1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, see 20 * <http://www.gnu.org/licenses/>. 21 * 22 * Please send any bug reports or fixes you make to the 23 * email address(es): 24 * lksctp developers <linux-sctp@vger.kernel.org> 25 * 26 * Written or modified by: 27 * Vlad Yasevich <vladislav.yasevich@hp.com> 28 */ 29 30 #include <crypto/hash.h> 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/scatterlist.h> 34 #include <net/sctp/sctp.h> 35 #include <net/sctp/auth.h> 36 37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 38 { 39 /* id 0 is reserved. as all 0 */ 40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 41 }, 42 { 43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 44 .hmac_name = "hmac(sha1)", 45 .hmac_len = SCTP_SHA1_SIG_SIZE, 46 }, 47 { 48 /* id 2 is reserved as well */ 49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 50 }, 51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256) 52 { 53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 54 .hmac_name = "hmac(sha256)", 55 .hmac_len = SCTP_SHA256_SIG_SIZE, 56 } 57 #endif 58 }; 59 60 61 void sctp_auth_key_put(struct sctp_auth_bytes *key) 62 { 63 if (!key) 64 return; 65 66 if (refcount_dec_and_test(&key->refcnt)) { 67 kzfree(key); 68 SCTP_DBG_OBJCNT_DEC(keys); 69 } 70 } 71 72 /* Create a new key structure of a given length */ 73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 74 { 75 struct sctp_auth_bytes *key; 76 77 /* Verify that we are not going to overflow INT_MAX */ 78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 79 return NULL; 80 81 /* Allocate the shared key */ 82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 83 if (!key) 84 return NULL; 85 86 key->len = key_len; 87 refcount_set(&key->refcnt, 1); 88 SCTP_DBG_OBJCNT_INC(keys); 89 90 return key; 91 } 92 93 /* Create a new shared key container with a give key id */ 94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 95 { 96 struct sctp_shared_key *new; 97 98 /* Allocate the shared key container */ 99 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 100 if (!new) 101 return NULL; 102 103 INIT_LIST_HEAD(&new->key_list); 104 new->key_id = key_id; 105 106 return new; 107 } 108 109 /* Free the shared key structure */ 110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 111 { 112 BUG_ON(!list_empty(&sh_key->key_list)); 113 sctp_auth_key_put(sh_key->key); 114 sh_key->key = NULL; 115 kfree(sh_key); 116 } 117 118 /* Destroy the entire key list. This is done during the 119 * associon and endpoint free process. 120 */ 121 void sctp_auth_destroy_keys(struct list_head *keys) 122 { 123 struct sctp_shared_key *ep_key; 124 struct sctp_shared_key *tmp; 125 126 if (list_empty(keys)) 127 return; 128 129 key_for_each_safe(ep_key, tmp, keys) { 130 list_del_init(&ep_key->key_list); 131 sctp_auth_shkey_free(ep_key); 132 } 133 } 134 135 /* Compare two byte vectors as numbers. Return values 136 * are: 137 * 0 - vectors are equal 138 * < 0 - vector 1 is smaller than vector2 139 * > 0 - vector 1 is greater than vector2 140 * 141 * Algorithm is: 142 * This is performed by selecting the numerically smaller key vector... 143 * If the key vectors are equal as numbers but differ in length ... 144 * the shorter vector is considered smaller 145 * 146 * Examples (with small values): 147 * 000123456789 > 123456789 (first number is longer) 148 * 000123456789 < 234567891 (second number is larger numerically) 149 * 123456789 > 2345678 (first number is both larger & longer) 150 */ 151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 152 struct sctp_auth_bytes *vector2) 153 { 154 int diff; 155 int i; 156 const __u8 *longer; 157 158 diff = vector1->len - vector2->len; 159 if (diff) { 160 longer = (diff > 0) ? vector1->data : vector2->data; 161 162 /* Check to see if the longer number is 163 * lead-zero padded. If it is not, it 164 * is automatically larger numerically. 165 */ 166 for (i = 0; i < abs(diff); i++) { 167 if (longer[i] != 0) 168 return diff; 169 } 170 } 171 172 /* lengths are the same, compare numbers */ 173 return memcmp(vector1->data, vector2->data, vector1->len); 174 } 175 176 /* 177 * Create a key vector as described in SCTP-AUTH, Section 6.1 178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 179 * parameter sent by each endpoint are concatenated as byte vectors. 180 * These parameters include the parameter type, parameter length, and 181 * the parameter value, but padding is omitted; all padding MUST be 182 * removed from this concatenation before proceeding with further 183 * computation of keys. Parameters which were not sent are simply 184 * omitted from the concatenation process. The resulting two vectors 185 * are called the two key vectors. 186 */ 187 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 188 struct sctp_random_param *random, 189 struct sctp_chunks_param *chunks, 190 struct sctp_hmac_algo_param *hmacs, 191 gfp_t gfp) 192 { 193 struct sctp_auth_bytes *new; 194 __u32 len; 195 __u32 offset = 0; 196 __u16 random_len, hmacs_len, chunks_len = 0; 197 198 random_len = ntohs(random->param_hdr.length); 199 hmacs_len = ntohs(hmacs->param_hdr.length); 200 if (chunks) 201 chunks_len = ntohs(chunks->param_hdr.length); 202 203 len = random_len + hmacs_len + chunks_len; 204 205 new = sctp_auth_create_key(len, gfp); 206 if (!new) 207 return NULL; 208 209 memcpy(new->data, random, random_len); 210 offset += random_len; 211 212 if (chunks) { 213 memcpy(new->data + offset, chunks, chunks_len); 214 offset += chunks_len; 215 } 216 217 memcpy(new->data + offset, hmacs, hmacs_len); 218 219 return new; 220 } 221 222 223 /* Make a key vector based on our local parameters */ 224 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 225 const struct sctp_association *asoc, 226 gfp_t gfp) 227 { 228 return sctp_auth_make_key_vector( 229 (struct sctp_random_param *)asoc->c.auth_random, 230 (struct sctp_chunks_param *)asoc->c.auth_chunks, 231 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp); 232 } 233 234 /* Make a key vector based on peer's parameters */ 235 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 236 const struct sctp_association *asoc, 237 gfp_t gfp) 238 { 239 return sctp_auth_make_key_vector(asoc->peer.peer_random, 240 asoc->peer.peer_chunks, 241 asoc->peer.peer_hmacs, 242 gfp); 243 } 244 245 246 /* Set the value of the association shared key base on the parameters 247 * given. The algorithm is: 248 * From the endpoint pair shared keys and the key vectors the 249 * association shared keys are computed. This is performed by selecting 250 * the numerically smaller key vector and concatenating it to the 251 * endpoint pair shared key, and then concatenating the numerically 252 * larger key vector to that. The result of the concatenation is the 253 * association shared key. 254 */ 255 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 256 struct sctp_shared_key *ep_key, 257 struct sctp_auth_bytes *first_vector, 258 struct sctp_auth_bytes *last_vector, 259 gfp_t gfp) 260 { 261 struct sctp_auth_bytes *secret; 262 __u32 offset = 0; 263 __u32 auth_len; 264 265 auth_len = first_vector->len + last_vector->len; 266 if (ep_key->key) 267 auth_len += ep_key->key->len; 268 269 secret = sctp_auth_create_key(auth_len, gfp); 270 if (!secret) 271 return NULL; 272 273 if (ep_key->key) { 274 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 275 offset += ep_key->key->len; 276 } 277 278 memcpy(secret->data + offset, first_vector->data, first_vector->len); 279 offset += first_vector->len; 280 281 memcpy(secret->data + offset, last_vector->data, last_vector->len); 282 283 return secret; 284 } 285 286 /* Create an association shared key. Follow the algorithm 287 * described in SCTP-AUTH, Section 6.1 288 */ 289 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 290 const struct sctp_association *asoc, 291 struct sctp_shared_key *ep_key, 292 gfp_t gfp) 293 { 294 struct sctp_auth_bytes *local_key_vector; 295 struct sctp_auth_bytes *peer_key_vector; 296 struct sctp_auth_bytes *first_vector, 297 *last_vector; 298 struct sctp_auth_bytes *secret = NULL; 299 int cmp; 300 301 302 /* Now we need to build the key vectors 303 * SCTP-AUTH , Section 6.1 304 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 305 * parameter sent by each endpoint are concatenated as byte vectors. 306 * These parameters include the parameter type, parameter length, and 307 * the parameter value, but padding is omitted; all padding MUST be 308 * removed from this concatenation before proceeding with further 309 * computation of keys. Parameters which were not sent are simply 310 * omitted from the concatenation process. The resulting two vectors 311 * are called the two key vectors. 312 */ 313 314 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 315 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 316 317 if (!peer_key_vector || !local_key_vector) 318 goto out; 319 320 /* Figure out the order in which the key_vectors will be 321 * added to the endpoint shared key. 322 * SCTP-AUTH, Section 6.1: 323 * This is performed by selecting the numerically smaller key 324 * vector and concatenating it to the endpoint pair shared 325 * key, and then concatenating the numerically larger key 326 * vector to that. If the key vectors are equal as numbers 327 * but differ in length, then the concatenation order is the 328 * endpoint shared key, followed by the shorter key vector, 329 * followed by the longer key vector. Otherwise, the key 330 * vectors are identical, and may be concatenated to the 331 * endpoint pair key in any order. 332 */ 333 cmp = sctp_auth_compare_vectors(local_key_vector, 334 peer_key_vector); 335 if (cmp < 0) { 336 first_vector = local_key_vector; 337 last_vector = peer_key_vector; 338 } else { 339 first_vector = peer_key_vector; 340 last_vector = local_key_vector; 341 } 342 343 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 344 gfp); 345 out: 346 sctp_auth_key_put(local_key_vector); 347 sctp_auth_key_put(peer_key_vector); 348 349 return secret; 350 } 351 352 /* 353 * Populate the association overlay list with the list 354 * from the endpoint. 355 */ 356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 357 struct sctp_association *asoc, 358 gfp_t gfp) 359 { 360 struct sctp_shared_key *sh_key; 361 struct sctp_shared_key *new; 362 363 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 364 365 key_for_each(sh_key, &ep->endpoint_shared_keys) { 366 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 367 if (!new) 368 goto nomem; 369 370 new->key = sh_key->key; 371 sctp_auth_key_hold(new->key); 372 list_add(&new->key_list, &asoc->endpoint_shared_keys); 373 } 374 375 return 0; 376 377 nomem: 378 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 379 return -ENOMEM; 380 } 381 382 383 /* Public interface to create the association shared key. 384 * See code above for the algorithm. 385 */ 386 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 387 { 388 struct sctp_auth_bytes *secret; 389 struct sctp_shared_key *ep_key; 390 struct sctp_chunk *chunk; 391 392 /* If we don't support AUTH, or peer is not capable 393 * we don't need to do anything. 394 */ 395 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 396 return 0; 397 398 /* If the key_id is non-zero and we couldn't find an 399 * endpoint pair shared key, we can't compute the 400 * secret. 401 * For key_id 0, endpoint pair shared key is a NULL key. 402 */ 403 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 404 BUG_ON(!ep_key); 405 406 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 407 if (!secret) 408 return -ENOMEM; 409 410 sctp_auth_key_put(asoc->asoc_shared_key); 411 asoc->asoc_shared_key = secret; 412 413 /* Update send queue in case any chunk already in there now 414 * needs authenticating 415 */ 416 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { 417 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) 418 chunk->auth = 1; 419 } 420 421 return 0; 422 } 423 424 425 /* Find the endpoint pair shared key based on the key_id */ 426 struct sctp_shared_key *sctp_auth_get_shkey( 427 const struct sctp_association *asoc, 428 __u16 key_id) 429 { 430 struct sctp_shared_key *key; 431 432 /* First search associations set of endpoint pair shared keys */ 433 key_for_each(key, &asoc->endpoint_shared_keys) { 434 if (key->key_id == key_id) 435 return key; 436 } 437 438 return NULL; 439 } 440 441 /* 442 * Initialize all the possible digest transforms that we can use. Right now 443 * now, the supported digests are SHA1 and SHA256. We do this here once 444 * because of the restrictiong that transforms may only be allocated in 445 * user context. This forces us to pre-allocated all possible transforms 446 * at the endpoint init time. 447 */ 448 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 449 { 450 struct crypto_shash *tfm = NULL; 451 __u16 id; 452 453 /* If AUTH extension is disabled, we are done */ 454 if (!ep->auth_enable) { 455 ep->auth_hmacs = NULL; 456 return 0; 457 } 458 459 /* If the transforms are already allocated, we are done */ 460 if (ep->auth_hmacs) 461 return 0; 462 463 /* Allocated the array of pointers to transorms */ 464 ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) * 465 SCTP_AUTH_NUM_HMACS, gfp); 466 if (!ep->auth_hmacs) 467 return -ENOMEM; 468 469 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 470 471 /* See is we support the id. Supported IDs have name and 472 * length fields set, so that we can allocated and use 473 * them. We can safely just check for name, for without the 474 * name, we can't allocate the TFM. 475 */ 476 if (!sctp_hmac_list[id].hmac_name) 477 continue; 478 479 /* If this TFM has been allocated, we are all set */ 480 if (ep->auth_hmacs[id]) 481 continue; 482 483 /* Allocate the ID */ 484 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); 485 if (IS_ERR(tfm)) 486 goto out_err; 487 488 ep->auth_hmacs[id] = tfm; 489 } 490 491 return 0; 492 493 out_err: 494 /* Clean up any successful allocations */ 495 sctp_auth_destroy_hmacs(ep->auth_hmacs); 496 return -ENOMEM; 497 } 498 499 /* Destroy the hmac tfm array */ 500 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) 501 { 502 int i; 503 504 if (!auth_hmacs) 505 return; 506 507 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { 508 crypto_free_shash(auth_hmacs[i]); 509 } 510 kfree(auth_hmacs); 511 } 512 513 514 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 515 { 516 return &sctp_hmac_list[hmac_id]; 517 } 518 519 /* Get an hmac description information that we can use to build 520 * the AUTH chunk 521 */ 522 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 523 { 524 struct sctp_hmac_algo_param *hmacs; 525 __u16 n_elt; 526 __u16 id = 0; 527 int i; 528 529 /* If we have a default entry, use it */ 530 if (asoc->default_hmac_id) 531 return &sctp_hmac_list[asoc->default_hmac_id]; 532 533 /* Since we do not have a default entry, find the first entry 534 * we support and return that. Do not cache that id. 535 */ 536 hmacs = asoc->peer.peer_hmacs; 537 if (!hmacs) 538 return NULL; 539 540 n_elt = (ntohs(hmacs->param_hdr.length) - 541 sizeof(struct sctp_paramhdr)) >> 1; 542 for (i = 0; i < n_elt; i++) { 543 id = ntohs(hmacs->hmac_ids[i]); 544 545 /* Check the id is in the supported range. And 546 * see if we support the id. Supported IDs have name and 547 * length fields set, so that we can allocate and use 548 * them. We can safely just check for name, for without the 549 * name, we can't allocate the TFM. 550 */ 551 if (id > SCTP_AUTH_HMAC_ID_MAX || 552 !sctp_hmac_list[id].hmac_name) { 553 id = 0; 554 continue; 555 } 556 557 break; 558 } 559 560 if (id == 0) 561 return NULL; 562 563 return &sctp_hmac_list[id]; 564 } 565 566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 567 { 568 int found = 0; 569 int i; 570 571 for (i = 0; i < n_elts; i++) { 572 if (hmac_id == hmacs[i]) { 573 found = 1; 574 break; 575 } 576 } 577 578 return found; 579 } 580 581 /* See if the HMAC_ID is one that we claim as supported */ 582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 583 __be16 hmac_id) 584 { 585 struct sctp_hmac_algo_param *hmacs; 586 __u16 n_elt; 587 588 if (!asoc) 589 return 0; 590 591 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 592 n_elt = (ntohs(hmacs->param_hdr.length) - 593 sizeof(struct sctp_paramhdr)) >> 1; 594 595 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 596 } 597 598 599 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 600 * Section 6.1: 601 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 602 * algorithm it supports. 603 */ 604 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 605 struct sctp_hmac_algo_param *hmacs) 606 { 607 struct sctp_endpoint *ep; 608 __u16 id; 609 int i; 610 int n_params; 611 612 /* if the default id is already set, use it */ 613 if (asoc->default_hmac_id) 614 return; 615 616 n_params = (ntohs(hmacs->param_hdr.length) - 617 sizeof(struct sctp_paramhdr)) >> 1; 618 ep = asoc->ep; 619 for (i = 0; i < n_params; i++) { 620 id = ntohs(hmacs->hmac_ids[i]); 621 622 /* Check the id is in the supported range */ 623 if (id > SCTP_AUTH_HMAC_ID_MAX) 624 continue; 625 626 /* If this TFM has been allocated, use this id */ 627 if (ep->auth_hmacs[id]) { 628 asoc->default_hmac_id = id; 629 break; 630 } 631 } 632 } 633 634 635 /* Check to see if the given chunk is supposed to be authenticated */ 636 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param) 637 { 638 unsigned short len; 639 int found = 0; 640 int i; 641 642 if (!param || param->param_hdr.length == 0) 643 return 0; 644 645 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr); 646 647 /* SCTP-AUTH, Section 3.2 648 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 649 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 650 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 651 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 652 */ 653 for (i = 0; !found && i < len; i++) { 654 switch (param->chunks[i]) { 655 case SCTP_CID_INIT: 656 case SCTP_CID_INIT_ACK: 657 case SCTP_CID_SHUTDOWN_COMPLETE: 658 case SCTP_CID_AUTH: 659 break; 660 661 default: 662 if (param->chunks[i] == chunk) 663 found = 1; 664 break; 665 } 666 } 667 668 return found; 669 } 670 671 /* Check if peer requested that this chunk is authenticated */ 672 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 673 { 674 if (!asoc) 675 return 0; 676 677 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 678 return 0; 679 680 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 681 } 682 683 /* Check if we requested that peer authenticate this chunk. */ 684 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 685 { 686 if (!asoc) 687 return 0; 688 689 if (!asoc->ep->auth_enable) 690 return 0; 691 692 return __sctp_auth_cid(chunk, 693 (struct sctp_chunks_param *)asoc->c.auth_chunks); 694 } 695 696 /* SCTP-AUTH: Section 6.2: 697 * The sender MUST calculate the MAC as described in RFC2104 [2] using 698 * the hash function H as described by the MAC Identifier and the shared 699 * association key K based on the endpoint pair shared key described by 700 * the shared key identifier. The 'data' used for the computation of 701 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 702 * zero (as shown in Figure 6) followed by all chunks that are placed 703 * after the AUTH chunk in the SCTP packet. 704 */ 705 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 706 struct sk_buff *skb, 707 struct sctp_auth_chunk *auth, 708 gfp_t gfp) 709 { 710 struct crypto_shash *tfm; 711 struct sctp_auth_bytes *asoc_key; 712 __u16 key_id, hmac_id; 713 __u8 *digest; 714 unsigned char *end; 715 int free_key = 0; 716 717 /* Extract the info we need: 718 * - hmac id 719 * - key id 720 */ 721 key_id = ntohs(auth->auth_hdr.shkey_id); 722 hmac_id = ntohs(auth->auth_hdr.hmac_id); 723 724 if (key_id == asoc->active_key_id) 725 asoc_key = asoc->asoc_shared_key; 726 else { 727 struct sctp_shared_key *ep_key; 728 729 ep_key = sctp_auth_get_shkey(asoc, key_id); 730 if (!ep_key) 731 return; 732 733 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 734 if (!asoc_key) 735 return; 736 737 free_key = 1; 738 } 739 740 /* set up scatter list */ 741 end = skb_tail_pointer(skb); 742 743 tfm = asoc->ep->auth_hmacs[hmac_id]; 744 745 digest = auth->auth_hdr.hmac; 746 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) 747 goto free; 748 749 { 750 SHASH_DESC_ON_STACK(desc, tfm); 751 752 desc->tfm = tfm; 753 desc->flags = 0; 754 crypto_shash_digest(desc, (u8 *)auth, 755 end - (unsigned char *)auth, digest); 756 shash_desc_zero(desc); 757 } 758 759 free: 760 if (free_key) 761 sctp_auth_key_put(asoc_key); 762 } 763 764 /* API Helpers */ 765 766 /* Add a chunk to the endpoint authenticated chunk list */ 767 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 768 { 769 struct sctp_chunks_param *p = ep->auth_chunk_list; 770 __u16 nchunks; 771 __u16 param_len; 772 773 /* If this chunk is already specified, we are done */ 774 if (__sctp_auth_cid(chunk_id, p)) 775 return 0; 776 777 /* Check if we can add this chunk to the array */ 778 param_len = ntohs(p->param_hdr.length); 779 nchunks = param_len - sizeof(struct sctp_paramhdr); 780 if (nchunks == SCTP_NUM_CHUNK_TYPES) 781 return -EINVAL; 782 783 p->chunks[nchunks] = chunk_id; 784 p->param_hdr.length = htons(param_len + 1); 785 return 0; 786 } 787 788 /* Add hmac identifires to the endpoint list of supported hmac ids */ 789 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 790 struct sctp_hmacalgo *hmacs) 791 { 792 int has_sha1 = 0; 793 __u16 id; 794 int i; 795 796 /* Scan the list looking for unsupported id. Also make sure that 797 * SHA1 is specified. 798 */ 799 for (i = 0; i < hmacs->shmac_num_idents; i++) { 800 id = hmacs->shmac_idents[i]; 801 802 if (id > SCTP_AUTH_HMAC_ID_MAX) 803 return -EOPNOTSUPP; 804 805 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 806 has_sha1 = 1; 807 808 if (!sctp_hmac_list[id].hmac_name) 809 return -EOPNOTSUPP; 810 } 811 812 if (!has_sha1) 813 return -EINVAL; 814 815 for (i = 0; i < hmacs->shmac_num_idents; i++) 816 ep->auth_hmacs_list->hmac_ids[i] = 817 htons(hmacs->shmac_idents[i]); 818 ep->auth_hmacs_list->param_hdr.length = 819 htons(sizeof(struct sctp_paramhdr) + 820 hmacs->shmac_num_idents * sizeof(__u16)); 821 return 0; 822 } 823 824 /* Set a new shared key on either endpoint or association. If the 825 * the key with a same ID already exists, replace the key (remove the 826 * old key and add a new one). 827 */ 828 int sctp_auth_set_key(struct sctp_endpoint *ep, 829 struct sctp_association *asoc, 830 struct sctp_authkey *auth_key) 831 { 832 struct sctp_shared_key *cur_key = NULL; 833 struct sctp_auth_bytes *key; 834 struct list_head *sh_keys; 835 int replace = 0; 836 837 /* Try to find the given key id to see if 838 * we are doing a replace, or adding a new key 839 */ 840 if (asoc) 841 sh_keys = &asoc->endpoint_shared_keys; 842 else 843 sh_keys = &ep->endpoint_shared_keys; 844 845 key_for_each(cur_key, sh_keys) { 846 if (cur_key->key_id == auth_key->sca_keynumber) { 847 replace = 1; 848 break; 849 } 850 } 851 852 /* If we are not replacing a key id, we need to allocate 853 * a shared key. 854 */ 855 if (!replace) { 856 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 857 GFP_KERNEL); 858 if (!cur_key) 859 return -ENOMEM; 860 } 861 862 /* Create a new key data based on the info passed in */ 863 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 864 if (!key) 865 goto nomem; 866 867 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 868 869 /* If we are replacing, remove the old keys data from the 870 * key id. If we are adding new key id, add it to the 871 * list. 872 */ 873 if (replace) 874 sctp_auth_key_put(cur_key->key); 875 else 876 list_add(&cur_key->key_list, sh_keys); 877 878 cur_key->key = key; 879 return 0; 880 nomem: 881 if (!replace) 882 sctp_auth_shkey_free(cur_key); 883 884 return -ENOMEM; 885 } 886 887 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 888 struct sctp_association *asoc, 889 __u16 key_id) 890 { 891 struct sctp_shared_key *key; 892 struct list_head *sh_keys; 893 int found = 0; 894 895 /* The key identifier MUST correst to an existing key */ 896 if (asoc) 897 sh_keys = &asoc->endpoint_shared_keys; 898 else 899 sh_keys = &ep->endpoint_shared_keys; 900 901 key_for_each(key, sh_keys) { 902 if (key->key_id == key_id) { 903 found = 1; 904 break; 905 } 906 } 907 908 if (!found) 909 return -EINVAL; 910 911 if (asoc) { 912 asoc->active_key_id = key_id; 913 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 914 } else 915 ep->active_key_id = key_id; 916 917 return 0; 918 } 919 920 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 921 struct sctp_association *asoc, 922 __u16 key_id) 923 { 924 struct sctp_shared_key *key; 925 struct list_head *sh_keys; 926 int found = 0; 927 928 /* The key identifier MUST NOT be the current active key 929 * The key identifier MUST correst to an existing key 930 */ 931 if (asoc) { 932 if (asoc->active_key_id == key_id) 933 return -EINVAL; 934 935 sh_keys = &asoc->endpoint_shared_keys; 936 } else { 937 if (ep->active_key_id == key_id) 938 return -EINVAL; 939 940 sh_keys = &ep->endpoint_shared_keys; 941 } 942 943 key_for_each(key, sh_keys) { 944 if (key->key_id == key_id) { 945 found = 1; 946 break; 947 } 948 } 949 950 if (!found) 951 return -EINVAL; 952 953 /* Delete the shared key */ 954 list_del_init(&key->key_list); 955 sctp_auth_shkey_free(key); 956 957 return 0; 958 } 959