xref: /linux/net/sctp/input.c (revision a82ebb093fc7bdd88f8df17b2fa303d7535fa43b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 International Business Machines, Corp.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions handle all input from the IP layer into SCTP.
13  *
14  * Please send any bug reports or fixes you make to the
15  * email address(es):
16  *    lksctp developers <linux-sctp@vger.kernel.org>
17  *
18  * Written or modified by:
19  *    La Monte H.P. Yarroll <piggy@acm.org>
20  *    Karl Knutson <karl@athena.chicago.il.us>
21  *    Xingang Guo <xingang.guo@intel.com>
22  *    Jon Grimm <jgrimm@us.ibm.com>
23  *    Hui Huang <hui.huang@nokia.com>
24  *    Daisy Chang <daisyc@us.ibm.com>
25  *    Sridhar Samudrala <sri@us.ibm.com>
26  *    Ardelle Fan <ardelle.fan@intel.com>
27  */
28 
29 #include <linux/types.h>
30 #include <linux/list.h> /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/time.h> /* For struct timeval */
34 #include <linux/slab.h>
35 #include <net/ip.h>
36 #include <net/icmp.h>
37 #include <net/snmp.h>
38 #include <net/sock.h>
39 #include <net/xfrm.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/sm.h>
42 #include <net/sctp/checksum.h>
43 #include <net/net_namespace.h>
44 #include <linux/rhashtable.h>
45 #include <net/sock_reuseport.h>
46 
47 /* Forward declarations for internal helpers. */
48 static int sctp_rcv_ootb(struct sk_buff *);
49 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
50 				      struct sk_buff *skb,
51 				      const union sctp_addr *paddr,
52 				      const union sctp_addr *laddr,
53 				      struct sctp_transport **transportp);
54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
55 					struct net *net, struct sk_buff *skb,
56 					const union sctp_addr *laddr,
57 					const union sctp_addr *daddr);
58 static struct sctp_association *__sctp_lookup_association(
59 					struct net *net,
60 					const union sctp_addr *local,
61 					const union sctp_addr *peer,
62 					struct sctp_transport **pt);
63 
64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
65 
66 
67 /* Calculate the SCTP checksum of an SCTP packet.  */
68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
69 {
70 	struct sctphdr *sh = sctp_hdr(skb);
71 	__le32 cmp = sh->checksum;
72 	__le32 val = sctp_compute_cksum(skb, 0);
73 
74 	if (val != cmp) {
75 		/* CRC failure, dump it. */
76 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
77 		return -1;
78 	}
79 	return 0;
80 }
81 
82 /*
83  * This is the routine which IP calls when receiving an SCTP packet.
84  */
85 int sctp_rcv(struct sk_buff *skb)
86 {
87 	struct sock *sk;
88 	struct sctp_association *asoc;
89 	struct sctp_endpoint *ep = NULL;
90 	struct sctp_ep_common *rcvr;
91 	struct sctp_transport *transport = NULL;
92 	struct sctp_chunk *chunk;
93 	union sctp_addr src;
94 	union sctp_addr dest;
95 	int family;
96 	struct sctp_af *af;
97 	struct net *net = dev_net(skb->dev);
98 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
99 
100 	if (skb->pkt_type != PACKET_HOST)
101 		goto discard_it;
102 
103 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
104 
105 	/* If packet is too small to contain a single chunk, let's not
106 	 * waste time on it anymore.
107 	 */
108 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
109 		       skb_transport_offset(skb))
110 		goto discard_it;
111 
112 	/* If the packet is fragmented and we need to do crc checking,
113 	 * it's better to just linearize it otherwise crc computing
114 	 * takes longer.
115 	 */
116 	if ((!is_gso && skb_linearize(skb)) ||
117 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
118 		goto discard_it;
119 
120 	/* Pull up the IP header. */
121 	__skb_pull(skb, skb_transport_offset(skb));
122 
123 	skb->csum_valid = 0; /* Previous value not applicable */
124 	if (skb_csum_unnecessary(skb))
125 		__skb_decr_checksum_unnecessary(skb);
126 	else if (!sctp_checksum_disable &&
127 		 !is_gso &&
128 		 sctp_rcv_checksum(net, skb) < 0)
129 		goto discard_it;
130 	skb->csum_valid = 1;
131 
132 	__skb_pull(skb, sizeof(struct sctphdr));
133 
134 	family = ipver2af(ip_hdr(skb)->version);
135 	af = sctp_get_af_specific(family);
136 	if (unlikely(!af))
137 		goto discard_it;
138 	SCTP_INPUT_CB(skb)->af = af;
139 
140 	/* Initialize local addresses for lookups. */
141 	af->from_skb(&src, skb, 1);
142 	af->from_skb(&dest, skb, 0);
143 
144 	/* If the packet is to or from a non-unicast address,
145 	 * silently discard the packet.
146 	 *
147 	 * This is not clearly defined in the RFC except in section
148 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
149 	 * Transmission Protocol" 2.1, "It is important to note that the
150 	 * IP address of an SCTP transport address must be a routable
151 	 * unicast address.  In other words, IP multicast addresses and
152 	 * IP broadcast addresses cannot be used in an SCTP transport
153 	 * address."
154 	 */
155 	if (!af->addr_valid(&src, NULL, skb) ||
156 	    !af->addr_valid(&dest, NULL, skb))
157 		goto discard_it;
158 
159 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
160 
161 	if (!asoc)
162 		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
163 
164 	/* Retrieve the common input handling substructure. */
165 	rcvr = asoc ? &asoc->base : &ep->base;
166 	sk = rcvr->sk;
167 
168 	/*
169 	 * If a frame arrives on an interface and the receiving socket is
170 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
171 	 */
172 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
173 		if (transport) {
174 			sctp_transport_put(transport);
175 			asoc = NULL;
176 			transport = NULL;
177 		} else {
178 			sctp_endpoint_put(ep);
179 			ep = NULL;
180 		}
181 		sk = net->sctp.ctl_sock;
182 		ep = sctp_sk(sk)->ep;
183 		sctp_endpoint_hold(ep);
184 		rcvr = &ep->base;
185 	}
186 
187 	/*
188 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
189 	 * An SCTP packet is called an "out of the blue" (OOTB)
190 	 * packet if it is correctly formed, i.e., passed the
191 	 * receiver's checksum check, but the receiver is not
192 	 * able to identify the association to which this
193 	 * packet belongs.
194 	 */
195 	if (!asoc) {
196 		if (sctp_rcv_ootb(skb)) {
197 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
198 			goto discard_release;
199 		}
200 	}
201 
202 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
203 		goto discard_release;
204 	nf_reset_ct(skb);
205 
206 	if (sk_filter(sk, skb))
207 		goto discard_release;
208 
209 	/* Create an SCTP packet structure. */
210 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
211 	if (!chunk)
212 		goto discard_release;
213 	SCTP_INPUT_CB(skb)->chunk = chunk;
214 
215 	/* Remember what endpoint is to handle this packet. */
216 	chunk->rcvr = rcvr;
217 
218 	/* Remember the SCTP header. */
219 	chunk->sctp_hdr = sctp_hdr(skb);
220 
221 	/* Set the source and destination addresses of the incoming chunk.  */
222 	sctp_init_addrs(chunk, &src, &dest);
223 
224 	/* Remember where we came from.  */
225 	chunk->transport = transport;
226 
227 	/* Acquire access to the sock lock. Note: We are safe from other
228 	 * bottom halves on this lock, but a user may be in the lock too,
229 	 * so check if it is busy.
230 	 */
231 	bh_lock_sock(sk);
232 
233 	if (sk != rcvr->sk) {
234 		/* Our cached sk is different from the rcvr->sk.  This is
235 		 * because migrate()/accept() may have moved the association
236 		 * to a new socket and released all the sockets.  So now we
237 		 * are holding a lock on the old socket while the user may
238 		 * be doing something with the new socket.  Switch our veiw
239 		 * of the current sk.
240 		 */
241 		bh_unlock_sock(sk);
242 		sk = rcvr->sk;
243 		bh_lock_sock(sk);
244 	}
245 
246 	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
247 		if (sctp_add_backlog(sk, skb)) {
248 			bh_unlock_sock(sk);
249 			sctp_chunk_free(chunk);
250 			skb = NULL; /* sctp_chunk_free already freed the skb */
251 			goto discard_release;
252 		}
253 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
254 	} else {
255 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
256 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
257 	}
258 
259 	bh_unlock_sock(sk);
260 
261 	/* Release the asoc/ep ref we took in the lookup calls. */
262 	if (transport)
263 		sctp_transport_put(transport);
264 	else
265 		sctp_endpoint_put(ep);
266 
267 	return 0;
268 
269 discard_it:
270 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
271 	kfree_skb(skb);
272 	return 0;
273 
274 discard_release:
275 	/* Release the asoc/ep ref we took in the lookup calls. */
276 	if (transport)
277 		sctp_transport_put(transport);
278 	else
279 		sctp_endpoint_put(ep);
280 
281 	goto discard_it;
282 }
283 
284 /* Process the backlog queue of the socket.  Every skb on
285  * the backlog holds a ref on an association or endpoint.
286  * We hold this ref throughout the state machine to make
287  * sure that the structure we need is still around.
288  */
289 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
290 {
291 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
292 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
293 	struct sctp_transport *t = chunk->transport;
294 	struct sctp_ep_common *rcvr = NULL;
295 	int backloged = 0;
296 
297 	rcvr = chunk->rcvr;
298 
299 	/* If the rcvr is dead then the association or endpoint
300 	 * has been deleted and we can safely drop the chunk
301 	 * and refs that we are holding.
302 	 */
303 	if (rcvr->dead) {
304 		sctp_chunk_free(chunk);
305 		goto done;
306 	}
307 
308 	if (unlikely(rcvr->sk != sk)) {
309 		/* In this case, the association moved from one socket to
310 		 * another.  We are currently sitting on the backlog of the
311 		 * old socket, so we need to move.
312 		 * However, since we are here in the process context we
313 		 * need to take make sure that the user doesn't own
314 		 * the new socket when we process the packet.
315 		 * If the new socket is user-owned, queue the chunk to the
316 		 * backlog of the new socket without dropping any refs.
317 		 * Otherwise, we can safely push the chunk on the inqueue.
318 		 */
319 
320 		sk = rcvr->sk;
321 		local_bh_disable();
322 		bh_lock_sock(sk);
323 
324 		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
325 			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
326 				sctp_chunk_free(chunk);
327 			else
328 				backloged = 1;
329 		} else
330 			sctp_inq_push(inqueue, chunk);
331 
332 		bh_unlock_sock(sk);
333 		local_bh_enable();
334 
335 		/* If the chunk was backloged again, don't drop refs */
336 		if (backloged)
337 			return 0;
338 	} else {
339 		if (!sctp_newsk_ready(sk)) {
340 			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
341 				return 0;
342 			sctp_chunk_free(chunk);
343 		} else {
344 			sctp_inq_push(inqueue, chunk);
345 		}
346 	}
347 
348 done:
349 	/* Release the refs we took in sctp_add_backlog */
350 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
351 		sctp_transport_put(t);
352 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
353 		sctp_endpoint_put(sctp_ep(rcvr));
354 	else
355 		BUG();
356 
357 	return 0;
358 }
359 
360 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
361 {
362 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
363 	struct sctp_transport *t = chunk->transport;
364 	struct sctp_ep_common *rcvr = chunk->rcvr;
365 	int ret;
366 
367 	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
368 	if (!ret) {
369 		/* Hold the assoc/ep while hanging on the backlog queue.
370 		 * This way, we know structures we need will not disappear
371 		 * from us
372 		 */
373 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
374 			sctp_transport_hold(t);
375 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
376 			sctp_endpoint_hold(sctp_ep(rcvr));
377 		else
378 			BUG();
379 	}
380 	return ret;
381 
382 }
383 
384 /* Handle icmp frag needed error. */
385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
386 			   struct sctp_transport *t, __u32 pmtu)
387 {
388 	if (!t ||
389 	    (t->pathmtu <= pmtu &&
390 	     t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu))
391 		return;
392 
393 	if (sock_owned_by_user(sk)) {
394 		atomic_set(&t->mtu_info, pmtu);
395 		asoc->pmtu_pending = 1;
396 		t->pmtu_pending = 1;
397 		return;
398 	}
399 
400 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
401 		/* We can't allow retransmitting in such case, as the
402 		 * retransmission would be sized just as before, and thus we
403 		 * would get another icmp, and retransmit again.
404 		 */
405 		return;
406 
407 	/* Update transports view of the MTU. Return if no update was needed.
408 	 * If an update wasn't needed/possible, it also doesn't make sense to
409 	 * try to retransmit now.
410 	 */
411 	if (!sctp_transport_update_pmtu(t, pmtu))
412 		return;
413 
414 	/* Update association pmtu. */
415 	sctp_assoc_sync_pmtu(asoc);
416 
417 	/* Retransmit with the new pmtu setting. */
418 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
419 }
420 
421 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
422 			struct sk_buff *skb)
423 {
424 	struct dst_entry *dst;
425 
426 	if (sock_owned_by_user(sk) || !t)
427 		return;
428 	dst = sctp_transport_dst_check(t);
429 	if (dst)
430 		dst->ops->redirect(dst, sk, skb);
431 }
432 
433 /*
434  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
435  *
436  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
437  *        or a "Protocol Unreachable" treat this message as an abort
438  *        with the T bit set.
439  *
440  * This function sends an event to the state machine, which will abort the
441  * association.
442  *
443  */
444 void sctp_icmp_proto_unreachable(struct sock *sk,
445 			   struct sctp_association *asoc,
446 			   struct sctp_transport *t)
447 {
448 	if (sock_owned_by_user(sk)) {
449 		if (timer_pending(&t->proto_unreach_timer))
450 			return;
451 		else {
452 			if (!mod_timer(&t->proto_unreach_timer,
453 						jiffies + (HZ/20)))
454 				sctp_transport_hold(t);
455 		}
456 	} else {
457 		struct net *net = sock_net(sk);
458 
459 		pr_debug("%s: unrecognized next header type "
460 			 "encountered!\n", __func__);
461 
462 		if (del_timer(&t->proto_unreach_timer))
463 			sctp_transport_put(t);
464 
465 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
466 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
467 			   asoc->state, asoc->ep, asoc, t,
468 			   GFP_ATOMIC);
469 	}
470 }
471 
472 /* Common lookup code for icmp/icmpv6 error handler. */
473 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
474 			     struct sctphdr *sctphdr,
475 			     struct sctp_association **app,
476 			     struct sctp_transport **tpp)
477 {
478 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
479 	union sctp_addr saddr;
480 	union sctp_addr daddr;
481 	struct sctp_af *af;
482 	struct sock *sk = NULL;
483 	struct sctp_association *asoc;
484 	struct sctp_transport *transport = NULL;
485 	__u32 vtag = ntohl(sctphdr->vtag);
486 
487 	*app = NULL; *tpp = NULL;
488 
489 	af = sctp_get_af_specific(family);
490 	if (unlikely(!af)) {
491 		return NULL;
492 	}
493 
494 	/* Initialize local addresses for lookups. */
495 	af->from_skb(&saddr, skb, 1);
496 	af->from_skb(&daddr, skb, 0);
497 
498 	/* Look for an association that matches the incoming ICMP error
499 	 * packet.
500 	 */
501 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
502 	if (!asoc)
503 		return NULL;
504 
505 	sk = asoc->base.sk;
506 
507 	/* RFC 4960, Appendix C. ICMP Handling
508 	 *
509 	 * ICMP6) An implementation MUST validate that the Verification Tag
510 	 * contained in the ICMP message matches the Verification Tag of
511 	 * the peer.  If the Verification Tag is not 0 and does NOT
512 	 * match, discard the ICMP message.  If it is 0 and the ICMP
513 	 * message contains enough bytes to verify that the chunk type is
514 	 * an INIT chunk and that the Initiate Tag matches the tag of the
515 	 * peer, continue with ICMP7.  If the ICMP message is too short
516 	 * or the chunk type or the Initiate Tag does not match, silently
517 	 * discard the packet.
518 	 */
519 	if (vtag == 0) {
520 		/* chunk header + first 4 octects of init header */
521 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
522 					      sizeof(struct sctphdr),
523 					      sizeof(struct sctp_chunkhdr) +
524 					      sizeof(__be32), &_chunkhdr);
525 		if (!chunkhdr ||
526 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
527 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
528 			goto out;
529 
530 	} else if (vtag != asoc->c.peer_vtag) {
531 		goto out;
532 	}
533 
534 	bh_lock_sock(sk);
535 
536 	/* If too many ICMPs get dropped on busy
537 	 * servers this needs to be solved differently.
538 	 */
539 	if (sock_owned_by_user(sk))
540 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
541 
542 	*app = asoc;
543 	*tpp = transport;
544 	return sk;
545 
546 out:
547 	sctp_transport_put(transport);
548 	return NULL;
549 }
550 
551 /* Common cleanup code for icmp/icmpv6 error handler. */
552 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
553 	__releases(&((__sk)->sk_lock.slock))
554 {
555 	bh_unlock_sock(sk);
556 	sctp_transport_put(t);
557 }
558 
559 static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb,
560 			       __u8 type, __u8 code, __u32 info)
561 {
562 	struct sctp_association *asoc = t->asoc;
563 	struct sock *sk = asoc->base.sk;
564 	int err = 0;
565 
566 	switch (type) {
567 	case ICMP_PARAMETERPROB:
568 		err = EPROTO;
569 		break;
570 	case ICMP_DEST_UNREACH:
571 		if (code > NR_ICMP_UNREACH)
572 			return;
573 		if (code == ICMP_FRAG_NEEDED) {
574 			sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info));
575 			return;
576 		}
577 		if (code == ICMP_PROT_UNREACH) {
578 			sctp_icmp_proto_unreachable(sk, asoc, t);
579 			return;
580 		}
581 		err = icmp_err_convert[code].errno;
582 		break;
583 	case ICMP_TIME_EXCEEDED:
584 		if (code == ICMP_EXC_FRAGTIME)
585 			return;
586 
587 		err = EHOSTUNREACH;
588 		break;
589 	case ICMP_REDIRECT:
590 		sctp_icmp_redirect(sk, t, skb);
591 		return;
592 	default:
593 		return;
594 	}
595 	if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) {
596 		sk->sk_err = err;
597 		sk_error_report(sk);
598 	} else {  /* Only an error on timeout */
599 		sk->sk_err_soft = err;
600 	}
601 }
602 
603 /*
604  * This routine is called by the ICMP module when it gets some
605  * sort of error condition.  If err < 0 then the socket should
606  * be closed and the error returned to the user.  If err > 0
607  * it's just the icmp type << 8 | icmp code.  After adjustment
608  * header points to the first 8 bytes of the sctp header.  We need
609  * to find the appropriate port.
610  *
611  * The locking strategy used here is very "optimistic". When
612  * someone else accesses the socket the ICMP is just dropped
613  * and for some paths there is no check at all.
614  * A more general error queue to queue errors for later handling
615  * is probably better.
616  *
617  */
618 int sctp_v4_err(struct sk_buff *skb, __u32 info)
619 {
620 	const struct iphdr *iph = (const struct iphdr *)skb->data;
621 	const int type = icmp_hdr(skb)->type;
622 	const int code = icmp_hdr(skb)->code;
623 	struct net *net = dev_net(skb->dev);
624 	struct sctp_transport *transport;
625 	struct sctp_association *asoc;
626 	__u16 saveip, savesctp;
627 	struct sock *sk;
628 
629 	/* Fix up skb to look at the embedded net header. */
630 	saveip = skb->network_header;
631 	savesctp = skb->transport_header;
632 	skb_reset_network_header(skb);
633 	skb_set_transport_header(skb, iph->ihl * 4);
634 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
635 	/* Put back, the original values. */
636 	skb->network_header = saveip;
637 	skb->transport_header = savesctp;
638 	if (!sk) {
639 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
640 		return -ENOENT;
641 	}
642 
643 	sctp_v4_err_handle(transport, skb, type, code, info);
644 	sctp_err_finish(sk, transport);
645 
646 	return 0;
647 }
648 
649 int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb)
650 {
651 	struct net *net = dev_net(skb->dev);
652 	struct sctp_association *asoc;
653 	struct sctp_transport *t;
654 	struct icmphdr *hdr;
655 	__u32 info = 0;
656 
657 	skb->transport_header += sizeof(struct udphdr);
658 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t);
659 	if (!sk) {
660 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
661 		return -ENOENT;
662 	}
663 
664 	skb->transport_header -= sizeof(struct udphdr);
665 	hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr));
666 	if (hdr->type == ICMP_REDIRECT) {
667 		/* can't be handled without outer iphdr known, leave it to udp_err */
668 		sctp_err_finish(sk, t);
669 		return 0;
670 	}
671 	if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED)
672 		info = ntohs(hdr->un.frag.mtu);
673 	sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info);
674 
675 	sctp_err_finish(sk, t);
676 	return 1;
677 }
678 
679 /*
680  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
681  *
682  * This function scans all the chunks in the OOTB packet to determine if
683  * the packet should be discarded right away.  If a response might be needed
684  * for this packet, or, if further processing is possible, the packet will
685  * be queued to a proper inqueue for the next phase of handling.
686  *
687  * Output:
688  * Return 0 - If further processing is needed.
689  * Return 1 - If the packet can be discarded right away.
690  */
691 static int sctp_rcv_ootb(struct sk_buff *skb)
692 {
693 	struct sctp_chunkhdr *ch, _ch;
694 	int ch_end, offset = 0;
695 
696 	/* Scan through all the chunks in the packet.  */
697 	do {
698 		/* Make sure we have at least the header there */
699 		if (offset + sizeof(_ch) > skb->len)
700 			break;
701 
702 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
703 
704 		/* Break out if chunk length is less then minimal. */
705 		if (!ch || ntohs(ch->length) < sizeof(_ch))
706 			break;
707 
708 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
709 		if (ch_end > skb->len)
710 			break;
711 
712 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
713 		 * receiver MUST silently discard the OOTB packet and take no
714 		 * further action.
715 		 */
716 		if (SCTP_CID_ABORT == ch->type)
717 			goto discard;
718 
719 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
720 		 * chunk, the receiver should silently discard the packet
721 		 * and take no further action.
722 		 */
723 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
724 			goto discard;
725 
726 		/* RFC 4460, 2.11.2
727 		 * This will discard packets with INIT chunk bundled as
728 		 * subsequent chunks in the packet.  When INIT is first,
729 		 * the normal INIT processing will discard the chunk.
730 		 */
731 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
732 			goto discard;
733 
734 		offset = ch_end;
735 	} while (ch_end < skb->len);
736 
737 	return 0;
738 
739 discard:
740 	return 1;
741 }
742 
743 /* Insert endpoint into the hash table.  */
744 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
745 {
746 	struct sock *sk = ep->base.sk;
747 	struct net *net = sock_net(sk);
748 	struct sctp_hashbucket *head;
749 
750 	ep->hashent = sctp_ep_hashfn(net, ep->base.bind_addr.port);
751 	head = &sctp_ep_hashtable[ep->hashent];
752 
753 	if (sk->sk_reuseport) {
754 		bool any = sctp_is_ep_boundall(sk);
755 		struct sctp_endpoint *ep2;
756 		struct list_head *list;
757 		int cnt = 0, err = 1;
758 
759 		list_for_each(list, &ep->base.bind_addr.address_list)
760 			cnt++;
761 
762 		sctp_for_each_hentry(ep2, &head->chain) {
763 			struct sock *sk2 = ep2->base.sk;
764 
765 			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
766 			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
767 			    !sk2->sk_reuseport)
768 				continue;
769 
770 			err = sctp_bind_addrs_check(sctp_sk(sk2),
771 						    sctp_sk(sk), cnt);
772 			if (!err) {
773 				err = reuseport_add_sock(sk, sk2, any);
774 				if (err)
775 					return err;
776 				break;
777 			} else if (err < 0) {
778 				return err;
779 			}
780 		}
781 
782 		if (err) {
783 			err = reuseport_alloc(sk, any);
784 			if (err)
785 				return err;
786 		}
787 	}
788 
789 	write_lock(&head->lock);
790 	hlist_add_head(&ep->node, &head->chain);
791 	write_unlock(&head->lock);
792 	return 0;
793 }
794 
795 /* Add an endpoint to the hash. Local BH-safe. */
796 int sctp_hash_endpoint(struct sctp_endpoint *ep)
797 {
798 	int err;
799 
800 	local_bh_disable();
801 	err = __sctp_hash_endpoint(ep);
802 	local_bh_enable();
803 
804 	return err;
805 }
806 
807 /* Remove endpoint from the hash table.  */
808 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
809 {
810 	struct sock *sk = ep->base.sk;
811 	struct sctp_hashbucket *head;
812 
813 	ep->hashent = sctp_ep_hashfn(sock_net(sk), ep->base.bind_addr.port);
814 
815 	head = &sctp_ep_hashtable[ep->hashent];
816 
817 	if (rcu_access_pointer(sk->sk_reuseport_cb))
818 		reuseport_detach_sock(sk);
819 
820 	write_lock(&head->lock);
821 	hlist_del_init(&ep->node);
822 	write_unlock(&head->lock);
823 }
824 
825 /* Remove endpoint from the hash.  Local BH-safe. */
826 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
827 {
828 	local_bh_disable();
829 	__sctp_unhash_endpoint(ep);
830 	local_bh_enable();
831 }
832 
833 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
834 				const union sctp_addr *paddr, __u32 seed)
835 {
836 	__u32 addr;
837 
838 	if (paddr->sa.sa_family == AF_INET6)
839 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
840 	else
841 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
842 
843 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
844 			     (__force __u32)lport, net_hash_mix(net), seed);
845 }
846 
847 /* Look up an endpoint. */
848 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
849 					struct net *net, struct sk_buff *skb,
850 					const union sctp_addr *laddr,
851 					const union sctp_addr *paddr)
852 {
853 	struct sctp_hashbucket *head;
854 	struct sctp_endpoint *ep;
855 	struct sock *sk;
856 	__be16 lport;
857 	int hash;
858 
859 	lport = laddr->v4.sin_port;
860 	hash = sctp_ep_hashfn(net, ntohs(lport));
861 	head = &sctp_ep_hashtable[hash];
862 	read_lock(&head->lock);
863 	sctp_for_each_hentry(ep, &head->chain) {
864 		if (sctp_endpoint_is_match(ep, net, laddr))
865 			goto hit;
866 	}
867 
868 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
869 
870 hit:
871 	sk = ep->base.sk;
872 	if (sk->sk_reuseport) {
873 		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
874 
875 		sk = reuseport_select_sock(sk, phash, skb,
876 					   sizeof(struct sctphdr));
877 		if (sk)
878 			ep = sctp_sk(sk)->ep;
879 	}
880 	sctp_endpoint_hold(ep);
881 	read_unlock(&head->lock);
882 	return ep;
883 }
884 
885 /* rhashtable for transport */
886 struct sctp_hash_cmp_arg {
887 	const union sctp_addr	*paddr;
888 	const struct net	*net;
889 	__be16			lport;
890 };
891 
892 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
893 				const void *ptr)
894 {
895 	struct sctp_transport *t = (struct sctp_transport *)ptr;
896 	const struct sctp_hash_cmp_arg *x = arg->key;
897 	int err = 1;
898 
899 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
900 		return err;
901 	if (!sctp_transport_hold(t))
902 		return err;
903 
904 	if (!net_eq(t->asoc->base.net, x->net))
905 		goto out;
906 	if (x->lport != htons(t->asoc->base.bind_addr.port))
907 		goto out;
908 
909 	err = 0;
910 out:
911 	sctp_transport_put(t);
912 	return err;
913 }
914 
915 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
916 {
917 	const struct sctp_transport *t = data;
918 
919 	return sctp_hashfn(t->asoc->base.net,
920 			   htons(t->asoc->base.bind_addr.port),
921 			   &t->ipaddr, seed);
922 }
923 
924 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
925 {
926 	const struct sctp_hash_cmp_arg *x = data;
927 
928 	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
929 }
930 
931 static const struct rhashtable_params sctp_hash_params = {
932 	.head_offset		= offsetof(struct sctp_transport, node),
933 	.hashfn			= sctp_hash_key,
934 	.obj_hashfn		= sctp_hash_obj,
935 	.obj_cmpfn		= sctp_hash_cmp,
936 	.automatic_shrinking	= true,
937 };
938 
939 int sctp_transport_hashtable_init(void)
940 {
941 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
942 }
943 
944 void sctp_transport_hashtable_destroy(void)
945 {
946 	rhltable_destroy(&sctp_transport_hashtable);
947 }
948 
949 int sctp_hash_transport(struct sctp_transport *t)
950 {
951 	struct sctp_transport *transport;
952 	struct rhlist_head *tmp, *list;
953 	struct sctp_hash_cmp_arg arg;
954 	int err;
955 
956 	if (t->asoc->temp)
957 		return 0;
958 
959 	arg.net   = t->asoc->base.net;
960 	arg.paddr = &t->ipaddr;
961 	arg.lport = htons(t->asoc->base.bind_addr.port);
962 
963 	rcu_read_lock();
964 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
965 			       sctp_hash_params);
966 
967 	rhl_for_each_entry_rcu(transport, tmp, list, node)
968 		if (transport->asoc->ep == t->asoc->ep) {
969 			rcu_read_unlock();
970 			return -EEXIST;
971 		}
972 	rcu_read_unlock();
973 
974 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
975 				  &t->node, sctp_hash_params);
976 	if (err)
977 		pr_err_once("insert transport fail, errno %d\n", err);
978 
979 	return err;
980 }
981 
982 void sctp_unhash_transport(struct sctp_transport *t)
983 {
984 	if (t->asoc->temp)
985 		return;
986 
987 	rhltable_remove(&sctp_transport_hashtable, &t->node,
988 			sctp_hash_params);
989 }
990 
991 /* return a transport with holding it */
992 struct sctp_transport *sctp_addrs_lookup_transport(
993 				struct net *net,
994 				const union sctp_addr *laddr,
995 				const union sctp_addr *paddr)
996 {
997 	struct rhlist_head *tmp, *list;
998 	struct sctp_transport *t;
999 	struct sctp_hash_cmp_arg arg = {
1000 		.paddr = paddr,
1001 		.net   = net,
1002 		.lport = laddr->v4.sin_port,
1003 	};
1004 
1005 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1006 			       sctp_hash_params);
1007 
1008 	rhl_for_each_entry_rcu(t, tmp, list, node) {
1009 		if (!sctp_transport_hold(t))
1010 			continue;
1011 
1012 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
1013 					 laddr, sctp_sk(t->asoc->base.sk)))
1014 			return t;
1015 		sctp_transport_put(t);
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 /* return a transport without holding it, as it's only used under sock lock */
1022 struct sctp_transport *sctp_epaddr_lookup_transport(
1023 				const struct sctp_endpoint *ep,
1024 				const union sctp_addr *paddr)
1025 {
1026 	struct rhlist_head *tmp, *list;
1027 	struct sctp_transport *t;
1028 	struct sctp_hash_cmp_arg arg = {
1029 		.paddr = paddr,
1030 		.net   = ep->base.net,
1031 		.lport = htons(ep->base.bind_addr.port),
1032 	};
1033 
1034 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1035 			       sctp_hash_params);
1036 
1037 	rhl_for_each_entry_rcu(t, tmp, list, node)
1038 		if (ep == t->asoc->ep)
1039 			return t;
1040 
1041 	return NULL;
1042 }
1043 
1044 /* Look up an association. */
1045 static struct sctp_association *__sctp_lookup_association(
1046 					struct net *net,
1047 					const union sctp_addr *local,
1048 					const union sctp_addr *peer,
1049 					struct sctp_transport **pt)
1050 {
1051 	struct sctp_transport *t;
1052 	struct sctp_association *asoc = NULL;
1053 
1054 	t = sctp_addrs_lookup_transport(net, local, peer);
1055 	if (!t)
1056 		goto out;
1057 
1058 	asoc = t->asoc;
1059 	*pt = t;
1060 
1061 out:
1062 	return asoc;
1063 }
1064 
1065 /* Look up an association. protected by RCU read lock */
1066 static
1067 struct sctp_association *sctp_lookup_association(struct net *net,
1068 						 const union sctp_addr *laddr,
1069 						 const union sctp_addr *paddr,
1070 						 struct sctp_transport **transportp)
1071 {
1072 	struct sctp_association *asoc;
1073 
1074 	rcu_read_lock();
1075 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1076 	rcu_read_unlock();
1077 
1078 	return asoc;
1079 }
1080 
1081 /* Is there an association matching the given local and peer addresses? */
1082 bool sctp_has_association(struct net *net,
1083 			  const union sctp_addr *laddr,
1084 			  const union sctp_addr *paddr)
1085 {
1086 	struct sctp_transport *transport;
1087 
1088 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1089 		sctp_transport_put(transport);
1090 		return true;
1091 	}
1092 
1093 	return false;
1094 }
1095 
1096 /*
1097  * SCTP Implementors Guide, 2.18 Handling of address
1098  * parameters within the INIT or INIT-ACK.
1099  *
1100  * D) When searching for a matching TCB upon reception of an INIT
1101  *    or INIT-ACK chunk the receiver SHOULD use not only the
1102  *    source address of the packet (containing the INIT or
1103  *    INIT-ACK) but the receiver SHOULD also use all valid
1104  *    address parameters contained within the chunk.
1105  *
1106  * 2.18.3 Solution description
1107  *
1108  * This new text clearly specifies to an implementor the need
1109  * to look within the INIT or INIT-ACK. Any implementation that
1110  * does not do this, may not be able to establish associations
1111  * in certain circumstances.
1112  *
1113  */
1114 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1115 	struct sk_buff *skb,
1116 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1117 {
1118 	struct sctp_association *asoc;
1119 	union sctp_addr addr;
1120 	union sctp_addr *paddr = &addr;
1121 	struct sctphdr *sh = sctp_hdr(skb);
1122 	union sctp_params params;
1123 	struct sctp_init_chunk *init;
1124 	struct sctp_af *af;
1125 
1126 	/*
1127 	 * This code will NOT touch anything inside the chunk--it is
1128 	 * strictly READ-ONLY.
1129 	 *
1130 	 * RFC 2960 3  SCTP packet Format
1131 	 *
1132 	 * Multiple chunks can be bundled into one SCTP packet up to
1133 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1134 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1135 	 * other chunk in a packet.  See Section 6.10 for more details
1136 	 * on chunk bundling.
1137 	 */
1138 
1139 	/* Find the start of the TLVs and the end of the chunk.  This is
1140 	 * the region we search for address parameters.
1141 	 */
1142 	init = (struct sctp_init_chunk *)skb->data;
1143 
1144 	/* Walk the parameters looking for embedded addresses. */
1145 	sctp_walk_params(params, init, init_hdr.params) {
1146 
1147 		/* Note: Ignoring hostname addresses. */
1148 		af = sctp_get_af_specific(param_type2af(params.p->type));
1149 		if (!af)
1150 			continue;
1151 
1152 		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
1153 			continue;
1154 
1155 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1156 		if (asoc)
1157 			return asoc;
1158 	}
1159 
1160 	return NULL;
1161 }
1162 
1163 /* ADD-IP, Section 5.2
1164  * When an endpoint receives an ASCONF Chunk from the remote peer
1165  * special procedures may be needed to identify the association the
1166  * ASCONF Chunk is associated with. To properly find the association
1167  * the following procedures SHOULD be followed:
1168  *
1169  * D2) If the association is not found, use the address found in the
1170  * Address Parameter TLV combined with the port number found in the
1171  * SCTP common header. If found proceed to rule D4.
1172  *
1173  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1174  * address found in the ASCONF Address Parameter TLV of each of the
1175  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1176  */
1177 static struct sctp_association *__sctp_rcv_asconf_lookup(
1178 					struct net *net,
1179 					struct sctp_chunkhdr *ch,
1180 					const union sctp_addr *laddr,
1181 					__be16 peer_port,
1182 					struct sctp_transport **transportp)
1183 {
1184 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1185 	struct sctp_af *af;
1186 	union sctp_addr_param *param;
1187 	union sctp_addr paddr;
1188 
1189 	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
1190 		return NULL;
1191 
1192 	/* Skip over the ADDIP header and find the Address parameter */
1193 	param = (union sctp_addr_param *)(asconf + 1);
1194 
1195 	af = sctp_get_af_specific(param_type2af(param->p.type));
1196 	if (unlikely(!af))
1197 		return NULL;
1198 
1199 	if (!af->from_addr_param(&paddr, param, peer_port, 0))
1200 		return NULL;
1201 
1202 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1203 }
1204 
1205 
1206 /* SCTP-AUTH, Section 6.3:
1207 *    If the receiver does not find a STCB for a packet containing an AUTH
1208 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1209 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1210 *    association.
1211 *
1212 * This means that any chunks that can help us identify the association need
1213 * to be looked at to find this association.
1214 */
1215 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1216 				      struct sk_buff *skb,
1217 				      const union sctp_addr *laddr,
1218 				      struct sctp_transport **transportp)
1219 {
1220 	struct sctp_association *asoc = NULL;
1221 	struct sctp_chunkhdr *ch;
1222 	int have_auth = 0;
1223 	unsigned int chunk_num = 1;
1224 	__u8 *ch_end;
1225 
1226 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1227 	 * to help us find the association.
1228 	 */
1229 	ch = (struct sctp_chunkhdr *)skb->data;
1230 	do {
1231 		/* Break out if chunk length is less then minimal. */
1232 		if (ntohs(ch->length) < sizeof(*ch))
1233 			break;
1234 
1235 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1236 		if (ch_end > skb_tail_pointer(skb))
1237 			break;
1238 
1239 		switch (ch->type) {
1240 		case SCTP_CID_AUTH:
1241 			have_auth = chunk_num;
1242 			break;
1243 
1244 		case SCTP_CID_COOKIE_ECHO:
1245 			/* If a packet arrives containing an AUTH chunk as
1246 			 * a first chunk, a COOKIE-ECHO chunk as the second
1247 			 * chunk, and possibly more chunks after them, and
1248 			 * the receiver does not have an STCB for that
1249 			 * packet, then authentication is based on
1250 			 * the contents of the COOKIE- ECHO chunk.
1251 			 */
1252 			if (have_auth == 1 && chunk_num == 2)
1253 				return NULL;
1254 			break;
1255 
1256 		case SCTP_CID_ASCONF:
1257 			if (have_auth || net->sctp.addip_noauth)
1258 				asoc = __sctp_rcv_asconf_lookup(
1259 						net, ch, laddr,
1260 						sctp_hdr(skb)->source,
1261 						transportp);
1262 			break;
1263 		default:
1264 			break;
1265 		}
1266 
1267 		if (asoc)
1268 			break;
1269 
1270 		ch = (struct sctp_chunkhdr *)ch_end;
1271 		chunk_num++;
1272 	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
1273 
1274 	return asoc;
1275 }
1276 
1277 /*
1278  * There are circumstances when we need to look inside the SCTP packet
1279  * for information to help us find the association.   Examples
1280  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1281  * chunks.
1282  */
1283 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1284 				      struct sk_buff *skb,
1285 				      const union sctp_addr *laddr,
1286 				      struct sctp_transport **transportp)
1287 {
1288 	struct sctp_chunkhdr *ch;
1289 
1290 	/* We do not allow GSO frames here as we need to linearize and
1291 	 * then cannot guarantee frame boundaries. This shouldn't be an
1292 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1293 	 * those cannot be on GSO-style anyway.
1294 	 */
1295 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1296 		return NULL;
1297 
1298 	ch = (struct sctp_chunkhdr *)skb->data;
1299 
1300 	/* The code below will attempt to walk the chunk and extract
1301 	 * parameter information.  Before we do that, we need to verify
1302 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1303 	 * walk off the end.
1304 	 */
1305 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1306 		return NULL;
1307 
1308 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1309 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1310 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1311 
1312 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1313 }
1314 
1315 /* Lookup an association for an inbound skb. */
1316 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1317 				      struct sk_buff *skb,
1318 				      const union sctp_addr *paddr,
1319 				      const union sctp_addr *laddr,
1320 				      struct sctp_transport **transportp)
1321 {
1322 	struct sctp_association *asoc;
1323 
1324 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1325 	if (asoc)
1326 		goto out;
1327 
1328 	/* Further lookup for INIT/INIT-ACK packets.
1329 	 * SCTP Implementors Guide, 2.18 Handling of address
1330 	 * parameters within the INIT or INIT-ACK.
1331 	 */
1332 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1333 	if (asoc)
1334 		goto out;
1335 
1336 	if (paddr->sa.sa_family == AF_INET)
1337 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1338 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1339 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1340 	else
1341 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1342 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1343 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1344 
1345 out:
1346 	return asoc;
1347 }
1348