1 /* SCTP kernel reference Implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * The SCTP reference implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * The SCTP reference implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, write to 27 * the Free Software Foundation, 59 Temple Place - Suite 330, 28 * Boston, MA 02111-1307, USA. 29 * 30 * Please send any bug reports or fixes you make to the 31 * email address(es): 32 * lksctp developers <lksctp-developers@lists.sourceforge.net> 33 * 34 * Or submit a bug report through the following website: 35 * http://www.sf.net/projects/lksctp 36 * 37 * Written or modified by: 38 * La Monte H.P. Yarroll <piggy@acm.org> 39 * Karl Knutson <karl@athena.chicago.il.us> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Hui Huang <hui.huang@nokia.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/list.h> /* For struct list_head */ 53 #include <linux/socket.h> 54 #include <linux/ip.h> 55 #include <linux/time.h> /* For struct timeval */ 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/snmp.h> 59 #include <net/sock.h> 60 #include <net/xfrm.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal helpers. */ 65 static int sctp_rcv_ootb(struct sk_buff *); 66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 67 const union sctp_addr *laddr, 68 const union sctp_addr *paddr, 69 struct sctp_transport **transportp); 70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr); 71 static struct sctp_association *__sctp_lookup_association( 72 const union sctp_addr *local, 73 const union sctp_addr *peer, 74 struct sctp_transport **pt); 75 76 77 /* Calculate the SCTP checksum of an SCTP packet. */ 78 static inline int sctp_rcv_checksum(struct sk_buff *skb) 79 { 80 struct sctphdr *sh; 81 __u32 cmp, val; 82 struct sk_buff *list = skb_shinfo(skb)->frag_list; 83 84 sh = (struct sctphdr *) skb->h.raw; 85 cmp = ntohl(sh->checksum); 86 87 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); 88 89 for (; list; list = list->next) 90 val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), 91 val); 92 93 val = sctp_end_cksum(val); 94 95 if (val != cmp) { 96 /* CRC failure, dump it. */ 97 SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS); 98 return -1; 99 } 100 return 0; 101 } 102 103 struct sctp_input_cb { 104 union { 105 struct inet_skb_parm h4; 106 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE) 107 struct inet6_skb_parm h6; 108 #endif 109 } header; 110 struct sctp_chunk *chunk; 111 }; 112 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 113 114 /* 115 * This is the routine which IP calls when receiving an SCTP packet. 116 */ 117 int sctp_rcv(struct sk_buff *skb) 118 { 119 struct sock *sk; 120 struct sctp_association *asoc; 121 struct sctp_endpoint *ep = NULL; 122 struct sctp_ep_common *rcvr; 123 struct sctp_transport *transport = NULL; 124 struct sctp_chunk *chunk; 125 struct sctphdr *sh; 126 union sctp_addr src; 127 union sctp_addr dest; 128 int family; 129 struct sctp_af *af; 130 131 if (skb->pkt_type!=PACKET_HOST) 132 goto discard_it; 133 134 SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); 135 136 sh = (struct sctphdr *) skb->h.raw; 137 138 /* Pull up the IP and SCTP headers. */ 139 __skb_pull(skb, skb->h.raw - skb->data); 140 if (skb->len < sizeof(struct sctphdr)) 141 goto discard_it; 142 if (sctp_rcv_checksum(skb) < 0) 143 goto discard_it; 144 145 skb_pull(skb, sizeof(struct sctphdr)); 146 147 /* Make sure we at least have chunk headers worth of data left. */ 148 if (skb->len < sizeof(struct sctp_chunkhdr)) 149 goto discard_it; 150 151 family = ipver2af(skb->nh.iph->version); 152 af = sctp_get_af_specific(family); 153 if (unlikely(!af)) 154 goto discard_it; 155 156 /* Initialize local addresses for lookups. */ 157 af->from_skb(&src, skb, 1); 158 af->from_skb(&dest, skb, 0); 159 160 /* If the packet is to or from a non-unicast address, 161 * silently discard the packet. 162 * 163 * This is not clearly defined in the RFC except in section 164 * 8.4 - OOTB handling. However, based on the book "Stream Control 165 * Transmission Protocol" 2.1, "It is important to note that the 166 * IP address of an SCTP transport address must be a routable 167 * unicast address. In other words, IP multicast addresses and 168 * IP broadcast addresses cannot be used in an SCTP transport 169 * address." 170 */ 171 if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL)) 172 goto discard_it; 173 174 asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); 175 176 if (!asoc) 177 ep = __sctp_rcv_lookup_endpoint(&dest); 178 179 /* Retrieve the common input handling substructure. */ 180 rcvr = asoc ? &asoc->base : &ep->base; 181 sk = rcvr->sk; 182 183 /* 184 * If a frame arrives on an interface and the receiving socket is 185 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 186 */ 187 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) 188 { 189 sock_put(sk); 190 if (asoc) { 191 sctp_association_put(asoc); 192 asoc = NULL; 193 } else { 194 sctp_endpoint_put(ep); 195 ep = NULL; 196 } 197 sk = sctp_get_ctl_sock(); 198 ep = sctp_sk(sk)->ep; 199 sctp_endpoint_hold(ep); 200 sock_hold(sk); 201 rcvr = &ep->base; 202 } 203 204 /* 205 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 206 * An SCTP packet is called an "out of the blue" (OOTB) 207 * packet if it is correctly formed, i.e., passed the 208 * receiver's checksum check, but the receiver is not 209 * able to identify the association to which this 210 * packet belongs. 211 */ 212 if (!asoc) { 213 if (sctp_rcv_ootb(skb)) { 214 SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); 215 goto discard_release; 216 } 217 } 218 219 /* SCTP seems to always need a timestamp right now (FIXME) */ 220 if (skb->tstamp.off_sec == 0) { 221 __net_timestamp(skb); 222 sock_enable_timestamp(sk); 223 } 224 225 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 226 goto discard_release; 227 nf_reset(skb); 228 229 if (sk_filter(sk, skb, 1)) 230 goto discard_release; 231 232 /* Create an SCTP packet structure. */ 233 chunk = sctp_chunkify(skb, asoc, sk); 234 if (!chunk) 235 goto discard_release; 236 SCTP_INPUT_CB(skb)->chunk = chunk; 237 238 /* Remember what endpoint is to handle this packet. */ 239 chunk->rcvr = rcvr; 240 241 /* Remember the SCTP header. */ 242 chunk->sctp_hdr = sh; 243 244 /* Set the source and destination addresses of the incoming chunk. */ 245 sctp_init_addrs(chunk, &src, &dest); 246 247 /* Remember where we came from. */ 248 chunk->transport = transport; 249 250 /* Acquire access to the sock lock. Note: We are safe from other 251 * bottom halves on this lock, but a user may be in the lock too, 252 * so check if it is busy. 253 */ 254 sctp_bh_lock_sock(sk); 255 256 /* It is possible that the association could have moved to a different 257 * socket if it is peeled off. If so, update the sk. 258 */ 259 if (sk != rcvr->sk) { 260 sctp_bh_lock_sock(rcvr->sk); 261 sctp_bh_unlock_sock(sk); 262 sk = rcvr->sk; 263 } 264 265 if (sock_owned_by_user(sk)) 266 sk_add_backlog(sk, skb); 267 else 268 sctp_backlog_rcv(sk, skb); 269 270 /* Release the sock and the sock ref we took in the lookup calls. 271 * The asoc/ep ref will be released in sctp_backlog_rcv. 272 */ 273 sctp_bh_unlock_sock(sk); 274 sock_put(sk); 275 276 return 0; 277 278 discard_it: 279 kfree_skb(skb); 280 return 0; 281 282 discard_release: 283 /* Release any structures we may be holding. */ 284 sock_put(sk); 285 if (asoc) 286 sctp_association_put(asoc); 287 else 288 sctp_endpoint_put(ep); 289 290 goto discard_it; 291 } 292 293 /* Handle second half of inbound skb processing. If the sock was busy, 294 * we may have need to delay processing until later when the sock is 295 * released (on the backlog). If not busy, we call this routine 296 * directly from the bottom half. 297 */ 298 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 299 { 300 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 301 struct sctp_inq *inqueue = NULL; 302 struct sctp_ep_common *rcvr = NULL; 303 304 rcvr = chunk->rcvr; 305 306 BUG_TRAP(rcvr->sk == sk); 307 308 if (rcvr->dead) { 309 sctp_chunk_free(chunk); 310 } else { 311 inqueue = &chunk->rcvr->inqueue; 312 sctp_inq_push(inqueue, chunk); 313 } 314 315 /* Release the asoc/ep ref we took in the lookup calls in sctp_rcv. */ 316 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 317 sctp_association_put(sctp_assoc(rcvr)); 318 else 319 sctp_endpoint_put(sctp_ep(rcvr)); 320 321 return 0; 322 } 323 324 void sctp_backlog_migrate(struct sctp_association *assoc, 325 struct sock *oldsk, struct sock *newsk) 326 { 327 struct sk_buff *skb; 328 struct sctp_chunk *chunk; 329 330 skb = oldsk->sk_backlog.head; 331 oldsk->sk_backlog.head = oldsk->sk_backlog.tail = NULL; 332 while (skb != NULL) { 333 struct sk_buff *next = skb->next; 334 335 chunk = SCTP_INPUT_CB(skb)->chunk; 336 skb->next = NULL; 337 if (&assoc->base == chunk->rcvr) 338 sk_add_backlog(newsk, skb); 339 else 340 sk_add_backlog(oldsk, skb); 341 skb = next; 342 } 343 } 344 345 /* Handle icmp frag needed error. */ 346 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 347 struct sctp_transport *t, __u32 pmtu) 348 { 349 if (sock_owned_by_user(sk) || !t || (t->pathmtu == pmtu)) 350 return; 351 352 if (t->param_flags & SPP_PMTUD_ENABLE) { 353 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 354 printk(KERN_WARNING "%s: Reported pmtu %d too low, " 355 "using default minimum of %d\n", 356 __FUNCTION__, pmtu, 357 SCTP_DEFAULT_MINSEGMENT); 358 /* Use default minimum segment size and disable 359 * pmtu discovery on this transport. 360 */ 361 t->pathmtu = SCTP_DEFAULT_MINSEGMENT; 362 t->param_flags = (t->param_flags & ~SPP_HB) | 363 SPP_PMTUD_DISABLE; 364 } else { 365 t->pathmtu = pmtu; 366 } 367 368 /* Update association pmtu. */ 369 sctp_assoc_sync_pmtu(asoc); 370 } 371 372 /* Retransmit with the new pmtu setting. 373 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 374 * Needed will never be sent, but if a message was sent before 375 * PMTU discovery was disabled that was larger than the PMTU, it 376 * would not be fragmented, so it must be re-transmitted fragmented. 377 */ 378 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 379 } 380 381 /* 382 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 383 * 384 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 385 * or a "Protocol Unreachable" treat this message as an abort 386 * with the T bit set. 387 * 388 * This function sends an event to the state machine, which will abort the 389 * association. 390 * 391 */ 392 void sctp_icmp_proto_unreachable(struct sock *sk, 393 struct sctp_association *asoc, 394 struct sctp_transport *t) 395 { 396 SCTP_DEBUG_PRINTK("%s\n", __FUNCTION__); 397 398 sctp_do_sm(SCTP_EVENT_T_OTHER, 399 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 400 asoc->state, asoc->ep, asoc, t, 401 GFP_ATOMIC); 402 403 } 404 405 /* Common lookup code for icmp/icmpv6 error handler. */ 406 struct sock *sctp_err_lookup(int family, struct sk_buff *skb, 407 struct sctphdr *sctphdr, 408 struct sctp_association **app, 409 struct sctp_transport **tpp) 410 { 411 union sctp_addr saddr; 412 union sctp_addr daddr; 413 struct sctp_af *af; 414 struct sock *sk = NULL; 415 struct sctp_association *asoc = NULL; 416 struct sctp_transport *transport = NULL; 417 418 *app = NULL; *tpp = NULL; 419 420 af = sctp_get_af_specific(family); 421 if (unlikely(!af)) { 422 return NULL; 423 } 424 425 /* Initialize local addresses for lookups. */ 426 af->from_skb(&saddr, skb, 1); 427 af->from_skb(&daddr, skb, 0); 428 429 /* Look for an association that matches the incoming ICMP error 430 * packet. 431 */ 432 asoc = __sctp_lookup_association(&saddr, &daddr, &transport); 433 if (!asoc) 434 return NULL; 435 436 sk = asoc->base.sk; 437 438 if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) { 439 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 440 goto out; 441 } 442 443 sctp_bh_lock_sock(sk); 444 445 /* If too many ICMPs get dropped on busy 446 * servers this needs to be solved differently. 447 */ 448 if (sock_owned_by_user(sk)) 449 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); 450 451 *app = asoc; 452 *tpp = transport; 453 return sk; 454 455 out: 456 sock_put(sk); 457 if (asoc) 458 sctp_association_put(asoc); 459 return NULL; 460 } 461 462 /* Common cleanup code for icmp/icmpv6 error handler. */ 463 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 464 { 465 sctp_bh_unlock_sock(sk); 466 sock_put(sk); 467 if (asoc) 468 sctp_association_put(asoc); 469 } 470 471 /* 472 * This routine is called by the ICMP module when it gets some 473 * sort of error condition. If err < 0 then the socket should 474 * be closed and the error returned to the user. If err > 0 475 * it's just the icmp type << 8 | icmp code. After adjustment 476 * header points to the first 8 bytes of the sctp header. We need 477 * to find the appropriate port. 478 * 479 * The locking strategy used here is very "optimistic". When 480 * someone else accesses the socket the ICMP is just dropped 481 * and for some paths there is no check at all. 482 * A more general error queue to queue errors for later handling 483 * is probably better. 484 * 485 */ 486 void sctp_v4_err(struct sk_buff *skb, __u32 info) 487 { 488 struct iphdr *iph = (struct iphdr *)skb->data; 489 struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2)); 490 int type = skb->h.icmph->type; 491 int code = skb->h.icmph->code; 492 struct sock *sk; 493 struct sctp_association *asoc; 494 struct sctp_transport *transport; 495 struct inet_sock *inet; 496 char *saveip, *savesctp; 497 int err; 498 499 if (skb->len < ((iph->ihl << 2) + 8)) { 500 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 501 return; 502 } 503 504 /* Fix up skb to look at the embedded net header. */ 505 saveip = skb->nh.raw; 506 savesctp = skb->h.raw; 507 skb->nh.iph = iph; 508 skb->h.raw = (char *)sh; 509 sk = sctp_err_lookup(AF_INET, skb, sh, &asoc, &transport); 510 /* Put back, the original pointers. */ 511 skb->nh.raw = saveip; 512 skb->h.raw = savesctp; 513 if (!sk) { 514 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 515 return; 516 } 517 /* Warning: The sock lock is held. Remember to call 518 * sctp_err_finish! 519 */ 520 521 switch (type) { 522 case ICMP_PARAMETERPROB: 523 err = EPROTO; 524 break; 525 case ICMP_DEST_UNREACH: 526 if (code > NR_ICMP_UNREACH) 527 goto out_unlock; 528 529 /* PMTU discovery (RFC1191) */ 530 if (ICMP_FRAG_NEEDED == code) { 531 sctp_icmp_frag_needed(sk, asoc, transport, info); 532 goto out_unlock; 533 } 534 else { 535 if (ICMP_PROT_UNREACH == code) { 536 sctp_icmp_proto_unreachable(sk, asoc, 537 transport); 538 goto out_unlock; 539 } 540 } 541 err = icmp_err_convert[code].errno; 542 break; 543 case ICMP_TIME_EXCEEDED: 544 /* Ignore any time exceeded errors due to fragment reassembly 545 * timeouts. 546 */ 547 if (ICMP_EXC_FRAGTIME == code) 548 goto out_unlock; 549 550 err = EHOSTUNREACH; 551 break; 552 default: 553 goto out_unlock; 554 } 555 556 inet = inet_sk(sk); 557 if (!sock_owned_by_user(sk) && inet->recverr) { 558 sk->sk_err = err; 559 sk->sk_error_report(sk); 560 } else { /* Only an error on timeout */ 561 sk->sk_err_soft = err; 562 } 563 564 out_unlock: 565 sctp_err_finish(sk, asoc); 566 } 567 568 /* 569 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 570 * 571 * This function scans all the chunks in the OOTB packet to determine if 572 * the packet should be discarded right away. If a response might be needed 573 * for this packet, or, if further processing is possible, the packet will 574 * be queued to a proper inqueue for the next phase of handling. 575 * 576 * Output: 577 * Return 0 - If further processing is needed. 578 * Return 1 - If the packet can be discarded right away. 579 */ 580 int sctp_rcv_ootb(struct sk_buff *skb) 581 { 582 sctp_chunkhdr_t *ch; 583 __u8 *ch_end; 584 sctp_errhdr_t *err; 585 586 ch = (sctp_chunkhdr_t *) skb->data; 587 588 /* Scan through all the chunks in the packet. */ 589 do { 590 /* Break out if chunk length is less then minimal. */ 591 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 592 break; 593 594 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 595 if (ch_end > skb->tail) 596 break; 597 598 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 599 * receiver MUST silently discard the OOTB packet and take no 600 * further action. 601 */ 602 if (SCTP_CID_ABORT == ch->type) 603 goto discard; 604 605 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 606 * chunk, the receiver should silently discard the packet 607 * and take no further action. 608 */ 609 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 610 goto discard; 611 612 /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR 613 * or a COOKIE ACK the SCTP Packet should be silently 614 * discarded. 615 */ 616 if (SCTP_CID_COOKIE_ACK == ch->type) 617 goto discard; 618 619 if (SCTP_CID_ERROR == ch->type) { 620 sctp_walk_errors(err, ch) { 621 if (SCTP_ERROR_STALE_COOKIE == err->cause) 622 goto discard; 623 } 624 } 625 626 ch = (sctp_chunkhdr_t *) ch_end; 627 } while (ch_end < skb->tail); 628 629 return 0; 630 631 discard: 632 return 1; 633 } 634 635 /* Insert endpoint into the hash table. */ 636 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 637 { 638 struct sctp_ep_common **epp; 639 struct sctp_ep_common *epb; 640 struct sctp_hashbucket *head; 641 642 epb = &ep->base; 643 644 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 645 head = &sctp_ep_hashtable[epb->hashent]; 646 647 sctp_write_lock(&head->lock); 648 epp = &head->chain; 649 epb->next = *epp; 650 if (epb->next) 651 (*epp)->pprev = &epb->next; 652 *epp = epb; 653 epb->pprev = epp; 654 sctp_write_unlock(&head->lock); 655 } 656 657 /* Add an endpoint to the hash. Local BH-safe. */ 658 void sctp_hash_endpoint(struct sctp_endpoint *ep) 659 { 660 sctp_local_bh_disable(); 661 __sctp_hash_endpoint(ep); 662 sctp_local_bh_enable(); 663 } 664 665 /* Remove endpoint from the hash table. */ 666 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 667 { 668 struct sctp_hashbucket *head; 669 struct sctp_ep_common *epb; 670 671 epb = &ep->base; 672 673 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 674 675 head = &sctp_ep_hashtable[epb->hashent]; 676 677 sctp_write_lock(&head->lock); 678 679 if (epb->pprev) { 680 if (epb->next) 681 epb->next->pprev = epb->pprev; 682 *epb->pprev = epb->next; 683 epb->pprev = NULL; 684 } 685 686 sctp_write_unlock(&head->lock); 687 } 688 689 /* Remove endpoint from the hash. Local BH-safe. */ 690 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 691 { 692 sctp_local_bh_disable(); 693 __sctp_unhash_endpoint(ep); 694 sctp_local_bh_enable(); 695 } 696 697 /* Look up an endpoint. */ 698 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr) 699 { 700 struct sctp_hashbucket *head; 701 struct sctp_ep_common *epb; 702 struct sctp_endpoint *ep; 703 int hash; 704 705 hash = sctp_ep_hashfn(laddr->v4.sin_port); 706 head = &sctp_ep_hashtable[hash]; 707 read_lock(&head->lock); 708 for (epb = head->chain; epb; epb = epb->next) { 709 ep = sctp_ep(epb); 710 if (sctp_endpoint_is_match(ep, laddr)) 711 goto hit; 712 } 713 714 ep = sctp_sk((sctp_get_ctl_sock()))->ep; 715 epb = &ep->base; 716 717 hit: 718 sctp_endpoint_hold(ep); 719 sock_hold(epb->sk); 720 read_unlock(&head->lock); 721 return ep; 722 } 723 724 /* Insert association into the hash table. */ 725 static void __sctp_hash_established(struct sctp_association *asoc) 726 { 727 struct sctp_ep_common **epp; 728 struct sctp_ep_common *epb; 729 struct sctp_hashbucket *head; 730 731 epb = &asoc->base; 732 733 /* Calculate which chain this entry will belong to. */ 734 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); 735 736 head = &sctp_assoc_hashtable[epb->hashent]; 737 738 sctp_write_lock(&head->lock); 739 epp = &head->chain; 740 epb->next = *epp; 741 if (epb->next) 742 (*epp)->pprev = &epb->next; 743 *epp = epb; 744 epb->pprev = epp; 745 sctp_write_unlock(&head->lock); 746 } 747 748 /* Add an association to the hash. Local BH-safe. */ 749 void sctp_hash_established(struct sctp_association *asoc) 750 { 751 sctp_local_bh_disable(); 752 __sctp_hash_established(asoc); 753 sctp_local_bh_enable(); 754 } 755 756 /* Remove association from the hash table. */ 757 static void __sctp_unhash_established(struct sctp_association *asoc) 758 { 759 struct sctp_hashbucket *head; 760 struct sctp_ep_common *epb; 761 762 epb = &asoc->base; 763 764 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, 765 asoc->peer.port); 766 767 head = &sctp_assoc_hashtable[epb->hashent]; 768 769 sctp_write_lock(&head->lock); 770 771 if (epb->pprev) { 772 if (epb->next) 773 epb->next->pprev = epb->pprev; 774 *epb->pprev = epb->next; 775 epb->pprev = NULL; 776 } 777 778 sctp_write_unlock(&head->lock); 779 } 780 781 /* Remove association from the hash table. Local BH-safe. */ 782 void sctp_unhash_established(struct sctp_association *asoc) 783 { 784 sctp_local_bh_disable(); 785 __sctp_unhash_established(asoc); 786 sctp_local_bh_enable(); 787 } 788 789 /* Look up an association. */ 790 static struct sctp_association *__sctp_lookup_association( 791 const union sctp_addr *local, 792 const union sctp_addr *peer, 793 struct sctp_transport **pt) 794 { 795 struct sctp_hashbucket *head; 796 struct sctp_ep_common *epb; 797 struct sctp_association *asoc; 798 struct sctp_transport *transport; 799 int hash; 800 801 /* Optimize here for direct hit, only listening connections can 802 * have wildcards anyways. 803 */ 804 hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port); 805 head = &sctp_assoc_hashtable[hash]; 806 read_lock(&head->lock); 807 for (epb = head->chain; epb; epb = epb->next) { 808 asoc = sctp_assoc(epb); 809 transport = sctp_assoc_is_match(asoc, local, peer); 810 if (transport) 811 goto hit; 812 } 813 814 read_unlock(&head->lock); 815 816 return NULL; 817 818 hit: 819 *pt = transport; 820 sctp_association_hold(asoc); 821 sock_hold(epb->sk); 822 read_unlock(&head->lock); 823 return asoc; 824 } 825 826 /* Look up an association. BH-safe. */ 827 SCTP_STATIC 828 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr, 829 const union sctp_addr *paddr, 830 struct sctp_transport **transportp) 831 { 832 struct sctp_association *asoc; 833 834 sctp_local_bh_disable(); 835 asoc = __sctp_lookup_association(laddr, paddr, transportp); 836 sctp_local_bh_enable(); 837 838 return asoc; 839 } 840 841 /* Is there an association matching the given local and peer addresses? */ 842 int sctp_has_association(const union sctp_addr *laddr, 843 const union sctp_addr *paddr) 844 { 845 struct sctp_association *asoc; 846 struct sctp_transport *transport; 847 848 if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) { 849 sock_put(asoc->base.sk); 850 sctp_association_put(asoc); 851 return 1; 852 } 853 854 return 0; 855 } 856 857 /* 858 * SCTP Implementors Guide, 2.18 Handling of address 859 * parameters within the INIT or INIT-ACK. 860 * 861 * D) When searching for a matching TCB upon reception of an INIT 862 * or INIT-ACK chunk the receiver SHOULD use not only the 863 * source address of the packet (containing the INIT or 864 * INIT-ACK) but the receiver SHOULD also use all valid 865 * address parameters contained within the chunk. 866 * 867 * 2.18.3 Solution description 868 * 869 * This new text clearly specifies to an implementor the need 870 * to look within the INIT or INIT-ACK. Any implementation that 871 * does not do this, may not be able to establish associations 872 * in certain circumstances. 873 * 874 */ 875 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb, 876 const union sctp_addr *laddr, struct sctp_transport **transportp) 877 { 878 struct sctp_association *asoc; 879 union sctp_addr addr; 880 union sctp_addr *paddr = &addr; 881 struct sctphdr *sh = (struct sctphdr *) skb->h.raw; 882 sctp_chunkhdr_t *ch; 883 union sctp_params params; 884 sctp_init_chunk_t *init; 885 struct sctp_transport *transport; 886 struct sctp_af *af; 887 888 ch = (sctp_chunkhdr_t *) skb->data; 889 890 /* If this is INIT/INIT-ACK look inside the chunk too. */ 891 switch (ch->type) { 892 case SCTP_CID_INIT: 893 case SCTP_CID_INIT_ACK: 894 break; 895 default: 896 return NULL; 897 } 898 899 /* The code below will attempt to walk the chunk and extract 900 * parameter information. Before we do that, we need to verify 901 * that the chunk length doesn't cause overflow. Otherwise, we'll 902 * walk off the end. 903 */ 904 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 905 return NULL; 906 907 /* 908 * This code will NOT touch anything inside the chunk--it is 909 * strictly READ-ONLY. 910 * 911 * RFC 2960 3 SCTP packet Format 912 * 913 * Multiple chunks can be bundled into one SCTP packet up to 914 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 915 * COMPLETE chunks. These chunks MUST NOT be bundled with any 916 * other chunk in a packet. See Section 6.10 for more details 917 * on chunk bundling. 918 */ 919 920 /* Find the start of the TLVs and the end of the chunk. This is 921 * the region we search for address parameters. 922 */ 923 init = (sctp_init_chunk_t *)skb->data; 924 925 /* Walk the parameters looking for embedded addresses. */ 926 sctp_walk_params(params, init, init_hdr.params) { 927 928 /* Note: Ignoring hostname addresses. */ 929 af = sctp_get_af_specific(param_type2af(params.p->type)); 930 if (!af) 931 continue; 932 933 af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0); 934 935 asoc = __sctp_lookup_association(laddr, paddr, &transport); 936 if (asoc) 937 return asoc; 938 } 939 940 return NULL; 941 } 942 943 /* Lookup an association for an inbound skb. */ 944 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 945 const union sctp_addr *paddr, 946 const union sctp_addr *laddr, 947 struct sctp_transport **transportp) 948 { 949 struct sctp_association *asoc; 950 951 asoc = __sctp_lookup_association(laddr, paddr, transportp); 952 953 /* Further lookup for INIT/INIT-ACK packets. 954 * SCTP Implementors Guide, 2.18 Handling of address 955 * parameters within the INIT or INIT-ACK. 956 */ 957 if (!asoc) 958 asoc = __sctp_rcv_init_lookup(skb, laddr, transportp); 959 960 return asoc; 961 } 962