xref: /linux/net/sctp/input.c (revision 765532c8aaac624b5f8687af6d319c6a1138a257)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <linux/slab.h>
57 #include <net/ip.h>
58 #include <net/icmp.h>
59 #include <net/snmp.h>
60 #include <net/sock.h>
61 #include <net/xfrm.h>
62 #include <net/sctp/sctp.h>
63 #include <net/sctp/sm.h>
64 #include <net/sctp/checksum.h>
65 #include <net/net_namespace.h>
66 
67 /* Forward declarations for internal helpers. */
68 static int sctp_rcv_ootb(struct sk_buff *);
69 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
70 				      const union sctp_addr *laddr,
71 				      const union sctp_addr *paddr,
72 				      struct sctp_transport **transportp);
73 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
74 static struct sctp_association *__sctp_lookup_association(
75 					const union sctp_addr *local,
76 					const union sctp_addr *peer,
77 					struct sctp_transport **pt);
78 
79 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
80 
81 
82 /* Calculate the SCTP checksum of an SCTP packet.  */
83 static inline int sctp_rcv_checksum(struct sk_buff *skb)
84 {
85 	struct sctphdr *sh = sctp_hdr(skb);
86 	__le32 cmp = sh->checksum;
87 	struct sk_buff *list;
88 	__le32 val;
89 	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90 
91 	skb_walk_frags(skb, list)
92 		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
93 					tmp);
94 
95 	val = sctp_end_cksum(tmp);
96 
97 	if (val != cmp) {
98 		/* CRC failure, dump it. */
99 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
100 		return -1;
101 	}
102 	return 0;
103 }
104 
105 struct sctp_input_cb {
106 	union {
107 		struct inet_skb_parm	h4;
108 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
109 		struct inet6_skb_parm	h6;
110 #endif
111 	} header;
112 	struct sctp_chunk *chunk;
113 };
114 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
115 
116 /*
117  * This is the routine which IP calls when receiving an SCTP packet.
118  */
119 int sctp_rcv(struct sk_buff *skb)
120 {
121 	struct sock *sk;
122 	struct sctp_association *asoc;
123 	struct sctp_endpoint *ep = NULL;
124 	struct sctp_ep_common *rcvr;
125 	struct sctp_transport *transport = NULL;
126 	struct sctp_chunk *chunk;
127 	struct sctphdr *sh;
128 	union sctp_addr src;
129 	union sctp_addr dest;
130 	int family;
131 	struct sctp_af *af;
132 
133 	if (skb->pkt_type!=PACKET_HOST)
134 		goto discard_it;
135 
136 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137 
138 	if (skb_linearize(skb))
139 		goto discard_it;
140 
141 	sh = sctp_hdr(skb);
142 
143 	/* Pull up the IP and SCTP headers. */
144 	__skb_pull(skb, skb_transport_offset(skb));
145 	if (skb->len < sizeof(struct sctphdr))
146 		goto discard_it;
147 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
148 		  sctp_rcv_checksum(skb) < 0)
149 		goto discard_it;
150 
151 	skb_pull(skb, sizeof(struct sctphdr));
152 
153 	/* Make sure we at least have chunk headers worth of data left. */
154 	if (skb->len < sizeof(struct sctp_chunkhdr))
155 		goto discard_it;
156 
157 	family = ipver2af(ip_hdr(skb)->version);
158 	af = sctp_get_af_specific(family);
159 	if (unlikely(!af))
160 		goto discard_it;
161 
162 	/* Initialize local addresses for lookups. */
163 	af->from_skb(&src, skb, 1);
164 	af->from_skb(&dest, skb, 0);
165 
166 	/* If the packet is to or from a non-unicast address,
167 	 * silently discard the packet.
168 	 *
169 	 * This is not clearly defined in the RFC except in section
170 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
171 	 * Transmission Protocol" 2.1, "It is important to note that the
172 	 * IP address of an SCTP transport address must be a routable
173 	 * unicast address.  In other words, IP multicast addresses and
174 	 * IP broadcast addresses cannot be used in an SCTP transport
175 	 * address."
176 	 */
177 	if (!af->addr_valid(&src, NULL, skb) ||
178 	    !af->addr_valid(&dest, NULL, skb))
179 		goto discard_it;
180 
181 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
182 
183 	if (!asoc)
184 		ep = __sctp_rcv_lookup_endpoint(&dest);
185 
186 	/* Retrieve the common input handling substructure. */
187 	rcvr = asoc ? &asoc->base : &ep->base;
188 	sk = rcvr->sk;
189 
190 	/*
191 	 * If a frame arrives on an interface and the receiving socket is
192 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
193 	 */
194 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
195 	{
196 		if (asoc) {
197 			sctp_association_put(asoc);
198 			asoc = NULL;
199 		} else {
200 			sctp_endpoint_put(ep);
201 			ep = NULL;
202 		}
203 		sk = sctp_get_ctl_sock();
204 		ep = sctp_sk(sk)->ep;
205 		sctp_endpoint_hold(ep);
206 		rcvr = &ep->base;
207 	}
208 
209 	/*
210 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
211 	 * An SCTP packet is called an "out of the blue" (OOTB)
212 	 * packet if it is correctly formed, i.e., passed the
213 	 * receiver's checksum check, but the receiver is not
214 	 * able to identify the association to which this
215 	 * packet belongs.
216 	 */
217 	if (!asoc) {
218 		if (sctp_rcv_ootb(skb)) {
219 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
220 			goto discard_release;
221 		}
222 	}
223 
224 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
225 		goto discard_release;
226 	nf_reset(skb);
227 
228 	if (sk_filter(sk, skb))
229 		goto discard_release;
230 
231 	/* Create an SCTP packet structure. */
232 	chunk = sctp_chunkify(skb, asoc, sk);
233 	if (!chunk)
234 		goto discard_release;
235 	SCTP_INPUT_CB(skb)->chunk = chunk;
236 
237 	/* Remember what endpoint is to handle this packet. */
238 	chunk->rcvr = rcvr;
239 
240 	/* Remember the SCTP header. */
241 	chunk->sctp_hdr = sh;
242 
243 	/* Set the source and destination addresses of the incoming chunk.  */
244 	sctp_init_addrs(chunk, &src, &dest);
245 
246 	/* Remember where we came from.  */
247 	chunk->transport = transport;
248 
249 	/* Acquire access to the sock lock. Note: We are safe from other
250 	 * bottom halves on this lock, but a user may be in the lock too,
251 	 * so check if it is busy.
252 	 */
253 	sctp_bh_lock_sock(sk);
254 
255 	if (sk != rcvr->sk) {
256 		/* Our cached sk is different from the rcvr->sk.  This is
257 		 * because migrate()/accept() may have moved the association
258 		 * to a new socket and released all the sockets.  So now we
259 		 * are holding a lock on the old socket while the user may
260 		 * be doing something with the new socket.  Switch our veiw
261 		 * of the current sk.
262 		 */
263 		sctp_bh_unlock_sock(sk);
264 		sk = rcvr->sk;
265 		sctp_bh_lock_sock(sk);
266 	}
267 
268 	if (sock_owned_by_user(sk)) {
269 		if (sctp_add_backlog(sk, skb)) {
270 			sctp_bh_unlock_sock(sk);
271 			sctp_chunk_free(chunk);
272 			skb = NULL; /* sctp_chunk_free already freed the skb */
273 			goto discard_release;
274 		}
275 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
276 	} else {
277 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
278 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
279 	}
280 
281 	sctp_bh_unlock_sock(sk);
282 
283 	/* Release the asoc/ep ref we took in the lookup calls. */
284 	if (asoc)
285 		sctp_association_put(asoc);
286 	else
287 		sctp_endpoint_put(ep);
288 
289 	return 0;
290 
291 discard_it:
292 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
293 	kfree_skb(skb);
294 	return 0;
295 
296 discard_release:
297 	/* Release the asoc/ep ref we took in the lookup calls. */
298 	if (asoc)
299 		sctp_association_put(asoc);
300 	else
301 		sctp_endpoint_put(ep);
302 
303 	goto discard_it;
304 }
305 
306 /* Process the backlog queue of the socket.  Every skb on
307  * the backlog holds a ref on an association or endpoint.
308  * We hold this ref throughout the state machine to make
309  * sure that the structure we need is still around.
310  */
311 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
312 {
313 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
314 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
315 	struct sctp_ep_common *rcvr = NULL;
316 	int backloged = 0;
317 
318 	rcvr = chunk->rcvr;
319 
320 	/* If the rcvr is dead then the association or endpoint
321 	 * has been deleted and we can safely drop the chunk
322 	 * and refs that we are holding.
323 	 */
324 	if (rcvr->dead) {
325 		sctp_chunk_free(chunk);
326 		goto done;
327 	}
328 
329 	if (unlikely(rcvr->sk != sk)) {
330 		/* In this case, the association moved from one socket to
331 		 * another.  We are currently sitting on the backlog of the
332 		 * old socket, so we need to move.
333 		 * However, since we are here in the process context we
334 		 * need to take make sure that the user doesn't own
335 		 * the new socket when we process the packet.
336 		 * If the new socket is user-owned, queue the chunk to the
337 		 * backlog of the new socket without dropping any refs.
338 		 * Otherwise, we can safely push the chunk on the inqueue.
339 		 */
340 
341 		sk = rcvr->sk;
342 		sctp_bh_lock_sock(sk);
343 
344 		if (sock_owned_by_user(sk)) {
345 			if (sk_add_backlog(sk, skb))
346 				sctp_chunk_free(chunk);
347 			else
348 				backloged = 1;
349 		} else
350 			sctp_inq_push(inqueue, chunk);
351 
352 		sctp_bh_unlock_sock(sk);
353 
354 		/* If the chunk was backloged again, don't drop refs */
355 		if (backloged)
356 			return 0;
357 	} else {
358 		sctp_inq_push(inqueue, chunk);
359 	}
360 
361 done:
362 	/* Release the refs we took in sctp_add_backlog */
363 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
364 		sctp_association_put(sctp_assoc(rcvr));
365 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
366 		sctp_endpoint_put(sctp_ep(rcvr));
367 	else
368 		BUG();
369 
370 	return 0;
371 }
372 
373 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
374 {
375 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
376 	struct sctp_ep_common *rcvr = chunk->rcvr;
377 	int ret;
378 
379 	ret = sk_add_backlog(sk, skb);
380 	if (!ret) {
381 		/* Hold the assoc/ep while hanging on the backlog queue.
382 		 * This way, we know structures we need will not disappear
383 		 * from us
384 		 */
385 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
386 			sctp_association_hold(sctp_assoc(rcvr));
387 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
388 			sctp_endpoint_hold(sctp_ep(rcvr));
389 		else
390 			BUG();
391 	}
392 	return ret;
393 
394 }
395 
396 /* Handle icmp frag needed error. */
397 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
398 			   struct sctp_transport *t, __u32 pmtu)
399 {
400 	if (!t || (t->pathmtu <= pmtu))
401 		return;
402 
403 	if (sock_owned_by_user(sk)) {
404 		asoc->pmtu_pending = 1;
405 		t->pmtu_pending = 1;
406 		return;
407 	}
408 
409 	if (t->param_flags & SPP_PMTUD_ENABLE) {
410 		/* Update transports view of the MTU */
411 		sctp_transport_update_pmtu(t, pmtu);
412 
413 		/* Update association pmtu. */
414 		sctp_assoc_sync_pmtu(asoc);
415 	}
416 
417 	/* Retransmit with the new pmtu setting.
418 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
419 	 * Needed will never be sent, but if a message was sent before
420 	 * PMTU discovery was disabled that was larger than the PMTU, it
421 	 * would not be fragmented, so it must be re-transmitted fragmented.
422 	 */
423 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
424 }
425 
426 /*
427  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428  *
429  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430  *        or a "Protocol Unreachable" treat this message as an abort
431  *        with the T bit set.
432  *
433  * This function sends an event to the state machine, which will abort the
434  * association.
435  *
436  */
437 void sctp_icmp_proto_unreachable(struct sock *sk,
438 			   struct sctp_association *asoc,
439 			   struct sctp_transport *t)
440 {
441 	SCTP_DEBUG_PRINTK("%s\n",  __func__);
442 
443 	if (sock_owned_by_user(sk)) {
444 		if (timer_pending(&t->proto_unreach_timer))
445 			return;
446 		else {
447 			if (!mod_timer(&t->proto_unreach_timer,
448 						jiffies + (HZ/20)))
449 				sctp_association_hold(asoc);
450 		}
451 
452 	} else {
453 		if (timer_pending(&t->proto_unreach_timer) &&
454 		    del_timer(&t->proto_unreach_timer))
455 			sctp_association_put(asoc);
456 
457 		sctp_do_sm(SCTP_EVENT_T_OTHER,
458 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
459 			   asoc->state, asoc->ep, asoc, t,
460 			   GFP_ATOMIC);
461 	}
462 }
463 
464 /* Common lookup code for icmp/icmpv6 error handler. */
465 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
466 			     struct sctphdr *sctphdr,
467 			     struct sctp_association **app,
468 			     struct sctp_transport **tpp)
469 {
470 	union sctp_addr saddr;
471 	union sctp_addr daddr;
472 	struct sctp_af *af;
473 	struct sock *sk = NULL;
474 	struct sctp_association *asoc;
475 	struct sctp_transport *transport = NULL;
476 	struct sctp_init_chunk *chunkhdr;
477 	__u32 vtag = ntohl(sctphdr->vtag);
478 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
479 
480 	*app = NULL; *tpp = NULL;
481 
482 	af = sctp_get_af_specific(family);
483 	if (unlikely(!af)) {
484 		return NULL;
485 	}
486 
487 	/* Initialize local addresses for lookups. */
488 	af->from_skb(&saddr, skb, 1);
489 	af->from_skb(&daddr, skb, 0);
490 
491 	/* Look for an association that matches the incoming ICMP error
492 	 * packet.
493 	 */
494 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
495 	if (!asoc)
496 		return NULL;
497 
498 	sk = asoc->base.sk;
499 
500 	/* RFC 4960, Appendix C. ICMP Handling
501 	 *
502 	 * ICMP6) An implementation MUST validate that the Verification Tag
503 	 * contained in the ICMP message matches the Verification Tag of
504 	 * the peer.  If the Verification Tag is not 0 and does NOT
505 	 * match, discard the ICMP message.  If it is 0 and the ICMP
506 	 * message contains enough bytes to verify that the chunk type is
507 	 * an INIT chunk and that the Initiate Tag matches the tag of the
508 	 * peer, continue with ICMP7.  If the ICMP message is too short
509 	 * or the chunk type or the Initiate Tag does not match, silently
510 	 * discard the packet.
511 	 */
512 	if (vtag == 0) {
513 		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
514 				+ sizeof(struct sctphdr));
515 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
516 			  + sizeof(__be32) ||
517 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
518 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
519 			goto out;
520 		}
521 	} else if (vtag != asoc->c.peer_vtag) {
522 		goto out;
523 	}
524 
525 	sctp_bh_lock_sock(sk);
526 
527 	/* If too many ICMPs get dropped on busy
528 	 * servers this needs to be solved differently.
529 	 */
530 	if (sock_owned_by_user(sk))
531 		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
532 
533 	*app = asoc;
534 	*tpp = transport;
535 	return sk;
536 
537 out:
538 	if (asoc)
539 		sctp_association_put(asoc);
540 	return NULL;
541 }
542 
543 /* Common cleanup code for icmp/icmpv6 error handler. */
544 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
545 {
546 	sctp_bh_unlock_sock(sk);
547 	if (asoc)
548 		sctp_association_put(asoc);
549 }
550 
551 /*
552  * This routine is called by the ICMP module when it gets some
553  * sort of error condition.  If err < 0 then the socket should
554  * be closed and the error returned to the user.  If err > 0
555  * it's just the icmp type << 8 | icmp code.  After adjustment
556  * header points to the first 8 bytes of the sctp header.  We need
557  * to find the appropriate port.
558  *
559  * The locking strategy used here is very "optimistic". When
560  * someone else accesses the socket the ICMP is just dropped
561  * and for some paths there is no check at all.
562  * A more general error queue to queue errors for later handling
563  * is probably better.
564  *
565  */
566 void sctp_v4_err(struct sk_buff *skb, __u32 info)
567 {
568 	struct iphdr *iph = (struct iphdr *)skb->data;
569 	const int ihlen = iph->ihl * 4;
570 	const int type = icmp_hdr(skb)->type;
571 	const int code = icmp_hdr(skb)->code;
572 	struct sock *sk;
573 	struct sctp_association *asoc = NULL;
574 	struct sctp_transport *transport;
575 	struct inet_sock *inet;
576 	sk_buff_data_t saveip, savesctp;
577 	int err;
578 
579 	if (skb->len < ihlen + 8) {
580 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
581 		return;
582 	}
583 
584 	/* Fix up skb to look at the embedded net header. */
585 	saveip = skb->network_header;
586 	savesctp = skb->transport_header;
587 	skb_reset_network_header(skb);
588 	skb_set_transport_header(skb, ihlen);
589 	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
590 	/* Put back, the original values. */
591 	skb->network_header = saveip;
592 	skb->transport_header = savesctp;
593 	if (!sk) {
594 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
595 		return;
596 	}
597 	/* Warning:  The sock lock is held.  Remember to call
598 	 * sctp_err_finish!
599 	 */
600 
601 	switch (type) {
602 	case ICMP_PARAMETERPROB:
603 		err = EPROTO;
604 		break;
605 	case ICMP_DEST_UNREACH:
606 		if (code > NR_ICMP_UNREACH)
607 			goto out_unlock;
608 
609 		/* PMTU discovery (RFC1191) */
610 		if (ICMP_FRAG_NEEDED == code) {
611 			sctp_icmp_frag_needed(sk, asoc, transport, info);
612 			goto out_unlock;
613 		}
614 		else {
615 			if (ICMP_PROT_UNREACH == code) {
616 				sctp_icmp_proto_unreachable(sk, asoc,
617 							    transport);
618 				goto out_unlock;
619 			}
620 		}
621 		err = icmp_err_convert[code].errno;
622 		break;
623 	case ICMP_TIME_EXCEEDED:
624 		/* Ignore any time exceeded errors due to fragment reassembly
625 		 * timeouts.
626 		 */
627 		if (ICMP_EXC_FRAGTIME == code)
628 			goto out_unlock;
629 
630 		err = EHOSTUNREACH;
631 		break;
632 	default:
633 		goto out_unlock;
634 	}
635 
636 	inet = inet_sk(sk);
637 	if (!sock_owned_by_user(sk) && inet->recverr) {
638 		sk->sk_err = err;
639 		sk->sk_error_report(sk);
640 	} else {  /* Only an error on timeout */
641 		sk->sk_err_soft = err;
642 	}
643 
644 out_unlock:
645 	sctp_err_finish(sk, asoc);
646 }
647 
648 /*
649  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
650  *
651  * This function scans all the chunks in the OOTB packet to determine if
652  * the packet should be discarded right away.  If a response might be needed
653  * for this packet, or, if further processing is possible, the packet will
654  * be queued to a proper inqueue for the next phase of handling.
655  *
656  * Output:
657  * Return 0 - If further processing is needed.
658  * Return 1 - If the packet can be discarded right away.
659  */
660 static int sctp_rcv_ootb(struct sk_buff *skb)
661 {
662 	sctp_chunkhdr_t *ch;
663 	__u8 *ch_end;
664 	sctp_errhdr_t *err;
665 
666 	ch = (sctp_chunkhdr_t *) skb->data;
667 
668 	/* Scan through all the chunks in the packet.  */
669 	do {
670 		/* Break out if chunk length is less then minimal. */
671 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
672 			break;
673 
674 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
675 		if (ch_end > skb_tail_pointer(skb))
676 			break;
677 
678 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
679 		 * receiver MUST silently discard the OOTB packet and take no
680 		 * further action.
681 		 */
682 		if (SCTP_CID_ABORT == ch->type)
683 			goto discard;
684 
685 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
686 		 * chunk, the receiver should silently discard the packet
687 		 * and take no further action.
688 		 */
689 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
690 			goto discard;
691 
692 		/* RFC 4460, 2.11.2
693 		 * This will discard packets with INIT chunk bundled as
694 		 * subsequent chunks in the packet.  When INIT is first,
695 		 * the normal INIT processing will discard the chunk.
696 		 */
697 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
698 			goto discard;
699 
700 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
701 		 * or a COOKIE ACK the SCTP Packet should be silently
702 		 * discarded.
703 		 */
704 		if (SCTP_CID_COOKIE_ACK == ch->type)
705 			goto discard;
706 
707 		if (SCTP_CID_ERROR == ch->type) {
708 			sctp_walk_errors(err, ch) {
709 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
710 					goto discard;
711 			}
712 		}
713 
714 		ch = (sctp_chunkhdr_t *) ch_end;
715 	} while (ch_end < skb_tail_pointer(skb));
716 
717 	return 0;
718 
719 discard:
720 	return 1;
721 }
722 
723 /* Insert endpoint into the hash table.  */
724 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
725 {
726 	struct sctp_ep_common *epb;
727 	struct sctp_hashbucket *head;
728 
729 	epb = &ep->base;
730 
731 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
732 	head = &sctp_ep_hashtable[epb->hashent];
733 
734 	sctp_write_lock(&head->lock);
735 	hlist_add_head(&epb->node, &head->chain);
736 	sctp_write_unlock(&head->lock);
737 }
738 
739 /* Add an endpoint to the hash. Local BH-safe. */
740 void sctp_hash_endpoint(struct sctp_endpoint *ep)
741 {
742 	sctp_local_bh_disable();
743 	__sctp_hash_endpoint(ep);
744 	sctp_local_bh_enable();
745 }
746 
747 /* Remove endpoint from the hash table.  */
748 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
749 {
750 	struct sctp_hashbucket *head;
751 	struct sctp_ep_common *epb;
752 
753 	epb = &ep->base;
754 
755 	if (hlist_unhashed(&epb->node))
756 		return;
757 
758 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
759 
760 	head = &sctp_ep_hashtable[epb->hashent];
761 
762 	sctp_write_lock(&head->lock);
763 	__hlist_del(&epb->node);
764 	sctp_write_unlock(&head->lock);
765 }
766 
767 /* Remove endpoint from the hash.  Local BH-safe. */
768 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
769 {
770 	sctp_local_bh_disable();
771 	__sctp_unhash_endpoint(ep);
772 	sctp_local_bh_enable();
773 }
774 
775 /* Look up an endpoint. */
776 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
777 {
778 	struct sctp_hashbucket *head;
779 	struct sctp_ep_common *epb;
780 	struct sctp_endpoint *ep;
781 	struct hlist_node *node;
782 	int hash;
783 
784 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
785 	head = &sctp_ep_hashtable[hash];
786 	read_lock(&head->lock);
787 	sctp_for_each_hentry(epb, node, &head->chain) {
788 		ep = sctp_ep(epb);
789 		if (sctp_endpoint_is_match(ep, laddr))
790 			goto hit;
791 	}
792 
793 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
794 
795 hit:
796 	sctp_endpoint_hold(ep);
797 	read_unlock(&head->lock);
798 	return ep;
799 }
800 
801 /* Insert association into the hash table.  */
802 static void __sctp_hash_established(struct sctp_association *asoc)
803 {
804 	struct sctp_ep_common *epb;
805 	struct sctp_hashbucket *head;
806 
807 	epb = &asoc->base;
808 
809 	/* Calculate which chain this entry will belong to. */
810 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
811 
812 	head = &sctp_assoc_hashtable[epb->hashent];
813 
814 	sctp_write_lock(&head->lock);
815 	hlist_add_head(&epb->node, &head->chain);
816 	sctp_write_unlock(&head->lock);
817 }
818 
819 /* Add an association to the hash. Local BH-safe. */
820 void sctp_hash_established(struct sctp_association *asoc)
821 {
822 	if (asoc->temp)
823 		return;
824 
825 	sctp_local_bh_disable();
826 	__sctp_hash_established(asoc);
827 	sctp_local_bh_enable();
828 }
829 
830 /* Remove association from the hash table.  */
831 static void __sctp_unhash_established(struct sctp_association *asoc)
832 {
833 	struct sctp_hashbucket *head;
834 	struct sctp_ep_common *epb;
835 
836 	epb = &asoc->base;
837 
838 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
839 					 asoc->peer.port);
840 
841 	head = &sctp_assoc_hashtable[epb->hashent];
842 
843 	sctp_write_lock(&head->lock);
844 	__hlist_del(&epb->node);
845 	sctp_write_unlock(&head->lock);
846 }
847 
848 /* Remove association from the hash table.  Local BH-safe. */
849 void sctp_unhash_established(struct sctp_association *asoc)
850 {
851 	if (asoc->temp)
852 		return;
853 
854 	sctp_local_bh_disable();
855 	__sctp_unhash_established(asoc);
856 	sctp_local_bh_enable();
857 }
858 
859 /* Look up an association. */
860 static struct sctp_association *__sctp_lookup_association(
861 					const union sctp_addr *local,
862 					const union sctp_addr *peer,
863 					struct sctp_transport **pt)
864 {
865 	struct sctp_hashbucket *head;
866 	struct sctp_ep_common *epb;
867 	struct sctp_association *asoc;
868 	struct sctp_transport *transport;
869 	struct hlist_node *node;
870 	int hash;
871 
872 	/* Optimize here for direct hit, only listening connections can
873 	 * have wildcards anyways.
874 	 */
875 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
876 	head = &sctp_assoc_hashtable[hash];
877 	read_lock(&head->lock);
878 	sctp_for_each_hentry(epb, node, &head->chain) {
879 		asoc = sctp_assoc(epb);
880 		transport = sctp_assoc_is_match(asoc, local, peer);
881 		if (transport)
882 			goto hit;
883 	}
884 
885 	read_unlock(&head->lock);
886 
887 	return NULL;
888 
889 hit:
890 	*pt = transport;
891 	sctp_association_hold(asoc);
892 	read_unlock(&head->lock);
893 	return asoc;
894 }
895 
896 /* Look up an association. BH-safe. */
897 SCTP_STATIC
898 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
899 						 const union sctp_addr *paddr,
900 					    struct sctp_transport **transportp)
901 {
902 	struct sctp_association *asoc;
903 
904 	sctp_local_bh_disable();
905 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
906 	sctp_local_bh_enable();
907 
908 	return asoc;
909 }
910 
911 /* Is there an association matching the given local and peer addresses? */
912 int sctp_has_association(const union sctp_addr *laddr,
913 			 const union sctp_addr *paddr)
914 {
915 	struct sctp_association *asoc;
916 	struct sctp_transport *transport;
917 
918 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
919 		sctp_association_put(asoc);
920 		return 1;
921 	}
922 
923 	return 0;
924 }
925 
926 /*
927  * SCTP Implementors Guide, 2.18 Handling of address
928  * parameters within the INIT or INIT-ACK.
929  *
930  * D) When searching for a matching TCB upon reception of an INIT
931  *    or INIT-ACK chunk the receiver SHOULD use not only the
932  *    source address of the packet (containing the INIT or
933  *    INIT-ACK) but the receiver SHOULD also use all valid
934  *    address parameters contained within the chunk.
935  *
936  * 2.18.3 Solution description
937  *
938  * This new text clearly specifies to an implementor the need
939  * to look within the INIT or INIT-ACK. Any implementation that
940  * does not do this, may not be able to establish associations
941  * in certain circumstances.
942  *
943  */
944 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
945 	const union sctp_addr *laddr, struct sctp_transport **transportp)
946 {
947 	struct sctp_association *asoc;
948 	union sctp_addr addr;
949 	union sctp_addr *paddr = &addr;
950 	struct sctphdr *sh = sctp_hdr(skb);
951 	sctp_chunkhdr_t *ch;
952 	union sctp_params params;
953 	sctp_init_chunk_t *init;
954 	struct sctp_transport *transport;
955 	struct sctp_af *af;
956 
957 	ch = (sctp_chunkhdr_t *) skb->data;
958 
959 	/*
960 	 * This code will NOT touch anything inside the chunk--it is
961 	 * strictly READ-ONLY.
962 	 *
963 	 * RFC 2960 3  SCTP packet Format
964 	 *
965 	 * Multiple chunks can be bundled into one SCTP packet up to
966 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
967 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
968 	 * other chunk in a packet.  See Section 6.10 for more details
969 	 * on chunk bundling.
970 	 */
971 
972 	/* Find the start of the TLVs and the end of the chunk.  This is
973 	 * the region we search for address parameters.
974 	 */
975 	init = (sctp_init_chunk_t *)skb->data;
976 
977 	/* Walk the parameters looking for embedded addresses. */
978 	sctp_walk_params(params, init, init_hdr.params) {
979 
980 		/* Note: Ignoring hostname addresses. */
981 		af = sctp_get_af_specific(param_type2af(params.p->type));
982 		if (!af)
983 			continue;
984 
985 		af->from_addr_param(paddr, params.addr, sh->source, 0);
986 
987 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
988 		if (asoc)
989 			return asoc;
990 	}
991 
992 	return NULL;
993 }
994 
995 /* ADD-IP, Section 5.2
996  * When an endpoint receives an ASCONF Chunk from the remote peer
997  * special procedures may be needed to identify the association the
998  * ASCONF Chunk is associated with. To properly find the association
999  * the following procedures SHOULD be followed:
1000  *
1001  * D2) If the association is not found, use the address found in the
1002  * Address Parameter TLV combined with the port number found in the
1003  * SCTP common header. If found proceed to rule D4.
1004  *
1005  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1006  * address found in the ASCONF Address Parameter TLV of each of the
1007  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1008  */
1009 static struct sctp_association *__sctp_rcv_asconf_lookup(
1010 					sctp_chunkhdr_t *ch,
1011 					const union sctp_addr *laddr,
1012 					__be16 peer_port,
1013 					struct sctp_transport **transportp)
1014 {
1015 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1016 	struct sctp_af *af;
1017 	union sctp_addr_param *param;
1018 	union sctp_addr paddr;
1019 
1020 	/* Skip over the ADDIP header and find the Address parameter */
1021 	param = (union sctp_addr_param *)(asconf + 1);
1022 
1023 	af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
1024 	if (unlikely(!af))
1025 		return NULL;
1026 
1027 	af->from_addr_param(&paddr, param, peer_port, 0);
1028 
1029 	return __sctp_lookup_association(laddr, &paddr, transportp);
1030 }
1031 
1032 
1033 /* SCTP-AUTH, Section 6.3:
1034 *    If the receiver does not find a STCB for a packet containing an AUTH
1035 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1036 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1037 *    association.
1038 *
1039 * This means that any chunks that can help us identify the association need
1040 * to be looked at to find this assocation.
1041 */
1042 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1043 				      const union sctp_addr *laddr,
1044 				      struct sctp_transport **transportp)
1045 {
1046 	struct sctp_association *asoc = NULL;
1047 	sctp_chunkhdr_t *ch;
1048 	int have_auth = 0;
1049 	unsigned int chunk_num = 1;
1050 	__u8 *ch_end;
1051 
1052 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1053 	 * to help us find the association.
1054 	 */
1055 	ch = (sctp_chunkhdr_t *) skb->data;
1056 	do {
1057 		/* Break out if chunk length is less then minimal. */
1058 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1059 			break;
1060 
1061 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1062 		if (ch_end > skb_tail_pointer(skb))
1063 			break;
1064 
1065 		switch(ch->type) {
1066 		    case SCTP_CID_AUTH:
1067 			    have_auth = chunk_num;
1068 			    break;
1069 
1070 		    case SCTP_CID_COOKIE_ECHO:
1071 			    /* If a packet arrives containing an AUTH chunk as
1072 			     * a first chunk, a COOKIE-ECHO chunk as the second
1073 			     * chunk, and possibly more chunks after them, and
1074 			     * the receiver does not have an STCB for that
1075 			     * packet, then authentication is based on
1076 			     * the contents of the COOKIE- ECHO chunk.
1077 			     */
1078 			    if (have_auth == 1 && chunk_num == 2)
1079 				    return NULL;
1080 			    break;
1081 
1082 		    case SCTP_CID_ASCONF:
1083 			    if (have_auth || sctp_addip_noauth)
1084 				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1085 							sctp_hdr(skb)->source,
1086 							transportp);
1087 		    default:
1088 			    break;
1089 		}
1090 
1091 		if (asoc)
1092 			break;
1093 
1094 		ch = (sctp_chunkhdr_t *) ch_end;
1095 		chunk_num++;
1096 	} while (ch_end < skb_tail_pointer(skb));
1097 
1098 	return asoc;
1099 }
1100 
1101 /*
1102  * There are circumstances when we need to look inside the SCTP packet
1103  * for information to help us find the association.   Examples
1104  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1105  * chunks.
1106  */
1107 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1108 				      const union sctp_addr *laddr,
1109 				      struct sctp_transport **transportp)
1110 {
1111 	sctp_chunkhdr_t *ch;
1112 
1113 	ch = (sctp_chunkhdr_t *) skb->data;
1114 
1115 	/* The code below will attempt to walk the chunk and extract
1116 	 * parameter information.  Before we do that, we need to verify
1117 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1118 	 * walk off the end.
1119 	 */
1120 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1121 		return NULL;
1122 
1123 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1124 	switch (ch->type) {
1125 	case SCTP_CID_INIT:
1126 	case SCTP_CID_INIT_ACK:
1127 		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1128 		break;
1129 
1130 	default:
1131 		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1132 		break;
1133 	}
1134 
1135 
1136 	return NULL;
1137 }
1138 
1139 /* Lookup an association for an inbound skb. */
1140 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1141 				      const union sctp_addr *paddr,
1142 				      const union sctp_addr *laddr,
1143 				      struct sctp_transport **transportp)
1144 {
1145 	struct sctp_association *asoc;
1146 
1147 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1148 
1149 	/* Further lookup for INIT/INIT-ACK packets.
1150 	 * SCTP Implementors Guide, 2.18 Handling of address
1151 	 * parameters within the INIT or INIT-ACK.
1152 	 */
1153 	if (!asoc)
1154 		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1155 
1156 	return asoc;
1157 }
1158