1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, see 27 * <http://www.gnu.org/licenses/>. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Jon Grimm <jgrimm@us.ibm.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Sridhar Samudrala <sri@us.ibm.com> 41 * Ardelle Fan <ardelle.fan@intel.com> 42 */ 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/time.h> /* For struct timeval */ 49 #include <linux/slab.h> 50 #include <net/ip.h> 51 #include <net/icmp.h> 52 #include <net/snmp.h> 53 #include <net/sock.h> 54 #include <net/xfrm.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 #include <net/sctp/checksum.h> 58 #include <net/net_namespace.h> 59 #include <linux/rhashtable.h> 60 61 /* Forward declarations for internal helpers. */ 62 static int sctp_rcv_ootb(struct sk_buff *); 63 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 64 struct sk_buff *skb, 65 const union sctp_addr *paddr, 66 const union sctp_addr *laddr, 67 struct sctp_transport **transportp); 68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 69 const union sctp_addr *laddr); 70 static struct sctp_association *__sctp_lookup_association( 71 struct net *net, 72 const union sctp_addr *local, 73 const union sctp_addr *peer, 74 struct sctp_transport **pt); 75 76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 77 78 79 /* Calculate the SCTP checksum of an SCTP packet. */ 80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 81 { 82 struct sctphdr *sh = sctp_hdr(skb); 83 __le32 cmp = sh->checksum; 84 __le32 val = sctp_compute_cksum(skb, 0); 85 86 if (val != cmp) { 87 /* CRC failure, dump it. */ 88 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 89 return -1; 90 } 91 return 0; 92 } 93 94 /* 95 * This is the routine which IP calls when receiving an SCTP packet. 96 */ 97 int sctp_rcv(struct sk_buff *skb) 98 { 99 struct sock *sk; 100 struct sctp_association *asoc; 101 struct sctp_endpoint *ep = NULL; 102 struct sctp_ep_common *rcvr; 103 struct sctp_transport *transport = NULL; 104 struct sctp_chunk *chunk; 105 union sctp_addr src; 106 union sctp_addr dest; 107 int family; 108 struct sctp_af *af; 109 struct net *net = dev_net(skb->dev); 110 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); 111 112 if (skb->pkt_type != PACKET_HOST) 113 goto discard_it; 114 115 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 116 117 /* If packet is too small to contain a single chunk, let's not 118 * waste time on it anymore. 119 */ 120 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 121 skb_transport_offset(skb)) 122 goto discard_it; 123 124 /* If the packet is fragmented and we need to do crc checking, 125 * it's better to just linearize it otherwise crc computing 126 * takes longer. 127 */ 128 if ((!is_gso && skb_linearize(skb)) || 129 !pskb_may_pull(skb, sizeof(struct sctphdr))) 130 goto discard_it; 131 132 /* Pull up the IP header. */ 133 __skb_pull(skb, skb_transport_offset(skb)); 134 135 skb->csum_valid = 0; /* Previous value not applicable */ 136 if (skb_csum_unnecessary(skb)) 137 __skb_decr_checksum_unnecessary(skb); 138 else if (!sctp_checksum_disable && 139 !is_gso && 140 sctp_rcv_checksum(net, skb) < 0) 141 goto discard_it; 142 skb->csum_valid = 1; 143 144 __skb_pull(skb, sizeof(struct sctphdr)); 145 146 family = ipver2af(ip_hdr(skb)->version); 147 af = sctp_get_af_specific(family); 148 if (unlikely(!af)) 149 goto discard_it; 150 SCTP_INPUT_CB(skb)->af = af; 151 152 /* Initialize local addresses for lookups. */ 153 af->from_skb(&src, skb, 1); 154 af->from_skb(&dest, skb, 0); 155 156 /* If the packet is to or from a non-unicast address, 157 * silently discard the packet. 158 * 159 * This is not clearly defined in the RFC except in section 160 * 8.4 - OOTB handling. However, based on the book "Stream Control 161 * Transmission Protocol" 2.1, "It is important to note that the 162 * IP address of an SCTP transport address must be a routable 163 * unicast address. In other words, IP multicast addresses and 164 * IP broadcast addresses cannot be used in an SCTP transport 165 * address." 166 */ 167 if (!af->addr_valid(&src, NULL, skb) || 168 !af->addr_valid(&dest, NULL, skb)) 169 goto discard_it; 170 171 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 172 173 if (!asoc) 174 ep = __sctp_rcv_lookup_endpoint(net, &dest); 175 176 /* Retrieve the common input handling substructure. */ 177 rcvr = asoc ? &asoc->base : &ep->base; 178 sk = rcvr->sk; 179 180 /* 181 * If a frame arrives on an interface and the receiving socket is 182 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 183 */ 184 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 185 if (transport) { 186 sctp_transport_put(transport); 187 asoc = NULL; 188 transport = NULL; 189 } else { 190 sctp_endpoint_put(ep); 191 ep = NULL; 192 } 193 sk = net->sctp.ctl_sock; 194 ep = sctp_sk(sk)->ep; 195 sctp_endpoint_hold(ep); 196 rcvr = &ep->base; 197 } 198 199 /* 200 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 201 * An SCTP packet is called an "out of the blue" (OOTB) 202 * packet if it is correctly formed, i.e., passed the 203 * receiver's checksum check, but the receiver is not 204 * able to identify the association to which this 205 * packet belongs. 206 */ 207 if (!asoc) { 208 if (sctp_rcv_ootb(skb)) { 209 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 210 goto discard_release; 211 } 212 } 213 214 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 215 goto discard_release; 216 nf_reset(skb); 217 218 if (sk_filter(sk, skb)) 219 goto discard_release; 220 221 /* Create an SCTP packet structure. */ 222 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 223 if (!chunk) 224 goto discard_release; 225 SCTP_INPUT_CB(skb)->chunk = chunk; 226 227 /* Remember what endpoint is to handle this packet. */ 228 chunk->rcvr = rcvr; 229 230 /* Remember the SCTP header. */ 231 chunk->sctp_hdr = sctp_hdr(skb); 232 233 /* Set the source and destination addresses of the incoming chunk. */ 234 sctp_init_addrs(chunk, &src, &dest); 235 236 /* Remember where we came from. */ 237 chunk->transport = transport; 238 239 /* Acquire access to the sock lock. Note: We are safe from other 240 * bottom halves on this lock, but a user may be in the lock too, 241 * so check if it is busy. 242 */ 243 bh_lock_sock(sk); 244 245 if (sk != rcvr->sk) { 246 /* Our cached sk is different from the rcvr->sk. This is 247 * because migrate()/accept() may have moved the association 248 * to a new socket and released all the sockets. So now we 249 * are holding a lock on the old socket while the user may 250 * be doing something with the new socket. Switch our veiw 251 * of the current sk. 252 */ 253 bh_unlock_sock(sk); 254 sk = rcvr->sk; 255 bh_lock_sock(sk); 256 } 257 258 if (sock_owned_by_user(sk)) { 259 if (sctp_add_backlog(sk, skb)) { 260 bh_unlock_sock(sk); 261 sctp_chunk_free(chunk); 262 skb = NULL; /* sctp_chunk_free already freed the skb */ 263 goto discard_release; 264 } 265 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 266 } else { 267 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 268 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 269 } 270 271 bh_unlock_sock(sk); 272 273 /* Release the asoc/ep ref we took in the lookup calls. */ 274 if (transport) 275 sctp_transport_put(transport); 276 else 277 sctp_endpoint_put(ep); 278 279 return 0; 280 281 discard_it: 282 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 283 kfree_skb(skb); 284 return 0; 285 286 discard_release: 287 /* Release the asoc/ep ref we took in the lookup calls. */ 288 if (transport) 289 sctp_transport_put(transport); 290 else 291 sctp_endpoint_put(ep); 292 293 goto discard_it; 294 } 295 296 /* Process the backlog queue of the socket. Every skb on 297 * the backlog holds a ref on an association or endpoint. 298 * We hold this ref throughout the state machine to make 299 * sure that the structure we need is still around. 300 */ 301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 302 { 303 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 304 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 305 struct sctp_transport *t = chunk->transport; 306 struct sctp_ep_common *rcvr = NULL; 307 int backloged = 0; 308 309 rcvr = chunk->rcvr; 310 311 /* If the rcvr is dead then the association or endpoint 312 * has been deleted and we can safely drop the chunk 313 * and refs that we are holding. 314 */ 315 if (rcvr->dead) { 316 sctp_chunk_free(chunk); 317 goto done; 318 } 319 320 if (unlikely(rcvr->sk != sk)) { 321 /* In this case, the association moved from one socket to 322 * another. We are currently sitting on the backlog of the 323 * old socket, so we need to move. 324 * However, since we are here in the process context we 325 * need to take make sure that the user doesn't own 326 * the new socket when we process the packet. 327 * If the new socket is user-owned, queue the chunk to the 328 * backlog of the new socket without dropping any refs. 329 * Otherwise, we can safely push the chunk on the inqueue. 330 */ 331 332 sk = rcvr->sk; 333 local_bh_disable(); 334 bh_lock_sock(sk); 335 336 if (sock_owned_by_user(sk)) { 337 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 338 sctp_chunk_free(chunk); 339 else 340 backloged = 1; 341 } else 342 sctp_inq_push(inqueue, chunk); 343 344 bh_unlock_sock(sk); 345 local_bh_enable(); 346 347 /* If the chunk was backloged again, don't drop refs */ 348 if (backloged) 349 return 0; 350 } else { 351 sctp_inq_push(inqueue, chunk); 352 } 353 354 done: 355 /* Release the refs we took in sctp_add_backlog */ 356 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 357 sctp_transport_put(t); 358 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 359 sctp_endpoint_put(sctp_ep(rcvr)); 360 else 361 BUG(); 362 363 return 0; 364 } 365 366 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 367 { 368 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 369 struct sctp_transport *t = chunk->transport; 370 struct sctp_ep_common *rcvr = chunk->rcvr; 371 int ret; 372 373 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 374 if (!ret) { 375 /* Hold the assoc/ep while hanging on the backlog queue. 376 * This way, we know structures we need will not disappear 377 * from us 378 */ 379 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 380 sctp_transport_hold(t); 381 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 382 sctp_endpoint_hold(sctp_ep(rcvr)); 383 else 384 BUG(); 385 } 386 return ret; 387 388 } 389 390 /* Handle icmp frag needed error. */ 391 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 392 struct sctp_transport *t, __u32 pmtu) 393 { 394 if (!t || (t->pathmtu <= pmtu)) 395 return; 396 397 if (sock_owned_by_user(sk)) { 398 atomic_set(&t->mtu_info, pmtu); 399 asoc->pmtu_pending = 1; 400 t->pmtu_pending = 1; 401 return; 402 } 403 404 if (!(t->param_flags & SPP_PMTUD_ENABLE)) 405 /* We can't allow retransmitting in such case, as the 406 * retransmission would be sized just as before, and thus we 407 * would get another icmp, and retransmit again. 408 */ 409 return; 410 411 /* Update transports view of the MTU. Return if no update was needed. 412 * If an update wasn't needed/possible, it also doesn't make sense to 413 * try to retransmit now. 414 */ 415 if (!sctp_transport_update_pmtu(t, pmtu)) 416 return; 417 418 /* Update association pmtu. */ 419 sctp_assoc_sync_pmtu(asoc); 420 421 /* Retransmit with the new pmtu setting. */ 422 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 423 } 424 425 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 426 struct sk_buff *skb) 427 { 428 struct dst_entry *dst; 429 430 if (sock_owned_by_user(sk) || !t) 431 return; 432 dst = sctp_transport_dst_check(t); 433 if (dst) 434 dst->ops->redirect(dst, sk, skb); 435 } 436 437 /* 438 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 439 * 440 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 441 * or a "Protocol Unreachable" treat this message as an abort 442 * with the T bit set. 443 * 444 * This function sends an event to the state machine, which will abort the 445 * association. 446 * 447 */ 448 void sctp_icmp_proto_unreachable(struct sock *sk, 449 struct sctp_association *asoc, 450 struct sctp_transport *t) 451 { 452 if (sock_owned_by_user(sk)) { 453 if (timer_pending(&t->proto_unreach_timer)) 454 return; 455 else { 456 if (!mod_timer(&t->proto_unreach_timer, 457 jiffies + (HZ/20))) 458 sctp_association_hold(asoc); 459 } 460 } else { 461 struct net *net = sock_net(sk); 462 463 pr_debug("%s: unrecognized next header type " 464 "encountered!\n", __func__); 465 466 if (del_timer(&t->proto_unreach_timer)) 467 sctp_association_put(asoc); 468 469 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 470 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 471 asoc->state, asoc->ep, asoc, t, 472 GFP_ATOMIC); 473 } 474 } 475 476 /* Common lookup code for icmp/icmpv6 error handler. */ 477 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 478 struct sctphdr *sctphdr, 479 struct sctp_association **app, 480 struct sctp_transport **tpp) 481 { 482 struct sctp_init_chunk *chunkhdr, _chunkhdr; 483 union sctp_addr saddr; 484 union sctp_addr daddr; 485 struct sctp_af *af; 486 struct sock *sk = NULL; 487 struct sctp_association *asoc; 488 struct sctp_transport *transport = NULL; 489 __u32 vtag = ntohl(sctphdr->vtag); 490 491 *app = NULL; *tpp = NULL; 492 493 af = sctp_get_af_specific(family); 494 if (unlikely(!af)) { 495 return NULL; 496 } 497 498 /* Initialize local addresses for lookups. */ 499 af->from_skb(&saddr, skb, 1); 500 af->from_skb(&daddr, skb, 0); 501 502 /* Look for an association that matches the incoming ICMP error 503 * packet. 504 */ 505 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 506 if (!asoc) 507 return NULL; 508 509 sk = asoc->base.sk; 510 511 /* RFC 4960, Appendix C. ICMP Handling 512 * 513 * ICMP6) An implementation MUST validate that the Verification Tag 514 * contained in the ICMP message matches the Verification Tag of 515 * the peer. If the Verification Tag is not 0 and does NOT 516 * match, discard the ICMP message. If it is 0 and the ICMP 517 * message contains enough bytes to verify that the chunk type is 518 * an INIT chunk and that the Initiate Tag matches the tag of the 519 * peer, continue with ICMP7. If the ICMP message is too short 520 * or the chunk type or the Initiate Tag does not match, silently 521 * discard the packet. 522 */ 523 if (vtag == 0) { 524 /* chunk header + first 4 octects of init header */ 525 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + 526 sizeof(struct sctphdr), 527 sizeof(struct sctp_chunkhdr) + 528 sizeof(__be32), &_chunkhdr); 529 if (!chunkhdr || 530 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 531 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) 532 goto out; 533 534 } else if (vtag != asoc->c.peer_vtag) { 535 goto out; 536 } 537 538 bh_lock_sock(sk); 539 540 /* If too many ICMPs get dropped on busy 541 * servers this needs to be solved differently. 542 */ 543 if (sock_owned_by_user(sk)) 544 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 545 546 *app = asoc; 547 *tpp = transport; 548 return sk; 549 550 out: 551 sctp_transport_put(transport); 552 return NULL; 553 } 554 555 /* Common cleanup code for icmp/icmpv6 error handler. */ 556 void sctp_err_finish(struct sock *sk, struct sctp_transport *t) 557 { 558 bh_unlock_sock(sk); 559 sctp_transport_put(t); 560 } 561 562 /* 563 * This routine is called by the ICMP module when it gets some 564 * sort of error condition. If err < 0 then the socket should 565 * be closed and the error returned to the user. If err > 0 566 * it's just the icmp type << 8 | icmp code. After adjustment 567 * header points to the first 8 bytes of the sctp header. We need 568 * to find the appropriate port. 569 * 570 * The locking strategy used here is very "optimistic". When 571 * someone else accesses the socket the ICMP is just dropped 572 * and for some paths there is no check at all. 573 * A more general error queue to queue errors for later handling 574 * is probably better. 575 * 576 */ 577 void sctp_v4_err(struct sk_buff *skb, __u32 info) 578 { 579 const struct iphdr *iph = (const struct iphdr *)skb->data; 580 const int ihlen = iph->ihl * 4; 581 const int type = icmp_hdr(skb)->type; 582 const int code = icmp_hdr(skb)->code; 583 struct sock *sk; 584 struct sctp_association *asoc = NULL; 585 struct sctp_transport *transport; 586 struct inet_sock *inet; 587 __u16 saveip, savesctp; 588 int err; 589 struct net *net = dev_net(skb->dev); 590 591 /* Fix up skb to look at the embedded net header. */ 592 saveip = skb->network_header; 593 savesctp = skb->transport_header; 594 skb_reset_network_header(skb); 595 skb_set_transport_header(skb, ihlen); 596 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 597 /* Put back, the original values. */ 598 skb->network_header = saveip; 599 skb->transport_header = savesctp; 600 if (!sk) { 601 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 602 return; 603 } 604 /* Warning: The sock lock is held. Remember to call 605 * sctp_err_finish! 606 */ 607 608 switch (type) { 609 case ICMP_PARAMETERPROB: 610 err = EPROTO; 611 break; 612 case ICMP_DEST_UNREACH: 613 if (code > NR_ICMP_UNREACH) 614 goto out_unlock; 615 616 /* PMTU discovery (RFC1191) */ 617 if (ICMP_FRAG_NEEDED == code) { 618 sctp_icmp_frag_needed(sk, asoc, transport, 619 SCTP_TRUNC4(info)); 620 goto out_unlock; 621 } else { 622 if (ICMP_PROT_UNREACH == code) { 623 sctp_icmp_proto_unreachable(sk, asoc, 624 transport); 625 goto out_unlock; 626 } 627 } 628 err = icmp_err_convert[code].errno; 629 break; 630 case ICMP_TIME_EXCEEDED: 631 /* Ignore any time exceeded errors due to fragment reassembly 632 * timeouts. 633 */ 634 if (ICMP_EXC_FRAGTIME == code) 635 goto out_unlock; 636 637 err = EHOSTUNREACH; 638 break; 639 case ICMP_REDIRECT: 640 sctp_icmp_redirect(sk, transport, skb); 641 /* Fall through to out_unlock. */ 642 default: 643 goto out_unlock; 644 } 645 646 inet = inet_sk(sk); 647 if (!sock_owned_by_user(sk) && inet->recverr) { 648 sk->sk_err = err; 649 sk->sk_error_report(sk); 650 } else { /* Only an error on timeout */ 651 sk->sk_err_soft = err; 652 } 653 654 out_unlock: 655 sctp_err_finish(sk, transport); 656 } 657 658 /* 659 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 660 * 661 * This function scans all the chunks in the OOTB packet to determine if 662 * the packet should be discarded right away. If a response might be needed 663 * for this packet, or, if further processing is possible, the packet will 664 * be queued to a proper inqueue for the next phase of handling. 665 * 666 * Output: 667 * Return 0 - If further processing is needed. 668 * Return 1 - If the packet can be discarded right away. 669 */ 670 static int sctp_rcv_ootb(struct sk_buff *skb) 671 { 672 struct sctp_chunkhdr *ch, _ch; 673 int ch_end, offset = 0; 674 675 /* Scan through all the chunks in the packet. */ 676 do { 677 /* Make sure we have at least the header there */ 678 if (offset + sizeof(_ch) > skb->len) 679 break; 680 681 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 682 683 /* Break out if chunk length is less then minimal. */ 684 if (ntohs(ch->length) < sizeof(_ch)) 685 break; 686 687 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 688 if (ch_end > skb->len) 689 break; 690 691 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 692 * receiver MUST silently discard the OOTB packet and take no 693 * further action. 694 */ 695 if (SCTP_CID_ABORT == ch->type) 696 goto discard; 697 698 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 699 * chunk, the receiver should silently discard the packet 700 * and take no further action. 701 */ 702 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 703 goto discard; 704 705 /* RFC 4460, 2.11.2 706 * This will discard packets with INIT chunk bundled as 707 * subsequent chunks in the packet. When INIT is first, 708 * the normal INIT processing will discard the chunk. 709 */ 710 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 711 goto discard; 712 713 offset = ch_end; 714 } while (ch_end < skb->len); 715 716 return 0; 717 718 discard: 719 return 1; 720 } 721 722 /* Insert endpoint into the hash table. */ 723 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 724 { 725 struct net *net = sock_net(ep->base.sk); 726 struct sctp_ep_common *epb; 727 struct sctp_hashbucket *head; 728 729 epb = &ep->base; 730 731 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 732 head = &sctp_ep_hashtable[epb->hashent]; 733 734 write_lock(&head->lock); 735 hlist_add_head(&epb->node, &head->chain); 736 write_unlock(&head->lock); 737 } 738 739 /* Add an endpoint to the hash. Local BH-safe. */ 740 void sctp_hash_endpoint(struct sctp_endpoint *ep) 741 { 742 local_bh_disable(); 743 __sctp_hash_endpoint(ep); 744 local_bh_enable(); 745 } 746 747 /* Remove endpoint from the hash table. */ 748 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 749 { 750 struct net *net = sock_net(ep->base.sk); 751 struct sctp_hashbucket *head; 752 struct sctp_ep_common *epb; 753 754 epb = &ep->base; 755 756 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 757 758 head = &sctp_ep_hashtable[epb->hashent]; 759 760 write_lock(&head->lock); 761 hlist_del_init(&epb->node); 762 write_unlock(&head->lock); 763 } 764 765 /* Remove endpoint from the hash. Local BH-safe. */ 766 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 767 { 768 local_bh_disable(); 769 __sctp_unhash_endpoint(ep); 770 local_bh_enable(); 771 } 772 773 /* Look up an endpoint. */ 774 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 775 const union sctp_addr *laddr) 776 { 777 struct sctp_hashbucket *head; 778 struct sctp_ep_common *epb; 779 struct sctp_endpoint *ep; 780 int hash; 781 782 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 783 head = &sctp_ep_hashtable[hash]; 784 read_lock(&head->lock); 785 sctp_for_each_hentry(epb, &head->chain) { 786 ep = sctp_ep(epb); 787 if (sctp_endpoint_is_match(ep, net, laddr)) 788 goto hit; 789 } 790 791 ep = sctp_sk(net->sctp.ctl_sock)->ep; 792 793 hit: 794 sctp_endpoint_hold(ep); 795 read_unlock(&head->lock); 796 return ep; 797 } 798 799 /* rhashtable for transport */ 800 struct sctp_hash_cmp_arg { 801 const union sctp_addr *paddr; 802 const struct net *net; 803 __be16 lport; 804 }; 805 806 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 807 const void *ptr) 808 { 809 struct sctp_transport *t = (struct sctp_transport *)ptr; 810 const struct sctp_hash_cmp_arg *x = arg->key; 811 int err = 1; 812 813 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 814 return err; 815 if (!sctp_transport_hold(t)) 816 return err; 817 818 if (!net_eq(sock_net(t->asoc->base.sk), x->net)) 819 goto out; 820 if (x->lport != htons(t->asoc->base.bind_addr.port)) 821 goto out; 822 823 err = 0; 824 out: 825 sctp_transport_put(t); 826 return err; 827 } 828 829 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 830 { 831 const struct sctp_transport *t = data; 832 const union sctp_addr *paddr = &t->ipaddr; 833 const struct net *net = sock_net(t->asoc->base.sk); 834 __be16 lport = htons(t->asoc->base.bind_addr.port); 835 __u32 addr; 836 837 if (paddr->sa.sa_family == AF_INET6) 838 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 839 else 840 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 841 842 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 843 (__force __u32)lport, net_hash_mix(net), seed); 844 } 845 846 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) 847 { 848 const struct sctp_hash_cmp_arg *x = data; 849 const union sctp_addr *paddr = x->paddr; 850 const struct net *net = x->net; 851 __be16 lport = x->lport; 852 __u32 addr; 853 854 if (paddr->sa.sa_family == AF_INET6) 855 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 856 else 857 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 858 859 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 860 (__force __u32)lport, net_hash_mix(net), seed); 861 } 862 863 static const struct rhashtable_params sctp_hash_params = { 864 .head_offset = offsetof(struct sctp_transport, node), 865 .hashfn = sctp_hash_key, 866 .obj_hashfn = sctp_hash_obj, 867 .obj_cmpfn = sctp_hash_cmp, 868 .automatic_shrinking = true, 869 }; 870 871 int sctp_transport_hashtable_init(void) 872 { 873 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); 874 } 875 876 void sctp_transport_hashtable_destroy(void) 877 { 878 rhltable_destroy(&sctp_transport_hashtable); 879 } 880 881 int sctp_hash_transport(struct sctp_transport *t) 882 { 883 struct sctp_transport *transport; 884 struct rhlist_head *tmp, *list; 885 struct sctp_hash_cmp_arg arg; 886 int err; 887 888 if (t->asoc->temp) 889 return 0; 890 891 arg.net = sock_net(t->asoc->base.sk); 892 arg.paddr = &t->ipaddr; 893 arg.lport = htons(t->asoc->base.bind_addr.port); 894 895 rcu_read_lock(); 896 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 897 sctp_hash_params); 898 899 rhl_for_each_entry_rcu(transport, tmp, list, node) 900 if (transport->asoc->ep == t->asoc->ep) { 901 rcu_read_unlock(); 902 return -EEXIST; 903 } 904 rcu_read_unlock(); 905 906 err = rhltable_insert_key(&sctp_transport_hashtable, &arg, 907 &t->node, sctp_hash_params); 908 if (err) 909 pr_err_once("insert transport fail, errno %d\n", err); 910 911 return err; 912 } 913 914 void sctp_unhash_transport(struct sctp_transport *t) 915 { 916 if (t->asoc->temp) 917 return; 918 919 rhltable_remove(&sctp_transport_hashtable, &t->node, 920 sctp_hash_params); 921 } 922 923 /* return a transport with holding it */ 924 struct sctp_transport *sctp_addrs_lookup_transport( 925 struct net *net, 926 const union sctp_addr *laddr, 927 const union sctp_addr *paddr) 928 { 929 struct rhlist_head *tmp, *list; 930 struct sctp_transport *t; 931 struct sctp_hash_cmp_arg arg = { 932 .paddr = paddr, 933 .net = net, 934 .lport = laddr->v4.sin_port, 935 }; 936 937 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 938 sctp_hash_params); 939 940 rhl_for_each_entry_rcu(t, tmp, list, node) { 941 if (!sctp_transport_hold(t)) 942 continue; 943 944 if (sctp_bind_addr_match(&t->asoc->base.bind_addr, 945 laddr, sctp_sk(t->asoc->base.sk))) 946 return t; 947 sctp_transport_put(t); 948 } 949 950 return NULL; 951 } 952 953 /* return a transport without holding it, as it's only used under sock lock */ 954 struct sctp_transport *sctp_epaddr_lookup_transport( 955 const struct sctp_endpoint *ep, 956 const union sctp_addr *paddr) 957 { 958 struct net *net = sock_net(ep->base.sk); 959 struct rhlist_head *tmp, *list; 960 struct sctp_transport *t; 961 struct sctp_hash_cmp_arg arg = { 962 .paddr = paddr, 963 .net = net, 964 .lport = htons(ep->base.bind_addr.port), 965 }; 966 967 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 968 sctp_hash_params); 969 970 rhl_for_each_entry_rcu(t, tmp, list, node) 971 if (ep == t->asoc->ep) 972 return t; 973 974 return NULL; 975 } 976 977 /* Look up an association. */ 978 static struct sctp_association *__sctp_lookup_association( 979 struct net *net, 980 const union sctp_addr *local, 981 const union sctp_addr *peer, 982 struct sctp_transport **pt) 983 { 984 struct sctp_transport *t; 985 struct sctp_association *asoc = NULL; 986 987 t = sctp_addrs_lookup_transport(net, local, peer); 988 if (!t) 989 goto out; 990 991 asoc = t->asoc; 992 *pt = t; 993 994 out: 995 return asoc; 996 } 997 998 /* Look up an association. protected by RCU read lock */ 999 static 1000 struct sctp_association *sctp_lookup_association(struct net *net, 1001 const union sctp_addr *laddr, 1002 const union sctp_addr *paddr, 1003 struct sctp_transport **transportp) 1004 { 1005 struct sctp_association *asoc; 1006 1007 rcu_read_lock(); 1008 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1009 rcu_read_unlock(); 1010 1011 return asoc; 1012 } 1013 1014 /* Is there an association matching the given local and peer addresses? */ 1015 bool sctp_has_association(struct net *net, 1016 const union sctp_addr *laddr, 1017 const union sctp_addr *paddr) 1018 { 1019 struct sctp_transport *transport; 1020 1021 if (sctp_lookup_association(net, laddr, paddr, &transport)) { 1022 sctp_transport_put(transport); 1023 return true; 1024 } 1025 1026 return false; 1027 } 1028 1029 /* 1030 * SCTP Implementors Guide, 2.18 Handling of address 1031 * parameters within the INIT or INIT-ACK. 1032 * 1033 * D) When searching for a matching TCB upon reception of an INIT 1034 * or INIT-ACK chunk the receiver SHOULD use not only the 1035 * source address of the packet (containing the INIT or 1036 * INIT-ACK) but the receiver SHOULD also use all valid 1037 * address parameters contained within the chunk. 1038 * 1039 * 2.18.3 Solution description 1040 * 1041 * This new text clearly specifies to an implementor the need 1042 * to look within the INIT or INIT-ACK. Any implementation that 1043 * does not do this, may not be able to establish associations 1044 * in certain circumstances. 1045 * 1046 */ 1047 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1048 struct sk_buff *skb, 1049 const union sctp_addr *laddr, struct sctp_transport **transportp) 1050 { 1051 struct sctp_association *asoc; 1052 union sctp_addr addr; 1053 union sctp_addr *paddr = &addr; 1054 struct sctphdr *sh = sctp_hdr(skb); 1055 union sctp_params params; 1056 struct sctp_init_chunk *init; 1057 struct sctp_af *af; 1058 1059 /* 1060 * This code will NOT touch anything inside the chunk--it is 1061 * strictly READ-ONLY. 1062 * 1063 * RFC 2960 3 SCTP packet Format 1064 * 1065 * Multiple chunks can be bundled into one SCTP packet up to 1066 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1067 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1068 * other chunk in a packet. See Section 6.10 for more details 1069 * on chunk bundling. 1070 */ 1071 1072 /* Find the start of the TLVs and the end of the chunk. This is 1073 * the region we search for address parameters. 1074 */ 1075 init = (struct sctp_init_chunk *)skb->data; 1076 1077 /* Walk the parameters looking for embedded addresses. */ 1078 sctp_walk_params(params, init, init_hdr.params) { 1079 1080 /* Note: Ignoring hostname addresses. */ 1081 af = sctp_get_af_specific(param_type2af(params.p->type)); 1082 if (!af) 1083 continue; 1084 1085 af->from_addr_param(paddr, params.addr, sh->source, 0); 1086 1087 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1088 if (asoc) 1089 return asoc; 1090 } 1091 1092 return NULL; 1093 } 1094 1095 /* ADD-IP, Section 5.2 1096 * When an endpoint receives an ASCONF Chunk from the remote peer 1097 * special procedures may be needed to identify the association the 1098 * ASCONF Chunk is associated with. To properly find the association 1099 * the following procedures SHOULD be followed: 1100 * 1101 * D2) If the association is not found, use the address found in the 1102 * Address Parameter TLV combined with the port number found in the 1103 * SCTP common header. If found proceed to rule D4. 1104 * 1105 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1106 * address found in the ASCONF Address Parameter TLV of each of the 1107 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1108 */ 1109 static struct sctp_association *__sctp_rcv_asconf_lookup( 1110 struct net *net, 1111 struct sctp_chunkhdr *ch, 1112 const union sctp_addr *laddr, 1113 __be16 peer_port, 1114 struct sctp_transport **transportp) 1115 { 1116 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; 1117 struct sctp_af *af; 1118 union sctp_addr_param *param; 1119 union sctp_addr paddr; 1120 1121 /* Skip over the ADDIP header and find the Address parameter */ 1122 param = (union sctp_addr_param *)(asconf + 1); 1123 1124 af = sctp_get_af_specific(param_type2af(param->p.type)); 1125 if (unlikely(!af)) 1126 return NULL; 1127 1128 af->from_addr_param(&paddr, param, peer_port, 0); 1129 1130 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1131 } 1132 1133 1134 /* SCTP-AUTH, Section 6.3: 1135 * If the receiver does not find a STCB for a packet containing an AUTH 1136 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1137 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1138 * association. 1139 * 1140 * This means that any chunks that can help us identify the association need 1141 * to be looked at to find this association. 1142 */ 1143 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1144 struct sk_buff *skb, 1145 const union sctp_addr *laddr, 1146 struct sctp_transport **transportp) 1147 { 1148 struct sctp_association *asoc = NULL; 1149 struct sctp_chunkhdr *ch; 1150 int have_auth = 0; 1151 unsigned int chunk_num = 1; 1152 __u8 *ch_end; 1153 1154 /* Walk through the chunks looking for AUTH or ASCONF chunks 1155 * to help us find the association. 1156 */ 1157 ch = (struct sctp_chunkhdr *)skb->data; 1158 do { 1159 /* Break out if chunk length is less then minimal. */ 1160 if (ntohs(ch->length) < sizeof(*ch)) 1161 break; 1162 1163 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1164 if (ch_end > skb_tail_pointer(skb)) 1165 break; 1166 1167 switch (ch->type) { 1168 case SCTP_CID_AUTH: 1169 have_auth = chunk_num; 1170 break; 1171 1172 case SCTP_CID_COOKIE_ECHO: 1173 /* If a packet arrives containing an AUTH chunk as 1174 * a first chunk, a COOKIE-ECHO chunk as the second 1175 * chunk, and possibly more chunks after them, and 1176 * the receiver does not have an STCB for that 1177 * packet, then authentication is based on 1178 * the contents of the COOKIE- ECHO chunk. 1179 */ 1180 if (have_auth == 1 && chunk_num == 2) 1181 return NULL; 1182 break; 1183 1184 case SCTP_CID_ASCONF: 1185 if (have_auth || net->sctp.addip_noauth) 1186 asoc = __sctp_rcv_asconf_lookup( 1187 net, ch, laddr, 1188 sctp_hdr(skb)->source, 1189 transportp); 1190 default: 1191 break; 1192 } 1193 1194 if (asoc) 1195 break; 1196 1197 ch = (struct sctp_chunkhdr *)ch_end; 1198 chunk_num++; 1199 } while (ch_end < skb_tail_pointer(skb)); 1200 1201 return asoc; 1202 } 1203 1204 /* 1205 * There are circumstances when we need to look inside the SCTP packet 1206 * for information to help us find the association. Examples 1207 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1208 * chunks. 1209 */ 1210 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1211 struct sk_buff *skb, 1212 const union sctp_addr *laddr, 1213 struct sctp_transport **transportp) 1214 { 1215 struct sctp_chunkhdr *ch; 1216 1217 /* We do not allow GSO frames here as we need to linearize and 1218 * then cannot guarantee frame boundaries. This shouldn't be an 1219 * issue as packets hitting this are mostly INIT or INIT-ACK and 1220 * those cannot be on GSO-style anyway. 1221 */ 1222 if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) 1223 return NULL; 1224 1225 ch = (struct sctp_chunkhdr *)skb->data; 1226 1227 /* The code below will attempt to walk the chunk and extract 1228 * parameter information. Before we do that, we need to verify 1229 * that the chunk length doesn't cause overflow. Otherwise, we'll 1230 * walk off the end. 1231 */ 1232 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1233 return NULL; 1234 1235 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1236 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1237 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1238 1239 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1240 } 1241 1242 /* Lookup an association for an inbound skb. */ 1243 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1244 struct sk_buff *skb, 1245 const union sctp_addr *paddr, 1246 const union sctp_addr *laddr, 1247 struct sctp_transport **transportp) 1248 { 1249 struct sctp_association *asoc; 1250 1251 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1252 if (asoc) 1253 goto out; 1254 1255 /* Further lookup for INIT/INIT-ACK packets. 1256 * SCTP Implementors Guide, 2.18 Handling of address 1257 * parameters within the INIT or INIT-ACK. 1258 */ 1259 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1260 if (asoc) 1261 goto out; 1262 1263 if (paddr->sa.sa_family == AF_INET) 1264 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", 1265 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), 1266 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); 1267 else 1268 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", 1269 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), 1270 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); 1271 1272 out: 1273 return asoc; 1274 } 1275