xref: /linux/net/sctp/input.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 struct sctp_input_cb {
94 	union {
95 		struct inet_skb_parm	h4;
96 #if IS_ENABLED(CONFIG_IPV6)
97 		struct inet6_skb_parm	h6;
98 #endif
99 	} header;
100 	struct sctp_chunk *chunk;
101 };
102 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
103 
104 /*
105  * This is the routine which IP calls when receiving an SCTP packet.
106  */
107 int sctp_rcv(struct sk_buff *skb)
108 {
109 	struct sock *sk;
110 	struct sctp_association *asoc;
111 	struct sctp_endpoint *ep = NULL;
112 	struct sctp_ep_common *rcvr;
113 	struct sctp_transport *transport = NULL;
114 	struct sctp_chunk *chunk;
115 	struct sctphdr *sh;
116 	union sctp_addr src;
117 	union sctp_addr dest;
118 	int family;
119 	struct sctp_af *af;
120 	struct net *net = dev_net(skb->dev);
121 
122 	if (skb->pkt_type != PACKET_HOST)
123 		goto discard_it;
124 
125 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
126 
127 	if (skb_linearize(skb))
128 		goto discard_it;
129 
130 	sh = sctp_hdr(skb);
131 
132 	/* Pull up the IP and SCTP headers. */
133 	__skb_pull(skb, skb_transport_offset(skb));
134 	if (skb->len < sizeof(struct sctphdr))
135 		goto discard_it;
136 
137 	skb->csum_valid = 0; /* Previous value not applicable */
138 	if (skb_csum_unnecessary(skb))
139 		__skb_decr_checksum_unnecessary(skb);
140 	else if (!sctp_checksum_disable && sctp_rcv_checksum(net, skb) < 0)
141 		goto discard_it;
142 	skb->csum_valid = 1;
143 
144 	skb_pull(skb, sizeof(struct sctphdr));
145 
146 	/* Make sure we at least have chunk headers worth of data left. */
147 	if (skb->len < sizeof(struct sctp_chunkhdr))
148 		goto discard_it;
149 
150 	family = ipver2af(ip_hdr(skb)->version);
151 	af = sctp_get_af_specific(family);
152 	if (unlikely(!af))
153 		goto discard_it;
154 
155 	/* Initialize local addresses for lookups. */
156 	af->from_skb(&src, skb, 1);
157 	af->from_skb(&dest, skb, 0);
158 
159 	/* If the packet is to or from a non-unicast address,
160 	 * silently discard the packet.
161 	 *
162 	 * This is not clearly defined in the RFC except in section
163 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
164 	 * Transmission Protocol" 2.1, "It is important to note that the
165 	 * IP address of an SCTP transport address must be a routable
166 	 * unicast address.  In other words, IP multicast addresses and
167 	 * IP broadcast addresses cannot be used in an SCTP transport
168 	 * address."
169 	 */
170 	if (!af->addr_valid(&src, NULL, skb) ||
171 	    !af->addr_valid(&dest, NULL, skb))
172 		goto discard_it;
173 
174 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
175 
176 	if (!asoc)
177 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
178 
179 	/* Retrieve the common input handling substructure. */
180 	rcvr = asoc ? &asoc->base : &ep->base;
181 	sk = rcvr->sk;
182 
183 	/*
184 	 * If a frame arrives on an interface and the receiving socket is
185 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
186 	 */
187 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
188 		if (asoc) {
189 			sctp_association_put(asoc);
190 			asoc = NULL;
191 		} else {
192 			sctp_endpoint_put(ep);
193 			ep = NULL;
194 		}
195 		sk = net->sctp.ctl_sock;
196 		ep = sctp_sk(sk)->ep;
197 		sctp_endpoint_hold(ep);
198 		rcvr = &ep->base;
199 	}
200 
201 	/*
202 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
203 	 * An SCTP packet is called an "out of the blue" (OOTB)
204 	 * packet if it is correctly formed, i.e., passed the
205 	 * receiver's checksum check, but the receiver is not
206 	 * able to identify the association to which this
207 	 * packet belongs.
208 	 */
209 	if (!asoc) {
210 		if (sctp_rcv_ootb(skb)) {
211 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
212 			goto discard_release;
213 		}
214 	}
215 
216 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
217 		goto discard_release;
218 	nf_reset(skb);
219 
220 	if (sk_filter(sk, skb))
221 		goto discard_release;
222 
223 	/* Create an SCTP packet structure. */
224 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
225 	if (!chunk)
226 		goto discard_release;
227 	SCTP_INPUT_CB(skb)->chunk = chunk;
228 
229 	/* Remember what endpoint is to handle this packet. */
230 	chunk->rcvr = rcvr;
231 
232 	/* Remember the SCTP header. */
233 	chunk->sctp_hdr = sh;
234 
235 	/* Set the source and destination addresses of the incoming chunk.  */
236 	sctp_init_addrs(chunk, &src, &dest);
237 
238 	/* Remember where we came from.  */
239 	chunk->transport = transport;
240 
241 	/* Acquire access to the sock lock. Note: We are safe from other
242 	 * bottom halves on this lock, but a user may be in the lock too,
243 	 * so check if it is busy.
244 	 */
245 	bh_lock_sock(sk);
246 
247 	if (sk != rcvr->sk) {
248 		/* Our cached sk is different from the rcvr->sk.  This is
249 		 * because migrate()/accept() may have moved the association
250 		 * to a new socket and released all the sockets.  So now we
251 		 * are holding a lock on the old socket while the user may
252 		 * be doing something with the new socket.  Switch our veiw
253 		 * of the current sk.
254 		 */
255 		bh_unlock_sock(sk);
256 		sk = rcvr->sk;
257 		bh_lock_sock(sk);
258 	}
259 
260 	if (sock_owned_by_user(sk)) {
261 		if (sctp_add_backlog(sk, skb)) {
262 			bh_unlock_sock(sk);
263 			sctp_chunk_free(chunk);
264 			skb = NULL; /* sctp_chunk_free already freed the skb */
265 			goto discard_release;
266 		}
267 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
268 	} else {
269 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
270 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
271 	}
272 
273 	bh_unlock_sock(sk);
274 
275 	/* Release the asoc/ep ref we took in the lookup calls. */
276 	if (asoc)
277 		sctp_association_put(asoc);
278 	else
279 		sctp_endpoint_put(ep);
280 
281 	return 0;
282 
283 discard_it:
284 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
285 	kfree_skb(skb);
286 	return 0;
287 
288 discard_release:
289 	/* Release the asoc/ep ref we took in the lookup calls. */
290 	if (asoc)
291 		sctp_association_put(asoc);
292 	else
293 		sctp_endpoint_put(ep);
294 
295 	goto discard_it;
296 }
297 
298 /* Process the backlog queue of the socket.  Every skb on
299  * the backlog holds a ref on an association or endpoint.
300  * We hold this ref throughout the state machine to make
301  * sure that the structure we need is still around.
302  */
303 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
306 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
307 	struct sctp_ep_common *rcvr = NULL;
308 	int backloged = 0;
309 
310 	rcvr = chunk->rcvr;
311 
312 	/* If the rcvr is dead then the association or endpoint
313 	 * has been deleted and we can safely drop the chunk
314 	 * and refs that we are holding.
315 	 */
316 	if (rcvr->dead) {
317 		sctp_chunk_free(chunk);
318 		goto done;
319 	}
320 
321 	if (unlikely(rcvr->sk != sk)) {
322 		/* In this case, the association moved from one socket to
323 		 * another.  We are currently sitting on the backlog of the
324 		 * old socket, so we need to move.
325 		 * However, since we are here in the process context we
326 		 * need to take make sure that the user doesn't own
327 		 * the new socket when we process the packet.
328 		 * If the new socket is user-owned, queue the chunk to the
329 		 * backlog of the new socket without dropping any refs.
330 		 * Otherwise, we can safely push the chunk on the inqueue.
331 		 */
332 
333 		sk = rcvr->sk;
334 		bh_lock_sock(sk);
335 
336 		if (sock_owned_by_user(sk)) {
337 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
338 				sctp_chunk_free(chunk);
339 			else
340 				backloged = 1;
341 		} else
342 			sctp_inq_push(inqueue, chunk);
343 
344 		bh_unlock_sock(sk);
345 
346 		/* If the chunk was backloged again, don't drop refs */
347 		if (backloged)
348 			return 0;
349 	} else {
350 		sctp_inq_push(inqueue, chunk);
351 	}
352 
353 done:
354 	/* Release the refs we took in sctp_add_backlog */
355 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 		sctp_association_put(sctp_assoc(rcvr));
357 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 		sctp_endpoint_put(sctp_ep(rcvr));
359 	else
360 		BUG();
361 
362 	return 0;
363 }
364 
365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 	struct sctp_ep_common *rcvr = chunk->rcvr;
369 	int ret;
370 
371 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
372 	if (!ret) {
373 		/* Hold the assoc/ep while hanging on the backlog queue.
374 		 * This way, we know structures we need will not disappear
375 		 * from us
376 		 */
377 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
378 			sctp_association_hold(sctp_assoc(rcvr));
379 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
380 			sctp_endpoint_hold(sctp_ep(rcvr));
381 		else
382 			BUG();
383 	}
384 	return ret;
385 
386 }
387 
388 /* Handle icmp frag needed error. */
389 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
390 			   struct sctp_transport *t, __u32 pmtu)
391 {
392 	if (!t || (t->pathmtu <= pmtu))
393 		return;
394 
395 	if (sock_owned_by_user(sk)) {
396 		asoc->pmtu_pending = 1;
397 		t->pmtu_pending = 1;
398 		return;
399 	}
400 
401 	if (t->param_flags & SPP_PMTUD_ENABLE) {
402 		/* Update transports view of the MTU */
403 		sctp_transport_update_pmtu(sk, t, pmtu);
404 
405 		/* Update association pmtu. */
406 		sctp_assoc_sync_pmtu(sk, asoc);
407 	}
408 
409 	/* Retransmit with the new pmtu setting.
410 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
411 	 * Needed will never be sent, but if a message was sent before
412 	 * PMTU discovery was disabled that was larger than the PMTU, it
413 	 * would not be fragmented, so it must be re-transmitted fragmented.
414 	 */
415 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
416 }
417 
418 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
419 			struct sk_buff *skb)
420 {
421 	struct dst_entry *dst;
422 
423 	if (!t)
424 		return;
425 	dst = sctp_transport_dst_check(t);
426 	if (dst)
427 		dst->ops->redirect(dst, sk, skb);
428 }
429 
430 /*
431  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
432  *
433  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
434  *        or a "Protocol Unreachable" treat this message as an abort
435  *        with the T bit set.
436  *
437  * This function sends an event to the state machine, which will abort the
438  * association.
439  *
440  */
441 void sctp_icmp_proto_unreachable(struct sock *sk,
442 			   struct sctp_association *asoc,
443 			   struct sctp_transport *t)
444 {
445 	if (sock_owned_by_user(sk)) {
446 		if (timer_pending(&t->proto_unreach_timer))
447 			return;
448 		else {
449 			if (!mod_timer(&t->proto_unreach_timer,
450 						jiffies + (HZ/20)))
451 				sctp_association_hold(asoc);
452 		}
453 	} else {
454 		struct net *net = sock_net(sk);
455 
456 		pr_debug("%s: unrecognized next header type "
457 			 "encountered!\n", __func__);
458 
459 		if (del_timer(&t->proto_unreach_timer))
460 			sctp_association_put(asoc);
461 
462 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
463 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
464 			   asoc->state, asoc->ep, asoc, t,
465 			   GFP_ATOMIC);
466 	}
467 }
468 
469 /* Common lookup code for icmp/icmpv6 error handler. */
470 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
471 			     struct sctphdr *sctphdr,
472 			     struct sctp_association **app,
473 			     struct sctp_transport **tpp)
474 {
475 	union sctp_addr saddr;
476 	union sctp_addr daddr;
477 	struct sctp_af *af;
478 	struct sock *sk = NULL;
479 	struct sctp_association *asoc;
480 	struct sctp_transport *transport = NULL;
481 	struct sctp_init_chunk *chunkhdr;
482 	__u32 vtag = ntohl(sctphdr->vtag);
483 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
484 
485 	*app = NULL; *tpp = NULL;
486 
487 	af = sctp_get_af_specific(family);
488 	if (unlikely(!af)) {
489 		return NULL;
490 	}
491 
492 	/* Initialize local addresses for lookups. */
493 	af->from_skb(&saddr, skb, 1);
494 	af->from_skb(&daddr, skb, 0);
495 
496 	/* Look for an association that matches the incoming ICMP error
497 	 * packet.
498 	 */
499 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
500 	if (!asoc)
501 		return NULL;
502 
503 	sk = asoc->base.sk;
504 
505 	/* RFC 4960, Appendix C. ICMP Handling
506 	 *
507 	 * ICMP6) An implementation MUST validate that the Verification Tag
508 	 * contained in the ICMP message matches the Verification Tag of
509 	 * the peer.  If the Verification Tag is not 0 and does NOT
510 	 * match, discard the ICMP message.  If it is 0 and the ICMP
511 	 * message contains enough bytes to verify that the chunk type is
512 	 * an INIT chunk and that the Initiate Tag matches the tag of the
513 	 * peer, continue with ICMP7.  If the ICMP message is too short
514 	 * or the chunk type or the Initiate Tag does not match, silently
515 	 * discard the packet.
516 	 */
517 	if (vtag == 0) {
518 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
519 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
520 			  + sizeof(__be32) ||
521 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
522 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
523 			goto out;
524 		}
525 	} else if (vtag != asoc->c.peer_vtag) {
526 		goto out;
527 	}
528 
529 	bh_lock_sock(sk);
530 
531 	/* If too many ICMPs get dropped on busy
532 	 * servers this needs to be solved differently.
533 	 */
534 	if (sock_owned_by_user(sk))
535 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
536 
537 	*app = asoc;
538 	*tpp = transport;
539 	return sk;
540 
541 out:
542 	sctp_association_put(asoc);
543 	return NULL;
544 }
545 
546 /* Common cleanup code for icmp/icmpv6 error handler. */
547 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
548 {
549 	bh_unlock_sock(sk);
550 	sctp_association_put(asoc);
551 }
552 
553 /*
554  * This routine is called by the ICMP module when it gets some
555  * sort of error condition.  If err < 0 then the socket should
556  * be closed and the error returned to the user.  If err > 0
557  * it's just the icmp type << 8 | icmp code.  After adjustment
558  * header points to the first 8 bytes of the sctp header.  We need
559  * to find the appropriate port.
560  *
561  * The locking strategy used here is very "optimistic". When
562  * someone else accesses the socket the ICMP is just dropped
563  * and for some paths there is no check at all.
564  * A more general error queue to queue errors for later handling
565  * is probably better.
566  *
567  */
568 void sctp_v4_err(struct sk_buff *skb, __u32 info)
569 {
570 	const struct iphdr *iph = (const struct iphdr *)skb->data;
571 	const int ihlen = iph->ihl * 4;
572 	const int type = icmp_hdr(skb)->type;
573 	const int code = icmp_hdr(skb)->code;
574 	struct sock *sk;
575 	struct sctp_association *asoc = NULL;
576 	struct sctp_transport *transport;
577 	struct inet_sock *inet;
578 	__u16 saveip, savesctp;
579 	int err;
580 	struct net *net = dev_net(skb->dev);
581 
582 	/* Fix up skb to look at the embedded net header. */
583 	saveip = skb->network_header;
584 	savesctp = skb->transport_header;
585 	skb_reset_network_header(skb);
586 	skb_set_transport_header(skb, ihlen);
587 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
588 	/* Put back, the original values. */
589 	skb->network_header = saveip;
590 	skb->transport_header = savesctp;
591 	if (!sk) {
592 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
593 		return;
594 	}
595 	/* Warning:  The sock lock is held.  Remember to call
596 	 * sctp_err_finish!
597 	 */
598 
599 	switch (type) {
600 	case ICMP_PARAMETERPROB:
601 		err = EPROTO;
602 		break;
603 	case ICMP_DEST_UNREACH:
604 		if (code > NR_ICMP_UNREACH)
605 			goto out_unlock;
606 
607 		/* PMTU discovery (RFC1191) */
608 		if (ICMP_FRAG_NEEDED == code) {
609 			sctp_icmp_frag_needed(sk, asoc, transport,
610 					      WORD_TRUNC(info));
611 			goto out_unlock;
612 		} else {
613 			if (ICMP_PROT_UNREACH == code) {
614 				sctp_icmp_proto_unreachable(sk, asoc,
615 							    transport);
616 				goto out_unlock;
617 			}
618 		}
619 		err = icmp_err_convert[code].errno;
620 		break;
621 	case ICMP_TIME_EXCEEDED:
622 		/* Ignore any time exceeded errors due to fragment reassembly
623 		 * timeouts.
624 		 */
625 		if (ICMP_EXC_FRAGTIME == code)
626 			goto out_unlock;
627 
628 		err = EHOSTUNREACH;
629 		break;
630 	case ICMP_REDIRECT:
631 		sctp_icmp_redirect(sk, transport, skb);
632 		/* Fall through to out_unlock. */
633 	default:
634 		goto out_unlock;
635 	}
636 
637 	inet = inet_sk(sk);
638 	if (!sock_owned_by_user(sk) && inet->recverr) {
639 		sk->sk_err = err;
640 		sk->sk_error_report(sk);
641 	} else {  /* Only an error on timeout */
642 		sk->sk_err_soft = err;
643 	}
644 
645 out_unlock:
646 	sctp_err_finish(sk, asoc);
647 }
648 
649 /*
650  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
651  *
652  * This function scans all the chunks in the OOTB packet to determine if
653  * the packet should be discarded right away.  If a response might be needed
654  * for this packet, or, if further processing is possible, the packet will
655  * be queued to a proper inqueue for the next phase of handling.
656  *
657  * Output:
658  * Return 0 - If further processing is needed.
659  * Return 1 - If the packet can be discarded right away.
660  */
661 static int sctp_rcv_ootb(struct sk_buff *skb)
662 {
663 	sctp_chunkhdr_t *ch;
664 	__u8 *ch_end;
665 
666 	ch = (sctp_chunkhdr_t *) skb->data;
667 
668 	/* Scan through all the chunks in the packet.  */
669 	do {
670 		/* Break out if chunk length is less then minimal. */
671 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
672 			break;
673 
674 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
675 		if (ch_end > skb_tail_pointer(skb))
676 			break;
677 
678 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
679 		 * receiver MUST silently discard the OOTB packet and take no
680 		 * further action.
681 		 */
682 		if (SCTP_CID_ABORT == ch->type)
683 			goto discard;
684 
685 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
686 		 * chunk, the receiver should silently discard the packet
687 		 * and take no further action.
688 		 */
689 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
690 			goto discard;
691 
692 		/* RFC 4460, 2.11.2
693 		 * This will discard packets with INIT chunk bundled as
694 		 * subsequent chunks in the packet.  When INIT is first,
695 		 * the normal INIT processing will discard the chunk.
696 		 */
697 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
698 			goto discard;
699 
700 		ch = (sctp_chunkhdr_t *) ch_end;
701 	} while (ch_end < skb_tail_pointer(skb));
702 
703 	return 0;
704 
705 discard:
706 	return 1;
707 }
708 
709 /* Insert endpoint into the hash table.  */
710 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
711 {
712 	struct net *net = sock_net(ep->base.sk);
713 	struct sctp_ep_common *epb;
714 	struct sctp_hashbucket *head;
715 
716 	epb = &ep->base;
717 
718 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
719 	head = &sctp_ep_hashtable[epb->hashent];
720 
721 	write_lock(&head->lock);
722 	hlist_add_head(&epb->node, &head->chain);
723 	write_unlock(&head->lock);
724 }
725 
726 /* Add an endpoint to the hash. Local BH-safe. */
727 void sctp_hash_endpoint(struct sctp_endpoint *ep)
728 {
729 	local_bh_disable();
730 	__sctp_hash_endpoint(ep);
731 	local_bh_enable();
732 }
733 
734 /* Remove endpoint from the hash table.  */
735 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
736 {
737 	struct net *net = sock_net(ep->base.sk);
738 	struct sctp_hashbucket *head;
739 	struct sctp_ep_common *epb;
740 
741 	epb = &ep->base;
742 
743 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
744 
745 	head = &sctp_ep_hashtable[epb->hashent];
746 
747 	write_lock(&head->lock);
748 	hlist_del_init(&epb->node);
749 	write_unlock(&head->lock);
750 }
751 
752 /* Remove endpoint from the hash.  Local BH-safe. */
753 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
754 {
755 	local_bh_disable();
756 	__sctp_unhash_endpoint(ep);
757 	local_bh_enable();
758 }
759 
760 /* Look up an endpoint. */
761 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
762 						const union sctp_addr *laddr)
763 {
764 	struct sctp_hashbucket *head;
765 	struct sctp_ep_common *epb;
766 	struct sctp_endpoint *ep;
767 	int hash;
768 
769 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
770 	head = &sctp_ep_hashtable[hash];
771 	read_lock(&head->lock);
772 	sctp_for_each_hentry(epb, &head->chain) {
773 		ep = sctp_ep(epb);
774 		if (sctp_endpoint_is_match(ep, net, laddr))
775 			goto hit;
776 	}
777 
778 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
779 
780 hit:
781 	sctp_endpoint_hold(ep);
782 	read_unlock(&head->lock);
783 	return ep;
784 }
785 
786 /* rhashtable for transport */
787 struct sctp_hash_cmp_arg {
788 	const struct sctp_endpoint	*ep;
789 	const union sctp_addr		*laddr;
790 	const union sctp_addr		*paddr;
791 	const struct net		*net;
792 };
793 
794 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
795 				const void *ptr)
796 {
797 	const struct sctp_hash_cmp_arg *x = arg->key;
798 	const struct sctp_transport *t = ptr;
799 	struct sctp_association *asoc = t->asoc;
800 	const struct net *net = x->net;
801 
802 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
803 		return 1;
804 	if (!net_eq(sock_net(asoc->base.sk), net))
805 		return 1;
806 	if (x->ep) {
807 		if (x->ep != asoc->ep)
808 			return 1;
809 	} else {
810 		if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port))
811 			return 1;
812 		if (!sctp_bind_addr_match(&asoc->base.bind_addr,
813 					  x->laddr, sctp_sk(asoc->base.sk)))
814 			return 1;
815 	}
816 
817 	return 0;
818 }
819 
820 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
821 {
822 	const struct sctp_transport *t = data;
823 	const union sctp_addr *paddr = &t->ipaddr;
824 	const struct net *net = sock_net(t->asoc->base.sk);
825 	u16 lport = htons(t->asoc->base.bind_addr.port);
826 	u32 addr;
827 
828 	if (paddr->sa.sa_family == AF_INET6)
829 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
830 	else
831 		addr = paddr->v4.sin_addr.s_addr;
832 
833 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
834 			     (__force __u32)lport, net_hash_mix(net), seed);
835 }
836 
837 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
838 {
839 	const struct sctp_hash_cmp_arg *x = data;
840 	const union sctp_addr *paddr = x->paddr;
841 	const struct net *net = x->net;
842 	u16 lport;
843 	u32 addr;
844 
845 	lport = x->ep ? htons(x->ep->base.bind_addr.port) :
846 			x->laddr->v4.sin_port;
847 	if (paddr->sa.sa_family == AF_INET6)
848 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
849 	else
850 		addr = paddr->v4.sin_addr.s_addr;
851 
852 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
853 			     (__force __u32)lport, net_hash_mix(net), seed);
854 }
855 
856 static const struct rhashtable_params sctp_hash_params = {
857 	.head_offset		= offsetof(struct sctp_transport, node),
858 	.hashfn			= sctp_hash_key,
859 	.obj_hashfn		= sctp_hash_obj,
860 	.obj_cmpfn		= sctp_hash_cmp,
861 	.automatic_shrinking	= true,
862 };
863 
864 int sctp_transport_hashtable_init(void)
865 {
866 	return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params);
867 }
868 
869 void sctp_transport_hashtable_destroy(void)
870 {
871 	rhashtable_destroy(&sctp_transport_hashtable);
872 }
873 
874 void sctp_hash_transport(struct sctp_transport *t)
875 {
876 	struct sctp_hash_cmp_arg arg;
877 
878 	if (t->asoc->temp)
879 		return;
880 
881 	arg.ep = t->asoc->ep;
882 	arg.paddr = &t->ipaddr;
883 	arg.net   = sock_net(t->asoc->base.sk);
884 
885 reinsert:
886 	if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg,
887 					 &t->node, sctp_hash_params) == -EBUSY)
888 		goto reinsert;
889 }
890 
891 void sctp_unhash_transport(struct sctp_transport *t)
892 {
893 	if (t->asoc->temp)
894 		return;
895 
896 	rhashtable_remove_fast(&sctp_transport_hashtable, &t->node,
897 			       sctp_hash_params);
898 }
899 
900 struct sctp_transport *sctp_addrs_lookup_transport(
901 				struct net *net,
902 				const union sctp_addr *laddr,
903 				const union sctp_addr *paddr)
904 {
905 	struct sctp_hash_cmp_arg arg = {
906 		.ep    = NULL,
907 		.laddr = laddr,
908 		.paddr = paddr,
909 		.net   = net,
910 	};
911 
912 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
913 				      sctp_hash_params);
914 }
915 
916 struct sctp_transport *sctp_epaddr_lookup_transport(
917 				const struct sctp_endpoint *ep,
918 				const union sctp_addr *paddr)
919 {
920 	struct net *net = sock_net(ep->base.sk);
921 	struct sctp_hash_cmp_arg arg = {
922 		.ep    = ep,
923 		.paddr = paddr,
924 		.net   = net,
925 	};
926 
927 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
928 				      sctp_hash_params);
929 }
930 
931 /* Look up an association. */
932 static struct sctp_association *__sctp_lookup_association(
933 					struct net *net,
934 					const union sctp_addr *local,
935 					const union sctp_addr *peer,
936 					struct sctp_transport **pt)
937 {
938 	struct sctp_transport *t;
939 	struct sctp_association *asoc = NULL;
940 
941 	t = sctp_addrs_lookup_transport(net, local, peer);
942 	if (!t || !sctp_transport_hold(t))
943 		goto out;
944 
945 	asoc = t->asoc;
946 	sctp_association_hold(asoc);
947 	*pt = t;
948 
949 	sctp_transport_put(t);
950 
951 out:
952 	return asoc;
953 }
954 
955 /* Look up an association. protected by RCU read lock */
956 static
957 struct sctp_association *sctp_lookup_association(struct net *net,
958 						 const union sctp_addr *laddr,
959 						 const union sctp_addr *paddr,
960 						 struct sctp_transport **transportp)
961 {
962 	struct sctp_association *asoc;
963 
964 	rcu_read_lock();
965 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
966 	rcu_read_unlock();
967 
968 	return asoc;
969 }
970 
971 /* Is there an association matching the given local and peer addresses? */
972 int sctp_has_association(struct net *net,
973 			 const union sctp_addr *laddr,
974 			 const union sctp_addr *paddr)
975 {
976 	struct sctp_association *asoc;
977 	struct sctp_transport *transport;
978 
979 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
980 		sctp_association_put(asoc);
981 		return 1;
982 	}
983 
984 	return 0;
985 }
986 
987 /*
988  * SCTP Implementors Guide, 2.18 Handling of address
989  * parameters within the INIT or INIT-ACK.
990  *
991  * D) When searching for a matching TCB upon reception of an INIT
992  *    or INIT-ACK chunk the receiver SHOULD use not only the
993  *    source address of the packet (containing the INIT or
994  *    INIT-ACK) but the receiver SHOULD also use all valid
995  *    address parameters contained within the chunk.
996  *
997  * 2.18.3 Solution description
998  *
999  * This new text clearly specifies to an implementor the need
1000  * to look within the INIT or INIT-ACK. Any implementation that
1001  * does not do this, may not be able to establish associations
1002  * in certain circumstances.
1003  *
1004  */
1005 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1006 	struct sk_buff *skb,
1007 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1008 {
1009 	struct sctp_association *asoc;
1010 	union sctp_addr addr;
1011 	union sctp_addr *paddr = &addr;
1012 	struct sctphdr *sh = sctp_hdr(skb);
1013 	union sctp_params params;
1014 	sctp_init_chunk_t *init;
1015 	struct sctp_transport *transport;
1016 	struct sctp_af *af;
1017 
1018 	/*
1019 	 * This code will NOT touch anything inside the chunk--it is
1020 	 * strictly READ-ONLY.
1021 	 *
1022 	 * RFC 2960 3  SCTP packet Format
1023 	 *
1024 	 * Multiple chunks can be bundled into one SCTP packet up to
1025 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1026 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1027 	 * other chunk in a packet.  See Section 6.10 for more details
1028 	 * on chunk bundling.
1029 	 */
1030 
1031 	/* Find the start of the TLVs and the end of the chunk.  This is
1032 	 * the region we search for address parameters.
1033 	 */
1034 	init = (sctp_init_chunk_t *)skb->data;
1035 
1036 	/* Walk the parameters looking for embedded addresses. */
1037 	sctp_walk_params(params, init, init_hdr.params) {
1038 
1039 		/* Note: Ignoring hostname addresses. */
1040 		af = sctp_get_af_specific(param_type2af(params.p->type));
1041 		if (!af)
1042 			continue;
1043 
1044 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1045 
1046 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
1047 		if (asoc)
1048 			return asoc;
1049 	}
1050 
1051 	return NULL;
1052 }
1053 
1054 /* ADD-IP, Section 5.2
1055  * When an endpoint receives an ASCONF Chunk from the remote peer
1056  * special procedures may be needed to identify the association the
1057  * ASCONF Chunk is associated with. To properly find the association
1058  * the following procedures SHOULD be followed:
1059  *
1060  * D2) If the association is not found, use the address found in the
1061  * Address Parameter TLV combined with the port number found in the
1062  * SCTP common header. If found proceed to rule D4.
1063  *
1064  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1065  * address found in the ASCONF Address Parameter TLV of each of the
1066  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1067  */
1068 static struct sctp_association *__sctp_rcv_asconf_lookup(
1069 					struct net *net,
1070 					sctp_chunkhdr_t *ch,
1071 					const union sctp_addr *laddr,
1072 					__be16 peer_port,
1073 					struct sctp_transport **transportp)
1074 {
1075 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1076 	struct sctp_af *af;
1077 	union sctp_addr_param *param;
1078 	union sctp_addr paddr;
1079 
1080 	/* Skip over the ADDIP header and find the Address parameter */
1081 	param = (union sctp_addr_param *)(asconf + 1);
1082 
1083 	af = sctp_get_af_specific(param_type2af(param->p.type));
1084 	if (unlikely(!af))
1085 		return NULL;
1086 
1087 	af->from_addr_param(&paddr, param, peer_port, 0);
1088 
1089 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1090 }
1091 
1092 
1093 /* SCTP-AUTH, Section 6.3:
1094 *    If the receiver does not find a STCB for a packet containing an AUTH
1095 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1096 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1097 *    association.
1098 *
1099 * This means that any chunks that can help us identify the association need
1100 * to be looked at to find this association.
1101 */
1102 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1103 				      struct sk_buff *skb,
1104 				      const union sctp_addr *laddr,
1105 				      struct sctp_transport **transportp)
1106 {
1107 	struct sctp_association *asoc = NULL;
1108 	sctp_chunkhdr_t *ch;
1109 	int have_auth = 0;
1110 	unsigned int chunk_num = 1;
1111 	__u8 *ch_end;
1112 
1113 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1114 	 * to help us find the association.
1115 	 */
1116 	ch = (sctp_chunkhdr_t *) skb->data;
1117 	do {
1118 		/* Break out if chunk length is less then minimal. */
1119 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1120 			break;
1121 
1122 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1123 		if (ch_end > skb_tail_pointer(skb))
1124 			break;
1125 
1126 		switch (ch->type) {
1127 		case SCTP_CID_AUTH:
1128 			have_auth = chunk_num;
1129 			break;
1130 
1131 		case SCTP_CID_COOKIE_ECHO:
1132 			/* If a packet arrives containing an AUTH chunk as
1133 			 * a first chunk, a COOKIE-ECHO chunk as the second
1134 			 * chunk, and possibly more chunks after them, and
1135 			 * the receiver does not have an STCB for that
1136 			 * packet, then authentication is based on
1137 			 * the contents of the COOKIE- ECHO chunk.
1138 			 */
1139 			if (have_auth == 1 && chunk_num == 2)
1140 				return NULL;
1141 			break;
1142 
1143 		case SCTP_CID_ASCONF:
1144 			if (have_auth || net->sctp.addip_noauth)
1145 				asoc = __sctp_rcv_asconf_lookup(
1146 						net, ch, laddr,
1147 						sctp_hdr(skb)->source,
1148 						transportp);
1149 		default:
1150 			break;
1151 		}
1152 
1153 		if (asoc)
1154 			break;
1155 
1156 		ch = (sctp_chunkhdr_t *) ch_end;
1157 		chunk_num++;
1158 	} while (ch_end < skb_tail_pointer(skb));
1159 
1160 	return asoc;
1161 }
1162 
1163 /*
1164  * There are circumstances when we need to look inside the SCTP packet
1165  * for information to help us find the association.   Examples
1166  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1167  * chunks.
1168  */
1169 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1170 				      struct sk_buff *skb,
1171 				      const union sctp_addr *laddr,
1172 				      struct sctp_transport **transportp)
1173 {
1174 	sctp_chunkhdr_t *ch;
1175 
1176 	ch = (sctp_chunkhdr_t *) skb->data;
1177 
1178 	/* The code below will attempt to walk the chunk and extract
1179 	 * parameter information.  Before we do that, we need to verify
1180 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1181 	 * walk off the end.
1182 	 */
1183 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1184 		return NULL;
1185 
1186 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1187 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1188 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1189 
1190 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1191 }
1192 
1193 /* Lookup an association for an inbound skb. */
1194 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1195 				      struct sk_buff *skb,
1196 				      const union sctp_addr *paddr,
1197 				      const union sctp_addr *laddr,
1198 				      struct sctp_transport **transportp)
1199 {
1200 	struct sctp_association *asoc;
1201 
1202 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1203 
1204 	/* Further lookup for INIT/INIT-ACK packets.
1205 	 * SCTP Implementors Guide, 2.18 Handling of address
1206 	 * parameters within the INIT or INIT-ACK.
1207 	 */
1208 	if (!asoc)
1209 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1210 
1211 	return asoc;
1212 }
1213