1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, write to 27 * the Free Software Foundation, 59 Temple Place - Suite 330, 28 * Boston, MA 02111-1307, USA. 29 * 30 * Please send any bug reports or fixes you make to the 31 * email address(es): 32 * lksctp developers <lksctp-developers@lists.sourceforge.net> 33 * 34 * Or submit a bug report through the following website: 35 * http://www.sf.net/projects/lksctp 36 * 37 * Written or modified by: 38 * La Monte H.P. Yarroll <piggy@acm.org> 39 * Karl Knutson <karl@athena.chicago.il.us> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Hui Huang <hui.huang@nokia.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/list.h> /* For struct list_head */ 53 #include <linux/socket.h> 54 #include <linux/ip.h> 55 #include <linux/time.h> /* For struct timeval */ 56 #include <linux/slab.h> 57 #include <net/ip.h> 58 #include <net/icmp.h> 59 #include <net/snmp.h> 60 #include <net/sock.h> 61 #include <net/xfrm.h> 62 #include <net/sctp/sctp.h> 63 #include <net/sctp/sm.h> 64 #include <net/sctp/checksum.h> 65 #include <net/net_namespace.h> 66 67 /* Forward declarations for internal helpers. */ 68 static int sctp_rcv_ootb(struct sk_buff *); 69 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 70 const union sctp_addr *laddr, 71 const union sctp_addr *paddr, 72 struct sctp_transport **transportp); 73 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr); 74 static struct sctp_association *__sctp_lookup_association( 75 const union sctp_addr *local, 76 const union sctp_addr *peer, 77 struct sctp_transport **pt); 78 79 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 80 81 82 /* Calculate the SCTP checksum of an SCTP packet. */ 83 static inline int sctp_rcv_checksum(struct sk_buff *skb) 84 { 85 struct sctphdr *sh = sctp_hdr(skb); 86 __le32 cmp = sh->checksum; 87 struct sk_buff *list; 88 __le32 val; 89 __u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); 90 91 skb_walk_frags(skb, list) 92 tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), 93 tmp); 94 95 val = sctp_end_cksum(tmp); 96 97 if (val != cmp) { 98 /* CRC failure, dump it. */ 99 SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS); 100 return -1; 101 } 102 return 0; 103 } 104 105 struct sctp_input_cb { 106 union { 107 struct inet_skb_parm h4; 108 #if IS_ENABLED(CONFIG_IPV6) 109 struct inet6_skb_parm h6; 110 #endif 111 } header; 112 struct sctp_chunk *chunk; 113 }; 114 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 115 116 /* 117 * This is the routine which IP calls when receiving an SCTP packet. 118 */ 119 int sctp_rcv(struct sk_buff *skb) 120 { 121 struct sock *sk; 122 struct sctp_association *asoc; 123 struct sctp_endpoint *ep = NULL; 124 struct sctp_ep_common *rcvr; 125 struct sctp_transport *transport = NULL; 126 struct sctp_chunk *chunk; 127 struct sctphdr *sh; 128 union sctp_addr src; 129 union sctp_addr dest; 130 int family; 131 struct sctp_af *af; 132 133 if (skb->pkt_type!=PACKET_HOST) 134 goto discard_it; 135 136 SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); 137 138 if (skb_linearize(skb)) 139 goto discard_it; 140 141 sh = sctp_hdr(skb); 142 143 /* Pull up the IP and SCTP headers. */ 144 __skb_pull(skb, skb_transport_offset(skb)); 145 if (skb->len < sizeof(struct sctphdr)) 146 goto discard_it; 147 if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) && 148 sctp_rcv_checksum(skb) < 0) 149 goto discard_it; 150 151 skb_pull(skb, sizeof(struct sctphdr)); 152 153 /* Make sure we at least have chunk headers worth of data left. */ 154 if (skb->len < sizeof(struct sctp_chunkhdr)) 155 goto discard_it; 156 157 family = ipver2af(ip_hdr(skb)->version); 158 af = sctp_get_af_specific(family); 159 if (unlikely(!af)) 160 goto discard_it; 161 162 /* Initialize local addresses for lookups. */ 163 af->from_skb(&src, skb, 1); 164 af->from_skb(&dest, skb, 0); 165 166 /* If the packet is to or from a non-unicast address, 167 * silently discard the packet. 168 * 169 * This is not clearly defined in the RFC except in section 170 * 8.4 - OOTB handling. However, based on the book "Stream Control 171 * Transmission Protocol" 2.1, "It is important to note that the 172 * IP address of an SCTP transport address must be a routable 173 * unicast address. In other words, IP multicast addresses and 174 * IP broadcast addresses cannot be used in an SCTP transport 175 * address." 176 */ 177 if (!af->addr_valid(&src, NULL, skb) || 178 !af->addr_valid(&dest, NULL, skb)) 179 goto discard_it; 180 181 asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); 182 183 if (!asoc) 184 ep = __sctp_rcv_lookup_endpoint(&dest); 185 186 /* Retrieve the common input handling substructure. */ 187 rcvr = asoc ? &asoc->base : &ep->base; 188 sk = rcvr->sk; 189 190 /* 191 * If a frame arrives on an interface and the receiving socket is 192 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 193 */ 194 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) 195 { 196 if (asoc) { 197 sctp_association_put(asoc); 198 asoc = NULL; 199 } else { 200 sctp_endpoint_put(ep); 201 ep = NULL; 202 } 203 sk = sctp_get_ctl_sock(); 204 ep = sctp_sk(sk)->ep; 205 sctp_endpoint_hold(ep); 206 rcvr = &ep->base; 207 } 208 209 /* 210 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 211 * An SCTP packet is called an "out of the blue" (OOTB) 212 * packet if it is correctly formed, i.e., passed the 213 * receiver's checksum check, but the receiver is not 214 * able to identify the association to which this 215 * packet belongs. 216 */ 217 if (!asoc) { 218 if (sctp_rcv_ootb(skb)) { 219 SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); 220 goto discard_release; 221 } 222 } 223 224 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 225 goto discard_release; 226 nf_reset(skb); 227 228 if (sk_filter(sk, skb)) 229 goto discard_release; 230 231 /* Create an SCTP packet structure. */ 232 chunk = sctp_chunkify(skb, asoc, sk); 233 if (!chunk) 234 goto discard_release; 235 SCTP_INPUT_CB(skb)->chunk = chunk; 236 237 /* Remember what endpoint is to handle this packet. */ 238 chunk->rcvr = rcvr; 239 240 /* Remember the SCTP header. */ 241 chunk->sctp_hdr = sh; 242 243 /* Set the source and destination addresses of the incoming chunk. */ 244 sctp_init_addrs(chunk, &src, &dest); 245 246 /* Remember where we came from. */ 247 chunk->transport = transport; 248 249 /* Acquire access to the sock lock. Note: We are safe from other 250 * bottom halves on this lock, but a user may be in the lock too, 251 * so check if it is busy. 252 */ 253 sctp_bh_lock_sock(sk); 254 255 if (sk != rcvr->sk) { 256 /* Our cached sk is different from the rcvr->sk. This is 257 * because migrate()/accept() may have moved the association 258 * to a new socket and released all the sockets. So now we 259 * are holding a lock on the old socket while the user may 260 * be doing something with the new socket. Switch our veiw 261 * of the current sk. 262 */ 263 sctp_bh_unlock_sock(sk); 264 sk = rcvr->sk; 265 sctp_bh_lock_sock(sk); 266 } 267 268 if (sock_owned_by_user(sk)) { 269 if (sctp_add_backlog(sk, skb)) { 270 sctp_bh_unlock_sock(sk); 271 sctp_chunk_free(chunk); 272 skb = NULL; /* sctp_chunk_free already freed the skb */ 273 goto discard_release; 274 } 275 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG); 276 } else { 277 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ); 278 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 279 } 280 281 sctp_bh_unlock_sock(sk); 282 283 /* Release the asoc/ep ref we took in the lookup calls. */ 284 if (asoc) 285 sctp_association_put(asoc); 286 else 287 sctp_endpoint_put(ep); 288 289 return 0; 290 291 discard_it: 292 SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS); 293 kfree_skb(skb); 294 return 0; 295 296 discard_release: 297 /* Release the asoc/ep ref we took in the lookup calls. */ 298 if (asoc) 299 sctp_association_put(asoc); 300 else 301 sctp_endpoint_put(ep); 302 303 goto discard_it; 304 } 305 306 /* Process the backlog queue of the socket. Every skb on 307 * the backlog holds a ref on an association or endpoint. 308 * We hold this ref throughout the state machine to make 309 * sure that the structure we need is still around. 310 */ 311 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 312 { 313 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 314 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 315 struct sctp_ep_common *rcvr = NULL; 316 int backloged = 0; 317 318 rcvr = chunk->rcvr; 319 320 /* If the rcvr is dead then the association or endpoint 321 * has been deleted and we can safely drop the chunk 322 * and refs that we are holding. 323 */ 324 if (rcvr->dead) { 325 sctp_chunk_free(chunk); 326 goto done; 327 } 328 329 if (unlikely(rcvr->sk != sk)) { 330 /* In this case, the association moved from one socket to 331 * another. We are currently sitting on the backlog of the 332 * old socket, so we need to move. 333 * However, since we are here in the process context we 334 * need to take make sure that the user doesn't own 335 * the new socket when we process the packet. 336 * If the new socket is user-owned, queue the chunk to the 337 * backlog of the new socket without dropping any refs. 338 * Otherwise, we can safely push the chunk on the inqueue. 339 */ 340 341 sk = rcvr->sk; 342 sctp_bh_lock_sock(sk); 343 344 if (sock_owned_by_user(sk)) { 345 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 346 sctp_chunk_free(chunk); 347 else 348 backloged = 1; 349 } else 350 sctp_inq_push(inqueue, chunk); 351 352 sctp_bh_unlock_sock(sk); 353 354 /* If the chunk was backloged again, don't drop refs */ 355 if (backloged) 356 return 0; 357 } else { 358 sctp_inq_push(inqueue, chunk); 359 } 360 361 done: 362 /* Release the refs we took in sctp_add_backlog */ 363 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 364 sctp_association_put(sctp_assoc(rcvr)); 365 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 366 sctp_endpoint_put(sctp_ep(rcvr)); 367 else 368 BUG(); 369 370 return 0; 371 } 372 373 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 374 { 375 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 376 struct sctp_ep_common *rcvr = chunk->rcvr; 377 int ret; 378 379 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 380 if (!ret) { 381 /* Hold the assoc/ep while hanging on the backlog queue. 382 * This way, we know structures we need will not disappear 383 * from us 384 */ 385 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 386 sctp_association_hold(sctp_assoc(rcvr)); 387 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 388 sctp_endpoint_hold(sctp_ep(rcvr)); 389 else 390 BUG(); 391 } 392 return ret; 393 394 } 395 396 /* Handle icmp frag needed error. */ 397 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 398 struct sctp_transport *t, __u32 pmtu) 399 { 400 if (!t || (t->pathmtu <= pmtu)) 401 return; 402 403 if (sock_owned_by_user(sk)) { 404 asoc->pmtu_pending = 1; 405 t->pmtu_pending = 1; 406 return; 407 } 408 409 if (t->param_flags & SPP_PMTUD_ENABLE) { 410 /* Update transports view of the MTU */ 411 sctp_transport_update_pmtu(sk, t, pmtu); 412 413 /* Update association pmtu. */ 414 sctp_assoc_sync_pmtu(sk, asoc); 415 } 416 417 /* Retransmit with the new pmtu setting. 418 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 419 * Needed will never be sent, but if a message was sent before 420 * PMTU discovery was disabled that was larger than the PMTU, it 421 * would not be fragmented, so it must be re-transmitted fragmented. 422 */ 423 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 424 } 425 426 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 427 struct sk_buff *skb) 428 { 429 struct dst_entry *dst; 430 431 if (!t) 432 return; 433 dst = sctp_transport_dst_check(t); 434 if (dst) 435 dst->ops->redirect(dst, sk, skb); 436 } 437 438 /* 439 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 440 * 441 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 442 * or a "Protocol Unreachable" treat this message as an abort 443 * with the T bit set. 444 * 445 * This function sends an event to the state machine, which will abort the 446 * association. 447 * 448 */ 449 void sctp_icmp_proto_unreachable(struct sock *sk, 450 struct sctp_association *asoc, 451 struct sctp_transport *t) 452 { 453 SCTP_DEBUG_PRINTK("%s\n", __func__); 454 455 if (sock_owned_by_user(sk)) { 456 if (timer_pending(&t->proto_unreach_timer)) 457 return; 458 else { 459 if (!mod_timer(&t->proto_unreach_timer, 460 jiffies + (HZ/20))) 461 sctp_association_hold(asoc); 462 } 463 464 } else { 465 if (timer_pending(&t->proto_unreach_timer) && 466 del_timer(&t->proto_unreach_timer)) 467 sctp_association_put(asoc); 468 469 sctp_do_sm(SCTP_EVENT_T_OTHER, 470 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 471 asoc->state, asoc->ep, asoc, t, 472 GFP_ATOMIC); 473 } 474 } 475 476 /* Common lookup code for icmp/icmpv6 error handler. */ 477 struct sock *sctp_err_lookup(int family, struct sk_buff *skb, 478 struct sctphdr *sctphdr, 479 struct sctp_association **app, 480 struct sctp_transport **tpp) 481 { 482 union sctp_addr saddr; 483 union sctp_addr daddr; 484 struct sctp_af *af; 485 struct sock *sk = NULL; 486 struct sctp_association *asoc; 487 struct sctp_transport *transport = NULL; 488 struct sctp_init_chunk *chunkhdr; 489 __u32 vtag = ntohl(sctphdr->vtag); 490 int len = skb->len - ((void *)sctphdr - (void *)skb->data); 491 492 *app = NULL; *tpp = NULL; 493 494 af = sctp_get_af_specific(family); 495 if (unlikely(!af)) { 496 return NULL; 497 } 498 499 /* Initialize local addresses for lookups. */ 500 af->from_skb(&saddr, skb, 1); 501 af->from_skb(&daddr, skb, 0); 502 503 /* Look for an association that matches the incoming ICMP error 504 * packet. 505 */ 506 asoc = __sctp_lookup_association(&saddr, &daddr, &transport); 507 if (!asoc) 508 return NULL; 509 510 sk = asoc->base.sk; 511 512 /* RFC 4960, Appendix C. ICMP Handling 513 * 514 * ICMP6) An implementation MUST validate that the Verification Tag 515 * contained in the ICMP message matches the Verification Tag of 516 * the peer. If the Verification Tag is not 0 and does NOT 517 * match, discard the ICMP message. If it is 0 and the ICMP 518 * message contains enough bytes to verify that the chunk type is 519 * an INIT chunk and that the Initiate Tag matches the tag of the 520 * peer, continue with ICMP7. If the ICMP message is too short 521 * or the chunk type or the Initiate Tag does not match, silently 522 * discard the packet. 523 */ 524 if (vtag == 0) { 525 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr); 526 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) 527 + sizeof(__be32) || 528 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 529 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { 530 goto out; 531 } 532 } else if (vtag != asoc->c.peer_vtag) { 533 goto out; 534 } 535 536 sctp_bh_lock_sock(sk); 537 538 /* If too many ICMPs get dropped on busy 539 * servers this needs to be solved differently. 540 */ 541 if (sock_owned_by_user(sk)) 542 NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS); 543 544 *app = asoc; 545 *tpp = transport; 546 return sk; 547 548 out: 549 if (asoc) 550 sctp_association_put(asoc); 551 return NULL; 552 } 553 554 /* Common cleanup code for icmp/icmpv6 error handler. */ 555 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 556 { 557 sctp_bh_unlock_sock(sk); 558 if (asoc) 559 sctp_association_put(asoc); 560 } 561 562 /* 563 * This routine is called by the ICMP module when it gets some 564 * sort of error condition. If err < 0 then the socket should 565 * be closed and the error returned to the user. If err > 0 566 * it's just the icmp type << 8 | icmp code. After adjustment 567 * header points to the first 8 bytes of the sctp header. We need 568 * to find the appropriate port. 569 * 570 * The locking strategy used here is very "optimistic". When 571 * someone else accesses the socket the ICMP is just dropped 572 * and for some paths there is no check at all. 573 * A more general error queue to queue errors for later handling 574 * is probably better. 575 * 576 */ 577 void sctp_v4_err(struct sk_buff *skb, __u32 info) 578 { 579 const struct iphdr *iph = (const struct iphdr *)skb->data; 580 const int ihlen = iph->ihl * 4; 581 const int type = icmp_hdr(skb)->type; 582 const int code = icmp_hdr(skb)->code; 583 struct sock *sk; 584 struct sctp_association *asoc = NULL; 585 struct sctp_transport *transport; 586 struct inet_sock *inet; 587 sk_buff_data_t saveip, savesctp; 588 int err; 589 590 if (skb->len < ihlen + 8) { 591 ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS); 592 return; 593 } 594 595 /* Fix up skb to look at the embedded net header. */ 596 saveip = skb->network_header; 597 savesctp = skb->transport_header; 598 skb_reset_network_header(skb); 599 skb_set_transport_header(skb, ihlen); 600 sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 601 /* Put back, the original values. */ 602 skb->network_header = saveip; 603 skb->transport_header = savesctp; 604 if (!sk) { 605 ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS); 606 return; 607 } 608 /* Warning: The sock lock is held. Remember to call 609 * sctp_err_finish! 610 */ 611 612 switch (type) { 613 case ICMP_PARAMETERPROB: 614 err = EPROTO; 615 break; 616 case ICMP_DEST_UNREACH: 617 if (code > NR_ICMP_UNREACH) 618 goto out_unlock; 619 620 /* PMTU discovery (RFC1191) */ 621 if (ICMP_FRAG_NEEDED == code) { 622 sctp_icmp_frag_needed(sk, asoc, transport, info); 623 goto out_unlock; 624 } 625 else { 626 if (ICMP_PROT_UNREACH == code) { 627 sctp_icmp_proto_unreachable(sk, asoc, 628 transport); 629 goto out_unlock; 630 } 631 } 632 err = icmp_err_convert[code].errno; 633 break; 634 case ICMP_TIME_EXCEEDED: 635 /* Ignore any time exceeded errors due to fragment reassembly 636 * timeouts. 637 */ 638 if (ICMP_EXC_FRAGTIME == code) 639 goto out_unlock; 640 641 err = EHOSTUNREACH; 642 break; 643 case ICMP_REDIRECT: 644 sctp_icmp_redirect(sk, transport, skb); 645 err = 0; 646 break; 647 default: 648 goto out_unlock; 649 } 650 651 inet = inet_sk(sk); 652 if (!sock_owned_by_user(sk) && inet->recverr) { 653 sk->sk_err = err; 654 sk->sk_error_report(sk); 655 } else { /* Only an error on timeout */ 656 sk->sk_err_soft = err; 657 } 658 659 out_unlock: 660 sctp_err_finish(sk, asoc); 661 } 662 663 /* 664 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 665 * 666 * This function scans all the chunks in the OOTB packet to determine if 667 * the packet should be discarded right away. If a response might be needed 668 * for this packet, or, if further processing is possible, the packet will 669 * be queued to a proper inqueue for the next phase of handling. 670 * 671 * Output: 672 * Return 0 - If further processing is needed. 673 * Return 1 - If the packet can be discarded right away. 674 */ 675 static int sctp_rcv_ootb(struct sk_buff *skb) 676 { 677 sctp_chunkhdr_t *ch; 678 __u8 *ch_end; 679 680 ch = (sctp_chunkhdr_t *) skb->data; 681 682 /* Scan through all the chunks in the packet. */ 683 do { 684 /* Break out if chunk length is less then minimal. */ 685 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 686 break; 687 688 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 689 if (ch_end > skb_tail_pointer(skb)) 690 break; 691 692 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 693 * receiver MUST silently discard the OOTB packet and take no 694 * further action. 695 */ 696 if (SCTP_CID_ABORT == ch->type) 697 goto discard; 698 699 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 700 * chunk, the receiver should silently discard the packet 701 * and take no further action. 702 */ 703 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 704 goto discard; 705 706 /* RFC 4460, 2.11.2 707 * This will discard packets with INIT chunk bundled as 708 * subsequent chunks in the packet. When INIT is first, 709 * the normal INIT processing will discard the chunk. 710 */ 711 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 712 goto discard; 713 714 ch = (sctp_chunkhdr_t *) ch_end; 715 } while (ch_end < skb_tail_pointer(skb)); 716 717 return 0; 718 719 discard: 720 return 1; 721 } 722 723 /* Insert endpoint into the hash table. */ 724 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 725 { 726 struct sctp_ep_common *epb; 727 struct sctp_hashbucket *head; 728 729 epb = &ep->base; 730 731 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 732 head = &sctp_ep_hashtable[epb->hashent]; 733 734 sctp_write_lock(&head->lock); 735 hlist_add_head(&epb->node, &head->chain); 736 sctp_write_unlock(&head->lock); 737 } 738 739 /* Add an endpoint to the hash. Local BH-safe. */ 740 void sctp_hash_endpoint(struct sctp_endpoint *ep) 741 { 742 sctp_local_bh_disable(); 743 __sctp_hash_endpoint(ep); 744 sctp_local_bh_enable(); 745 } 746 747 /* Remove endpoint from the hash table. */ 748 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 749 { 750 struct sctp_hashbucket *head; 751 struct sctp_ep_common *epb; 752 753 epb = &ep->base; 754 755 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 756 757 head = &sctp_ep_hashtable[epb->hashent]; 758 759 sctp_write_lock(&head->lock); 760 hlist_del_init(&epb->node); 761 sctp_write_unlock(&head->lock); 762 } 763 764 /* Remove endpoint from the hash. Local BH-safe. */ 765 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 766 { 767 sctp_local_bh_disable(); 768 __sctp_unhash_endpoint(ep); 769 sctp_local_bh_enable(); 770 } 771 772 /* Look up an endpoint. */ 773 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr) 774 { 775 struct sctp_hashbucket *head; 776 struct sctp_ep_common *epb; 777 struct sctp_endpoint *ep; 778 struct hlist_node *node; 779 int hash; 780 781 hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port)); 782 head = &sctp_ep_hashtable[hash]; 783 read_lock(&head->lock); 784 sctp_for_each_hentry(epb, node, &head->chain) { 785 ep = sctp_ep(epb); 786 if (sctp_endpoint_is_match(ep, laddr)) 787 goto hit; 788 } 789 790 ep = sctp_sk((sctp_get_ctl_sock()))->ep; 791 792 hit: 793 sctp_endpoint_hold(ep); 794 read_unlock(&head->lock); 795 return ep; 796 } 797 798 /* Insert association into the hash table. */ 799 static void __sctp_hash_established(struct sctp_association *asoc) 800 { 801 struct sctp_ep_common *epb; 802 struct sctp_hashbucket *head; 803 804 epb = &asoc->base; 805 806 /* Calculate which chain this entry will belong to. */ 807 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); 808 809 head = &sctp_assoc_hashtable[epb->hashent]; 810 811 sctp_write_lock(&head->lock); 812 hlist_add_head(&epb->node, &head->chain); 813 sctp_write_unlock(&head->lock); 814 } 815 816 /* Add an association to the hash. Local BH-safe. */ 817 void sctp_hash_established(struct sctp_association *asoc) 818 { 819 if (asoc->temp) 820 return; 821 822 sctp_local_bh_disable(); 823 __sctp_hash_established(asoc); 824 sctp_local_bh_enable(); 825 } 826 827 /* Remove association from the hash table. */ 828 static void __sctp_unhash_established(struct sctp_association *asoc) 829 { 830 struct sctp_hashbucket *head; 831 struct sctp_ep_common *epb; 832 833 epb = &asoc->base; 834 835 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, 836 asoc->peer.port); 837 838 head = &sctp_assoc_hashtable[epb->hashent]; 839 840 sctp_write_lock(&head->lock); 841 hlist_del_init(&epb->node); 842 sctp_write_unlock(&head->lock); 843 } 844 845 /* Remove association from the hash table. Local BH-safe. */ 846 void sctp_unhash_established(struct sctp_association *asoc) 847 { 848 if (asoc->temp) 849 return; 850 851 sctp_local_bh_disable(); 852 __sctp_unhash_established(asoc); 853 sctp_local_bh_enable(); 854 } 855 856 /* Look up an association. */ 857 static struct sctp_association *__sctp_lookup_association( 858 const union sctp_addr *local, 859 const union sctp_addr *peer, 860 struct sctp_transport **pt) 861 { 862 struct sctp_hashbucket *head; 863 struct sctp_ep_common *epb; 864 struct sctp_association *asoc; 865 struct sctp_transport *transport; 866 struct hlist_node *node; 867 int hash; 868 869 /* Optimize here for direct hit, only listening connections can 870 * have wildcards anyways. 871 */ 872 hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port)); 873 head = &sctp_assoc_hashtable[hash]; 874 read_lock(&head->lock); 875 sctp_for_each_hentry(epb, node, &head->chain) { 876 asoc = sctp_assoc(epb); 877 transport = sctp_assoc_is_match(asoc, local, peer); 878 if (transport) 879 goto hit; 880 } 881 882 read_unlock(&head->lock); 883 884 return NULL; 885 886 hit: 887 *pt = transport; 888 sctp_association_hold(asoc); 889 read_unlock(&head->lock); 890 return asoc; 891 } 892 893 /* Look up an association. BH-safe. */ 894 SCTP_STATIC 895 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr, 896 const union sctp_addr *paddr, 897 struct sctp_transport **transportp) 898 { 899 struct sctp_association *asoc; 900 901 sctp_local_bh_disable(); 902 asoc = __sctp_lookup_association(laddr, paddr, transportp); 903 sctp_local_bh_enable(); 904 905 return asoc; 906 } 907 908 /* Is there an association matching the given local and peer addresses? */ 909 int sctp_has_association(const union sctp_addr *laddr, 910 const union sctp_addr *paddr) 911 { 912 struct sctp_association *asoc; 913 struct sctp_transport *transport; 914 915 if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) { 916 sctp_association_put(asoc); 917 return 1; 918 } 919 920 return 0; 921 } 922 923 /* 924 * SCTP Implementors Guide, 2.18 Handling of address 925 * parameters within the INIT or INIT-ACK. 926 * 927 * D) When searching for a matching TCB upon reception of an INIT 928 * or INIT-ACK chunk the receiver SHOULD use not only the 929 * source address of the packet (containing the INIT or 930 * INIT-ACK) but the receiver SHOULD also use all valid 931 * address parameters contained within the chunk. 932 * 933 * 2.18.3 Solution description 934 * 935 * This new text clearly specifies to an implementor the need 936 * to look within the INIT or INIT-ACK. Any implementation that 937 * does not do this, may not be able to establish associations 938 * in certain circumstances. 939 * 940 */ 941 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb, 942 const union sctp_addr *laddr, struct sctp_transport **transportp) 943 { 944 struct sctp_association *asoc; 945 union sctp_addr addr; 946 union sctp_addr *paddr = &addr; 947 struct sctphdr *sh = sctp_hdr(skb); 948 union sctp_params params; 949 sctp_init_chunk_t *init; 950 struct sctp_transport *transport; 951 struct sctp_af *af; 952 953 /* 954 * This code will NOT touch anything inside the chunk--it is 955 * strictly READ-ONLY. 956 * 957 * RFC 2960 3 SCTP packet Format 958 * 959 * Multiple chunks can be bundled into one SCTP packet up to 960 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 961 * COMPLETE chunks. These chunks MUST NOT be bundled with any 962 * other chunk in a packet. See Section 6.10 for more details 963 * on chunk bundling. 964 */ 965 966 /* Find the start of the TLVs and the end of the chunk. This is 967 * the region we search for address parameters. 968 */ 969 init = (sctp_init_chunk_t *)skb->data; 970 971 /* Walk the parameters looking for embedded addresses. */ 972 sctp_walk_params(params, init, init_hdr.params) { 973 974 /* Note: Ignoring hostname addresses. */ 975 af = sctp_get_af_specific(param_type2af(params.p->type)); 976 if (!af) 977 continue; 978 979 af->from_addr_param(paddr, params.addr, sh->source, 0); 980 981 asoc = __sctp_lookup_association(laddr, paddr, &transport); 982 if (asoc) 983 return asoc; 984 } 985 986 return NULL; 987 } 988 989 /* ADD-IP, Section 5.2 990 * When an endpoint receives an ASCONF Chunk from the remote peer 991 * special procedures may be needed to identify the association the 992 * ASCONF Chunk is associated with. To properly find the association 993 * the following procedures SHOULD be followed: 994 * 995 * D2) If the association is not found, use the address found in the 996 * Address Parameter TLV combined with the port number found in the 997 * SCTP common header. If found proceed to rule D4. 998 * 999 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1000 * address found in the ASCONF Address Parameter TLV of each of the 1001 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1002 */ 1003 static struct sctp_association *__sctp_rcv_asconf_lookup( 1004 sctp_chunkhdr_t *ch, 1005 const union sctp_addr *laddr, 1006 __be16 peer_port, 1007 struct sctp_transport **transportp) 1008 { 1009 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; 1010 struct sctp_af *af; 1011 union sctp_addr_param *param; 1012 union sctp_addr paddr; 1013 1014 /* Skip over the ADDIP header and find the Address parameter */ 1015 param = (union sctp_addr_param *)(asconf + 1); 1016 1017 af = sctp_get_af_specific(param_type2af(param->p.type)); 1018 if (unlikely(!af)) 1019 return NULL; 1020 1021 af->from_addr_param(&paddr, param, peer_port, 0); 1022 1023 return __sctp_lookup_association(laddr, &paddr, transportp); 1024 } 1025 1026 1027 /* SCTP-AUTH, Section 6.3: 1028 * If the receiver does not find a STCB for a packet containing an AUTH 1029 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1030 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1031 * association. 1032 * 1033 * This means that any chunks that can help us identify the association need 1034 * to be looked at to find this association. 1035 */ 1036 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb, 1037 const union sctp_addr *laddr, 1038 struct sctp_transport **transportp) 1039 { 1040 struct sctp_association *asoc = NULL; 1041 sctp_chunkhdr_t *ch; 1042 int have_auth = 0; 1043 unsigned int chunk_num = 1; 1044 __u8 *ch_end; 1045 1046 /* Walk through the chunks looking for AUTH or ASCONF chunks 1047 * to help us find the association. 1048 */ 1049 ch = (sctp_chunkhdr_t *) skb->data; 1050 do { 1051 /* Break out if chunk length is less then minimal. */ 1052 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 1053 break; 1054 1055 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 1056 if (ch_end > skb_tail_pointer(skb)) 1057 break; 1058 1059 switch(ch->type) { 1060 case SCTP_CID_AUTH: 1061 have_auth = chunk_num; 1062 break; 1063 1064 case SCTP_CID_COOKIE_ECHO: 1065 /* If a packet arrives containing an AUTH chunk as 1066 * a first chunk, a COOKIE-ECHO chunk as the second 1067 * chunk, and possibly more chunks after them, and 1068 * the receiver does not have an STCB for that 1069 * packet, then authentication is based on 1070 * the contents of the COOKIE- ECHO chunk. 1071 */ 1072 if (have_auth == 1 && chunk_num == 2) 1073 return NULL; 1074 break; 1075 1076 case SCTP_CID_ASCONF: 1077 if (have_auth || sctp_addip_noauth) 1078 asoc = __sctp_rcv_asconf_lookup(ch, laddr, 1079 sctp_hdr(skb)->source, 1080 transportp); 1081 default: 1082 break; 1083 } 1084 1085 if (asoc) 1086 break; 1087 1088 ch = (sctp_chunkhdr_t *) ch_end; 1089 chunk_num++; 1090 } while (ch_end < skb_tail_pointer(skb)); 1091 1092 return asoc; 1093 } 1094 1095 /* 1096 * There are circumstances when we need to look inside the SCTP packet 1097 * for information to help us find the association. Examples 1098 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1099 * chunks. 1100 */ 1101 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb, 1102 const union sctp_addr *laddr, 1103 struct sctp_transport **transportp) 1104 { 1105 sctp_chunkhdr_t *ch; 1106 1107 ch = (sctp_chunkhdr_t *) skb->data; 1108 1109 /* The code below will attempt to walk the chunk and extract 1110 * parameter information. Before we do that, we need to verify 1111 * that the chunk length doesn't cause overflow. Otherwise, we'll 1112 * walk off the end. 1113 */ 1114 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 1115 return NULL; 1116 1117 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1118 switch (ch->type) { 1119 case SCTP_CID_INIT: 1120 case SCTP_CID_INIT_ACK: 1121 return __sctp_rcv_init_lookup(skb, laddr, transportp); 1122 break; 1123 1124 default: 1125 return __sctp_rcv_walk_lookup(skb, laddr, transportp); 1126 break; 1127 } 1128 1129 1130 return NULL; 1131 } 1132 1133 /* Lookup an association for an inbound skb. */ 1134 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 1135 const union sctp_addr *paddr, 1136 const union sctp_addr *laddr, 1137 struct sctp_transport **transportp) 1138 { 1139 struct sctp_association *asoc; 1140 1141 asoc = __sctp_lookup_association(laddr, paddr, transportp); 1142 1143 /* Further lookup for INIT/INIT-ACK packets. 1144 * SCTP Implementors Guide, 2.18 Handling of address 1145 * parameters within the INIT or INIT-ACK. 1146 */ 1147 if (!asoc) 1148 asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp); 1149 1150 return asoc; 1151 } 1152