xref: /linux/net/sctp/input.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <linux/slab.h>
57 #include <net/ip.h>
58 #include <net/icmp.h>
59 #include <net/snmp.h>
60 #include <net/sock.h>
61 #include <net/xfrm.h>
62 #include <net/sctp/sctp.h>
63 #include <net/sctp/sm.h>
64 #include <net/sctp/checksum.h>
65 #include <net/net_namespace.h>
66 
67 /* Forward declarations for internal helpers. */
68 static int sctp_rcv_ootb(struct sk_buff *);
69 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
70 				      const union sctp_addr *laddr,
71 				      const union sctp_addr *paddr,
72 				      struct sctp_transport **transportp);
73 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
74 static struct sctp_association *__sctp_lookup_association(
75 					const union sctp_addr *local,
76 					const union sctp_addr *peer,
77 					struct sctp_transport **pt);
78 
79 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
80 
81 
82 /* Calculate the SCTP checksum of an SCTP packet.  */
83 static inline int sctp_rcv_checksum(struct sk_buff *skb)
84 {
85 	struct sctphdr *sh = sctp_hdr(skb);
86 	__le32 cmp = sh->checksum;
87 	struct sk_buff *list;
88 	__le32 val;
89 	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90 
91 	skb_walk_frags(skb, list)
92 		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
93 					tmp);
94 
95 	val = sctp_end_cksum(tmp);
96 
97 	if (val != cmp) {
98 		/* CRC failure, dump it. */
99 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
100 		return -1;
101 	}
102 	return 0;
103 }
104 
105 struct sctp_input_cb {
106 	union {
107 		struct inet_skb_parm	h4;
108 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
109 		struct inet6_skb_parm	h6;
110 #endif
111 	} header;
112 	struct sctp_chunk *chunk;
113 };
114 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
115 
116 /*
117  * This is the routine which IP calls when receiving an SCTP packet.
118  */
119 int sctp_rcv(struct sk_buff *skb)
120 {
121 	struct sock *sk;
122 	struct sctp_association *asoc;
123 	struct sctp_endpoint *ep = NULL;
124 	struct sctp_ep_common *rcvr;
125 	struct sctp_transport *transport = NULL;
126 	struct sctp_chunk *chunk;
127 	struct sctphdr *sh;
128 	union sctp_addr src;
129 	union sctp_addr dest;
130 	int family;
131 	struct sctp_af *af;
132 
133 	if (skb->pkt_type!=PACKET_HOST)
134 		goto discard_it;
135 
136 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137 
138 	if (skb_linearize(skb))
139 		goto discard_it;
140 
141 	sh = sctp_hdr(skb);
142 
143 	/* Pull up the IP and SCTP headers. */
144 	__skb_pull(skb, skb_transport_offset(skb));
145 	if (skb->len < sizeof(struct sctphdr))
146 		goto discard_it;
147 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
148 		  sctp_rcv_checksum(skb) < 0)
149 		goto discard_it;
150 
151 	skb_pull(skb, sizeof(struct sctphdr));
152 
153 	/* Make sure we at least have chunk headers worth of data left. */
154 	if (skb->len < sizeof(struct sctp_chunkhdr))
155 		goto discard_it;
156 
157 	family = ipver2af(ip_hdr(skb)->version);
158 	af = sctp_get_af_specific(family);
159 	if (unlikely(!af))
160 		goto discard_it;
161 
162 	/* Initialize local addresses for lookups. */
163 	af->from_skb(&src, skb, 1);
164 	af->from_skb(&dest, skb, 0);
165 
166 	/* If the packet is to or from a non-unicast address,
167 	 * silently discard the packet.
168 	 *
169 	 * This is not clearly defined in the RFC except in section
170 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
171 	 * Transmission Protocol" 2.1, "It is important to note that the
172 	 * IP address of an SCTP transport address must be a routable
173 	 * unicast address.  In other words, IP multicast addresses and
174 	 * IP broadcast addresses cannot be used in an SCTP transport
175 	 * address."
176 	 */
177 	if (!af->addr_valid(&src, NULL, skb) ||
178 	    !af->addr_valid(&dest, NULL, skb))
179 		goto discard_it;
180 
181 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
182 
183 	if (!asoc)
184 		ep = __sctp_rcv_lookup_endpoint(&dest);
185 
186 	/* Retrieve the common input handling substructure. */
187 	rcvr = asoc ? &asoc->base : &ep->base;
188 	sk = rcvr->sk;
189 
190 	/*
191 	 * If a frame arrives on an interface and the receiving socket is
192 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
193 	 */
194 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
195 	{
196 		if (asoc) {
197 			sctp_association_put(asoc);
198 			asoc = NULL;
199 		} else {
200 			sctp_endpoint_put(ep);
201 			ep = NULL;
202 		}
203 		sk = sctp_get_ctl_sock();
204 		ep = sctp_sk(sk)->ep;
205 		sctp_endpoint_hold(ep);
206 		rcvr = &ep->base;
207 	}
208 
209 	/*
210 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
211 	 * An SCTP packet is called an "out of the blue" (OOTB)
212 	 * packet if it is correctly formed, i.e., passed the
213 	 * receiver's checksum check, but the receiver is not
214 	 * able to identify the association to which this
215 	 * packet belongs.
216 	 */
217 	if (!asoc) {
218 		if (sctp_rcv_ootb(skb)) {
219 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
220 			goto discard_release;
221 		}
222 	}
223 
224 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
225 		goto discard_release;
226 	nf_reset(skb);
227 
228 	if (sk_filter(sk, skb))
229 		goto discard_release;
230 
231 	/* Create an SCTP packet structure. */
232 	chunk = sctp_chunkify(skb, asoc, sk);
233 	if (!chunk)
234 		goto discard_release;
235 	SCTP_INPUT_CB(skb)->chunk = chunk;
236 
237 	/* Remember what endpoint is to handle this packet. */
238 	chunk->rcvr = rcvr;
239 
240 	/* Remember the SCTP header. */
241 	chunk->sctp_hdr = sh;
242 
243 	/* Set the source and destination addresses of the incoming chunk.  */
244 	sctp_init_addrs(chunk, &src, &dest);
245 
246 	/* Remember where we came from.  */
247 	chunk->transport = transport;
248 
249 	/* Acquire access to the sock lock. Note: We are safe from other
250 	 * bottom halves on this lock, but a user may be in the lock too,
251 	 * so check if it is busy.
252 	 */
253 	sctp_bh_lock_sock(sk);
254 
255 	if (sk != rcvr->sk) {
256 		/* Our cached sk is different from the rcvr->sk.  This is
257 		 * because migrate()/accept() may have moved the association
258 		 * to a new socket and released all the sockets.  So now we
259 		 * are holding a lock on the old socket while the user may
260 		 * be doing something with the new socket.  Switch our veiw
261 		 * of the current sk.
262 		 */
263 		sctp_bh_unlock_sock(sk);
264 		sk = rcvr->sk;
265 		sctp_bh_lock_sock(sk);
266 	}
267 
268 	if (sock_owned_by_user(sk)) {
269 		if (sctp_add_backlog(sk, skb)) {
270 			sctp_bh_unlock_sock(sk);
271 			sctp_chunk_free(chunk);
272 			skb = NULL; /* sctp_chunk_free already freed the skb */
273 			goto discard_release;
274 		}
275 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
276 	} else {
277 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
278 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
279 	}
280 
281 	sctp_bh_unlock_sock(sk);
282 
283 	/* Release the asoc/ep ref we took in the lookup calls. */
284 	if (asoc)
285 		sctp_association_put(asoc);
286 	else
287 		sctp_endpoint_put(ep);
288 
289 	return 0;
290 
291 discard_it:
292 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
293 	kfree_skb(skb);
294 	return 0;
295 
296 discard_release:
297 	/* Release the asoc/ep ref we took in the lookup calls. */
298 	if (asoc)
299 		sctp_association_put(asoc);
300 	else
301 		sctp_endpoint_put(ep);
302 
303 	goto discard_it;
304 }
305 
306 /* Process the backlog queue of the socket.  Every skb on
307  * the backlog holds a ref on an association or endpoint.
308  * We hold this ref throughout the state machine to make
309  * sure that the structure we need is still around.
310  */
311 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
312 {
313 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
314 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
315 	struct sctp_ep_common *rcvr = NULL;
316 	int backloged = 0;
317 
318 	rcvr = chunk->rcvr;
319 
320 	/* If the rcvr is dead then the association or endpoint
321 	 * has been deleted and we can safely drop the chunk
322 	 * and refs that we are holding.
323 	 */
324 	if (rcvr->dead) {
325 		sctp_chunk_free(chunk);
326 		goto done;
327 	}
328 
329 	if (unlikely(rcvr->sk != sk)) {
330 		/* In this case, the association moved from one socket to
331 		 * another.  We are currently sitting on the backlog of the
332 		 * old socket, so we need to move.
333 		 * However, since we are here in the process context we
334 		 * need to take make sure that the user doesn't own
335 		 * the new socket when we process the packet.
336 		 * If the new socket is user-owned, queue the chunk to the
337 		 * backlog of the new socket without dropping any refs.
338 		 * Otherwise, we can safely push the chunk on the inqueue.
339 		 */
340 
341 		sk = rcvr->sk;
342 		sctp_bh_lock_sock(sk);
343 
344 		if (sock_owned_by_user(sk)) {
345 			if (sk_add_backlog(sk, skb))
346 				sctp_chunk_free(chunk);
347 			else
348 				backloged = 1;
349 		} else
350 			sctp_inq_push(inqueue, chunk);
351 
352 		sctp_bh_unlock_sock(sk);
353 
354 		/* If the chunk was backloged again, don't drop refs */
355 		if (backloged)
356 			return 0;
357 	} else {
358 		sctp_inq_push(inqueue, chunk);
359 	}
360 
361 done:
362 	/* Release the refs we took in sctp_add_backlog */
363 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
364 		sctp_association_put(sctp_assoc(rcvr));
365 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
366 		sctp_endpoint_put(sctp_ep(rcvr));
367 	else
368 		BUG();
369 
370 	return 0;
371 }
372 
373 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
374 {
375 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
376 	struct sctp_ep_common *rcvr = chunk->rcvr;
377 	int ret;
378 
379 	ret = sk_add_backlog(sk, skb);
380 	if (!ret) {
381 		/* Hold the assoc/ep while hanging on the backlog queue.
382 		 * This way, we know structures we need will not disappear
383 		 * from us
384 		 */
385 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
386 			sctp_association_hold(sctp_assoc(rcvr));
387 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
388 			sctp_endpoint_hold(sctp_ep(rcvr));
389 		else
390 			BUG();
391 	}
392 	return ret;
393 
394 }
395 
396 /* Handle icmp frag needed error. */
397 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
398 			   struct sctp_transport *t, __u32 pmtu)
399 {
400 	if (!t || (t->pathmtu <= pmtu))
401 		return;
402 
403 	if (sock_owned_by_user(sk)) {
404 		asoc->pmtu_pending = 1;
405 		t->pmtu_pending = 1;
406 		return;
407 	}
408 
409 	if (t->param_flags & SPP_PMTUD_ENABLE) {
410 		/* Update transports view of the MTU */
411 		sctp_transport_update_pmtu(t, pmtu);
412 
413 		/* Update association pmtu. */
414 		sctp_assoc_sync_pmtu(asoc);
415 	}
416 
417 	/* Retransmit with the new pmtu setting.
418 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
419 	 * Needed will never be sent, but if a message was sent before
420 	 * PMTU discovery was disabled that was larger than the PMTU, it
421 	 * would not be fragmented, so it must be re-transmitted fragmented.
422 	 */
423 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
424 }
425 
426 /*
427  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428  *
429  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430  *        or a "Protocol Unreachable" treat this message as an abort
431  *        with the T bit set.
432  *
433  * This function sends an event to the state machine, which will abort the
434  * association.
435  *
436  */
437 void sctp_icmp_proto_unreachable(struct sock *sk,
438 			   struct sctp_association *asoc,
439 			   struct sctp_transport *t)
440 {
441 	SCTP_DEBUG_PRINTK("%s\n",  __func__);
442 
443 	sctp_do_sm(SCTP_EVENT_T_OTHER,
444 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
445 		   asoc->state, asoc->ep, asoc, t,
446 		   GFP_ATOMIC);
447 
448 }
449 
450 /* Common lookup code for icmp/icmpv6 error handler. */
451 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
452 			     struct sctphdr *sctphdr,
453 			     struct sctp_association **app,
454 			     struct sctp_transport **tpp)
455 {
456 	union sctp_addr saddr;
457 	union sctp_addr daddr;
458 	struct sctp_af *af;
459 	struct sock *sk = NULL;
460 	struct sctp_association *asoc;
461 	struct sctp_transport *transport = NULL;
462 	struct sctp_init_chunk *chunkhdr;
463 	__u32 vtag = ntohl(sctphdr->vtag);
464 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
465 
466 	*app = NULL; *tpp = NULL;
467 
468 	af = sctp_get_af_specific(family);
469 	if (unlikely(!af)) {
470 		return NULL;
471 	}
472 
473 	/* Initialize local addresses for lookups. */
474 	af->from_skb(&saddr, skb, 1);
475 	af->from_skb(&daddr, skb, 0);
476 
477 	/* Look for an association that matches the incoming ICMP error
478 	 * packet.
479 	 */
480 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
481 	if (!asoc)
482 		return NULL;
483 
484 	sk = asoc->base.sk;
485 
486 	/* RFC 4960, Appendix C. ICMP Handling
487 	 *
488 	 * ICMP6) An implementation MUST validate that the Verification Tag
489 	 * contained in the ICMP message matches the Verification Tag of
490 	 * the peer.  If the Verification Tag is not 0 and does NOT
491 	 * match, discard the ICMP message.  If it is 0 and the ICMP
492 	 * message contains enough bytes to verify that the chunk type is
493 	 * an INIT chunk and that the Initiate Tag matches the tag of the
494 	 * peer, continue with ICMP7.  If the ICMP message is too short
495 	 * or the chunk type or the Initiate Tag does not match, silently
496 	 * discard the packet.
497 	 */
498 	if (vtag == 0) {
499 		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
500 				+ sizeof(struct sctphdr));
501 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
502 			  + sizeof(__be32) ||
503 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
504 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
505 			goto out;
506 		}
507 	} else if (vtag != asoc->c.peer_vtag) {
508 		goto out;
509 	}
510 
511 	sctp_bh_lock_sock(sk);
512 
513 	/* If too many ICMPs get dropped on busy
514 	 * servers this needs to be solved differently.
515 	 */
516 	if (sock_owned_by_user(sk))
517 		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
518 
519 	*app = asoc;
520 	*tpp = transport;
521 	return sk;
522 
523 out:
524 	if (asoc)
525 		sctp_association_put(asoc);
526 	return NULL;
527 }
528 
529 /* Common cleanup code for icmp/icmpv6 error handler. */
530 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
531 {
532 	sctp_bh_unlock_sock(sk);
533 	if (asoc)
534 		sctp_association_put(asoc);
535 }
536 
537 /*
538  * This routine is called by the ICMP module when it gets some
539  * sort of error condition.  If err < 0 then the socket should
540  * be closed and the error returned to the user.  If err > 0
541  * it's just the icmp type << 8 | icmp code.  After adjustment
542  * header points to the first 8 bytes of the sctp header.  We need
543  * to find the appropriate port.
544  *
545  * The locking strategy used here is very "optimistic". When
546  * someone else accesses the socket the ICMP is just dropped
547  * and for some paths there is no check at all.
548  * A more general error queue to queue errors for later handling
549  * is probably better.
550  *
551  */
552 void sctp_v4_err(struct sk_buff *skb, __u32 info)
553 {
554 	struct iphdr *iph = (struct iphdr *)skb->data;
555 	const int ihlen = iph->ihl * 4;
556 	const int type = icmp_hdr(skb)->type;
557 	const int code = icmp_hdr(skb)->code;
558 	struct sock *sk;
559 	struct sctp_association *asoc = NULL;
560 	struct sctp_transport *transport;
561 	struct inet_sock *inet;
562 	sk_buff_data_t saveip, savesctp;
563 	int err;
564 
565 	if (skb->len < ihlen + 8) {
566 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
567 		return;
568 	}
569 
570 	/* Fix up skb to look at the embedded net header. */
571 	saveip = skb->network_header;
572 	savesctp = skb->transport_header;
573 	skb_reset_network_header(skb);
574 	skb_set_transport_header(skb, ihlen);
575 	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
576 	/* Put back, the original values. */
577 	skb->network_header = saveip;
578 	skb->transport_header = savesctp;
579 	if (!sk) {
580 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
581 		return;
582 	}
583 	/* Warning:  The sock lock is held.  Remember to call
584 	 * sctp_err_finish!
585 	 */
586 
587 	switch (type) {
588 	case ICMP_PARAMETERPROB:
589 		err = EPROTO;
590 		break;
591 	case ICMP_DEST_UNREACH:
592 		if (code > NR_ICMP_UNREACH)
593 			goto out_unlock;
594 
595 		/* PMTU discovery (RFC1191) */
596 		if (ICMP_FRAG_NEEDED == code) {
597 			sctp_icmp_frag_needed(sk, asoc, transport, info);
598 			goto out_unlock;
599 		}
600 		else {
601 			if (ICMP_PROT_UNREACH == code) {
602 				sctp_icmp_proto_unreachable(sk, asoc,
603 							    transport);
604 				goto out_unlock;
605 			}
606 		}
607 		err = icmp_err_convert[code].errno;
608 		break;
609 	case ICMP_TIME_EXCEEDED:
610 		/* Ignore any time exceeded errors due to fragment reassembly
611 		 * timeouts.
612 		 */
613 		if (ICMP_EXC_FRAGTIME == code)
614 			goto out_unlock;
615 
616 		err = EHOSTUNREACH;
617 		break;
618 	default:
619 		goto out_unlock;
620 	}
621 
622 	inet = inet_sk(sk);
623 	if (!sock_owned_by_user(sk) && inet->recverr) {
624 		sk->sk_err = err;
625 		sk->sk_error_report(sk);
626 	} else {  /* Only an error on timeout */
627 		sk->sk_err_soft = err;
628 	}
629 
630 out_unlock:
631 	sctp_err_finish(sk, asoc);
632 }
633 
634 /*
635  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
636  *
637  * This function scans all the chunks in the OOTB packet to determine if
638  * the packet should be discarded right away.  If a response might be needed
639  * for this packet, or, if further processing is possible, the packet will
640  * be queued to a proper inqueue for the next phase of handling.
641  *
642  * Output:
643  * Return 0 - If further processing is needed.
644  * Return 1 - If the packet can be discarded right away.
645  */
646 static int sctp_rcv_ootb(struct sk_buff *skb)
647 {
648 	sctp_chunkhdr_t *ch;
649 	__u8 *ch_end;
650 	sctp_errhdr_t *err;
651 
652 	ch = (sctp_chunkhdr_t *) skb->data;
653 
654 	/* Scan through all the chunks in the packet.  */
655 	do {
656 		/* Break out if chunk length is less then minimal. */
657 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
658 			break;
659 
660 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
661 		if (ch_end > skb_tail_pointer(skb))
662 			break;
663 
664 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
665 		 * receiver MUST silently discard the OOTB packet and take no
666 		 * further action.
667 		 */
668 		if (SCTP_CID_ABORT == ch->type)
669 			goto discard;
670 
671 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
672 		 * chunk, the receiver should silently discard the packet
673 		 * and take no further action.
674 		 */
675 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
676 			goto discard;
677 
678 		/* RFC 4460, 2.11.2
679 		 * This will discard packets with INIT chunk bundled as
680 		 * subsequent chunks in the packet.  When INIT is first,
681 		 * the normal INIT processing will discard the chunk.
682 		 */
683 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
684 			goto discard;
685 
686 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
687 		 * or a COOKIE ACK the SCTP Packet should be silently
688 		 * discarded.
689 		 */
690 		if (SCTP_CID_COOKIE_ACK == ch->type)
691 			goto discard;
692 
693 		if (SCTP_CID_ERROR == ch->type) {
694 			sctp_walk_errors(err, ch) {
695 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
696 					goto discard;
697 			}
698 		}
699 
700 		ch = (sctp_chunkhdr_t *) ch_end;
701 	} while (ch_end < skb_tail_pointer(skb));
702 
703 	return 0;
704 
705 discard:
706 	return 1;
707 }
708 
709 /* Insert endpoint into the hash table.  */
710 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
711 {
712 	struct sctp_ep_common *epb;
713 	struct sctp_hashbucket *head;
714 
715 	epb = &ep->base;
716 
717 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
718 	head = &sctp_ep_hashtable[epb->hashent];
719 
720 	sctp_write_lock(&head->lock);
721 	hlist_add_head(&epb->node, &head->chain);
722 	sctp_write_unlock(&head->lock);
723 }
724 
725 /* Add an endpoint to the hash. Local BH-safe. */
726 void sctp_hash_endpoint(struct sctp_endpoint *ep)
727 {
728 	sctp_local_bh_disable();
729 	__sctp_hash_endpoint(ep);
730 	sctp_local_bh_enable();
731 }
732 
733 /* Remove endpoint from the hash table.  */
734 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
735 {
736 	struct sctp_hashbucket *head;
737 	struct sctp_ep_common *epb;
738 
739 	epb = &ep->base;
740 
741 	if (hlist_unhashed(&epb->node))
742 		return;
743 
744 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
745 
746 	head = &sctp_ep_hashtable[epb->hashent];
747 
748 	sctp_write_lock(&head->lock);
749 	__hlist_del(&epb->node);
750 	sctp_write_unlock(&head->lock);
751 }
752 
753 /* Remove endpoint from the hash.  Local BH-safe. */
754 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
755 {
756 	sctp_local_bh_disable();
757 	__sctp_unhash_endpoint(ep);
758 	sctp_local_bh_enable();
759 }
760 
761 /* Look up an endpoint. */
762 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
763 {
764 	struct sctp_hashbucket *head;
765 	struct sctp_ep_common *epb;
766 	struct sctp_endpoint *ep;
767 	struct hlist_node *node;
768 	int hash;
769 
770 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
771 	head = &sctp_ep_hashtable[hash];
772 	read_lock(&head->lock);
773 	sctp_for_each_hentry(epb, node, &head->chain) {
774 		ep = sctp_ep(epb);
775 		if (sctp_endpoint_is_match(ep, laddr))
776 			goto hit;
777 	}
778 
779 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
780 
781 hit:
782 	sctp_endpoint_hold(ep);
783 	read_unlock(&head->lock);
784 	return ep;
785 }
786 
787 /* Insert association into the hash table.  */
788 static void __sctp_hash_established(struct sctp_association *asoc)
789 {
790 	struct sctp_ep_common *epb;
791 	struct sctp_hashbucket *head;
792 
793 	epb = &asoc->base;
794 
795 	/* Calculate which chain this entry will belong to. */
796 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
797 
798 	head = &sctp_assoc_hashtable[epb->hashent];
799 
800 	sctp_write_lock(&head->lock);
801 	hlist_add_head(&epb->node, &head->chain);
802 	sctp_write_unlock(&head->lock);
803 }
804 
805 /* Add an association to the hash. Local BH-safe. */
806 void sctp_hash_established(struct sctp_association *asoc)
807 {
808 	if (asoc->temp)
809 		return;
810 
811 	sctp_local_bh_disable();
812 	__sctp_hash_established(asoc);
813 	sctp_local_bh_enable();
814 }
815 
816 /* Remove association from the hash table.  */
817 static void __sctp_unhash_established(struct sctp_association *asoc)
818 {
819 	struct sctp_hashbucket *head;
820 	struct sctp_ep_common *epb;
821 
822 	epb = &asoc->base;
823 
824 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
825 					 asoc->peer.port);
826 
827 	head = &sctp_assoc_hashtable[epb->hashent];
828 
829 	sctp_write_lock(&head->lock);
830 	__hlist_del(&epb->node);
831 	sctp_write_unlock(&head->lock);
832 }
833 
834 /* Remove association from the hash table.  Local BH-safe. */
835 void sctp_unhash_established(struct sctp_association *asoc)
836 {
837 	if (asoc->temp)
838 		return;
839 
840 	sctp_local_bh_disable();
841 	__sctp_unhash_established(asoc);
842 	sctp_local_bh_enable();
843 }
844 
845 /* Look up an association. */
846 static struct sctp_association *__sctp_lookup_association(
847 					const union sctp_addr *local,
848 					const union sctp_addr *peer,
849 					struct sctp_transport **pt)
850 {
851 	struct sctp_hashbucket *head;
852 	struct sctp_ep_common *epb;
853 	struct sctp_association *asoc;
854 	struct sctp_transport *transport;
855 	struct hlist_node *node;
856 	int hash;
857 
858 	/* Optimize here for direct hit, only listening connections can
859 	 * have wildcards anyways.
860 	 */
861 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
862 	head = &sctp_assoc_hashtable[hash];
863 	read_lock(&head->lock);
864 	sctp_for_each_hentry(epb, node, &head->chain) {
865 		asoc = sctp_assoc(epb);
866 		transport = sctp_assoc_is_match(asoc, local, peer);
867 		if (transport)
868 			goto hit;
869 	}
870 
871 	read_unlock(&head->lock);
872 
873 	return NULL;
874 
875 hit:
876 	*pt = transport;
877 	sctp_association_hold(asoc);
878 	read_unlock(&head->lock);
879 	return asoc;
880 }
881 
882 /* Look up an association. BH-safe. */
883 SCTP_STATIC
884 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
885 						 const union sctp_addr *paddr,
886 					    struct sctp_transport **transportp)
887 {
888 	struct sctp_association *asoc;
889 
890 	sctp_local_bh_disable();
891 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
892 	sctp_local_bh_enable();
893 
894 	return asoc;
895 }
896 
897 /* Is there an association matching the given local and peer addresses? */
898 int sctp_has_association(const union sctp_addr *laddr,
899 			 const union sctp_addr *paddr)
900 {
901 	struct sctp_association *asoc;
902 	struct sctp_transport *transport;
903 
904 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
905 		sctp_association_put(asoc);
906 		return 1;
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * SCTP Implementors Guide, 2.18 Handling of address
914  * parameters within the INIT or INIT-ACK.
915  *
916  * D) When searching for a matching TCB upon reception of an INIT
917  *    or INIT-ACK chunk the receiver SHOULD use not only the
918  *    source address of the packet (containing the INIT or
919  *    INIT-ACK) but the receiver SHOULD also use all valid
920  *    address parameters contained within the chunk.
921  *
922  * 2.18.3 Solution description
923  *
924  * This new text clearly specifies to an implementor the need
925  * to look within the INIT or INIT-ACK. Any implementation that
926  * does not do this, may not be able to establish associations
927  * in certain circumstances.
928  *
929  */
930 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
931 	const union sctp_addr *laddr, struct sctp_transport **transportp)
932 {
933 	struct sctp_association *asoc;
934 	union sctp_addr addr;
935 	union sctp_addr *paddr = &addr;
936 	struct sctphdr *sh = sctp_hdr(skb);
937 	sctp_chunkhdr_t *ch;
938 	union sctp_params params;
939 	sctp_init_chunk_t *init;
940 	struct sctp_transport *transport;
941 	struct sctp_af *af;
942 
943 	ch = (sctp_chunkhdr_t *) skb->data;
944 
945 	/*
946 	 * This code will NOT touch anything inside the chunk--it is
947 	 * strictly READ-ONLY.
948 	 *
949 	 * RFC 2960 3  SCTP packet Format
950 	 *
951 	 * Multiple chunks can be bundled into one SCTP packet up to
952 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
953 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
954 	 * other chunk in a packet.  See Section 6.10 for more details
955 	 * on chunk bundling.
956 	 */
957 
958 	/* Find the start of the TLVs and the end of the chunk.  This is
959 	 * the region we search for address parameters.
960 	 */
961 	init = (sctp_init_chunk_t *)skb->data;
962 
963 	/* Walk the parameters looking for embedded addresses. */
964 	sctp_walk_params(params, init, init_hdr.params) {
965 
966 		/* Note: Ignoring hostname addresses. */
967 		af = sctp_get_af_specific(param_type2af(params.p->type));
968 		if (!af)
969 			continue;
970 
971 		af->from_addr_param(paddr, params.addr, sh->source, 0);
972 
973 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
974 		if (asoc)
975 			return asoc;
976 	}
977 
978 	return NULL;
979 }
980 
981 /* ADD-IP, Section 5.2
982  * When an endpoint receives an ASCONF Chunk from the remote peer
983  * special procedures may be needed to identify the association the
984  * ASCONF Chunk is associated with. To properly find the association
985  * the following procedures SHOULD be followed:
986  *
987  * D2) If the association is not found, use the address found in the
988  * Address Parameter TLV combined with the port number found in the
989  * SCTP common header. If found proceed to rule D4.
990  *
991  * D2-ext) If more than one ASCONF Chunks are packed together, use the
992  * address found in the ASCONF Address Parameter TLV of each of the
993  * subsequent ASCONF Chunks. If found, proceed to rule D4.
994  */
995 static struct sctp_association *__sctp_rcv_asconf_lookup(
996 					sctp_chunkhdr_t *ch,
997 					const union sctp_addr *laddr,
998 					__be16 peer_port,
999 					struct sctp_transport **transportp)
1000 {
1001 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1002 	struct sctp_af *af;
1003 	union sctp_addr_param *param;
1004 	union sctp_addr paddr;
1005 
1006 	/* Skip over the ADDIP header and find the Address parameter */
1007 	param = (union sctp_addr_param *)(asconf + 1);
1008 
1009 	af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
1010 	if (unlikely(!af))
1011 		return NULL;
1012 
1013 	af->from_addr_param(&paddr, param, peer_port, 0);
1014 
1015 	return __sctp_lookup_association(laddr, &paddr, transportp);
1016 }
1017 
1018 
1019 /* SCTP-AUTH, Section 6.3:
1020 *    If the receiver does not find a STCB for a packet containing an AUTH
1021 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1022 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1023 *    association.
1024 *
1025 * This means that any chunks that can help us identify the association need
1026 * to be looked at to find this assocation.
1027 */
1028 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1029 				      const union sctp_addr *laddr,
1030 				      struct sctp_transport **transportp)
1031 {
1032 	struct sctp_association *asoc = NULL;
1033 	sctp_chunkhdr_t *ch;
1034 	int have_auth = 0;
1035 	unsigned int chunk_num = 1;
1036 	__u8 *ch_end;
1037 
1038 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1039 	 * to help us find the association.
1040 	 */
1041 	ch = (sctp_chunkhdr_t *) skb->data;
1042 	do {
1043 		/* Break out if chunk length is less then minimal. */
1044 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1045 			break;
1046 
1047 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1048 		if (ch_end > skb_tail_pointer(skb))
1049 			break;
1050 
1051 		switch(ch->type) {
1052 		    case SCTP_CID_AUTH:
1053 			    have_auth = chunk_num;
1054 			    break;
1055 
1056 		    case SCTP_CID_COOKIE_ECHO:
1057 			    /* If a packet arrives containing an AUTH chunk as
1058 			     * a first chunk, a COOKIE-ECHO chunk as the second
1059 			     * chunk, and possibly more chunks after them, and
1060 			     * the receiver does not have an STCB for that
1061 			     * packet, then authentication is based on
1062 			     * the contents of the COOKIE- ECHO chunk.
1063 			     */
1064 			    if (have_auth == 1 && chunk_num == 2)
1065 				    return NULL;
1066 			    break;
1067 
1068 		    case SCTP_CID_ASCONF:
1069 			    if (have_auth || sctp_addip_noauth)
1070 				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1071 							sctp_hdr(skb)->source,
1072 							transportp);
1073 		    default:
1074 			    break;
1075 		}
1076 
1077 		if (asoc)
1078 			break;
1079 
1080 		ch = (sctp_chunkhdr_t *) ch_end;
1081 		chunk_num++;
1082 	} while (ch_end < skb_tail_pointer(skb));
1083 
1084 	return asoc;
1085 }
1086 
1087 /*
1088  * There are circumstances when we need to look inside the SCTP packet
1089  * for information to help us find the association.   Examples
1090  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1091  * chunks.
1092  */
1093 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1094 				      const union sctp_addr *laddr,
1095 				      struct sctp_transport **transportp)
1096 {
1097 	sctp_chunkhdr_t *ch;
1098 
1099 	ch = (sctp_chunkhdr_t *) skb->data;
1100 
1101 	/* The code below will attempt to walk the chunk and extract
1102 	 * parameter information.  Before we do that, we need to verify
1103 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1104 	 * walk off the end.
1105 	 */
1106 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1107 		return NULL;
1108 
1109 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1110 	switch (ch->type) {
1111 	case SCTP_CID_INIT:
1112 	case SCTP_CID_INIT_ACK:
1113 		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1114 		break;
1115 
1116 	default:
1117 		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1118 		break;
1119 	}
1120 
1121 
1122 	return NULL;
1123 }
1124 
1125 /* Lookup an association for an inbound skb. */
1126 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1127 				      const union sctp_addr *paddr,
1128 				      const union sctp_addr *laddr,
1129 				      struct sctp_transport **transportp)
1130 {
1131 	struct sctp_association *asoc;
1132 
1133 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1134 
1135 	/* Further lookup for INIT/INIT-ACK packets.
1136 	 * SCTP Implementors Guide, 2.18 Handling of address
1137 	 * parameters within the INIT or INIT-ACK.
1138 	 */
1139 	if (!asoc)
1140 		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1141 
1142 	return asoc;
1143 }
1144