xref: /linux/net/sctp/associola.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* Keep track of the new idr low so that we don't re-use association id
70  * numbers too fast.  It is protected by they idr spin lock is in the
71  * range of 1 - INT_MAX.
72  */
73 static u32 idr_low = 1;
74 
75 
76 /* 1st Level Abstractions. */
77 
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 					  const struct sctp_endpoint *ep,
81 					  const struct sock *sk,
82 					  sctp_scope_t scope,
83 					  gfp_t gfp)
84 {
85 	struct net *net = sock_net(sk);
86 	struct sctp_sock *sp;
87 	int i;
88 	sctp_paramhdr_t *p;
89 	int err;
90 
91 	/* Retrieve the SCTP per socket area.  */
92 	sp = sctp_sk((struct sock *)sk);
93 
94 	/* Discarding const is appropriate here.  */
95 	asoc->ep = (struct sctp_endpoint *)ep;
96 	sctp_endpoint_hold(asoc->ep);
97 
98 	/* Hold the sock.  */
99 	asoc->base.sk = (struct sock *)sk;
100 	sock_hold(asoc->base.sk);
101 
102 	/* Initialize the common base substructure.  */
103 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104 
105 	/* Initialize the object handling fields.  */
106 	atomic_set(&asoc->base.refcnt, 1);
107 	asoc->base.dead = 0;
108 	asoc->base.malloced = 0;
109 
110 	/* Initialize the bind addr area.  */
111 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112 
113 	asoc->state = SCTP_STATE_CLOSED;
114 
115 	/* Set these values from the socket values, a conversion between
116 	 * millsecons to seconds/microseconds must also be done.
117 	 */
118 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
119 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
120 					* 1000;
121 	asoc->frag_point = 0;
122 	asoc->user_frag = sp->user_frag;
123 
124 	/* Set the association max_retrans and RTO values from the
125 	 * socket values.
126 	 */
127 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
128 	asoc->pf_retrans  = net->sctp.pf_retrans;
129 
130 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
131 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
132 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
133 
134 	asoc->overall_error_count = 0;
135 
136 	/* Initialize the association's heartbeat interval based on the
137 	 * sock configured value.
138 	 */
139 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
140 
141 	/* Initialize path max retrans value. */
142 	asoc->pathmaxrxt = sp->pathmaxrxt;
143 
144 	/* Initialize default path MTU. */
145 	asoc->pathmtu = sp->pathmtu;
146 
147 	/* Set association default SACK delay */
148 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
149 	asoc->sackfreq = sp->sackfreq;
150 
151 	/* Set the association default flags controlling
152 	 * Heartbeat, SACK delay, and Path MTU Discovery.
153 	 */
154 	asoc->param_flags = sp->param_flags;
155 
156 	/* Initialize the maximum mumber of new data packets that can be sent
157 	 * in a burst.
158 	 */
159 	asoc->max_burst = sp->max_burst;
160 
161 	/* initialize association timers */
162 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
165 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
166 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
167 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
168 
169 	/* sctpimpguide Section 2.12.2
170 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
171 	 * recommended value of 5 times 'RTO.Max'.
172 	 */
173 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
174 		= 5 * asoc->rto_max;
175 
176 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
177 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
178 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
179 		min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
180 
181 	/* Initializes the timers */
182 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
183 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
184 				(unsigned long)asoc);
185 
186 	/* Pull default initialization values from the sock options.
187 	 * Note: This assumes that the values have already been
188 	 * validated in the sock.
189 	 */
190 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
191 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
192 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
193 
194 	asoc->max_init_timeo =
195 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
196 
197 	/* Allocate storage for the ssnmap after the inbound and outbound
198 	 * streams have been negotiated during Init.
199 	 */
200 	asoc->ssnmap = NULL;
201 
202 	/* Set the local window size for receive.
203 	 * This is also the rcvbuf space per association.
204 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
205 	 * 1500 bytes in one SCTP packet.
206 	 */
207 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
208 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
209 	else
210 		asoc->rwnd = sk->sk_rcvbuf/2;
211 
212 	asoc->a_rwnd = asoc->rwnd;
213 
214 	asoc->rwnd_over = 0;
215 	asoc->rwnd_press = 0;
216 
217 	/* Use my own max window until I learn something better.  */
218 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
219 
220 	/* Set the sndbuf size for transmit.  */
221 	asoc->sndbuf_used = 0;
222 
223 	/* Initialize the receive memory counter */
224 	atomic_set(&asoc->rmem_alloc, 0);
225 
226 	init_waitqueue_head(&asoc->wait);
227 
228 	asoc->c.my_vtag = sctp_generate_tag(ep);
229 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
230 	asoc->c.peer_vtag = 0;
231 	asoc->c.my_ttag   = 0;
232 	asoc->c.peer_ttag = 0;
233 	asoc->c.my_port = ep->base.bind_addr.port;
234 
235 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
236 
237 	asoc->next_tsn = asoc->c.initial_tsn;
238 
239 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
240 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
241 	asoc->highest_sacked = asoc->ctsn_ack_point;
242 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
243 	asoc->unack_data = 0;
244 
245 	/* ADDIP Section 4.1 Asconf Chunk Procedures
246 	 *
247 	 * When an endpoint has an ASCONF signaled change to be sent to the
248 	 * remote endpoint it should do the following:
249 	 * ...
250 	 * A2) a serial number should be assigned to the chunk. The serial
251 	 * number SHOULD be a monotonically increasing number. The serial
252 	 * numbers SHOULD be initialized at the start of the
253 	 * association to the same value as the initial TSN.
254 	 */
255 	asoc->addip_serial = asoc->c.initial_tsn;
256 
257 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
258 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
259 
260 	/* Make an empty list of remote transport addresses.  */
261 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
262 	asoc->peer.transport_count = 0;
263 
264 	/* RFC 2960 5.1 Normal Establishment of an Association
265 	 *
266 	 * After the reception of the first data chunk in an
267 	 * association the endpoint must immediately respond with a
268 	 * sack to acknowledge the data chunk.  Subsequent
269 	 * acknowledgements should be done as described in Section
270 	 * 6.2.
271 	 *
272 	 * [We implement this by telling a new association that it
273 	 * already received one packet.]
274 	 */
275 	asoc->peer.sack_needed = 1;
276 	asoc->peer.sack_cnt = 0;
277 	asoc->peer.sack_generation = 1;
278 
279 	/* Assume that the peer will tell us if he recognizes ASCONF
280 	 * as part of INIT exchange.
281 	 * The sctp_addip_noauth option is there for backward compatibilty
282 	 * and will revert old behavior.
283 	 */
284 	asoc->peer.asconf_capable = 0;
285 	if (net->sctp.addip_noauth)
286 		asoc->peer.asconf_capable = 1;
287 	asoc->asconf_addr_del_pending = NULL;
288 	asoc->src_out_of_asoc_ok = 0;
289 	asoc->new_transport = NULL;
290 
291 	/* Create an input queue.  */
292 	sctp_inq_init(&asoc->base.inqueue);
293 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
294 
295 	/* Create an output queue.  */
296 	sctp_outq_init(asoc, &asoc->outqueue);
297 
298 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
299 		goto fail_init;
300 
301 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
302 
303 	asoc->need_ecne = 0;
304 
305 	asoc->assoc_id = 0;
306 
307 	/* Assume that peer would support both address types unless we are
308 	 * told otherwise.
309 	 */
310 	asoc->peer.ipv4_address = 1;
311 	if (asoc->base.sk->sk_family == PF_INET6)
312 		asoc->peer.ipv6_address = 1;
313 	INIT_LIST_HEAD(&asoc->asocs);
314 
315 	asoc->autoclose = sp->autoclose;
316 
317 	asoc->default_stream = sp->default_stream;
318 	asoc->default_ppid = sp->default_ppid;
319 	asoc->default_flags = sp->default_flags;
320 	asoc->default_context = sp->default_context;
321 	asoc->default_timetolive = sp->default_timetolive;
322 	asoc->default_rcv_context = sp->default_rcv_context;
323 
324 	/* AUTH related initializations */
325 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
326 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
327 	if (err)
328 		goto fail_init;
329 
330 	asoc->active_key_id = ep->active_key_id;
331 	asoc->asoc_shared_key = NULL;
332 
333 	asoc->default_hmac_id = 0;
334 	/* Save the hmacs and chunks list into this association */
335 	if (ep->auth_hmacs_list)
336 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
337 			ntohs(ep->auth_hmacs_list->param_hdr.length));
338 	if (ep->auth_chunk_list)
339 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
340 			ntohs(ep->auth_chunk_list->param_hdr.length));
341 
342 	/* Get the AUTH random number for this association */
343 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
344 	p->type = SCTP_PARAM_RANDOM;
345 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
346 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
347 
348 	return asoc;
349 
350 fail_init:
351 	sctp_endpoint_put(asoc->ep);
352 	sock_put(asoc->base.sk);
353 	return NULL;
354 }
355 
356 /* Allocate and initialize a new association */
357 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
358 					 const struct sock *sk,
359 					 sctp_scope_t scope,
360 					 gfp_t gfp)
361 {
362 	struct sctp_association *asoc;
363 
364 	asoc = t_new(struct sctp_association, gfp);
365 	if (!asoc)
366 		goto fail;
367 
368 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
369 		goto fail_init;
370 
371 	asoc->base.malloced = 1;
372 	SCTP_DBG_OBJCNT_INC(assoc);
373 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
374 
375 	return asoc;
376 
377 fail_init:
378 	kfree(asoc);
379 fail:
380 	return NULL;
381 }
382 
383 /* Free this association if possible.  There may still be users, so
384  * the actual deallocation may be delayed.
385  */
386 void sctp_association_free(struct sctp_association *asoc)
387 {
388 	struct sock *sk = asoc->base.sk;
389 	struct sctp_transport *transport;
390 	struct list_head *pos, *temp;
391 	int i;
392 
393 	/* Only real associations count against the endpoint, so
394 	 * don't bother for if this is a temporary association.
395 	 */
396 	if (!asoc->temp) {
397 		list_del(&asoc->asocs);
398 
399 		/* Decrement the backlog value for a TCP-style listening
400 		 * socket.
401 		 */
402 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
403 			sk->sk_ack_backlog--;
404 	}
405 
406 	/* Mark as dead, so other users can know this structure is
407 	 * going away.
408 	 */
409 	asoc->base.dead = 1;
410 
411 	/* Dispose of any data lying around in the outqueue. */
412 	sctp_outq_free(&asoc->outqueue);
413 
414 	/* Dispose of any pending messages for the upper layer. */
415 	sctp_ulpq_free(&asoc->ulpq);
416 
417 	/* Dispose of any pending chunks on the inqueue. */
418 	sctp_inq_free(&asoc->base.inqueue);
419 
420 	sctp_tsnmap_free(&asoc->peer.tsn_map);
421 
422 	/* Free ssnmap storage. */
423 	sctp_ssnmap_free(asoc->ssnmap);
424 
425 	/* Clean up the bound address list. */
426 	sctp_bind_addr_free(&asoc->base.bind_addr);
427 
428 	/* Do we need to go through all of our timers and
429 	 * delete them?   To be safe we will try to delete all, but we
430 	 * should be able to go through and make a guess based
431 	 * on our state.
432 	 */
433 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
434 		if (timer_pending(&asoc->timers[i]) &&
435 		    del_timer(&asoc->timers[i]))
436 			sctp_association_put(asoc);
437 	}
438 
439 	/* Free peer's cached cookie. */
440 	kfree(asoc->peer.cookie);
441 	kfree(asoc->peer.peer_random);
442 	kfree(asoc->peer.peer_chunks);
443 	kfree(asoc->peer.peer_hmacs);
444 
445 	/* Release the transport structures. */
446 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
447 		transport = list_entry(pos, struct sctp_transport, transports);
448 		list_del(pos);
449 		sctp_transport_free(transport);
450 	}
451 
452 	asoc->peer.transport_count = 0;
453 
454 	sctp_asconf_queue_teardown(asoc);
455 
456 	/* Free pending address space being deleted */
457 	if (asoc->asconf_addr_del_pending != NULL)
458 		kfree(asoc->asconf_addr_del_pending);
459 
460 	/* AUTH - Free the endpoint shared keys */
461 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
462 
463 	/* AUTH - Free the association shared key */
464 	sctp_auth_key_put(asoc->asoc_shared_key);
465 
466 	sctp_association_put(asoc);
467 }
468 
469 /* Cleanup and free up an association. */
470 static void sctp_association_destroy(struct sctp_association *asoc)
471 {
472 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
473 
474 	sctp_endpoint_put(asoc->ep);
475 	sock_put(asoc->base.sk);
476 
477 	if (asoc->assoc_id != 0) {
478 		spin_lock_bh(&sctp_assocs_id_lock);
479 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
480 		spin_unlock_bh(&sctp_assocs_id_lock);
481 	}
482 
483 	WARN_ON(atomic_read(&asoc->rmem_alloc));
484 
485 	if (asoc->base.malloced) {
486 		kfree(asoc);
487 		SCTP_DBG_OBJCNT_DEC(assoc);
488 	}
489 }
490 
491 /* Change the primary destination address for the peer. */
492 void sctp_assoc_set_primary(struct sctp_association *asoc,
493 			    struct sctp_transport *transport)
494 {
495 	int changeover = 0;
496 
497 	/* it's a changeover only if we already have a primary path
498 	 * that we are changing
499 	 */
500 	if (asoc->peer.primary_path != NULL &&
501 	    asoc->peer.primary_path != transport)
502 		changeover = 1 ;
503 
504 	asoc->peer.primary_path = transport;
505 
506 	/* Set a default msg_name for events. */
507 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
508 	       sizeof(union sctp_addr));
509 
510 	/* If the primary path is changing, assume that the
511 	 * user wants to use this new path.
512 	 */
513 	if ((transport->state == SCTP_ACTIVE) ||
514 	    (transport->state == SCTP_UNKNOWN))
515 		asoc->peer.active_path = transport;
516 
517 	/*
518 	 * SFR-CACC algorithm:
519 	 * Upon the receipt of a request to change the primary
520 	 * destination address, on the data structure for the new
521 	 * primary destination, the sender MUST do the following:
522 	 *
523 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
524 	 * to this destination address earlier. The sender MUST set
525 	 * CYCLING_CHANGEOVER to indicate that this switch is a
526 	 * double switch to the same destination address.
527 	 *
528 	 * Really, only bother is we have data queued or outstanding on
529 	 * the association.
530 	 */
531 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
532 		return;
533 
534 	if (transport->cacc.changeover_active)
535 		transport->cacc.cycling_changeover = changeover;
536 
537 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
538 	 * a changeover has occurred.
539 	 */
540 	transport->cacc.changeover_active = changeover;
541 
542 	/* 3) The sender MUST store the next TSN to be sent in
543 	 * next_tsn_at_change.
544 	 */
545 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
546 }
547 
548 /* Remove a transport from an association.  */
549 void sctp_assoc_rm_peer(struct sctp_association *asoc,
550 			struct sctp_transport *peer)
551 {
552 	struct list_head	*pos;
553 	struct sctp_transport	*transport;
554 
555 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
556 				 " port: %d\n",
557 				 asoc,
558 				 (&peer->ipaddr),
559 				 ntohs(peer->ipaddr.v4.sin_port));
560 
561 	/* If we are to remove the current retran_path, update it
562 	 * to the next peer before removing this peer from the list.
563 	 */
564 	if (asoc->peer.retran_path == peer)
565 		sctp_assoc_update_retran_path(asoc);
566 
567 	/* Remove this peer from the list. */
568 	list_del(&peer->transports);
569 
570 	/* Get the first transport of asoc. */
571 	pos = asoc->peer.transport_addr_list.next;
572 	transport = list_entry(pos, struct sctp_transport, transports);
573 
574 	/* Update any entries that match the peer to be deleted. */
575 	if (asoc->peer.primary_path == peer)
576 		sctp_assoc_set_primary(asoc, transport);
577 	if (asoc->peer.active_path == peer)
578 		asoc->peer.active_path = transport;
579 	if (asoc->peer.retran_path == peer)
580 		asoc->peer.retran_path = transport;
581 	if (asoc->peer.last_data_from == peer)
582 		asoc->peer.last_data_from = transport;
583 
584 	/* If we remove the transport an INIT was last sent to, set it to
585 	 * NULL. Combined with the update of the retran path above, this
586 	 * will cause the next INIT to be sent to the next available
587 	 * transport, maintaining the cycle.
588 	 */
589 	if (asoc->init_last_sent_to == peer)
590 		asoc->init_last_sent_to = NULL;
591 
592 	/* If we remove the transport an SHUTDOWN was last sent to, set it
593 	 * to NULL. Combined with the update of the retran path above, this
594 	 * will cause the next SHUTDOWN to be sent to the next available
595 	 * transport, maintaining the cycle.
596 	 */
597 	if (asoc->shutdown_last_sent_to == peer)
598 		asoc->shutdown_last_sent_to = NULL;
599 
600 	/* If we remove the transport an ASCONF was last sent to, set it to
601 	 * NULL.
602 	 */
603 	if (asoc->addip_last_asconf &&
604 	    asoc->addip_last_asconf->transport == peer)
605 		asoc->addip_last_asconf->transport = NULL;
606 
607 	/* If we have something on the transmitted list, we have to
608 	 * save it off.  The best place is the active path.
609 	 */
610 	if (!list_empty(&peer->transmitted)) {
611 		struct sctp_transport *active = asoc->peer.active_path;
612 		struct sctp_chunk *ch;
613 
614 		/* Reset the transport of each chunk on this list */
615 		list_for_each_entry(ch, &peer->transmitted,
616 					transmitted_list) {
617 			ch->transport = NULL;
618 			ch->rtt_in_progress = 0;
619 		}
620 
621 		list_splice_tail_init(&peer->transmitted,
622 					&active->transmitted);
623 
624 		/* Start a T3 timer here in case it wasn't running so
625 		 * that these migrated packets have a chance to get
626 		 * retrnasmitted.
627 		 */
628 		if (!timer_pending(&active->T3_rtx_timer))
629 			if (!mod_timer(&active->T3_rtx_timer,
630 					jiffies + active->rto))
631 				sctp_transport_hold(active);
632 	}
633 
634 	asoc->peer.transport_count--;
635 
636 	sctp_transport_free(peer);
637 }
638 
639 /* Add a transport address to an association.  */
640 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
641 					   const union sctp_addr *addr,
642 					   const gfp_t gfp,
643 					   const int peer_state)
644 {
645 	struct net *net = sock_net(asoc->base.sk);
646 	struct sctp_transport *peer;
647 	struct sctp_sock *sp;
648 	unsigned short port;
649 
650 	sp = sctp_sk(asoc->base.sk);
651 
652 	/* AF_INET and AF_INET6 share common port field. */
653 	port = ntohs(addr->v4.sin_port);
654 
655 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
656 				 " port: %d state:%d\n",
657 				 asoc,
658 				 addr,
659 				 port,
660 				 peer_state);
661 
662 	/* Set the port if it has not been set yet.  */
663 	if (0 == asoc->peer.port)
664 		asoc->peer.port = port;
665 
666 	/* Check to see if this is a duplicate. */
667 	peer = sctp_assoc_lookup_paddr(asoc, addr);
668 	if (peer) {
669 		/* An UNKNOWN state is only set on transports added by
670 		 * user in sctp_connectx() call.  Such transports should be
671 		 * considered CONFIRMED per RFC 4960, Section 5.4.
672 		 */
673 		if (peer->state == SCTP_UNKNOWN) {
674 			peer->state = SCTP_ACTIVE;
675 		}
676 		return peer;
677 	}
678 
679 	peer = sctp_transport_new(net, addr, gfp);
680 	if (!peer)
681 		return NULL;
682 
683 	sctp_transport_set_owner(peer, asoc);
684 
685 	/* Initialize the peer's heartbeat interval based on the
686 	 * association configured value.
687 	 */
688 	peer->hbinterval = asoc->hbinterval;
689 
690 	/* Set the path max_retrans.  */
691 	peer->pathmaxrxt = asoc->pathmaxrxt;
692 
693 	/* And the partial failure retrnas threshold */
694 	peer->pf_retrans = asoc->pf_retrans;
695 
696 	/* Initialize the peer's SACK delay timeout based on the
697 	 * association configured value.
698 	 */
699 	peer->sackdelay = asoc->sackdelay;
700 	peer->sackfreq = asoc->sackfreq;
701 
702 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
703 	 * based on association setting.
704 	 */
705 	peer->param_flags = asoc->param_flags;
706 
707 	sctp_transport_route(peer, NULL, sp);
708 
709 	/* Initialize the pmtu of the transport. */
710 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
711 		if (asoc->pathmtu)
712 			peer->pathmtu = asoc->pathmtu;
713 		else
714 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
715 	}
716 
717 	/* If this is the first transport addr on this association,
718 	 * initialize the association PMTU to the peer's PMTU.
719 	 * If not and the current association PMTU is higher than the new
720 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
721 	 */
722 	if (asoc->pathmtu)
723 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
724 	else
725 		asoc->pathmtu = peer->pathmtu;
726 
727 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
728 			  "%d\n", asoc, asoc->pathmtu);
729 	peer->pmtu_pending = 0;
730 
731 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
732 
733 	/* The asoc->peer.port might not be meaningful yet, but
734 	 * initialize the packet structure anyway.
735 	 */
736 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
737 			 asoc->peer.port);
738 
739 	/* 7.2.1 Slow-Start
740 	 *
741 	 * o The initial cwnd before DATA transmission or after a sufficiently
742 	 *   long idle period MUST be set to
743 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
744 	 *
745 	 * o The initial value of ssthresh MAY be arbitrarily high
746 	 *   (for example, implementations MAY use the size of the
747 	 *   receiver advertised window).
748 	 */
749 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
750 
751 	/* At this point, we may not have the receiver's advertised window,
752 	 * so initialize ssthresh to the default value and it will be set
753 	 * later when we process the INIT.
754 	 */
755 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
756 
757 	peer->partial_bytes_acked = 0;
758 	peer->flight_size = 0;
759 	peer->burst_limited = 0;
760 
761 	/* Set the transport's RTO.initial value */
762 	peer->rto = asoc->rto_initial;
763 
764 	/* Set the peer's active state. */
765 	peer->state = peer_state;
766 
767 	/* Attach the remote transport to our asoc.  */
768 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
769 	asoc->peer.transport_count++;
770 
771 	/* If we do not yet have a primary path, set one.  */
772 	if (!asoc->peer.primary_path) {
773 		sctp_assoc_set_primary(asoc, peer);
774 		asoc->peer.retran_path = peer;
775 	}
776 
777 	if (asoc->peer.active_path == asoc->peer.retran_path &&
778 	    peer->state != SCTP_UNCONFIRMED) {
779 		asoc->peer.retran_path = peer;
780 	}
781 
782 	return peer;
783 }
784 
785 /* Delete a transport address from an association.  */
786 void sctp_assoc_del_peer(struct sctp_association *asoc,
787 			 const union sctp_addr *addr)
788 {
789 	struct list_head	*pos;
790 	struct list_head	*temp;
791 	struct sctp_transport	*transport;
792 
793 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
794 		transport = list_entry(pos, struct sctp_transport, transports);
795 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
796 			/* Do book keeping for removing the peer and free it. */
797 			sctp_assoc_rm_peer(asoc, transport);
798 			break;
799 		}
800 	}
801 }
802 
803 /* Lookup a transport by address. */
804 struct sctp_transport *sctp_assoc_lookup_paddr(
805 					const struct sctp_association *asoc,
806 					const union sctp_addr *address)
807 {
808 	struct sctp_transport *t;
809 
810 	/* Cycle through all transports searching for a peer address. */
811 
812 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
813 			transports) {
814 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
815 			return t;
816 	}
817 
818 	return NULL;
819 }
820 
821 /* Remove all transports except a give one */
822 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
823 				     struct sctp_transport *primary)
824 {
825 	struct sctp_transport	*temp;
826 	struct sctp_transport	*t;
827 
828 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
829 				 transports) {
830 		/* if the current transport is not the primary one, delete it */
831 		if (t != primary)
832 			sctp_assoc_rm_peer(asoc, t);
833 	}
834 }
835 
836 /* Engage in transport control operations.
837  * Mark the transport up or down and send a notification to the user.
838  * Select and update the new active and retran paths.
839  */
840 void sctp_assoc_control_transport(struct sctp_association *asoc,
841 				  struct sctp_transport *transport,
842 				  sctp_transport_cmd_t command,
843 				  sctp_sn_error_t error)
844 {
845 	struct sctp_transport *t = NULL;
846 	struct sctp_transport *first;
847 	struct sctp_transport *second;
848 	struct sctp_ulpevent *event;
849 	struct sockaddr_storage addr;
850 	int spc_state = 0;
851 	bool ulp_notify = true;
852 
853 	/* Record the transition on the transport.  */
854 	switch (command) {
855 	case SCTP_TRANSPORT_UP:
856 		/* If we are moving from UNCONFIRMED state due
857 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
858 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
859 		 */
860 		if (SCTP_UNCONFIRMED == transport->state &&
861 		    SCTP_HEARTBEAT_SUCCESS == error)
862 			spc_state = SCTP_ADDR_CONFIRMED;
863 		else
864 			spc_state = SCTP_ADDR_AVAILABLE;
865 		/* Don't inform ULP about transition from PF to
866 		 * active state and set cwnd to 1, see SCTP
867 		 * Quick failover draft section 5.1, point 5
868 		 */
869 		if (transport->state == SCTP_PF) {
870 			ulp_notify = false;
871 			transport->cwnd = 1;
872 		}
873 		transport->state = SCTP_ACTIVE;
874 		break;
875 
876 	case SCTP_TRANSPORT_DOWN:
877 		/* If the transport was never confirmed, do not transition it
878 		 * to inactive state.  Also, release the cached route since
879 		 * there may be a better route next time.
880 		 */
881 		if (transport->state != SCTP_UNCONFIRMED)
882 			transport->state = SCTP_INACTIVE;
883 		else {
884 			dst_release(transport->dst);
885 			transport->dst = NULL;
886 		}
887 
888 		spc_state = SCTP_ADDR_UNREACHABLE;
889 		break;
890 
891 	case SCTP_TRANSPORT_PF:
892 		transport->state = SCTP_PF;
893 		ulp_notify = false;
894 		break;
895 
896 	default:
897 		return;
898 	}
899 
900 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
901 	 * user.
902 	 */
903 	if (ulp_notify) {
904 		memset(&addr, 0, sizeof(struct sockaddr_storage));
905 		memcpy(&addr, &transport->ipaddr,
906 		       transport->af_specific->sockaddr_len);
907 		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
908 					0, spc_state, error, GFP_ATOMIC);
909 		if (event)
910 			sctp_ulpq_tail_event(&asoc->ulpq, event);
911 	}
912 
913 	/* Select new active and retran paths. */
914 
915 	/* Look for the two most recently used active transports.
916 	 *
917 	 * This code produces the wrong ordering whenever jiffies
918 	 * rolls over, but we still get usable transports, so we don't
919 	 * worry about it.
920 	 */
921 	first = NULL; second = NULL;
922 
923 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
924 			transports) {
925 
926 		if ((t->state == SCTP_INACTIVE) ||
927 		    (t->state == SCTP_UNCONFIRMED) ||
928 		    (t->state == SCTP_PF))
929 			continue;
930 		if (!first || t->last_time_heard > first->last_time_heard) {
931 			second = first;
932 			first = t;
933 		}
934 		if (!second || t->last_time_heard > second->last_time_heard)
935 			second = t;
936 	}
937 
938 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
939 	 *
940 	 * By default, an endpoint should always transmit to the
941 	 * primary path, unless the SCTP user explicitly specifies the
942 	 * destination transport address (and possibly source
943 	 * transport address) to use.
944 	 *
945 	 * [If the primary is active but not most recent, bump the most
946 	 * recently used transport.]
947 	 */
948 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
949 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
950 	    first != asoc->peer.primary_path) {
951 		second = first;
952 		first = asoc->peer.primary_path;
953 	}
954 
955 	/* If we failed to find a usable transport, just camp on the
956 	 * primary, even if it is inactive.
957 	 */
958 	if (!first) {
959 		first = asoc->peer.primary_path;
960 		second = asoc->peer.primary_path;
961 	}
962 
963 	/* Set the active and retran transports.  */
964 	asoc->peer.active_path = first;
965 	asoc->peer.retran_path = second;
966 }
967 
968 /* Hold a reference to an association. */
969 void sctp_association_hold(struct sctp_association *asoc)
970 {
971 	atomic_inc(&asoc->base.refcnt);
972 }
973 
974 /* Release a reference to an association and cleanup
975  * if there are no more references.
976  */
977 void sctp_association_put(struct sctp_association *asoc)
978 {
979 	if (atomic_dec_and_test(&asoc->base.refcnt))
980 		sctp_association_destroy(asoc);
981 }
982 
983 /* Allocate the next TSN, Transmission Sequence Number, for the given
984  * association.
985  */
986 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
987 {
988 	/* From Section 1.6 Serial Number Arithmetic:
989 	 * Transmission Sequence Numbers wrap around when they reach
990 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
991 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
992 	 */
993 	__u32 retval = asoc->next_tsn;
994 	asoc->next_tsn++;
995 	asoc->unack_data++;
996 
997 	return retval;
998 }
999 
1000 /* Compare two addresses to see if they match.  Wildcard addresses
1001  * only match themselves.
1002  */
1003 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
1004 			const union sctp_addr *ss2)
1005 {
1006 	struct sctp_af *af;
1007 
1008 	af = sctp_get_af_specific(ss1->sa.sa_family);
1009 	if (unlikely(!af))
1010 		return 0;
1011 
1012 	return af->cmp_addr(ss1, ss2);
1013 }
1014 
1015 /* Return an ecne chunk to get prepended to a packet.
1016  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
1017  * No we don't, but we could/should.
1018  */
1019 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1020 {
1021 	struct sctp_chunk *chunk;
1022 
1023 	/* Send ECNE if needed.
1024 	 * Not being able to allocate a chunk here is not deadly.
1025 	 */
1026 	if (asoc->need_ecne)
1027 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1028 	else
1029 		chunk = NULL;
1030 
1031 	return chunk;
1032 }
1033 
1034 /*
1035  * Find which transport this TSN was sent on.
1036  */
1037 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1038 					     __u32 tsn)
1039 {
1040 	struct sctp_transport *active;
1041 	struct sctp_transport *match;
1042 	struct sctp_transport *transport;
1043 	struct sctp_chunk *chunk;
1044 	__be32 key = htonl(tsn);
1045 
1046 	match = NULL;
1047 
1048 	/*
1049 	 * FIXME: In general, find a more efficient data structure for
1050 	 * searching.
1051 	 */
1052 
1053 	/*
1054 	 * The general strategy is to search each transport's transmitted
1055 	 * list.   Return which transport this TSN lives on.
1056 	 *
1057 	 * Let's be hopeful and check the active_path first.
1058 	 * Another optimization would be to know if there is only one
1059 	 * outbound path and not have to look for the TSN at all.
1060 	 *
1061 	 */
1062 
1063 	active = asoc->peer.active_path;
1064 
1065 	list_for_each_entry(chunk, &active->transmitted,
1066 			transmitted_list) {
1067 
1068 		if (key == chunk->subh.data_hdr->tsn) {
1069 			match = active;
1070 			goto out;
1071 		}
1072 	}
1073 
1074 	/* If not found, go search all the other transports. */
1075 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1076 			transports) {
1077 
1078 		if (transport == active)
1079 			break;
1080 		list_for_each_entry(chunk, &transport->transmitted,
1081 				transmitted_list) {
1082 			if (key == chunk->subh.data_hdr->tsn) {
1083 				match = transport;
1084 				goto out;
1085 			}
1086 		}
1087 	}
1088 out:
1089 	return match;
1090 }
1091 
1092 /* Is this the association we are looking for? */
1093 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1094 					   struct net *net,
1095 					   const union sctp_addr *laddr,
1096 					   const union sctp_addr *paddr)
1097 {
1098 	struct sctp_transport *transport;
1099 
1100 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1101 	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1102 	    net_eq(sock_net(asoc->base.sk), net)) {
1103 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1104 		if (!transport)
1105 			goto out;
1106 
1107 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1108 					 sctp_sk(asoc->base.sk)))
1109 			goto out;
1110 	}
1111 	transport = NULL;
1112 
1113 out:
1114 	return transport;
1115 }
1116 
1117 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1118 static void sctp_assoc_bh_rcv(struct work_struct *work)
1119 {
1120 	struct sctp_association *asoc =
1121 		container_of(work, struct sctp_association,
1122 			     base.inqueue.immediate);
1123 	struct net *net = sock_net(asoc->base.sk);
1124 	struct sctp_endpoint *ep;
1125 	struct sctp_chunk *chunk;
1126 	struct sctp_inq *inqueue;
1127 	int state;
1128 	sctp_subtype_t subtype;
1129 	int error = 0;
1130 
1131 	/* The association should be held so we should be safe. */
1132 	ep = asoc->ep;
1133 
1134 	inqueue = &asoc->base.inqueue;
1135 	sctp_association_hold(asoc);
1136 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1137 		state = asoc->state;
1138 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1139 
1140 		/* SCTP-AUTH, Section 6.3:
1141 		 *    The receiver has a list of chunk types which it expects
1142 		 *    to be received only after an AUTH-chunk.  This list has
1143 		 *    been sent to the peer during the association setup.  It
1144 		 *    MUST silently discard these chunks if they are not placed
1145 		 *    after an AUTH chunk in the packet.
1146 		 */
1147 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1148 			continue;
1149 
1150 		/* Remember where the last DATA chunk came from so we
1151 		 * know where to send the SACK.
1152 		 */
1153 		if (sctp_chunk_is_data(chunk))
1154 			asoc->peer.last_data_from = chunk->transport;
1155 		else
1156 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1157 
1158 		if (chunk->transport)
1159 			chunk->transport->last_time_heard = jiffies;
1160 
1161 		/* Run through the state machine. */
1162 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1163 				   state, ep, asoc, chunk, GFP_ATOMIC);
1164 
1165 		/* Check to see if the association is freed in response to
1166 		 * the incoming chunk.  If so, get out of the while loop.
1167 		 */
1168 		if (asoc->base.dead)
1169 			break;
1170 
1171 		/* If there is an error on chunk, discard this packet. */
1172 		if (error && chunk)
1173 			chunk->pdiscard = 1;
1174 	}
1175 	sctp_association_put(asoc);
1176 }
1177 
1178 /* This routine moves an association from its old sk to a new sk.  */
1179 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1180 {
1181 	struct sctp_sock *newsp = sctp_sk(newsk);
1182 	struct sock *oldsk = assoc->base.sk;
1183 
1184 	/* Delete the association from the old endpoint's list of
1185 	 * associations.
1186 	 */
1187 	list_del_init(&assoc->asocs);
1188 
1189 	/* Decrement the backlog value for a TCP-style socket. */
1190 	if (sctp_style(oldsk, TCP))
1191 		oldsk->sk_ack_backlog--;
1192 
1193 	/* Release references to the old endpoint and the sock.  */
1194 	sctp_endpoint_put(assoc->ep);
1195 	sock_put(assoc->base.sk);
1196 
1197 	/* Get a reference to the new endpoint.  */
1198 	assoc->ep = newsp->ep;
1199 	sctp_endpoint_hold(assoc->ep);
1200 
1201 	/* Get a reference to the new sock.  */
1202 	assoc->base.sk = newsk;
1203 	sock_hold(assoc->base.sk);
1204 
1205 	/* Add the association to the new endpoint's list of associations.  */
1206 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1207 }
1208 
1209 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1210 void sctp_assoc_update(struct sctp_association *asoc,
1211 		       struct sctp_association *new)
1212 {
1213 	struct sctp_transport *trans;
1214 	struct list_head *pos, *temp;
1215 
1216 	/* Copy in new parameters of peer. */
1217 	asoc->c = new->c;
1218 	asoc->peer.rwnd = new->peer.rwnd;
1219 	asoc->peer.sack_needed = new->peer.sack_needed;
1220 	asoc->peer.i = new->peer.i;
1221 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1222 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1223 
1224 	/* Remove any peer addresses not present in the new association. */
1225 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1226 		trans = list_entry(pos, struct sctp_transport, transports);
1227 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1228 			sctp_assoc_rm_peer(asoc, trans);
1229 			continue;
1230 		}
1231 
1232 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1233 			sctp_transport_reset(trans);
1234 	}
1235 
1236 	/* If the case is A (association restart), use
1237 	 * initial_tsn as next_tsn. If the case is B, use
1238 	 * current next_tsn in case data sent to peer
1239 	 * has been discarded and needs retransmission.
1240 	 */
1241 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1242 		asoc->next_tsn = new->next_tsn;
1243 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1244 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1245 
1246 		/* Reinitialize SSN for both local streams
1247 		 * and peer's streams.
1248 		 */
1249 		sctp_ssnmap_clear(asoc->ssnmap);
1250 
1251 		/* Flush the ULP reassembly and ordered queue.
1252 		 * Any data there will now be stale and will
1253 		 * cause problems.
1254 		 */
1255 		sctp_ulpq_flush(&asoc->ulpq);
1256 
1257 		/* reset the overall association error count so
1258 		 * that the restarted association doesn't get torn
1259 		 * down on the next retransmission timer.
1260 		 */
1261 		asoc->overall_error_count = 0;
1262 
1263 	} else {
1264 		/* Add any peer addresses from the new association. */
1265 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1266 				transports) {
1267 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1268 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1269 						    GFP_ATOMIC, trans->state);
1270 		}
1271 
1272 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1273 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1274 		if (!asoc->ssnmap) {
1275 			/* Move the ssnmap. */
1276 			asoc->ssnmap = new->ssnmap;
1277 			new->ssnmap = NULL;
1278 		}
1279 
1280 		if (!asoc->assoc_id) {
1281 			/* get a new association id since we don't have one
1282 			 * yet.
1283 			 */
1284 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1285 		}
1286 	}
1287 
1288 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1289 	 * and also move the association shared keys over
1290 	 */
1291 	kfree(asoc->peer.peer_random);
1292 	asoc->peer.peer_random = new->peer.peer_random;
1293 	new->peer.peer_random = NULL;
1294 
1295 	kfree(asoc->peer.peer_chunks);
1296 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1297 	new->peer.peer_chunks = NULL;
1298 
1299 	kfree(asoc->peer.peer_hmacs);
1300 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1301 	new->peer.peer_hmacs = NULL;
1302 
1303 	sctp_auth_key_put(asoc->asoc_shared_key);
1304 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1305 }
1306 
1307 /* Update the retran path for sending a retransmitted packet.
1308  * Round-robin through the active transports, else round-robin
1309  * through the inactive transports as this is the next best thing
1310  * we can try.
1311  */
1312 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1313 {
1314 	struct sctp_transport *t, *next;
1315 	struct list_head *head = &asoc->peer.transport_addr_list;
1316 	struct list_head *pos;
1317 
1318 	if (asoc->peer.transport_count == 1)
1319 		return;
1320 
1321 	/* Find the next transport in a round-robin fashion. */
1322 	t = asoc->peer.retran_path;
1323 	pos = &t->transports;
1324 	next = NULL;
1325 
1326 	while (1) {
1327 		/* Skip the head. */
1328 		if (pos->next == head)
1329 			pos = head->next;
1330 		else
1331 			pos = pos->next;
1332 
1333 		t = list_entry(pos, struct sctp_transport, transports);
1334 
1335 		/* We have exhausted the list, but didn't find any
1336 		 * other active transports.  If so, use the next
1337 		 * transport.
1338 		 */
1339 		if (t == asoc->peer.retran_path) {
1340 			t = next;
1341 			break;
1342 		}
1343 
1344 		/* Try to find an active transport. */
1345 
1346 		if ((t->state == SCTP_ACTIVE) ||
1347 		    (t->state == SCTP_UNKNOWN)) {
1348 			break;
1349 		} else {
1350 			/* Keep track of the next transport in case
1351 			 * we don't find any active transport.
1352 			 */
1353 			if (t->state != SCTP_UNCONFIRMED && !next)
1354 				next = t;
1355 		}
1356 	}
1357 
1358 	if (t)
1359 		asoc->peer.retran_path = t;
1360 	else
1361 		t = asoc->peer.retran_path;
1362 
1363 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1364 				 " %p addr: ",
1365 				 " port: %d\n",
1366 				 asoc,
1367 				 (&t->ipaddr),
1368 				 ntohs(t->ipaddr.v4.sin_port));
1369 }
1370 
1371 /* Choose the transport for sending retransmit packet.  */
1372 struct sctp_transport *sctp_assoc_choose_alter_transport(
1373 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1374 {
1375 	/* If this is the first time packet is sent, use the active path,
1376 	 * else use the retran path. If the last packet was sent over the
1377 	 * retran path, update the retran path and use it.
1378 	 */
1379 	if (!last_sent_to)
1380 		return asoc->peer.active_path;
1381 	else {
1382 		if (last_sent_to == asoc->peer.retran_path)
1383 			sctp_assoc_update_retran_path(asoc);
1384 		return asoc->peer.retran_path;
1385 	}
1386 }
1387 
1388 /* Update the association's pmtu and frag_point by going through all the
1389  * transports. This routine is called when a transport's PMTU has changed.
1390  */
1391 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1392 {
1393 	struct sctp_transport *t;
1394 	__u32 pmtu = 0;
1395 
1396 	if (!asoc)
1397 		return;
1398 
1399 	/* Get the lowest pmtu of all the transports. */
1400 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1401 				transports) {
1402 		if (t->pmtu_pending && t->dst) {
1403 			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1404 			t->pmtu_pending = 0;
1405 		}
1406 		if (!pmtu || (t->pathmtu < pmtu))
1407 			pmtu = t->pathmtu;
1408 	}
1409 
1410 	if (pmtu) {
1411 		asoc->pathmtu = pmtu;
1412 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1413 	}
1414 
1415 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1416 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1417 }
1418 
1419 /* Should we send a SACK to update our peer? */
1420 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1421 {
1422 	struct net *net = sock_net(asoc->base.sk);
1423 	switch (asoc->state) {
1424 	case SCTP_STATE_ESTABLISHED:
1425 	case SCTP_STATE_SHUTDOWN_PENDING:
1426 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1427 	case SCTP_STATE_SHUTDOWN_SENT:
1428 		if ((asoc->rwnd > asoc->a_rwnd) &&
1429 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1430 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1431 			   asoc->pathmtu)))
1432 			return 1;
1433 		break;
1434 	default:
1435 		break;
1436 	}
1437 	return 0;
1438 }
1439 
1440 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1441 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1442 {
1443 	struct sctp_chunk *sack;
1444 	struct timer_list *timer;
1445 
1446 	if (asoc->rwnd_over) {
1447 		if (asoc->rwnd_over >= len) {
1448 			asoc->rwnd_over -= len;
1449 		} else {
1450 			asoc->rwnd += (len - asoc->rwnd_over);
1451 			asoc->rwnd_over = 0;
1452 		}
1453 	} else {
1454 		asoc->rwnd += len;
1455 	}
1456 
1457 	/* If we had window pressure, start recovering it
1458 	 * once our rwnd had reached the accumulated pressure
1459 	 * threshold.  The idea is to recover slowly, but up
1460 	 * to the initial advertised window.
1461 	 */
1462 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1463 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1464 		asoc->rwnd += change;
1465 		asoc->rwnd_press -= change;
1466 	}
1467 
1468 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1469 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1470 			  asoc->rwnd_over, asoc->a_rwnd);
1471 
1472 	/* Send a window update SACK if the rwnd has increased by at least the
1473 	 * minimum of the association's PMTU and half of the receive buffer.
1474 	 * The algorithm used is similar to the one described in
1475 	 * Section 4.2.3.3 of RFC 1122.
1476 	 */
1477 	if (sctp_peer_needs_update(asoc)) {
1478 		asoc->a_rwnd = asoc->rwnd;
1479 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1480 				  "rwnd: %u a_rwnd: %u\n", __func__,
1481 				  asoc, asoc->rwnd, asoc->a_rwnd);
1482 		sack = sctp_make_sack(asoc);
1483 		if (!sack)
1484 			return;
1485 
1486 		asoc->peer.sack_needed = 0;
1487 
1488 		sctp_outq_tail(&asoc->outqueue, sack);
1489 
1490 		/* Stop the SACK timer.  */
1491 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1492 		if (timer_pending(timer) && del_timer(timer))
1493 			sctp_association_put(asoc);
1494 	}
1495 }
1496 
1497 /* Decrease asoc's rwnd by len. */
1498 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1499 {
1500 	int rx_count;
1501 	int over = 0;
1502 
1503 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1504 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1505 
1506 	if (asoc->ep->rcvbuf_policy)
1507 		rx_count = atomic_read(&asoc->rmem_alloc);
1508 	else
1509 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1510 
1511 	/* If we've reached or overflowed our receive buffer, announce
1512 	 * a 0 rwnd if rwnd would still be positive.  Store the
1513 	 * the pottential pressure overflow so that the window can be restored
1514 	 * back to original value.
1515 	 */
1516 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1517 		over = 1;
1518 
1519 	if (asoc->rwnd >= len) {
1520 		asoc->rwnd -= len;
1521 		if (over) {
1522 			asoc->rwnd_press += asoc->rwnd;
1523 			asoc->rwnd = 0;
1524 		}
1525 	} else {
1526 		asoc->rwnd_over = len - asoc->rwnd;
1527 		asoc->rwnd = 0;
1528 	}
1529 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1530 			  __func__, asoc, len, asoc->rwnd,
1531 			  asoc->rwnd_over, asoc->rwnd_press);
1532 }
1533 
1534 /* Build the bind address list for the association based on info from the
1535  * local endpoint and the remote peer.
1536  */
1537 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1538 				     sctp_scope_t scope, gfp_t gfp)
1539 {
1540 	int flags;
1541 
1542 	/* Use scoping rules to determine the subset of addresses from
1543 	 * the endpoint.
1544 	 */
1545 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1546 	if (asoc->peer.ipv4_address)
1547 		flags |= SCTP_ADDR4_PEERSUPP;
1548 	if (asoc->peer.ipv6_address)
1549 		flags |= SCTP_ADDR6_PEERSUPP;
1550 
1551 	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1552 				   &asoc->base.bind_addr,
1553 				   &asoc->ep->base.bind_addr,
1554 				   scope, gfp, flags);
1555 }
1556 
1557 /* Build the association's bind address list from the cookie.  */
1558 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1559 					 struct sctp_cookie *cookie,
1560 					 gfp_t gfp)
1561 {
1562 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1563 	int var_size3 = cookie->raw_addr_list_len;
1564 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1565 
1566 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1567 				      asoc->ep->base.bind_addr.port, gfp);
1568 }
1569 
1570 /* Lookup laddr in the bind address list of an association. */
1571 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1572 			    const union sctp_addr *laddr)
1573 {
1574 	int found = 0;
1575 
1576 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1577 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1578 				 sctp_sk(asoc->base.sk)))
1579 		found = 1;
1580 
1581 	return found;
1582 }
1583 
1584 /* Set an association id for a given association */
1585 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1586 {
1587 	int assoc_id;
1588 	int error = 0;
1589 
1590 	/* If the id is already assigned, keep it. */
1591 	if (asoc->assoc_id)
1592 		return error;
1593 retry:
1594 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1595 		return -ENOMEM;
1596 
1597 	spin_lock_bh(&sctp_assocs_id_lock);
1598 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1599 				    idr_low, &assoc_id);
1600 	if (!error) {
1601 		idr_low = assoc_id + 1;
1602 		if (idr_low == INT_MAX)
1603 			idr_low = 1;
1604 	}
1605 	spin_unlock_bh(&sctp_assocs_id_lock);
1606 	if (error == -EAGAIN)
1607 		goto retry;
1608 	else if (error)
1609 		return error;
1610 
1611 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1612 	return error;
1613 }
1614 
1615 /* Free the ASCONF queue */
1616 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1617 {
1618 	struct sctp_chunk *asconf;
1619 	struct sctp_chunk *tmp;
1620 
1621 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1622 		list_del_init(&asconf->list);
1623 		sctp_chunk_free(asconf);
1624 	}
1625 }
1626 
1627 /* Free asconf_ack cache */
1628 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1629 {
1630 	struct sctp_chunk *ack;
1631 	struct sctp_chunk *tmp;
1632 
1633 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1634 				transmitted_list) {
1635 		list_del_init(&ack->transmitted_list);
1636 		sctp_chunk_free(ack);
1637 	}
1638 }
1639 
1640 /* Clean up the ASCONF_ACK queue */
1641 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1642 {
1643 	struct sctp_chunk *ack;
1644 	struct sctp_chunk *tmp;
1645 
1646 	/* We can remove all the entries from the queue up to
1647 	 * the "Peer-Sequence-Number".
1648 	 */
1649 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1650 				transmitted_list) {
1651 		if (ack->subh.addip_hdr->serial ==
1652 				htonl(asoc->peer.addip_serial))
1653 			break;
1654 
1655 		list_del_init(&ack->transmitted_list);
1656 		sctp_chunk_free(ack);
1657 	}
1658 }
1659 
1660 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1661 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1662 					const struct sctp_association *asoc,
1663 					__be32 serial)
1664 {
1665 	struct sctp_chunk *ack;
1666 
1667 	/* Walk through the list of cached ASCONF-ACKs and find the
1668 	 * ack chunk whose serial number matches that of the request.
1669 	 */
1670 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1671 		if (ack->subh.addip_hdr->serial == serial) {
1672 			sctp_chunk_hold(ack);
1673 			return ack;
1674 		}
1675 	}
1676 
1677 	return NULL;
1678 }
1679 
1680 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1681 {
1682 	/* Free any cached ASCONF_ACK chunk. */
1683 	sctp_assoc_free_asconf_acks(asoc);
1684 
1685 	/* Free the ASCONF queue. */
1686 	sctp_assoc_free_asconf_queue(asoc);
1687 
1688 	/* Free any cached ASCONF chunk. */
1689 	if (asoc->addip_last_asconf)
1690 		sctp_chunk_free(asoc->addip_last_asconf);
1691 }
1692