1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, see 27 * <http://www.gnu.org/licenses/>. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Jon Grimm <jgrimm@us.ibm.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Sridhar Samudrala <sri@us.ibm.com> 41 * Ardelle Fan <ardelle.fan@intel.com> 42 */ 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/time.h> /* For struct timeval */ 49 #include <linux/slab.h> 50 #include <net/ip.h> 51 #include <net/icmp.h> 52 #include <net/snmp.h> 53 #include <net/sock.h> 54 #include <net/xfrm.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 #include <net/sctp/checksum.h> 58 #include <net/net_namespace.h> 59 60 /* Forward declarations for internal helpers. */ 61 static int sctp_rcv_ootb(struct sk_buff *); 62 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 63 struct sk_buff *skb, 64 const union sctp_addr *paddr, 65 const union sctp_addr *laddr, 66 struct sctp_transport **transportp); 67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 68 const union sctp_addr *laddr); 69 static struct sctp_association *__sctp_lookup_association( 70 struct net *net, 71 const union sctp_addr *local, 72 const union sctp_addr *peer, 73 struct sctp_transport **pt); 74 75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 76 77 78 /* Calculate the SCTP checksum of an SCTP packet. */ 79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 80 { 81 struct sctphdr *sh = sctp_hdr(skb); 82 __le32 cmp = sh->checksum; 83 __le32 val = sctp_compute_cksum(skb, 0); 84 85 if (val != cmp) { 86 /* CRC failure, dump it. */ 87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 88 return -1; 89 } 90 return 0; 91 } 92 93 /* 94 * This is the routine which IP calls when receiving an SCTP packet. 95 */ 96 int sctp_rcv(struct sk_buff *skb) 97 { 98 struct sock *sk; 99 struct sctp_association *asoc; 100 struct sctp_endpoint *ep = NULL; 101 struct sctp_ep_common *rcvr; 102 struct sctp_transport *transport = NULL; 103 struct sctp_chunk *chunk; 104 union sctp_addr src; 105 union sctp_addr dest; 106 int family; 107 struct sctp_af *af; 108 struct net *net = dev_net(skb->dev); 109 110 if (skb->pkt_type != PACKET_HOST) 111 goto discard_it; 112 113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 114 115 /* If packet is too small to contain a single chunk, let's not 116 * waste time on it anymore. 117 */ 118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 119 skb_transport_offset(skb)) 120 goto discard_it; 121 122 /* If the packet is fragmented and we need to do crc checking, 123 * it's better to just linearize it otherwise crc computing 124 * takes longer. 125 */ 126 if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) && 127 skb_linearize(skb)) || 128 !pskb_may_pull(skb, sizeof(struct sctphdr))) 129 goto discard_it; 130 131 /* Pull up the IP header. */ 132 __skb_pull(skb, skb_transport_offset(skb)); 133 134 skb->csum_valid = 0; /* Previous value not applicable */ 135 if (skb_csum_unnecessary(skb)) 136 __skb_decr_checksum_unnecessary(skb); 137 else if (!sctp_checksum_disable && 138 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) && 139 sctp_rcv_checksum(net, skb) < 0) 140 goto discard_it; 141 skb->csum_valid = 1; 142 143 __skb_pull(skb, sizeof(struct sctphdr)); 144 145 family = ipver2af(ip_hdr(skb)->version); 146 af = sctp_get_af_specific(family); 147 if (unlikely(!af)) 148 goto discard_it; 149 SCTP_INPUT_CB(skb)->af = af; 150 151 /* Initialize local addresses for lookups. */ 152 af->from_skb(&src, skb, 1); 153 af->from_skb(&dest, skb, 0); 154 155 /* If the packet is to or from a non-unicast address, 156 * silently discard the packet. 157 * 158 * This is not clearly defined in the RFC except in section 159 * 8.4 - OOTB handling. However, based on the book "Stream Control 160 * Transmission Protocol" 2.1, "It is important to note that the 161 * IP address of an SCTP transport address must be a routable 162 * unicast address. In other words, IP multicast addresses and 163 * IP broadcast addresses cannot be used in an SCTP transport 164 * address." 165 */ 166 if (!af->addr_valid(&src, NULL, skb) || 167 !af->addr_valid(&dest, NULL, skb)) 168 goto discard_it; 169 170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 171 172 if (!asoc) 173 ep = __sctp_rcv_lookup_endpoint(net, &dest); 174 175 /* Retrieve the common input handling substructure. */ 176 rcvr = asoc ? &asoc->base : &ep->base; 177 sk = rcvr->sk; 178 179 /* 180 * If a frame arrives on an interface and the receiving socket is 181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 182 */ 183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 184 if (asoc) { 185 sctp_association_put(asoc); 186 asoc = NULL; 187 } else { 188 sctp_endpoint_put(ep); 189 ep = NULL; 190 } 191 sk = net->sctp.ctl_sock; 192 ep = sctp_sk(sk)->ep; 193 sctp_endpoint_hold(ep); 194 rcvr = &ep->base; 195 } 196 197 /* 198 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 199 * An SCTP packet is called an "out of the blue" (OOTB) 200 * packet if it is correctly formed, i.e., passed the 201 * receiver's checksum check, but the receiver is not 202 * able to identify the association to which this 203 * packet belongs. 204 */ 205 if (!asoc) { 206 if (sctp_rcv_ootb(skb)) { 207 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 208 goto discard_release; 209 } 210 } 211 212 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 213 goto discard_release; 214 nf_reset(skb); 215 216 if (sk_filter(sk, skb)) 217 goto discard_release; 218 219 /* Create an SCTP packet structure. */ 220 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 221 if (!chunk) 222 goto discard_release; 223 SCTP_INPUT_CB(skb)->chunk = chunk; 224 225 /* Remember what endpoint is to handle this packet. */ 226 chunk->rcvr = rcvr; 227 228 /* Remember the SCTP header. */ 229 chunk->sctp_hdr = sctp_hdr(skb); 230 231 /* Set the source and destination addresses of the incoming chunk. */ 232 sctp_init_addrs(chunk, &src, &dest); 233 234 /* Remember where we came from. */ 235 chunk->transport = transport; 236 237 /* Acquire access to the sock lock. Note: We are safe from other 238 * bottom halves on this lock, but a user may be in the lock too, 239 * so check if it is busy. 240 */ 241 bh_lock_sock(sk); 242 243 if (sk != rcvr->sk) { 244 /* Our cached sk is different from the rcvr->sk. This is 245 * because migrate()/accept() may have moved the association 246 * to a new socket and released all the sockets. So now we 247 * are holding a lock on the old socket while the user may 248 * be doing something with the new socket. Switch our veiw 249 * of the current sk. 250 */ 251 bh_unlock_sock(sk); 252 sk = rcvr->sk; 253 bh_lock_sock(sk); 254 } 255 256 if (sock_owned_by_user(sk)) { 257 if (sctp_add_backlog(sk, skb)) { 258 bh_unlock_sock(sk); 259 sctp_chunk_free(chunk); 260 skb = NULL; /* sctp_chunk_free already freed the skb */ 261 goto discard_release; 262 } 263 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 264 } else { 265 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 266 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 267 } 268 269 bh_unlock_sock(sk); 270 271 /* Release the asoc/ep ref we took in the lookup calls. */ 272 if (asoc) 273 sctp_association_put(asoc); 274 else 275 sctp_endpoint_put(ep); 276 277 return 0; 278 279 discard_it: 280 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 281 kfree_skb(skb); 282 return 0; 283 284 discard_release: 285 /* Release the asoc/ep ref we took in the lookup calls. */ 286 if (asoc) 287 sctp_association_put(asoc); 288 else 289 sctp_endpoint_put(ep); 290 291 goto discard_it; 292 } 293 294 /* Process the backlog queue of the socket. Every skb on 295 * the backlog holds a ref on an association or endpoint. 296 * We hold this ref throughout the state machine to make 297 * sure that the structure we need is still around. 298 */ 299 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 300 { 301 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 302 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 303 struct sctp_ep_common *rcvr = NULL; 304 int backloged = 0; 305 306 rcvr = chunk->rcvr; 307 308 /* If the rcvr is dead then the association or endpoint 309 * has been deleted and we can safely drop the chunk 310 * and refs that we are holding. 311 */ 312 if (rcvr->dead) { 313 sctp_chunk_free(chunk); 314 goto done; 315 } 316 317 if (unlikely(rcvr->sk != sk)) { 318 /* In this case, the association moved from one socket to 319 * another. We are currently sitting on the backlog of the 320 * old socket, so we need to move. 321 * However, since we are here in the process context we 322 * need to take make sure that the user doesn't own 323 * the new socket when we process the packet. 324 * If the new socket is user-owned, queue the chunk to the 325 * backlog of the new socket without dropping any refs. 326 * Otherwise, we can safely push the chunk on the inqueue. 327 */ 328 329 sk = rcvr->sk; 330 local_bh_disable(); 331 bh_lock_sock(sk); 332 333 if (sock_owned_by_user(sk)) { 334 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 335 sctp_chunk_free(chunk); 336 else 337 backloged = 1; 338 } else 339 sctp_inq_push(inqueue, chunk); 340 341 bh_unlock_sock(sk); 342 local_bh_enable(); 343 344 /* If the chunk was backloged again, don't drop refs */ 345 if (backloged) 346 return 0; 347 } else { 348 sctp_inq_push(inqueue, chunk); 349 } 350 351 done: 352 /* Release the refs we took in sctp_add_backlog */ 353 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 354 sctp_association_put(sctp_assoc(rcvr)); 355 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 356 sctp_endpoint_put(sctp_ep(rcvr)); 357 else 358 BUG(); 359 360 return 0; 361 } 362 363 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 364 { 365 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 366 struct sctp_ep_common *rcvr = chunk->rcvr; 367 int ret; 368 369 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 370 if (!ret) { 371 /* Hold the assoc/ep while hanging on the backlog queue. 372 * This way, we know structures we need will not disappear 373 * from us 374 */ 375 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 376 sctp_association_hold(sctp_assoc(rcvr)); 377 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 378 sctp_endpoint_hold(sctp_ep(rcvr)); 379 else 380 BUG(); 381 } 382 return ret; 383 384 } 385 386 /* Handle icmp frag needed error. */ 387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 388 struct sctp_transport *t, __u32 pmtu) 389 { 390 if (!t || (t->pathmtu <= pmtu)) 391 return; 392 393 if (sock_owned_by_user(sk)) { 394 asoc->pmtu_pending = 1; 395 t->pmtu_pending = 1; 396 return; 397 } 398 399 if (t->param_flags & SPP_PMTUD_ENABLE) { 400 /* Update transports view of the MTU */ 401 sctp_transport_update_pmtu(sk, t, pmtu); 402 403 /* Update association pmtu. */ 404 sctp_assoc_sync_pmtu(sk, asoc); 405 } 406 407 /* Retransmit with the new pmtu setting. 408 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 409 * Needed will never be sent, but if a message was sent before 410 * PMTU discovery was disabled that was larger than the PMTU, it 411 * would not be fragmented, so it must be re-transmitted fragmented. 412 */ 413 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 414 } 415 416 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 417 struct sk_buff *skb) 418 { 419 struct dst_entry *dst; 420 421 if (!t) 422 return; 423 dst = sctp_transport_dst_check(t); 424 if (dst) 425 dst->ops->redirect(dst, sk, skb); 426 } 427 428 /* 429 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 430 * 431 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 432 * or a "Protocol Unreachable" treat this message as an abort 433 * with the T bit set. 434 * 435 * This function sends an event to the state machine, which will abort the 436 * association. 437 * 438 */ 439 void sctp_icmp_proto_unreachable(struct sock *sk, 440 struct sctp_association *asoc, 441 struct sctp_transport *t) 442 { 443 if (sock_owned_by_user(sk)) { 444 if (timer_pending(&t->proto_unreach_timer)) 445 return; 446 else { 447 if (!mod_timer(&t->proto_unreach_timer, 448 jiffies + (HZ/20))) 449 sctp_association_hold(asoc); 450 } 451 } else { 452 struct net *net = sock_net(sk); 453 454 pr_debug("%s: unrecognized next header type " 455 "encountered!\n", __func__); 456 457 if (del_timer(&t->proto_unreach_timer)) 458 sctp_association_put(asoc); 459 460 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 461 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 462 asoc->state, asoc->ep, asoc, t, 463 GFP_ATOMIC); 464 } 465 } 466 467 /* Common lookup code for icmp/icmpv6 error handler. */ 468 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 469 struct sctphdr *sctphdr, 470 struct sctp_association **app, 471 struct sctp_transport **tpp) 472 { 473 union sctp_addr saddr; 474 union sctp_addr daddr; 475 struct sctp_af *af; 476 struct sock *sk = NULL; 477 struct sctp_association *asoc; 478 struct sctp_transport *transport = NULL; 479 struct sctp_init_chunk *chunkhdr; 480 __u32 vtag = ntohl(sctphdr->vtag); 481 int len = skb->len - ((void *)sctphdr - (void *)skb->data); 482 483 *app = NULL; *tpp = NULL; 484 485 af = sctp_get_af_specific(family); 486 if (unlikely(!af)) { 487 return NULL; 488 } 489 490 /* Initialize local addresses for lookups. */ 491 af->from_skb(&saddr, skb, 1); 492 af->from_skb(&daddr, skb, 0); 493 494 /* Look for an association that matches the incoming ICMP error 495 * packet. 496 */ 497 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 498 if (!asoc) 499 return NULL; 500 501 sk = asoc->base.sk; 502 503 /* RFC 4960, Appendix C. ICMP Handling 504 * 505 * ICMP6) An implementation MUST validate that the Verification Tag 506 * contained in the ICMP message matches the Verification Tag of 507 * the peer. If the Verification Tag is not 0 and does NOT 508 * match, discard the ICMP message. If it is 0 and the ICMP 509 * message contains enough bytes to verify that the chunk type is 510 * an INIT chunk and that the Initiate Tag matches the tag of the 511 * peer, continue with ICMP7. If the ICMP message is too short 512 * or the chunk type or the Initiate Tag does not match, silently 513 * discard the packet. 514 */ 515 if (vtag == 0) { 516 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr); 517 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) 518 + sizeof(__be32) || 519 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 520 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { 521 goto out; 522 } 523 } else if (vtag != asoc->c.peer_vtag) { 524 goto out; 525 } 526 527 bh_lock_sock(sk); 528 529 /* If too many ICMPs get dropped on busy 530 * servers this needs to be solved differently. 531 */ 532 if (sock_owned_by_user(sk)) 533 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 534 535 *app = asoc; 536 *tpp = transport; 537 return sk; 538 539 out: 540 sctp_association_put(asoc); 541 return NULL; 542 } 543 544 /* Common cleanup code for icmp/icmpv6 error handler. */ 545 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 546 { 547 bh_unlock_sock(sk); 548 sctp_association_put(asoc); 549 } 550 551 /* 552 * This routine is called by the ICMP module when it gets some 553 * sort of error condition. If err < 0 then the socket should 554 * be closed and the error returned to the user. If err > 0 555 * it's just the icmp type << 8 | icmp code. After adjustment 556 * header points to the first 8 bytes of the sctp header. We need 557 * to find the appropriate port. 558 * 559 * The locking strategy used here is very "optimistic". When 560 * someone else accesses the socket the ICMP is just dropped 561 * and for some paths there is no check at all. 562 * A more general error queue to queue errors for later handling 563 * is probably better. 564 * 565 */ 566 void sctp_v4_err(struct sk_buff *skb, __u32 info) 567 { 568 const struct iphdr *iph = (const struct iphdr *)skb->data; 569 const int ihlen = iph->ihl * 4; 570 const int type = icmp_hdr(skb)->type; 571 const int code = icmp_hdr(skb)->code; 572 struct sock *sk; 573 struct sctp_association *asoc = NULL; 574 struct sctp_transport *transport; 575 struct inet_sock *inet; 576 __u16 saveip, savesctp; 577 int err; 578 struct net *net = dev_net(skb->dev); 579 580 /* Fix up skb to look at the embedded net header. */ 581 saveip = skb->network_header; 582 savesctp = skb->transport_header; 583 skb_reset_network_header(skb); 584 skb_set_transport_header(skb, ihlen); 585 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 586 /* Put back, the original values. */ 587 skb->network_header = saveip; 588 skb->transport_header = savesctp; 589 if (!sk) { 590 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 591 return; 592 } 593 /* Warning: The sock lock is held. Remember to call 594 * sctp_err_finish! 595 */ 596 597 switch (type) { 598 case ICMP_PARAMETERPROB: 599 err = EPROTO; 600 break; 601 case ICMP_DEST_UNREACH: 602 if (code > NR_ICMP_UNREACH) 603 goto out_unlock; 604 605 /* PMTU discovery (RFC1191) */ 606 if (ICMP_FRAG_NEEDED == code) { 607 sctp_icmp_frag_needed(sk, asoc, transport, 608 SCTP_TRUNC4(info)); 609 goto out_unlock; 610 } else { 611 if (ICMP_PROT_UNREACH == code) { 612 sctp_icmp_proto_unreachable(sk, asoc, 613 transport); 614 goto out_unlock; 615 } 616 } 617 err = icmp_err_convert[code].errno; 618 break; 619 case ICMP_TIME_EXCEEDED: 620 /* Ignore any time exceeded errors due to fragment reassembly 621 * timeouts. 622 */ 623 if (ICMP_EXC_FRAGTIME == code) 624 goto out_unlock; 625 626 err = EHOSTUNREACH; 627 break; 628 case ICMP_REDIRECT: 629 sctp_icmp_redirect(sk, transport, skb); 630 /* Fall through to out_unlock. */ 631 default: 632 goto out_unlock; 633 } 634 635 inet = inet_sk(sk); 636 if (!sock_owned_by_user(sk) && inet->recverr) { 637 sk->sk_err = err; 638 sk->sk_error_report(sk); 639 } else { /* Only an error on timeout */ 640 sk->sk_err_soft = err; 641 } 642 643 out_unlock: 644 sctp_err_finish(sk, asoc); 645 } 646 647 /* 648 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 649 * 650 * This function scans all the chunks in the OOTB packet to determine if 651 * the packet should be discarded right away. If a response might be needed 652 * for this packet, or, if further processing is possible, the packet will 653 * be queued to a proper inqueue for the next phase of handling. 654 * 655 * Output: 656 * Return 0 - If further processing is needed. 657 * Return 1 - If the packet can be discarded right away. 658 */ 659 static int sctp_rcv_ootb(struct sk_buff *skb) 660 { 661 sctp_chunkhdr_t *ch, _ch; 662 int ch_end, offset = 0; 663 664 /* Scan through all the chunks in the packet. */ 665 do { 666 /* Make sure we have at least the header there */ 667 if (offset + sizeof(sctp_chunkhdr_t) > skb->len) 668 break; 669 670 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 671 672 /* Break out if chunk length is less then minimal. */ 673 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 674 break; 675 676 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 677 if (ch_end > skb->len) 678 break; 679 680 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 681 * receiver MUST silently discard the OOTB packet and take no 682 * further action. 683 */ 684 if (SCTP_CID_ABORT == ch->type) 685 goto discard; 686 687 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 688 * chunk, the receiver should silently discard the packet 689 * and take no further action. 690 */ 691 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 692 goto discard; 693 694 /* RFC 4460, 2.11.2 695 * This will discard packets with INIT chunk bundled as 696 * subsequent chunks in the packet. When INIT is first, 697 * the normal INIT processing will discard the chunk. 698 */ 699 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 700 goto discard; 701 702 offset = ch_end; 703 } while (ch_end < skb->len); 704 705 return 0; 706 707 discard: 708 return 1; 709 } 710 711 /* Insert endpoint into the hash table. */ 712 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 713 { 714 struct net *net = sock_net(ep->base.sk); 715 struct sctp_ep_common *epb; 716 struct sctp_hashbucket *head; 717 718 epb = &ep->base; 719 720 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 721 head = &sctp_ep_hashtable[epb->hashent]; 722 723 write_lock(&head->lock); 724 hlist_add_head(&epb->node, &head->chain); 725 write_unlock(&head->lock); 726 } 727 728 /* Add an endpoint to the hash. Local BH-safe. */ 729 void sctp_hash_endpoint(struct sctp_endpoint *ep) 730 { 731 local_bh_disable(); 732 __sctp_hash_endpoint(ep); 733 local_bh_enable(); 734 } 735 736 /* Remove endpoint from the hash table. */ 737 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 738 { 739 struct net *net = sock_net(ep->base.sk); 740 struct sctp_hashbucket *head; 741 struct sctp_ep_common *epb; 742 743 epb = &ep->base; 744 745 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 746 747 head = &sctp_ep_hashtable[epb->hashent]; 748 749 write_lock(&head->lock); 750 hlist_del_init(&epb->node); 751 write_unlock(&head->lock); 752 } 753 754 /* Remove endpoint from the hash. Local BH-safe. */ 755 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 756 { 757 local_bh_disable(); 758 __sctp_unhash_endpoint(ep); 759 local_bh_enable(); 760 } 761 762 /* Look up an endpoint. */ 763 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 764 const union sctp_addr *laddr) 765 { 766 struct sctp_hashbucket *head; 767 struct sctp_ep_common *epb; 768 struct sctp_endpoint *ep; 769 int hash; 770 771 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 772 head = &sctp_ep_hashtable[hash]; 773 read_lock(&head->lock); 774 sctp_for_each_hentry(epb, &head->chain) { 775 ep = sctp_ep(epb); 776 if (sctp_endpoint_is_match(ep, net, laddr)) 777 goto hit; 778 } 779 780 ep = sctp_sk(net->sctp.ctl_sock)->ep; 781 782 hit: 783 sctp_endpoint_hold(ep); 784 read_unlock(&head->lock); 785 return ep; 786 } 787 788 /* rhashtable for transport */ 789 struct sctp_hash_cmp_arg { 790 const struct sctp_endpoint *ep; 791 const union sctp_addr *laddr; 792 const union sctp_addr *paddr; 793 const struct net *net; 794 }; 795 796 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 797 const void *ptr) 798 { 799 struct sctp_transport *t = (struct sctp_transport *)ptr; 800 const struct sctp_hash_cmp_arg *x = arg->key; 801 struct sctp_association *asoc; 802 int err = 1; 803 804 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 805 return err; 806 if (!sctp_transport_hold(t)) 807 return err; 808 809 asoc = t->asoc; 810 if (!net_eq(sock_net(asoc->base.sk), x->net)) 811 goto out; 812 if (x->ep) { 813 if (x->ep != asoc->ep) 814 goto out; 815 } else { 816 if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port)) 817 goto out; 818 if (!sctp_bind_addr_match(&asoc->base.bind_addr, 819 x->laddr, sctp_sk(asoc->base.sk))) 820 goto out; 821 } 822 823 err = 0; 824 out: 825 sctp_transport_put(t); 826 return err; 827 } 828 829 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 830 { 831 const struct sctp_transport *t = data; 832 const union sctp_addr *paddr = &t->ipaddr; 833 const struct net *net = sock_net(t->asoc->base.sk); 834 u16 lport = htons(t->asoc->base.bind_addr.port); 835 u32 addr; 836 837 if (paddr->sa.sa_family == AF_INET6) 838 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 839 else 840 addr = paddr->v4.sin_addr.s_addr; 841 842 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 | 843 (__force __u32)lport, net_hash_mix(net), seed); 844 } 845 846 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed) 847 { 848 const struct sctp_hash_cmp_arg *x = data; 849 const union sctp_addr *paddr = x->paddr; 850 const struct net *net = x->net; 851 u16 lport; 852 u32 addr; 853 854 lport = x->ep ? htons(x->ep->base.bind_addr.port) : 855 x->laddr->v4.sin_port; 856 if (paddr->sa.sa_family == AF_INET6) 857 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 858 else 859 addr = paddr->v4.sin_addr.s_addr; 860 861 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 | 862 (__force __u32)lport, net_hash_mix(net), seed); 863 } 864 865 static const struct rhashtable_params sctp_hash_params = { 866 .head_offset = offsetof(struct sctp_transport, node), 867 .hashfn = sctp_hash_key, 868 .obj_hashfn = sctp_hash_obj, 869 .obj_cmpfn = sctp_hash_cmp, 870 .automatic_shrinking = true, 871 }; 872 873 int sctp_transport_hashtable_init(void) 874 { 875 return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params); 876 } 877 878 void sctp_transport_hashtable_destroy(void) 879 { 880 rhashtable_destroy(&sctp_transport_hashtable); 881 } 882 883 void sctp_hash_transport(struct sctp_transport *t) 884 { 885 struct sctp_hash_cmp_arg arg; 886 887 if (t->asoc->temp) 888 return; 889 890 arg.ep = t->asoc->ep; 891 arg.paddr = &t->ipaddr; 892 arg.net = sock_net(t->asoc->base.sk); 893 894 reinsert: 895 if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg, 896 &t->node, sctp_hash_params) == -EBUSY) 897 goto reinsert; 898 } 899 900 void sctp_unhash_transport(struct sctp_transport *t) 901 { 902 if (t->asoc->temp) 903 return; 904 905 rhashtable_remove_fast(&sctp_transport_hashtable, &t->node, 906 sctp_hash_params); 907 } 908 909 struct sctp_transport *sctp_addrs_lookup_transport( 910 struct net *net, 911 const union sctp_addr *laddr, 912 const union sctp_addr *paddr) 913 { 914 struct sctp_hash_cmp_arg arg = { 915 .ep = NULL, 916 .laddr = laddr, 917 .paddr = paddr, 918 .net = net, 919 }; 920 921 return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg, 922 sctp_hash_params); 923 } 924 925 struct sctp_transport *sctp_epaddr_lookup_transport( 926 const struct sctp_endpoint *ep, 927 const union sctp_addr *paddr) 928 { 929 struct net *net = sock_net(ep->base.sk); 930 struct sctp_hash_cmp_arg arg = { 931 .ep = ep, 932 .paddr = paddr, 933 .net = net, 934 }; 935 936 return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg, 937 sctp_hash_params); 938 } 939 940 /* Look up an association. */ 941 static struct sctp_association *__sctp_lookup_association( 942 struct net *net, 943 const union sctp_addr *local, 944 const union sctp_addr *peer, 945 struct sctp_transport **pt) 946 { 947 struct sctp_transport *t; 948 struct sctp_association *asoc = NULL; 949 950 t = sctp_addrs_lookup_transport(net, local, peer); 951 if (!t || !sctp_transport_hold(t)) 952 goto out; 953 954 asoc = t->asoc; 955 sctp_association_hold(asoc); 956 *pt = t; 957 958 sctp_transport_put(t); 959 960 out: 961 return asoc; 962 } 963 964 /* Look up an association. protected by RCU read lock */ 965 static 966 struct sctp_association *sctp_lookup_association(struct net *net, 967 const union sctp_addr *laddr, 968 const union sctp_addr *paddr, 969 struct sctp_transport **transportp) 970 { 971 struct sctp_association *asoc; 972 973 rcu_read_lock(); 974 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 975 rcu_read_unlock(); 976 977 return asoc; 978 } 979 980 /* Is there an association matching the given local and peer addresses? */ 981 int sctp_has_association(struct net *net, 982 const union sctp_addr *laddr, 983 const union sctp_addr *paddr) 984 { 985 struct sctp_association *asoc; 986 struct sctp_transport *transport; 987 988 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) { 989 sctp_association_put(asoc); 990 return 1; 991 } 992 993 return 0; 994 } 995 996 /* 997 * SCTP Implementors Guide, 2.18 Handling of address 998 * parameters within the INIT or INIT-ACK. 999 * 1000 * D) When searching for a matching TCB upon reception of an INIT 1001 * or INIT-ACK chunk the receiver SHOULD use not only the 1002 * source address of the packet (containing the INIT or 1003 * INIT-ACK) but the receiver SHOULD also use all valid 1004 * address parameters contained within the chunk. 1005 * 1006 * 2.18.3 Solution description 1007 * 1008 * This new text clearly specifies to an implementor the need 1009 * to look within the INIT or INIT-ACK. Any implementation that 1010 * does not do this, may not be able to establish associations 1011 * in certain circumstances. 1012 * 1013 */ 1014 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1015 struct sk_buff *skb, 1016 const union sctp_addr *laddr, struct sctp_transport **transportp) 1017 { 1018 struct sctp_association *asoc; 1019 union sctp_addr addr; 1020 union sctp_addr *paddr = &addr; 1021 struct sctphdr *sh = sctp_hdr(skb); 1022 union sctp_params params; 1023 sctp_init_chunk_t *init; 1024 struct sctp_transport *transport; 1025 struct sctp_af *af; 1026 1027 /* 1028 * This code will NOT touch anything inside the chunk--it is 1029 * strictly READ-ONLY. 1030 * 1031 * RFC 2960 3 SCTP packet Format 1032 * 1033 * Multiple chunks can be bundled into one SCTP packet up to 1034 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1035 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1036 * other chunk in a packet. See Section 6.10 for more details 1037 * on chunk bundling. 1038 */ 1039 1040 /* Find the start of the TLVs and the end of the chunk. This is 1041 * the region we search for address parameters. 1042 */ 1043 init = (sctp_init_chunk_t *)skb->data; 1044 1045 /* Walk the parameters looking for embedded addresses. */ 1046 sctp_walk_params(params, init, init_hdr.params) { 1047 1048 /* Note: Ignoring hostname addresses. */ 1049 af = sctp_get_af_specific(param_type2af(params.p->type)); 1050 if (!af) 1051 continue; 1052 1053 af->from_addr_param(paddr, params.addr, sh->source, 0); 1054 1055 asoc = __sctp_lookup_association(net, laddr, paddr, &transport); 1056 if (asoc) 1057 return asoc; 1058 } 1059 1060 return NULL; 1061 } 1062 1063 /* ADD-IP, Section 5.2 1064 * When an endpoint receives an ASCONF Chunk from the remote peer 1065 * special procedures may be needed to identify the association the 1066 * ASCONF Chunk is associated with. To properly find the association 1067 * the following procedures SHOULD be followed: 1068 * 1069 * D2) If the association is not found, use the address found in the 1070 * Address Parameter TLV combined with the port number found in the 1071 * SCTP common header. If found proceed to rule D4. 1072 * 1073 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1074 * address found in the ASCONF Address Parameter TLV of each of the 1075 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1076 */ 1077 static struct sctp_association *__sctp_rcv_asconf_lookup( 1078 struct net *net, 1079 sctp_chunkhdr_t *ch, 1080 const union sctp_addr *laddr, 1081 __be16 peer_port, 1082 struct sctp_transport **transportp) 1083 { 1084 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; 1085 struct sctp_af *af; 1086 union sctp_addr_param *param; 1087 union sctp_addr paddr; 1088 1089 /* Skip over the ADDIP header and find the Address parameter */ 1090 param = (union sctp_addr_param *)(asconf + 1); 1091 1092 af = sctp_get_af_specific(param_type2af(param->p.type)); 1093 if (unlikely(!af)) 1094 return NULL; 1095 1096 af->from_addr_param(&paddr, param, peer_port, 0); 1097 1098 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1099 } 1100 1101 1102 /* SCTP-AUTH, Section 6.3: 1103 * If the receiver does not find a STCB for a packet containing an AUTH 1104 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1105 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1106 * association. 1107 * 1108 * This means that any chunks that can help us identify the association need 1109 * to be looked at to find this association. 1110 */ 1111 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1112 struct sk_buff *skb, 1113 const union sctp_addr *laddr, 1114 struct sctp_transport **transportp) 1115 { 1116 struct sctp_association *asoc = NULL; 1117 sctp_chunkhdr_t *ch; 1118 int have_auth = 0; 1119 unsigned int chunk_num = 1; 1120 __u8 *ch_end; 1121 1122 /* Walk through the chunks looking for AUTH or ASCONF chunks 1123 * to help us find the association. 1124 */ 1125 ch = (sctp_chunkhdr_t *) skb->data; 1126 do { 1127 /* Break out if chunk length is less then minimal. */ 1128 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 1129 break; 1130 1131 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1132 if (ch_end > skb_tail_pointer(skb)) 1133 break; 1134 1135 switch (ch->type) { 1136 case SCTP_CID_AUTH: 1137 have_auth = chunk_num; 1138 break; 1139 1140 case SCTP_CID_COOKIE_ECHO: 1141 /* If a packet arrives containing an AUTH chunk as 1142 * a first chunk, a COOKIE-ECHO chunk as the second 1143 * chunk, and possibly more chunks after them, and 1144 * the receiver does not have an STCB for that 1145 * packet, then authentication is based on 1146 * the contents of the COOKIE- ECHO chunk. 1147 */ 1148 if (have_auth == 1 && chunk_num == 2) 1149 return NULL; 1150 break; 1151 1152 case SCTP_CID_ASCONF: 1153 if (have_auth || net->sctp.addip_noauth) 1154 asoc = __sctp_rcv_asconf_lookup( 1155 net, ch, laddr, 1156 sctp_hdr(skb)->source, 1157 transportp); 1158 default: 1159 break; 1160 } 1161 1162 if (asoc) 1163 break; 1164 1165 ch = (sctp_chunkhdr_t *) ch_end; 1166 chunk_num++; 1167 } while (ch_end < skb_tail_pointer(skb)); 1168 1169 return asoc; 1170 } 1171 1172 /* 1173 * There are circumstances when we need to look inside the SCTP packet 1174 * for information to help us find the association. Examples 1175 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1176 * chunks. 1177 */ 1178 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1179 struct sk_buff *skb, 1180 const union sctp_addr *laddr, 1181 struct sctp_transport **transportp) 1182 { 1183 sctp_chunkhdr_t *ch; 1184 1185 /* We do not allow GSO frames here as we need to linearize and 1186 * then cannot guarantee frame boundaries. This shouldn't be an 1187 * issue as packets hitting this are mostly INIT or INIT-ACK and 1188 * those cannot be on GSO-style anyway. 1189 */ 1190 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP) 1191 return NULL; 1192 1193 ch = (sctp_chunkhdr_t *) skb->data; 1194 1195 /* The code below will attempt to walk the chunk and extract 1196 * parameter information. Before we do that, we need to verify 1197 * that the chunk length doesn't cause overflow. Otherwise, we'll 1198 * walk off the end. 1199 */ 1200 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1201 return NULL; 1202 1203 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1204 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1205 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1206 1207 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1208 } 1209 1210 /* Lookup an association for an inbound skb. */ 1211 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1212 struct sk_buff *skb, 1213 const union sctp_addr *paddr, 1214 const union sctp_addr *laddr, 1215 struct sctp_transport **transportp) 1216 { 1217 struct sctp_association *asoc; 1218 1219 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1220 1221 /* Further lookup for INIT/INIT-ACK packets. 1222 * SCTP Implementors Guide, 2.18 Handling of address 1223 * parameters within the INIT or INIT-ACK. 1224 */ 1225 if (!asoc) 1226 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1227 1228 return asoc; 1229 } 1230