xref: /linux/net/sctp/auth.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (refcount_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	refcount_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	new->key_id = key_id;
105 
106 	return new;
107 }
108 
109 /* Free the shared key structure */
110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111 {
112 	BUG_ON(!list_empty(&sh_key->key_list));
113 	sctp_auth_key_put(sh_key->key);
114 	sh_key->key = NULL;
115 	kfree(sh_key);
116 }
117 
118 /* Destroy the entire key list.  This is done during the
119  * associon and endpoint free process.
120  */
121 void sctp_auth_destroy_keys(struct list_head *keys)
122 {
123 	struct sctp_shared_key *ep_key;
124 	struct sctp_shared_key *tmp;
125 
126 	if (list_empty(keys))
127 		return;
128 
129 	key_for_each_safe(ep_key, tmp, keys) {
130 		list_del_init(&ep_key->key_list);
131 		sctp_auth_shkey_free(ep_key);
132 	}
133 }
134 
135 /* Compare two byte vectors as numbers.  Return values
136  * are:
137  * 	  0 - vectors are equal
138  * 	< 0 - vector 1 is smaller than vector2
139  * 	> 0 - vector 1 is greater than vector2
140  *
141  * Algorithm is:
142  * 	This is performed by selecting the numerically smaller key vector...
143  *	If the key vectors are equal as numbers but differ in length ...
144  *	the shorter vector is considered smaller
145  *
146  * Examples (with small values):
147  * 	000123456789 > 123456789 (first number is longer)
148  * 	000123456789 < 234567891 (second number is larger numerically)
149  * 	123456789 > 2345678 	 (first number is both larger & longer)
150  */
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 			      struct sctp_auth_bytes *vector2)
153 {
154 	int diff;
155 	int i;
156 	const __u8 *longer;
157 
158 	diff = vector1->len - vector2->len;
159 	if (diff) {
160 		longer = (diff > 0) ? vector1->data : vector2->data;
161 
162 		/* Check to see if the longer number is
163 		 * lead-zero padded.  If it is not, it
164 		 * is automatically larger numerically.
165 		 */
166 		for (i = 0; i < abs(diff); i++) {
167 			if (longer[i] != 0)
168 				return diff;
169 		}
170 	}
171 
172 	/* lengths are the same, compare numbers */
173 	return memcmp(vector1->data, vector2->data, vector1->len);
174 }
175 
176 /*
177  * Create a key vector as described in SCTP-AUTH, Section 6.1
178  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179  *    parameter sent by each endpoint are concatenated as byte vectors.
180  *    These parameters include the parameter type, parameter length, and
181  *    the parameter value, but padding is omitted; all padding MUST be
182  *    removed from this concatenation before proceeding with further
183  *    computation of keys.  Parameters which were not sent are simply
184  *    omitted from the concatenation process.  The resulting two vectors
185  *    are called the two key vectors.
186  */
187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 			struct sctp_random_param *random,
189 			struct sctp_chunks_param *chunks,
190 			struct sctp_hmac_algo_param *hmacs,
191 			gfp_t gfp)
192 {
193 	struct sctp_auth_bytes *new;
194 	__u32	len;
195 	__u32	offset = 0;
196 	__u16	random_len, hmacs_len, chunks_len = 0;
197 
198 	random_len = ntohs(random->param_hdr.length);
199 	hmacs_len = ntohs(hmacs->param_hdr.length);
200 	if (chunks)
201 		chunks_len = ntohs(chunks->param_hdr.length);
202 
203 	len = random_len + hmacs_len + chunks_len;
204 
205 	new = sctp_auth_create_key(len, gfp);
206 	if (!new)
207 		return NULL;
208 
209 	memcpy(new->data, random, random_len);
210 	offset += random_len;
211 
212 	if (chunks) {
213 		memcpy(new->data + offset, chunks, chunks_len);
214 		offset += chunks_len;
215 	}
216 
217 	memcpy(new->data + offset, hmacs, hmacs_len);
218 
219 	return new;
220 }
221 
222 
223 /* Make a key vector based on our local parameters */
224 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225 				    const struct sctp_association *asoc,
226 				    gfp_t gfp)
227 {
228 	return sctp_auth_make_key_vector(
229 			(struct sctp_random_param *)asoc->c.auth_random,
230 			(struct sctp_chunks_param *)asoc->c.auth_chunks,
231 			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
232 }
233 
234 /* Make a key vector based on peer's parameters */
235 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
236 				    const struct sctp_association *asoc,
237 				    gfp_t gfp)
238 {
239 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
240 					 asoc->peer.peer_chunks,
241 					 asoc->peer.peer_hmacs,
242 					 gfp);
243 }
244 
245 
246 /* Set the value of the association shared key base on the parameters
247  * given.  The algorithm is:
248  *    From the endpoint pair shared keys and the key vectors the
249  *    association shared keys are computed.  This is performed by selecting
250  *    the numerically smaller key vector and concatenating it to the
251  *    endpoint pair shared key, and then concatenating the numerically
252  *    larger key vector to that.  The result of the concatenation is the
253  *    association shared key.
254  */
255 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
256 			struct sctp_shared_key *ep_key,
257 			struct sctp_auth_bytes *first_vector,
258 			struct sctp_auth_bytes *last_vector,
259 			gfp_t gfp)
260 {
261 	struct sctp_auth_bytes *secret;
262 	__u32 offset = 0;
263 	__u32 auth_len;
264 
265 	auth_len = first_vector->len + last_vector->len;
266 	if (ep_key->key)
267 		auth_len += ep_key->key->len;
268 
269 	secret = sctp_auth_create_key(auth_len, gfp);
270 	if (!secret)
271 		return NULL;
272 
273 	if (ep_key->key) {
274 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
275 		offset += ep_key->key->len;
276 	}
277 
278 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
279 	offset += first_vector->len;
280 
281 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
282 
283 	return secret;
284 }
285 
286 /* Create an association shared key.  Follow the algorithm
287  * described in SCTP-AUTH, Section 6.1
288  */
289 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
290 				 const struct sctp_association *asoc,
291 				 struct sctp_shared_key *ep_key,
292 				 gfp_t gfp)
293 {
294 	struct sctp_auth_bytes *local_key_vector;
295 	struct sctp_auth_bytes *peer_key_vector;
296 	struct sctp_auth_bytes	*first_vector,
297 				*last_vector;
298 	struct sctp_auth_bytes	*secret = NULL;
299 	int	cmp;
300 
301 
302 	/* Now we need to build the key vectors
303 	 * SCTP-AUTH , Section 6.1
304 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
305 	 *    parameter sent by each endpoint are concatenated as byte vectors.
306 	 *    These parameters include the parameter type, parameter length, and
307 	 *    the parameter value, but padding is omitted; all padding MUST be
308 	 *    removed from this concatenation before proceeding with further
309 	 *    computation of keys.  Parameters which were not sent are simply
310 	 *    omitted from the concatenation process.  The resulting two vectors
311 	 *    are called the two key vectors.
312 	 */
313 
314 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
315 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
316 
317 	if (!peer_key_vector || !local_key_vector)
318 		goto out;
319 
320 	/* Figure out the order in which the key_vectors will be
321 	 * added to the endpoint shared key.
322 	 * SCTP-AUTH, Section 6.1:
323 	 *   This is performed by selecting the numerically smaller key
324 	 *   vector and concatenating it to the endpoint pair shared
325 	 *   key, and then concatenating the numerically larger key
326 	 *   vector to that.  If the key vectors are equal as numbers
327 	 *   but differ in length, then the concatenation order is the
328 	 *   endpoint shared key, followed by the shorter key vector,
329 	 *   followed by the longer key vector.  Otherwise, the key
330 	 *   vectors are identical, and may be concatenated to the
331 	 *   endpoint pair key in any order.
332 	 */
333 	cmp = sctp_auth_compare_vectors(local_key_vector,
334 					peer_key_vector);
335 	if (cmp < 0) {
336 		first_vector = local_key_vector;
337 		last_vector = peer_key_vector;
338 	} else {
339 		first_vector = peer_key_vector;
340 		last_vector = local_key_vector;
341 	}
342 
343 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
344 					    gfp);
345 out:
346 	sctp_auth_key_put(local_key_vector);
347 	sctp_auth_key_put(peer_key_vector);
348 
349 	return secret;
350 }
351 
352 /*
353  * Populate the association overlay list with the list
354  * from the endpoint.
355  */
356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
357 				struct sctp_association *asoc,
358 				gfp_t gfp)
359 {
360 	struct sctp_shared_key *sh_key;
361 	struct sctp_shared_key *new;
362 
363 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
364 
365 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
366 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
367 		if (!new)
368 			goto nomem;
369 
370 		new->key = sh_key->key;
371 		sctp_auth_key_hold(new->key);
372 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
373 	}
374 
375 	return 0;
376 
377 nomem:
378 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
379 	return -ENOMEM;
380 }
381 
382 
383 /* Public interface to create the association shared key.
384  * See code above for the algorithm.
385  */
386 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
387 {
388 	struct sctp_auth_bytes	*secret;
389 	struct sctp_shared_key *ep_key;
390 	struct sctp_chunk *chunk;
391 
392 	/* If we don't support AUTH, or peer is not capable
393 	 * we don't need to do anything.
394 	 */
395 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
396 		return 0;
397 
398 	/* If the key_id is non-zero and we couldn't find an
399 	 * endpoint pair shared key, we can't compute the
400 	 * secret.
401 	 * For key_id 0, endpoint pair shared key is a NULL key.
402 	 */
403 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
404 	BUG_ON(!ep_key);
405 
406 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
407 	if (!secret)
408 		return -ENOMEM;
409 
410 	sctp_auth_key_put(asoc->asoc_shared_key);
411 	asoc->asoc_shared_key = secret;
412 
413 	/* Update send queue in case any chunk already in there now
414 	 * needs authenticating
415 	 */
416 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
417 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
418 			chunk->auth = 1;
419 	}
420 
421 	return 0;
422 }
423 
424 
425 /* Find the endpoint pair shared key based on the key_id */
426 struct sctp_shared_key *sctp_auth_get_shkey(
427 				const struct sctp_association *asoc,
428 				__u16 key_id)
429 {
430 	struct sctp_shared_key *key;
431 
432 	/* First search associations set of endpoint pair shared keys */
433 	key_for_each(key, &asoc->endpoint_shared_keys) {
434 		if (key->key_id == key_id)
435 			return key;
436 	}
437 
438 	return NULL;
439 }
440 
441 /*
442  * Initialize all the possible digest transforms that we can use.  Right now
443  * now, the supported digests are SHA1 and SHA256.  We do this here once
444  * because of the restrictiong that transforms may only be allocated in
445  * user context.  This forces us to pre-allocated all possible transforms
446  * at the endpoint init time.
447  */
448 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
449 {
450 	struct crypto_shash *tfm = NULL;
451 	__u16   id;
452 
453 	/* If AUTH extension is disabled, we are done */
454 	if (!ep->auth_enable) {
455 		ep->auth_hmacs = NULL;
456 		return 0;
457 	}
458 
459 	/* If the transforms are already allocated, we are done */
460 	if (ep->auth_hmacs)
461 		return 0;
462 
463 	/* Allocated the array of pointers to transorms */
464 	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
465 				 SCTP_AUTH_NUM_HMACS, gfp);
466 	if (!ep->auth_hmacs)
467 		return -ENOMEM;
468 
469 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
470 
471 		/* See is we support the id.  Supported IDs have name and
472 		 * length fields set, so that we can allocated and use
473 		 * them.  We can safely just check for name, for without the
474 		 * name, we can't allocate the TFM.
475 		 */
476 		if (!sctp_hmac_list[id].hmac_name)
477 			continue;
478 
479 		/* If this TFM has been allocated, we are all set */
480 		if (ep->auth_hmacs[id])
481 			continue;
482 
483 		/* Allocate the ID */
484 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
485 		if (IS_ERR(tfm))
486 			goto out_err;
487 
488 		ep->auth_hmacs[id] = tfm;
489 	}
490 
491 	return 0;
492 
493 out_err:
494 	/* Clean up any successful allocations */
495 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
496 	return -ENOMEM;
497 }
498 
499 /* Destroy the hmac tfm array */
500 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
501 {
502 	int i;
503 
504 	if (!auth_hmacs)
505 		return;
506 
507 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
508 		crypto_free_shash(auth_hmacs[i]);
509 	}
510 	kfree(auth_hmacs);
511 }
512 
513 
514 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
515 {
516 	return &sctp_hmac_list[hmac_id];
517 }
518 
519 /* Get an hmac description information that we can use to build
520  * the AUTH chunk
521  */
522 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
523 {
524 	struct sctp_hmac_algo_param *hmacs;
525 	__u16 n_elt;
526 	__u16 id = 0;
527 	int i;
528 
529 	/* If we have a default entry, use it */
530 	if (asoc->default_hmac_id)
531 		return &sctp_hmac_list[asoc->default_hmac_id];
532 
533 	/* Since we do not have a default entry, find the first entry
534 	 * we support and return that.  Do not cache that id.
535 	 */
536 	hmacs = asoc->peer.peer_hmacs;
537 	if (!hmacs)
538 		return NULL;
539 
540 	n_elt = (ntohs(hmacs->param_hdr.length) -
541 		 sizeof(struct sctp_paramhdr)) >> 1;
542 	for (i = 0; i < n_elt; i++) {
543 		id = ntohs(hmacs->hmac_ids[i]);
544 
545 		/* Check the id is in the supported range. And
546 		 * see if we support the id.  Supported IDs have name and
547 		 * length fields set, so that we can allocate and use
548 		 * them.  We can safely just check for name, for without the
549 		 * name, we can't allocate the TFM.
550 		 */
551 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
552 		    !sctp_hmac_list[id].hmac_name) {
553 			id = 0;
554 			continue;
555 		}
556 
557 		break;
558 	}
559 
560 	if (id == 0)
561 		return NULL;
562 
563 	return &sctp_hmac_list[id];
564 }
565 
566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
567 {
568 	int  found = 0;
569 	int  i;
570 
571 	for (i = 0; i < n_elts; i++) {
572 		if (hmac_id == hmacs[i]) {
573 			found = 1;
574 			break;
575 		}
576 	}
577 
578 	return found;
579 }
580 
581 /* See if the HMAC_ID is one that we claim as supported */
582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583 				    __be16 hmac_id)
584 {
585 	struct sctp_hmac_algo_param *hmacs;
586 	__u16 n_elt;
587 
588 	if (!asoc)
589 		return 0;
590 
591 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
592 	n_elt = (ntohs(hmacs->param_hdr.length) -
593 		 sizeof(struct sctp_paramhdr)) >> 1;
594 
595 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
596 }
597 
598 
599 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
600  * Section 6.1:
601  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
602  *   algorithm it supports.
603  */
604 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
605 				     struct sctp_hmac_algo_param *hmacs)
606 {
607 	struct sctp_endpoint *ep;
608 	__u16   id;
609 	int	i;
610 	int	n_params;
611 
612 	/* if the default id is already set, use it */
613 	if (asoc->default_hmac_id)
614 		return;
615 
616 	n_params = (ntohs(hmacs->param_hdr.length) -
617 		    sizeof(struct sctp_paramhdr)) >> 1;
618 	ep = asoc->ep;
619 	for (i = 0; i < n_params; i++) {
620 		id = ntohs(hmacs->hmac_ids[i]);
621 
622 		/* Check the id is in the supported range */
623 		if (id > SCTP_AUTH_HMAC_ID_MAX)
624 			continue;
625 
626 		/* If this TFM has been allocated, use this id */
627 		if (ep->auth_hmacs[id]) {
628 			asoc->default_hmac_id = id;
629 			break;
630 		}
631 	}
632 }
633 
634 
635 /* Check to see if the given chunk is supposed to be authenticated */
636 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
637 {
638 	unsigned short len;
639 	int found = 0;
640 	int i;
641 
642 	if (!param || param->param_hdr.length == 0)
643 		return 0;
644 
645 	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
646 
647 	/* SCTP-AUTH, Section 3.2
648 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
649 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
650 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
651 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
652 	 */
653 	for (i = 0; !found && i < len; i++) {
654 		switch (param->chunks[i]) {
655 		case SCTP_CID_INIT:
656 		case SCTP_CID_INIT_ACK:
657 		case SCTP_CID_SHUTDOWN_COMPLETE:
658 		case SCTP_CID_AUTH:
659 			break;
660 
661 		default:
662 			if (param->chunks[i] == chunk)
663 				found = 1;
664 			break;
665 		}
666 	}
667 
668 	return found;
669 }
670 
671 /* Check if peer requested that this chunk is authenticated */
672 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
673 {
674 	if (!asoc)
675 		return 0;
676 
677 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
678 		return 0;
679 
680 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
681 }
682 
683 /* Check if we requested that peer authenticate this chunk. */
684 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
685 {
686 	if (!asoc)
687 		return 0;
688 
689 	if (!asoc->ep->auth_enable)
690 		return 0;
691 
692 	return __sctp_auth_cid(chunk,
693 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
694 }
695 
696 /* SCTP-AUTH: Section 6.2:
697  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
698  *    the hash function H as described by the MAC Identifier and the shared
699  *    association key K based on the endpoint pair shared key described by
700  *    the shared key identifier.  The 'data' used for the computation of
701  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
702  *    zero (as shown in Figure 6) followed by all chunks that are placed
703  *    after the AUTH chunk in the SCTP packet.
704  */
705 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
706 			      struct sk_buff *skb,
707 			      struct sctp_auth_chunk *auth,
708 			      gfp_t gfp)
709 {
710 	struct crypto_shash *tfm;
711 	struct sctp_auth_bytes *asoc_key;
712 	__u16 key_id, hmac_id;
713 	__u8 *digest;
714 	unsigned char *end;
715 	int free_key = 0;
716 
717 	/* Extract the info we need:
718 	 * - hmac id
719 	 * - key id
720 	 */
721 	key_id = ntohs(auth->auth_hdr.shkey_id);
722 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
723 
724 	if (key_id == asoc->active_key_id)
725 		asoc_key = asoc->asoc_shared_key;
726 	else {
727 		struct sctp_shared_key *ep_key;
728 
729 		ep_key = sctp_auth_get_shkey(asoc, key_id);
730 		if (!ep_key)
731 			return;
732 
733 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
734 		if (!asoc_key)
735 			return;
736 
737 		free_key = 1;
738 	}
739 
740 	/* set up scatter list */
741 	end = skb_tail_pointer(skb);
742 
743 	tfm = asoc->ep->auth_hmacs[hmac_id];
744 
745 	digest = auth->auth_hdr.hmac;
746 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
747 		goto free;
748 
749 	{
750 		SHASH_DESC_ON_STACK(desc, tfm);
751 
752 		desc->tfm = tfm;
753 		desc->flags = 0;
754 		crypto_shash_digest(desc, (u8 *)auth,
755 				    end - (unsigned char *)auth, digest);
756 		shash_desc_zero(desc);
757 	}
758 
759 free:
760 	if (free_key)
761 		sctp_auth_key_put(asoc_key);
762 }
763 
764 /* API Helpers */
765 
766 /* Add a chunk to the endpoint authenticated chunk list */
767 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
768 {
769 	struct sctp_chunks_param *p = ep->auth_chunk_list;
770 	__u16 nchunks;
771 	__u16 param_len;
772 
773 	/* If this chunk is already specified, we are done */
774 	if (__sctp_auth_cid(chunk_id, p))
775 		return 0;
776 
777 	/* Check if we can add this chunk to the array */
778 	param_len = ntohs(p->param_hdr.length);
779 	nchunks = param_len - sizeof(struct sctp_paramhdr);
780 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
781 		return -EINVAL;
782 
783 	p->chunks[nchunks] = chunk_id;
784 	p->param_hdr.length = htons(param_len + 1);
785 	return 0;
786 }
787 
788 /* Add hmac identifires to the endpoint list of supported hmac ids */
789 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
790 			   struct sctp_hmacalgo *hmacs)
791 {
792 	int has_sha1 = 0;
793 	__u16 id;
794 	int i;
795 
796 	/* Scan the list looking for unsupported id.  Also make sure that
797 	 * SHA1 is specified.
798 	 */
799 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
800 		id = hmacs->shmac_idents[i];
801 
802 		if (id > SCTP_AUTH_HMAC_ID_MAX)
803 			return -EOPNOTSUPP;
804 
805 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
806 			has_sha1 = 1;
807 
808 		if (!sctp_hmac_list[id].hmac_name)
809 			return -EOPNOTSUPP;
810 	}
811 
812 	if (!has_sha1)
813 		return -EINVAL;
814 
815 	for (i = 0; i < hmacs->shmac_num_idents; i++)
816 		ep->auth_hmacs_list->hmac_ids[i] =
817 				htons(hmacs->shmac_idents[i]);
818 	ep->auth_hmacs_list->param_hdr.length =
819 			htons(sizeof(struct sctp_paramhdr) +
820 			hmacs->shmac_num_idents * sizeof(__u16));
821 	return 0;
822 }
823 
824 /* Set a new shared key on either endpoint or association.  If the
825  * the key with a same ID already exists, replace the key (remove the
826  * old key and add a new one).
827  */
828 int sctp_auth_set_key(struct sctp_endpoint *ep,
829 		      struct sctp_association *asoc,
830 		      struct sctp_authkey *auth_key)
831 {
832 	struct sctp_shared_key *cur_key = NULL;
833 	struct sctp_auth_bytes *key;
834 	struct list_head *sh_keys;
835 	int replace = 0;
836 
837 	/* Try to find the given key id to see if
838 	 * we are doing a replace, or adding a new key
839 	 */
840 	if (asoc)
841 		sh_keys = &asoc->endpoint_shared_keys;
842 	else
843 		sh_keys = &ep->endpoint_shared_keys;
844 
845 	key_for_each(cur_key, sh_keys) {
846 		if (cur_key->key_id == auth_key->sca_keynumber) {
847 			replace = 1;
848 			break;
849 		}
850 	}
851 
852 	/* If we are not replacing a key id, we need to allocate
853 	 * a shared key.
854 	 */
855 	if (!replace) {
856 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
857 						 GFP_KERNEL);
858 		if (!cur_key)
859 			return -ENOMEM;
860 	}
861 
862 	/* Create a new key data based on the info passed in */
863 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
864 	if (!key)
865 		goto nomem;
866 
867 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
868 
869 	/* If we are replacing, remove the old keys data from the
870 	 * key id.  If we are adding new key id, add it to the
871 	 * list.
872 	 */
873 	if (replace)
874 		sctp_auth_key_put(cur_key->key);
875 	else
876 		list_add(&cur_key->key_list, sh_keys);
877 
878 	cur_key->key = key;
879 	return 0;
880 nomem:
881 	if (!replace)
882 		sctp_auth_shkey_free(cur_key);
883 
884 	return -ENOMEM;
885 }
886 
887 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
888 			     struct sctp_association *asoc,
889 			     __u16  key_id)
890 {
891 	struct sctp_shared_key *key;
892 	struct list_head *sh_keys;
893 	int found = 0;
894 
895 	/* The key identifier MUST correst to an existing key */
896 	if (asoc)
897 		sh_keys = &asoc->endpoint_shared_keys;
898 	else
899 		sh_keys = &ep->endpoint_shared_keys;
900 
901 	key_for_each(key, sh_keys) {
902 		if (key->key_id == key_id) {
903 			found = 1;
904 			break;
905 		}
906 	}
907 
908 	if (!found)
909 		return -EINVAL;
910 
911 	if (asoc) {
912 		asoc->active_key_id = key_id;
913 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
914 	} else
915 		ep->active_key_id = key_id;
916 
917 	return 0;
918 }
919 
920 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
921 			 struct sctp_association *asoc,
922 			 __u16  key_id)
923 {
924 	struct sctp_shared_key *key;
925 	struct list_head *sh_keys;
926 	int found = 0;
927 
928 	/* The key identifier MUST NOT be the current active key
929 	 * The key identifier MUST correst to an existing key
930 	 */
931 	if (asoc) {
932 		if (asoc->active_key_id == key_id)
933 			return -EINVAL;
934 
935 		sh_keys = &asoc->endpoint_shared_keys;
936 	} else {
937 		if (ep->active_key_id == key_id)
938 			return -EINVAL;
939 
940 		sh_keys = &ep->endpoint_shared_keys;
941 	}
942 
943 	key_for_each(key, sh_keys) {
944 		if (key->key_id == key_id) {
945 			found = 1;
946 			break;
947 		}
948 	}
949 
950 	if (!found)
951 		return -EINVAL;
952 
953 	/* Delete the shared key */
954 	list_del_init(&key->key_list);
955 	sctp_auth_shkey_free(key);
956 
957 	return 0;
958 }
959