
638 		 */
639 		if (SCTP_CID_COOKIE_ACK == ch->type)
640 			goto discard;
641 
642 		if (SCTP_CID_ERROR == ch->type) {
643 			sctp_walk_errors(err, ch) {
644 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
645 					goto discard;
646 			}
647 		}
648 
649 		ch = (sctp_chunkhdr_t *) ch_end;
650 	} while (ch_end < skb->tail);
651 
652 	return 0;
653 
654 discard:
655 	return 1;
656 }
657 
658 /* Insert endpoint into the hash table.  */
659 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
660 {
661 	struct sctp_ep_common **epp;
662 	struct sctp_ep_common *epb;
663 	struct sctp_hashbucket *head;
664 
665 	epb = &ep->base;
666 
667 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
668 	head = &sctp_ep_hashtable[epb->hashent];
669 
670 	sctp_write_lock(&head->lock);
671 	epp = &head->chain;
672 	epb->next = *epp;
673 	if (epb->next)
674 		(*epp)->pprev = &epb->next;
675 	*epp = epb;
676 	epb->pprev = epp;
677 	sctp_write_unlock(&head->lock);
678 }
679 
680 /* Add an endpoint to the hash. Local BH-safe. */
681 void sctp_hash_endpoint(struct sctp_endpoint *ep)
682 {
683 	sctp_local_bh_disable();
684 	__sctp_hash_endpoint(ep);
685 	sctp_local_bh_enable();
686 }
687 
688 /* Remove endpoint from the hash table.  */
689 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
690 {
691 	struct sctp_hashbucket *head;
692 	struct sctp_ep_common *epb;
693 
694 	epb = &ep->base;
695 
696 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
697 
698 	head = &sctp_ep_hashtable[epb->hashent];
699 
700 	sctp_write_lock(&head->lock);
701 
702 	if (epb->pprev) {
703 		if (epb->next)
704 			epb->next->pprev = epb->pprev;
705 		*epb->pprev = epb->next;
706 		epb->pprev = NULL;
707 	}
708 
709 	sctp_write_unlock(&head->lock);
710 }
711 
712 /* Remove endpoint from the hash.  Local BH-safe. */
713 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
714 {
715 	sctp_local_bh_disable();
716 	__sctp_unhash_endpoint(ep);
717 	sctp_local_bh_enable();
718 }
719 
720 /* Look up an endpoint. */
721 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
722 {
723 	struct sctp_hashbucket *head;
724 	struct sctp_ep_common *epb;
725 	struct sctp_endpoint *ep;
726 	int hash;
727 
728 	hash = sctp_ep_hashfn(laddr->v4.sin_port);
729 	head = &sctp_ep_hashtable[hash];
730 	read_lock(&head->lock);
731 	for (epb = head->chain; epb; epb = epb->next) {
732 		ep = sctp_ep(epb);
733 		if (sctp_endpoint_is_match(ep, laddr))
734 			goto hit;
735 	}
736 
737 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
738 	epb = &ep->base;
739 
740 hit:
741 	sctp_endpoint_hold(ep);
742 	read_unlock(&head->lock);
743 	return ep;
744 }
745 
746 /* Insert association into the hash table.  */
747 static void __sctp_hash_established(struct sctp_association *asoc)
748 {
749 	struct sctp_ep_common **epp;
750 	struct sctp_ep_common *epb;
751 	struct sctp_hashbucket *head;
752 
753 	epb = &asoc->base;
754 
755 	/* Calculate which chain this entry will belong to. */
756 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
757 
758 	head = &sctp_assoc_hashtable[epb->hashent];
759 
760 	sctp_write_lock(&head->lock);
761 	epp = &head->chain;
762 	epb->next = *epp;
763 	if (epb->next)
764 		(*epp)->pprev = &epb->next;
765 	*epp = epb;
766 	epb->pprev = epp;
767 	sctp_write_unlock(&head->lock);
768 }
769 
770 /* Add an association to the hash. Local BH-safe. */
771 void sctp_hash_established(struct sctp_association *asoc)
772 {
773 	sctp_local_bh_disable();
774 	__sctp_hash_established(asoc);
775 	sctp_local_bh_enable();
776 }
777 
778 /* Remove association from the hash table.  */
779 static void __sctp_unhash_established(struct sctp_association *asoc)
780 {
781 	struct sctp_hashbucket *head;
782 	struct sctp_ep_common *epb;
783 
784 	epb = &asoc->base;
785 
786 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
787 					 asoc->peer.port);
788 
789 	head = &sctp_assoc_hashtable[epb->hashent];
790 
791 	sctp_write_lock(&head->lock);
792 
793 	if (epb->pprev) {
794 		if (epb->next)
795 			epb->next->pprev = epb->pprev;
796 		*epb->pprev = epb->next;
797 		epb->pprev = NULL;
798 	}
799 
800 	sctp_write_unlock(&head->lock);
801 }
802 
803 /* Remove association from the hash table.  Local BH-safe. */
804 void sctp_unhash_established(struct sctp_association *asoc)
805 {
806 	sctp_local_bh_disable();
807 	__sctp_unhash_established(asoc);
808 	sctp_local_bh_enable();
809 }
810 
811 /* Look up an association. */
812 static struct sctp_association *__sctp_lookup_association(
813 					const union sctp_addr *local,
814 					const union sctp_addr *peer,
815 					struct sctp_transport **pt)
816 {
817 	struct sctp_hashbucket *head;
818 	struct sctp_ep_common *epb;
819 	struct sctp_association *asoc;
820 	struct sctp_transport *transport;
821 	int hash;
822 
823 	/* Optimize here for direct hit, only listening connections can
824 	 * have wildcards anyways.
825 	 */
826 	hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port);
827 	head = &sctp_assoc_hashtable[hash];
828 	read_lock(&head->lock);
829 	for (epb = head->chain; epb; epb = epb->next) {
830 		asoc = sctp_assoc(epb);
831 		transport = sctp_assoc_is_match(asoc, local, peer);
832 		if (transport)
833 			goto hit;
834 	}
835 
836 	read_unlock(&head->lock);
837 
838 	return NULL;
839 
840 hit:
841 	*pt = transport;
842 	sctp_association_hold(asoc);
843 	read_unlock(&head->lock);
844 	return asoc;
845 }
846 
847 /* Look up an association. BH-safe. */
848 SCTP_STATIC
849 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
850 						 const union sctp_addr *paddr,
851 					    struct sctp_transport **transportp)
852 {
853 	struct sctp_association *asoc;
854 
855 	sctp_local_bh_disable();
856 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
857 	sctp_local_bh_enable();
858 
859 	return asoc;
860 }
861 
862 /* Is there an association matching the given local and peer addresses? */
863 int sctp_has_association(const union sctp_addr *laddr,
864 			 const union sctp_addr *paddr)
865 {
866 	struct sctp_association *asoc;
867 	struct sctp_transport *transport;
868 
869 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
870 		sctp_association_put(asoc);
871 		return 1;
872 	}
873 
874 	return 0;
875 }
876 
877 /*
878  * SCTP Implementors Guide, 2.18 Handling of address
879  * parameters within the INIT or INIT-ACK.
880  *
881  * D) When searching for a matching TCB upon reception of an INIT
882  *    or INIT-ACK chunk the receiver SHOULD use not only the
883  *    source address of the packet (containing the INIT or
884  *    INIT-ACK) but the receiver SHOULD also use all valid
885  *    address parameters contained within the chunk.
886  *
887  * 2.18.3 Solution description
888  *
889  * This new text clearly specifies to an implementor the need
890  * to look within the INIT or INIT-ACK. Any implementation that
891  * does not do this, may not be able to establish associations
892  * in certain circumstances.
893  *
894  */
895 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
896 	const union sctp_addr *laddr, struct sctp_transport **transportp)
897 {
898 	struct sctp_association *asoc;
899 	union sctp_addr addr;
900 	union sctp_addr *paddr = &addr;
901 	struct sctphdr *sh = (struct sctphdr *) skb->h.raw;
902 	sctp_chunkhdr_t *ch;
903 	union sctp_params params;
904 	sctp_init_chunk_t *init;
905 	struct sctp_transport *transport;
906 	struct sctp_af *af;
907 
908 	ch = (sctp_chunkhdr_t *) skb->data;
909 
910 	/* If this is INIT/INIT-ACK look inside the chunk too. */
911 	switch (ch->type) {
912 	case SCTP_CID_INIT:
913 	case SCTP_CID_INIT_ACK:
914 		break;
915 	default:
916 		return NULL;
917 	}
918 
919 	/* The code below will attempt to walk the chunk and extract
920 	 * parameter information.  Before we do that, we need to verify
921 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
922 	 * walk off the end.
923 	 */
924 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
925 		return NULL;
926 
927 	/*
928 	 * This code will NOT touch anything inside the chunk--it is
929 	 * strictly READ-ONLY.
930 	 *
931 	 * RFC 2960 3  SCTP packet Format
932 	 *
933 	 * Multiple chunks can be bundled into one SCTP packet up to
934 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
935 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
936 	 * other chunk in a packet.  See Section 6.10 for more details
937 	 * on chunk bundling.
938 	 */
939 
940 	/* Find the start of the TLVs and the end of the chunk.  This is
941 	 * the region we search for address parameters.
942 	 */
943 	init = (sctp_init_chunk_t *)skb->data;
944 
945 	/* Walk the parameters looking for embedded addresses. */
946 	sctp_walk_params(params, init, init_hdr.params) {
947 
948 		/* Note: Ignoring hostname addresses. */
949 		af = sctp_get_af_specific(param_type2af(params.p->type));
950 		if (!af)
951 			continue;
952 
953 		af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0);
954 
955 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
956 		if (asoc)
957 			return asoc;
958 	}
959 
960 	return NULL;
961 }
962 
963 /* Lookup an association for an inbound skb. */
964 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
965 				      const union sctp_addr *paddr,
966 				      const union sctp_addr *laddr,
967 				      struct sctp_transport **transportp)
968 {
969 	struct sctp_association *asoc;
970 
971 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
972 
973 	/* Further lookup for INIT/INIT-ACK packets.
974 	 * SCTP Implementors Guide, 2.18 Handling of address
975 	 * parameters within the INIT or INIT-ACK.
976 	 */
977 	if (!asoc)
978 		asoc = __sctp_rcv_init_lookup(skb, laddr, transportp);
979 
980 	return asoc;
981 }
982