xref: /linux/net/sctp/associola.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* 1st Level Abstractions. */
70 
71 /* Initialize a new association from provided memory. */
72 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
73 					  const struct sctp_endpoint *ep,
74 					  const struct sock *sk,
75 					  sctp_scope_t scope,
76 					  gfp_t gfp)
77 {
78 	struct net *net = sock_net(sk);
79 	struct sctp_sock *sp;
80 	int i;
81 	sctp_paramhdr_t *p;
82 	int err;
83 
84 	/* Retrieve the SCTP per socket area.  */
85 	sp = sctp_sk((struct sock *)sk);
86 
87 	/* Discarding const is appropriate here.  */
88 	asoc->ep = (struct sctp_endpoint *)ep;
89 	asoc->base.sk = (struct sock *)sk;
90 
91 	sctp_endpoint_hold(asoc->ep);
92 	sock_hold(asoc->base.sk);
93 
94 	/* Initialize the common base substructure.  */
95 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
96 
97 	/* Initialize the object handling fields.  */
98 	atomic_set(&asoc->base.refcnt, 1);
99 	asoc->base.dead = false;
100 
101 	/* Initialize the bind addr area.  */
102 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103 
104 	asoc->state = SCTP_STATE_CLOSED;
105 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
106 	asoc->frag_point = 0;
107 	asoc->user_frag = sp->user_frag;
108 
109 	/* Set the association max_retrans and RTO values from the
110 	 * socket values.
111 	 */
112 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
113 	asoc->pf_retrans  = net->sctp.pf_retrans;
114 
115 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
116 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
117 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
118 
119 	asoc->overall_error_count = 0;
120 
121 	/* Initialize the association's heartbeat interval based on the
122 	 * sock configured value.
123 	 */
124 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
125 
126 	/* Initialize path max retrans value. */
127 	asoc->pathmaxrxt = sp->pathmaxrxt;
128 
129 	/* Initialize default path MTU. */
130 	asoc->pathmtu = sp->pathmtu;
131 
132 	/* Set association default SACK delay */
133 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
134 	asoc->sackfreq = sp->sackfreq;
135 
136 	/* Set the association default flags controlling
137 	 * Heartbeat, SACK delay, and Path MTU Discovery.
138 	 */
139 	asoc->param_flags = sp->param_flags;
140 
141 	/* Initialize the maximum mumber of new data packets that can be sent
142 	 * in a burst.
143 	 */
144 	asoc->max_burst = sp->max_burst;
145 
146 	/* initialize association timers */
147 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
148 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
149 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
150 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
151 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
152 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
153 
154 	/* sctpimpguide Section 2.12.2
155 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
156 	 * recommended value of 5 times 'RTO.Max'.
157 	 */
158 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
159 		= 5 * asoc->rto_max;
160 
161 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
162 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
164 		min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
165 
166 	/* Initializes the timers */
167 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
168 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
169 				(unsigned long)asoc);
170 
171 	/* Pull default initialization values from the sock options.
172 	 * Note: This assumes that the values have already been
173 	 * validated in the sock.
174 	 */
175 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
176 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
177 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
178 
179 	asoc->max_init_timeo =
180 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
181 
182 	/* Allocate storage for the ssnmap after the inbound and outbound
183 	 * streams have been negotiated during Init.
184 	 */
185 	asoc->ssnmap = NULL;
186 
187 	/* Set the local window size for receive.
188 	 * This is also the rcvbuf space per association.
189 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
190 	 * 1500 bytes in one SCTP packet.
191 	 */
192 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
193 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
194 	else
195 		asoc->rwnd = sk->sk_rcvbuf/2;
196 
197 	asoc->a_rwnd = asoc->rwnd;
198 
199 	asoc->rwnd_over = 0;
200 	asoc->rwnd_press = 0;
201 
202 	/* Use my own max window until I learn something better.  */
203 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
204 
205 	/* Set the sndbuf size for transmit.  */
206 	asoc->sndbuf_used = 0;
207 
208 	/* Initialize the receive memory counter */
209 	atomic_set(&asoc->rmem_alloc, 0);
210 
211 	init_waitqueue_head(&asoc->wait);
212 
213 	asoc->c.my_vtag = sctp_generate_tag(ep);
214 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
215 	asoc->c.peer_vtag = 0;
216 	asoc->c.my_ttag   = 0;
217 	asoc->c.peer_ttag = 0;
218 	asoc->c.my_port = ep->base.bind_addr.port;
219 
220 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
221 
222 	asoc->next_tsn = asoc->c.initial_tsn;
223 
224 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
225 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
226 	asoc->highest_sacked = asoc->ctsn_ack_point;
227 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
228 	asoc->unack_data = 0;
229 
230 	/* ADDIP Section 4.1 Asconf Chunk Procedures
231 	 *
232 	 * When an endpoint has an ASCONF signaled change to be sent to the
233 	 * remote endpoint it should do the following:
234 	 * ...
235 	 * A2) a serial number should be assigned to the chunk. The serial
236 	 * number SHOULD be a monotonically increasing number. The serial
237 	 * numbers SHOULD be initialized at the start of the
238 	 * association to the same value as the initial TSN.
239 	 */
240 	asoc->addip_serial = asoc->c.initial_tsn;
241 
242 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
243 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
244 
245 	/* Make an empty list of remote transport addresses.  */
246 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
247 	asoc->peer.transport_count = 0;
248 
249 	/* RFC 2960 5.1 Normal Establishment of an Association
250 	 *
251 	 * After the reception of the first data chunk in an
252 	 * association the endpoint must immediately respond with a
253 	 * sack to acknowledge the data chunk.  Subsequent
254 	 * acknowledgements should be done as described in Section
255 	 * 6.2.
256 	 *
257 	 * [We implement this by telling a new association that it
258 	 * already received one packet.]
259 	 */
260 	asoc->peer.sack_needed = 1;
261 	asoc->peer.sack_cnt = 0;
262 	asoc->peer.sack_generation = 1;
263 
264 	/* Assume that the peer will tell us if he recognizes ASCONF
265 	 * as part of INIT exchange.
266 	 * The sctp_addip_noauth option is there for backward compatibilty
267 	 * and will revert old behavior.
268 	 */
269 	asoc->peer.asconf_capable = 0;
270 	if (net->sctp.addip_noauth)
271 		asoc->peer.asconf_capable = 1;
272 	asoc->asconf_addr_del_pending = NULL;
273 	asoc->src_out_of_asoc_ok = 0;
274 	asoc->new_transport = NULL;
275 
276 	/* Create an input queue.  */
277 	sctp_inq_init(&asoc->base.inqueue);
278 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
279 
280 	/* Create an output queue.  */
281 	sctp_outq_init(asoc, &asoc->outqueue);
282 
283 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
284 		goto fail_init;
285 
286 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
287 
288 	asoc->need_ecne = 0;
289 
290 	asoc->assoc_id = 0;
291 
292 	/* Assume that peer would support both address types unless we are
293 	 * told otherwise.
294 	 */
295 	asoc->peer.ipv4_address = 1;
296 	if (asoc->base.sk->sk_family == PF_INET6)
297 		asoc->peer.ipv6_address = 1;
298 	INIT_LIST_HEAD(&asoc->asocs);
299 
300 	asoc->autoclose = sp->autoclose;
301 
302 	asoc->default_stream = sp->default_stream;
303 	asoc->default_ppid = sp->default_ppid;
304 	asoc->default_flags = sp->default_flags;
305 	asoc->default_context = sp->default_context;
306 	asoc->default_timetolive = sp->default_timetolive;
307 	asoc->default_rcv_context = sp->default_rcv_context;
308 
309 	/* SCTP_GET_ASSOC_STATS COUNTERS */
310 	memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
311 
312 	/* AUTH related initializations */
313 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
314 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
315 	if (err)
316 		goto fail_init;
317 
318 	asoc->active_key_id = ep->active_key_id;
319 	asoc->asoc_shared_key = NULL;
320 
321 	asoc->default_hmac_id = 0;
322 	/* Save the hmacs and chunks list into this association */
323 	if (ep->auth_hmacs_list)
324 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
325 			ntohs(ep->auth_hmacs_list->param_hdr.length));
326 	if (ep->auth_chunk_list)
327 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
328 			ntohs(ep->auth_chunk_list->param_hdr.length));
329 
330 	/* Get the AUTH random number for this association */
331 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
332 	p->type = SCTP_PARAM_RANDOM;
333 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
334 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
335 
336 	return asoc;
337 
338 fail_init:
339 	sock_put(asoc->base.sk);
340 	sctp_endpoint_put(asoc->ep);
341 	return NULL;
342 }
343 
344 /* Allocate and initialize a new association */
345 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
346 					 const struct sock *sk,
347 					 sctp_scope_t scope,
348 					 gfp_t gfp)
349 {
350 	struct sctp_association *asoc;
351 
352 	asoc = kzalloc(sizeof(*asoc), gfp);
353 	if (!asoc)
354 		goto fail;
355 
356 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
357 		goto fail_init;
358 
359 	SCTP_DBG_OBJCNT_INC(assoc);
360 
361 	pr_debug("Created asoc %p\n", asoc);
362 
363 	return asoc;
364 
365 fail_init:
366 	kfree(asoc);
367 fail:
368 	return NULL;
369 }
370 
371 /* Free this association if possible.  There may still be users, so
372  * the actual deallocation may be delayed.
373  */
374 void sctp_association_free(struct sctp_association *asoc)
375 {
376 	struct sock *sk = asoc->base.sk;
377 	struct sctp_transport *transport;
378 	struct list_head *pos, *temp;
379 	int i;
380 
381 	/* Only real associations count against the endpoint, so
382 	 * don't bother for if this is a temporary association.
383 	 */
384 	if (!asoc->temp) {
385 		list_del(&asoc->asocs);
386 
387 		/* Decrement the backlog value for a TCP-style listening
388 		 * socket.
389 		 */
390 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
391 			sk->sk_ack_backlog--;
392 	}
393 
394 	/* Mark as dead, so other users can know this structure is
395 	 * going away.
396 	 */
397 	asoc->base.dead = true;
398 
399 	/* Dispose of any data lying around in the outqueue. */
400 	sctp_outq_free(&asoc->outqueue);
401 
402 	/* Dispose of any pending messages for the upper layer. */
403 	sctp_ulpq_free(&asoc->ulpq);
404 
405 	/* Dispose of any pending chunks on the inqueue. */
406 	sctp_inq_free(&asoc->base.inqueue);
407 
408 	sctp_tsnmap_free(&asoc->peer.tsn_map);
409 
410 	/* Free ssnmap storage. */
411 	sctp_ssnmap_free(asoc->ssnmap);
412 
413 	/* Clean up the bound address list. */
414 	sctp_bind_addr_free(&asoc->base.bind_addr);
415 
416 	/* Do we need to go through all of our timers and
417 	 * delete them?   To be safe we will try to delete all, but we
418 	 * should be able to go through and make a guess based
419 	 * on our state.
420 	 */
421 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
422 		if (del_timer(&asoc->timers[i]))
423 			sctp_association_put(asoc);
424 	}
425 
426 	/* Free peer's cached cookie. */
427 	kfree(asoc->peer.cookie);
428 	kfree(asoc->peer.peer_random);
429 	kfree(asoc->peer.peer_chunks);
430 	kfree(asoc->peer.peer_hmacs);
431 
432 	/* Release the transport structures. */
433 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
434 		transport = list_entry(pos, struct sctp_transport, transports);
435 		list_del_rcu(pos);
436 		sctp_transport_free(transport);
437 	}
438 
439 	asoc->peer.transport_count = 0;
440 
441 	sctp_asconf_queue_teardown(asoc);
442 
443 	/* Free pending address space being deleted */
444 	if (asoc->asconf_addr_del_pending != NULL)
445 		kfree(asoc->asconf_addr_del_pending);
446 
447 	/* AUTH - Free the endpoint shared keys */
448 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
449 
450 	/* AUTH - Free the association shared key */
451 	sctp_auth_key_put(asoc->asoc_shared_key);
452 
453 	sctp_association_put(asoc);
454 }
455 
456 /* Cleanup and free up an association. */
457 static void sctp_association_destroy(struct sctp_association *asoc)
458 {
459 	if (unlikely(!asoc->base.dead)) {
460 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
461 		return;
462 	}
463 
464 	sctp_endpoint_put(asoc->ep);
465 	sock_put(asoc->base.sk);
466 
467 	if (asoc->assoc_id != 0) {
468 		spin_lock_bh(&sctp_assocs_id_lock);
469 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
470 		spin_unlock_bh(&sctp_assocs_id_lock);
471 	}
472 
473 	WARN_ON(atomic_read(&asoc->rmem_alloc));
474 
475 	kfree(asoc);
476 	SCTP_DBG_OBJCNT_DEC(assoc);
477 }
478 
479 /* Change the primary destination address for the peer. */
480 void sctp_assoc_set_primary(struct sctp_association *asoc,
481 			    struct sctp_transport *transport)
482 {
483 	int changeover = 0;
484 
485 	/* it's a changeover only if we already have a primary path
486 	 * that we are changing
487 	 */
488 	if (asoc->peer.primary_path != NULL &&
489 	    asoc->peer.primary_path != transport)
490 		changeover = 1 ;
491 
492 	asoc->peer.primary_path = transport;
493 
494 	/* Set a default msg_name for events. */
495 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
496 	       sizeof(union sctp_addr));
497 
498 	/* If the primary path is changing, assume that the
499 	 * user wants to use this new path.
500 	 */
501 	if ((transport->state == SCTP_ACTIVE) ||
502 	    (transport->state == SCTP_UNKNOWN))
503 		asoc->peer.active_path = transport;
504 
505 	/*
506 	 * SFR-CACC algorithm:
507 	 * Upon the receipt of a request to change the primary
508 	 * destination address, on the data structure for the new
509 	 * primary destination, the sender MUST do the following:
510 	 *
511 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
512 	 * to this destination address earlier. The sender MUST set
513 	 * CYCLING_CHANGEOVER to indicate that this switch is a
514 	 * double switch to the same destination address.
515 	 *
516 	 * Really, only bother is we have data queued or outstanding on
517 	 * the association.
518 	 */
519 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
520 		return;
521 
522 	if (transport->cacc.changeover_active)
523 		transport->cacc.cycling_changeover = changeover;
524 
525 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
526 	 * a changeover has occurred.
527 	 */
528 	transport->cacc.changeover_active = changeover;
529 
530 	/* 3) The sender MUST store the next TSN to be sent in
531 	 * next_tsn_at_change.
532 	 */
533 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
534 }
535 
536 /* Remove a transport from an association.  */
537 void sctp_assoc_rm_peer(struct sctp_association *asoc,
538 			struct sctp_transport *peer)
539 {
540 	struct list_head	*pos;
541 	struct sctp_transport	*transport;
542 
543 	pr_debug("%s: association:%p addr:%pISpc\n",
544 		 __func__, asoc, &peer->ipaddr.sa);
545 
546 	/* If we are to remove the current retran_path, update it
547 	 * to the next peer before removing this peer from the list.
548 	 */
549 	if (asoc->peer.retran_path == peer)
550 		sctp_assoc_update_retran_path(asoc);
551 
552 	/* Remove this peer from the list. */
553 	list_del_rcu(&peer->transports);
554 
555 	/* Get the first transport of asoc. */
556 	pos = asoc->peer.transport_addr_list.next;
557 	transport = list_entry(pos, struct sctp_transport, transports);
558 
559 	/* Update any entries that match the peer to be deleted. */
560 	if (asoc->peer.primary_path == peer)
561 		sctp_assoc_set_primary(asoc, transport);
562 	if (asoc->peer.active_path == peer)
563 		asoc->peer.active_path = transport;
564 	if (asoc->peer.retran_path == peer)
565 		asoc->peer.retran_path = transport;
566 	if (asoc->peer.last_data_from == peer)
567 		asoc->peer.last_data_from = transport;
568 
569 	/* If we remove the transport an INIT was last sent to, set it to
570 	 * NULL. Combined with the update of the retran path above, this
571 	 * will cause the next INIT to be sent to the next available
572 	 * transport, maintaining the cycle.
573 	 */
574 	if (asoc->init_last_sent_to == peer)
575 		asoc->init_last_sent_to = NULL;
576 
577 	/* If we remove the transport an SHUTDOWN was last sent to, set it
578 	 * to NULL. Combined with the update of the retran path above, this
579 	 * will cause the next SHUTDOWN to be sent to the next available
580 	 * transport, maintaining the cycle.
581 	 */
582 	if (asoc->shutdown_last_sent_to == peer)
583 		asoc->shutdown_last_sent_to = NULL;
584 
585 	/* If we remove the transport an ASCONF was last sent to, set it to
586 	 * NULL.
587 	 */
588 	if (asoc->addip_last_asconf &&
589 	    asoc->addip_last_asconf->transport == peer)
590 		asoc->addip_last_asconf->transport = NULL;
591 
592 	/* If we have something on the transmitted list, we have to
593 	 * save it off.  The best place is the active path.
594 	 */
595 	if (!list_empty(&peer->transmitted)) {
596 		struct sctp_transport *active = asoc->peer.active_path;
597 		struct sctp_chunk *ch;
598 
599 		/* Reset the transport of each chunk on this list */
600 		list_for_each_entry(ch, &peer->transmitted,
601 					transmitted_list) {
602 			ch->transport = NULL;
603 			ch->rtt_in_progress = 0;
604 		}
605 
606 		list_splice_tail_init(&peer->transmitted,
607 					&active->transmitted);
608 
609 		/* Start a T3 timer here in case it wasn't running so
610 		 * that these migrated packets have a chance to get
611 		 * retrnasmitted.
612 		 */
613 		if (!timer_pending(&active->T3_rtx_timer))
614 			if (!mod_timer(&active->T3_rtx_timer,
615 					jiffies + active->rto))
616 				sctp_transport_hold(active);
617 	}
618 
619 	asoc->peer.transport_count--;
620 
621 	sctp_transport_free(peer);
622 }
623 
624 /* Add a transport address to an association.  */
625 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
626 					   const union sctp_addr *addr,
627 					   const gfp_t gfp,
628 					   const int peer_state)
629 {
630 	struct net *net = sock_net(asoc->base.sk);
631 	struct sctp_transport *peer;
632 	struct sctp_sock *sp;
633 	unsigned short port;
634 
635 	sp = sctp_sk(asoc->base.sk);
636 
637 	/* AF_INET and AF_INET6 share common port field. */
638 	port = ntohs(addr->v4.sin_port);
639 
640 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
641 		 asoc, &addr->sa, peer_state);
642 
643 	/* Set the port if it has not been set yet.  */
644 	if (0 == asoc->peer.port)
645 		asoc->peer.port = port;
646 
647 	/* Check to see if this is a duplicate. */
648 	peer = sctp_assoc_lookup_paddr(asoc, addr);
649 	if (peer) {
650 		/* An UNKNOWN state is only set on transports added by
651 		 * user in sctp_connectx() call.  Such transports should be
652 		 * considered CONFIRMED per RFC 4960, Section 5.4.
653 		 */
654 		if (peer->state == SCTP_UNKNOWN) {
655 			peer->state = SCTP_ACTIVE;
656 		}
657 		return peer;
658 	}
659 
660 	peer = sctp_transport_new(net, addr, gfp);
661 	if (!peer)
662 		return NULL;
663 
664 	sctp_transport_set_owner(peer, asoc);
665 
666 	/* Initialize the peer's heartbeat interval based on the
667 	 * association configured value.
668 	 */
669 	peer->hbinterval = asoc->hbinterval;
670 
671 	/* Set the path max_retrans.  */
672 	peer->pathmaxrxt = asoc->pathmaxrxt;
673 
674 	/* And the partial failure retrnas threshold */
675 	peer->pf_retrans = asoc->pf_retrans;
676 
677 	/* Initialize the peer's SACK delay timeout based on the
678 	 * association configured value.
679 	 */
680 	peer->sackdelay = asoc->sackdelay;
681 	peer->sackfreq = asoc->sackfreq;
682 
683 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
684 	 * based on association setting.
685 	 */
686 	peer->param_flags = asoc->param_flags;
687 
688 	sctp_transport_route(peer, NULL, sp);
689 
690 	/* Initialize the pmtu of the transport. */
691 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
692 		if (asoc->pathmtu)
693 			peer->pathmtu = asoc->pathmtu;
694 		else
695 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
696 	}
697 
698 	/* If this is the first transport addr on this association,
699 	 * initialize the association PMTU to the peer's PMTU.
700 	 * If not and the current association PMTU is higher than the new
701 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
702 	 */
703 	if (asoc->pathmtu)
704 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
705 	else
706 		asoc->pathmtu = peer->pathmtu;
707 
708 	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
709 		 asoc->pathmtu);
710 
711 	peer->pmtu_pending = 0;
712 
713 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
714 
715 	/* The asoc->peer.port might not be meaningful yet, but
716 	 * initialize the packet structure anyway.
717 	 */
718 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
719 			 asoc->peer.port);
720 
721 	/* 7.2.1 Slow-Start
722 	 *
723 	 * o The initial cwnd before DATA transmission or after a sufficiently
724 	 *   long idle period MUST be set to
725 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
726 	 *
727 	 * o The initial value of ssthresh MAY be arbitrarily high
728 	 *   (for example, implementations MAY use the size of the
729 	 *   receiver advertised window).
730 	 */
731 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
732 
733 	/* At this point, we may not have the receiver's advertised window,
734 	 * so initialize ssthresh to the default value and it will be set
735 	 * later when we process the INIT.
736 	 */
737 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
738 
739 	peer->partial_bytes_acked = 0;
740 	peer->flight_size = 0;
741 	peer->burst_limited = 0;
742 
743 	/* Set the transport's RTO.initial value */
744 	peer->rto = asoc->rto_initial;
745 	sctp_max_rto(asoc, peer);
746 
747 	/* Set the peer's active state. */
748 	peer->state = peer_state;
749 
750 	/* Attach the remote transport to our asoc.  */
751 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
752 	asoc->peer.transport_count++;
753 
754 	/* If we do not yet have a primary path, set one.  */
755 	if (!asoc->peer.primary_path) {
756 		sctp_assoc_set_primary(asoc, peer);
757 		asoc->peer.retran_path = peer;
758 	}
759 
760 	if (asoc->peer.active_path == asoc->peer.retran_path &&
761 	    peer->state != SCTP_UNCONFIRMED) {
762 		asoc->peer.retran_path = peer;
763 	}
764 
765 	return peer;
766 }
767 
768 /* Delete a transport address from an association.  */
769 void sctp_assoc_del_peer(struct sctp_association *asoc,
770 			 const union sctp_addr *addr)
771 {
772 	struct list_head	*pos;
773 	struct list_head	*temp;
774 	struct sctp_transport	*transport;
775 
776 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
777 		transport = list_entry(pos, struct sctp_transport, transports);
778 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
779 			/* Do book keeping for removing the peer and free it. */
780 			sctp_assoc_rm_peer(asoc, transport);
781 			break;
782 		}
783 	}
784 }
785 
786 /* Lookup a transport by address. */
787 struct sctp_transport *sctp_assoc_lookup_paddr(
788 					const struct sctp_association *asoc,
789 					const union sctp_addr *address)
790 {
791 	struct sctp_transport *t;
792 
793 	/* Cycle through all transports searching for a peer address. */
794 
795 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
796 			transports) {
797 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
798 			return t;
799 	}
800 
801 	return NULL;
802 }
803 
804 /* Remove all transports except a give one */
805 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
806 				     struct sctp_transport *primary)
807 {
808 	struct sctp_transport	*temp;
809 	struct sctp_transport	*t;
810 
811 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
812 				 transports) {
813 		/* if the current transport is not the primary one, delete it */
814 		if (t != primary)
815 			sctp_assoc_rm_peer(asoc, t);
816 	}
817 }
818 
819 /* Engage in transport control operations.
820  * Mark the transport up or down and send a notification to the user.
821  * Select and update the new active and retran paths.
822  */
823 void sctp_assoc_control_transport(struct sctp_association *asoc,
824 				  struct sctp_transport *transport,
825 				  sctp_transport_cmd_t command,
826 				  sctp_sn_error_t error)
827 {
828 	struct sctp_transport *t = NULL;
829 	struct sctp_transport *first;
830 	struct sctp_transport *second;
831 	struct sctp_ulpevent *event;
832 	struct sockaddr_storage addr;
833 	int spc_state = 0;
834 	bool ulp_notify = true;
835 
836 	/* Record the transition on the transport.  */
837 	switch (command) {
838 	case SCTP_TRANSPORT_UP:
839 		/* If we are moving from UNCONFIRMED state due
840 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
841 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
842 		 */
843 		if (SCTP_UNCONFIRMED == transport->state &&
844 		    SCTP_HEARTBEAT_SUCCESS == error)
845 			spc_state = SCTP_ADDR_CONFIRMED;
846 		else
847 			spc_state = SCTP_ADDR_AVAILABLE;
848 		/* Don't inform ULP about transition from PF to
849 		 * active state and set cwnd to 1, see SCTP
850 		 * Quick failover draft section 5.1, point 5
851 		 */
852 		if (transport->state == SCTP_PF) {
853 			ulp_notify = false;
854 			transport->cwnd = 1;
855 		}
856 		transport->state = SCTP_ACTIVE;
857 		break;
858 
859 	case SCTP_TRANSPORT_DOWN:
860 		/* If the transport was never confirmed, do not transition it
861 		 * to inactive state.  Also, release the cached route since
862 		 * there may be a better route next time.
863 		 */
864 		if (transport->state != SCTP_UNCONFIRMED)
865 			transport->state = SCTP_INACTIVE;
866 		else {
867 			dst_release(transport->dst);
868 			transport->dst = NULL;
869 		}
870 
871 		spc_state = SCTP_ADDR_UNREACHABLE;
872 		break;
873 
874 	case SCTP_TRANSPORT_PF:
875 		transport->state = SCTP_PF;
876 		ulp_notify = false;
877 		break;
878 
879 	default:
880 		return;
881 	}
882 
883 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
884 	 * user.
885 	 */
886 	if (ulp_notify) {
887 		memset(&addr, 0, sizeof(struct sockaddr_storage));
888 		memcpy(&addr, &transport->ipaddr,
889 		       transport->af_specific->sockaddr_len);
890 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
891 					0, spc_state, error, GFP_ATOMIC);
892 		if (event)
893 			sctp_ulpq_tail_event(&asoc->ulpq, event);
894 	}
895 
896 	/* Select new active and retran paths. */
897 
898 	/* Look for the two most recently used active transports.
899 	 *
900 	 * This code produces the wrong ordering whenever jiffies
901 	 * rolls over, but we still get usable transports, so we don't
902 	 * worry about it.
903 	 */
904 	first = NULL; second = NULL;
905 
906 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
907 			transports) {
908 
909 		if ((t->state == SCTP_INACTIVE) ||
910 		    (t->state == SCTP_UNCONFIRMED) ||
911 		    (t->state == SCTP_PF))
912 			continue;
913 		if (!first || t->last_time_heard > first->last_time_heard) {
914 			second = first;
915 			first = t;
916 		}
917 		if (!second || t->last_time_heard > second->last_time_heard)
918 			second = t;
919 	}
920 
921 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
922 	 *
923 	 * By default, an endpoint should always transmit to the
924 	 * primary path, unless the SCTP user explicitly specifies the
925 	 * destination transport address (and possibly source
926 	 * transport address) to use.
927 	 *
928 	 * [If the primary is active but not most recent, bump the most
929 	 * recently used transport.]
930 	 */
931 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
932 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
933 	    first != asoc->peer.primary_path) {
934 		second = first;
935 		first = asoc->peer.primary_path;
936 	}
937 
938 	/* If we failed to find a usable transport, just camp on the
939 	 * primary, even if it is inactive.
940 	 */
941 	if (!first) {
942 		first = asoc->peer.primary_path;
943 		second = asoc->peer.primary_path;
944 	}
945 
946 	/* Set the active and retran transports.  */
947 	asoc->peer.active_path = first;
948 	asoc->peer.retran_path = second;
949 }
950 
951 /* Hold a reference to an association. */
952 void sctp_association_hold(struct sctp_association *asoc)
953 {
954 	atomic_inc(&asoc->base.refcnt);
955 }
956 
957 /* Release a reference to an association and cleanup
958  * if there are no more references.
959  */
960 void sctp_association_put(struct sctp_association *asoc)
961 {
962 	if (atomic_dec_and_test(&asoc->base.refcnt))
963 		sctp_association_destroy(asoc);
964 }
965 
966 /* Allocate the next TSN, Transmission Sequence Number, for the given
967  * association.
968  */
969 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
970 {
971 	/* From Section 1.6 Serial Number Arithmetic:
972 	 * Transmission Sequence Numbers wrap around when they reach
973 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
974 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
975 	 */
976 	__u32 retval = asoc->next_tsn;
977 	asoc->next_tsn++;
978 	asoc->unack_data++;
979 
980 	return retval;
981 }
982 
983 /* Compare two addresses to see if they match.  Wildcard addresses
984  * only match themselves.
985  */
986 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
987 			const union sctp_addr *ss2)
988 {
989 	struct sctp_af *af;
990 
991 	af = sctp_get_af_specific(ss1->sa.sa_family);
992 	if (unlikely(!af))
993 		return 0;
994 
995 	return af->cmp_addr(ss1, ss2);
996 }
997 
998 /* Return an ecne chunk to get prepended to a packet.
999  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
1000  * No we don't, but we could/should.
1001  */
1002 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1003 {
1004 	struct sctp_chunk *chunk;
1005 
1006 	/* Send ECNE if needed.
1007 	 * Not being able to allocate a chunk here is not deadly.
1008 	 */
1009 	if (asoc->need_ecne)
1010 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1011 	else
1012 		chunk = NULL;
1013 
1014 	return chunk;
1015 }
1016 
1017 /*
1018  * Find which transport this TSN was sent on.
1019  */
1020 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1021 					     __u32 tsn)
1022 {
1023 	struct sctp_transport *active;
1024 	struct sctp_transport *match;
1025 	struct sctp_transport *transport;
1026 	struct sctp_chunk *chunk;
1027 	__be32 key = htonl(tsn);
1028 
1029 	match = NULL;
1030 
1031 	/*
1032 	 * FIXME: In general, find a more efficient data structure for
1033 	 * searching.
1034 	 */
1035 
1036 	/*
1037 	 * The general strategy is to search each transport's transmitted
1038 	 * list.   Return which transport this TSN lives on.
1039 	 *
1040 	 * Let's be hopeful and check the active_path first.
1041 	 * Another optimization would be to know if there is only one
1042 	 * outbound path and not have to look for the TSN at all.
1043 	 *
1044 	 */
1045 
1046 	active = asoc->peer.active_path;
1047 
1048 	list_for_each_entry(chunk, &active->transmitted,
1049 			transmitted_list) {
1050 
1051 		if (key == chunk->subh.data_hdr->tsn) {
1052 			match = active;
1053 			goto out;
1054 		}
1055 	}
1056 
1057 	/* If not found, go search all the other transports. */
1058 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1059 			transports) {
1060 
1061 		if (transport == active)
1062 			continue;
1063 		list_for_each_entry(chunk, &transport->transmitted,
1064 				transmitted_list) {
1065 			if (key == chunk->subh.data_hdr->tsn) {
1066 				match = transport;
1067 				goto out;
1068 			}
1069 		}
1070 	}
1071 out:
1072 	return match;
1073 }
1074 
1075 /* Is this the association we are looking for? */
1076 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1077 					   struct net *net,
1078 					   const union sctp_addr *laddr,
1079 					   const union sctp_addr *paddr)
1080 {
1081 	struct sctp_transport *transport;
1082 
1083 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1084 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1085 	    net_eq(sock_net(asoc->base.sk), net)) {
1086 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1087 		if (!transport)
1088 			goto out;
1089 
1090 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1091 					 sctp_sk(asoc->base.sk)))
1092 			goto out;
1093 	}
1094 	transport = NULL;
1095 
1096 out:
1097 	return transport;
1098 }
1099 
1100 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1101 static void sctp_assoc_bh_rcv(struct work_struct *work)
1102 {
1103 	struct sctp_association *asoc =
1104 		container_of(work, struct sctp_association,
1105 			     base.inqueue.immediate);
1106 	struct net *net = sock_net(asoc->base.sk);
1107 	struct sctp_endpoint *ep;
1108 	struct sctp_chunk *chunk;
1109 	struct sctp_inq *inqueue;
1110 	int state;
1111 	sctp_subtype_t subtype;
1112 	int error = 0;
1113 
1114 	/* The association should be held so we should be safe. */
1115 	ep = asoc->ep;
1116 
1117 	inqueue = &asoc->base.inqueue;
1118 	sctp_association_hold(asoc);
1119 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1120 		state = asoc->state;
1121 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1122 
1123 		/* SCTP-AUTH, Section 6.3:
1124 		 *    The receiver has a list of chunk types which it expects
1125 		 *    to be received only after an AUTH-chunk.  This list has
1126 		 *    been sent to the peer during the association setup.  It
1127 		 *    MUST silently discard these chunks if they are not placed
1128 		 *    after an AUTH chunk in the packet.
1129 		 */
1130 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1131 			continue;
1132 
1133 		/* Remember where the last DATA chunk came from so we
1134 		 * know where to send the SACK.
1135 		 */
1136 		if (sctp_chunk_is_data(chunk))
1137 			asoc->peer.last_data_from = chunk->transport;
1138 		else {
1139 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1140 			asoc->stats.ictrlchunks++;
1141 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1142 				asoc->stats.isacks++;
1143 		}
1144 
1145 		if (chunk->transport)
1146 			chunk->transport->last_time_heard = jiffies;
1147 
1148 		/* Run through the state machine. */
1149 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1150 				   state, ep, asoc, chunk, GFP_ATOMIC);
1151 
1152 		/* Check to see if the association is freed in response to
1153 		 * the incoming chunk.  If so, get out of the while loop.
1154 		 */
1155 		if (asoc->base.dead)
1156 			break;
1157 
1158 		/* If there is an error on chunk, discard this packet. */
1159 		if (error && chunk)
1160 			chunk->pdiscard = 1;
1161 	}
1162 	sctp_association_put(asoc);
1163 }
1164 
1165 /* This routine moves an association from its old sk to a new sk.  */
1166 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1167 {
1168 	struct sctp_sock *newsp = sctp_sk(newsk);
1169 	struct sock *oldsk = assoc->base.sk;
1170 
1171 	/* Delete the association from the old endpoint's list of
1172 	 * associations.
1173 	 */
1174 	list_del_init(&assoc->asocs);
1175 
1176 	/* Decrement the backlog value for a TCP-style socket. */
1177 	if (sctp_style(oldsk, TCP))
1178 		oldsk->sk_ack_backlog--;
1179 
1180 	/* Release references to the old endpoint and the sock.  */
1181 	sctp_endpoint_put(assoc->ep);
1182 	sock_put(assoc->base.sk);
1183 
1184 	/* Get a reference to the new endpoint.  */
1185 	assoc->ep = newsp->ep;
1186 	sctp_endpoint_hold(assoc->ep);
1187 
1188 	/* Get a reference to the new sock.  */
1189 	assoc->base.sk = newsk;
1190 	sock_hold(assoc->base.sk);
1191 
1192 	/* Add the association to the new endpoint's list of associations.  */
1193 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1194 }
1195 
1196 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1197 void sctp_assoc_update(struct sctp_association *asoc,
1198 		       struct sctp_association *new)
1199 {
1200 	struct sctp_transport *trans;
1201 	struct list_head *pos, *temp;
1202 
1203 	/* Copy in new parameters of peer. */
1204 	asoc->c = new->c;
1205 	asoc->peer.rwnd = new->peer.rwnd;
1206 	asoc->peer.sack_needed = new->peer.sack_needed;
1207 	asoc->peer.i = new->peer.i;
1208 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1209 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1210 
1211 	/* Remove any peer addresses not present in the new association. */
1212 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1213 		trans = list_entry(pos, struct sctp_transport, transports);
1214 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1215 			sctp_assoc_rm_peer(asoc, trans);
1216 			continue;
1217 		}
1218 
1219 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1220 			sctp_transport_reset(trans);
1221 	}
1222 
1223 	/* If the case is A (association restart), use
1224 	 * initial_tsn as next_tsn. If the case is B, use
1225 	 * current next_tsn in case data sent to peer
1226 	 * has been discarded and needs retransmission.
1227 	 */
1228 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1229 		asoc->next_tsn = new->next_tsn;
1230 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1231 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1232 
1233 		/* Reinitialize SSN for both local streams
1234 		 * and peer's streams.
1235 		 */
1236 		sctp_ssnmap_clear(asoc->ssnmap);
1237 
1238 		/* Flush the ULP reassembly and ordered queue.
1239 		 * Any data there will now be stale and will
1240 		 * cause problems.
1241 		 */
1242 		sctp_ulpq_flush(&asoc->ulpq);
1243 
1244 		/* reset the overall association error count so
1245 		 * that the restarted association doesn't get torn
1246 		 * down on the next retransmission timer.
1247 		 */
1248 		asoc->overall_error_count = 0;
1249 
1250 	} else {
1251 		/* Add any peer addresses from the new association. */
1252 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1253 				transports) {
1254 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1255 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1256 						    GFP_ATOMIC, trans->state);
1257 		}
1258 
1259 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1260 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1261 		if (!asoc->ssnmap) {
1262 			/* Move the ssnmap. */
1263 			asoc->ssnmap = new->ssnmap;
1264 			new->ssnmap = NULL;
1265 		}
1266 
1267 		if (!asoc->assoc_id) {
1268 			/* get a new association id since we don't have one
1269 			 * yet.
1270 			 */
1271 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1272 		}
1273 	}
1274 
1275 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1276 	 * and also move the association shared keys over
1277 	 */
1278 	kfree(asoc->peer.peer_random);
1279 	asoc->peer.peer_random = new->peer.peer_random;
1280 	new->peer.peer_random = NULL;
1281 
1282 	kfree(asoc->peer.peer_chunks);
1283 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1284 	new->peer.peer_chunks = NULL;
1285 
1286 	kfree(asoc->peer.peer_hmacs);
1287 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1288 	new->peer.peer_hmacs = NULL;
1289 
1290 	sctp_auth_key_put(asoc->asoc_shared_key);
1291 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1292 }
1293 
1294 /* Update the retran path for sending a retransmitted packet.
1295  * Round-robin through the active transports, else round-robin
1296  * through the inactive transports as this is the next best thing
1297  * we can try.
1298  */
1299 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1300 {
1301 	struct sctp_transport *t, *next;
1302 	struct list_head *head = &asoc->peer.transport_addr_list;
1303 	struct list_head *pos;
1304 
1305 	if (asoc->peer.transport_count == 1)
1306 		return;
1307 
1308 	/* Find the next transport in a round-robin fashion. */
1309 	t = asoc->peer.retran_path;
1310 	pos = &t->transports;
1311 	next = NULL;
1312 
1313 	while (1) {
1314 		/* Skip the head. */
1315 		if (pos->next == head)
1316 			pos = head->next;
1317 		else
1318 			pos = pos->next;
1319 
1320 		t = list_entry(pos, struct sctp_transport, transports);
1321 
1322 		/* We have exhausted the list, but didn't find any
1323 		 * other active transports.  If so, use the next
1324 		 * transport.
1325 		 */
1326 		if (t == asoc->peer.retran_path) {
1327 			t = next;
1328 			break;
1329 		}
1330 
1331 		/* Try to find an active transport. */
1332 
1333 		if ((t->state == SCTP_ACTIVE) ||
1334 		    (t->state == SCTP_UNKNOWN)) {
1335 			break;
1336 		} else {
1337 			/* Keep track of the next transport in case
1338 			 * we don't find any active transport.
1339 			 */
1340 			if (t->state != SCTP_UNCONFIRMED && !next)
1341 				next = t;
1342 		}
1343 	}
1344 
1345 	if (t)
1346 		asoc->peer.retran_path = t;
1347 	else
1348 		t = asoc->peer.retran_path;
1349 
1350 	pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1351 		 &t->ipaddr.sa);
1352 }
1353 
1354 /* Choose the transport for sending retransmit packet.  */
1355 struct sctp_transport *sctp_assoc_choose_alter_transport(
1356 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1357 {
1358 	/* If this is the first time packet is sent, use the active path,
1359 	 * else use the retran path. If the last packet was sent over the
1360 	 * retran path, update the retran path and use it.
1361 	 */
1362 	if (!last_sent_to)
1363 		return asoc->peer.active_path;
1364 	else {
1365 		if (last_sent_to == asoc->peer.retran_path)
1366 			sctp_assoc_update_retran_path(asoc);
1367 		return asoc->peer.retran_path;
1368 	}
1369 }
1370 
1371 /* Update the association's pmtu and frag_point by going through all the
1372  * transports. This routine is called when a transport's PMTU has changed.
1373  */
1374 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1375 {
1376 	struct sctp_transport *t;
1377 	__u32 pmtu = 0;
1378 
1379 	if (!asoc)
1380 		return;
1381 
1382 	/* Get the lowest pmtu of all the transports. */
1383 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1384 				transports) {
1385 		if (t->pmtu_pending && t->dst) {
1386 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1387 			t->pmtu_pending = 0;
1388 		}
1389 		if (!pmtu || (t->pathmtu < pmtu))
1390 			pmtu = t->pathmtu;
1391 	}
1392 
1393 	if (pmtu) {
1394 		asoc->pathmtu = pmtu;
1395 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1396 	}
1397 
1398 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1399 		 asoc->pathmtu, asoc->frag_point);
1400 }
1401 
1402 /* Should we send a SACK to update our peer? */
1403 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1404 {
1405 	struct net *net = sock_net(asoc->base.sk);
1406 	switch (asoc->state) {
1407 	case SCTP_STATE_ESTABLISHED:
1408 	case SCTP_STATE_SHUTDOWN_PENDING:
1409 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1410 	case SCTP_STATE_SHUTDOWN_SENT:
1411 		if ((asoc->rwnd > asoc->a_rwnd) &&
1412 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1413 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1414 			   asoc->pathmtu)))
1415 			return 1;
1416 		break;
1417 	default:
1418 		break;
1419 	}
1420 	return 0;
1421 }
1422 
1423 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1424 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1425 {
1426 	struct sctp_chunk *sack;
1427 	struct timer_list *timer;
1428 
1429 	if (asoc->rwnd_over) {
1430 		if (asoc->rwnd_over >= len) {
1431 			asoc->rwnd_over -= len;
1432 		} else {
1433 			asoc->rwnd += (len - asoc->rwnd_over);
1434 			asoc->rwnd_over = 0;
1435 		}
1436 	} else {
1437 		asoc->rwnd += len;
1438 	}
1439 
1440 	/* If we had window pressure, start recovering it
1441 	 * once our rwnd had reached the accumulated pressure
1442 	 * threshold.  The idea is to recover slowly, but up
1443 	 * to the initial advertised window.
1444 	 */
1445 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1446 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1447 		asoc->rwnd += change;
1448 		asoc->rwnd_press -= change;
1449 	}
1450 
1451 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1452 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1453 		 asoc->a_rwnd);
1454 
1455 	/* Send a window update SACK if the rwnd has increased by at least the
1456 	 * minimum of the association's PMTU and half of the receive buffer.
1457 	 * The algorithm used is similar to the one described in
1458 	 * Section 4.2.3.3 of RFC 1122.
1459 	 */
1460 	if (sctp_peer_needs_update(asoc)) {
1461 		asoc->a_rwnd = asoc->rwnd;
1462 
1463 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1464 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1465 			 asoc->a_rwnd);
1466 
1467 		sack = sctp_make_sack(asoc);
1468 		if (!sack)
1469 			return;
1470 
1471 		asoc->peer.sack_needed = 0;
1472 
1473 		sctp_outq_tail(&asoc->outqueue, sack);
1474 
1475 		/* Stop the SACK timer.  */
1476 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1477 		if (del_timer(timer))
1478 			sctp_association_put(asoc);
1479 	}
1480 }
1481 
1482 /* Decrease asoc's rwnd by len. */
1483 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1484 {
1485 	int rx_count;
1486 	int over = 0;
1487 
1488 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1489 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1490 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1491 			 asoc->rwnd, asoc->rwnd_over);
1492 
1493 	if (asoc->ep->rcvbuf_policy)
1494 		rx_count = atomic_read(&asoc->rmem_alloc);
1495 	else
1496 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1497 
1498 	/* If we've reached or overflowed our receive buffer, announce
1499 	 * a 0 rwnd if rwnd would still be positive.  Store the
1500 	 * the pottential pressure overflow so that the window can be restored
1501 	 * back to original value.
1502 	 */
1503 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1504 		over = 1;
1505 
1506 	if (asoc->rwnd >= len) {
1507 		asoc->rwnd -= len;
1508 		if (over) {
1509 			asoc->rwnd_press += asoc->rwnd;
1510 			asoc->rwnd = 0;
1511 		}
1512 	} else {
1513 		asoc->rwnd_over = len - asoc->rwnd;
1514 		asoc->rwnd = 0;
1515 	}
1516 
1517 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1518 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1519 		 asoc->rwnd_press);
1520 }
1521 
1522 /* Build the bind address list for the association based on info from the
1523  * local endpoint and the remote peer.
1524  */
1525 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1526 				     sctp_scope_t scope, gfp_t gfp)
1527 {
1528 	int flags;
1529 
1530 	/* Use scoping rules to determine the subset of addresses from
1531 	 * the endpoint.
1532 	 */
1533 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1534 	if (asoc->peer.ipv4_address)
1535 		flags |= SCTP_ADDR4_PEERSUPP;
1536 	if (asoc->peer.ipv6_address)
1537 		flags |= SCTP_ADDR6_PEERSUPP;
1538 
1539 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1540 				   &asoc->base.bind_addr,
1541 				   &asoc->ep->base.bind_addr,
1542 				   scope, gfp, flags);
1543 }
1544 
1545 /* Build the association's bind address list from the cookie.  */
1546 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1547 					 struct sctp_cookie *cookie,
1548 					 gfp_t gfp)
1549 {
1550 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1551 	int var_size3 = cookie->raw_addr_list_len;
1552 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1553 
1554 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1555 				      asoc->ep->base.bind_addr.port, gfp);
1556 }
1557 
1558 /* Lookup laddr in the bind address list of an association. */
1559 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1560 			    const union sctp_addr *laddr)
1561 {
1562 	int found = 0;
1563 
1564 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1565 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1566 				 sctp_sk(asoc->base.sk)))
1567 		found = 1;
1568 
1569 	return found;
1570 }
1571 
1572 /* Set an association id for a given association */
1573 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1574 {
1575 	bool preload = gfp & __GFP_WAIT;
1576 	int ret;
1577 
1578 	/* If the id is already assigned, keep it. */
1579 	if (asoc->assoc_id)
1580 		return 0;
1581 
1582 	if (preload)
1583 		idr_preload(gfp);
1584 	spin_lock_bh(&sctp_assocs_id_lock);
1585 	/* 0 is not a valid assoc_id, must be >= 1 */
1586 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1587 	spin_unlock_bh(&sctp_assocs_id_lock);
1588 	if (preload)
1589 		idr_preload_end();
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	asoc->assoc_id = (sctp_assoc_t)ret;
1594 	return 0;
1595 }
1596 
1597 /* Free the ASCONF queue */
1598 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1599 {
1600 	struct sctp_chunk *asconf;
1601 	struct sctp_chunk *tmp;
1602 
1603 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1604 		list_del_init(&asconf->list);
1605 		sctp_chunk_free(asconf);
1606 	}
1607 }
1608 
1609 /* Free asconf_ack cache */
1610 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1611 {
1612 	struct sctp_chunk *ack;
1613 	struct sctp_chunk *tmp;
1614 
1615 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1616 				transmitted_list) {
1617 		list_del_init(&ack->transmitted_list);
1618 		sctp_chunk_free(ack);
1619 	}
1620 }
1621 
1622 /* Clean up the ASCONF_ACK queue */
1623 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1624 {
1625 	struct sctp_chunk *ack;
1626 	struct sctp_chunk *tmp;
1627 
1628 	/* We can remove all the entries from the queue up to
1629 	 * the "Peer-Sequence-Number".
1630 	 */
1631 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1632 				transmitted_list) {
1633 		if (ack->subh.addip_hdr->serial ==
1634 				htonl(asoc->peer.addip_serial))
1635 			break;
1636 
1637 		list_del_init(&ack->transmitted_list);
1638 		sctp_chunk_free(ack);
1639 	}
1640 }
1641 
1642 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1643 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1644 					const struct sctp_association *asoc,
1645 					__be32 serial)
1646 {
1647 	struct sctp_chunk *ack;
1648 
1649 	/* Walk through the list of cached ASCONF-ACKs and find the
1650 	 * ack chunk whose serial number matches that of the request.
1651 	 */
1652 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1653 		if (ack->subh.addip_hdr->serial == serial) {
1654 			sctp_chunk_hold(ack);
1655 			return ack;
1656 		}
1657 	}
1658 
1659 	return NULL;
1660 }
1661 
1662 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1663 {
1664 	/* Free any cached ASCONF_ACK chunk. */
1665 	sctp_assoc_free_asconf_acks(asoc);
1666 
1667 	/* Free the ASCONF queue. */
1668 	sctp_assoc_free_asconf_queue(asoc);
1669 
1670 	/* Free any cached ASCONF chunk. */
1671 	if (asoc->addip_last_asconf)
1672 		sctp_chunk_free(asoc->addip_last_asconf);
1673 }
1674