xref: /linux/net/sctp/input.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /* SCTP kernel reference Implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * The SCTP reference implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * The SCTP reference implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal helpers. */
65 static int sctp_rcv_ootb(struct sk_buff *);
66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
67 				      const union sctp_addr *laddr,
68 				      const union sctp_addr *paddr,
69 				      struct sctp_transport **transportp);
70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
71 static struct sctp_association *__sctp_lookup_association(
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 
77 /* Calculate the SCTP checksum of an SCTP packet.  */
78 static inline int sctp_rcv_checksum(struct sk_buff *skb)
79 {
80 	struct sctphdr *sh;
81 	__u32 cmp, val;
82 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
83 
84 	sh = (struct sctphdr *) skb->h.raw;
85 	cmp = ntohl(sh->checksum);
86 
87 	val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
88 
89 	for (; list; list = list->next)
90 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
91 					val);
92 
93 	val = sctp_end_cksum(val);
94 
95 	if (val != cmp) {
96 		/* CRC failure, dump it. */
97 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
98 		return -1;
99 	}
100 	return 0;
101 }
102 
103 /* The free routine for skbuffs that sctp receives */
104 static void sctp_rfree(struct sk_buff *skb)
105 {
106 	atomic_sub(sizeof(struct sctp_chunk),&skb->sk->sk_rmem_alloc);
107 	sock_rfree(skb);
108 }
109 
110 /* The ownership wrapper routine to do receive buffer accounting */
111 static void sctp_rcv_set_owner_r(struct sk_buff *skb, struct sock *sk)
112 {
113 	skb_set_owner_r(skb,sk);
114 	skb->destructor = sctp_rfree;
115 	atomic_add(sizeof(struct sctp_chunk),&sk->sk_rmem_alloc);
116 }
117 
118 struct sctp_input_cb {
119 	union {
120 		struct inet_skb_parm	h4;
121 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
122 		struct inet6_skb_parm	h6;
123 #endif
124 	} header;
125 	struct sctp_chunk *chunk;
126 };
127 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
128 
129 /*
130  * This is the routine which IP calls when receiving an SCTP packet.
131  */
132 int sctp_rcv(struct sk_buff *skb)
133 {
134 	struct sock *sk;
135 	struct sctp_association *asoc;
136 	struct sctp_endpoint *ep = NULL;
137 	struct sctp_ep_common *rcvr;
138 	struct sctp_transport *transport = NULL;
139 	struct sctp_chunk *chunk;
140 	struct sctphdr *sh;
141 	union sctp_addr src;
142 	union sctp_addr dest;
143 	int family;
144 	struct sctp_af *af;
145 	int ret = 0;
146 
147 	if (skb->pkt_type!=PACKET_HOST)
148 		goto discard_it;
149 
150 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
151 
152 	sh = (struct sctphdr *) skb->h.raw;
153 
154 	/* Pull up the IP and SCTP headers. */
155 	__skb_pull(skb, skb->h.raw - skb->data);
156 	if (skb->len < sizeof(struct sctphdr))
157 		goto discard_it;
158 	if (sctp_rcv_checksum(skb) < 0)
159 		goto discard_it;
160 
161 	skb_pull(skb, sizeof(struct sctphdr));
162 
163 	/* Make sure we at least have chunk headers worth of data left. */
164 	if (skb->len < sizeof(struct sctp_chunkhdr))
165 		goto discard_it;
166 
167 	family = ipver2af(skb->nh.iph->version);
168 	af = sctp_get_af_specific(family);
169 	if (unlikely(!af))
170 		goto discard_it;
171 
172 	/* Initialize local addresses for lookups. */
173 	af->from_skb(&src, skb, 1);
174 	af->from_skb(&dest, skb, 0);
175 
176 	/* If the packet is to or from a non-unicast address,
177 	 * silently discard the packet.
178 	 *
179 	 * This is not clearly defined in the RFC except in section
180 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
181 	 * Transmission Protocol" 2.1, "It is important to note that the
182 	 * IP address of an SCTP transport address must be a routable
183 	 * unicast address.  In other words, IP multicast addresses and
184 	 * IP broadcast addresses cannot be used in an SCTP transport
185 	 * address."
186 	 */
187 	if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL))
188 		goto discard_it;
189 
190 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
191 
192 	if (!asoc)
193 		ep = __sctp_rcv_lookup_endpoint(&dest);
194 
195 	/* Retrieve the common input handling substructure. */
196 	rcvr = asoc ? &asoc->base : &ep->base;
197 	sk = rcvr->sk;
198 
199 	/*
200 	 * If a frame arrives on an interface and the receiving socket is
201 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
202 	 */
203 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
204 	{
205 		sock_put(sk);
206 		if (asoc) {
207 			sctp_association_put(asoc);
208 			asoc = NULL;
209 		} else {
210 			sctp_endpoint_put(ep);
211 			ep = NULL;
212 		}
213 		sk = sctp_get_ctl_sock();
214 		ep = sctp_sk(sk)->ep;
215 		sctp_endpoint_hold(ep);
216 		sock_hold(sk);
217 		rcvr = &ep->base;
218 	}
219 
220 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
221 		goto discard_release;
222 
223 	/*
224 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
225 	 * An SCTP packet is called an "out of the blue" (OOTB)
226 	 * packet if it is correctly formed, i.e., passed the
227 	 * receiver's checksum check, but the receiver is not
228 	 * able to identify the association to which this
229 	 * packet belongs.
230 	 */
231 	if (!asoc) {
232 		if (sctp_rcv_ootb(skb)) {
233 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
234 			goto discard_release;
235 		}
236 	}
237 
238 	/* SCTP seems to always need a timestamp right now (FIXME) */
239 	if (skb->stamp.tv_sec == 0) {
240 		do_gettimeofday(&skb->stamp);
241 		sock_enable_timestamp(sk);
242 	}
243 
244 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
245 		goto discard_release;
246 
247 	ret = sk_filter(sk, skb, 1);
248 	if (ret)
249                 goto discard_release;
250 
251 	/* Create an SCTP packet structure. */
252 	chunk = sctp_chunkify(skb, asoc, sk);
253 	if (!chunk) {
254 		ret = -ENOMEM;
255 		goto discard_release;
256 	}
257 	SCTP_INPUT_CB(skb)->chunk = chunk;
258 
259 	sctp_rcv_set_owner_r(skb,sk);
260 
261 	/* Remember what endpoint is to handle this packet. */
262 	chunk->rcvr = rcvr;
263 
264 	/* Remember the SCTP header. */
265 	chunk->sctp_hdr = sh;
266 
267 	/* Set the source and destination addresses of the incoming chunk.  */
268 	sctp_init_addrs(chunk, &src, &dest);
269 
270 	/* Remember where we came from.  */
271 	chunk->transport = transport;
272 
273 	/* Acquire access to the sock lock. Note: We are safe from other
274 	 * bottom halves on this lock, but a user may be in the lock too,
275 	 * so check if it is busy.
276 	 */
277 	sctp_bh_lock_sock(sk);
278 
279 	if (sock_owned_by_user(sk))
280 		sk_add_backlog(sk, skb);
281 	else
282 		sctp_backlog_rcv(sk, skb);
283 
284 	/* Release the sock and any reference counts we took in the
285 	 * lookup calls.
286 	 */
287 	sctp_bh_unlock_sock(sk);
288 	if (asoc)
289 		sctp_association_put(asoc);
290 	else
291 		sctp_endpoint_put(ep);
292 	sock_put(sk);
293 	return ret;
294 
295 discard_it:
296 	kfree_skb(skb);
297 	return ret;
298 
299 discard_release:
300 	/* Release any structures we may be holding. */
301 	sock_put(sk);
302 	if (asoc)
303 		sctp_association_put(asoc);
304 	else
305 		sctp_endpoint_put(ep);
306 
307 	goto discard_it;
308 }
309 
310 /* Handle second half of inbound skb processing.  If the sock was busy,
311  * we may have need to delay processing until later when the sock is
312  * released (on the backlog).   If not busy, we call this routine
313  * directly from the bottom half.
314  */
315 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 {
317 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
318 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
319 
320 	sctp_inq_push(inqueue, chunk);
321         return 0;
322 }
323 
324 /* Handle icmp frag needed error. */
325 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
326 			   struct sctp_transport *t, __u32 pmtu)
327 {
328 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
329 		printk(KERN_WARNING "%s: Reported pmtu %d too low, "
330 		       "using default minimum of %d\n", __FUNCTION__, pmtu,
331 		       SCTP_DEFAULT_MINSEGMENT);
332 		pmtu = SCTP_DEFAULT_MINSEGMENT;
333 	}
334 
335 	if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
336 		t->pmtu = pmtu;
337 		sctp_assoc_sync_pmtu(asoc);
338 		sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
339 	}
340 }
341 
342 /*
343  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
344  *
345  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
346  *        or a "Protocol Unreachable" treat this message as an abort
347  *        with the T bit set.
348  *
349  * This function sends an event to the state machine, which will abort the
350  * association.
351  *
352  */
353 void sctp_icmp_proto_unreachable(struct sock *sk,
354                            struct sctp_endpoint *ep,
355                            struct sctp_association *asoc,
356                            struct sctp_transport *t)
357 {
358 	SCTP_DEBUG_PRINTK("%s\n",  __FUNCTION__);
359 
360 	sctp_do_sm(SCTP_EVENT_T_OTHER,
361 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
362 		   asoc->state, asoc->ep, asoc, t,
363 		   GFP_ATOMIC);
364 
365 }
366 
367 /* Common lookup code for icmp/icmpv6 error handler. */
368 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
369 			     struct sctphdr *sctphdr,
370 			     struct sctp_endpoint **epp,
371 			     struct sctp_association **app,
372 			     struct sctp_transport **tpp)
373 {
374 	union sctp_addr saddr;
375 	union sctp_addr daddr;
376 	struct sctp_af *af;
377 	struct sock *sk = NULL;
378 	struct sctp_endpoint *ep = NULL;
379 	struct sctp_association *asoc = NULL;
380 	struct sctp_transport *transport = NULL;
381 
382 	*app = NULL; *epp = NULL; *tpp = NULL;
383 
384 	af = sctp_get_af_specific(family);
385 	if (unlikely(!af)) {
386 		return NULL;
387 	}
388 
389 	/* Initialize local addresses for lookups. */
390 	af->from_skb(&saddr, skb, 1);
391 	af->from_skb(&daddr, skb, 0);
392 
393 	/* Look for an association that matches the incoming ICMP error
394 	 * packet.
395 	 */
396 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
397 	if (!asoc) {
398 		/* If there is no matching association, see if it matches any
399 		 * endpoint. This may happen for an ICMP error generated in
400 		 * response to an INIT_ACK.
401 		 */
402 		ep = __sctp_rcv_lookup_endpoint(&daddr);
403 		if (!ep) {
404 			return NULL;
405 		}
406 	}
407 
408 	if (asoc) {
409 		sk = asoc->base.sk;
410 
411 		if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
412 			ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
413 			goto out;
414 		}
415 	} else
416 		sk = ep->base.sk;
417 
418 	sctp_bh_lock_sock(sk);
419 
420 	/* If too many ICMPs get dropped on busy
421 	 * servers this needs to be solved differently.
422 	 */
423 	if (sock_owned_by_user(sk))
424 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
425 
426 	*epp = ep;
427 	*app = asoc;
428 	*tpp = transport;
429 	return sk;
430 
431 out:
432 	sock_put(sk);
433 	if (asoc)
434 		sctp_association_put(asoc);
435 	if (ep)
436 		sctp_endpoint_put(ep);
437 	return NULL;
438 }
439 
440 /* Common cleanup code for icmp/icmpv6 error handler. */
441 void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep,
442 		     struct sctp_association *asoc)
443 {
444 	sctp_bh_unlock_sock(sk);
445 	sock_put(sk);
446 	if (asoc)
447 		sctp_association_put(asoc);
448 	if (ep)
449 		sctp_endpoint_put(ep);
450 }
451 
452 /*
453  * This routine is called by the ICMP module when it gets some
454  * sort of error condition.  If err < 0 then the socket should
455  * be closed and the error returned to the user.  If err > 0
456  * it's just the icmp type << 8 | icmp code.  After adjustment
457  * header points to the first 8 bytes of the sctp header.  We need
458  * to find the appropriate port.
459  *
460  * The locking strategy used here is very "optimistic". When
461  * someone else accesses the socket the ICMP is just dropped
462  * and for some paths there is no check at all.
463  * A more general error queue to queue errors for later handling
464  * is probably better.
465  *
466  */
467 void sctp_v4_err(struct sk_buff *skb, __u32 info)
468 {
469 	struct iphdr *iph = (struct iphdr *)skb->data;
470 	struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
471 	int type = skb->h.icmph->type;
472 	int code = skb->h.icmph->code;
473 	struct sock *sk;
474 	struct sctp_endpoint *ep;
475 	struct sctp_association *asoc;
476 	struct sctp_transport *transport;
477 	struct inet_sock *inet;
478 	char *saveip, *savesctp;
479 	int err;
480 
481 	if (skb->len < ((iph->ihl << 2) + 8)) {
482 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
483 		return;
484 	}
485 
486 	/* Fix up skb to look at the embedded net header. */
487 	saveip = skb->nh.raw;
488 	savesctp  = skb->h.raw;
489 	skb->nh.iph = iph;
490 	skb->h.raw = (char *)sh;
491 	sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport);
492 	/* Put back, the original pointers. */
493 	skb->nh.raw = saveip;
494 	skb->h.raw = savesctp;
495 	if (!sk) {
496 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
497 		return;
498 	}
499 	/* Warning:  The sock lock is held.  Remember to call
500 	 * sctp_err_finish!
501 	 */
502 
503 	switch (type) {
504 	case ICMP_PARAMETERPROB:
505 		err = EPROTO;
506 		break;
507 	case ICMP_DEST_UNREACH:
508 		if (code > NR_ICMP_UNREACH)
509 			goto out_unlock;
510 
511 		/* PMTU discovery (RFC1191) */
512 		if (ICMP_FRAG_NEEDED == code) {
513 			sctp_icmp_frag_needed(sk, asoc, transport, info);
514 			goto out_unlock;
515 		}
516 		else {
517 			if (ICMP_PROT_UNREACH == code) {
518 				sctp_icmp_proto_unreachable(sk, ep, asoc,
519 							    transport);
520 				goto out_unlock;
521 			}
522 		}
523 		err = icmp_err_convert[code].errno;
524 		break;
525 	case ICMP_TIME_EXCEEDED:
526 		/* Ignore any time exceeded errors due to fragment reassembly
527 		 * timeouts.
528 		 */
529 		if (ICMP_EXC_FRAGTIME == code)
530 			goto out_unlock;
531 
532 		err = EHOSTUNREACH;
533 		break;
534 	default:
535 		goto out_unlock;
536 	}
537 
538 	inet = inet_sk(sk);
539 	if (!sock_owned_by_user(sk) && inet->recverr) {
540 		sk->sk_err = err;
541 		sk->sk_error_report(sk);
542 	} else {  /* Only an error on timeout */
543 		sk->sk_err_soft = err;
544 	}
545 
546 out_unlock:
547 	sctp_err_finish(sk, ep, asoc);
548 }
549 
550 /*
551  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
552  *
553  * This function scans all the chunks in the OOTB packet to determine if
554  * the packet should be discarded right away.  If a response might be needed
555  * for this packet, or, if further processing is possible, the packet will
556  * be queued to a proper inqueue for the next phase of handling.
557  *
558  * Output:
559  * Return 0 - If further processing is needed.
560  * Return 1 - If the packet can be discarded right away.
561  */
562 int sctp_rcv_ootb(struct sk_buff *skb)
563 {
564 	sctp_chunkhdr_t *ch;
565 	__u8 *ch_end;
566 	sctp_errhdr_t *err;
567 
568 	ch = (sctp_chunkhdr_t *) skb->data;
569 	ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
570 
571 	/* Scan through all the chunks in the packet.  */
572 	while (ch_end > (__u8 *)ch && ch_end < skb->tail) {
573 
574 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
575 		 * receiver MUST silently discard the OOTB packet and take no
576 		 * further action.
577 		 */
578 		if (SCTP_CID_ABORT == ch->type)
579 			goto discard;
580 
581 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
582 		 * chunk, the receiver should silently discard the packet
583 		 * and take no further action.
584 		 */
585 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
586 			goto discard;
587 
588 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
589 		 * or a COOKIE ACK the SCTP Packet should be silently
590 		 * discarded.
591 		 */
592 		if (SCTP_CID_COOKIE_ACK == ch->type)
593 			goto discard;
594 
595 		if (SCTP_CID_ERROR == ch->type) {
596 			sctp_walk_errors(err, ch) {
597 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
598 					goto discard;
599 			}
600 		}
601 
602 		ch = (sctp_chunkhdr_t *) ch_end;
603 	        ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
604 	}
605 
606 	return 0;
607 
608 discard:
609 	return 1;
610 }
611 
612 /* Insert endpoint into the hash table.  */
613 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
614 {
615 	struct sctp_ep_common **epp;
616 	struct sctp_ep_common *epb;
617 	struct sctp_hashbucket *head;
618 
619 	epb = &ep->base;
620 
621 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
622 	head = &sctp_ep_hashtable[epb->hashent];
623 
624 	sctp_write_lock(&head->lock);
625 	epp = &head->chain;
626 	epb->next = *epp;
627 	if (epb->next)
628 		(*epp)->pprev = &epb->next;
629 	*epp = epb;
630 	epb->pprev = epp;
631 	sctp_write_unlock(&head->lock);
632 }
633 
634 /* Add an endpoint to the hash. Local BH-safe. */
635 void sctp_hash_endpoint(struct sctp_endpoint *ep)
636 {
637 	sctp_local_bh_disable();
638 	__sctp_hash_endpoint(ep);
639 	sctp_local_bh_enable();
640 }
641 
642 /* Remove endpoint from the hash table.  */
643 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
644 {
645 	struct sctp_hashbucket *head;
646 	struct sctp_ep_common *epb;
647 
648 	epb = &ep->base;
649 
650 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
651 
652 	head = &sctp_ep_hashtable[epb->hashent];
653 
654 	sctp_write_lock(&head->lock);
655 
656 	if (epb->pprev) {
657 		if (epb->next)
658 			epb->next->pprev = epb->pprev;
659 		*epb->pprev = epb->next;
660 		epb->pprev = NULL;
661 	}
662 
663 	sctp_write_unlock(&head->lock);
664 }
665 
666 /* Remove endpoint from the hash.  Local BH-safe. */
667 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
668 {
669 	sctp_local_bh_disable();
670 	__sctp_unhash_endpoint(ep);
671 	sctp_local_bh_enable();
672 }
673 
674 /* Look up an endpoint. */
675 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
676 {
677 	struct sctp_hashbucket *head;
678 	struct sctp_ep_common *epb;
679 	struct sctp_endpoint *ep;
680 	int hash;
681 
682 	hash = sctp_ep_hashfn(laddr->v4.sin_port);
683 	head = &sctp_ep_hashtable[hash];
684 	read_lock(&head->lock);
685 	for (epb = head->chain; epb; epb = epb->next) {
686 		ep = sctp_ep(epb);
687 		if (sctp_endpoint_is_match(ep, laddr))
688 			goto hit;
689 	}
690 
691 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
692 	epb = &ep->base;
693 
694 hit:
695 	sctp_endpoint_hold(ep);
696 	sock_hold(epb->sk);
697 	read_unlock(&head->lock);
698 	return ep;
699 }
700 
701 /* Insert association into the hash table.  */
702 static void __sctp_hash_established(struct sctp_association *asoc)
703 {
704 	struct sctp_ep_common **epp;
705 	struct sctp_ep_common *epb;
706 	struct sctp_hashbucket *head;
707 
708 	epb = &asoc->base;
709 
710 	/* Calculate which chain this entry will belong to. */
711 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
712 
713 	head = &sctp_assoc_hashtable[epb->hashent];
714 
715 	sctp_write_lock(&head->lock);
716 	epp = &head->chain;
717 	epb->next = *epp;
718 	if (epb->next)
719 		(*epp)->pprev = &epb->next;
720 	*epp = epb;
721 	epb->pprev = epp;
722 	sctp_write_unlock(&head->lock);
723 }
724 
725 /* Add an association to the hash. Local BH-safe. */
726 void sctp_hash_established(struct sctp_association *asoc)
727 {
728 	sctp_local_bh_disable();
729 	__sctp_hash_established(asoc);
730 	sctp_local_bh_enable();
731 }
732 
733 /* Remove association from the hash table.  */
734 static void __sctp_unhash_established(struct sctp_association *asoc)
735 {
736 	struct sctp_hashbucket *head;
737 	struct sctp_ep_common *epb;
738 
739 	epb = &asoc->base;
740 
741 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
742 					 asoc->peer.port);
743 
744 	head = &sctp_assoc_hashtable[epb->hashent];
745 
746 	sctp_write_lock(&head->lock);
747 
748 	if (epb->pprev) {
749 		if (epb->next)
750 			epb->next->pprev = epb->pprev;
751 		*epb->pprev = epb->next;
752 		epb->pprev = NULL;
753 	}
754 
755 	sctp_write_unlock(&head->lock);
756 }
757 
758 /* Remove association from the hash table.  Local BH-safe. */
759 void sctp_unhash_established(struct sctp_association *asoc)
760 {
761 	sctp_local_bh_disable();
762 	__sctp_unhash_established(asoc);
763 	sctp_local_bh_enable();
764 }
765 
766 /* Look up an association. */
767 static struct sctp_association *__sctp_lookup_association(
768 					const union sctp_addr *local,
769 					const union sctp_addr *peer,
770 					struct sctp_transport **pt)
771 {
772 	struct sctp_hashbucket *head;
773 	struct sctp_ep_common *epb;
774 	struct sctp_association *asoc;
775 	struct sctp_transport *transport;
776 	int hash;
777 
778 	/* Optimize here for direct hit, only listening connections can
779 	 * have wildcards anyways.
780 	 */
781 	hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port);
782 	head = &sctp_assoc_hashtable[hash];
783 	read_lock(&head->lock);
784 	for (epb = head->chain; epb; epb = epb->next) {
785 		asoc = sctp_assoc(epb);
786 		transport = sctp_assoc_is_match(asoc, local, peer);
787 		if (transport)
788 			goto hit;
789 	}
790 
791 	read_unlock(&head->lock);
792 
793 	return NULL;
794 
795 hit:
796 	*pt = transport;
797 	sctp_association_hold(asoc);
798 	sock_hold(epb->sk);
799 	read_unlock(&head->lock);
800 	return asoc;
801 }
802 
803 /* Look up an association. BH-safe. */
804 SCTP_STATIC
805 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
806 						 const union sctp_addr *paddr,
807 					    struct sctp_transport **transportp)
808 {
809 	struct sctp_association *asoc;
810 
811 	sctp_local_bh_disable();
812 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
813 	sctp_local_bh_enable();
814 
815 	return asoc;
816 }
817 
818 /* Is there an association matching the given local and peer addresses? */
819 int sctp_has_association(const union sctp_addr *laddr,
820 			 const union sctp_addr *paddr)
821 {
822 	struct sctp_association *asoc;
823 	struct sctp_transport *transport;
824 
825 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
826 		sock_put(asoc->base.sk);
827 		sctp_association_put(asoc);
828 		return 1;
829 	}
830 
831 	return 0;
832 }
833 
834 /*
835  * SCTP Implementors Guide, 2.18 Handling of address
836  * parameters within the INIT or INIT-ACK.
837  *
838  * D) When searching for a matching TCB upon reception of an INIT
839  *    or INIT-ACK chunk the receiver SHOULD use not only the
840  *    source address of the packet (containing the INIT or
841  *    INIT-ACK) but the receiver SHOULD also use all valid
842  *    address parameters contained within the chunk.
843  *
844  * 2.18.3 Solution description
845  *
846  * This new text clearly specifies to an implementor the need
847  * to look within the INIT or INIT-ACK. Any implementation that
848  * does not do this, may not be able to establish associations
849  * in certain circumstances.
850  *
851  */
852 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
853 	const union sctp_addr *laddr, struct sctp_transport **transportp)
854 {
855 	struct sctp_association *asoc;
856 	union sctp_addr addr;
857 	union sctp_addr *paddr = &addr;
858 	struct sctphdr *sh = (struct sctphdr *) skb->h.raw;
859 	sctp_chunkhdr_t *ch;
860 	union sctp_params params;
861 	sctp_init_chunk_t *init;
862 	struct sctp_transport *transport;
863 	struct sctp_af *af;
864 
865 	ch = (sctp_chunkhdr_t *) skb->data;
866 
867 	/* If this is INIT/INIT-ACK look inside the chunk too. */
868 	switch (ch->type) {
869 	case SCTP_CID_INIT:
870 	case SCTP_CID_INIT_ACK:
871 		break;
872 	default:
873 		return NULL;
874 	}
875 
876 	/* The code below will attempt to walk the chunk and extract
877 	 * parameter information.  Before we do that, we need to verify
878 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
879 	 * walk off the end.
880 	 */
881 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
882 		return NULL;
883 
884 	/*
885 	 * This code will NOT touch anything inside the chunk--it is
886 	 * strictly READ-ONLY.
887 	 *
888 	 * RFC 2960 3  SCTP packet Format
889 	 *
890 	 * Multiple chunks can be bundled into one SCTP packet up to
891 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
892 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
893 	 * other chunk in a packet.  See Section 6.10 for more details
894 	 * on chunk bundling.
895 	 */
896 
897 	/* Find the start of the TLVs and the end of the chunk.  This is
898 	 * the region we search for address parameters.
899 	 */
900 	init = (sctp_init_chunk_t *)skb->data;
901 
902 	/* Walk the parameters looking for embedded addresses. */
903 	sctp_walk_params(params, init, init_hdr.params) {
904 
905 		/* Note: Ignoring hostname addresses. */
906 		af = sctp_get_af_specific(param_type2af(params.p->type));
907 		if (!af)
908 			continue;
909 
910 		af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0);
911 
912 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
913 		if (asoc)
914 			return asoc;
915 	}
916 
917 	return NULL;
918 }
919 
920 /* Lookup an association for an inbound skb. */
921 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
922 				      const union sctp_addr *paddr,
923 				      const union sctp_addr *laddr,
924 				      struct sctp_transport **transportp)
925 {
926 	struct sctp_association *asoc;
927 
928 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
929 
930 	/* Further lookup for INIT/INIT-ACK packets.
931 	 * SCTP Implementors Guide, 2.18 Handling of address
932 	 * parameters within the INIT or INIT-ACK.
933 	 */
934 	if (!asoc)
935 		asoc = __sctp_rcv_init_lookup(skb, laddr, transportp);
936 
937 	return asoc;
938 }
939