xref: /linux/net/sctp/auth.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4  *
5  * This file is part of the SCTP kernel implementation
6  *
7  * Please send any bug reports or fixes you make to the
8  * email address(es):
9  *    lksctp developers <linux-sctp@vger.kernel.org>
10  *
11  * Written or modified by:
12  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
13  */
14 
15 #include <crypto/hash.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <net/sctp/sctp.h>
20 #include <net/sctp/auth.h>
21 
22 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
23 	{
24 		/* id 0 is reserved.  as all 0 */
25 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
26 	},
27 	{
28 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
29 		.hmac_name = "hmac(sha1)",
30 		.hmac_len = SCTP_SHA1_SIG_SIZE,
31 	},
32 	{
33 		/* id 2 is reserved as well */
34 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
35 	},
36 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
37 	{
38 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
39 		.hmac_name = "hmac(sha256)",
40 		.hmac_len = SCTP_SHA256_SIG_SIZE,
41 	}
42 #endif
43 };
44 
45 
46 void sctp_auth_key_put(struct sctp_auth_bytes *key)
47 {
48 	if (!key)
49 		return;
50 
51 	if (refcount_dec_and_test(&key->refcnt)) {
52 		kfree_sensitive(key);
53 		SCTP_DBG_OBJCNT_DEC(keys);
54 	}
55 }
56 
57 /* Create a new key structure of a given length */
58 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
59 {
60 	struct sctp_auth_bytes *key;
61 
62 	/* Verify that we are not going to overflow INT_MAX */
63 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
64 		return NULL;
65 
66 	/* Allocate the shared key */
67 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
68 	if (!key)
69 		return NULL;
70 
71 	key->len = key_len;
72 	refcount_set(&key->refcnt, 1);
73 	SCTP_DBG_OBJCNT_INC(keys);
74 
75 	return key;
76 }
77 
78 /* Create a new shared key container with a give key id */
79 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
80 {
81 	struct sctp_shared_key *new;
82 
83 	/* Allocate the shared key container */
84 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
85 	if (!new)
86 		return NULL;
87 
88 	INIT_LIST_HEAD(&new->key_list);
89 	refcount_set(&new->refcnt, 1);
90 	new->key_id = key_id;
91 
92 	return new;
93 }
94 
95 /* Free the shared key structure */
96 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
97 {
98 	BUG_ON(!list_empty(&sh_key->key_list));
99 	sctp_auth_key_put(sh_key->key);
100 	sh_key->key = NULL;
101 	kfree(sh_key);
102 }
103 
104 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
105 {
106 	if (refcount_dec_and_test(&sh_key->refcnt))
107 		sctp_auth_shkey_destroy(sh_key);
108 }
109 
110 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
111 {
112 	refcount_inc(&sh_key->refcnt);
113 }
114 
115 /* Destroy the entire key list.  This is done during the
116  * associon and endpoint free process.
117  */
118 void sctp_auth_destroy_keys(struct list_head *keys)
119 {
120 	struct sctp_shared_key *ep_key;
121 	struct sctp_shared_key *tmp;
122 
123 	if (list_empty(keys))
124 		return;
125 
126 	key_for_each_safe(ep_key, tmp, keys) {
127 		list_del_init(&ep_key->key_list);
128 		sctp_auth_shkey_release(ep_key);
129 	}
130 }
131 
132 /* Compare two byte vectors as numbers.  Return values
133  * are:
134  * 	  0 - vectors are equal
135  * 	< 0 - vector 1 is smaller than vector2
136  * 	> 0 - vector 1 is greater than vector2
137  *
138  * Algorithm is:
139  * 	This is performed by selecting the numerically smaller key vector...
140  *	If the key vectors are equal as numbers but differ in length ...
141  *	the shorter vector is considered smaller
142  *
143  * Examples (with small values):
144  * 	000123456789 > 123456789 (first number is longer)
145  * 	000123456789 < 234567891 (second number is larger numerically)
146  * 	123456789 > 2345678 	 (first number is both larger & longer)
147  */
148 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
149 			      struct sctp_auth_bytes *vector2)
150 {
151 	int diff;
152 	int i;
153 	const __u8 *longer;
154 
155 	diff = vector1->len - vector2->len;
156 	if (diff) {
157 		longer = (diff > 0) ? vector1->data : vector2->data;
158 
159 		/* Check to see if the longer number is
160 		 * lead-zero padded.  If it is not, it
161 		 * is automatically larger numerically.
162 		 */
163 		for (i = 0; i < abs(diff); i++) {
164 			if (longer[i] != 0)
165 				return diff;
166 		}
167 	}
168 
169 	/* lengths are the same, compare numbers */
170 	return memcmp(vector1->data, vector2->data, vector1->len);
171 }
172 
173 /*
174  * Create a key vector as described in SCTP-AUTH, Section 6.1
175  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
176  *    parameter sent by each endpoint are concatenated as byte vectors.
177  *    These parameters include the parameter type, parameter length, and
178  *    the parameter value, but padding is omitted; all padding MUST be
179  *    removed from this concatenation before proceeding with further
180  *    computation of keys.  Parameters which were not sent are simply
181  *    omitted from the concatenation process.  The resulting two vectors
182  *    are called the two key vectors.
183  */
184 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
185 			struct sctp_random_param *random,
186 			struct sctp_chunks_param *chunks,
187 			struct sctp_hmac_algo_param *hmacs,
188 			gfp_t gfp)
189 {
190 	struct sctp_auth_bytes *new;
191 	__u32	len;
192 	__u32	offset = 0;
193 	__u16	random_len, hmacs_len, chunks_len = 0;
194 
195 	random_len = ntohs(random->param_hdr.length);
196 	hmacs_len = ntohs(hmacs->param_hdr.length);
197 	if (chunks)
198 		chunks_len = ntohs(chunks->param_hdr.length);
199 
200 	len = random_len + hmacs_len + chunks_len;
201 
202 	new = sctp_auth_create_key(len, gfp);
203 	if (!new)
204 		return NULL;
205 
206 	memcpy(new->data, random, random_len);
207 	offset += random_len;
208 
209 	if (chunks) {
210 		memcpy(new->data + offset, chunks, chunks_len);
211 		offset += chunks_len;
212 	}
213 
214 	memcpy(new->data + offset, hmacs, hmacs_len);
215 
216 	return new;
217 }
218 
219 
220 /* Make a key vector based on our local parameters */
221 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
222 				    const struct sctp_association *asoc,
223 				    gfp_t gfp)
224 {
225 	return sctp_auth_make_key_vector(
226 			(struct sctp_random_param *)asoc->c.auth_random,
227 			(struct sctp_chunks_param *)asoc->c.auth_chunks,
228 			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
229 }
230 
231 /* Make a key vector based on peer's parameters */
232 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
233 				    const struct sctp_association *asoc,
234 				    gfp_t gfp)
235 {
236 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
237 					 asoc->peer.peer_chunks,
238 					 asoc->peer.peer_hmacs,
239 					 gfp);
240 }
241 
242 
243 /* Set the value of the association shared key base on the parameters
244  * given.  The algorithm is:
245  *    From the endpoint pair shared keys and the key vectors the
246  *    association shared keys are computed.  This is performed by selecting
247  *    the numerically smaller key vector and concatenating it to the
248  *    endpoint pair shared key, and then concatenating the numerically
249  *    larger key vector to that.  The result of the concatenation is the
250  *    association shared key.
251  */
252 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
253 			struct sctp_shared_key *ep_key,
254 			struct sctp_auth_bytes *first_vector,
255 			struct sctp_auth_bytes *last_vector,
256 			gfp_t gfp)
257 {
258 	struct sctp_auth_bytes *secret;
259 	__u32 offset = 0;
260 	__u32 auth_len;
261 
262 	auth_len = first_vector->len + last_vector->len;
263 	if (ep_key->key)
264 		auth_len += ep_key->key->len;
265 
266 	secret = sctp_auth_create_key(auth_len, gfp);
267 	if (!secret)
268 		return NULL;
269 
270 	if (ep_key->key) {
271 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
272 		offset += ep_key->key->len;
273 	}
274 
275 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
276 	offset += first_vector->len;
277 
278 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
279 
280 	return secret;
281 }
282 
283 /* Create an association shared key.  Follow the algorithm
284  * described in SCTP-AUTH, Section 6.1
285  */
286 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
287 				 const struct sctp_association *asoc,
288 				 struct sctp_shared_key *ep_key,
289 				 gfp_t gfp)
290 {
291 	struct sctp_auth_bytes *local_key_vector;
292 	struct sctp_auth_bytes *peer_key_vector;
293 	struct sctp_auth_bytes	*first_vector,
294 				*last_vector;
295 	struct sctp_auth_bytes	*secret = NULL;
296 	int	cmp;
297 
298 
299 	/* Now we need to build the key vectors
300 	 * SCTP-AUTH , Section 6.1
301 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
302 	 *    parameter sent by each endpoint are concatenated as byte vectors.
303 	 *    These parameters include the parameter type, parameter length, and
304 	 *    the parameter value, but padding is omitted; all padding MUST be
305 	 *    removed from this concatenation before proceeding with further
306 	 *    computation of keys.  Parameters which were not sent are simply
307 	 *    omitted from the concatenation process.  The resulting two vectors
308 	 *    are called the two key vectors.
309 	 */
310 
311 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
312 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
313 
314 	if (!peer_key_vector || !local_key_vector)
315 		goto out;
316 
317 	/* Figure out the order in which the key_vectors will be
318 	 * added to the endpoint shared key.
319 	 * SCTP-AUTH, Section 6.1:
320 	 *   This is performed by selecting the numerically smaller key
321 	 *   vector and concatenating it to the endpoint pair shared
322 	 *   key, and then concatenating the numerically larger key
323 	 *   vector to that.  If the key vectors are equal as numbers
324 	 *   but differ in length, then the concatenation order is the
325 	 *   endpoint shared key, followed by the shorter key vector,
326 	 *   followed by the longer key vector.  Otherwise, the key
327 	 *   vectors are identical, and may be concatenated to the
328 	 *   endpoint pair key in any order.
329 	 */
330 	cmp = sctp_auth_compare_vectors(local_key_vector,
331 					peer_key_vector);
332 	if (cmp < 0) {
333 		first_vector = local_key_vector;
334 		last_vector = peer_key_vector;
335 	} else {
336 		first_vector = peer_key_vector;
337 		last_vector = local_key_vector;
338 	}
339 
340 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
341 					    gfp);
342 out:
343 	sctp_auth_key_put(local_key_vector);
344 	sctp_auth_key_put(peer_key_vector);
345 
346 	return secret;
347 }
348 
349 /*
350  * Populate the association overlay list with the list
351  * from the endpoint.
352  */
353 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
354 				struct sctp_association *asoc,
355 				gfp_t gfp)
356 {
357 	struct sctp_shared_key *sh_key;
358 	struct sctp_shared_key *new;
359 
360 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
361 
362 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
363 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
364 		if (!new)
365 			goto nomem;
366 
367 		new->key = sh_key->key;
368 		sctp_auth_key_hold(new->key);
369 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
370 	}
371 
372 	return 0;
373 
374 nomem:
375 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
376 	return -ENOMEM;
377 }
378 
379 
380 /* Public interface to create the association shared key.
381  * See code above for the algorithm.
382  */
383 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
384 {
385 	struct sctp_auth_bytes	*secret;
386 	struct sctp_shared_key *ep_key;
387 	struct sctp_chunk *chunk;
388 
389 	/* If we don't support AUTH, or peer is not capable
390 	 * we don't need to do anything.
391 	 */
392 	if (!asoc->peer.auth_capable)
393 		return 0;
394 
395 	/* If the key_id is non-zero and we couldn't find an
396 	 * endpoint pair shared key, we can't compute the
397 	 * secret.
398 	 * For key_id 0, endpoint pair shared key is a NULL key.
399 	 */
400 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
401 	BUG_ON(!ep_key);
402 
403 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
404 	if (!secret)
405 		return -ENOMEM;
406 
407 	sctp_auth_key_put(asoc->asoc_shared_key);
408 	asoc->asoc_shared_key = secret;
409 	asoc->shkey = ep_key;
410 
411 	/* Update send queue in case any chunk already in there now
412 	 * needs authenticating
413 	 */
414 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
415 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
416 			chunk->auth = 1;
417 			if (!chunk->shkey) {
418 				chunk->shkey = asoc->shkey;
419 				sctp_auth_shkey_hold(chunk->shkey);
420 			}
421 		}
422 	}
423 
424 	return 0;
425 }
426 
427 
428 /* Find the endpoint pair shared key based on the key_id */
429 struct sctp_shared_key *sctp_auth_get_shkey(
430 				const struct sctp_association *asoc,
431 				__u16 key_id)
432 {
433 	struct sctp_shared_key *key;
434 
435 	/* First search associations set of endpoint pair shared keys */
436 	key_for_each(key, &asoc->endpoint_shared_keys) {
437 		if (key->key_id == key_id) {
438 			if (!key->deactivated)
439 				return key;
440 			break;
441 		}
442 	}
443 
444 	return NULL;
445 }
446 
447 /*
448  * Initialize all the possible digest transforms that we can use.  Right now
449  * now, the supported digests are SHA1 and SHA256.  We do this here once
450  * because of the restrictiong that transforms may only be allocated in
451  * user context.  This forces us to pre-allocated all possible transforms
452  * at the endpoint init time.
453  */
454 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
455 {
456 	struct crypto_shash *tfm = NULL;
457 	__u16   id;
458 
459 	/* If the transforms are already allocated, we are done */
460 	if (ep->auth_hmacs)
461 		return 0;
462 
463 	/* Allocated the array of pointers to transorms */
464 	ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
465 				 sizeof(struct crypto_shash *),
466 				 gfp);
467 	if (!ep->auth_hmacs)
468 		return -ENOMEM;
469 
470 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471 
472 		/* See is we support the id.  Supported IDs have name and
473 		 * length fields set, so that we can allocated and use
474 		 * them.  We can safely just check for name, for without the
475 		 * name, we can't allocate the TFM.
476 		 */
477 		if (!sctp_hmac_list[id].hmac_name)
478 			continue;
479 
480 		/* If this TFM has been allocated, we are all set */
481 		if (ep->auth_hmacs[id])
482 			continue;
483 
484 		/* Allocate the ID */
485 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486 		if (IS_ERR(tfm))
487 			goto out_err;
488 
489 		ep->auth_hmacs[id] = tfm;
490 	}
491 
492 	return 0;
493 
494 out_err:
495 	/* Clean up any successful allocations */
496 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
497 	return -ENOMEM;
498 }
499 
500 /* Destroy the hmac tfm array */
501 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502 {
503 	int i;
504 
505 	if (!auth_hmacs)
506 		return;
507 
508 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
509 		crypto_free_shash(auth_hmacs[i]);
510 	}
511 	kfree(auth_hmacs);
512 }
513 
514 
515 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516 {
517 	return &sctp_hmac_list[hmac_id];
518 }
519 
520 /* Get an hmac description information that we can use to build
521  * the AUTH chunk
522  */
523 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524 {
525 	struct sctp_hmac_algo_param *hmacs;
526 	__u16 n_elt;
527 	__u16 id = 0;
528 	int i;
529 
530 	/* If we have a default entry, use it */
531 	if (asoc->default_hmac_id)
532 		return &sctp_hmac_list[asoc->default_hmac_id];
533 
534 	/* Since we do not have a default entry, find the first entry
535 	 * we support and return that.  Do not cache that id.
536 	 */
537 	hmacs = asoc->peer.peer_hmacs;
538 	if (!hmacs)
539 		return NULL;
540 
541 	n_elt = (ntohs(hmacs->param_hdr.length) -
542 		 sizeof(struct sctp_paramhdr)) >> 1;
543 	for (i = 0; i < n_elt; i++) {
544 		id = ntohs(hmacs->hmac_ids[i]);
545 
546 		/* Check the id is in the supported range. And
547 		 * see if we support the id.  Supported IDs have name and
548 		 * length fields set, so that we can allocate and use
549 		 * them.  We can safely just check for name, for without the
550 		 * name, we can't allocate the TFM.
551 		 */
552 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
553 		    !sctp_hmac_list[id].hmac_name) {
554 			id = 0;
555 			continue;
556 		}
557 
558 		break;
559 	}
560 
561 	if (id == 0)
562 		return NULL;
563 
564 	return &sctp_hmac_list[id];
565 }
566 
567 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
568 {
569 	int  found = 0;
570 	int  i;
571 
572 	for (i = 0; i < n_elts; i++) {
573 		if (hmac_id == hmacs[i]) {
574 			found = 1;
575 			break;
576 		}
577 	}
578 
579 	return found;
580 }
581 
582 /* See if the HMAC_ID is one that we claim as supported */
583 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
584 				    __be16 hmac_id)
585 {
586 	struct sctp_hmac_algo_param *hmacs;
587 	__u16 n_elt;
588 
589 	if (!asoc)
590 		return 0;
591 
592 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
593 	n_elt = (ntohs(hmacs->param_hdr.length) -
594 		 sizeof(struct sctp_paramhdr)) >> 1;
595 
596 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
597 }
598 
599 
600 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
601  * Section 6.1:
602  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
603  *   algorithm it supports.
604  */
605 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
606 				     struct sctp_hmac_algo_param *hmacs)
607 {
608 	struct sctp_endpoint *ep;
609 	__u16   id;
610 	int	i;
611 	int	n_params;
612 
613 	/* if the default id is already set, use it */
614 	if (asoc->default_hmac_id)
615 		return;
616 
617 	n_params = (ntohs(hmacs->param_hdr.length) -
618 		    sizeof(struct sctp_paramhdr)) >> 1;
619 	ep = asoc->ep;
620 	for (i = 0; i < n_params; i++) {
621 		id = ntohs(hmacs->hmac_ids[i]);
622 
623 		/* Check the id is in the supported range */
624 		if (id > SCTP_AUTH_HMAC_ID_MAX)
625 			continue;
626 
627 		/* If this TFM has been allocated, use this id */
628 		if (ep->auth_hmacs[id]) {
629 			asoc->default_hmac_id = id;
630 			break;
631 		}
632 	}
633 }
634 
635 
636 /* Check to see if the given chunk is supposed to be authenticated */
637 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
638 {
639 	unsigned short len;
640 	int found = 0;
641 	int i;
642 
643 	if (!param || param->param_hdr.length == 0)
644 		return 0;
645 
646 	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
647 
648 	/* SCTP-AUTH, Section 3.2
649 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
650 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
651 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
652 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
653 	 */
654 	for (i = 0; !found && i < len; i++) {
655 		switch (param->chunks[i]) {
656 		case SCTP_CID_INIT:
657 		case SCTP_CID_INIT_ACK:
658 		case SCTP_CID_SHUTDOWN_COMPLETE:
659 		case SCTP_CID_AUTH:
660 			break;
661 
662 		default:
663 			if (param->chunks[i] == chunk)
664 				found = 1;
665 			break;
666 		}
667 	}
668 
669 	return found;
670 }
671 
672 /* Check if peer requested that this chunk is authenticated */
673 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
674 {
675 	if (!asoc)
676 		return 0;
677 
678 	if (!asoc->peer.auth_capable)
679 		return 0;
680 
681 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
682 }
683 
684 /* Check if we requested that peer authenticate this chunk. */
685 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
686 {
687 	if (!asoc)
688 		return 0;
689 
690 	if (!asoc->peer.auth_capable)
691 		return 0;
692 
693 	return __sctp_auth_cid(chunk,
694 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
695 }
696 
697 /* SCTP-AUTH: Section 6.2:
698  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
699  *    the hash function H as described by the MAC Identifier and the shared
700  *    association key K based on the endpoint pair shared key described by
701  *    the shared key identifier.  The 'data' used for the computation of
702  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
703  *    zero (as shown in Figure 6) followed by all chunks that are placed
704  *    after the AUTH chunk in the SCTP packet.
705  */
706 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
707 			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
708 			      struct sctp_shared_key *ep_key, gfp_t gfp)
709 {
710 	struct sctp_auth_bytes *asoc_key;
711 	struct crypto_shash *tfm;
712 	__u16 key_id, hmac_id;
713 	unsigned char *end;
714 	int free_key = 0;
715 	__u8 *digest;
716 
717 	/* Extract the info we need:
718 	 * - hmac id
719 	 * - key id
720 	 */
721 	key_id = ntohs(auth->auth_hdr.shkey_id);
722 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
723 
724 	if (key_id == asoc->active_key_id)
725 		asoc_key = asoc->asoc_shared_key;
726 	else {
727 		/* ep_key can't be NULL here */
728 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
729 		if (!asoc_key)
730 			return;
731 
732 		free_key = 1;
733 	}
734 
735 	/* set up scatter list */
736 	end = skb_tail_pointer(skb);
737 
738 	tfm = asoc->ep->auth_hmacs[hmac_id];
739 
740 	digest = auth->auth_hdr.hmac;
741 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
742 		goto free;
743 
744 	crypto_shash_tfm_digest(tfm, (u8 *)auth, end - (unsigned char *)auth,
745 				digest);
746 
747 free:
748 	if (free_key)
749 		sctp_auth_key_put(asoc_key);
750 }
751 
752 /* API Helpers */
753 
754 /* Add a chunk to the endpoint authenticated chunk list */
755 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
756 {
757 	struct sctp_chunks_param *p = ep->auth_chunk_list;
758 	__u16 nchunks;
759 	__u16 param_len;
760 
761 	/* If this chunk is already specified, we are done */
762 	if (__sctp_auth_cid(chunk_id, p))
763 		return 0;
764 
765 	/* Check if we can add this chunk to the array */
766 	param_len = ntohs(p->param_hdr.length);
767 	nchunks = param_len - sizeof(struct sctp_paramhdr);
768 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
769 		return -EINVAL;
770 
771 	p->chunks[nchunks] = chunk_id;
772 	p->param_hdr.length = htons(param_len + 1);
773 	return 0;
774 }
775 
776 /* Add hmac identifires to the endpoint list of supported hmac ids */
777 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
778 			   struct sctp_hmacalgo *hmacs)
779 {
780 	int has_sha1 = 0;
781 	__u16 id;
782 	int i;
783 
784 	/* Scan the list looking for unsupported id.  Also make sure that
785 	 * SHA1 is specified.
786 	 */
787 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
788 		id = hmacs->shmac_idents[i];
789 
790 		if (id > SCTP_AUTH_HMAC_ID_MAX)
791 			return -EOPNOTSUPP;
792 
793 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
794 			has_sha1 = 1;
795 
796 		if (!sctp_hmac_list[id].hmac_name)
797 			return -EOPNOTSUPP;
798 	}
799 
800 	if (!has_sha1)
801 		return -EINVAL;
802 
803 	for (i = 0; i < hmacs->shmac_num_idents; i++)
804 		ep->auth_hmacs_list->hmac_ids[i] =
805 				htons(hmacs->shmac_idents[i]);
806 	ep->auth_hmacs_list->param_hdr.length =
807 			htons(sizeof(struct sctp_paramhdr) +
808 			hmacs->shmac_num_idents * sizeof(__u16));
809 	return 0;
810 }
811 
812 /* Set a new shared key on either endpoint or association.  If the
813  * the key with a same ID already exists, replace the key (remove the
814  * old key and add a new one).
815  */
816 int sctp_auth_set_key(struct sctp_endpoint *ep,
817 		      struct sctp_association *asoc,
818 		      struct sctp_authkey *auth_key)
819 {
820 	struct sctp_shared_key *cur_key, *shkey;
821 	struct sctp_auth_bytes *key;
822 	struct list_head *sh_keys;
823 	int replace = 0;
824 
825 	/* Try to find the given key id to see if
826 	 * we are doing a replace, or adding a new key
827 	 */
828 	if (asoc) {
829 		if (!asoc->peer.auth_capable)
830 			return -EACCES;
831 		sh_keys = &asoc->endpoint_shared_keys;
832 	} else {
833 		if (!ep->auth_enable)
834 			return -EACCES;
835 		sh_keys = &ep->endpoint_shared_keys;
836 	}
837 
838 	key_for_each(shkey, sh_keys) {
839 		if (shkey->key_id == auth_key->sca_keynumber) {
840 			replace = 1;
841 			break;
842 		}
843 	}
844 
845 	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
846 	if (!cur_key)
847 		return -ENOMEM;
848 
849 	/* Create a new key data based on the info passed in */
850 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
851 	if (!key) {
852 		kfree(cur_key);
853 		return -ENOMEM;
854 	}
855 
856 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
857 	cur_key->key = key;
858 
859 	if (replace) {
860 		list_del_init(&shkey->key_list);
861 		sctp_auth_shkey_release(shkey);
862 	}
863 	list_add(&cur_key->key_list, sh_keys);
864 
865 	return 0;
866 }
867 
868 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
869 			     struct sctp_association *asoc,
870 			     __u16  key_id)
871 {
872 	struct sctp_shared_key *key;
873 	struct list_head *sh_keys;
874 	int found = 0;
875 
876 	/* The key identifier MUST correst to an existing key */
877 	if (asoc) {
878 		if (!asoc->peer.auth_capable)
879 			return -EACCES;
880 		sh_keys = &asoc->endpoint_shared_keys;
881 	} else {
882 		if (!ep->auth_enable)
883 			return -EACCES;
884 		sh_keys = &ep->endpoint_shared_keys;
885 	}
886 
887 	key_for_each(key, sh_keys) {
888 		if (key->key_id == key_id) {
889 			found = 1;
890 			break;
891 		}
892 	}
893 
894 	if (!found || key->deactivated)
895 		return -EINVAL;
896 
897 	if (asoc) {
898 		asoc->active_key_id = key_id;
899 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
900 	} else
901 		ep->active_key_id = key_id;
902 
903 	return 0;
904 }
905 
906 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
907 			 struct sctp_association *asoc,
908 			 __u16  key_id)
909 {
910 	struct sctp_shared_key *key;
911 	struct list_head *sh_keys;
912 	int found = 0;
913 
914 	/* The key identifier MUST NOT be the current active key
915 	 * The key identifier MUST correst to an existing key
916 	 */
917 	if (asoc) {
918 		if (!asoc->peer.auth_capable)
919 			return -EACCES;
920 		if (asoc->active_key_id == key_id)
921 			return -EINVAL;
922 
923 		sh_keys = &asoc->endpoint_shared_keys;
924 	} else {
925 		if (!ep->auth_enable)
926 			return -EACCES;
927 		if (ep->active_key_id == key_id)
928 			return -EINVAL;
929 
930 		sh_keys = &ep->endpoint_shared_keys;
931 	}
932 
933 	key_for_each(key, sh_keys) {
934 		if (key->key_id == key_id) {
935 			found = 1;
936 			break;
937 		}
938 	}
939 
940 	if (!found)
941 		return -EINVAL;
942 
943 	/* Delete the shared key */
944 	list_del_init(&key->key_list);
945 	sctp_auth_shkey_release(key);
946 
947 	return 0;
948 }
949 
950 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
951 			   struct sctp_association *asoc, __u16  key_id)
952 {
953 	struct sctp_shared_key *key;
954 	struct list_head *sh_keys;
955 	int found = 0;
956 
957 	/* The key identifier MUST NOT be the current active key
958 	 * The key identifier MUST correst to an existing key
959 	 */
960 	if (asoc) {
961 		if (!asoc->peer.auth_capable)
962 			return -EACCES;
963 		if (asoc->active_key_id == key_id)
964 			return -EINVAL;
965 
966 		sh_keys = &asoc->endpoint_shared_keys;
967 	} else {
968 		if (!ep->auth_enable)
969 			return -EACCES;
970 		if (ep->active_key_id == key_id)
971 			return -EINVAL;
972 
973 		sh_keys = &ep->endpoint_shared_keys;
974 	}
975 
976 	key_for_each(key, sh_keys) {
977 		if (key->key_id == key_id) {
978 			found = 1;
979 			break;
980 		}
981 	}
982 
983 	if (!found)
984 		return -EINVAL;
985 
986 	/* refcnt == 1 and !list_empty mean it's not being used anywhere
987 	 * and deactivated will be set, so it's time to notify userland
988 	 * that this shkey can be freed.
989 	 */
990 	if (asoc && !list_empty(&key->key_list) &&
991 	    refcount_read(&key->refcnt) == 1) {
992 		struct sctp_ulpevent *ev;
993 
994 		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
995 						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
996 		if (ev)
997 			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
998 	}
999 
1000 	key->deactivated = 1;
1001 
1002 	return 0;
1003 }
1004 
1005 int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp)
1006 {
1007 	int err = -ENOMEM;
1008 
1009 	/* Allocate space for HMACS and CHUNKS authentication
1010 	 * variables.  There are arrays that we encode directly
1011 	 * into parameters to make the rest of the operations easier.
1012 	 */
1013 	if (!ep->auth_hmacs_list) {
1014 		struct sctp_hmac_algo_param *auth_hmacs;
1015 
1016 		auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids,
1017 						 SCTP_AUTH_NUM_HMACS), gfp);
1018 		if (!auth_hmacs)
1019 			goto nomem;
1020 		/* Initialize the HMACS parameter.
1021 		 * SCTP-AUTH: Section 3.3
1022 		 *    Every endpoint supporting SCTP chunk authentication MUST
1023 		 *    support the HMAC based on the SHA-1 algorithm.
1024 		 */
1025 		auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
1026 		auth_hmacs->param_hdr.length =
1027 				htons(sizeof(struct sctp_paramhdr) + 2);
1028 		auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
1029 		ep->auth_hmacs_list = auth_hmacs;
1030 	}
1031 
1032 	if (!ep->auth_chunk_list) {
1033 		struct sctp_chunks_param *auth_chunks;
1034 
1035 		auth_chunks = kzalloc(sizeof(*auth_chunks) +
1036 				      SCTP_NUM_CHUNK_TYPES, gfp);
1037 		if (!auth_chunks)
1038 			goto nomem;
1039 		/* Initialize the CHUNKS parameter */
1040 		auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
1041 		auth_chunks->param_hdr.length =
1042 				htons(sizeof(struct sctp_paramhdr));
1043 		ep->auth_chunk_list = auth_chunks;
1044 	}
1045 
1046 	/* Allocate and initialize transorms arrays for supported
1047 	 * HMACs.
1048 	 */
1049 	err = sctp_auth_init_hmacs(ep, gfp);
1050 	if (err)
1051 		goto nomem;
1052 
1053 	return 0;
1054 
1055 nomem:
1056 	/* Free all allocations */
1057 	kfree(ep->auth_hmacs_list);
1058 	kfree(ep->auth_chunk_list);
1059 	ep->auth_hmacs_list = NULL;
1060 	ep->auth_chunk_list = NULL;
1061 	return err;
1062 }
1063 
1064 void sctp_auth_free(struct sctp_endpoint *ep)
1065 {
1066 	kfree(ep->auth_hmacs_list);
1067 	kfree(ep->auth_chunk_list);
1068 	ep->auth_hmacs_list = NULL;
1069 	ep->auth_chunk_list = NULL;
1070 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
1071 	ep->auth_hmacs = NULL;
1072 }
1073