xref: /linux/net/sctp/input.c (revision 6607aa6f6b68fc9b5955755f1b1be125cf2a9d03)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 International Business Machines, Corp.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions handle all input from the IP layer into SCTP.
13  *
14  * Please send any bug reports or fixes you make to the
15  * email address(es):
16  *    lksctp developers <linux-sctp@vger.kernel.org>
17  *
18  * Written or modified by:
19  *    La Monte H.P. Yarroll <piggy@acm.org>
20  *    Karl Knutson <karl@athena.chicago.il.us>
21  *    Xingang Guo <xingang.guo@intel.com>
22  *    Jon Grimm <jgrimm@us.ibm.com>
23  *    Hui Huang <hui.huang@nokia.com>
24  *    Daisy Chang <daisyc@us.ibm.com>
25  *    Sridhar Samudrala <sri@us.ibm.com>
26  *    Ardelle Fan <ardelle.fan@intel.com>
27  */
28 
29 #include <linux/types.h>
30 #include <linux/list.h> /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/time.h> /* For struct timeval */
34 #include <linux/slab.h>
35 #include <net/ip.h>
36 #include <net/icmp.h>
37 #include <net/snmp.h>
38 #include <net/sock.h>
39 #include <net/xfrm.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/sm.h>
42 #include <net/sctp/checksum.h>
43 #include <net/net_namespace.h>
44 #include <linux/rhashtable.h>
45 #include <net/sock_reuseport.h>
46 
47 /* Forward declarations for internal helpers. */
48 static int sctp_rcv_ootb(struct sk_buff *);
49 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
50 				      struct sk_buff *skb,
51 				      const union sctp_addr *paddr,
52 				      const union sctp_addr *laddr,
53 				      struct sctp_transport **transportp);
54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
55 					struct net *net, struct sk_buff *skb,
56 					const union sctp_addr *laddr,
57 					const union sctp_addr *daddr);
58 static struct sctp_association *__sctp_lookup_association(
59 					struct net *net,
60 					const union sctp_addr *local,
61 					const union sctp_addr *peer,
62 					struct sctp_transport **pt);
63 
64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
65 
66 
67 /* Calculate the SCTP checksum of an SCTP packet.  */
68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
69 {
70 	struct sctphdr *sh = sctp_hdr(skb);
71 	__le32 cmp = sh->checksum;
72 	__le32 val = sctp_compute_cksum(skb, 0);
73 
74 	if (val != cmp) {
75 		/* CRC failure, dump it. */
76 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
77 		return -1;
78 	}
79 	return 0;
80 }
81 
82 /*
83  * This is the routine which IP calls when receiving an SCTP packet.
84  */
85 int sctp_rcv(struct sk_buff *skb)
86 {
87 	struct sock *sk;
88 	struct sctp_association *asoc;
89 	struct sctp_endpoint *ep = NULL;
90 	struct sctp_ep_common *rcvr;
91 	struct sctp_transport *transport = NULL;
92 	struct sctp_chunk *chunk;
93 	union sctp_addr src;
94 	union sctp_addr dest;
95 	int family;
96 	struct sctp_af *af;
97 	struct net *net = dev_net(skb->dev);
98 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
99 
100 	if (skb->pkt_type != PACKET_HOST)
101 		goto discard_it;
102 
103 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
104 
105 	/* If packet is too small to contain a single chunk, let's not
106 	 * waste time on it anymore.
107 	 */
108 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
109 		       skb_transport_offset(skb))
110 		goto discard_it;
111 
112 	/* If the packet is fragmented and we need to do crc checking,
113 	 * it's better to just linearize it otherwise crc computing
114 	 * takes longer.
115 	 */
116 	if ((!is_gso && skb_linearize(skb)) ||
117 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
118 		goto discard_it;
119 
120 	/* Pull up the IP header. */
121 	__skb_pull(skb, skb_transport_offset(skb));
122 
123 	skb->csum_valid = 0; /* Previous value not applicable */
124 	if (skb_csum_unnecessary(skb))
125 		__skb_decr_checksum_unnecessary(skb);
126 	else if (!sctp_checksum_disable &&
127 		 !is_gso &&
128 		 sctp_rcv_checksum(net, skb) < 0)
129 		goto discard_it;
130 	skb->csum_valid = 1;
131 
132 	__skb_pull(skb, sizeof(struct sctphdr));
133 
134 	family = ipver2af(ip_hdr(skb)->version);
135 	af = sctp_get_af_specific(family);
136 	if (unlikely(!af))
137 		goto discard_it;
138 	SCTP_INPUT_CB(skb)->af = af;
139 
140 	/* Initialize local addresses for lookups. */
141 	af->from_skb(&src, skb, 1);
142 	af->from_skb(&dest, skb, 0);
143 
144 	/* If the packet is to or from a non-unicast address,
145 	 * silently discard the packet.
146 	 *
147 	 * This is not clearly defined in the RFC except in section
148 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
149 	 * Transmission Protocol" 2.1, "It is important to note that the
150 	 * IP address of an SCTP transport address must be a routable
151 	 * unicast address.  In other words, IP multicast addresses and
152 	 * IP broadcast addresses cannot be used in an SCTP transport
153 	 * address."
154 	 */
155 	if (!af->addr_valid(&src, NULL, skb) ||
156 	    !af->addr_valid(&dest, NULL, skb))
157 		goto discard_it;
158 
159 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
160 
161 	if (!asoc)
162 		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
163 
164 	/* Retrieve the common input handling substructure. */
165 	rcvr = asoc ? &asoc->base : &ep->base;
166 	sk = rcvr->sk;
167 
168 	/*
169 	 * If a frame arrives on an interface and the receiving socket is
170 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
171 	 */
172 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
173 		if (transport) {
174 			sctp_transport_put(transport);
175 			asoc = NULL;
176 			transport = NULL;
177 		} else {
178 			sctp_endpoint_put(ep);
179 			ep = NULL;
180 		}
181 		sk = net->sctp.ctl_sock;
182 		ep = sctp_sk(sk)->ep;
183 		sctp_endpoint_hold(ep);
184 		rcvr = &ep->base;
185 	}
186 
187 	/*
188 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
189 	 * An SCTP packet is called an "out of the blue" (OOTB)
190 	 * packet if it is correctly formed, i.e., passed the
191 	 * receiver's checksum check, but the receiver is not
192 	 * able to identify the association to which this
193 	 * packet belongs.
194 	 */
195 	if (!asoc) {
196 		if (sctp_rcv_ootb(skb)) {
197 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
198 			goto discard_release;
199 		}
200 	}
201 
202 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
203 		goto discard_release;
204 	nf_reset_ct(skb);
205 
206 	if (sk_filter(sk, skb))
207 		goto discard_release;
208 
209 	/* Create an SCTP packet structure. */
210 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
211 	if (!chunk)
212 		goto discard_release;
213 	SCTP_INPUT_CB(skb)->chunk = chunk;
214 
215 	/* Remember what endpoint is to handle this packet. */
216 	chunk->rcvr = rcvr;
217 
218 	/* Remember the SCTP header. */
219 	chunk->sctp_hdr = sctp_hdr(skb);
220 
221 	/* Set the source and destination addresses of the incoming chunk.  */
222 	sctp_init_addrs(chunk, &src, &dest);
223 
224 	/* Remember where we came from.  */
225 	chunk->transport = transport;
226 
227 	/* Acquire access to the sock lock. Note: We are safe from other
228 	 * bottom halves on this lock, but a user may be in the lock too,
229 	 * so check if it is busy.
230 	 */
231 	bh_lock_sock(sk);
232 
233 	if (sk != rcvr->sk) {
234 		/* Our cached sk is different from the rcvr->sk.  This is
235 		 * because migrate()/accept() may have moved the association
236 		 * to a new socket and released all the sockets.  So now we
237 		 * are holding a lock on the old socket while the user may
238 		 * be doing something with the new socket.  Switch our veiw
239 		 * of the current sk.
240 		 */
241 		bh_unlock_sock(sk);
242 		sk = rcvr->sk;
243 		bh_lock_sock(sk);
244 	}
245 
246 	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
247 		if (sctp_add_backlog(sk, skb)) {
248 			bh_unlock_sock(sk);
249 			sctp_chunk_free(chunk);
250 			skb = NULL; /* sctp_chunk_free already freed the skb */
251 			goto discard_release;
252 		}
253 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
254 	} else {
255 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
256 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
257 	}
258 
259 	bh_unlock_sock(sk);
260 
261 	/* Release the asoc/ep ref we took in the lookup calls. */
262 	if (transport)
263 		sctp_transport_put(transport);
264 	else
265 		sctp_endpoint_put(ep);
266 
267 	return 0;
268 
269 discard_it:
270 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
271 	kfree_skb(skb);
272 	return 0;
273 
274 discard_release:
275 	/* Release the asoc/ep ref we took in the lookup calls. */
276 	if (transport)
277 		sctp_transport_put(transport);
278 	else
279 		sctp_endpoint_put(ep);
280 
281 	goto discard_it;
282 }
283 
284 /* Process the backlog queue of the socket.  Every skb on
285  * the backlog holds a ref on an association or endpoint.
286  * We hold this ref throughout the state machine to make
287  * sure that the structure we need is still around.
288  */
289 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
290 {
291 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
292 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
293 	struct sctp_transport *t = chunk->transport;
294 	struct sctp_ep_common *rcvr = NULL;
295 	int backloged = 0;
296 
297 	rcvr = chunk->rcvr;
298 
299 	/* If the rcvr is dead then the association or endpoint
300 	 * has been deleted and we can safely drop the chunk
301 	 * and refs that we are holding.
302 	 */
303 	if (rcvr->dead) {
304 		sctp_chunk_free(chunk);
305 		goto done;
306 	}
307 
308 	if (unlikely(rcvr->sk != sk)) {
309 		/* In this case, the association moved from one socket to
310 		 * another.  We are currently sitting on the backlog of the
311 		 * old socket, so we need to move.
312 		 * However, since we are here in the process context we
313 		 * need to take make sure that the user doesn't own
314 		 * the new socket when we process the packet.
315 		 * If the new socket is user-owned, queue the chunk to the
316 		 * backlog of the new socket without dropping any refs.
317 		 * Otherwise, we can safely push the chunk on the inqueue.
318 		 */
319 
320 		sk = rcvr->sk;
321 		local_bh_disable();
322 		bh_lock_sock(sk);
323 
324 		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
325 			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
326 				sctp_chunk_free(chunk);
327 			else
328 				backloged = 1;
329 		} else
330 			sctp_inq_push(inqueue, chunk);
331 
332 		bh_unlock_sock(sk);
333 		local_bh_enable();
334 
335 		/* If the chunk was backloged again, don't drop refs */
336 		if (backloged)
337 			return 0;
338 	} else {
339 		if (!sctp_newsk_ready(sk)) {
340 			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
341 				return 0;
342 			sctp_chunk_free(chunk);
343 		} else {
344 			sctp_inq_push(inqueue, chunk);
345 		}
346 	}
347 
348 done:
349 	/* Release the refs we took in sctp_add_backlog */
350 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
351 		sctp_transport_put(t);
352 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
353 		sctp_endpoint_put(sctp_ep(rcvr));
354 	else
355 		BUG();
356 
357 	return 0;
358 }
359 
360 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
361 {
362 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
363 	struct sctp_transport *t = chunk->transport;
364 	struct sctp_ep_common *rcvr = chunk->rcvr;
365 	int ret;
366 
367 	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
368 	if (!ret) {
369 		/* Hold the assoc/ep while hanging on the backlog queue.
370 		 * This way, we know structures we need will not disappear
371 		 * from us
372 		 */
373 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
374 			sctp_transport_hold(t);
375 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
376 			sctp_endpoint_hold(sctp_ep(rcvr));
377 		else
378 			BUG();
379 	}
380 	return ret;
381 
382 }
383 
384 /* Handle icmp frag needed error. */
385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
386 			   struct sctp_transport *t, __u32 pmtu)
387 {
388 	if (!t || (t->pathmtu <= pmtu))
389 		return;
390 
391 	if (sock_owned_by_user(sk)) {
392 		atomic_set(&t->mtu_info, pmtu);
393 		asoc->pmtu_pending = 1;
394 		t->pmtu_pending = 1;
395 		return;
396 	}
397 
398 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
399 		/* We can't allow retransmitting in such case, as the
400 		 * retransmission would be sized just as before, and thus we
401 		 * would get another icmp, and retransmit again.
402 		 */
403 		return;
404 
405 	/* Update transports view of the MTU. Return if no update was needed.
406 	 * If an update wasn't needed/possible, it also doesn't make sense to
407 	 * try to retransmit now.
408 	 */
409 	if (!sctp_transport_update_pmtu(t, pmtu))
410 		return;
411 
412 	/* Update association pmtu. */
413 	sctp_assoc_sync_pmtu(asoc);
414 
415 	/* Retransmit with the new pmtu setting. */
416 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
417 }
418 
419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
420 			struct sk_buff *skb)
421 {
422 	struct dst_entry *dst;
423 
424 	if (sock_owned_by_user(sk) || !t)
425 		return;
426 	dst = sctp_transport_dst_check(t);
427 	if (dst)
428 		dst->ops->redirect(dst, sk, skb);
429 }
430 
431 /*
432  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
433  *
434  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
435  *        or a "Protocol Unreachable" treat this message as an abort
436  *        with the T bit set.
437  *
438  * This function sends an event to the state machine, which will abort the
439  * association.
440  *
441  */
442 void sctp_icmp_proto_unreachable(struct sock *sk,
443 			   struct sctp_association *asoc,
444 			   struct sctp_transport *t)
445 {
446 	if (sock_owned_by_user(sk)) {
447 		if (timer_pending(&t->proto_unreach_timer))
448 			return;
449 		else {
450 			if (!mod_timer(&t->proto_unreach_timer,
451 						jiffies + (HZ/20)))
452 				sctp_transport_hold(t);
453 		}
454 	} else {
455 		struct net *net = sock_net(sk);
456 
457 		pr_debug("%s: unrecognized next header type "
458 			 "encountered!\n", __func__);
459 
460 		if (del_timer(&t->proto_unreach_timer))
461 			sctp_transport_put(t);
462 
463 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
464 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
465 			   asoc->state, asoc->ep, asoc, t,
466 			   GFP_ATOMIC);
467 	}
468 }
469 
470 /* Common lookup code for icmp/icmpv6 error handler. */
471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
472 			     struct sctphdr *sctphdr,
473 			     struct sctp_association **app,
474 			     struct sctp_transport **tpp)
475 {
476 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
477 	union sctp_addr saddr;
478 	union sctp_addr daddr;
479 	struct sctp_af *af;
480 	struct sock *sk = NULL;
481 	struct sctp_association *asoc;
482 	struct sctp_transport *transport = NULL;
483 	__u32 vtag = ntohl(sctphdr->vtag);
484 
485 	*app = NULL; *tpp = NULL;
486 
487 	af = sctp_get_af_specific(family);
488 	if (unlikely(!af)) {
489 		return NULL;
490 	}
491 
492 	/* Initialize local addresses for lookups. */
493 	af->from_skb(&saddr, skb, 1);
494 	af->from_skb(&daddr, skb, 0);
495 
496 	/* Look for an association that matches the incoming ICMP error
497 	 * packet.
498 	 */
499 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
500 	if (!asoc)
501 		return NULL;
502 
503 	sk = asoc->base.sk;
504 
505 	/* RFC 4960, Appendix C. ICMP Handling
506 	 *
507 	 * ICMP6) An implementation MUST validate that the Verification Tag
508 	 * contained in the ICMP message matches the Verification Tag of
509 	 * the peer.  If the Verification Tag is not 0 and does NOT
510 	 * match, discard the ICMP message.  If it is 0 and the ICMP
511 	 * message contains enough bytes to verify that the chunk type is
512 	 * an INIT chunk and that the Initiate Tag matches the tag of the
513 	 * peer, continue with ICMP7.  If the ICMP message is too short
514 	 * or the chunk type or the Initiate Tag does not match, silently
515 	 * discard the packet.
516 	 */
517 	if (vtag == 0) {
518 		/* chunk header + first 4 octects of init header */
519 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
520 					      sizeof(struct sctphdr),
521 					      sizeof(struct sctp_chunkhdr) +
522 					      sizeof(__be32), &_chunkhdr);
523 		if (!chunkhdr ||
524 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
525 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
526 			goto out;
527 
528 	} else if (vtag != asoc->c.peer_vtag) {
529 		goto out;
530 	}
531 
532 	bh_lock_sock(sk);
533 
534 	/* If too many ICMPs get dropped on busy
535 	 * servers this needs to be solved differently.
536 	 */
537 	if (sock_owned_by_user(sk))
538 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
539 
540 	*app = asoc;
541 	*tpp = transport;
542 	return sk;
543 
544 out:
545 	sctp_transport_put(transport);
546 	return NULL;
547 }
548 
549 /* Common cleanup code for icmp/icmpv6 error handler. */
550 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
551 	__releases(&((__sk)->sk_lock.slock))
552 {
553 	bh_unlock_sock(sk);
554 	sctp_transport_put(t);
555 }
556 
557 /*
558  * This routine is called by the ICMP module when it gets some
559  * sort of error condition.  If err < 0 then the socket should
560  * be closed and the error returned to the user.  If err > 0
561  * it's just the icmp type << 8 | icmp code.  After adjustment
562  * header points to the first 8 bytes of the sctp header.  We need
563  * to find the appropriate port.
564  *
565  * The locking strategy used here is very "optimistic". When
566  * someone else accesses the socket the ICMP is just dropped
567  * and for some paths there is no check at all.
568  * A more general error queue to queue errors for later handling
569  * is probably better.
570  *
571  */
572 int sctp_v4_err(struct sk_buff *skb, __u32 info)
573 {
574 	const struct iphdr *iph = (const struct iphdr *)skb->data;
575 	const int ihlen = iph->ihl * 4;
576 	const int type = icmp_hdr(skb)->type;
577 	const int code = icmp_hdr(skb)->code;
578 	struct sock *sk;
579 	struct sctp_association *asoc = NULL;
580 	struct sctp_transport *transport;
581 	struct inet_sock *inet;
582 	__u16 saveip, savesctp;
583 	int err;
584 	struct net *net = dev_net(skb->dev);
585 
586 	/* Fix up skb to look at the embedded net header. */
587 	saveip = skb->network_header;
588 	savesctp = skb->transport_header;
589 	skb_reset_network_header(skb);
590 	skb_set_transport_header(skb, ihlen);
591 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
592 	/* Put back, the original values. */
593 	skb->network_header = saveip;
594 	skb->transport_header = savesctp;
595 	if (!sk) {
596 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
597 		return -ENOENT;
598 	}
599 	/* Warning:  The sock lock is held.  Remember to call
600 	 * sctp_err_finish!
601 	 */
602 
603 	switch (type) {
604 	case ICMP_PARAMETERPROB:
605 		err = EPROTO;
606 		break;
607 	case ICMP_DEST_UNREACH:
608 		if (code > NR_ICMP_UNREACH)
609 			goto out_unlock;
610 
611 		/* PMTU discovery (RFC1191) */
612 		if (ICMP_FRAG_NEEDED == code) {
613 			sctp_icmp_frag_needed(sk, asoc, transport,
614 					      SCTP_TRUNC4(info));
615 			goto out_unlock;
616 		} else {
617 			if (ICMP_PROT_UNREACH == code) {
618 				sctp_icmp_proto_unreachable(sk, asoc,
619 							    transport);
620 				goto out_unlock;
621 			}
622 		}
623 		err = icmp_err_convert[code].errno;
624 		break;
625 	case ICMP_TIME_EXCEEDED:
626 		/* Ignore any time exceeded errors due to fragment reassembly
627 		 * timeouts.
628 		 */
629 		if (ICMP_EXC_FRAGTIME == code)
630 			goto out_unlock;
631 
632 		err = EHOSTUNREACH;
633 		break;
634 	case ICMP_REDIRECT:
635 		sctp_icmp_redirect(sk, transport, skb);
636 		/* Fall through to out_unlock. */
637 	default:
638 		goto out_unlock;
639 	}
640 
641 	inet = inet_sk(sk);
642 	if (!sock_owned_by_user(sk) && inet->recverr) {
643 		sk->sk_err = err;
644 		sk->sk_error_report(sk);
645 	} else {  /* Only an error on timeout */
646 		sk->sk_err_soft = err;
647 	}
648 
649 out_unlock:
650 	sctp_err_finish(sk, transport);
651 	return 0;
652 }
653 
654 /*
655  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
656  *
657  * This function scans all the chunks in the OOTB packet to determine if
658  * the packet should be discarded right away.  If a response might be needed
659  * for this packet, or, if further processing is possible, the packet will
660  * be queued to a proper inqueue for the next phase of handling.
661  *
662  * Output:
663  * Return 0 - If further processing is needed.
664  * Return 1 - If the packet can be discarded right away.
665  */
666 static int sctp_rcv_ootb(struct sk_buff *skb)
667 {
668 	struct sctp_chunkhdr *ch, _ch;
669 	int ch_end, offset = 0;
670 
671 	/* Scan through all the chunks in the packet.  */
672 	do {
673 		/* Make sure we have at least the header there */
674 		if (offset + sizeof(_ch) > skb->len)
675 			break;
676 
677 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
678 
679 		/* Break out if chunk length is less then minimal. */
680 		if (ntohs(ch->length) < sizeof(_ch))
681 			break;
682 
683 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
684 		if (ch_end > skb->len)
685 			break;
686 
687 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
688 		 * receiver MUST silently discard the OOTB packet and take no
689 		 * further action.
690 		 */
691 		if (SCTP_CID_ABORT == ch->type)
692 			goto discard;
693 
694 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
695 		 * chunk, the receiver should silently discard the packet
696 		 * and take no further action.
697 		 */
698 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
699 			goto discard;
700 
701 		/* RFC 4460, 2.11.2
702 		 * This will discard packets with INIT chunk bundled as
703 		 * subsequent chunks in the packet.  When INIT is first,
704 		 * the normal INIT processing will discard the chunk.
705 		 */
706 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
707 			goto discard;
708 
709 		offset = ch_end;
710 	} while (ch_end < skb->len);
711 
712 	return 0;
713 
714 discard:
715 	return 1;
716 }
717 
718 /* Insert endpoint into the hash table.  */
719 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
720 {
721 	struct sock *sk = ep->base.sk;
722 	struct net *net = sock_net(sk);
723 	struct sctp_hashbucket *head;
724 	struct sctp_ep_common *epb;
725 
726 	epb = &ep->base;
727 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
728 	head = &sctp_ep_hashtable[epb->hashent];
729 
730 	if (sk->sk_reuseport) {
731 		bool any = sctp_is_ep_boundall(sk);
732 		struct sctp_ep_common *epb2;
733 		struct list_head *list;
734 		int cnt = 0, err = 1;
735 
736 		list_for_each(list, &ep->base.bind_addr.address_list)
737 			cnt++;
738 
739 		sctp_for_each_hentry(epb2, &head->chain) {
740 			struct sock *sk2 = epb2->sk;
741 
742 			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
743 			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
744 			    !sk2->sk_reuseport)
745 				continue;
746 
747 			err = sctp_bind_addrs_check(sctp_sk(sk2),
748 						    sctp_sk(sk), cnt);
749 			if (!err) {
750 				err = reuseport_add_sock(sk, sk2, any);
751 				if (err)
752 					return err;
753 				break;
754 			} else if (err < 0) {
755 				return err;
756 			}
757 		}
758 
759 		if (err) {
760 			err = reuseport_alloc(sk, any);
761 			if (err)
762 				return err;
763 		}
764 	}
765 
766 	write_lock(&head->lock);
767 	hlist_add_head(&epb->node, &head->chain);
768 	write_unlock(&head->lock);
769 	return 0;
770 }
771 
772 /* Add an endpoint to the hash. Local BH-safe. */
773 int sctp_hash_endpoint(struct sctp_endpoint *ep)
774 {
775 	int err;
776 
777 	local_bh_disable();
778 	err = __sctp_hash_endpoint(ep);
779 	local_bh_enable();
780 
781 	return err;
782 }
783 
784 /* Remove endpoint from the hash table.  */
785 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
786 {
787 	struct sock *sk = ep->base.sk;
788 	struct sctp_hashbucket *head;
789 	struct sctp_ep_common *epb;
790 
791 	epb = &ep->base;
792 
793 	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
794 
795 	head = &sctp_ep_hashtable[epb->hashent];
796 
797 	if (rcu_access_pointer(sk->sk_reuseport_cb))
798 		reuseport_detach_sock(sk);
799 
800 	write_lock(&head->lock);
801 	hlist_del_init(&epb->node);
802 	write_unlock(&head->lock);
803 }
804 
805 /* Remove endpoint from the hash.  Local BH-safe. */
806 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
807 {
808 	local_bh_disable();
809 	__sctp_unhash_endpoint(ep);
810 	local_bh_enable();
811 }
812 
813 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
814 				const union sctp_addr *paddr, __u32 seed)
815 {
816 	__u32 addr;
817 
818 	if (paddr->sa.sa_family == AF_INET6)
819 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
820 	else
821 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
822 
823 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
824 			     (__force __u32)lport, net_hash_mix(net), seed);
825 }
826 
827 /* Look up an endpoint. */
828 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
829 					struct net *net, struct sk_buff *skb,
830 					const union sctp_addr *laddr,
831 					const union sctp_addr *paddr)
832 {
833 	struct sctp_hashbucket *head;
834 	struct sctp_ep_common *epb;
835 	struct sctp_endpoint *ep;
836 	struct sock *sk;
837 	__be16 lport;
838 	int hash;
839 
840 	lport = laddr->v4.sin_port;
841 	hash = sctp_ep_hashfn(net, ntohs(lport));
842 	head = &sctp_ep_hashtable[hash];
843 	read_lock(&head->lock);
844 	sctp_for_each_hentry(epb, &head->chain) {
845 		ep = sctp_ep(epb);
846 		if (sctp_endpoint_is_match(ep, net, laddr))
847 			goto hit;
848 	}
849 
850 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
851 
852 hit:
853 	sk = ep->base.sk;
854 	if (sk->sk_reuseport) {
855 		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
856 
857 		sk = reuseport_select_sock(sk, phash, skb,
858 					   sizeof(struct sctphdr));
859 		if (sk)
860 			ep = sctp_sk(sk)->ep;
861 	}
862 	sctp_endpoint_hold(ep);
863 	read_unlock(&head->lock);
864 	return ep;
865 }
866 
867 /* rhashtable for transport */
868 struct sctp_hash_cmp_arg {
869 	const union sctp_addr	*paddr;
870 	const struct net	*net;
871 	__be16			lport;
872 };
873 
874 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
875 				const void *ptr)
876 {
877 	struct sctp_transport *t = (struct sctp_transport *)ptr;
878 	const struct sctp_hash_cmp_arg *x = arg->key;
879 	int err = 1;
880 
881 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
882 		return err;
883 	if (!sctp_transport_hold(t))
884 		return err;
885 
886 	if (!net_eq(t->asoc->base.net, x->net))
887 		goto out;
888 	if (x->lport != htons(t->asoc->base.bind_addr.port))
889 		goto out;
890 
891 	err = 0;
892 out:
893 	sctp_transport_put(t);
894 	return err;
895 }
896 
897 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
898 {
899 	const struct sctp_transport *t = data;
900 
901 	return sctp_hashfn(t->asoc->base.net,
902 			   htons(t->asoc->base.bind_addr.port),
903 			   &t->ipaddr, seed);
904 }
905 
906 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
907 {
908 	const struct sctp_hash_cmp_arg *x = data;
909 
910 	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
911 }
912 
913 static const struct rhashtable_params sctp_hash_params = {
914 	.head_offset		= offsetof(struct sctp_transport, node),
915 	.hashfn			= sctp_hash_key,
916 	.obj_hashfn		= sctp_hash_obj,
917 	.obj_cmpfn		= sctp_hash_cmp,
918 	.automatic_shrinking	= true,
919 };
920 
921 int sctp_transport_hashtable_init(void)
922 {
923 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
924 }
925 
926 void sctp_transport_hashtable_destroy(void)
927 {
928 	rhltable_destroy(&sctp_transport_hashtable);
929 }
930 
931 int sctp_hash_transport(struct sctp_transport *t)
932 {
933 	struct sctp_transport *transport;
934 	struct rhlist_head *tmp, *list;
935 	struct sctp_hash_cmp_arg arg;
936 	int err;
937 
938 	if (t->asoc->temp)
939 		return 0;
940 
941 	arg.net   = t->asoc->base.net;
942 	arg.paddr = &t->ipaddr;
943 	arg.lport = htons(t->asoc->base.bind_addr.port);
944 
945 	rcu_read_lock();
946 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
947 			       sctp_hash_params);
948 
949 	rhl_for_each_entry_rcu(transport, tmp, list, node)
950 		if (transport->asoc->ep == t->asoc->ep) {
951 			rcu_read_unlock();
952 			return -EEXIST;
953 		}
954 	rcu_read_unlock();
955 
956 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
957 				  &t->node, sctp_hash_params);
958 	if (err)
959 		pr_err_once("insert transport fail, errno %d\n", err);
960 
961 	return err;
962 }
963 
964 void sctp_unhash_transport(struct sctp_transport *t)
965 {
966 	if (t->asoc->temp)
967 		return;
968 
969 	rhltable_remove(&sctp_transport_hashtable, &t->node,
970 			sctp_hash_params);
971 }
972 
973 /* return a transport with holding it */
974 struct sctp_transport *sctp_addrs_lookup_transport(
975 				struct net *net,
976 				const union sctp_addr *laddr,
977 				const union sctp_addr *paddr)
978 {
979 	struct rhlist_head *tmp, *list;
980 	struct sctp_transport *t;
981 	struct sctp_hash_cmp_arg arg = {
982 		.paddr = paddr,
983 		.net   = net,
984 		.lport = laddr->v4.sin_port,
985 	};
986 
987 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
988 			       sctp_hash_params);
989 
990 	rhl_for_each_entry_rcu(t, tmp, list, node) {
991 		if (!sctp_transport_hold(t))
992 			continue;
993 
994 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
995 					 laddr, sctp_sk(t->asoc->base.sk)))
996 			return t;
997 		sctp_transport_put(t);
998 	}
999 
1000 	return NULL;
1001 }
1002 
1003 /* return a transport without holding it, as it's only used under sock lock */
1004 struct sctp_transport *sctp_epaddr_lookup_transport(
1005 				const struct sctp_endpoint *ep,
1006 				const union sctp_addr *paddr)
1007 {
1008 	struct rhlist_head *tmp, *list;
1009 	struct sctp_transport *t;
1010 	struct sctp_hash_cmp_arg arg = {
1011 		.paddr = paddr,
1012 		.net   = ep->base.net,
1013 		.lport = htons(ep->base.bind_addr.port),
1014 	};
1015 
1016 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1017 			       sctp_hash_params);
1018 
1019 	rhl_for_each_entry_rcu(t, tmp, list, node)
1020 		if (ep == t->asoc->ep)
1021 			return t;
1022 
1023 	return NULL;
1024 }
1025 
1026 /* Look up an association. */
1027 static struct sctp_association *__sctp_lookup_association(
1028 					struct net *net,
1029 					const union sctp_addr *local,
1030 					const union sctp_addr *peer,
1031 					struct sctp_transport **pt)
1032 {
1033 	struct sctp_transport *t;
1034 	struct sctp_association *asoc = NULL;
1035 
1036 	t = sctp_addrs_lookup_transport(net, local, peer);
1037 	if (!t)
1038 		goto out;
1039 
1040 	asoc = t->asoc;
1041 	*pt = t;
1042 
1043 out:
1044 	return asoc;
1045 }
1046 
1047 /* Look up an association. protected by RCU read lock */
1048 static
1049 struct sctp_association *sctp_lookup_association(struct net *net,
1050 						 const union sctp_addr *laddr,
1051 						 const union sctp_addr *paddr,
1052 						 struct sctp_transport **transportp)
1053 {
1054 	struct sctp_association *asoc;
1055 
1056 	rcu_read_lock();
1057 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1058 	rcu_read_unlock();
1059 
1060 	return asoc;
1061 }
1062 
1063 /* Is there an association matching the given local and peer addresses? */
1064 bool sctp_has_association(struct net *net,
1065 			  const union sctp_addr *laddr,
1066 			  const union sctp_addr *paddr)
1067 {
1068 	struct sctp_transport *transport;
1069 
1070 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1071 		sctp_transport_put(transport);
1072 		return true;
1073 	}
1074 
1075 	return false;
1076 }
1077 
1078 /*
1079  * SCTP Implementors Guide, 2.18 Handling of address
1080  * parameters within the INIT or INIT-ACK.
1081  *
1082  * D) When searching for a matching TCB upon reception of an INIT
1083  *    or INIT-ACK chunk the receiver SHOULD use not only the
1084  *    source address of the packet (containing the INIT or
1085  *    INIT-ACK) but the receiver SHOULD also use all valid
1086  *    address parameters contained within the chunk.
1087  *
1088  * 2.18.3 Solution description
1089  *
1090  * This new text clearly specifies to an implementor the need
1091  * to look within the INIT or INIT-ACK. Any implementation that
1092  * does not do this, may not be able to establish associations
1093  * in certain circumstances.
1094  *
1095  */
1096 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1097 	struct sk_buff *skb,
1098 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1099 {
1100 	struct sctp_association *asoc;
1101 	union sctp_addr addr;
1102 	union sctp_addr *paddr = &addr;
1103 	struct sctphdr *sh = sctp_hdr(skb);
1104 	union sctp_params params;
1105 	struct sctp_init_chunk *init;
1106 	struct sctp_af *af;
1107 
1108 	/*
1109 	 * This code will NOT touch anything inside the chunk--it is
1110 	 * strictly READ-ONLY.
1111 	 *
1112 	 * RFC 2960 3  SCTP packet Format
1113 	 *
1114 	 * Multiple chunks can be bundled into one SCTP packet up to
1115 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1116 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1117 	 * other chunk in a packet.  See Section 6.10 for more details
1118 	 * on chunk bundling.
1119 	 */
1120 
1121 	/* Find the start of the TLVs and the end of the chunk.  This is
1122 	 * the region we search for address parameters.
1123 	 */
1124 	init = (struct sctp_init_chunk *)skb->data;
1125 
1126 	/* Walk the parameters looking for embedded addresses. */
1127 	sctp_walk_params(params, init, init_hdr.params) {
1128 
1129 		/* Note: Ignoring hostname addresses. */
1130 		af = sctp_get_af_specific(param_type2af(params.p->type));
1131 		if (!af)
1132 			continue;
1133 
1134 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1135 
1136 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1137 		if (asoc)
1138 			return asoc;
1139 	}
1140 
1141 	return NULL;
1142 }
1143 
1144 /* ADD-IP, Section 5.2
1145  * When an endpoint receives an ASCONF Chunk from the remote peer
1146  * special procedures may be needed to identify the association the
1147  * ASCONF Chunk is associated with. To properly find the association
1148  * the following procedures SHOULD be followed:
1149  *
1150  * D2) If the association is not found, use the address found in the
1151  * Address Parameter TLV combined with the port number found in the
1152  * SCTP common header. If found proceed to rule D4.
1153  *
1154  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1155  * address found in the ASCONF Address Parameter TLV of each of the
1156  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1157  */
1158 static struct sctp_association *__sctp_rcv_asconf_lookup(
1159 					struct net *net,
1160 					struct sctp_chunkhdr *ch,
1161 					const union sctp_addr *laddr,
1162 					__be16 peer_port,
1163 					struct sctp_transport **transportp)
1164 {
1165 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1166 	struct sctp_af *af;
1167 	union sctp_addr_param *param;
1168 	union sctp_addr paddr;
1169 
1170 	/* Skip over the ADDIP header and find the Address parameter */
1171 	param = (union sctp_addr_param *)(asconf + 1);
1172 
1173 	af = sctp_get_af_specific(param_type2af(param->p.type));
1174 	if (unlikely(!af))
1175 		return NULL;
1176 
1177 	af->from_addr_param(&paddr, param, peer_port, 0);
1178 
1179 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1180 }
1181 
1182 
1183 /* SCTP-AUTH, Section 6.3:
1184 *    If the receiver does not find a STCB for a packet containing an AUTH
1185 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1186 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1187 *    association.
1188 *
1189 * This means that any chunks that can help us identify the association need
1190 * to be looked at to find this association.
1191 */
1192 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1193 				      struct sk_buff *skb,
1194 				      const union sctp_addr *laddr,
1195 				      struct sctp_transport **transportp)
1196 {
1197 	struct sctp_association *asoc = NULL;
1198 	struct sctp_chunkhdr *ch;
1199 	int have_auth = 0;
1200 	unsigned int chunk_num = 1;
1201 	__u8 *ch_end;
1202 
1203 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1204 	 * to help us find the association.
1205 	 */
1206 	ch = (struct sctp_chunkhdr *)skb->data;
1207 	do {
1208 		/* Break out if chunk length is less then minimal. */
1209 		if (ntohs(ch->length) < sizeof(*ch))
1210 			break;
1211 
1212 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1213 		if (ch_end > skb_tail_pointer(skb))
1214 			break;
1215 
1216 		switch (ch->type) {
1217 		case SCTP_CID_AUTH:
1218 			have_auth = chunk_num;
1219 			break;
1220 
1221 		case SCTP_CID_COOKIE_ECHO:
1222 			/* If a packet arrives containing an AUTH chunk as
1223 			 * a first chunk, a COOKIE-ECHO chunk as the second
1224 			 * chunk, and possibly more chunks after them, and
1225 			 * the receiver does not have an STCB for that
1226 			 * packet, then authentication is based on
1227 			 * the contents of the COOKIE- ECHO chunk.
1228 			 */
1229 			if (have_auth == 1 && chunk_num == 2)
1230 				return NULL;
1231 			break;
1232 
1233 		case SCTP_CID_ASCONF:
1234 			if (have_auth || net->sctp.addip_noauth)
1235 				asoc = __sctp_rcv_asconf_lookup(
1236 						net, ch, laddr,
1237 						sctp_hdr(skb)->source,
1238 						transportp);
1239 		default:
1240 			break;
1241 		}
1242 
1243 		if (asoc)
1244 			break;
1245 
1246 		ch = (struct sctp_chunkhdr *)ch_end;
1247 		chunk_num++;
1248 	} while (ch_end < skb_tail_pointer(skb));
1249 
1250 	return asoc;
1251 }
1252 
1253 /*
1254  * There are circumstances when we need to look inside the SCTP packet
1255  * for information to help us find the association.   Examples
1256  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1257  * chunks.
1258  */
1259 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1260 				      struct sk_buff *skb,
1261 				      const union sctp_addr *laddr,
1262 				      struct sctp_transport **transportp)
1263 {
1264 	struct sctp_chunkhdr *ch;
1265 
1266 	/* We do not allow GSO frames here as we need to linearize and
1267 	 * then cannot guarantee frame boundaries. This shouldn't be an
1268 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1269 	 * those cannot be on GSO-style anyway.
1270 	 */
1271 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1272 		return NULL;
1273 
1274 	ch = (struct sctp_chunkhdr *)skb->data;
1275 
1276 	/* The code below will attempt to walk the chunk and extract
1277 	 * parameter information.  Before we do that, we need to verify
1278 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1279 	 * walk off the end.
1280 	 */
1281 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1282 		return NULL;
1283 
1284 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1285 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1286 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1287 
1288 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1289 }
1290 
1291 /* Lookup an association for an inbound skb. */
1292 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1293 				      struct sk_buff *skb,
1294 				      const union sctp_addr *paddr,
1295 				      const union sctp_addr *laddr,
1296 				      struct sctp_transport **transportp)
1297 {
1298 	struct sctp_association *asoc;
1299 
1300 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1301 	if (asoc)
1302 		goto out;
1303 
1304 	/* Further lookup for INIT/INIT-ACK packets.
1305 	 * SCTP Implementors Guide, 2.18 Handling of address
1306 	 * parameters within the INIT or INIT-ACK.
1307 	 */
1308 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1309 	if (asoc)
1310 		goto out;
1311 
1312 	if (paddr->sa.sa_family == AF_INET)
1313 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1314 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1315 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1316 	else
1317 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1318 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1319 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1320 
1321 out:
1322 	return asoc;
1323 }
1324