1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, write to 27 * the Free Software Foundation, 59 Temple Place - Suite 330, 28 * Boston, MA 02111-1307, USA. 29 * 30 * Please send any bug reports or fixes you make to the 31 * email address(es): 32 * lksctp developers <lksctp-developers@lists.sourceforge.net> 33 * 34 * Or submit a bug report through the following website: 35 * http://www.sf.net/projects/lksctp 36 * 37 * Written or modified by: 38 * La Monte H.P. Yarroll <piggy@acm.org> 39 * Karl Knutson <karl@athena.chicago.il.us> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Hui Huang <hui.huang@nokia.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/list.h> /* For struct list_head */ 53 #include <linux/socket.h> 54 #include <linux/ip.h> 55 #include <linux/time.h> /* For struct timeval */ 56 #include <linux/slab.h> 57 #include <net/ip.h> 58 #include <net/icmp.h> 59 #include <net/snmp.h> 60 #include <net/sock.h> 61 #include <net/xfrm.h> 62 #include <net/sctp/sctp.h> 63 #include <net/sctp/sm.h> 64 #include <net/sctp/checksum.h> 65 #include <net/net_namespace.h> 66 67 /* Forward declarations for internal helpers. */ 68 static int sctp_rcv_ootb(struct sk_buff *); 69 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 70 struct sk_buff *skb, 71 const union sctp_addr *paddr, 72 const union sctp_addr *laddr, 73 struct sctp_transport **transportp); 74 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 75 const union sctp_addr *laddr); 76 static struct sctp_association *__sctp_lookup_association( 77 struct net *net, 78 const union sctp_addr *local, 79 const union sctp_addr *peer, 80 struct sctp_transport **pt); 81 82 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 83 84 85 /* Calculate the SCTP checksum of an SCTP packet. */ 86 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 87 { 88 struct sctphdr *sh = sctp_hdr(skb); 89 __le32 cmp = sh->checksum; 90 struct sk_buff *list; 91 __le32 val; 92 __u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); 93 94 skb_walk_frags(skb, list) 95 tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), 96 tmp); 97 98 val = sctp_end_cksum(tmp); 99 100 if (val != cmp) { 101 /* CRC failure, dump it. */ 102 SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS); 103 return -1; 104 } 105 return 0; 106 } 107 108 struct sctp_input_cb { 109 union { 110 struct inet_skb_parm h4; 111 #if IS_ENABLED(CONFIG_IPV6) 112 struct inet6_skb_parm h6; 113 #endif 114 } header; 115 struct sctp_chunk *chunk; 116 }; 117 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 118 119 /* 120 * This is the routine which IP calls when receiving an SCTP packet. 121 */ 122 int sctp_rcv(struct sk_buff *skb) 123 { 124 struct sock *sk; 125 struct sctp_association *asoc; 126 struct sctp_endpoint *ep = NULL; 127 struct sctp_ep_common *rcvr; 128 struct sctp_transport *transport = NULL; 129 struct sctp_chunk *chunk; 130 struct sctphdr *sh; 131 union sctp_addr src; 132 union sctp_addr dest; 133 int family; 134 struct sctp_af *af; 135 struct net *net = dev_net(skb->dev); 136 137 if (skb->pkt_type!=PACKET_HOST) 138 goto discard_it; 139 140 SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS); 141 142 if (skb_linearize(skb)) 143 goto discard_it; 144 145 sh = sctp_hdr(skb); 146 147 /* Pull up the IP and SCTP headers. */ 148 __skb_pull(skb, skb_transport_offset(skb)); 149 if (skb->len < sizeof(struct sctphdr)) 150 goto discard_it; 151 if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) && 152 sctp_rcv_checksum(net, skb) < 0) 153 goto discard_it; 154 155 skb_pull(skb, sizeof(struct sctphdr)); 156 157 /* Make sure we at least have chunk headers worth of data left. */ 158 if (skb->len < sizeof(struct sctp_chunkhdr)) 159 goto discard_it; 160 161 family = ipver2af(ip_hdr(skb)->version); 162 af = sctp_get_af_specific(family); 163 if (unlikely(!af)) 164 goto discard_it; 165 166 /* Initialize local addresses for lookups. */ 167 af->from_skb(&src, skb, 1); 168 af->from_skb(&dest, skb, 0); 169 170 /* If the packet is to or from a non-unicast address, 171 * silently discard the packet. 172 * 173 * This is not clearly defined in the RFC except in section 174 * 8.4 - OOTB handling. However, based on the book "Stream Control 175 * Transmission Protocol" 2.1, "It is important to note that the 176 * IP address of an SCTP transport address must be a routable 177 * unicast address. In other words, IP multicast addresses and 178 * IP broadcast addresses cannot be used in an SCTP transport 179 * address." 180 */ 181 if (!af->addr_valid(&src, NULL, skb) || 182 !af->addr_valid(&dest, NULL, skb)) 183 goto discard_it; 184 185 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 186 187 if (!asoc) 188 ep = __sctp_rcv_lookup_endpoint(net, &dest); 189 190 /* Retrieve the common input handling substructure. */ 191 rcvr = asoc ? &asoc->base : &ep->base; 192 sk = rcvr->sk; 193 194 /* 195 * If a frame arrives on an interface and the receiving socket is 196 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 197 */ 198 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) 199 { 200 if (asoc) { 201 sctp_association_put(asoc); 202 asoc = NULL; 203 } else { 204 sctp_endpoint_put(ep); 205 ep = NULL; 206 } 207 sk = net->sctp.ctl_sock; 208 ep = sctp_sk(sk)->ep; 209 sctp_endpoint_hold(ep); 210 rcvr = &ep->base; 211 } 212 213 /* 214 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 215 * An SCTP packet is called an "out of the blue" (OOTB) 216 * packet if it is correctly formed, i.e., passed the 217 * receiver's checksum check, but the receiver is not 218 * able to identify the association to which this 219 * packet belongs. 220 */ 221 if (!asoc) { 222 if (sctp_rcv_ootb(skb)) { 223 SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES); 224 goto discard_release; 225 } 226 } 227 228 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 229 goto discard_release; 230 nf_reset(skb); 231 232 if (sk_filter(sk, skb)) 233 goto discard_release; 234 235 /* Create an SCTP packet structure. */ 236 chunk = sctp_chunkify(skb, asoc, sk); 237 if (!chunk) 238 goto discard_release; 239 SCTP_INPUT_CB(skb)->chunk = chunk; 240 241 /* Remember what endpoint is to handle this packet. */ 242 chunk->rcvr = rcvr; 243 244 /* Remember the SCTP header. */ 245 chunk->sctp_hdr = sh; 246 247 /* Set the source and destination addresses of the incoming chunk. */ 248 sctp_init_addrs(chunk, &src, &dest); 249 250 /* Remember where we came from. */ 251 chunk->transport = transport; 252 253 /* Acquire access to the sock lock. Note: We are safe from other 254 * bottom halves on this lock, but a user may be in the lock too, 255 * so check if it is busy. 256 */ 257 sctp_bh_lock_sock(sk); 258 259 if (sk != rcvr->sk) { 260 /* Our cached sk is different from the rcvr->sk. This is 261 * because migrate()/accept() may have moved the association 262 * to a new socket and released all the sockets. So now we 263 * are holding a lock on the old socket while the user may 264 * be doing something with the new socket. Switch our veiw 265 * of the current sk. 266 */ 267 sctp_bh_unlock_sock(sk); 268 sk = rcvr->sk; 269 sctp_bh_lock_sock(sk); 270 } 271 272 if (sock_owned_by_user(sk)) { 273 if (sctp_add_backlog(sk, skb)) { 274 sctp_bh_unlock_sock(sk); 275 sctp_chunk_free(chunk); 276 skb = NULL; /* sctp_chunk_free already freed the skb */ 277 goto discard_release; 278 } 279 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG); 280 } else { 281 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ); 282 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 283 } 284 285 sctp_bh_unlock_sock(sk); 286 287 /* Release the asoc/ep ref we took in the lookup calls. */ 288 if (asoc) 289 sctp_association_put(asoc); 290 else 291 sctp_endpoint_put(ep); 292 293 return 0; 294 295 discard_it: 296 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS); 297 kfree_skb(skb); 298 return 0; 299 300 discard_release: 301 /* Release the asoc/ep ref we took in the lookup calls. */ 302 if (asoc) 303 sctp_association_put(asoc); 304 else 305 sctp_endpoint_put(ep); 306 307 goto discard_it; 308 } 309 310 /* Process the backlog queue of the socket. Every skb on 311 * the backlog holds a ref on an association or endpoint. 312 * We hold this ref throughout the state machine to make 313 * sure that the structure we need is still around. 314 */ 315 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 316 { 317 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 318 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 319 struct sctp_ep_common *rcvr = NULL; 320 int backloged = 0; 321 322 rcvr = chunk->rcvr; 323 324 /* If the rcvr is dead then the association or endpoint 325 * has been deleted and we can safely drop the chunk 326 * and refs that we are holding. 327 */ 328 if (rcvr->dead) { 329 sctp_chunk_free(chunk); 330 goto done; 331 } 332 333 if (unlikely(rcvr->sk != sk)) { 334 /* In this case, the association moved from one socket to 335 * another. We are currently sitting on the backlog of the 336 * old socket, so we need to move. 337 * However, since we are here in the process context we 338 * need to take make sure that the user doesn't own 339 * the new socket when we process the packet. 340 * If the new socket is user-owned, queue the chunk to the 341 * backlog of the new socket without dropping any refs. 342 * Otherwise, we can safely push the chunk on the inqueue. 343 */ 344 345 sk = rcvr->sk; 346 sctp_bh_lock_sock(sk); 347 348 if (sock_owned_by_user(sk)) { 349 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 350 sctp_chunk_free(chunk); 351 else 352 backloged = 1; 353 } else 354 sctp_inq_push(inqueue, chunk); 355 356 sctp_bh_unlock_sock(sk); 357 358 /* If the chunk was backloged again, don't drop refs */ 359 if (backloged) 360 return 0; 361 } else { 362 sctp_inq_push(inqueue, chunk); 363 } 364 365 done: 366 /* Release the refs we took in sctp_add_backlog */ 367 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 368 sctp_association_put(sctp_assoc(rcvr)); 369 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 370 sctp_endpoint_put(sctp_ep(rcvr)); 371 else 372 BUG(); 373 374 return 0; 375 } 376 377 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 378 { 379 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 380 struct sctp_ep_common *rcvr = chunk->rcvr; 381 int ret; 382 383 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 384 if (!ret) { 385 /* Hold the assoc/ep while hanging on the backlog queue. 386 * This way, we know structures we need will not disappear 387 * from us 388 */ 389 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 390 sctp_association_hold(sctp_assoc(rcvr)); 391 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 392 sctp_endpoint_hold(sctp_ep(rcvr)); 393 else 394 BUG(); 395 } 396 return ret; 397 398 } 399 400 /* Handle icmp frag needed error. */ 401 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 402 struct sctp_transport *t, __u32 pmtu) 403 { 404 if (!t || (t->pathmtu <= pmtu)) 405 return; 406 407 if (sock_owned_by_user(sk)) { 408 asoc->pmtu_pending = 1; 409 t->pmtu_pending = 1; 410 return; 411 } 412 413 if (t->param_flags & SPP_PMTUD_ENABLE) { 414 /* Update transports view of the MTU */ 415 sctp_transport_update_pmtu(sk, t, pmtu); 416 417 /* Update association pmtu. */ 418 sctp_assoc_sync_pmtu(sk, asoc); 419 } 420 421 /* Retransmit with the new pmtu setting. 422 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 423 * Needed will never be sent, but if a message was sent before 424 * PMTU discovery was disabled that was larger than the PMTU, it 425 * would not be fragmented, so it must be re-transmitted fragmented. 426 */ 427 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 428 } 429 430 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 431 struct sk_buff *skb) 432 { 433 struct dst_entry *dst; 434 435 if (!t) 436 return; 437 dst = sctp_transport_dst_check(t); 438 if (dst) 439 dst->ops->redirect(dst, sk, skb); 440 } 441 442 /* 443 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 444 * 445 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 446 * or a "Protocol Unreachable" treat this message as an abort 447 * with the T bit set. 448 * 449 * This function sends an event to the state machine, which will abort the 450 * association. 451 * 452 */ 453 void sctp_icmp_proto_unreachable(struct sock *sk, 454 struct sctp_association *asoc, 455 struct sctp_transport *t) 456 { 457 SCTP_DEBUG_PRINTK("%s\n", __func__); 458 459 if (sock_owned_by_user(sk)) { 460 if (timer_pending(&t->proto_unreach_timer)) 461 return; 462 else { 463 if (!mod_timer(&t->proto_unreach_timer, 464 jiffies + (HZ/20))) 465 sctp_association_hold(asoc); 466 } 467 468 } else { 469 struct net *net = sock_net(sk); 470 471 if (timer_pending(&t->proto_unreach_timer) && 472 del_timer(&t->proto_unreach_timer)) 473 sctp_association_put(asoc); 474 475 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 476 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 477 asoc->state, asoc->ep, asoc, t, 478 GFP_ATOMIC); 479 } 480 } 481 482 /* Common lookup code for icmp/icmpv6 error handler. */ 483 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 484 struct sctphdr *sctphdr, 485 struct sctp_association **app, 486 struct sctp_transport **tpp) 487 { 488 union sctp_addr saddr; 489 union sctp_addr daddr; 490 struct sctp_af *af; 491 struct sock *sk = NULL; 492 struct sctp_association *asoc; 493 struct sctp_transport *transport = NULL; 494 struct sctp_init_chunk *chunkhdr; 495 __u32 vtag = ntohl(sctphdr->vtag); 496 int len = skb->len - ((void *)sctphdr - (void *)skb->data); 497 498 *app = NULL; *tpp = NULL; 499 500 af = sctp_get_af_specific(family); 501 if (unlikely(!af)) { 502 return NULL; 503 } 504 505 /* Initialize local addresses for lookups. */ 506 af->from_skb(&saddr, skb, 1); 507 af->from_skb(&daddr, skb, 0); 508 509 /* Look for an association that matches the incoming ICMP error 510 * packet. 511 */ 512 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 513 if (!asoc) 514 return NULL; 515 516 sk = asoc->base.sk; 517 518 /* RFC 4960, Appendix C. ICMP Handling 519 * 520 * ICMP6) An implementation MUST validate that the Verification Tag 521 * contained in the ICMP message matches the Verification Tag of 522 * the peer. If the Verification Tag is not 0 and does NOT 523 * match, discard the ICMP message. If it is 0 and the ICMP 524 * message contains enough bytes to verify that the chunk type is 525 * an INIT chunk and that the Initiate Tag matches the tag of the 526 * peer, continue with ICMP7. If the ICMP message is too short 527 * or the chunk type or the Initiate Tag does not match, silently 528 * discard the packet. 529 */ 530 if (vtag == 0) { 531 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr); 532 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) 533 + sizeof(__be32) || 534 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 535 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { 536 goto out; 537 } 538 } else if (vtag != asoc->c.peer_vtag) { 539 goto out; 540 } 541 542 sctp_bh_lock_sock(sk); 543 544 /* If too many ICMPs get dropped on busy 545 * servers this needs to be solved differently. 546 */ 547 if (sock_owned_by_user(sk)) 548 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 549 550 *app = asoc; 551 *tpp = transport; 552 return sk; 553 554 out: 555 if (asoc) 556 sctp_association_put(asoc); 557 return NULL; 558 } 559 560 /* Common cleanup code for icmp/icmpv6 error handler. */ 561 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 562 { 563 sctp_bh_unlock_sock(sk); 564 if (asoc) 565 sctp_association_put(asoc); 566 } 567 568 /* 569 * This routine is called by the ICMP module when it gets some 570 * sort of error condition. If err < 0 then the socket should 571 * be closed and the error returned to the user. If err > 0 572 * it's just the icmp type << 8 | icmp code. After adjustment 573 * header points to the first 8 bytes of the sctp header. We need 574 * to find the appropriate port. 575 * 576 * The locking strategy used here is very "optimistic". When 577 * someone else accesses the socket the ICMP is just dropped 578 * and for some paths there is no check at all. 579 * A more general error queue to queue errors for later handling 580 * is probably better. 581 * 582 */ 583 void sctp_v4_err(struct sk_buff *skb, __u32 info) 584 { 585 const struct iphdr *iph = (const struct iphdr *)skb->data; 586 const int ihlen = iph->ihl * 4; 587 const int type = icmp_hdr(skb)->type; 588 const int code = icmp_hdr(skb)->code; 589 struct sock *sk; 590 struct sctp_association *asoc = NULL; 591 struct sctp_transport *transport; 592 struct inet_sock *inet; 593 sk_buff_data_t saveip, savesctp; 594 int err; 595 struct net *net = dev_net(skb->dev); 596 597 if (skb->len < ihlen + 8) { 598 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 599 return; 600 } 601 602 /* Fix up skb to look at the embedded net header. */ 603 saveip = skb->network_header; 604 savesctp = skb->transport_header; 605 skb_reset_network_header(skb); 606 skb_set_transport_header(skb, ihlen); 607 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 608 /* Put back, the original values. */ 609 skb->network_header = saveip; 610 skb->transport_header = savesctp; 611 if (!sk) { 612 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 613 return; 614 } 615 /* Warning: The sock lock is held. Remember to call 616 * sctp_err_finish! 617 */ 618 619 switch (type) { 620 case ICMP_PARAMETERPROB: 621 err = EPROTO; 622 break; 623 case ICMP_DEST_UNREACH: 624 if (code > NR_ICMP_UNREACH) 625 goto out_unlock; 626 627 /* PMTU discovery (RFC1191) */ 628 if (ICMP_FRAG_NEEDED == code) { 629 sctp_icmp_frag_needed(sk, asoc, transport, info); 630 goto out_unlock; 631 } 632 else { 633 if (ICMP_PROT_UNREACH == code) { 634 sctp_icmp_proto_unreachable(sk, asoc, 635 transport); 636 goto out_unlock; 637 } 638 } 639 err = icmp_err_convert[code].errno; 640 break; 641 case ICMP_TIME_EXCEEDED: 642 /* Ignore any time exceeded errors due to fragment reassembly 643 * timeouts. 644 */ 645 if (ICMP_EXC_FRAGTIME == code) 646 goto out_unlock; 647 648 err = EHOSTUNREACH; 649 break; 650 case ICMP_REDIRECT: 651 sctp_icmp_redirect(sk, transport, skb); 652 err = 0; 653 break; 654 default: 655 goto out_unlock; 656 } 657 658 inet = inet_sk(sk); 659 if (!sock_owned_by_user(sk) && inet->recverr) { 660 sk->sk_err = err; 661 sk->sk_error_report(sk); 662 } else { /* Only an error on timeout */ 663 sk->sk_err_soft = err; 664 } 665 666 out_unlock: 667 sctp_err_finish(sk, asoc); 668 } 669 670 /* 671 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 672 * 673 * This function scans all the chunks in the OOTB packet to determine if 674 * the packet should be discarded right away. If a response might be needed 675 * for this packet, or, if further processing is possible, the packet will 676 * be queued to a proper inqueue for the next phase of handling. 677 * 678 * Output: 679 * Return 0 - If further processing is needed. 680 * Return 1 - If the packet can be discarded right away. 681 */ 682 static int sctp_rcv_ootb(struct sk_buff *skb) 683 { 684 sctp_chunkhdr_t *ch; 685 __u8 *ch_end; 686 687 ch = (sctp_chunkhdr_t *) skb->data; 688 689 /* Scan through all the chunks in the packet. */ 690 do { 691 /* Break out if chunk length is less then minimal. */ 692 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 693 break; 694 695 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 696 if (ch_end > skb_tail_pointer(skb)) 697 break; 698 699 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 700 * receiver MUST silently discard the OOTB packet and take no 701 * further action. 702 */ 703 if (SCTP_CID_ABORT == ch->type) 704 goto discard; 705 706 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 707 * chunk, the receiver should silently discard the packet 708 * and take no further action. 709 */ 710 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 711 goto discard; 712 713 /* RFC 4460, 2.11.2 714 * This will discard packets with INIT chunk bundled as 715 * subsequent chunks in the packet. When INIT is first, 716 * the normal INIT processing will discard the chunk. 717 */ 718 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 719 goto discard; 720 721 ch = (sctp_chunkhdr_t *) ch_end; 722 } while (ch_end < skb_tail_pointer(skb)); 723 724 return 0; 725 726 discard: 727 return 1; 728 } 729 730 /* Insert endpoint into the hash table. */ 731 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 732 { 733 struct net *net = sock_net(ep->base.sk); 734 struct sctp_ep_common *epb; 735 struct sctp_hashbucket *head; 736 737 epb = &ep->base; 738 739 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 740 head = &sctp_ep_hashtable[epb->hashent]; 741 742 sctp_write_lock(&head->lock); 743 hlist_add_head(&epb->node, &head->chain); 744 sctp_write_unlock(&head->lock); 745 } 746 747 /* Add an endpoint to the hash. Local BH-safe. */ 748 void sctp_hash_endpoint(struct sctp_endpoint *ep) 749 { 750 sctp_local_bh_disable(); 751 __sctp_hash_endpoint(ep); 752 sctp_local_bh_enable(); 753 } 754 755 /* Remove endpoint from the hash table. */ 756 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 757 { 758 struct net *net = sock_net(ep->base.sk); 759 struct sctp_hashbucket *head; 760 struct sctp_ep_common *epb; 761 762 epb = &ep->base; 763 764 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 765 766 head = &sctp_ep_hashtable[epb->hashent]; 767 768 sctp_write_lock(&head->lock); 769 hlist_del_init(&epb->node); 770 sctp_write_unlock(&head->lock); 771 } 772 773 /* Remove endpoint from the hash. Local BH-safe. */ 774 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 775 { 776 sctp_local_bh_disable(); 777 __sctp_unhash_endpoint(ep); 778 sctp_local_bh_enable(); 779 } 780 781 /* Look up an endpoint. */ 782 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 783 const union sctp_addr *laddr) 784 { 785 struct sctp_hashbucket *head; 786 struct sctp_ep_common *epb; 787 struct sctp_endpoint *ep; 788 struct hlist_node *node; 789 int hash; 790 791 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 792 head = &sctp_ep_hashtable[hash]; 793 read_lock(&head->lock); 794 sctp_for_each_hentry(epb, node, &head->chain) { 795 ep = sctp_ep(epb); 796 if (sctp_endpoint_is_match(ep, net, laddr)) 797 goto hit; 798 } 799 800 ep = sctp_sk(net->sctp.ctl_sock)->ep; 801 802 hit: 803 sctp_endpoint_hold(ep); 804 read_unlock(&head->lock); 805 return ep; 806 } 807 808 /* Insert association into the hash table. */ 809 static void __sctp_hash_established(struct sctp_association *asoc) 810 { 811 struct net *net = sock_net(asoc->base.sk); 812 struct sctp_ep_common *epb; 813 struct sctp_hashbucket *head; 814 815 epb = &asoc->base; 816 817 /* Calculate which chain this entry will belong to. */ 818 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port, 819 asoc->peer.port); 820 821 head = &sctp_assoc_hashtable[epb->hashent]; 822 823 sctp_write_lock(&head->lock); 824 hlist_add_head(&epb->node, &head->chain); 825 sctp_write_unlock(&head->lock); 826 } 827 828 /* Add an association to the hash. Local BH-safe. */ 829 void sctp_hash_established(struct sctp_association *asoc) 830 { 831 if (asoc->temp) 832 return; 833 834 sctp_local_bh_disable(); 835 __sctp_hash_established(asoc); 836 sctp_local_bh_enable(); 837 } 838 839 /* Remove association from the hash table. */ 840 static void __sctp_unhash_established(struct sctp_association *asoc) 841 { 842 struct net *net = sock_net(asoc->base.sk); 843 struct sctp_hashbucket *head; 844 struct sctp_ep_common *epb; 845 846 epb = &asoc->base; 847 848 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port, 849 asoc->peer.port); 850 851 head = &sctp_assoc_hashtable[epb->hashent]; 852 853 sctp_write_lock(&head->lock); 854 hlist_del_init(&epb->node); 855 sctp_write_unlock(&head->lock); 856 } 857 858 /* Remove association from the hash table. Local BH-safe. */ 859 void sctp_unhash_established(struct sctp_association *asoc) 860 { 861 if (asoc->temp) 862 return; 863 864 sctp_local_bh_disable(); 865 __sctp_unhash_established(asoc); 866 sctp_local_bh_enable(); 867 } 868 869 /* Look up an association. */ 870 static struct sctp_association *__sctp_lookup_association( 871 struct net *net, 872 const union sctp_addr *local, 873 const union sctp_addr *peer, 874 struct sctp_transport **pt) 875 { 876 struct sctp_hashbucket *head; 877 struct sctp_ep_common *epb; 878 struct sctp_association *asoc; 879 struct sctp_transport *transport; 880 struct hlist_node *node; 881 int hash; 882 883 /* Optimize here for direct hit, only listening connections can 884 * have wildcards anyways. 885 */ 886 hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port), 887 ntohs(peer->v4.sin_port)); 888 head = &sctp_assoc_hashtable[hash]; 889 read_lock(&head->lock); 890 sctp_for_each_hentry(epb, node, &head->chain) { 891 asoc = sctp_assoc(epb); 892 transport = sctp_assoc_is_match(asoc, net, local, peer); 893 if (transport) 894 goto hit; 895 } 896 897 read_unlock(&head->lock); 898 899 return NULL; 900 901 hit: 902 *pt = transport; 903 sctp_association_hold(asoc); 904 read_unlock(&head->lock); 905 return asoc; 906 } 907 908 /* Look up an association. BH-safe. */ 909 SCTP_STATIC 910 struct sctp_association *sctp_lookup_association(struct net *net, 911 const union sctp_addr *laddr, 912 const union sctp_addr *paddr, 913 struct sctp_transport **transportp) 914 { 915 struct sctp_association *asoc; 916 917 sctp_local_bh_disable(); 918 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 919 sctp_local_bh_enable(); 920 921 return asoc; 922 } 923 924 /* Is there an association matching the given local and peer addresses? */ 925 int sctp_has_association(struct net *net, 926 const union sctp_addr *laddr, 927 const union sctp_addr *paddr) 928 { 929 struct sctp_association *asoc; 930 struct sctp_transport *transport; 931 932 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) { 933 sctp_association_put(asoc); 934 return 1; 935 } 936 937 return 0; 938 } 939 940 /* 941 * SCTP Implementors Guide, 2.18 Handling of address 942 * parameters within the INIT or INIT-ACK. 943 * 944 * D) When searching for a matching TCB upon reception of an INIT 945 * or INIT-ACK chunk the receiver SHOULD use not only the 946 * source address of the packet (containing the INIT or 947 * INIT-ACK) but the receiver SHOULD also use all valid 948 * address parameters contained within the chunk. 949 * 950 * 2.18.3 Solution description 951 * 952 * This new text clearly specifies to an implementor the need 953 * to look within the INIT or INIT-ACK. Any implementation that 954 * does not do this, may not be able to establish associations 955 * in certain circumstances. 956 * 957 */ 958 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 959 struct sk_buff *skb, 960 const union sctp_addr *laddr, struct sctp_transport **transportp) 961 { 962 struct sctp_association *asoc; 963 union sctp_addr addr; 964 union sctp_addr *paddr = &addr; 965 struct sctphdr *sh = sctp_hdr(skb); 966 union sctp_params params; 967 sctp_init_chunk_t *init; 968 struct sctp_transport *transport; 969 struct sctp_af *af; 970 971 /* 972 * This code will NOT touch anything inside the chunk--it is 973 * strictly READ-ONLY. 974 * 975 * RFC 2960 3 SCTP packet Format 976 * 977 * Multiple chunks can be bundled into one SCTP packet up to 978 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 979 * COMPLETE chunks. These chunks MUST NOT be bundled with any 980 * other chunk in a packet. See Section 6.10 for more details 981 * on chunk bundling. 982 */ 983 984 /* Find the start of the TLVs and the end of the chunk. This is 985 * the region we search for address parameters. 986 */ 987 init = (sctp_init_chunk_t *)skb->data; 988 989 /* Walk the parameters looking for embedded addresses. */ 990 sctp_walk_params(params, init, init_hdr.params) { 991 992 /* Note: Ignoring hostname addresses. */ 993 af = sctp_get_af_specific(param_type2af(params.p->type)); 994 if (!af) 995 continue; 996 997 af->from_addr_param(paddr, params.addr, sh->source, 0); 998 999 asoc = __sctp_lookup_association(net, laddr, paddr, &transport); 1000 if (asoc) 1001 return asoc; 1002 } 1003 1004 return NULL; 1005 } 1006 1007 /* ADD-IP, Section 5.2 1008 * When an endpoint receives an ASCONF Chunk from the remote peer 1009 * special procedures may be needed to identify the association the 1010 * ASCONF Chunk is associated with. To properly find the association 1011 * the following procedures SHOULD be followed: 1012 * 1013 * D2) If the association is not found, use the address found in the 1014 * Address Parameter TLV combined with the port number found in the 1015 * SCTP common header. If found proceed to rule D4. 1016 * 1017 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1018 * address found in the ASCONF Address Parameter TLV of each of the 1019 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1020 */ 1021 static struct sctp_association *__sctp_rcv_asconf_lookup( 1022 struct net *net, 1023 sctp_chunkhdr_t *ch, 1024 const union sctp_addr *laddr, 1025 __be16 peer_port, 1026 struct sctp_transport **transportp) 1027 { 1028 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; 1029 struct sctp_af *af; 1030 union sctp_addr_param *param; 1031 union sctp_addr paddr; 1032 1033 /* Skip over the ADDIP header and find the Address parameter */ 1034 param = (union sctp_addr_param *)(asconf + 1); 1035 1036 af = sctp_get_af_specific(param_type2af(param->p.type)); 1037 if (unlikely(!af)) 1038 return NULL; 1039 1040 af->from_addr_param(&paddr, param, peer_port, 0); 1041 1042 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1043 } 1044 1045 1046 /* SCTP-AUTH, Section 6.3: 1047 * If the receiver does not find a STCB for a packet containing an AUTH 1048 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1049 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1050 * association. 1051 * 1052 * This means that any chunks that can help us identify the association need 1053 * to be looked at to find this association. 1054 */ 1055 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1056 struct sk_buff *skb, 1057 const union sctp_addr *laddr, 1058 struct sctp_transport **transportp) 1059 { 1060 struct sctp_association *asoc = NULL; 1061 sctp_chunkhdr_t *ch; 1062 int have_auth = 0; 1063 unsigned int chunk_num = 1; 1064 __u8 *ch_end; 1065 1066 /* Walk through the chunks looking for AUTH or ASCONF chunks 1067 * to help us find the association. 1068 */ 1069 ch = (sctp_chunkhdr_t *) skb->data; 1070 do { 1071 /* Break out if chunk length is less then minimal. */ 1072 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 1073 break; 1074 1075 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 1076 if (ch_end > skb_tail_pointer(skb)) 1077 break; 1078 1079 switch(ch->type) { 1080 case SCTP_CID_AUTH: 1081 have_auth = chunk_num; 1082 break; 1083 1084 case SCTP_CID_COOKIE_ECHO: 1085 /* If a packet arrives containing an AUTH chunk as 1086 * a first chunk, a COOKIE-ECHO chunk as the second 1087 * chunk, and possibly more chunks after them, and 1088 * the receiver does not have an STCB for that 1089 * packet, then authentication is based on 1090 * the contents of the COOKIE- ECHO chunk. 1091 */ 1092 if (have_auth == 1 && chunk_num == 2) 1093 return NULL; 1094 break; 1095 1096 case SCTP_CID_ASCONF: 1097 if (have_auth || net->sctp.addip_noauth) 1098 asoc = __sctp_rcv_asconf_lookup( 1099 net, ch, laddr, 1100 sctp_hdr(skb)->source, 1101 transportp); 1102 default: 1103 break; 1104 } 1105 1106 if (asoc) 1107 break; 1108 1109 ch = (sctp_chunkhdr_t *) ch_end; 1110 chunk_num++; 1111 } while (ch_end < skb_tail_pointer(skb)); 1112 1113 return asoc; 1114 } 1115 1116 /* 1117 * There are circumstances when we need to look inside the SCTP packet 1118 * for information to help us find the association. Examples 1119 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1120 * chunks. 1121 */ 1122 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1123 struct sk_buff *skb, 1124 const union sctp_addr *laddr, 1125 struct sctp_transport **transportp) 1126 { 1127 sctp_chunkhdr_t *ch; 1128 1129 ch = (sctp_chunkhdr_t *) skb->data; 1130 1131 /* The code below will attempt to walk the chunk and extract 1132 * parameter information. Before we do that, we need to verify 1133 * that the chunk length doesn't cause overflow. Otherwise, we'll 1134 * walk off the end. 1135 */ 1136 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 1137 return NULL; 1138 1139 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1140 switch (ch->type) { 1141 case SCTP_CID_INIT: 1142 case SCTP_CID_INIT_ACK: 1143 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1144 break; 1145 1146 default: 1147 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1148 break; 1149 } 1150 1151 1152 return NULL; 1153 } 1154 1155 /* Lookup an association for an inbound skb. */ 1156 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1157 struct sk_buff *skb, 1158 const union sctp_addr *paddr, 1159 const union sctp_addr *laddr, 1160 struct sctp_transport **transportp) 1161 { 1162 struct sctp_association *asoc; 1163 1164 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1165 1166 /* Further lookup for INIT/INIT-ACK packets. 1167 * SCTP Implementors Guide, 2.18 Handling of address 1168 * parameters within the INIT or INIT-ACK. 1169 */ 1170 if (!asoc) 1171 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1172 1173 return asoc; 1174 } 1175