1 /* SCTP kernel reference Implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * The SCTP reference implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * The SCTP reference implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, write to 27 * the Free Software Foundation, 59 Temple Place - Suite 330, 28 * Boston, MA 02111-1307, USA. 29 * 30 * Please send any bug reports or fixes you make to the 31 * email address(es): 32 * lksctp developers <lksctp-developers@lists.sourceforge.net> 33 * 34 * Or submit a bug report through the following website: 35 * http://www.sf.net/projects/lksctp 36 * 37 * Written or modified by: 38 * La Monte H.P. Yarroll <piggy@acm.org> 39 * Karl Knutson <karl@athena.chicago.il.us> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Hui Huang <hui.huang@nokia.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/list.h> /* For struct list_head */ 53 #include <linux/socket.h> 54 #include <linux/ip.h> 55 #include <linux/time.h> /* For struct timeval */ 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/snmp.h> 59 #include <net/sock.h> 60 #include <net/xfrm.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal helpers. */ 65 static int sctp_rcv_ootb(struct sk_buff *); 66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 67 const union sctp_addr *laddr, 68 const union sctp_addr *paddr, 69 struct sctp_transport **transportp); 70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr); 71 static struct sctp_association *__sctp_lookup_association( 72 const union sctp_addr *local, 73 const union sctp_addr *peer, 74 struct sctp_transport **pt); 75 76 77 /* Calculate the SCTP checksum of an SCTP packet. */ 78 static inline int sctp_rcv_checksum(struct sk_buff *skb) 79 { 80 struct sctphdr *sh; 81 __u32 cmp, val; 82 struct sk_buff *list = skb_shinfo(skb)->frag_list; 83 84 sh = (struct sctphdr *) skb->h.raw; 85 cmp = ntohl(sh->checksum); 86 87 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); 88 89 for (; list; list = list->next) 90 val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), 91 val); 92 93 val = sctp_end_cksum(val); 94 95 if (val != cmp) { 96 /* CRC failure, dump it. */ 97 SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS); 98 return -1; 99 } 100 return 0; 101 } 102 103 /* The free routine for skbuffs that sctp receives */ 104 static void sctp_rfree(struct sk_buff *skb) 105 { 106 atomic_sub(sizeof(struct sctp_chunk),&skb->sk->sk_rmem_alloc); 107 sock_rfree(skb); 108 } 109 110 /* The ownership wrapper routine to do receive buffer accounting */ 111 static void sctp_rcv_set_owner_r(struct sk_buff *skb, struct sock *sk) 112 { 113 skb_set_owner_r(skb,sk); 114 skb->destructor = sctp_rfree; 115 atomic_add(sizeof(struct sctp_chunk),&sk->sk_rmem_alloc); 116 } 117 118 struct sctp_input_cb { 119 union { 120 struct inet_skb_parm h4; 121 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE) 122 struct inet6_skb_parm h6; 123 #endif 124 } header; 125 struct sctp_chunk *chunk; 126 }; 127 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 128 129 /* 130 * This is the routine which IP calls when receiving an SCTP packet. 131 */ 132 int sctp_rcv(struct sk_buff *skb) 133 { 134 struct sock *sk; 135 struct sctp_association *asoc; 136 struct sctp_endpoint *ep = NULL; 137 struct sctp_ep_common *rcvr; 138 struct sctp_transport *transport = NULL; 139 struct sctp_chunk *chunk; 140 struct sctphdr *sh; 141 union sctp_addr src; 142 union sctp_addr dest; 143 int family; 144 struct sctp_af *af; 145 int ret = 0; 146 147 if (skb->pkt_type!=PACKET_HOST) 148 goto discard_it; 149 150 SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); 151 152 sh = (struct sctphdr *) skb->h.raw; 153 154 /* Pull up the IP and SCTP headers. */ 155 __skb_pull(skb, skb->h.raw - skb->data); 156 if (skb->len < sizeof(struct sctphdr)) 157 goto discard_it; 158 if (sctp_rcv_checksum(skb) < 0) 159 goto discard_it; 160 161 skb_pull(skb, sizeof(struct sctphdr)); 162 163 /* Make sure we at least have chunk headers worth of data left. */ 164 if (skb->len < sizeof(struct sctp_chunkhdr)) 165 goto discard_it; 166 167 family = ipver2af(skb->nh.iph->version); 168 af = sctp_get_af_specific(family); 169 if (unlikely(!af)) 170 goto discard_it; 171 172 /* Initialize local addresses for lookups. */ 173 af->from_skb(&src, skb, 1); 174 af->from_skb(&dest, skb, 0); 175 176 /* If the packet is to or from a non-unicast address, 177 * silently discard the packet. 178 * 179 * This is not clearly defined in the RFC except in section 180 * 8.4 - OOTB handling. However, based on the book "Stream Control 181 * Transmission Protocol" 2.1, "It is important to note that the 182 * IP address of an SCTP transport address must be a routable 183 * unicast address. In other words, IP multicast addresses and 184 * IP broadcast addresses cannot be used in an SCTP transport 185 * address." 186 */ 187 if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL)) 188 goto discard_it; 189 190 asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); 191 192 if (!asoc) 193 ep = __sctp_rcv_lookup_endpoint(&dest); 194 195 /* Retrieve the common input handling substructure. */ 196 rcvr = asoc ? &asoc->base : &ep->base; 197 sk = rcvr->sk; 198 199 /* 200 * If a frame arrives on an interface and the receiving socket is 201 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 202 */ 203 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) 204 { 205 sock_put(sk); 206 if (asoc) { 207 sctp_association_put(asoc); 208 asoc = NULL; 209 } else { 210 sctp_endpoint_put(ep); 211 ep = NULL; 212 } 213 sk = sctp_get_ctl_sock(); 214 ep = sctp_sk(sk)->ep; 215 sctp_endpoint_hold(ep); 216 sock_hold(sk); 217 rcvr = &ep->base; 218 } 219 220 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 221 goto discard_release; 222 223 /* 224 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 225 * An SCTP packet is called an "out of the blue" (OOTB) 226 * packet if it is correctly formed, i.e., passed the 227 * receiver's checksum check, but the receiver is not 228 * able to identify the association to which this 229 * packet belongs. 230 */ 231 if (!asoc) { 232 if (sctp_rcv_ootb(skb)) { 233 SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); 234 goto discard_release; 235 } 236 } 237 238 /* SCTP seems to always need a timestamp right now (FIXME) */ 239 if (skb->stamp.tv_sec == 0) { 240 do_gettimeofday(&skb->stamp); 241 sock_enable_timestamp(sk); 242 } 243 244 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 245 goto discard_release; 246 247 ret = sk_filter(sk, skb, 1); 248 if (ret) 249 goto discard_release; 250 251 /* Create an SCTP packet structure. */ 252 chunk = sctp_chunkify(skb, asoc, sk); 253 if (!chunk) { 254 ret = -ENOMEM; 255 goto discard_release; 256 } 257 SCTP_INPUT_CB(skb)->chunk = chunk; 258 259 sctp_rcv_set_owner_r(skb,sk); 260 261 /* Remember what endpoint is to handle this packet. */ 262 chunk->rcvr = rcvr; 263 264 /* Remember the SCTP header. */ 265 chunk->sctp_hdr = sh; 266 267 /* Set the source and destination addresses of the incoming chunk. */ 268 sctp_init_addrs(chunk, &src, &dest); 269 270 /* Remember where we came from. */ 271 chunk->transport = transport; 272 273 /* Acquire access to the sock lock. Note: We are safe from other 274 * bottom halves on this lock, but a user may be in the lock too, 275 * so check if it is busy. 276 */ 277 sctp_bh_lock_sock(sk); 278 279 if (sock_owned_by_user(sk)) 280 sk_add_backlog(sk, skb); 281 else 282 sctp_backlog_rcv(sk, skb); 283 284 /* Release the sock and any reference counts we took in the 285 * lookup calls. 286 */ 287 sctp_bh_unlock_sock(sk); 288 if (asoc) 289 sctp_association_put(asoc); 290 else 291 sctp_endpoint_put(ep); 292 sock_put(sk); 293 return ret; 294 295 discard_it: 296 kfree_skb(skb); 297 return ret; 298 299 discard_release: 300 /* Release any structures we may be holding. */ 301 sock_put(sk); 302 if (asoc) 303 sctp_association_put(asoc); 304 else 305 sctp_endpoint_put(ep); 306 307 goto discard_it; 308 } 309 310 /* Handle second half of inbound skb processing. If the sock was busy, 311 * we may have need to delay processing until later when the sock is 312 * released (on the backlog). If not busy, we call this routine 313 * directly from the bottom half. 314 */ 315 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 316 { 317 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 318 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 319 320 sctp_inq_push(inqueue, chunk); 321 return 0; 322 } 323 324 /* Handle icmp frag needed error. */ 325 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 326 struct sctp_transport *t, __u32 pmtu) 327 { 328 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 329 printk(KERN_WARNING "%s: Reported pmtu %d too low, " 330 "using default minimum of %d\n", __FUNCTION__, pmtu, 331 SCTP_DEFAULT_MINSEGMENT); 332 pmtu = SCTP_DEFAULT_MINSEGMENT; 333 } 334 335 if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) { 336 t->pmtu = pmtu; 337 sctp_assoc_sync_pmtu(asoc); 338 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 339 } 340 } 341 342 /* 343 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 344 * 345 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 346 * or a "Protocol Unreachable" treat this message as an abort 347 * with the T bit set. 348 * 349 * This function sends an event to the state machine, which will abort the 350 * association. 351 * 352 */ 353 void sctp_icmp_proto_unreachable(struct sock *sk, 354 struct sctp_endpoint *ep, 355 struct sctp_association *asoc, 356 struct sctp_transport *t) 357 { 358 SCTP_DEBUG_PRINTK("%s\n", __FUNCTION__); 359 360 sctp_do_sm(SCTP_EVENT_T_OTHER, 361 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 362 asoc->state, asoc->ep, asoc, t, 363 GFP_ATOMIC); 364 365 } 366 367 /* Common lookup code for icmp/icmpv6 error handler. */ 368 struct sock *sctp_err_lookup(int family, struct sk_buff *skb, 369 struct sctphdr *sctphdr, 370 struct sctp_endpoint **epp, 371 struct sctp_association **app, 372 struct sctp_transport **tpp) 373 { 374 union sctp_addr saddr; 375 union sctp_addr daddr; 376 struct sctp_af *af; 377 struct sock *sk = NULL; 378 struct sctp_endpoint *ep = NULL; 379 struct sctp_association *asoc = NULL; 380 struct sctp_transport *transport = NULL; 381 382 *app = NULL; *epp = NULL; *tpp = NULL; 383 384 af = sctp_get_af_specific(family); 385 if (unlikely(!af)) { 386 return NULL; 387 } 388 389 /* Initialize local addresses for lookups. */ 390 af->from_skb(&saddr, skb, 1); 391 af->from_skb(&daddr, skb, 0); 392 393 /* Look for an association that matches the incoming ICMP error 394 * packet. 395 */ 396 asoc = __sctp_lookup_association(&saddr, &daddr, &transport); 397 if (!asoc) { 398 /* If there is no matching association, see if it matches any 399 * endpoint. This may happen for an ICMP error generated in 400 * response to an INIT_ACK. 401 */ 402 ep = __sctp_rcv_lookup_endpoint(&daddr); 403 if (!ep) { 404 return NULL; 405 } 406 } 407 408 if (asoc) { 409 sk = asoc->base.sk; 410 411 if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) { 412 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 413 goto out; 414 } 415 } else 416 sk = ep->base.sk; 417 418 sctp_bh_lock_sock(sk); 419 420 /* If too many ICMPs get dropped on busy 421 * servers this needs to be solved differently. 422 */ 423 if (sock_owned_by_user(sk)) 424 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); 425 426 *epp = ep; 427 *app = asoc; 428 *tpp = transport; 429 return sk; 430 431 out: 432 sock_put(sk); 433 if (asoc) 434 sctp_association_put(asoc); 435 if (ep) 436 sctp_endpoint_put(ep); 437 return NULL; 438 } 439 440 /* Common cleanup code for icmp/icmpv6 error handler. */ 441 void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep, 442 struct sctp_association *asoc) 443 { 444 sctp_bh_unlock_sock(sk); 445 sock_put(sk); 446 if (asoc) 447 sctp_association_put(asoc); 448 if (ep) 449 sctp_endpoint_put(ep); 450 } 451 452 /* 453 * This routine is called by the ICMP module when it gets some 454 * sort of error condition. If err < 0 then the socket should 455 * be closed and the error returned to the user. If err > 0 456 * it's just the icmp type << 8 | icmp code. After adjustment 457 * header points to the first 8 bytes of the sctp header. We need 458 * to find the appropriate port. 459 * 460 * The locking strategy used here is very "optimistic". When 461 * someone else accesses the socket the ICMP is just dropped 462 * and for some paths there is no check at all. 463 * A more general error queue to queue errors for later handling 464 * is probably better. 465 * 466 */ 467 void sctp_v4_err(struct sk_buff *skb, __u32 info) 468 { 469 struct iphdr *iph = (struct iphdr *)skb->data; 470 struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2)); 471 int type = skb->h.icmph->type; 472 int code = skb->h.icmph->code; 473 struct sock *sk; 474 struct sctp_endpoint *ep; 475 struct sctp_association *asoc; 476 struct sctp_transport *transport; 477 struct inet_sock *inet; 478 char *saveip, *savesctp; 479 int err; 480 481 if (skb->len < ((iph->ihl << 2) + 8)) { 482 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 483 return; 484 } 485 486 /* Fix up skb to look at the embedded net header. */ 487 saveip = skb->nh.raw; 488 savesctp = skb->h.raw; 489 skb->nh.iph = iph; 490 skb->h.raw = (char *)sh; 491 sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport); 492 /* Put back, the original pointers. */ 493 skb->nh.raw = saveip; 494 skb->h.raw = savesctp; 495 if (!sk) { 496 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 497 return; 498 } 499 /* Warning: The sock lock is held. Remember to call 500 * sctp_err_finish! 501 */ 502 503 switch (type) { 504 case ICMP_PARAMETERPROB: 505 err = EPROTO; 506 break; 507 case ICMP_DEST_UNREACH: 508 if (code > NR_ICMP_UNREACH) 509 goto out_unlock; 510 511 /* PMTU discovery (RFC1191) */ 512 if (ICMP_FRAG_NEEDED == code) { 513 sctp_icmp_frag_needed(sk, asoc, transport, info); 514 goto out_unlock; 515 } 516 else { 517 if (ICMP_PROT_UNREACH == code) { 518 sctp_icmp_proto_unreachable(sk, ep, asoc, 519 transport); 520 goto out_unlock; 521 } 522 } 523 err = icmp_err_convert[code].errno; 524 break; 525 case ICMP_TIME_EXCEEDED: 526 /* Ignore any time exceeded errors due to fragment reassembly 527 * timeouts. 528 */ 529 if (ICMP_EXC_FRAGTIME == code) 530 goto out_unlock; 531 532 err = EHOSTUNREACH; 533 break; 534 default: 535 goto out_unlock; 536 } 537 538 inet = inet_sk(sk); 539 if (!sock_owned_by_user(sk) && inet->recverr) { 540 sk->sk_err = err; 541 sk->sk_error_report(sk); 542 } else { /* Only an error on timeout */ 543 sk->sk_err_soft = err; 544 } 545 546 out_unlock: 547 sctp_err_finish(sk, ep, asoc); 548 } 549 550 /* 551 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 552 * 553 * This function scans all the chunks in the OOTB packet to determine if 554 * the packet should be discarded right away. If a response might be needed 555 * for this packet, or, if further processing is possible, the packet will 556 * be queued to a proper inqueue for the next phase of handling. 557 * 558 * Output: 559 * Return 0 - If further processing is needed. 560 * Return 1 - If the packet can be discarded right away. 561 */ 562 int sctp_rcv_ootb(struct sk_buff *skb) 563 { 564 sctp_chunkhdr_t *ch; 565 __u8 *ch_end; 566 sctp_errhdr_t *err; 567 568 ch = (sctp_chunkhdr_t *) skb->data; 569 ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length)); 570 571 /* Scan through all the chunks in the packet. */ 572 while (ch_end > (__u8 *)ch && ch_end < skb->tail) { 573 574 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 575 * receiver MUST silently discard the OOTB packet and take no 576 * further action. 577 */ 578 if (SCTP_CID_ABORT == ch->type) 579 goto discard; 580 581 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 582 * chunk, the receiver should silently discard the packet 583 * and take no further action. 584 */ 585 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 586 goto discard; 587 588 /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR 589 * or a COOKIE ACK the SCTP Packet should be silently 590 * discarded. 591 */ 592 if (SCTP_CID_COOKIE_ACK == ch->type) 593 goto discard; 594 595 if (SCTP_CID_ERROR == ch->type) { 596 sctp_walk_errors(err, ch) { 597 if (SCTP_ERROR_STALE_COOKIE == err->cause) 598 goto discard; 599 } 600 } 601 602 ch = (sctp_chunkhdr_t *) ch_end; 603 ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length)); 604 } 605 606 return 0; 607 608 discard: 609 return 1; 610 } 611 612 /* Insert endpoint into the hash table. */ 613 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 614 { 615 struct sctp_ep_common **epp; 616 struct sctp_ep_common *epb; 617 struct sctp_hashbucket *head; 618 619 epb = &ep->base; 620 621 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 622 head = &sctp_ep_hashtable[epb->hashent]; 623 624 sctp_write_lock(&head->lock); 625 epp = &head->chain; 626 epb->next = *epp; 627 if (epb->next) 628 (*epp)->pprev = &epb->next; 629 *epp = epb; 630 epb->pprev = epp; 631 sctp_write_unlock(&head->lock); 632 } 633 634 /* Add an endpoint to the hash. Local BH-safe. */ 635 void sctp_hash_endpoint(struct sctp_endpoint *ep) 636 { 637 sctp_local_bh_disable(); 638 __sctp_hash_endpoint(ep); 639 sctp_local_bh_enable(); 640 } 641 642 /* Remove endpoint from the hash table. */ 643 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 644 { 645 struct sctp_hashbucket *head; 646 struct sctp_ep_common *epb; 647 648 epb = &ep->base; 649 650 epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); 651 652 head = &sctp_ep_hashtable[epb->hashent]; 653 654 sctp_write_lock(&head->lock); 655 656 if (epb->pprev) { 657 if (epb->next) 658 epb->next->pprev = epb->pprev; 659 *epb->pprev = epb->next; 660 epb->pprev = NULL; 661 } 662 663 sctp_write_unlock(&head->lock); 664 } 665 666 /* Remove endpoint from the hash. Local BH-safe. */ 667 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 668 { 669 sctp_local_bh_disable(); 670 __sctp_unhash_endpoint(ep); 671 sctp_local_bh_enable(); 672 } 673 674 /* Look up an endpoint. */ 675 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr) 676 { 677 struct sctp_hashbucket *head; 678 struct sctp_ep_common *epb; 679 struct sctp_endpoint *ep; 680 int hash; 681 682 hash = sctp_ep_hashfn(laddr->v4.sin_port); 683 head = &sctp_ep_hashtable[hash]; 684 read_lock(&head->lock); 685 for (epb = head->chain; epb; epb = epb->next) { 686 ep = sctp_ep(epb); 687 if (sctp_endpoint_is_match(ep, laddr)) 688 goto hit; 689 } 690 691 ep = sctp_sk((sctp_get_ctl_sock()))->ep; 692 epb = &ep->base; 693 694 hit: 695 sctp_endpoint_hold(ep); 696 sock_hold(epb->sk); 697 read_unlock(&head->lock); 698 return ep; 699 } 700 701 /* Insert association into the hash table. */ 702 static void __sctp_hash_established(struct sctp_association *asoc) 703 { 704 struct sctp_ep_common **epp; 705 struct sctp_ep_common *epb; 706 struct sctp_hashbucket *head; 707 708 epb = &asoc->base; 709 710 /* Calculate which chain this entry will belong to. */ 711 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); 712 713 head = &sctp_assoc_hashtable[epb->hashent]; 714 715 sctp_write_lock(&head->lock); 716 epp = &head->chain; 717 epb->next = *epp; 718 if (epb->next) 719 (*epp)->pprev = &epb->next; 720 *epp = epb; 721 epb->pprev = epp; 722 sctp_write_unlock(&head->lock); 723 } 724 725 /* Add an association to the hash. Local BH-safe. */ 726 void sctp_hash_established(struct sctp_association *asoc) 727 { 728 sctp_local_bh_disable(); 729 __sctp_hash_established(asoc); 730 sctp_local_bh_enable(); 731 } 732 733 /* Remove association from the hash table. */ 734 static void __sctp_unhash_established(struct sctp_association *asoc) 735 { 736 struct sctp_hashbucket *head; 737 struct sctp_ep_common *epb; 738 739 epb = &asoc->base; 740 741 epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, 742 asoc->peer.port); 743 744 head = &sctp_assoc_hashtable[epb->hashent]; 745 746 sctp_write_lock(&head->lock); 747 748 if (epb->pprev) { 749 if (epb->next) 750 epb->next->pprev = epb->pprev; 751 *epb->pprev = epb->next; 752 epb->pprev = NULL; 753 } 754 755 sctp_write_unlock(&head->lock); 756 } 757 758 /* Remove association from the hash table. Local BH-safe. */ 759 void sctp_unhash_established(struct sctp_association *asoc) 760 { 761 sctp_local_bh_disable(); 762 __sctp_unhash_established(asoc); 763 sctp_local_bh_enable(); 764 } 765 766 /* Look up an association. */ 767 static struct sctp_association *__sctp_lookup_association( 768 const union sctp_addr *local, 769 const union sctp_addr *peer, 770 struct sctp_transport **pt) 771 { 772 struct sctp_hashbucket *head; 773 struct sctp_ep_common *epb; 774 struct sctp_association *asoc; 775 struct sctp_transport *transport; 776 int hash; 777 778 /* Optimize here for direct hit, only listening connections can 779 * have wildcards anyways. 780 */ 781 hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port); 782 head = &sctp_assoc_hashtable[hash]; 783 read_lock(&head->lock); 784 for (epb = head->chain; epb; epb = epb->next) { 785 asoc = sctp_assoc(epb); 786 transport = sctp_assoc_is_match(asoc, local, peer); 787 if (transport) 788 goto hit; 789 } 790 791 read_unlock(&head->lock); 792 793 return NULL; 794 795 hit: 796 *pt = transport; 797 sctp_association_hold(asoc); 798 sock_hold(epb->sk); 799 read_unlock(&head->lock); 800 return asoc; 801 } 802 803 /* Look up an association. BH-safe. */ 804 SCTP_STATIC 805 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr, 806 const union sctp_addr *paddr, 807 struct sctp_transport **transportp) 808 { 809 struct sctp_association *asoc; 810 811 sctp_local_bh_disable(); 812 asoc = __sctp_lookup_association(laddr, paddr, transportp); 813 sctp_local_bh_enable(); 814 815 return asoc; 816 } 817 818 /* Is there an association matching the given local and peer addresses? */ 819 int sctp_has_association(const union sctp_addr *laddr, 820 const union sctp_addr *paddr) 821 { 822 struct sctp_association *asoc; 823 struct sctp_transport *transport; 824 825 if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) { 826 sock_put(asoc->base.sk); 827 sctp_association_put(asoc); 828 return 1; 829 } 830 831 return 0; 832 } 833 834 /* 835 * SCTP Implementors Guide, 2.18 Handling of address 836 * parameters within the INIT or INIT-ACK. 837 * 838 * D) When searching for a matching TCB upon reception of an INIT 839 * or INIT-ACK chunk the receiver SHOULD use not only the 840 * source address of the packet (containing the INIT or 841 * INIT-ACK) but the receiver SHOULD also use all valid 842 * address parameters contained within the chunk. 843 * 844 * 2.18.3 Solution description 845 * 846 * This new text clearly specifies to an implementor the need 847 * to look within the INIT or INIT-ACK. Any implementation that 848 * does not do this, may not be able to establish associations 849 * in certain circumstances. 850 * 851 */ 852 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb, 853 const union sctp_addr *laddr, struct sctp_transport **transportp) 854 { 855 struct sctp_association *asoc; 856 union sctp_addr addr; 857 union sctp_addr *paddr = &addr; 858 struct sctphdr *sh = (struct sctphdr *) skb->h.raw; 859 sctp_chunkhdr_t *ch; 860 union sctp_params params; 861 sctp_init_chunk_t *init; 862 struct sctp_transport *transport; 863 struct sctp_af *af; 864 865 ch = (sctp_chunkhdr_t *) skb->data; 866 867 /* If this is INIT/INIT-ACK look inside the chunk too. */ 868 switch (ch->type) { 869 case SCTP_CID_INIT: 870 case SCTP_CID_INIT_ACK: 871 break; 872 default: 873 return NULL; 874 } 875 876 /* The code below will attempt to walk the chunk and extract 877 * parameter information. Before we do that, we need to verify 878 * that the chunk length doesn't cause overflow. Otherwise, we'll 879 * walk off the end. 880 */ 881 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 882 return NULL; 883 884 /* 885 * This code will NOT touch anything inside the chunk--it is 886 * strictly READ-ONLY. 887 * 888 * RFC 2960 3 SCTP packet Format 889 * 890 * Multiple chunks can be bundled into one SCTP packet up to 891 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 892 * COMPLETE chunks. These chunks MUST NOT be bundled with any 893 * other chunk in a packet. See Section 6.10 for more details 894 * on chunk bundling. 895 */ 896 897 /* Find the start of the TLVs and the end of the chunk. This is 898 * the region we search for address parameters. 899 */ 900 init = (sctp_init_chunk_t *)skb->data; 901 902 /* Walk the parameters looking for embedded addresses. */ 903 sctp_walk_params(params, init, init_hdr.params) { 904 905 /* Note: Ignoring hostname addresses. */ 906 af = sctp_get_af_specific(param_type2af(params.p->type)); 907 if (!af) 908 continue; 909 910 af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0); 911 912 asoc = __sctp_lookup_association(laddr, paddr, &transport); 913 if (asoc) 914 return asoc; 915 } 916 917 return NULL; 918 } 919 920 /* Lookup an association for an inbound skb. */ 921 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, 922 const union sctp_addr *paddr, 923 const union sctp_addr *laddr, 924 struct sctp_transport **transportp) 925 { 926 struct sctp_association *asoc; 927 928 asoc = __sctp_lookup_association(laddr, paddr, transportp); 929 930 /* Further lookup for INIT/INIT-ACK packets. 931 * SCTP Implementors Guide, 2.18 Handling of address 932 * parameters within the INIT or INIT-ACK. 933 */ 934 if (!asoc) 935 asoc = __sctp_rcv_init_lookup(skb, laddr, transportp); 936 937 return asoc; 938 } 939