1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, see 27 * <http://www.gnu.org/licenses/>. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Jon Grimm <jgrimm@us.ibm.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Sridhar Samudrala <sri@us.ibm.com> 41 * Ardelle Fan <ardelle.fan@intel.com> 42 */ 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/time.h> /* For struct timeval */ 49 #include <linux/slab.h> 50 #include <net/ip.h> 51 #include <net/icmp.h> 52 #include <net/snmp.h> 53 #include <net/sock.h> 54 #include <net/xfrm.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 #include <net/sctp/checksum.h> 58 #include <net/net_namespace.h> 59 60 /* Forward declarations for internal helpers. */ 61 static int sctp_rcv_ootb(struct sk_buff *); 62 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 63 struct sk_buff *skb, 64 const union sctp_addr *paddr, 65 const union sctp_addr *laddr, 66 struct sctp_transport **transportp); 67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 68 const union sctp_addr *laddr); 69 static struct sctp_association *__sctp_lookup_association( 70 struct net *net, 71 const union sctp_addr *local, 72 const union sctp_addr *peer, 73 struct sctp_transport **pt); 74 75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 76 77 78 /* Calculate the SCTP checksum of an SCTP packet. */ 79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 80 { 81 struct sctphdr *sh = sctp_hdr(skb); 82 __le32 cmp = sh->checksum; 83 __le32 val = sctp_compute_cksum(skb, 0); 84 85 if (val != cmp) { 86 /* CRC failure, dump it. */ 87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 88 return -1; 89 } 90 return 0; 91 } 92 93 /* 94 * This is the routine which IP calls when receiving an SCTP packet. 95 */ 96 int sctp_rcv(struct sk_buff *skb) 97 { 98 struct sock *sk; 99 struct sctp_association *asoc; 100 struct sctp_endpoint *ep = NULL; 101 struct sctp_ep_common *rcvr; 102 struct sctp_transport *transport = NULL; 103 struct sctp_chunk *chunk; 104 union sctp_addr src; 105 union sctp_addr dest; 106 int family; 107 struct sctp_af *af; 108 struct net *net = dev_net(skb->dev); 109 110 if (skb->pkt_type != PACKET_HOST) 111 goto discard_it; 112 113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 114 115 /* If packet is too small to contain a single chunk, let's not 116 * waste time on it anymore. 117 */ 118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 119 skb_transport_offset(skb)) 120 goto discard_it; 121 122 if (!pskb_may_pull(skb, sizeof(struct sctphdr))) 123 goto discard_it; 124 125 /* Pull up the IP header. */ 126 __skb_pull(skb, skb_transport_offset(skb)); 127 128 skb->csum_valid = 0; /* Previous value not applicable */ 129 if (skb_csum_unnecessary(skb)) 130 __skb_decr_checksum_unnecessary(skb); 131 else if (!sctp_checksum_disable && 132 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) && 133 sctp_rcv_checksum(net, skb) < 0) 134 goto discard_it; 135 skb->csum_valid = 1; 136 137 __skb_pull(skb, sizeof(struct sctphdr)); 138 139 family = ipver2af(ip_hdr(skb)->version); 140 af = sctp_get_af_specific(family); 141 if (unlikely(!af)) 142 goto discard_it; 143 SCTP_INPUT_CB(skb)->af = af; 144 145 /* Initialize local addresses for lookups. */ 146 af->from_skb(&src, skb, 1); 147 af->from_skb(&dest, skb, 0); 148 149 /* If the packet is to or from a non-unicast address, 150 * silently discard the packet. 151 * 152 * This is not clearly defined in the RFC except in section 153 * 8.4 - OOTB handling. However, based on the book "Stream Control 154 * Transmission Protocol" 2.1, "It is important to note that the 155 * IP address of an SCTP transport address must be a routable 156 * unicast address. In other words, IP multicast addresses and 157 * IP broadcast addresses cannot be used in an SCTP transport 158 * address." 159 */ 160 if (!af->addr_valid(&src, NULL, skb) || 161 !af->addr_valid(&dest, NULL, skb)) 162 goto discard_it; 163 164 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 165 166 if (!asoc) 167 ep = __sctp_rcv_lookup_endpoint(net, &dest); 168 169 /* Retrieve the common input handling substructure. */ 170 rcvr = asoc ? &asoc->base : &ep->base; 171 sk = rcvr->sk; 172 173 /* 174 * If a frame arrives on an interface and the receiving socket is 175 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 176 */ 177 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 178 if (asoc) { 179 sctp_association_put(asoc); 180 asoc = NULL; 181 } else { 182 sctp_endpoint_put(ep); 183 ep = NULL; 184 } 185 sk = net->sctp.ctl_sock; 186 ep = sctp_sk(sk)->ep; 187 sctp_endpoint_hold(ep); 188 rcvr = &ep->base; 189 } 190 191 /* 192 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 193 * An SCTP packet is called an "out of the blue" (OOTB) 194 * packet if it is correctly formed, i.e., passed the 195 * receiver's checksum check, but the receiver is not 196 * able to identify the association to which this 197 * packet belongs. 198 */ 199 if (!asoc) { 200 if (sctp_rcv_ootb(skb)) { 201 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 202 goto discard_release; 203 } 204 } 205 206 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 207 goto discard_release; 208 nf_reset(skb); 209 210 if (sk_filter(sk, skb)) 211 goto discard_release; 212 213 /* Create an SCTP packet structure. */ 214 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 215 if (!chunk) 216 goto discard_release; 217 SCTP_INPUT_CB(skb)->chunk = chunk; 218 219 /* Remember what endpoint is to handle this packet. */ 220 chunk->rcvr = rcvr; 221 222 /* Remember the SCTP header. */ 223 chunk->sctp_hdr = sctp_hdr(skb); 224 225 /* Set the source and destination addresses of the incoming chunk. */ 226 sctp_init_addrs(chunk, &src, &dest); 227 228 /* Remember where we came from. */ 229 chunk->transport = transport; 230 231 /* Acquire access to the sock lock. Note: We are safe from other 232 * bottom halves on this lock, but a user may be in the lock too, 233 * so check if it is busy. 234 */ 235 bh_lock_sock(sk); 236 237 if (sk != rcvr->sk) { 238 /* Our cached sk is different from the rcvr->sk. This is 239 * because migrate()/accept() may have moved the association 240 * to a new socket and released all the sockets. So now we 241 * are holding a lock on the old socket while the user may 242 * be doing something with the new socket. Switch our veiw 243 * of the current sk. 244 */ 245 bh_unlock_sock(sk); 246 sk = rcvr->sk; 247 bh_lock_sock(sk); 248 } 249 250 if (sock_owned_by_user(sk)) { 251 if (sctp_add_backlog(sk, skb)) { 252 bh_unlock_sock(sk); 253 sctp_chunk_free(chunk); 254 skb = NULL; /* sctp_chunk_free already freed the skb */ 255 goto discard_release; 256 } 257 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 258 } else { 259 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 260 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 261 } 262 263 bh_unlock_sock(sk); 264 265 /* Release the asoc/ep ref we took in the lookup calls. */ 266 if (asoc) 267 sctp_association_put(asoc); 268 else 269 sctp_endpoint_put(ep); 270 271 return 0; 272 273 discard_it: 274 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 275 kfree_skb(skb); 276 return 0; 277 278 discard_release: 279 /* Release the asoc/ep ref we took in the lookup calls. */ 280 if (asoc) 281 sctp_association_put(asoc); 282 else 283 sctp_endpoint_put(ep); 284 285 goto discard_it; 286 } 287 288 /* Process the backlog queue of the socket. Every skb on 289 * the backlog holds a ref on an association or endpoint. 290 * We hold this ref throughout the state machine to make 291 * sure that the structure we need is still around. 292 */ 293 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 294 { 295 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 296 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 297 struct sctp_ep_common *rcvr = NULL; 298 int backloged = 0; 299 300 rcvr = chunk->rcvr; 301 302 /* If the rcvr is dead then the association or endpoint 303 * has been deleted and we can safely drop the chunk 304 * and refs that we are holding. 305 */ 306 if (rcvr->dead) { 307 sctp_chunk_free(chunk); 308 goto done; 309 } 310 311 if (unlikely(rcvr->sk != sk)) { 312 /* In this case, the association moved from one socket to 313 * another. We are currently sitting on the backlog of the 314 * old socket, so we need to move. 315 * However, since we are here in the process context we 316 * need to take make sure that the user doesn't own 317 * the new socket when we process the packet. 318 * If the new socket is user-owned, queue the chunk to the 319 * backlog of the new socket without dropping any refs. 320 * Otherwise, we can safely push the chunk on the inqueue. 321 */ 322 323 sk = rcvr->sk; 324 local_bh_disable(); 325 bh_lock_sock(sk); 326 327 if (sock_owned_by_user(sk)) { 328 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 329 sctp_chunk_free(chunk); 330 else 331 backloged = 1; 332 } else 333 sctp_inq_push(inqueue, chunk); 334 335 bh_unlock_sock(sk); 336 local_bh_enable(); 337 338 /* If the chunk was backloged again, don't drop refs */ 339 if (backloged) 340 return 0; 341 } else { 342 sctp_inq_push(inqueue, chunk); 343 } 344 345 done: 346 /* Release the refs we took in sctp_add_backlog */ 347 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 348 sctp_association_put(sctp_assoc(rcvr)); 349 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 350 sctp_endpoint_put(sctp_ep(rcvr)); 351 else 352 BUG(); 353 354 return 0; 355 } 356 357 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 358 { 359 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 360 struct sctp_ep_common *rcvr = chunk->rcvr; 361 int ret; 362 363 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 364 if (!ret) { 365 /* Hold the assoc/ep while hanging on the backlog queue. 366 * This way, we know structures we need will not disappear 367 * from us 368 */ 369 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 370 sctp_association_hold(sctp_assoc(rcvr)); 371 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 372 sctp_endpoint_hold(sctp_ep(rcvr)); 373 else 374 BUG(); 375 } 376 return ret; 377 378 } 379 380 /* Handle icmp frag needed error. */ 381 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 382 struct sctp_transport *t, __u32 pmtu) 383 { 384 if (!t || (t->pathmtu <= pmtu)) 385 return; 386 387 if (sock_owned_by_user(sk)) { 388 asoc->pmtu_pending = 1; 389 t->pmtu_pending = 1; 390 return; 391 } 392 393 if (t->param_flags & SPP_PMTUD_ENABLE) { 394 /* Update transports view of the MTU */ 395 sctp_transport_update_pmtu(sk, t, pmtu); 396 397 /* Update association pmtu. */ 398 sctp_assoc_sync_pmtu(sk, asoc); 399 } 400 401 /* Retransmit with the new pmtu setting. 402 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 403 * Needed will never be sent, but if a message was sent before 404 * PMTU discovery was disabled that was larger than the PMTU, it 405 * would not be fragmented, so it must be re-transmitted fragmented. 406 */ 407 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 408 } 409 410 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 411 struct sk_buff *skb) 412 { 413 struct dst_entry *dst; 414 415 if (!t) 416 return; 417 dst = sctp_transport_dst_check(t); 418 if (dst) 419 dst->ops->redirect(dst, sk, skb); 420 } 421 422 /* 423 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 424 * 425 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 426 * or a "Protocol Unreachable" treat this message as an abort 427 * with the T bit set. 428 * 429 * This function sends an event to the state machine, which will abort the 430 * association. 431 * 432 */ 433 void sctp_icmp_proto_unreachable(struct sock *sk, 434 struct sctp_association *asoc, 435 struct sctp_transport *t) 436 { 437 if (sock_owned_by_user(sk)) { 438 if (timer_pending(&t->proto_unreach_timer)) 439 return; 440 else { 441 if (!mod_timer(&t->proto_unreach_timer, 442 jiffies + (HZ/20))) 443 sctp_association_hold(asoc); 444 } 445 } else { 446 struct net *net = sock_net(sk); 447 448 pr_debug("%s: unrecognized next header type " 449 "encountered!\n", __func__); 450 451 if (del_timer(&t->proto_unreach_timer)) 452 sctp_association_put(asoc); 453 454 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 455 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 456 asoc->state, asoc->ep, asoc, t, 457 GFP_ATOMIC); 458 } 459 } 460 461 /* Common lookup code for icmp/icmpv6 error handler. */ 462 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 463 struct sctphdr *sctphdr, 464 struct sctp_association **app, 465 struct sctp_transport **tpp) 466 { 467 union sctp_addr saddr; 468 union sctp_addr daddr; 469 struct sctp_af *af; 470 struct sock *sk = NULL; 471 struct sctp_association *asoc; 472 struct sctp_transport *transport = NULL; 473 struct sctp_init_chunk *chunkhdr; 474 __u32 vtag = ntohl(sctphdr->vtag); 475 int len = skb->len - ((void *)sctphdr - (void *)skb->data); 476 477 *app = NULL; *tpp = NULL; 478 479 af = sctp_get_af_specific(family); 480 if (unlikely(!af)) { 481 return NULL; 482 } 483 484 /* Initialize local addresses for lookups. */ 485 af->from_skb(&saddr, skb, 1); 486 af->from_skb(&daddr, skb, 0); 487 488 /* Look for an association that matches the incoming ICMP error 489 * packet. 490 */ 491 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 492 if (!asoc) 493 return NULL; 494 495 sk = asoc->base.sk; 496 497 /* RFC 4960, Appendix C. ICMP Handling 498 * 499 * ICMP6) An implementation MUST validate that the Verification Tag 500 * contained in the ICMP message matches the Verification Tag of 501 * the peer. If the Verification Tag is not 0 and does NOT 502 * match, discard the ICMP message. If it is 0 and the ICMP 503 * message contains enough bytes to verify that the chunk type is 504 * an INIT chunk and that the Initiate Tag matches the tag of the 505 * peer, continue with ICMP7. If the ICMP message is too short 506 * or the chunk type or the Initiate Tag does not match, silently 507 * discard the packet. 508 */ 509 if (vtag == 0) { 510 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr); 511 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) 512 + sizeof(__be32) || 513 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 514 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { 515 goto out; 516 } 517 } else if (vtag != asoc->c.peer_vtag) { 518 goto out; 519 } 520 521 bh_lock_sock(sk); 522 523 /* If too many ICMPs get dropped on busy 524 * servers this needs to be solved differently. 525 */ 526 if (sock_owned_by_user(sk)) 527 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 528 529 *app = asoc; 530 *tpp = transport; 531 return sk; 532 533 out: 534 sctp_association_put(asoc); 535 return NULL; 536 } 537 538 /* Common cleanup code for icmp/icmpv6 error handler. */ 539 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 540 { 541 bh_unlock_sock(sk); 542 sctp_association_put(asoc); 543 } 544 545 /* 546 * This routine is called by the ICMP module when it gets some 547 * sort of error condition. If err < 0 then the socket should 548 * be closed and the error returned to the user. If err > 0 549 * it's just the icmp type << 8 | icmp code. After adjustment 550 * header points to the first 8 bytes of the sctp header. We need 551 * to find the appropriate port. 552 * 553 * The locking strategy used here is very "optimistic". When 554 * someone else accesses the socket the ICMP is just dropped 555 * and for some paths there is no check at all. 556 * A more general error queue to queue errors for later handling 557 * is probably better. 558 * 559 */ 560 void sctp_v4_err(struct sk_buff *skb, __u32 info) 561 { 562 const struct iphdr *iph = (const struct iphdr *)skb->data; 563 const int ihlen = iph->ihl * 4; 564 const int type = icmp_hdr(skb)->type; 565 const int code = icmp_hdr(skb)->code; 566 struct sock *sk; 567 struct sctp_association *asoc = NULL; 568 struct sctp_transport *transport; 569 struct inet_sock *inet; 570 __u16 saveip, savesctp; 571 int err; 572 struct net *net = dev_net(skb->dev); 573 574 /* Fix up skb to look at the embedded net header. */ 575 saveip = skb->network_header; 576 savesctp = skb->transport_header; 577 skb_reset_network_header(skb); 578 skb_set_transport_header(skb, ihlen); 579 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 580 /* Put back, the original values. */ 581 skb->network_header = saveip; 582 skb->transport_header = savesctp; 583 if (!sk) { 584 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 585 return; 586 } 587 /* Warning: The sock lock is held. Remember to call 588 * sctp_err_finish! 589 */ 590 591 switch (type) { 592 case ICMP_PARAMETERPROB: 593 err = EPROTO; 594 break; 595 case ICMP_DEST_UNREACH: 596 if (code > NR_ICMP_UNREACH) 597 goto out_unlock; 598 599 /* PMTU discovery (RFC1191) */ 600 if (ICMP_FRAG_NEEDED == code) { 601 sctp_icmp_frag_needed(sk, asoc, transport, 602 WORD_TRUNC(info)); 603 goto out_unlock; 604 } else { 605 if (ICMP_PROT_UNREACH == code) { 606 sctp_icmp_proto_unreachable(sk, asoc, 607 transport); 608 goto out_unlock; 609 } 610 } 611 err = icmp_err_convert[code].errno; 612 break; 613 case ICMP_TIME_EXCEEDED: 614 /* Ignore any time exceeded errors due to fragment reassembly 615 * timeouts. 616 */ 617 if (ICMP_EXC_FRAGTIME == code) 618 goto out_unlock; 619 620 err = EHOSTUNREACH; 621 break; 622 case ICMP_REDIRECT: 623 sctp_icmp_redirect(sk, transport, skb); 624 /* Fall through to out_unlock. */ 625 default: 626 goto out_unlock; 627 } 628 629 inet = inet_sk(sk); 630 if (!sock_owned_by_user(sk) && inet->recverr) { 631 sk->sk_err = err; 632 sk->sk_error_report(sk); 633 } else { /* Only an error on timeout */ 634 sk->sk_err_soft = err; 635 } 636 637 out_unlock: 638 sctp_err_finish(sk, asoc); 639 } 640 641 /* 642 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 643 * 644 * This function scans all the chunks in the OOTB packet to determine if 645 * the packet should be discarded right away. If a response might be needed 646 * for this packet, or, if further processing is possible, the packet will 647 * be queued to a proper inqueue for the next phase of handling. 648 * 649 * Output: 650 * Return 0 - If further processing is needed. 651 * Return 1 - If the packet can be discarded right away. 652 */ 653 static int sctp_rcv_ootb(struct sk_buff *skb) 654 { 655 sctp_chunkhdr_t *ch, _ch; 656 int ch_end, offset = 0; 657 658 /* Scan through all the chunks in the packet. */ 659 do { 660 /* Make sure we have at least the header there */ 661 if (offset + sizeof(sctp_chunkhdr_t) > skb->len) 662 break; 663 664 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 665 666 /* Break out if chunk length is less then minimal. */ 667 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 668 break; 669 670 ch_end = offset + WORD_ROUND(ntohs(ch->length)); 671 if (ch_end > skb->len) 672 break; 673 674 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 675 * receiver MUST silently discard the OOTB packet and take no 676 * further action. 677 */ 678 if (SCTP_CID_ABORT == ch->type) 679 goto discard; 680 681 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 682 * chunk, the receiver should silently discard the packet 683 * and take no further action. 684 */ 685 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 686 goto discard; 687 688 /* RFC 4460, 2.11.2 689 * This will discard packets with INIT chunk bundled as 690 * subsequent chunks in the packet. When INIT is first, 691 * the normal INIT processing will discard the chunk. 692 */ 693 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 694 goto discard; 695 696 offset = ch_end; 697 } while (ch_end < skb->len); 698 699 return 0; 700 701 discard: 702 return 1; 703 } 704 705 /* Insert endpoint into the hash table. */ 706 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 707 { 708 struct net *net = sock_net(ep->base.sk); 709 struct sctp_ep_common *epb; 710 struct sctp_hashbucket *head; 711 712 epb = &ep->base; 713 714 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 715 head = &sctp_ep_hashtable[epb->hashent]; 716 717 write_lock(&head->lock); 718 hlist_add_head(&epb->node, &head->chain); 719 write_unlock(&head->lock); 720 } 721 722 /* Add an endpoint to the hash. Local BH-safe. */ 723 void sctp_hash_endpoint(struct sctp_endpoint *ep) 724 { 725 local_bh_disable(); 726 __sctp_hash_endpoint(ep); 727 local_bh_enable(); 728 } 729 730 /* Remove endpoint from the hash table. */ 731 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 732 { 733 struct net *net = sock_net(ep->base.sk); 734 struct sctp_hashbucket *head; 735 struct sctp_ep_common *epb; 736 737 epb = &ep->base; 738 739 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 740 741 head = &sctp_ep_hashtable[epb->hashent]; 742 743 write_lock(&head->lock); 744 hlist_del_init(&epb->node); 745 write_unlock(&head->lock); 746 } 747 748 /* Remove endpoint from the hash. Local BH-safe. */ 749 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 750 { 751 local_bh_disable(); 752 __sctp_unhash_endpoint(ep); 753 local_bh_enable(); 754 } 755 756 /* Look up an endpoint. */ 757 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 758 const union sctp_addr *laddr) 759 { 760 struct sctp_hashbucket *head; 761 struct sctp_ep_common *epb; 762 struct sctp_endpoint *ep; 763 int hash; 764 765 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 766 head = &sctp_ep_hashtable[hash]; 767 read_lock(&head->lock); 768 sctp_for_each_hentry(epb, &head->chain) { 769 ep = sctp_ep(epb); 770 if (sctp_endpoint_is_match(ep, net, laddr)) 771 goto hit; 772 } 773 774 ep = sctp_sk(net->sctp.ctl_sock)->ep; 775 776 hit: 777 sctp_endpoint_hold(ep); 778 read_unlock(&head->lock); 779 return ep; 780 } 781 782 /* rhashtable for transport */ 783 struct sctp_hash_cmp_arg { 784 const struct sctp_endpoint *ep; 785 const union sctp_addr *laddr; 786 const union sctp_addr *paddr; 787 const struct net *net; 788 }; 789 790 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 791 const void *ptr) 792 { 793 const struct sctp_hash_cmp_arg *x = arg->key; 794 const struct sctp_transport *t = ptr; 795 struct sctp_association *asoc = t->asoc; 796 const struct net *net = x->net; 797 798 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 799 return 1; 800 if (!net_eq(sock_net(asoc->base.sk), net)) 801 return 1; 802 if (x->ep) { 803 if (x->ep != asoc->ep) 804 return 1; 805 } else { 806 if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port)) 807 return 1; 808 if (!sctp_bind_addr_match(&asoc->base.bind_addr, 809 x->laddr, sctp_sk(asoc->base.sk))) 810 return 1; 811 } 812 813 return 0; 814 } 815 816 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 817 { 818 const struct sctp_transport *t = data; 819 const union sctp_addr *paddr = &t->ipaddr; 820 const struct net *net = sock_net(t->asoc->base.sk); 821 u16 lport = htons(t->asoc->base.bind_addr.port); 822 u32 addr; 823 824 if (paddr->sa.sa_family == AF_INET6) 825 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 826 else 827 addr = paddr->v4.sin_addr.s_addr; 828 829 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 | 830 (__force __u32)lport, net_hash_mix(net), seed); 831 } 832 833 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed) 834 { 835 const struct sctp_hash_cmp_arg *x = data; 836 const union sctp_addr *paddr = x->paddr; 837 const struct net *net = x->net; 838 u16 lport; 839 u32 addr; 840 841 lport = x->ep ? htons(x->ep->base.bind_addr.port) : 842 x->laddr->v4.sin_port; 843 if (paddr->sa.sa_family == AF_INET6) 844 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 845 else 846 addr = paddr->v4.sin_addr.s_addr; 847 848 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 | 849 (__force __u32)lport, net_hash_mix(net), seed); 850 } 851 852 static const struct rhashtable_params sctp_hash_params = { 853 .head_offset = offsetof(struct sctp_transport, node), 854 .hashfn = sctp_hash_key, 855 .obj_hashfn = sctp_hash_obj, 856 .obj_cmpfn = sctp_hash_cmp, 857 .automatic_shrinking = true, 858 }; 859 860 int sctp_transport_hashtable_init(void) 861 { 862 return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params); 863 } 864 865 void sctp_transport_hashtable_destroy(void) 866 { 867 rhashtable_destroy(&sctp_transport_hashtable); 868 } 869 870 void sctp_hash_transport(struct sctp_transport *t) 871 { 872 struct sctp_hash_cmp_arg arg; 873 874 if (t->asoc->temp) 875 return; 876 877 arg.ep = t->asoc->ep; 878 arg.paddr = &t->ipaddr; 879 arg.net = sock_net(t->asoc->base.sk); 880 881 reinsert: 882 if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg, 883 &t->node, sctp_hash_params) == -EBUSY) 884 goto reinsert; 885 } 886 887 void sctp_unhash_transport(struct sctp_transport *t) 888 { 889 if (t->asoc->temp) 890 return; 891 892 rhashtable_remove_fast(&sctp_transport_hashtable, &t->node, 893 sctp_hash_params); 894 } 895 896 struct sctp_transport *sctp_addrs_lookup_transport( 897 struct net *net, 898 const union sctp_addr *laddr, 899 const union sctp_addr *paddr) 900 { 901 struct sctp_hash_cmp_arg arg = { 902 .ep = NULL, 903 .laddr = laddr, 904 .paddr = paddr, 905 .net = net, 906 }; 907 908 return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg, 909 sctp_hash_params); 910 } 911 912 struct sctp_transport *sctp_epaddr_lookup_transport( 913 const struct sctp_endpoint *ep, 914 const union sctp_addr *paddr) 915 { 916 struct net *net = sock_net(ep->base.sk); 917 struct sctp_hash_cmp_arg arg = { 918 .ep = ep, 919 .paddr = paddr, 920 .net = net, 921 }; 922 923 return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg, 924 sctp_hash_params); 925 } 926 927 /* Look up an association. */ 928 static struct sctp_association *__sctp_lookup_association( 929 struct net *net, 930 const union sctp_addr *local, 931 const union sctp_addr *peer, 932 struct sctp_transport **pt) 933 { 934 struct sctp_transport *t; 935 struct sctp_association *asoc = NULL; 936 937 t = sctp_addrs_lookup_transport(net, local, peer); 938 if (!t || !sctp_transport_hold(t)) 939 goto out; 940 941 asoc = t->asoc; 942 sctp_association_hold(asoc); 943 *pt = t; 944 945 sctp_transport_put(t); 946 947 out: 948 return asoc; 949 } 950 951 /* Look up an association. protected by RCU read lock */ 952 static 953 struct sctp_association *sctp_lookup_association(struct net *net, 954 const union sctp_addr *laddr, 955 const union sctp_addr *paddr, 956 struct sctp_transport **transportp) 957 { 958 struct sctp_association *asoc; 959 960 rcu_read_lock(); 961 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 962 rcu_read_unlock(); 963 964 return asoc; 965 } 966 967 /* Is there an association matching the given local and peer addresses? */ 968 int sctp_has_association(struct net *net, 969 const union sctp_addr *laddr, 970 const union sctp_addr *paddr) 971 { 972 struct sctp_association *asoc; 973 struct sctp_transport *transport; 974 975 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) { 976 sctp_association_put(asoc); 977 return 1; 978 } 979 980 return 0; 981 } 982 983 /* 984 * SCTP Implementors Guide, 2.18 Handling of address 985 * parameters within the INIT or INIT-ACK. 986 * 987 * D) When searching for a matching TCB upon reception of an INIT 988 * or INIT-ACK chunk the receiver SHOULD use not only the 989 * source address of the packet (containing the INIT or 990 * INIT-ACK) but the receiver SHOULD also use all valid 991 * address parameters contained within the chunk. 992 * 993 * 2.18.3 Solution description 994 * 995 * This new text clearly specifies to an implementor the need 996 * to look within the INIT or INIT-ACK. Any implementation that 997 * does not do this, may not be able to establish associations 998 * in certain circumstances. 999 * 1000 */ 1001 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1002 struct sk_buff *skb, 1003 const union sctp_addr *laddr, struct sctp_transport **transportp) 1004 { 1005 struct sctp_association *asoc; 1006 union sctp_addr addr; 1007 union sctp_addr *paddr = &addr; 1008 struct sctphdr *sh = sctp_hdr(skb); 1009 union sctp_params params; 1010 sctp_init_chunk_t *init; 1011 struct sctp_transport *transport; 1012 struct sctp_af *af; 1013 1014 /* 1015 * This code will NOT touch anything inside the chunk--it is 1016 * strictly READ-ONLY. 1017 * 1018 * RFC 2960 3 SCTP packet Format 1019 * 1020 * Multiple chunks can be bundled into one SCTP packet up to 1021 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1022 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1023 * other chunk in a packet. See Section 6.10 for more details 1024 * on chunk bundling. 1025 */ 1026 1027 /* Find the start of the TLVs and the end of the chunk. This is 1028 * the region we search for address parameters. 1029 */ 1030 init = (sctp_init_chunk_t *)skb->data; 1031 1032 /* Walk the parameters looking for embedded addresses. */ 1033 sctp_walk_params(params, init, init_hdr.params) { 1034 1035 /* Note: Ignoring hostname addresses. */ 1036 af = sctp_get_af_specific(param_type2af(params.p->type)); 1037 if (!af) 1038 continue; 1039 1040 af->from_addr_param(paddr, params.addr, sh->source, 0); 1041 1042 asoc = __sctp_lookup_association(net, laddr, paddr, &transport); 1043 if (asoc) 1044 return asoc; 1045 } 1046 1047 return NULL; 1048 } 1049 1050 /* ADD-IP, Section 5.2 1051 * When an endpoint receives an ASCONF Chunk from the remote peer 1052 * special procedures may be needed to identify the association the 1053 * ASCONF Chunk is associated with. To properly find the association 1054 * the following procedures SHOULD be followed: 1055 * 1056 * D2) If the association is not found, use the address found in the 1057 * Address Parameter TLV combined with the port number found in the 1058 * SCTP common header. If found proceed to rule D4. 1059 * 1060 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1061 * address found in the ASCONF Address Parameter TLV of each of the 1062 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1063 */ 1064 static struct sctp_association *__sctp_rcv_asconf_lookup( 1065 struct net *net, 1066 sctp_chunkhdr_t *ch, 1067 const union sctp_addr *laddr, 1068 __be16 peer_port, 1069 struct sctp_transport **transportp) 1070 { 1071 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; 1072 struct sctp_af *af; 1073 union sctp_addr_param *param; 1074 union sctp_addr paddr; 1075 1076 /* Skip over the ADDIP header and find the Address parameter */ 1077 param = (union sctp_addr_param *)(asconf + 1); 1078 1079 af = sctp_get_af_specific(param_type2af(param->p.type)); 1080 if (unlikely(!af)) 1081 return NULL; 1082 1083 af->from_addr_param(&paddr, param, peer_port, 0); 1084 1085 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1086 } 1087 1088 1089 /* SCTP-AUTH, Section 6.3: 1090 * If the receiver does not find a STCB for a packet containing an AUTH 1091 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1092 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1093 * association. 1094 * 1095 * This means that any chunks that can help us identify the association need 1096 * to be looked at to find this association. 1097 */ 1098 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1099 struct sk_buff *skb, 1100 const union sctp_addr *laddr, 1101 struct sctp_transport **transportp) 1102 { 1103 struct sctp_association *asoc = NULL; 1104 sctp_chunkhdr_t *ch; 1105 int have_auth = 0; 1106 unsigned int chunk_num = 1; 1107 __u8 *ch_end; 1108 1109 /* Walk through the chunks looking for AUTH or ASCONF chunks 1110 * to help us find the association. 1111 */ 1112 ch = (sctp_chunkhdr_t *) skb->data; 1113 do { 1114 /* Break out if chunk length is less then minimal. */ 1115 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 1116 break; 1117 1118 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 1119 if (ch_end > skb_tail_pointer(skb)) 1120 break; 1121 1122 switch (ch->type) { 1123 case SCTP_CID_AUTH: 1124 have_auth = chunk_num; 1125 break; 1126 1127 case SCTP_CID_COOKIE_ECHO: 1128 /* If a packet arrives containing an AUTH chunk as 1129 * a first chunk, a COOKIE-ECHO chunk as the second 1130 * chunk, and possibly more chunks after them, and 1131 * the receiver does not have an STCB for that 1132 * packet, then authentication is based on 1133 * the contents of the COOKIE- ECHO chunk. 1134 */ 1135 if (have_auth == 1 && chunk_num == 2) 1136 return NULL; 1137 break; 1138 1139 case SCTP_CID_ASCONF: 1140 if (have_auth || net->sctp.addip_noauth) 1141 asoc = __sctp_rcv_asconf_lookup( 1142 net, ch, laddr, 1143 sctp_hdr(skb)->source, 1144 transportp); 1145 default: 1146 break; 1147 } 1148 1149 if (asoc) 1150 break; 1151 1152 ch = (sctp_chunkhdr_t *) ch_end; 1153 chunk_num++; 1154 } while (ch_end < skb_tail_pointer(skb)); 1155 1156 return asoc; 1157 } 1158 1159 /* 1160 * There are circumstances when we need to look inside the SCTP packet 1161 * for information to help us find the association. Examples 1162 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1163 * chunks. 1164 */ 1165 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1166 struct sk_buff *skb, 1167 const union sctp_addr *laddr, 1168 struct sctp_transport **transportp) 1169 { 1170 sctp_chunkhdr_t *ch; 1171 1172 /* We do not allow GSO frames here as we need to linearize and 1173 * then cannot guarantee frame boundaries. This shouldn't be an 1174 * issue as packets hitting this are mostly INIT or INIT-ACK and 1175 * those cannot be on GSO-style anyway. 1176 */ 1177 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP) 1178 return NULL; 1179 1180 if (skb_linearize(skb)) 1181 return NULL; 1182 1183 ch = (sctp_chunkhdr_t *) skb->data; 1184 1185 /* The code below will attempt to walk the chunk and extract 1186 * parameter information. Before we do that, we need to verify 1187 * that the chunk length doesn't cause overflow. Otherwise, we'll 1188 * walk off the end. 1189 */ 1190 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 1191 return NULL; 1192 1193 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1194 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1195 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1196 1197 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1198 } 1199 1200 /* Lookup an association for an inbound skb. */ 1201 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1202 struct sk_buff *skb, 1203 const union sctp_addr *paddr, 1204 const union sctp_addr *laddr, 1205 struct sctp_transport **transportp) 1206 { 1207 struct sctp_association *asoc; 1208 1209 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1210 1211 /* Further lookup for INIT/INIT-ACK packets. 1212 * SCTP Implementors Guide, 2.18 Handling of address 1213 * parameters within the INIT or INIT-ACK. 1214 */ 1215 if (!asoc) 1216 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1217 1218 return asoc; 1219 } 1220