xref: /linux/net/sctp/input.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * This is the routine which IP calls when receiving an SCTP packet.
95  */
96 int sctp_rcv(struct sk_buff *skb)
97 {
98 	struct sock *sk;
99 	struct sctp_association *asoc;
100 	struct sctp_endpoint *ep = NULL;
101 	struct sctp_ep_common *rcvr;
102 	struct sctp_transport *transport = NULL;
103 	struct sctp_chunk *chunk;
104 	union sctp_addr src;
105 	union sctp_addr dest;
106 	int family;
107 	struct sctp_af *af;
108 	struct net *net = dev_net(skb->dev);
109 
110 	if (skb->pkt_type != PACKET_HOST)
111 		goto discard_it;
112 
113 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114 
115 	/* If packet is too small to contain a single chunk, let's not
116 	 * waste time on it anymore.
117 	 */
118 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 		       skb_transport_offset(skb))
120 		goto discard_it;
121 
122 	if (!pskb_may_pull(skb, sizeof(struct sctphdr)))
123 		goto discard_it;
124 
125 	/* Pull up the IP header. */
126 	__skb_pull(skb, skb_transport_offset(skb));
127 
128 	skb->csum_valid = 0; /* Previous value not applicable */
129 	if (skb_csum_unnecessary(skb))
130 		__skb_decr_checksum_unnecessary(skb);
131 	else if (!sctp_checksum_disable &&
132 		 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
133 		 sctp_rcv_checksum(net, skb) < 0)
134 		goto discard_it;
135 	skb->csum_valid = 1;
136 
137 	__skb_pull(skb, sizeof(struct sctphdr));
138 
139 	family = ipver2af(ip_hdr(skb)->version);
140 	af = sctp_get_af_specific(family);
141 	if (unlikely(!af))
142 		goto discard_it;
143 	SCTP_INPUT_CB(skb)->af = af;
144 
145 	/* Initialize local addresses for lookups. */
146 	af->from_skb(&src, skb, 1);
147 	af->from_skb(&dest, skb, 0);
148 
149 	/* If the packet is to or from a non-unicast address,
150 	 * silently discard the packet.
151 	 *
152 	 * This is not clearly defined in the RFC except in section
153 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
154 	 * Transmission Protocol" 2.1, "It is important to note that the
155 	 * IP address of an SCTP transport address must be a routable
156 	 * unicast address.  In other words, IP multicast addresses and
157 	 * IP broadcast addresses cannot be used in an SCTP transport
158 	 * address."
159 	 */
160 	if (!af->addr_valid(&src, NULL, skb) ||
161 	    !af->addr_valid(&dest, NULL, skb))
162 		goto discard_it;
163 
164 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
165 
166 	if (!asoc)
167 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
168 
169 	/* Retrieve the common input handling substructure. */
170 	rcvr = asoc ? &asoc->base : &ep->base;
171 	sk = rcvr->sk;
172 
173 	/*
174 	 * If a frame arrives on an interface and the receiving socket is
175 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
176 	 */
177 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
178 		if (asoc) {
179 			sctp_association_put(asoc);
180 			asoc = NULL;
181 		} else {
182 			sctp_endpoint_put(ep);
183 			ep = NULL;
184 		}
185 		sk = net->sctp.ctl_sock;
186 		ep = sctp_sk(sk)->ep;
187 		sctp_endpoint_hold(ep);
188 		rcvr = &ep->base;
189 	}
190 
191 	/*
192 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
193 	 * An SCTP packet is called an "out of the blue" (OOTB)
194 	 * packet if it is correctly formed, i.e., passed the
195 	 * receiver's checksum check, but the receiver is not
196 	 * able to identify the association to which this
197 	 * packet belongs.
198 	 */
199 	if (!asoc) {
200 		if (sctp_rcv_ootb(skb)) {
201 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
202 			goto discard_release;
203 		}
204 	}
205 
206 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
207 		goto discard_release;
208 	nf_reset(skb);
209 
210 	if (sk_filter(sk, skb))
211 		goto discard_release;
212 
213 	/* Create an SCTP packet structure. */
214 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
215 	if (!chunk)
216 		goto discard_release;
217 	SCTP_INPUT_CB(skb)->chunk = chunk;
218 
219 	/* Remember what endpoint is to handle this packet. */
220 	chunk->rcvr = rcvr;
221 
222 	/* Remember the SCTP header. */
223 	chunk->sctp_hdr = sctp_hdr(skb);
224 
225 	/* Set the source and destination addresses of the incoming chunk.  */
226 	sctp_init_addrs(chunk, &src, &dest);
227 
228 	/* Remember where we came from.  */
229 	chunk->transport = transport;
230 
231 	/* Acquire access to the sock lock. Note: We are safe from other
232 	 * bottom halves on this lock, but a user may be in the lock too,
233 	 * so check if it is busy.
234 	 */
235 	bh_lock_sock(sk);
236 
237 	if (sk != rcvr->sk) {
238 		/* Our cached sk is different from the rcvr->sk.  This is
239 		 * because migrate()/accept() may have moved the association
240 		 * to a new socket and released all the sockets.  So now we
241 		 * are holding a lock on the old socket while the user may
242 		 * be doing something with the new socket.  Switch our veiw
243 		 * of the current sk.
244 		 */
245 		bh_unlock_sock(sk);
246 		sk = rcvr->sk;
247 		bh_lock_sock(sk);
248 	}
249 
250 	if (sock_owned_by_user(sk)) {
251 		if (sctp_add_backlog(sk, skb)) {
252 			bh_unlock_sock(sk);
253 			sctp_chunk_free(chunk);
254 			skb = NULL; /* sctp_chunk_free already freed the skb */
255 			goto discard_release;
256 		}
257 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
258 	} else {
259 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
260 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
261 	}
262 
263 	bh_unlock_sock(sk);
264 
265 	/* Release the asoc/ep ref we took in the lookup calls. */
266 	if (asoc)
267 		sctp_association_put(asoc);
268 	else
269 		sctp_endpoint_put(ep);
270 
271 	return 0;
272 
273 discard_it:
274 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
275 	kfree_skb(skb);
276 	return 0;
277 
278 discard_release:
279 	/* Release the asoc/ep ref we took in the lookup calls. */
280 	if (asoc)
281 		sctp_association_put(asoc);
282 	else
283 		sctp_endpoint_put(ep);
284 
285 	goto discard_it;
286 }
287 
288 /* Process the backlog queue of the socket.  Every skb on
289  * the backlog holds a ref on an association or endpoint.
290  * We hold this ref throughout the state machine to make
291  * sure that the structure we need is still around.
292  */
293 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
294 {
295 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
296 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
297 	struct sctp_ep_common *rcvr = NULL;
298 	int backloged = 0;
299 
300 	rcvr = chunk->rcvr;
301 
302 	/* If the rcvr is dead then the association or endpoint
303 	 * has been deleted and we can safely drop the chunk
304 	 * and refs that we are holding.
305 	 */
306 	if (rcvr->dead) {
307 		sctp_chunk_free(chunk);
308 		goto done;
309 	}
310 
311 	if (unlikely(rcvr->sk != sk)) {
312 		/* In this case, the association moved from one socket to
313 		 * another.  We are currently sitting on the backlog of the
314 		 * old socket, so we need to move.
315 		 * However, since we are here in the process context we
316 		 * need to take make sure that the user doesn't own
317 		 * the new socket when we process the packet.
318 		 * If the new socket is user-owned, queue the chunk to the
319 		 * backlog of the new socket without dropping any refs.
320 		 * Otherwise, we can safely push the chunk on the inqueue.
321 		 */
322 
323 		sk = rcvr->sk;
324 		local_bh_disable();
325 		bh_lock_sock(sk);
326 
327 		if (sock_owned_by_user(sk)) {
328 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
329 				sctp_chunk_free(chunk);
330 			else
331 				backloged = 1;
332 		} else
333 			sctp_inq_push(inqueue, chunk);
334 
335 		bh_unlock_sock(sk);
336 		local_bh_enable();
337 
338 		/* If the chunk was backloged again, don't drop refs */
339 		if (backloged)
340 			return 0;
341 	} else {
342 		sctp_inq_push(inqueue, chunk);
343 	}
344 
345 done:
346 	/* Release the refs we took in sctp_add_backlog */
347 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
348 		sctp_association_put(sctp_assoc(rcvr));
349 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
350 		sctp_endpoint_put(sctp_ep(rcvr));
351 	else
352 		BUG();
353 
354 	return 0;
355 }
356 
357 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
358 {
359 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
360 	struct sctp_ep_common *rcvr = chunk->rcvr;
361 	int ret;
362 
363 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
364 	if (!ret) {
365 		/* Hold the assoc/ep while hanging on the backlog queue.
366 		 * This way, we know structures we need will not disappear
367 		 * from us
368 		 */
369 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
370 			sctp_association_hold(sctp_assoc(rcvr));
371 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
372 			sctp_endpoint_hold(sctp_ep(rcvr));
373 		else
374 			BUG();
375 	}
376 	return ret;
377 
378 }
379 
380 /* Handle icmp frag needed error. */
381 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
382 			   struct sctp_transport *t, __u32 pmtu)
383 {
384 	if (!t || (t->pathmtu <= pmtu))
385 		return;
386 
387 	if (sock_owned_by_user(sk)) {
388 		asoc->pmtu_pending = 1;
389 		t->pmtu_pending = 1;
390 		return;
391 	}
392 
393 	if (t->param_flags & SPP_PMTUD_ENABLE) {
394 		/* Update transports view of the MTU */
395 		sctp_transport_update_pmtu(sk, t, pmtu);
396 
397 		/* Update association pmtu. */
398 		sctp_assoc_sync_pmtu(sk, asoc);
399 	}
400 
401 	/* Retransmit with the new pmtu setting.
402 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
403 	 * Needed will never be sent, but if a message was sent before
404 	 * PMTU discovery was disabled that was larger than the PMTU, it
405 	 * would not be fragmented, so it must be re-transmitted fragmented.
406 	 */
407 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
408 }
409 
410 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
411 			struct sk_buff *skb)
412 {
413 	struct dst_entry *dst;
414 
415 	if (!t)
416 		return;
417 	dst = sctp_transport_dst_check(t);
418 	if (dst)
419 		dst->ops->redirect(dst, sk, skb);
420 }
421 
422 /*
423  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
424  *
425  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
426  *        or a "Protocol Unreachable" treat this message as an abort
427  *        with the T bit set.
428  *
429  * This function sends an event to the state machine, which will abort the
430  * association.
431  *
432  */
433 void sctp_icmp_proto_unreachable(struct sock *sk,
434 			   struct sctp_association *asoc,
435 			   struct sctp_transport *t)
436 {
437 	if (sock_owned_by_user(sk)) {
438 		if (timer_pending(&t->proto_unreach_timer))
439 			return;
440 		else {
441 			if (!mod_timer(&t->proto_unreach_timer,
442 						jiffies + (HZ/20)))
443 				sctp_association_hold(asoc);
444 		}
445 	} else {
446 		struct net *net = sock_net(sk);
447 
448 		pr_debug("%s: unrecognized next header type "
449 			 "encountered!\n", __func__);
450 
451 		if (del_timer(&t->proto_unreach_timer))
452 			sctp_association_put(asoc);
453 
454 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
455 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
456 			   asoc->state, asoc->ep, asoc, t,
457 			   GFP_ATOMIC);
458 	}
459 }
460 
461 /* Common lookup code for icmp/icmpv6 error handler. */
462 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
463 			     struct sctphdr *sctphdr,
464 			     struct sctp_association **app,
465 			     struct sctp_transport **tpp)
466 {
467 	union sctp_addr saddr;
468 	union sctp_addr daddr;
469 	struct sctp_af *af;
470 	struct sock *sk = NULL;
471 	struct sctp_association *asoc;
472 	struct sctp_transport *transport = NULL;
473 	struct sctp_init_chunk *chunkhdr;
474 	__u32 vtag = ntohl(sctphdr->vtag);
475 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
476 
477 	*app = NULL; *tpp = NULL;
478 
479 	af = sctp_get_af_specific(family);
480 	if (unlikely(!af)) {
481 		return NULL;
482 	}
483 
484 	/* Initialize local addresses for lookups. */
485 	af->from_skb(&saddr, skb, 1);
486 	af->from_skb(&daddr, skb, 0);
487 
488 	/* Look for an association that matches the incoming ICMP error
489 	 * packet.
490 	 */
491 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
492 	if (!asoc)
493 		return NULL;
494 
495 	sk = asoc->base.sk;
496 
497 	/* RFC 4960, Appendix C. ICMP Handling
498 	 *
499 	 * ICMP6) An implementation MUST validate that the Verification Tag
500 	 * contained in the ICMP message matches the Verification Tag of
501 	 * the peer.  If the Verification Tag is not 0 and does NOT
502 	 * match, discard the ICMP message.  If it is 0 and the ICMP
503 	 * message contains enough bytes to verify that the chunk type is
504 	 * an INIT chunk and that the Initiate Tag matches the tag of the
505 	 * peer, continue with ICMP7.  If the ICMP message is too short
506 	 * or the chunk type or the Initiate Tag does not match, silently
507 	 * discard the packet.
508 	 */
509 	if (vtag == 0) {
510 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
511 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
512 			  + sizeof(__be32) ||
513 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
514 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
515 			goto out;
516 		}
517 	} else if (vtag != asoc->c.peer_vtag) {
518 		goto out;
519 	}
520 
521 	bh_lock_sock(sk);
522 
523 	/* If too many ICMPs get dropped on busy
524 	 * servers this needs to be solved differently.
525 	 */
526 	if (sock_owned_by_user(sk))
527 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
528 
529 	*app = asoc;
530 	*tpp = transport;
531 	return sk;
532 
533 out:
534 	sctp_association_put(asoc);
535 	return NULL;
536 }
537 
538 /* Common cleanup code for icmp/icmpv6 error handler. */
539 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
540 {
541 	bh_unlock_sock(sk);
542 	sctp_association_put(asoc);
543 }
544 
545 /*
546  * This routine is called by the ICMP module when it gets some
547  * sort of error condition.  If err < 0 then the socket should
548  * be closed and the error returned to the user.  If err > 0
549  * it's just the icmp type << 8 | icmp code.  After adjustment
550  * header points to the first 8 bytes of the sctp header.  We need
551  * to find the appropriate port.
552  *
553  * The locking strategy used here is very "optimistic". When
554  * someone else accesses the socket the ICMP is just dropped
555  * and for some paths there is no check at all.
556  * A more general error queue to queue errors for later handling
557  * is probably better.
558  *
559  */
560 void sctp_v4_err(struct sk_buff *skb, __u32 info)
561 {
562 	const struct iphdr *iph = (const struct iphdr *)skb->data;
563 	const int ihlen = iph->ihl * 4;
564 	const int type = icmp_hdr(skb)->type;
565 	const int code = icmp_hdr(skb)->code;
566 	struct sock *sk;
567 	struct sctp_association *asoc = NULL;
568 	struct sctp_transport *transport;
569 	struct inet_sock *inet;
570 	__u16 saveip, savesctp;
571 	int err;
572 	struct net *net = dev_net(skb->dev);
573 
574 	/* Fix up skb to look at the embedded net header. */
575 	saveip = skb->network_header;
576 	savesctp = skb->transport_header;
577 	skb_reset_network_header(skb);
578 	skb_set_transport_header(skb, ihlen);
579 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
580 	/* Put back, the original values. */
581 	skb->network_header = saveip;
582 	skb->transport_header = savesctp;
583 	if (!sk) {
584 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
585 		return;
586 	}
587 	/* Warning:  The sock lock is held.  Remember to call
588 	 * sctp_err_finish!
589 	 */
590 
591 	switch (type) {
592 	case ICMP_PARAMETERPROB:
593 		err = EPROTO;
594 		break;
595 	case ICMP_DEST_UNREACH:
596 		if (code > NR_ICMP_UNREACH)
597 			goto out_unlock;
598 
599 		/* PMTU discovery (RFC1191) */
600 		if (ICMP_FRAG_NEEDED == code) {
601 			sctp_icmp_frag_needed(sk, asoc, transport,
602 					      WORD_TRUNC(info));
603 			goto out_unlock;
604 		} else {
605 			if (ICMP_PROT_UNREACH == code) {
606 				sctp_icmp_proto_unreachable(sk, asoc,
607 							    transport);
608 				goto out_unlock;
609 			}
610 		}
611 		err = icmp_err_convert[code].errno;
612 		break;
613 	case ICMP_TIME_EXCEEDED:
614 		/* Ignore any time exceeded errors due to fragment reassembly
615 		 * timeouts.
616 		 */
617 		if (ICMP_EXC_FRAGTIME == code)
618 			goto out_unlock;
619 
620 		err = EHOSTUNREACH;
621 		break;
622 	case ICMP_REDIRECT:
623 		sctp_icmp_redirect(sk, transport, skb);
624 		/* Fall through to out_unlock. */
625 	default:
626 		goto out_unlock;
627 	}
628 
629 	inet = inet_sk(sk);
630 	if (!sock_owned_by_user(sk) && inet->recverr) {
631 		sk->sk_err = err;
632 		sk->sk_error_report(sk);
633 	} else {  /* Only an error on timeout */
634 		sk->sk_err_soft = err;
635 	}
636 
637 out_unlock:
638 	sctp_err_finish(sk, asoc);
639 }
640 
641 /*
642  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
643  *
644  * This function scans all the chunks in the OOTB packet to determine if
645  * the packet should be discarded right away.  If a response might be needed
646  * for this packet, or, if further processing is possible, the packet will
647  * be queued to a proper inqueue for the next phase of handling.
648  *
649  * Output:
650  * Return 0 - If further processing is needed.
651  * Return 1 - If the packet can be discarded right away.
652  */
653 static int sctp_rcv_ootb(struct sk_buff *skb)
654 {
655 	sctp_chunkhdr_t *ch, _ch;
656 	int ch_end, offset = 0;
657 
658 	/* Scan through all the chunks in the packet.  */
659 	do {
660 		/* Make sure we have at least the header there */
661 		if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
662 			break;
663 
664 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
665 
666 		/* Break out if chunk length is less then minimal. */
667 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
668 			break;
669 
670 		ch_end = offset + WORD_ROUND(ntohs(ch->length));
671 		if (ch_end > skb->len)
672 			break;
673 
674 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
675 		 * receiver MUST silently discard the OOTB packet and take no
676 		 * further action.
677 		 */
678 		if (SCTP_CID_ABORT == ch->type)
679 			goto discard;
680 
681 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
682 		 * chunk, the receiver should silently discard the packet
683 		 * and take no further action.
684 		 */
685 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
686 			goto discard;
687 
688 		/* RFC 4460, 2.11.2
689 		 * This will discard packets with INIT chunk bundled as
690 		 * subsequent chunks in the packet.  When INIT is first,
691 		 * the normal INIT processing will discard the chunk.
692 		 */
693 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
694 			goto discard;
695 
696 		offset = ch_end;
697 	} while (ch_end < skb->len);
698 
699 	return 0;
700 
701 discard:
702 	return 1;
703 }
704 
705 /* Insert endpoint into the hash table.  */
706 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
707 {
708 	struct net *net = sock_net(ep->base.sk);
709 	struct sctp_ep_common *epb;
710 	struct sctp_hashbucket *head;
711 
712 	epb = &ep->base;
713 
714 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
715 	head = &sctp_ep_hashtable[epb->hashent];
716 
717 	write_lock(&head->lock);
718 	hlist_add_head(&epb->node, &head->chain);
719 	write_unlock(&head->lock);
720 }
721 
722 /* Add an endpoint to the hash. Local BH-safe. */
723 void sctp_hash_endpoint(struct sctp_endpoint *ep)
724 {
725 	local_bh_disable();
726 	__sctp_hash_endpoint(ep);
727 	local_bh_enable();
728 }
729 
730 /* Remove endpoint from the hash table.  */
731 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
732 {
733 	struct net *net = sock_net(ep->base.sk);
734 	struct sctp_hashbucket *head;
735 	struct sctp_ep_common *epb;
736 
737 	epb = &ep->base;
738 
739 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
740 
741 	head = &sctp_ep_hashtable[epb->hashent];
742 
743 	write_lock(&head->lock);
744 	hlist_del_init(&epb->node);
745 	write_unlock(&head->lock);
746 }
747 
748 /* Remove endpoint from the hash.  Local BH-safe. */
749 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
750 {
751 	local_bh_disable();
752 	__sctp_unhash_endpoint(ep);
753 	local_bh_enable();
754 }
755 
756 /* Look up an endpoint. */
757 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
758 						const union sctp_addr *laddr)
759 {
760 	struct sctp_hashbucket *head;
761 	struct sctp_ep_common *epb;
762 	struct sctp_endpoint *ep;
763 	int hash;
764 
765 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
766 	head = &sctp_ep_hashtable[hash];
767 	read_lock(&head->lock);
768 	sctp_for_each_hentry(epb, &head->chain) {
769 		ep = sctp_ep(epb);
770 		if (sctp_endpoint_is_match(ep, net, laddr))
771 			goto hit;
772 	}
773 
774 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
775 
776 hit:
777 	sctp_endpoint_hold(ep);
778 	read_unlock(&head->lock);
779 	return ep;
780 }
781 
782 /* rhashtable for transport */
783 struct sctp_hash_cmp_arg {
784 	const struct sctp_endpoint	*ep;
785 	const union sctp_addr		*laddr;
786 	const union sctp_addr		*paddr;
787 	const struct net		*net;
788 };
789 
790 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
791 				const void *ptr)
792 {
793 	const struct sctp_hash_cmp_arg *x = arg->key;
794 	const struct sctp_transport *t = ptr;
795 	struct sctp_association *asoc = t->asoc;
796 	const struct net *net = x->net;
797 
798 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
799 		return 1;
800 	if (!net_eq(sock_net(asoc->base.sk), net))
801 		return 1;
802 	if (x->ep) {
803 		if (x->ep != asoc->ep)
804 			return 1;
805 	} else {
806 		if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port))
807 			return 1;
808 		if (!sctp_bind_addr_match(&asoc->base.bind_addr,
809 					  x->laddr, sctp_sk(asoc->base.sk)))
810 			return 1;
811 	}
812 
813 	return 0;
814 }
815 
816 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
817 {
818 	const struct sctp_transport *t = data;
819 	const union sctp_addr *paddr = &t->ipaddr;
820 	const struct net *net = sock_net(t->asoc->base.sk);
821 	u16 lport = htons(t->asoc->base.bind_addr.port);
822 	u32 addr;
823 
824 	if (paddr->sa.sa_family == AF_INET6)
825 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
826 	else
827 		addr = paddr->v4.sin_addr.s_addr;
828 
829 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
830 			     (__force __u32)lport, net_hash_mix(net), seed);
831 }
832 
833 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
834 {
835 	const struct sctp_hash_cmp_arg *x = data;
836 	const union sctp_addr *paddr = x->paddr;
837 	const struct net *net = x->net;
838 	u16 lport;
839 	u32 addr;
840 
841 	lport = x->ep ? htons(x->ep->base.bind_addr.port) :
842 			x->laddr->v4.sin_port;
843 	if (paddr->sa.sa_family == AF_INET6)
844 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
845 	else
846 		addr = paddr->v4.sin_addr.s_addr;
847 
848 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
849 			     (__force __u32)lport, net_hash_mix(net), seed);
850 }
851 
852 static const struct rhashtable_params sctp_hash_params = {
853 	.head_offset		= offsetof(struct sctp_transport, node),
854 	.hashfn			= sctp_hash_key,
855 	.obj_hashfn		= sctp_hash_obj,
856 	.obj_cmpfn		= sctp_hash_cmp,
857 	.automatic_shrinking	= true,
858 };
859 
860 int sctp_transport_hashtable_init(void)
861 {
862 	return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params);
863 }
864 
865 void sctp_transport_hashtable_destroy(void)
866 {
867 	rhashtable_destroy(&sctp_transport_hashtable);
868 }
869 
870 void sctp_hash_transport(struct sctp_transport *t)
871 {
872 	struct sctp_hash_cmp_arg arg;
873 
874 	if (t->asoc->temp)
875 		return;
876 
877 	arg.ep = t->asoc->ep;
878 	arg.paddr = &t->ipaddr;
879 	arg.net   = sock_net(t->asoc->base.sk);
880 
881 reinsert:
882 	if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg,
883 					 &t->node, sctp_hash_params) == -EBUSY)
884 		goto reinsert;
885 }
886 
887 void sctp_unhash_transport(struct sctp_transport *t)
888 {
889 	if (t->asoc->temp)
890 		return;
891 
892 	rhashtable_remove_fast(&sctp_transport_hashtable, &t->node,
893 			       sctp_hash_params);
894 }
895 
896 struct sctp_transport *sctp_addrs_lookup_transport(
897 				struct net *net,
898 				const union sctp_addr *laddr,
899 				const union sctp_addr *paddr)
900 {
901 	struct sctp_hash_cmp_arg arg = {
902 		.ep    = NULL,
903 		.laddr = laddr,
904 		.paddr = paddr,
905 		.net   = net,
906 	};
907 
908 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
909 				      sctp_hash_params);
910 }
911 
912 struct sctp_transport *sctp_epaddr_lookup_transport(
913 				const struct sctp_endpoint *ep,
914 				const union sctp_addr *paddr)
915 {
916 	struct net *net = sock_net(ep->base.sk);
917 	struct sctp_hash_cmp_arg arg = {
918 		.ep    = ep,
919 		.paddr = paddr,
920 		.net   = net,
921 	};
922 
923 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
924 				      sctp_hash_params);
925 }
926 
927 /* Look up an association. */
928 static struct sctp_association *__sctp_lookup_association(
929 					struct net *net,
930 					const union sctp_addr *local,
931 					const union sctp_addr *peer,
932 					struct sctp_transport **pt)
933 {
934 	struct sctp_transport *t;
935 	struct sctp_association *asoc = NULL;
936 
937 	t = sctp_addrs_lookup_transport(net, local, peer);
938 	if (!t || !sctp_transport_hold(t))
939 		goto out;
940 
941 	asoc = t->asoc;
942 	sctp_association_hold(asoc);
943 	*pt = t;
944 
945 	sctp_transport_put(t);
946 
947 out:
948 	return asoc;
949 }
950 
951 /* Look up an association. protected by RCU read lock */
952 static
953 struct sctp_association *sctp_lookup_association(struct net *net,
954 						 const union sctp_addr *laddr,
955 						 const union sctp_addr *paddr,
956 						 struct sctp_transport **transportp)
957 {
958 	struct sctp_association *asoc;
959 
960 	rcu_read_lock();
961 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
962 	rcu_read_unlock();
963 
964 	return asoc;
965 }
966 
967 /* Is there an association matching the given local and peer addresses? */
968 int sctp_has_association(struct net *net,
969 			 const union sctp_addr *laddr,
970 			 const union sctp_addr *paddr)
971 {
972 	struct sctp_association *asoc;
973 	struct sctp_transport *transport;
974 
975 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
976 		sctp_association_put(asoc);
977 		return 1;
978 	}
979 
980 	return 0;
981 }
982 
983 /*
984  * SCTP Implementors Guide, 2.18 Handling of address
985  * parameters within the INIT or INIT-ACK.
986  *
987  * D) When searching for a matching TCB upon reception of an INIT
988  *    or INIT-ACK chunk the receiver SHOULD use not only the
989  *    source address of the packet (containing the INIT or
990  *    INIT-ACK) but the receiver SHOULD also use all valid
991  *    address parameters contained within the chunk.
992  *
993  * 2.18.3 Solution description
994  *
995  * This new text clearly specifies to an implementor the need
996  * to look within the INIT or INIT-ACK. Any implementation that
997  * does not do this, may not be able to establish associations
998  * in certain circumstances.
999  *
1000  */
1001 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1002 	struct sk_buff *skb,
1003 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1004 {
1005 	struct sctp_association *asoc;
1006 	union sctp_addr addr;
1007 	union sctp_addr *paddr = &addr;
1008 	struct sctphdr *sh = sctp_hdr(skb);
1009 	union sctp_params params;
1010 	sctp_init_chunk_t *init;
1011 	struct sctp_transport *transport;
1012 	struct sctp_af *af;
1013 
1014 	/*
1015 	 * This code will NOT touch anything inside the chunk--it is
1016 	 * strictly READ-ONLY.
1017 	 *
1018 	 * RFC 2960 3  SCTP packet Format
1019 	 *
1020 	 * Multiple chunks can be bundled into one SCTP packet up to
1021 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1022 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1023 	 * other chunk in a packet.  See Section 6.10 for more details
1024 	 * on chunk bundling.
1025 	 */
1026 
1027 	/* Find the start of the TLVs and the end of the chunk.  This is
1028 	 * the region we search for address parameters.
1029 	 */
1030 	init = (sctp_init_chunk_t *)skb->data;
1031 
1032 	/* Walk the parameters looking for embedded addresses. */
1033 	sctp_walk_params(params, init, init_hdr.params) {
1034 
1035 		/* Note: Ignoring hostname addresses. */
1036 		af = sctp_get_af_specific(param_type2af(params.p->type));
1037 		if (!af)
1038 			continue;
1039 
1040 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1041 
1042 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
1043 		if (asoc)
1044 			return asoc;
1045 	}
1046 
1047 	return NULL;
1048 }
1049 
1050 /* ADD-IP, Section 5.2
1051  * When an endpoint receives an ASCONF Chunk from the remote peer
1052  * special procedures may be needed to identify the association the
1053  * ASCONF Chunk is associated with. To properly find the association
1054  * the following procedures SHOULD be followed:
1055  *
1056  * D2) If the association is not found, use the address found in the
1057  * Address Parameter TLV combined with the port number found in the
1058  * SCTP common header. If found proceed to rule D4.
1059  *
1060  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1061  * address found in the ASCONF Address Parameter TLV of each of the
1062  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1063  */
1064 static struct sctp_association *__sctp_rcv_asconf_lookup(
1065 					struct net *net,
1066 					sctp_chunkhdr_t *ch,
1067 					const union sctp_addr *laddr,
1068 					__be16 peer_port,
1069 					struct sctp_transport **transportp)
1070 {
1071 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1072 	struct sctp_af *af;
1073 	union sctp_addr_param *param;
1074 	union sctp_addr paddr;
1075 
1076 	/* Skip over the ADDIP header and find the Address parameter */
1077 	param = (union sctp_addr_param *)(asconf + 1);
1078 
1079 	af = sctp_get_af_specific(param_type2af(param->p.type));
1080 	if (unlikely(!af))
1081 		return NULL;
1082 
1083 	af->from_addr_param(&paddr, param, peer_port, 0);
1084 
1085 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1086 }
1087 
1088 
1089 /* SCTP-AUTH, Section 6.3:
1090 *    If the receiver does not find a STCB for a packet containing an AUTH
1091 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1092 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1093 *    association.
1094 *
1095 * This means that any chunks that can help us identify the association need
1096 * to be looked at to find this association.
1097 */
1098 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1099 				      struct sk_buff *skb,
1100 				      const union sctp_addr *laddr,
1101 				      struct sctp_transport **transportp)
1102 {
1103 	struct sctp_association *asoc = NULL;
1104 	sctp_chunkhdr_t *ch;
1105 	int have_auth = 0;
1106 	unsigned int chunk_num = 1;
1107 	__u8 *ch_end;
1108 
1109 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1110 	 * to help us find the association.
1111 	 */
1112 	ch = (sctp_chunkhdr_t *) skb->data;
1113 	do {
1114 		/* Break out if chunk length is less then minimal. */
1115 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1116 			break;
1117 
1118 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1119 		if (ch_end > skb_tail_pointer(skb))
1120 			break;
1121 
1122 		switch (ch->type) {
1123 		case SCTP_CID_AUTH:
1124 			have_auth = chunk_num;
1125 			break;
1126 
1127 		case SCTP_CID_COOKIE_ECHO:
1128 			/* If a packet arrives containing an AUTH chunk as
1129 			 * a first chunk, a COOKIE-ECHO chunk as the second
1130 			 * chunk, and possibly more chunks after them, and
1131 			 * the receiver does not have an STCB for that
1132 			 * packet, then authentication is based on
1133 			 * the contents of the COOKIE- ECHO chunk.
1134 			 */
1135 			if (have_auth == 1 && chunk_num == 2)
1136 				return NULL;
1137 			break;
1138 
1139 		case SCTP_CID_ASCONF:
1140 			if (have_auth || net->sctp.addip_noauth)
1141 				asoc = __sctp_rcv_asconf_lookup(
1142 						net, ch, laddr,
1143 						sctp_hdr(skb)->source,
1144 						transportp);
1145 		default:
1146 			break;
1147 		}
1148 
1149 		if (asoc)
1150 			break;
1151 
1152 		ch = (sctp_chunkhdr_t *) ch_end;
1153 		chunk_num++;
1154 	} while (ch_end < skb_tail_pointer(skb));
1155 
1156 	return asoc;
1157 }
1158 
1159 /*
1160  * There are circumstances when we need to look inside the SCTP packet
1161  * for information to help us find the association.   Examples
1162  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1163  * chunks.
1164  */
1165 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1166 				      struct sk_buff *skb,
1167 				      const union sctp_addr *laddr,
1168 				      struct sctp_transport **transportp)
1169 {
1170 	sctp_chunkhdr_t *ch;
1171 
1172 	/* We do not allow GSO frames here as we need to linearize and
1173 	 * then cannot guarantee frame boundaries. This shouldn't be an
1174 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1175 	 * those cannot be on GSO-style anyway.
1176 	 */
1177 	if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1178 		return NULL;
1179 
1180 	if (skb_linearize(skb))
1181 		return NULL;
1182 
1183 	ch = (sctp_chunkhdr_t *) skb->data;
1184 
1185 	/* The code below will attempt to walk the chunk and extract
1186 	 * parameter information.  Before we do that, we need to verify
1187 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1188 	 * walk off the end.
1189 	 */
1190 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1191 		return NULL;
1192 
1193 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1194 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1195 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1196 
1197 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1198 }
1199 
1200 /* Lookup an association for an inbound skb. */
1201 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1202 				      struct sk_buff *skb,
1203 				      const union sctp_addr *paddr,
1204 				      const union sctp_addr *laddr,
1205 				      struct sctp_transport **transportp)
1206 {
1207 	struct sctp_association *asoc;
1208 
1209 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1210 
1211 	/* Further lookup for INIT/INIT-ACK packets.
1212 	 * SCTP Implementors Guide, 2.18 Handling of address
1213 	 * parameters within the INIT or INIT-ACK.
1214 	 */
1215 	if (!asoc)
1216 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1217 
1218 	return asoc;
1219 }
1220