1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* 1st Level Abstractions. */ 70 71 /* Initialize a new association from provided memory. */ 72 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 73 const struct sctp_endpoint *ep, 74 const struct sock *sk, 75 sctp_scope_t scope, 76 gfp_t gfp) 77 { 78 struct net *net = sock_net(sk); 79 struct sctp_sock *sp; 80 int i; 81 sctp_paramhdr_t *p; 82 int err; 83 84 /* Retrieve the SCTP per socket area. */ 85 sp = sctp_sk((struct sock *)sk); 86 87 /* Discarding const is appropriate here. */ 88 asoc->ep = (struct sctp_endpoint *)ep; 89 asoc->base.sk = (struct sock *)sk; 90 91 sctp_endpoint_hold(asoc->ep); 92 sock_hold(asoc->base.sk); 93 94 /* Initialize the common base substructure. */ 95 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 96 97 /* Initialize the object handling fields. */ 98 atomic_set(&asoc->base.refcnt, 1); 99 asoc->base.dead = false; 100 101 /* Initialize the bind addr area. */ 102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 103 104 asoc->state = SCTP_STATE_CLOSED; 105 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 106 asoc->frag_point = 0; 107 asoc->user_frag = sp->user_frag; 108 109 /* Set the association max_retrans and RTO values from the 110 * socket values. 111 */ 112 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 113 asoc->pf_retrans = net->sctp.pf_retrans; 114 115 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 116 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 117 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 118 119 asoc->overall_error_count = 0; 120 121 /* Initialize the association's heartbeat interval based on the 122 * sock configured value. 123 */ 124 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 125 126 /* Initialize path max retrans value. */ 127 asoc->pathmaxrxt = sp->pathmaxrxt; 128 129 /* Initialize default path MTU. */ 130 asoc->pathmtu = sp->pathmtu; 131 132 /* Set association default SACK delay */ 133 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 134 asoc->sackfreq = sp->sackfreq; 135 136 /* Set the association default flags controlling 137 * Heartbeat, SACK delay, and Path MTU Discovery. 138 */ 139 asoc->param_flags = sp->param_flags; 140 141 /* Initialize the maximum mumber of new data packets that can be sent 142 * in a burst. 143 */ 144 asoc->max_burst = sp->max_burst; 145 146 /* initialize association timers */ 147 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 153 154 /* sctpimpguide Section 2.12.2 155 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 156 * recommended value of 5 times 'RTO.Max'. 157 */ 158 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 159 = 5 * asoc->rto_max; 160 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 164 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ; 165 166 /* Initializes the timers */ 167 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 168 setup_timer(&asoc->timers[i], sctp_timer_events[i], 169 (unsigned long)asoc); 170 171 /* Pull default initialization values from the sock options. 172 * Note: This assumes that the values have already been 173 * validated in the sock. 174 */ 175 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 176 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 177 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 178 179 asoc->max_init_timeo = 180 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 181 182 /* Allocate storage for the ssnmap after the inbound and outbound 183 * streams have been negotiated during Init. 184 */ 185 asoc->ssnmap = NULL; 186 187 /* Set the local window size for receive. 188 * This is also the rcvbuf space per association. 189 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 190 * 1500 bytes in one SCTP packet. 191 */ 192 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 193 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 194 else 195 asoc->rwnd = sk->sk_rcvbuf/2; 196 197 asoc->a_rwnd = asoc->rwnd; 198 199 asoc->rwnd_over = 0; 200 asoc->rwnd_press = 0; 201 202 /* Use my own max window until I learn something better. */ 203 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 204 205 /* Set the sndbuf size for transmit. */ 206 asoc->sndbuf_used = 0; 207 208 /* Initialize the receive memory counter */ 209 atomic_set(&asoc->rmem_alloc, 0); 210 211 init_waitqueue_head(&asoc->wait); 212 213 asoc->c.my_vtag = sctp_generate_tag(ep); 214 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 215 asoc->c.peer_vtag = 0; 216 asoc->c.my_ttag = 0; 217 asoc->c.peer_ttag = 0; 218 asoc->c.my_port = ep->base.bind_addr.port; 219 220 asoc->c.initial_tsn = sctp_generate_tsn(ep); 221 222 asoc->next_tsn = asoc->c.initial_tsn; 223 224 asoc->ctsn_ack_point = asoc->next_tsn - 1; 225 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 226 asoc->highest_sacked = asoc->ctsn_ack_point; 227 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 228 asoc->unack_data = 0; 229 230 /* ADDIP Section 4.1 Asconf Chunk Procedures 231 * 232 * When an endpoint has an ASCONF signaled change to be sent to the 233 * remote endpoint it should do the following: 234 * ... 235 * A2) a serial number should be assigned to the chunk. The serial 236 * number SHOULD be a monotonically increasing number. The serial 237 * numbers SHOULD be initialized at the start of the 238 * association to the same value as the initial TSN. 239 */ 240 asoc->addip_serial = asoc->c.initial_tsn; 241 242 INIT_LIST_HEAD(&asoc->addip_chunk_list); 243 INIT_LIST_HEAD(&asoc->asconf_ack_list); 244 245 /* Make an empty list of remote transport addresses. */ 246 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 247 asoc->peer.transport_count = 0; 248 249 /* RFC 2960 5.1 Normal Establishment of an Association 250 * 251 * After the reception of the first data chunk in an 252 * association the endpoint must immediately respond with a 253 * sack to acknowledge the data chunk. Subsequent 254 * acknowledgements should be done as described in Section 255 * 6.2. 256 * 257 * [We implement this by telling a new association that it 258 * already received one packet.] 259 */ 260 asoc->peer.sack_needed = 1; 261 asoc->peer.sack_cnt = 0; 262 asoc->peer.sack_generation = 1; 263 264 /* Assume that the peer will tell us if he recognizes ASCONF 265 * as part of INIT exchange. 266 * The sctp_addip_noauth option is there for backward compatibilty 267 * and will revert old behavior. 268 */ 269 asoc->peer.asconf_capable = 0; 270 if (net->sctp.addip_noauth) 271 asoc->peer.asconf_capable = 1; 272 asoc->asconf_addr_del_pending = NULL; 273 asoc->src_out_of_asoc_ok = 0; 274 asoc->new_transport = NULL; 275 276 /* Create an input queue. */ 277 sctp_inq_init(&asoc->base.inqueue); 278 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 279 280 /* Create an output queue. */ 281 sctp_outq_init(asoc, &asoc->outqueue); 282 283 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 284 goto fail_init; 285 286 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 287 288 asoc->need_ecne = 0; 289 290 asoc->assoc_id = 0; 291 292 /* Assume that peer would support both address types unless we are 293 * told otherwise. 294 */ 295 asoc->peer.ipv4_address = 1; 296 if (asoc->base.sk->sk_family == PF_INET6) 297 asoc->peer.ipv6_address = 1; 298 INIT_LIST_HEAD(&asoc->asocs); 299 300 asoc->autoclose = sp->autoclose; 301 302 asoc->default_stream = sp->default_stream; 303 asoc->default_ppid = sp->default_ppid; 304 asoc->default_flags = sp->default_flags; 305 asoc->default_context = sp->default_context; 306 asoc->default_timetolive = sp->default_timetolive; 307 asoc->default_rcv_context = sp->default_rcv_context; 308 309 /* SCTP_GET_ASSOC_STATS COUNTERS */ 310 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats)); 311 312 /* AUTH related initializations */ 313 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 314 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 315 if (err) 316 goto fail_init; 317 318 asoc->active_key_id = ep->active_key_id; 319 asoc->asoc_shared_key = NULL; 320 321 asoc->default_hmac_id = 0; 322 /* Save the hmacs and chunks list into this association */ 323 if (ep->auth_hmacs_list) 324 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 325 ntohs(ep->auth_hmacs_list->param_hdr.length)); 326 if (ep->auth_chunk_list) 327 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 328 ntohs(ep->auth_chunk_list->param_hdr.length)); 329 330 /* Get the AUTH random number for this association */ 331 p = (sctp_paramhdr_t *)asoc->c.auth_random; 332 p->type = SCTP_PARAM_RANDOM; 333 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 334 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 335 336 return asoc; 337 338 fail_init: 339 sock_put(asoc->base.sk); 340 sctp_endpoint_put(asoc->ep); 341 return NULL; 342 } 343 344 /* Allocate and initialize a new association */ 345 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 346 const struct sock *sk, 347 sctp_scope_t scope, 348 gfp_t gfp) 349 { 350 struct sctp_association *asoc; 351 352 asoc = kzalloc(sizeof(*asoc), gfp); 353 if (!asoc) 354 goto fail; 355 356 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 357 goto fail_init; 358 359 SCTP_DBG_OBJCNT_INC(assoc); 360 361 pr_debug("Created asoc %p\n", asoc); 362 363 return asoc; 364 365 fail_init: 366 kfree(asoc); 367 fail: 368 return NULL; 369 } 370 371 /* Free this association if possible. There may still be users, so 372 * the actual deallocation may be delayed. 373 */ 374 void sctp_association_free(struct sctp_association *asoc) 375 { 376 struct sock *sk = asoc->base.sk; 377 struct sctp_transport *transport; 378 struct list_head *pos, *temp; 379 int i; 380 381 /* Only real associations count against the endpoint, so 382 * don't bother for if this is a temporary association. 383 */ 384 if (!asoc->temp) { 385 list_del(&asoc->asocs); 386 387 /* Decrement the backlog value for a TCP-style listening 388 * socket. 389 */ 390 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 391 sk->sk_ack_backlog--; 392 } 393 394 /* Mark as dead, so other users can know this structure is 395 * going away. 396 */ 397 asoc->base.dead = true; 398 399 /* Dispose of any data lying around in the outqueue. */ 400 sctp_outq_free(&asoc->outqueue); 401 402 /* Dispose of any pending messages for the upper layer. */ 403 sctp_ulpq_free(&asoc->ulpq); 404 405 /* Dispose of any pending chunks on the inqueue. */ 406 sctp_inq_free(&asoc->base.inqueue); 407 408 sctp_tsnmap_free(&asoc->peer.tsn_map); 409 410 /* Free ssnmap storage. */ 411 sctp_ssnmap_free(asoc->ssnmap); 412 413 /* Clean up the bound address list. */ 414 sctp_bind_addr_free(&asoc->base.bind_addr); 415 416 /* Do we need to go through all of our timers and 417 * delete them? To be safe we will try to delete all, but we 418 * should be able to go through and make a guess based 419 * on our state. 420 */ 421 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 422 if (del_timer(&asoc->timers[i])) 423 sctp_association_put(asoc); 424 } 425 426 /* Free peer's cached cookie. */ 427 kfree(asoc->peer.cookie); 428 kfree(asoc->peer.peer_random); 429 kfree(asoc->peer.peer_chunks); 430 kfree(asoc->peer.peer_hmacs); 431 432 /* Release the transport structures. */ 433 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 434 transport = list_entry(pos, struct sctp_transport, transports); 435 list_del_rcu(pos); 436 sctp_transport_free(transport); 437 } 438 439 asoc->peer.transport_count = 0; 440 441 sctp_asconf_queue_teardown(asoc); 442 443 /* Free pending address space being deleted */ 444 if (asoc->asconf_addr_del_pending != NULL) 445 kfree(asoc->asconf_addr_del_pending); 446 447 /* AUTH - Free the endpoint shared keys */ 448 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 449 450 /* AUTH - Free the association shared key */ 451 sctp_auth_key_put(asoc->asoc_shared_key); 452 453 sctp_association_put(asoc); 454 } 455 456 /* Cleanup and free up an association. */ 457 static void sctp_association_destroy(struct sctp_association *asoc) 458 { 459 if (unlikely(!asoc->base.dead)) { 460 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 461 return; 462 } 463 464 sctp_endpoint_put(asoc->ep); 465 sock_put(asoc->base.sk); 466 467 if (asoc->assoc_id != 0) { 468 spin_lock_bh(&sctp_assocs_id_lock); 469 idr_remove(&sctp_assocs_id, asoc->assoc_id); 470 spin_unlock_bh(&sctp_assocs_id_lock); 471 } 472 473 WARN_ON(atomic_read(&asoc->rmem_alloc)); 474 475 kfree(asoc); 476 SCTP_DBG_OBJCNT_DEC(assoc); 477 } 478 479 /* Change the primary destination address for the peer. */ 480 void sctp_assoc_set_primary(struct sctp_association *asoc, 481 struct sctp_transport *transport) 482 { 483 int changeover = 0; 484 485 /* it's a changeover only if we already have a primary path 486 * that we are changing 487 */ 488 if (asoc->peer.primary_path != NULL && 489 asoc->peer.primary_path != transport) 490 changeover = 1 ; 491 492 asoc->peer.primary_path = transport; 493 494 /* Set a default msg_name for events. */ 495 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 496 sizeof(union sctp_addr)); 497 498 /* If the primary path is changing, assume that the 499 * user wants to use this new path. 500 */ 501 if ((transport->state == SCTP_ACTIVE) || 502 (transport->state == SCTP_UNKNOWN)) 503 asoc->peer.active_path = transport; 504 505 /* 506 * SFR-CACC algorithm: 507 * Upon the receipt of a request to change the primary 508 * destination address, on the data structure for the new 509 * primary destination, the sender MUST do the following: 510 * 511 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 512 * to this destination address earlier. The sender MUST set 513 * CYCLING_CHANGEOVER to indicate that this switch is a 514 * double switch to the same destination address. 515 * 516 * Really, only bother is we have data queued or outstanding on 517 * the association. 518 */ 519 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 520 return; 521 522 if (transport->cacc.changeover_active) 523 transport->cacc.cycling_changeover = changeover; 524 525 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 526 * a changeover has occurred. 527 */ 528 transport->cacc.changeover_active = changeover; 529 530 /* 3) The sender MUST store the next TSN to be sent in 531 * next_tsn_at_change. 532 */ 533 transport->cacc.next_tsn_at_change = asoc->next_tsn; 534 } 535 536 /* Remove a transport from an association. */ 537 void sctp_assoc_rm_peer(struct sctp_association *asoc, 538 struct sctp_transport *peer) 539 { 540 struct list_head *pos; 541 struct sctp_transport *transport; 542 543 pr_debug("%s: association:%p addr:%pISpc\n", 544 __func__, asoc, &peer->ipaddr.sa); 545 546 /* If we are to remove the current retran_path, update it 547 * to the next peer before removing this peer from the list. 548 */ 549 if (asoc->peer.retran_path == peer) 550 sctp_assoc_update_retran_path(asoc); 551 552 /* Remove this peer from the list. */ 553 list_del_rcu(&peer->transports); 554 555 /* Get the first transport of asoc. */ 556 pos = asoc->peer.transport_addr_list.next; 557 transport = list_entry(pos, struct sctp_transport, transports); 558 559 /* Update any entries that match the peer to be deleted. */ 560 if (asoc->peer.primary_path == peer) 561 sctp_assoc_set_primary(asoc, transport); 562 if (asoc->peer.active_path == peer) 563 asoc->peer.active_path = transport; 564 if (asoc->peer.retran_path == peer) 565 asoc->peer.retran_path = transport; 566 if (asoc->peer.last_data_from == peer) 567 asoc->peer.last_data_from = transport; 568 569 /* If we remove the transport an INIT was last sent to, set it to 570 * NULL. Combined with the update of the retran path above, this 571 * will cause the next INIT to be sent to the next available 572 * transport, maintaining the cycle. 573 */ 574 if (asoc->init_last_sent_to == peer) 575 asoc->init_last_sent_to = NULL; 576 577 /* If we remove the transport an SHUTDOWN was last sent to, set it 578 * to NULL. Combined with the update of the retran path above, this 579 * will cause the next SHUTDOWN to be sent to the next available 580 * transport, maintaining the cycle. 581 */ 582 if (asoc->shutdown_last_sent_to == peer) 583 asoc->shutdown_last_sent_to = NULL; 584 585 /* If we remove the transport an ASCONF was last sent to, set it to 586 * NULL. 587 */ 588 if (asoc->addip_last_asconf && 589 asoc->addip_last_asconf->transport == peer) 590 asoc->addip_last_asconf->transport = NULL; 591 592 /* If we have something on the transmitted list, we have to 593 * save it off. The best place is the active path. 594 */ 595 if (!list_empty(&peer->transmitted)) { 596 struct sctp_transport *active = asoc->peer.active_path; 597 struct sctp_chunk *ch; 598 599 /* Reset the transport of each chunk on this list */ 600 list_for_each_entry(ch, &peer->transmitted, 601 transmitted_list) { 602 ch->transport = NULL; 603 ch->rtt_in_progress = 0; 604 } 605 606 list_splice_tail_init(&peer->transmitted, 607 &active->transmitted); 608 609 /* Start a T3 timer here in case it wasn't running so 610 * that these migrated packets have a chance to get 611 * retrnasmitted. 612 */ 613 if (!timer_pending(&active->T3_rtx_timer)) 614 if (!mod_timer(&active->T3_rtx_timer, 615 jiffies + active->rto)) 616 sctp_transport_hold(active); 617 } 618 619 asoc->peer.transport_count--; 620 621 sctp_transport_free(peer); 622 } 623 624 /* Add a transport address to an association. */ 625 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 626 const union sctp_addr *addr, 627 const gfp_t gfp, 628 const int peer_state) 629 { 630 struct net *net = sock_net(asoc->base.sk); 631 struct sctp_transport *peer; 632 struct sctp_sock *sp; 633 unsigned short port; 634 635 sp = sctp_sk(asoc->base.sk); 636 637 /* AF_INET and AF_INET6 share common port field. */ 638 port = ntohs(addr->v4.sin_port); 639 640 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 641 asoc, &addr->sa, peer_state); 642 643 /* Set the port if it has not been set yet. */ 644 if (0 == asoc->peer.port) 645 asoc->peer.port = port; 646 647 /* Check to see if this is a duplicate. */ 648 peer = sctp_assoc_lookup_paddr(asoc, addr); 649 if (peer) { 650 /* An UNKNOWN state is only set on transports added by 651 * user in sctp_connectx() call. Such transports should be 652 * considered CONFIRMED per RFC 4960, Section 5.4. 653 */ 654 if (peer->state == SCTP_UNKNOWN) { 655 peer->state = SCTP_ACTIVE; 656 } 657 return peer; 658 } 659 660 peer = sctp_transport_new(net, addr, gfp); 661 if (!peer) 662 return NULL; 663 664 sctp_transport_set_owner(peer, asoc); 665 666 /* Initialize the peer's heartbeat interval based on the 667 * association configured value. 668 */ 669 peer->hbinterval = asoc->hbinterval; 670 671 /* Set the path max_retrans. */ 672 peer->pathmaxrxt = asoc->pathmaxrxt; 673 674 /* And the partial failure retrnas threshold */ 675 peer->pf_retrans = asoc->pf_retrans; 676 677 /* Initialize the peer's SACK delay timeout based on the 678 * association configured value. 679 */ 680 peer->sackdelay = asoc->sackdelay; 681 peer->sackfreq = asoc->sackfreq; 682 683 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 684 * based on association setting. 685 */ 686 peer->param_flags = asoc->param_flags; 687 688 sctp_transport_route(peer, NULL, sp); 689 690 /* Initialize the pmtu of the transport. */ 691 if (peer->param_flags & SPP_PMTUD_DISABLE) { 692 if (asoc->pathmtu) 693 peer->pathmtu = asoc->pathmtu; 694 else 695 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 696 } 697 698 /* If this is the first transport addr on this association, 699 * initialize the association PMTU to the peer's PMTU. 700 * If not and the current association PMTU is higher than the new 701 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 702 */ 703 if (asoc->pathmtu) 704 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 705 else 706 asoc->pathmtu = peer->pathmtu; 707 708 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 709 asoc->pathmtu); 710 711 peer->pmtu_pending = 0; 712 713 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 714 715 /* The asoc->peer.port might not be meaningful yet, but 716 * initialize the packet structure anyway. 717 */ 718 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 719 asoc->peer.port); 720 721 /* 7.2.1 Slow-Start 722 * 723 * o The initial cwnd before DATA transmission or after a sufficiently 724 * long idle period MUST be set to 725 * min(4*MTU, max(2*MTU, 4380 bytes)) 726 * 727 * o The initial value of ssthresh MAY be arbitrarily high 728 * (for example, implementations MAY use the size of the 729 * receiver advertised window). 730 */ 731 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 732 733 /* At this point, we may not have the receiver's advertised window, 734 * so initialize ssthresh to the default value and it will be set 735 * later when we process the INIT. 736 */ 737 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 738 739 peer->partial_bytes_acked = 0; 740 peer->flight_size = 0; 741 peer->burst_limited = 0; 742 743 /* Set the transport's RTO.initial value */ 744 peer->rto = asoc->rto_initial; 745 sctp_max_rto(asoc, peer); 746 747 /* Set the peer's active state. */ 748 peer->state = peer_state; 749 750 /* Attach the remote transport to our asoc. */ 751 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 752 asoc->peer.transport_count++; 753 754 /* If we do not yet have a primary path, set one. */ 755 if (!asoc->peer.primary_path) { 756 sctp_assoc_set_primary(asoc, peer); 757 asoc->peer.retran_path = peer; 758 } 759 760 if (asoc->peer.active_path == asoc->peer.retran_path && 761 peer->state != SCTP_UNCONFIRMED) { 762 asoc->peer.retran_path = peer; 763 } 764 765 return peer; 766 } 767 768 /* Delete a transport address from an association. */ 769 void sctp_assoc_del_peer(struct sctp_association *asoc, 770 const union sctp_addr *addr) 771 { 772 struct list_head *pos; 773 struct list_head *temp; 774 struct sctp_transport *transport; 775 776 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 777 transport = list_entry(pos, struct sctp_transport, transports); 778 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 779 /* Do book keeping for removing the peer and free it. */ 780 sctp_assoc_rm_peer(asoc, transport); 781 break; 782 } 783 } 784 } 785 786 /* Lookup a transport by address. */ 787 struct sctp_transport *sctp_assoc_lookup_paddr( 788 const struct sctp_association *asoc, 789 const union sctp_addr *address) 790 { 791 struct sctp_transport *t; 792 793 /* Cycle through all transports searching for a peer address. */ 794 795 list_for_each_entry(t, &asoc->peer.transport_addr_list, 796 transports) { 797 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 798 return t; 799 } 800 801 return NULL; 802 } 803 804 /* Remove all transports except a give one */ 805 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 806 struct sctp_transport *primary) 807 { 808 struct sctp_transport *temp; 809 struct sctp_transport *t; 810 811 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 812 transports) { 813 /* if the current transport is not the primary one, delete it */ 814 if (t != primary) 815 sctp_assoc_rm_peer(asoc, t); 816 } 817 } 818 819 /* Engage in transport control operations. 820 * Mark the transport up or down and send a notification to the user. 821 * Select and update the new active and retran paths. 822 */ 823 void sctp_assoc_control_transport(struct sctp_association *asoc, 824 struct sctp_transport *transport, 825 sctp_transport_cmd_t command, 826 sctp_sn_error_t error) 827 { 828 struct sctp_transport *t = NULL; 829 struct sctp_transport *first; 830 struct sctp_transport *second; 831 struct sctp_ulpevent *event; 832 struct sockaddr_storage addr; 833 int spc_state = 0; 834 bool ulp_notify = true; 835 836 /* Record the transition on the transport. */ 837 switch (command) { 838 case SCTP_TRANSPORT_UP: 839 /* If we are moving from UNCONFIRMED state due 840 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 841 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 842 */ 843 if (SCTP_UNCONFIRMED == transport->state && 844 SCTP_HEARTBEAT_SUCCESS == error) 845 spc_state = SCTP_ADDR_CONFIRMED; 846 else 847 spc_state = SCTP_ADDR_AVAILABLE; 848 /* Don't inform ULP about transition from PF to 849 * active state and set cwnd to 1, see SCTP 850 * Quick failover draft section 5.1, point 5 851 */ 852 if (transport->state == SCTP_PF) { 853 ulp_notify = false; 854 transport->cwnd = 1; 855 } 856 transport->state = SCTP_ACTIVE; 857 break; 858 859 case SCTP_TRANSPORT_DOWN: 860 /* If the transport was never confirmed, do not transition it 861 * to inactive state. Also, release the cached route since 862 * there may be a better route next time. 863 */ 864 if (transport->state != SCTP_UNCONFIRMED) 865 transport->state = SCTP_INACTIVE; 866 else { 867 dst_release(transport->dst); 868 transport->dst = NULL; 869 } 870 871 spc_state = SCTP_ADDR_UNREACHABLE; 872 break; 873 874 case SCTP_TRANSPORT_PF: 875 transport->state = SCTP_PF; 876 ulp_notify = false; 877 break; 878 879 default: 880 return; 881 } 882 883 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 884 * user. 885 */ 886 if (ulp_notify) { 887 memset(&addr, 0, sizeof(struct sockaddr_storage)); 888 memcpy(&addr, &transport->ipaddr, 889 transport->af_specific->sockaddr_len); 890 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 891 0, spc_state, error, GFP_ATOMIC); 892 if (event) 893 sctp_ulpq_tail_event(&asoc->ulpq, event); 894 } 895 896 /* Select new active and retran paths. */ 897 898 /* Look for the two most recently used active transports. 899 * 900 * This code produces the wrong ordering whenever jiffies 901 * rolls over, but we still get usable transports, so we don't 902 * worry about it. 903 */ 904 first = NULL; second = NULL; 905 906 list_for_each_entry(t, &asoc->peer.transport_addr_list, 907 transports) { 908 909 if ((t->state == SCTP_INACTIVE) || 910 (t->state == SCTP_UNCONFIRMED) || 911 (t->state == SCTP_PF)) 912 continue; 913 if (!first || t->last_time_heard > first->last_time_heard) { 914 second = first; 915 first = t; 916 } 917 if (!second || t->last_time_heard > second->last_time_heard) 918 second = t; 919 } 920 921 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 922 * 923 * By default, an endpoint should always transmit to the 924 * primary path, unless the SCTP user explicitly specifies the 925 * destination transport address (and possibly source 926 * transport address) to use. 927 * 928 * [If the primary is active but not most recent, bump the most 929 * recently used transport.] 930 */ 931 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 932 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 933 first != asoc->peer.primary_path) { 934 second = first; 935 first = asoc->peer.primary_path; 936 } 937 938 /* If we failed to find a usable transport, just camp on the 939 * primary, even if it is inactive. 940 */ 941 if (!first) { 942 first = asoc->peer.primary_path; 943 second = asoc->peer.primary_path; 944 } 945 946 /* Set the active and retran transports. */ 947 asoc->peer.active_path = first; 948 asoc->peer.retran_path = second; 949 } 950 951 /* Hold a reference to an association. */ 952 void sctp_association_hold(struct sctp_association *asoc) 953 { 954 atomic_inc(&asoc->base.refcnt); 955 } 956 957 /* Release a reference to an association and cleanup 958 * if there are no more references. 959 */ 960 void sctp_association_put(struct sctp_association *asoc) 961 { 962 if (atomic_dec_and_test(&asoc->base.refcnt)) 963 sctp_association_destroy(asoc); 964 } 965 966 /* Allocate the next TSN, Transmission Sequence Number, for the given 967 * association. 968 */ 969 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 970 { 971 /* From Section 1.6 Serial Number Arithmetic: 972 * Transmission Sequence Numbers wrap around when they reach 973 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 974 * after transmitting TSN = 2*32 - 1 is TSN = 0. 975 */ 976 __u32 retval = asoc->next_tsn; 977 asoc->next_tsn++; 978 asoc->unack_data++; 979 980 return retval; 981 } 982 983 /* Compare two addresses to see if they match. Wildcard addresses 984 * only match themselves. 985 */ 986 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 987 const union sctp_addr *ss2) 988 { 989 struct sctp_af *af; 990 991 af = sctp_get_af_specific(ss1->sa.sa_family); 992 if (unlikely(!af)) 993 return 0; 994 995 return af->cmp_addr(ss1, ss2); 996 } 997 998 /* Return an ecne chunk to get prepended to a packet. 999 * Note: We are sly and return a shared, prealloced chunk. FIXME: 1000 * No we don't, but we could/should. 1001 */ 1002 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 1003 { 1004 struct sctp_chunk *chunk; 1005 1006 /* Send ECNE if needed. 1007 * Not being able to allocate a chunk here is not deadly. 1008 */ 1009 if (asoc->need_ecne) 1010 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1011 else 1012 chunk = NULL; 1013 1014 return chunk; 1015 } 1016 1017 /* 1018 * Find which transport this TSN was sent on. 1019 */ 1020 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1021 __u32 tsn) 1022 { 1023 struct sctp_transport *active; 1024 struct sctp_transport *match; 1025 struct sctp_transport *transport; 1026 struct sctp_chunk *chunk; 1027 __be32 key = htonl(tsn); 1028 1029 match = NULL; 1030 1031 /* 1032 * FIXME: In general, find a more efficient data structure for 1033 * searching. 1034 */ 1035 1036 /* 1037 * The general strategy is to search each transport's transmitted 1038 * list. Return which transport this TSN lives on. 1039 * 1040 * Let's be hopeful and check the active_path first. 1041 * Another optimization would be to know if there is only one 1042 * outbound path and not have to look for the TSN at all. 1043 * 1044 */ 1045 1046 active = asoc->peer.active_path; 1047 1048 list_for_each_entry(chunk, &active->transmitted, 1049 transmitted_list) { 1050 1051 if (key == chunk->subh.data_hdr->tsn) { 1052 match = active; 1053 goto out; 1054 } 1055 } 1056 1057 /* If not found, go search all the other transports. */ 1058 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1059 transports) { 1060 1061 if (transport == active) 1062 continue; 1063 list_for_each_entry(chunk, &transport->transmitted, 1064 transmitted_list) { 1065 if (key == chunk->subh.data_hdr->tsn) { 1066 match = transport; 1067 goto out; 1068 } 1069 } 1070 } 1071 out: 1072 return match; 1073 } 1074 1075 /* Is this the association we are looking for? */ 1076 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1077 struct net *net, 1078 const union sctp_addr *laddr, 1079 const union sctp_addr *paddr) 1080 { 1081 struct sctp_transport *transport; 1082 1083 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1084 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1085 net_eq(sock_net(asoc->base.sk), net)) { 1086 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1087 if (!transport) 1088 goto out; 1089 1090 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1091 sctp_sk(asoc->base.sk))) 1092 goto out; 1093 } 1094 transport = NULL; 1095 1096 out: 1097 return transport; 1098 } 1099 1100 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1101 static void sctp_assoc_bh_rcv(struct work_struct *work) 1102 { 1103 struct sctp_association *asoc = 1104 container_of(work, struct sctp_association, 1105 base.inqueue.immediate); 1106 struct net *net = sock_net(asoc->base.sk); 1107 struct sctp_endpoint *ep; 1108 struct sctp_chunk *chunk; 1109 struct sctp_inq *inqueue; 1110 int state; 1111 sctp_subtype_t subtype; 1112 int error = 0; 1113 1114 /* The association should be held so we should be safe. */ 1115 ep = asoc->ep; 1116 1117 inqueue = &asoc->base.inqueue; 1118 sctp_association_hold(asoc); 1119 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1120 state = asoc->state; 1121 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1122 1123 /* SCTP-AUTH, Section 6.3: 1124 * The receiver has a list of chunk types which it expects 1125 * to be received only after an AUTH-chunk. This list has 1126 * been sent to the peer during the association setup. It 1127 * MUST silently discard these chunks if they are not placed 1128 * after an AUTH chunk in the packet. 1129 */ 1130 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1131 continue; 1132 1133 /* Remember where the last DATA chunk came from so we 1134 * know where to send the SACK. 1135 */ 1136 if (sctp_chunk_is_data(chunk)) 1137 asoc->peer.last_data_from = chunk->transport; 1138 else { 1139 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1140 asoc->stats.ictrlchunks++; 1141 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1142 asoc->stats.isacks++; 1143 } 1144 1145 if (chunk->transport) 1146 chunk->transport->last_time_heard = jiffies; 1147 1148 /* Run through the state machine. */ 1149 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1150 state, ep, asoc, chunk, GFP_ATOMIC); 1151 1152 /* Check to see if the association is freed in response to 1153 * the incoming chunk. If so, get out of the while loop. 1154 */ 1155 if (asoc->base.dead) 1156 break; 1157 1158 /* If there is an error on chunk, discard this packet. */ 1159 if (error && chunk) 1160 chunk->pdiscard = 1; 1161 } 1162 sctp_association_put(asoc); 1163 } 1164 1165 /* This routine moves an association from its old sk to a new sk. */ 1166 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1167 { 1168 struct sctp_sock *newsp = sctp_sk(newsk); 1169 struct sock *oldsk = assoc->base.sk; 1170 1171 /* Delete the association from the old endpoint's list of 1172 * associations. 1173 */ 1174 list_del_init(&assoc->asocs); 1175 1176 /* Decrement the backlog value for a TCP-style socket. */ 1177 if (sctp_style(oldsk, TCP)) 1178 oldsk->sk_ack_backlog--; 1179 1180 /* Release references to the old endpoint and the sock. */ 1181 sctp_endpoint_put(assoc->ep); 1182 sock_put(assoc->base.sk); 1183 1184 /* Get a reference to the new endpoint. */ 1185 assoc->ep = newsp->ep; 1186 sctp_endpoint_hold(assoc->ep); 1187 1188 /* Get a reference to the new sock. */ 1189 assoc->base.sk = newsk; 1190 sock_hold(assoc->base.sk); 1191 1192 /* Add the association to the new endpoint's list of associations. */ 1193 sctp_endpoint_add_asoc(newsp->ep, assoc); 1194 } 1195 1196 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1197 void sctp_assoc_update(struct sctp_association *asoc, 1198 struct sctp_association *new) 1199 { 1200 struct sctp_transport *trans; 1201 struct list_head *pos, *temp; 1202 1203 /* Copy in new parameters of peer. */ 1204 asoc->c = new->c; 1205 asoc->peer.rwnd = new->peer.rwnd; 1206 asoc->peer.sack_needed = new->peer.sack_needed; 1207 asoc->peer.i = new->peer.i; 1208 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1209 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1210 1211 /* Remove any peer addresses not present in the new association. */ 1212 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1213 trans = list_entry(pos, struct sctp_transport, transports); 1214 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1215 sctp_assoc_rm_peer(asoc, trans); 1216 continue; 1217 } 1218 1219 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1220 sctp_transport_reset(trans); 1221 } 1222 1223 /* If the case is A (association restart), use 1224 * initial_tsn as next_tsn. If the case is B, use 1225 * current next_tsn in case data sent to peer 1226 * has been discarded and needs retransmission. 1227 */ 1228 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1229 asoc->next_tsn = new->next_tsn; 1230 asoc->ctsn_ack_point = new->ctsn_ack_point; 1231 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1232 1233 /* Reinitialize SSN for both local streams 1234 * and peer's streams. 1235 */ 1236 sctp_ssnmap_clear(asoc->ssnmap); 1237 1238 /* Flush the ULP reassembly and ordered queue. 1239 * Any data there will now be stale and will 1240 * cause problems. 1241 */ 1242 sctp_ulpq_flush(&asoc->ulpq); 1243 1244 /* reset the overall association error count so 1245 * that the restarted association doesn't get torn 1246 * down on the next retransmission timer. 1247 */ 1248 asoc->overall_error_count = 0; 1249 1250 } else { 1251 /* Add any peer addresses from the new association. */ 1252 list_for_each_entry(trans, &new->peer.transport_addr_list, 1253 transports) { 1254 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1255 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1256 GFP_ATOMIC, trans->state); 1257 } 1258 1259 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1260 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1261 if (!asoc->ssnmap) { 1262 /* Move the ssnmap. */ 1263 asoc->ssnmap = new->ssnmap; 1264 new->ssnmap = NULL; 1265 } 1266 1267 if (!asoc->assoc_id) { 1268 /* get a new association id since we don't have one 1269 * yet. 1270 */ 1271 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1272 } 1273 } 1274 1275 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1276 * and also move the association shared keys over 1277 */ 1278 kfree(asoc->peer.peer_random); 1279 asoc->peer.peer_random = new->peer.peer_random; 1280 new->peer.peer_random = NULL; 1281 1282 kfree(asoc->peer.peer_chunks); 1283 asoc->peer.peer_chunks = new->peer.peer_chunks; 1284 new->peer.peer_chunks = NULL; 1285 1286 kfree(asoc->peer.peer_hmacs); 1287 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1288 new->peer.peer_hmacs = NULL; 1289 1290 sctp_auth_key_put(asoc->asoc_shared_key); 1291 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1292 } 1293 1294 /* Update the retran path for sending a retransmitted packet. 1295 * Round-robin through the active transports, else round-robin 1296 * through the inactive transports as this is the next best thing 1297 * we can try. 1298 */ 1299 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1300 { 1301 struct sctp_transport *t, *next; 1302 struct list_head *head = &asoc->peer.transport_addr_list; 1303 struct list_head *pos; 1304 1305 if (asoc->peer.transport_count == 1) 1306 return; 1307 1308 /* Find the next transport in a round-robin fashion. */ 1309 t = asoc->peer.retran_path; 1310 pos = &t->transports; 1311 next = NULL; 1312 1313 while (1) { 1314 /* Skip the head. */ 1315 if (pos->next == head) 1316 pos = head->next; 1317 else 1318 pos = pos->next; 1319 1320 t = list_entry(pos, struct sctp_transport, transports); 1321 1322 /* We have exhausted the list, but didn't find any 1323 * other active transports. If so, use the next 1324 * transport. 1325 */ 1326 if (t == asoc->peer.retran_path) { 1327 t = next; 1328 break; 1329 } 1330 1331 /* Try to find an active transport. */ 1332 1333 if ((t->state == SCTP_ACTIVE) || 1334 (t->state == SCTP_UNKNOWN)) { 1335 break; 1336 } else { 1337 /* Keep track of the next transport in case 1338 * we don't find any active transport. 1339 */ 1340 if (t->state != SCTP_UNCONFIRMED && !next) 1341 next = t; 1342 } 1343 } 1344 1345 if (t) 1346 asoc->peer.retran_path = t; 1347 else 1348 t = asoc->peer.retran_path; 1349 1350 pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc, 1351 &t->ipaddr.sa); 1352 } 1353 1354 /* Choose the transport for sending retransmit packet. */ 1355 struct sctp_transport *sctp_assoc_choose_alter_transport( 1356 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1357 { 1358 /* If this is the first time packet is sent, use the active path, 1359 * else use the retran path. If the last packet was sent over the 1360 * retran path, update the retran path and use it. 1361 */ 1362 if (!last_sent_to) 1363 return asoc->peer.active_path; 1364 else { 1365 if (last_sent_to == asoc->peer.retran_path) 1366 sctp_assoc_update_retran_path(asoc); 1367 return asoc->peer.retran_path; 1368 } 1369 } 1370 1371 /* Update the association's pmtu and frag_point by going through all the 1372 * transports. This routine is called when a transport's PMTU has changed. 1373 */ 1374 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1375 { 1376 struct sctp_transport *t; 1377 __u32 pmtu = 0; 1378 1379 if (!asoc) 1380 return; 1381 1382 /* Get the lowest pmtu of all the transports. */ 1383 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1384 transports) { 1385 if (t->pmtu_pending && t->dst) { 1386 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1387 t->pmtu_pending = 0; 1388 } 1389 if (!pmtu || (t->pathmtu < pmtu)) 1390 pmtu = t->pathmtu; 1391 } 1392 1393 if (pmtu) { 1394 asoc->pathmtu = pmtu; 1395 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1396 } 1397 1398 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1399 asoc->pathmtu, asoc->frag_point); 1400 } 1401 1402 /* Should we send a SACK to update our peer? */ 1403 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1404 { 1405 struct net *net = sock_net(asoc->base.sk); 1406 switch (asoc->state) { 1407 case SCTP_STATE_ESTABLISHED: 1408 case SCTP_STATE_SHUTDOWN_PENDING: 1409 case SCTP_STATE_SHUTDOWN_RECEIVED: 1410 case SCTP_STATE_SHUTDOWN_SENT: 1411 if ((asoc->rwnd > asoc->a_rwnd) && 1412 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1413 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1414 asoc->pathmtu))) 1415 return 1; 1416 break; 1417 default: 1418 break; 1419 } 1420 return 0; 1421 } 1422 1423 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1424 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1425 { 1426 struct sctp_chunk *sack; 1427 struct timer_list *timer; 1428 1429 if (asoc->rwnd_over) { 1430 if (asoc->rwnd_over >= len) { 1431 asoc->rwnd_over -= len; 1432 } else { 1433 asoc->rwnd += (len - asoc->rwnd_over); 1434 asoc->rwnd_over = 0; 1435 } 1436 } else { 1437 asoc->rwnd += len; 1438 } 1439 1440 /* If we had window pressure, start recovering it 1441 * once our rwnd had reached the accumulated pressure 1442 * threshold. The idea is to recover slowly, but up 1443 * to the initial advertised window. 1444 */ 1445 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1446 int change = min(asoc->pathmtu, asoc->rwnd_press); 1447 asoc->rwnd += change; 1448 asoc->rwnd_press -= change; 1449 } 1450 1451 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1452 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1453 asoc->a_rwnd); 1454 1455 /* Send a window update SACK if the rwnd has increased by at least the 1456 * minimum of the association's PMTU and half of the receive buffer. 1457 * The algorithm used is similar to the one described in 1458 * Section 4.2.3.3 of RFC 1122. 1459 */ 1460 if (sctp_peer_needs_update(asoc)) { 1461 asoc->a_rwnd = asoc->rwnd; 1462 1463 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1464 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1465 asoc->a_rwnd); 1466 1467 sack = sctp_make_sack(asoc); 1468 if (!sack) 1469 return; 1470 1471 asoc->peer.sack_needed = 0; 1472 1473 sctp_outq_tail(&asoc->outqueue, sack); 1474 1475 /* Stop the SACK timer. */ 1476 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1477 if (del_timer(timer)) 1478 sctp_association_put(asoc); 1479 } 1480 } 1481 1482 /* Decrease asoc's rwnd by len. */ 1483 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1484 { 1485 int rx_count; 1486 int over = 0; 1487 1488 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1489 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1490 "asoc->rwnd_over:%u!\n", __func__, asoc, 1491 asoc->rwnd, asoc->rwnd_over); 1492 1493 if (asoc->ep->rcvbuf_policy) 1494 rx_count = atomic_read(&asoc->rmem_alloc); 1495 else 1496 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1497 1498 /* If we've reached or overflowed our receive buffer, announce 1499 * a 0 rwnd if rwnd would still be positive. Store the 1500 * the pottential pressure overflow so that the window can be restored 1501 * back to original value. 1502 */ 1503 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1504 over = 1; 1505 1506 if (asoc->rwnd >= len) { 1507 asoc->rwnd -= len; 1508 if (over) { 1509 asoc->rwnd_press += asoc->rwnd; 1510 asoc->rwnd = 0; 1511 } 1512 } else { 1513 asoc->rwnd_over = len - asoc->rwnd; 1514 asoc->rwnd = 0; 1515 } 1516 1517 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1518 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1519 asoc->rwnd_press); 1520 } 1521 1522 /* Build the bind address list for the association based on info from the 1523 * local endpoint and the remote peer. 1524 */ 1525 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1526 sctp_scope_t scope, gfp_t gfp) 1527 { 1528 int flags; 1529 1530 /* Use scoping rules to determine the subset of addresses from 1531 * the endpoint. 1532 */ 1533 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1534 if (asoc->peer.ipv4_address) 1535 flags |= SCTP_ADDR4_PEERSUPP; 1536 if (asoc->peer.ipv6_address) 1537 flags |= SCTP_ADDR6_PEERSUPP; 1538 1539 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1540 &asoc->base.bind_addr, 1541 &asoc->ep->base.bind_addr, 1542 scope, gfp, flags); 1543 } 1544 1545 /* Build the association's bind address list from the cookie. */ 1546 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1547 struct sctp_cookie *cookie, 1548 gfp_t gfp) 1549 { 1550 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1551 int var_size3 = cookie->raw_addr_list_len; 1552 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1553 1554 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1555 asoc->ep->base.bind_addr.port, gfp); 1556 } 1557 1558 /* Lookup laddr in the bind address list of an association. */ 1559 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1560 const union sctp_addr *laddr) 1561 { 1562 int found = 0; 1563 1564 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1565 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1566 sctp_sk(asoc->base.sk))) 1567 found = 1; 1568 1569 return found; 1570 } 1571 1572 /* Set an association id for a given association */ 1573 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1574 { 1575 bool preload = gfp & __GFP_WAIT; 1576 int ret; 1577 1578 /* If the id is already assigned, keep it. */ 1579 if (asoc->assoc_id) 1580 return 0; 1581 1582 if (preload) 1583 idr_preload(gfp); 1584 spin_lock_bh(&sctp_assocs_id_lock); 1585 /* 0 is not a valid assoc_id, must be >= 1 */ 1586 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1587 spin_unlock_bh(&sctp_assocs_id_lock); 1588 if (preload) 1589 idr_preload_end(); 1590 if (ret < 0) 1591 return ret; 1592 1593 asoc->assoc_id = (sctp_assoc_t)ret; 1594 return 0; 1595 } 1596 1597 /* Free the ASCONF queue */ 1598 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1599 { 1600 struct sctp_chunk *asconf; 1601 struct sctp_chunk *tmp; 1602 1603 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1604 list_del_init(&asconf->list); 1605 sctp_chunk_free(asconf); 1606 } 1607 } 1608 1609 /* Free asconf_ack cache */ 1610 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1611 { 1612 struct sctp_chunk *ack; 1613 struct sctp_chunk *tmp; 1614 1615 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1616 transmitted_list) { 1617 list_del_init(&ack->transmitted_list); 1618 sctp_chunk_free(ack); 1619 } 1620 } 1621 1622 /* Clean up the ASCONF_ACK queue */ 1623 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1624 { 1625 struct sctp_chunk *ack; 1626 struct sctp_chunk *tmp; 1627 1628 /* We can remove all the entries from the queue up to 1629 * the "Peer-Sequence-Number". 1630 */ 1631 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1632 transmitted_list) { 1633 if (ack->subh.addip_hdr->serial == 1634 htonl(asoc->peer.addip_serial)) 1635 break; 1636 1637 list_del_init(&ack->transmitted_list); 1638 sctp_chunk_free(ack); 1639 } 1640 } 1641 1642 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1643 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1644 const struct sctp_association *asoc, 1645 __be32 serial) 1646 { 1647 struct sctp_chunk *ack; 1648 1649 /* Walk through the list of cached ASCONF-ACKs and find the 1650 * ack chunk whose serial number matches that of the request. 1651 */ 1652 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1653 if (ack->subh.addip_hdr->serial == serial) { 1654 sctp_chunk_hold(ack); 1655 return ack; 1656 } 1657 } 1658 1659 return NULL; 1660 } 1661 1662 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1663 { 1664 /* Free any cached ASCONF_ACK chunk. */ 1665 sctp_assoc_free_asconf_acks(asoc); 1666 1667 /* Free the ASCONF queue. */ 1668 sctp_assoc_free_asconf_queue(asoc); 1669 1670 /* Free any cached ASCONF chunk. */ 1671 if (asoc->addip_last_asconf) 1672 sctp_chunk_free(asoc->addip_last_asconf); 1673 } 1674