1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/types.h> 54 #include <linux/fcntl.h> 55 #include <linux/poll.h> 56 #include <linux/init.h> 57 58 #include <linux/slab.h> 59 #include <linux/in.h> 60 #include <net/ipv6.h> 61 #include <net/sctp/sctp.h> 62 #include <net/sctp/sm.h> 63 64 /* Forward declarations for internal functions. */ 65 static void sctp_assoc_bh_rcv(struct work_struct *work); 66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 68 69 /* Keep track of the new idr low so that we don't re-use association id 70 * numbers too fast. It is protected by they idr spin lock is in the 71 * range of 1 - INT_MAX. 72 */ 73 static u32 idr_low = 1; 74 75 76 /* 1st Level Abstractions. */ 77 78 /* Initialize a new association from provided memory. */ 79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 80 const struct sctp_endpoint *ep, 81 const struct sock *sk, 82 sctp_scope_t scope, 83 gfp_t gfp) 84 { 85 struct net *net = sock_net(sk); 86 struct sctp_sock *sp; 87 int i; 88 sctp_paramhdr_t *p; 89 int err; 90 91 /* Retrieve the SCTP per socket area. */ 92 sp = sctp_sk((struct sock *)sk); 93 94 /* Discarding const is appropriate here. */ 95 asoc->ep = (struct sctp_endpoint *)ep; 96 sctp_endpoint_hold(asoc->ep); 97 98 /* Hold the sock. */ 99 asoc->base.sk = (struct sock *)sk; 100 sock_hold(asoc->base.sk); 101 102 /* Initialize the common base substructure. */ 103 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 104 105 /* Initialize the object handling fields. */ 106 atomic_set(&asoc->base.refcnt, 1); 107 asoc->base.dead = 0; 108 asoc->base.malloced = 0; 109 110 /* Initialize the bind addr area. */ 111 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 112 113 asoc->state = SCTP_STATE_CLOSED; 114 115 /* Set these values from the socket values, a conversion between 116 * millsecons to seconds/microseconds must also be done. 117 */ 118 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 119 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 120 * 1000; 121 asoc->frag_point = 0; 122 asoc->user_frag = sp->user_frag; 123 124 /* Set the association max_retrans and RTO values from the 125 * socket values. 126 */ 127 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 128 asoc->pf_retrans = net->sctp.pf_retrans; 129 130 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 131 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 132 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 133 134 asoc->overall_error_count = 0; 135 136 /* Initialize the association's heartbeat interval based on the 137 * sock configured value. 138 */ 139 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 140 141 /* Initialize path max retrans value. */ 142 asoc->pathmaxrxt = sp->pathmaxrxt; 143 144 /* Initialize default path MTU. */ 145 asoc->pathmtu = sp->pathmtu; 146 147 /* Set association default SACK delay */ 148 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 149 asoc->sackfreq = sp->sackfreq; 150 151 /* Set the association default flags controlling 152 * Heartbeat, SACK delay, and Path MTU Discovery. 153 */ 154 asoc->param_flags = sp->param_flags; 155 156 /* Initialize the maximum mumber of new data packets that can be sent 157 * in a burst. 158 */ 159 asoc->max_burst = sp->max_burst; 160 161 /* initialize association timers */ 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 166 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 167 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 168 169 /* sctpimpguide Section 2.12.2 170 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 171 * recommended value of 5 times 'RTO.Max'. 172 */ 173 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 174 = 5 * asoc->rto_max; 175 176 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 177 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 178 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 179 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ; 180 181 /* Initializes the timers */ 182 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 183 setup_timer(&asoc->timers[i], sctp_timer_events[i], 184 (unsigned long)asoc); 185 186 /* Pull default initialization values from the sock options. 187 * Note: This assumes that the values have already been 188 * validated in the sock. 189 */ 190 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 191 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 192 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 193 194 asoc->max_init_timeo = 195 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 196 197 /* Allocate storage for the ssnmap after the inbound and outbound 198 * streams have been negotiated during Init. 199 */ 200 asoc->ssnmap = NULL; 201 202 /* Set the local window size for receive. 203 * This is also the rcvbuf space per association. 204 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 205 * 1500 bytes in one SCTP packet. 206 */ 207 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 208 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 209 else 210 asoc->rwnd = sk->sk_rcvbuf/2; 211 212 asoc->a_rwnd = asoc->rwnd; 213 214 asoc->rwnd_over = 0; 215 asoc->rwnd_press = 0; 216 217 /* Use my own max window until I learn something better. */ 218 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 219 220 /* Set the sndbuf size for transmit. */ 221 asoc->sndbuf_used = 0; 222 223 /* Initialize the receive memory counter */ 224 atomic_set(&asoc->rmem_alloc, 0); 225 226 init_waitqueue_head(&asoc->wait); 227 228 asoc->c.my_vtag = sctp_generate_tag(ep); 229 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 230 asoc->c.peer_vtag = 0; 231 asoc->c.my_ttag = 0; 232 asoc->c.peer_ttag = 0; 233 asoc->c.my_port = ep->base.bind_addr.port; 234 235 asoc->c.initial_tsn = sctp_generate_tsn(ep); 236 237 asoc->next_tsn = asoc->c.initial_tsn; 238 239 asoc->ctsn_ack_point = asoc->next_tsn - 1; 240 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 241 asoc->highest_sacked = asoc->ctsn_ack_point; 242 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 243 asoc->unack_data = 0; 244 245 /* ADDIP Section 4.1 Asconf Chunk Procedures 246 * 247 * When an endpoint has an ASCONF signaled change to be sent to the 248 * remote endpoint it should do the following: 249 * ... 250 * A2) a serial number should be assigned to the chunk. The serial 251 * number SHOULD be a monotonically increasing number. The serial 252 * numbers SHOULD be initialized at the start of the 253 * association to the same value as the initial TSN. 254 */ 255 asoc->addip_serial = asoc->c.initial_tsn; 256 257 INIT_LIST_HEAD(&asoc->addip_chunk_list); 258 INIT_LIST_HEAD(&asoc->asconf_ack_list); 259 260 /* Make an empty list of remote transport addresses. */ 261 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 262 asoc->peer.transport_count = 0; 263 264 /* RFC 2960 5.1 Normal Establishment of an Association 265 * 266 * After the reception of the first data chunk in an 267 * association the endpoint must immediately respond with a 268 * sack to acknowledge the data chunk. Subsequent 269 * acknowledgements should be done as described in Section 270 * 6.2. 271 * 272 * [We implement this by telling a new association that it 273 * already received one packet.] 274 */ 275 asoc->peer.sack_needed = 1; 276 asoc->peer.sack_cnt = 0; 277 asoc->peer.sack_generation = 1; 278 279 /* Assume that the peer will tell us if he recognizes ASCONF 280 * as part of INIT exchange. 281 * The sctp_addip_noauth option is there for backward compatibilty 282 * and will revert old behavior. 283 */ 284 asoc->peer.asconf_capable = 0; 285 if (net->sctp.addip_noauth) 286 asoc->peer.asconf_capable = 1; 287 asoc->asconf_addr_del_pending = NULL; 288 asoc->src_out_of_asoc_ok = 0; 289 asoc->new_transport = NULL; 290 291 /* Create an input queue. */ 292 sctp_inq_init(&asoc->base.inqueue); 293 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 294 295 /* Create an output queue. */ 296 sctp_outq_init(asoc, &asoc->outqueue); 297 298 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 299 goto fail_init; 300 301 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 302 303 asoc->need_ecne = 0; 304 305 asoc->assoc_id = 0; 306 307 /* Assume that peer would support both address types unless we are 308 * told otherwise. 309 */ 310 asoc->peer.ipv4_address = 1; 311 if (asoc->base.sk->sk_family == PF_INET6) 312 asoc->peer.ipv6_address = 1; 313 INIT_LIST_HEAD(&asoc->asocs); 314 315 asoc->autoclose = sp->autoclose; 316 317 asoc->default_stream = sp->default_stream; 318 asoc->default_ppid = sp->default_ppid; 319 asoc->default_flags = sp->default_flags; 320 asoc->default_context = sp->default_context; 321 asoc->default_timetolive = sp->default_timetolive; 322 asoc->default_rcv_context = sp->default_rcv_context; 323 324 /* AUTH related initializations */ 325 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 326 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 327 if (err) 328 goto fail_init; 329 330 asoc->active_key_id = ep->active_key_id; 331 asoc->asoc_shared_key = NULL; 332 333 asoc->default_hmac_id = 0; 334 /* Save the hmacs and chunks list into this association */ 335 if (ep->auth_hmacs_list) 336 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 337 ntohs(ep->auth_hmacs_list->param_hdr.length)); 338 if (ep->auth_chunk_list) 339 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 340 ntohs(ep->auth_chunk_list->param_hdr.length)); 341 342 /* Get the AUTH random number for this association */ 343 p = (sctp_paramhdr_t *)asoc->c.auth_random; 344 p->type = SCTP_PARAM_RANDOM; 345 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 346 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 347 348 return asoc; 349 350 fail_init: 351 sctp_endpoint_put(asoc->ep); 352 sock_put(asoc->base.sk); 353 return NULL; 354 } 355 356 /* Allocate and initialize a new association */ 357 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 358 const struct sock *sk, 359 sctp_scope_t scope, 360 gfp_t gfp) 361 { 362 struct sctp_association *asoc; 363 364 asoc = t_new(struct sctp_association, gfp); 365 if (!asoc) 366 goto fail; 367 368 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 369 goto fail_init; 370 371 asoc->base.malloced = 1; 372 SCTP_DBG_OBJCNT_INC(assoc); 373 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 374 375 return asoc; 376 377 fail_init: 378 kfree(asoc); 379 fail: 380 return NULL; 381 } 382 383 /* Free this association if possible. There may still be users, so 384 * the actual deallocation may be delayed. 385 */ 386 void sctp_association_free(struct sctp_association *asoc) 387 { 388 struct sock *sk = asoc->base.sk; 389 struct sctp_transport *transport; 390 struct list_head *pos, *temp; 391 int i; 392 393 /* Only real associations count against the endpoint, so 394 * don't bother for if this is a temporary association. 395 */ 396 if (!asoc->temp) { 397 list_del(&asoc->asocs); 398 399 /* Decrement the backlog value for a TCP-style listening 400 * socket. 401 */ 402 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 403 sk->sk_ack_backlog--; 404 } 405 406 /* Mark as dead, so other users can know this structure is 407 * going away. 408 */ 409 asoc->base.dead = 1; 410 411 /* Dispose of any data lying around in the outqueue. */ 412 sctp_outq_free(&asoc->outqueue); 413 414 /* Dispose of any pending messages for the upper layer. */ 415 sctp_ulpq_free(&asoc->ulpq); 416 417 /* Dispose of any pending chunks on the inqueue. */ 418 sctp_inq_free(&asoc->base.inqueue); 419 420 sctp_tsnmap_free(&asoc->peer.tsn_map); 421 422 /* Free ssnmap storage. */ 423 sctp_ssnmap_free(asoc->ssnmap); 424 425 /* Clean up the bound address list. */ 426 sctp_bind_addr_free(&asoc->base.bind_addr); 427 428 /* Do we need to go through all of our timers and 429 * delete them? To be safe we will try to delete all, but we 430 * should be able to go through and make a guess based 431 * on our state. 432 */ 433 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 434 if (timer_pending(&asoc->timers[i]) && 435 del_timer(&asoc->timers[i])) 436 sctp_association_put(asoc); 437 } 438 439 /* Free peer's cached cookie. */ 440 kfree(asoc->peer.cookie); 441 kfree(asoc->peer.peer_random); 442 kfree(asoc->peer.peer_chunks); 443 kfree(asoc->peer.peer_hmacs); 444 445 /* Release the transport structures. */ 446 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 447 transport = list_entry(pos, struct sctp_transport, transports); 448 list_del(pos); 449 sctp_transport_free(transport); 450 } 451 452 asoc->peer.transport_count = 0; 453 454 sctp_asconf_queue_teardown(asoc); 455 456 /* Free pending address space being deleted */ 457 if (asoc->asconf_addr_del_pending != NULL) 458 kfree(asoc->asconf_addr_del_pending); 459 460 /* AUTH - Free the endpoint shared keys */ 461 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 462 463 /* AUTH - Free the association shared key */ 464 sctp_auth_key_put(asoc->asoc_shared_key); 465 466 sctp_association_put(asoc); 467 } 468 469 /* Cleanup and free up an association. */ 470 static void sctp_association_destroy(struct sctp_association *asoc) 471 { 472 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 473 474 sctp_endpoint_put(asoc->ep); 475 sock_put(asoc->base.sk); 476 477 if (asoc->assoc_id != 0) { 478 spin_lock_bh(&sctp_assocs_id_lock); 479 idr_remove(&sctp_assocs_id, asoc->assoc_id); 480 spin_unlock_bh(&sctp_assocs_id_lock); 481 } 482 483 WARN_ON(atomic_read(&asoc->rmem_alloc)); 484 485 if (asoc->base.malloced) { 486 kfree(asoc); 487 SCTP_DBG_OBJCNT_DEC(assoc); 488 } 489 } 490 491 /* Change the primary destination address for the peer. */ 492 void sctp_assoc_set_primary(struct sctp_association *asoc, 493 struct sctp_transport *transport) 494 { 495 int changeover = 0; 496 497 /* it's a changeover only if we already have a primary path 498 * that we are changing 499 */ 500 if (asoc->peer.primary_path != NULL && 501 asoc->peer.primary_path != transport) 502 changeover = 1 ; 503 504 asoc->peer.primary_path = transport; 505 506 /* Set a default msg_name for events. */ 507 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 508 sizeof(union sctp_addr)); 509 510 /* If the primary path is changing, assume that the 511 * user wants to use this new path. 512 */ 513 if ((transport->state == SCTP_ACTIVE) || 514 (transport->state == SCTP_UNKNOWN)) 515 asoc->peer.active_path = transport; 516 517 /* 518 * SFR-CACC algorithm: 519 * Upon the receipt of a request to change the primary 520 * destination address, on the data structure for the new 521 * primary destination, the sender MUST do the following: 522 * 523 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 524 * to this destination address earlier. The sender MUST set 525 * CYCLING_CHANGEOVER to indicate that this switch is a 526 * double switch to the same destination address. 527 * 528 * Really, only bother is we have data queued or outstanding on 529 * the association. 530 */ 531 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 532 return; 533 534 if (transport->cacc.changeover_active) 535 transport->cacc.cycling_changeover = changeover; 536 537 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 538 * a changeover has occurred. 539 */ 540 transport->cacc.changeover_active = changeover; 541 542 /* 3) The sender MUST store the next TSN to be sent in 543 * next_tsn_at_change. 544 */ 545 transport->cacc.next_tsn_at_change = asoc->next_tsn; 546 } 547 548 /* Remove a transport from an association. */ 549 void sctp_assoc_rm_peer(struct sctp_association *asoc, 550 struct sctp_transport *peer) 551 { 552 struct list_head *pos; 553 struct sctp_transport *transport; 554 555 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 556 " port: %d\n", 557 asoc, 558 (&peer->ipaddr), 559 ntohs(peer->ipaddr.v4.sin_port)); 560 561 /* If we are to remove the current retran_path, update it 562 * to the next peer before removing this peer from the list. 563 */ 564 if (asoc->peer.retran_path == peer) 565 sctp_assoc_update_retran_path(asoc); 566 567 /* Remove this peer from the list. */ 568 list_del(&peer->transports); 569 570 /* Get the first transport of asoc. */ 571 pos = asoc->peer.transport_addr_list.next; 572 transport = list_entry(pos, struct sctp_transport, transports); 573 574 /* Update any entries that match the peer to be deleted. */ 575 if (asoc->peer.primary_path == peer) 576 sctp_assoc_set_primary(asoc, transport); 577 if (asoc->peer.active_path == peer) 578 asoc->peer.active_path = transport; 579 if (asoc->peer.retran_path == peer) 580 asoc->peer.retran_path = transport; 581 if (asoc->peer.last_data_from == peer) 582 asoc->peer.last_data_from = transport; 583 584 /* If we remove the transport an INIT was last sent to, set it to 585 * NULL. Combined with the update of the retran path above, this 586 * will cause the next INIT to be sent to the next available 587 * transport, maintaining the cycle. 588 */ 589 if (asoc->init_last_sent_to == peer) 590 asoc->init_last_sent_to = NULL; 591 592 /* If we remove the transport an SHUTDOWN was last sent to, set it 593 * to NULL. Combined with the update of the retran path above, this 594 * will cause the next SHUTDOWN to be sent to the next available 595 * transport, maintaining the cycle. 596 */ 597 if (asoc->shutdown_last_sent_to == peer) 598 asoc->shutdown_last_sent_to = NULL; 599 600 /* If we remove the transport an ASCONF was last sent to, set it to 601 * NULL. 602 */ 603 if (asoc->addip_last_asconf && 604 asoc->addip_last_asconf->transport == peer) 605 asoc->addip_last_asconf->transport = NULL; 606 607 /* If we have something on the transmitted list, we have to 608 * save it off. The best place is the active path. 609 */ 610 if (!list_empty(&peer->transmitted)) { 611 struct sctp_transport *active = asoc->peer.active_path; 612 struct sctp_chunk *ch; 613 614 /* Reset the transport of each chunk on this list */ 615 list_for_each_entry(ch, &peer->transmitted, 616 transmitted_list) { 617 ch->transport = NULL; 618 ch->rtt_in_progress = 0; 619 } 620 621 list_splice_tail_init(&peer->transmitted, 622 &active->transmitted); 623 624 /* Start a T3 timer here in case it wasn't running so 625 * that these migrated packets have a chance to get 626 * retrnasmitted. 627 */ 628 if (!timer_pending(&active->T3_rtx_timer)) 629 if (!mod_timer(&active->T3_rtx_timer, 630 jiffies + active->rto)) 631 sctp_transport_hold(active); 632 } 633 634 asoc->peer.transport_count--; 635 636 sctp_transport_free(peer); 637 } 638 639 /* Add a transport address to an association. */ 640 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 641 const union sctp_addr *addr, 642 const gfp_t gfp, 643 const int peer_state) 644 { 645 struct net *net = sock_net(asoc->base.sk); 646 struct sctp_transport *peer; 647 struct sctp_sock *sp; 648 unsigned short port; 649 650 sp = sctp_sk(asoc->base.sk); 651 652 /* AF_INET and AF_INET6 share common port field. */ 653 port = ntohs(addr->v4.sin_port); 654 655 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 656 " port: %d state:%d\n", 657 asoc, 658 addr, 659 port, 660 peer_state); 661 662 /* Set the port if it has not been set yet. */ 663 if (0 == asoc->peer.port) 664 asoc->peer.port = port; 665 666 /* Check to see if this is a duplicate. */ 667 peer = sctp_assoc_lookup_paddr(asoc, addr); 668 if (peer) { 669 /* An UNKNOWN state is only set on transports added by 670 * user in sctp_connectx() call. Such transports should be 671 * considered CONFIRMED per RFC 4960, Section 5.4. 672 */ 673 if (peer->state == SCTP_UNKNOWN) { 674 peer->state = SCTP_ACTIVE; 675 } 676 return peer; 677 } 678 679 peer = sctp_transport_new(net, addr, gfp); 680 if (!peer) 681 return NULL; 682 683 sctp_transport_set_owner(peer, asoc); 684 685 /* Initialize the peer's heartbeat interval based on the 686 * association configured value. 687 */ 688 peer->hbinterval = asoc->hbinterval; 689 690 /* Set the path max_retrans. */ 691 peer->pathmaxrxt = asoc->pathmaxrxt; 692 693 /* And the partial failure retrnas threshold */ 694 peer->pf_retrans = asoc->pf_retrans; 695 696 /* Initialize the peer's SACK delay timeout based on the 697 * association configured value. 698 */ 699 peer->sackdelay = asoc->sackdelay; 700 peer->sackfreq = asoc->sackfreq; 701 702 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 703 * based on association setting. 704 */ 705 peer->param_flags = asoc->param_flags; 706 707 sctp_transport_route(peer, NULL, sp); 708 709 /* Initialize the pmtu of the transport. */ 710 if (peer->param_flags & SPP_PMTUD_DISABLE) { 711 if (asoc->pathmtu) 712 peer->pathmtu = asoc->pathmtu; 713 else 714 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 715 } 716 717 /* If this is the first transport addr on this association, 718 * initialize the association PMTU to the peer's PMTU. 719 * If not and the current association PMTU is higher than the new 720 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 721 */ 722 if (asoc->pathmtu) 723 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 724 else 725 asoc->pathmtu = peer->pathmtu; 726 727 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 728 "%d\n", asoc, asoc->pathmtu); 729 peer->pmtu_pending = 0; 730 731 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 732 733 /* The asoc->peer.port might not be meaningful yet, but 734 * initialize the packet structure anyway. 735 */ 736 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 737 asoc->peer.port); 738 739 /* 7.2.1 Slow-Start 740 * 741 * o The initial cwnd before DATA transmission or after a sufficiently 742 * long idle period MUST be set to 743 * min(4*MTU, max(2*MTU, 4380 bytes)) 744 * 745 * o The initial value of ssthresh MAY be arbitrarily high 746 * (for example, implementations MAY use the size of the 747 * receiver advertised window). 748 */ 749 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 750 751 /* At this point, we may not have the receiver's advertised window, 752 * so initialize ssthresh to the default value and it will be set 753 * later when we process the INIT. 754 */ 755 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 756 757 peer->partial_bytes_acked = 0; 758 peer->flight_size = 0; 759 peer->burst_limited = 0; 760 761 /* Set the transport's RTO.initial value */ 762 peer->rto = asoc->rto_initial; 763 764 /* Set the peer's active state. */ 765 peer->state = peer_state; 766 767 /* Attach the remote transport to our asoc. */ 768 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 769 asoc->peer.transport_count++; 770 771 /* If we do not yet have a primary path, set one. */ 772 if (!asoc->peer.primary_path) { 773 sctp_assoc_set_primary(asoc, peer); 774 asoc->peer.retran_path = peer; 775 } 776 777 if (asoc->peer.active_path == asoc->peer.retran_path && 778 peer->state != SCTP_UNCONFIRMED) { 779 asoc->peer.retran_path = peer; 780 } 781 782 return peer; 783 } 784 785 /* Delete a transport address from an association. */ 786 void sctp_assoc_del_peer(struct sctp_association *asoc, 787 const union sctp_addr *addr) 788 { 789 struct list_head *pos; 790 struct list_head *temp; 791 struct sctp_transport *transport; 792 793 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 794 transport = list_entry(pos, struct sctp_transport, transports); 795 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 796 /* Do book keeping for removing the peer and free it. */ 797 sctp_assoc_rm_peer(asoc, transport); 798 break; 799 } 800 } 801 } 802 803 /* Lookup a transport by address. */ 804 struct sctp_transport *sctp_assoc_lookup_paddr( 805 const struct sctp_association *asoc, 806 const union sctp_addr *address) 807 { 808 struct sctp_transport *t; 809 810 /* Cycle through all transports searching for a peer address. */ 811 812 list_for_each_entry(t, &asoc->peer.transport_addr_list, 813 transports) { 814 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 815 return t; 816 } 817 818 return NULL; 819 } 820 821 /* Remove all transports except a give one */ 822 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 823 struct sctp_transport *primary) 824 { 825 struct sctp_transport *temp; 826 struct sctp_transport *t; 827 828 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 829 transports) { 830 /* if the current transport is not the primary one, delete it */ 831 if (t != primary) 832 sctp_assoc_rm_peer(asoc, t); 833 } 834 } 835 836 /* Engage in transport control operations. 837 * Mark the transport up or down and send a notification to the user. 838 * Select and update the new active and retran paths. 839 */ 840 void sctp_assoc_control_transport(struct sctp_association *asoc, 841 struct sctp_transport *transport, 842 sctp_transport_cmd_t command, 843 sctp_sn_error_t error) 844 { 845 struct sctp_transport *t = NULL; 846 struct sctp_transport *first; 847 struct sctp_transport *second; 848 struct sctp_ulpevent *event; 849 struct sockaddr_storage addr; 850 int spc_state = 0; 851 bool ulp_notify = true; 852 853 /* Record the transition on the transport. */ 854 switch (command) { 855 case SCTP_TRANSPORT_UP: 856 /* If we are moving from UNCONFIRMED state due 857 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 858 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 859 */ 860 if (SCTP_UNCONFIRMED == transport->state && 861 SCTP_HEARTBEAT_SUCCESS == error) 862 spc_state = SCTP_ADDR_CONFIRMED; 863 else 864 spc_state = SCTP_ADDR_AVAILABLE; 865 /* Don't inform ULP about transition from PF to 866 * active state and set cwnd to 1, see SCTP 867 * Quick failover draft section 5.1, point 5 868 */ 869 if (transport->state == SCTP_PF) { 870 ulp_notify = false; 871 transport->cwnd = 1; 872 } 873 transport->state = SCTP_ACTIVE; 874 break; 875 876 case SCTP_TRANSPORT_DOWN: 877 /* If the transport was never confirmed, do not transition it 878 * to inactive state. Also, release the cached route since 879 * there may be a better route next time. 880 */ 881 if (transport->state != SCTP_UNCONFIRMED) 882 transport->state = SCTP_INACTIVE; 883 else { 884 dst_release(transport->dst); 885 transport->dst = NULL; 886 } 887 888 spc_state = SCTP_ADDR_UNREACHABLE; 889 break; 890 891 case SCTP_TRANSPORT_PF: 892 transport->state = SCTP_PF; 893 ulp_notify = false; 894 break; 895 896 default: 897 return; 898 } 899 900 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 901 * user. 902 */ 903 if (ulp_notify) { 904 memset(&addr, 0, sizeof(struct sockaddr_storage)); 905 memcpy(&addr, &transport->ipaddr, 906 transport->af_specific->sockaddr_len); 907 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 908 0, spc_state, error, GFP_ATOMIC); 909 if (event) 910 sctp_ulpq_tail_event(&asoc->ulpq, event); 911 } 912 913 /* Select new active and retran paths. */ 914 915 /* Look for the two most recently used active transports. 916 * 917 * This code produces the wrong ordering whenever jiffies 918 * rolls over, but we still get usable transports, so we don't 919 * worry about it. 920 */ 921 first = NULL; second = NULL; 922 923 list_for_each_entry(t, &asoc->peer.transport_addr_list, 924 transports) { 925 926 if ((t->state == SCTP_INACTIVE) || 927 (t->state == SCTP_UNCONFIRMED) || 928 (t->state == SCTP_PF)) 929 continue; 930 if (!first || t->last_time_heard > first->last_time_heard) { 931 second = first; 932 first = t; 933 } 934 if (!second || t->last_time_heard > second->last_time_heard) 935 second = t; 936 } 937 938 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 939 * 940 * By default, an endpoint should always transmit to the 941 * primary path, unless the SCTP user explicitly specifies the 942 * destination transport address (and possibly source 943 * transport address) to use. 944 * 945 * [If the primary is active but not most recent, bump the most 946 * recently used transport.] 947 */ 948 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 949 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 950 first != asoc->peer.primary_path) { 951 second = first; 952 first = asoc->peer.primary_path; 953 } 954 955 /* If we failed to find a usable transport, just camp on the 956 * primary, even if it is inactive. 957 */ 958 if (!first) { 959 first = asoc->peer.primary_path; 960 second = asoc->peer.primary_path; 961 } 962 963 /* Set the active and retran transports. */ 964 asoc->peer.active_path = first; 965 asoc->peer.retran_path = second; 966 } 967 968 /* Hold a reference to an association. */ 969 void sctp_association_hold(struct sctp_association *asoc) 970 { 971 atomic_inc(&asoc->base.refcnt); 972 } 973 974 /* Release a reference to an association and cleanup 975 * if there are no more references. 976 */ 977 void sctp_association_put(struct sctp_association *asoc) 978 { 979 if (atomic_dec_and_test(&asoc->base.refcnt)) 980 sctp_association_destroy(asoc); 981 } 982 983 /* Allocate the next TSN, Transmission Sequence Number, for the given 984 * association. 985 */ 986 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 987 { 988 /* From Section 1.6 Serial Number Arithmetic: 989 * Transmission Sequence Numbers wrap around when they reach 990 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 991 * after transmitting TSN = 2*32 - 1 is TSN = 0. 992 */ 993 __u32 retval = asoc->next_tsn; 994 asoc->next_tsn++; 995 asoc->unack_data++; 996 997 return retval; 998 } 999 1000 /* Compare two addresses to see if they match. Wildcard addresses 1001 * only match themselves. 1002 */ 1003 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 1004 const union sctp_addr *ss2) 1005 { 1006 struct sctp_af *af; 1007 1008 af = sctp_get_af_specific(ss1->sa.sa_family); 1009 if (unlikely(!af)) 1010 return 0; 1011 1012 return af->cmp_addr(ss1, ss2); 1013 } 1014 1015 /* Return an ecne chunk to get prepended to a packet. 1016 * Note: We are sly and return a shared, prealloced chunk. FIXME: 1017 * No we don't, but we could/should. 1018 */ 1019 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 1020 { 1021 struct sctp_chunk *chunk; 1022 1023 /* Send ECNE if needed. 1024 * Not being able to allocate a chunk here is not deadly. 1025 */ 1026 if (asoc->need_ecne) 1027 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 1028 else 1029 chunk = NULL; 1030 1031 return chunk; 1032 } 1033 1034 /* 1035 * Find which transport this TSN was sent on. 1036 */ 1037 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1038 __u32 tsn) 1039 { 1040 struct sctp_transport *active; 1041 struct sctp_transport *match; 1042 struct sctp_transport *transport; 1043 struct sctp_chunk *chunk; 1044 __be32 key = htonl(tsn); 1045 1046 match = NULL; 1047 1048 /* 1049 * FIXME: In general, find a more efficient data structure for 1050 * searching. 1051 */ 1052 1053 /* 1054 * The general strategy is to search each transport's transmitted 1055 * list. Return which transport this TSN lives on. 1056 * 1057 * Let's be hopeful and check the active_path first. 1058 * Another optimization would be to know if there is only one 1059 * outbound path and not have to look for the TSN at all. 1060 * 1061 */ 1062 1063 active = asoc->peer.active_path; 1064 1065 list_for_each_entry(chunk, &active->transmitted, 1066 transmitted_list) { 1067 1068 if (key == chunk->subh.data_hdr->tsn) { 1069 match = active; 1070 goto out; 1071 } 1072 } 1073 1074 /* If not found, go search all the other transports. */ 1075 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1076 transports) { 1077 1078 if (transport == active) 1079 break; 1080 list_for_each_entry(chunk, &transport->transmitted, 1081 transmitted_list) { 1082 if (key == chunk->subh.data_hdr->tsn) { 1083 match = transport; 1084 goto out; 1085 } 1086 } 1087 } 1088 out: 1089 return match; 1090 } 1091 1092 /* Is this the association we are looking for? */ 1093 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1094 struct net *net, 1095 const union sctp_addr *laddr, 1096 const union sctp_addr *paddr) 1097 { 1098 struct sctp_transport *transport; 1099 1100 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1101 (htons(asoc->peer.port) == paddr->v4.sin_port) && 1102 net_eq(sock_net(asoc->base.sk), net)) { 1103 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1104 if (!transport) 1105 goto out; 1106 1107 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1108 sctp_sk(asoc->base.sk))) 1109 goto out; 1110 } 1111 transport = NULL; 1112 1113 out: 1114 return transport; 1115 } 1116 1117 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1118 static void sctp_assoc_bh_rcv(struct work_struct *work) 1119 { 1120 struct sctp_association *asoc = 1121 container_of(work, struct sctp_association, 1122 base.inqueue.immediate); 1123 struct net *net = sock_net(asoc->base.sk); 1124 struct sctp_endpoint *ep; 1125 struct sctp_chunk *chunk; 1126 struct sctp_inq *inqueue; 1127 int state; 1128 sctp_subtype_t subtype; 1129 int error = 0; 1130 1131 /* The association should be held so we should be safe. */ 1132 ep = asoc->ep; 1133 1134 inqueue = &asoc->base.inqueue; 1135 sctp_association_hold(asoc); 1136 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1137 state = asoc->state; 1138 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1139 1140 /* SCTP-AUTH, Section 6.3: 1141 * The receiver has a list of chunk types which it expects 1142 * to be received only after an AUTH-chunk. This list has 1143 * been sent to the peer during the association setup. It 1144 * MUST silently discard these chunks if they are not placed 1145 * after an AUTH chunk in the packet. 1146 */ 1147 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1148 continue; 1149 1150 /* Remember where the last DATA chunk came from so we 1151 * know where to send the SACK. 1152 */ 1153 if (sctp_chunk_is_data(chunk)) 1154 asoc->peer.last_data_from = chunk->transport; 1155 else 1156 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1157 1158 if (chunk->transport) 1159 chunk->transport->last_time_heard = jiffies; 1160 1161 /* Run through the state machine. */ 1162 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1163 state, ep, asoc, chunk, GFP_ATOMIC); 1164 1165 /* Check to see if the association is freed in response to 1166 * the incoming chunk. If so, get out of the while loop. 1167 */ 1168 if (asoc->base.dead) 1169 break; 1170 1171 /* If there is an error on chunk, discard this packet. */ 1172 if (error && chunk) 1173 chunk->pdiscard = 1; 1174 } 1175 sctp_association_put(asoc); 1176 } 1177 1178 /* This routine moves an association from its old sk to a new sk. */ 1179 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1180 { 1181 struct sctp_sock *newsp = sctp_sk(newsk); 1182 struct sock *oldsk = assoc->base.sk; 1183 1184 /* Delete the association from the old endpoint's list of 1185 * associations. 1186 */ 1187 list_del_init(&assoc->asocs); 1188 1189 /* Decrement the backlog value for a TCP-style socket. */ 1190 if (sctp_style(oldsk, TCP)) 1191 oldsk->sk_ack_backlog--; 1192 1193 /* Release references to the old endpoint and the sock. */ 1194 sctp_endpoint_put(assoc->ep); 1195 sock_put(assoc->base.sk); 1196 1197 /* Get a reference to the new endpoint. */ 1198 assoc->ep = newsp->ep; 1199 sctp_endpoint_hold(assoc->ep); 1200 1201 /* Get a reference to the new sock. */ 1202 assoc->base.sk = newsk; 1203 sock_hold(assoc->base.sk); 1204 1205 /* Add the association to the new endpoint's list of associations. */ 1206 sctp_endpoint_add_asoc(newsp->ep, assoc); 1207 } 1208 1209 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1210 void sctp_assoc_update(struct sctp_association *asoc, 1211 struct sctp_association *new) 1212 { 1213 struct sctp_transport *trans; 1214 struct list_head *pos, *temp; 1215 1216 /* Copy in new parameters of peer. */ 1217 asoc->c = new->c; 1218 asoc->peer.rwnd = new->peer.rwnd; 1219 asoc->peer.sack_needed = new->peer.sack_needed; 1220 asoc->peer.i = new->peer.i; 1221 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1222 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1223 1224 /* Remove any peer addresses not present in the new association. */ 1225 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1226 trans = list_entry(pos, struct sctp_transport, transports); 1227 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1228 sctp_assoc_rm_peer(asoc, trans); 1229 continue; 1230 } 1231 1232 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1233 sctp_transport_reset(trans); 1234 } 1235 1236 /* If the case is A (association restart), use 1237 * initial_tsn as next_tsn. If the case is B, use 1238 * current next_tsn in case data sent to peer 1239 * has been discarded and needs retransmission. 1240 */ 1241 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1242 asoc->next_tsn = new->next_tsn; 1243 asoc->ctsn_ack_point = new->ctsn_ack_point; 1244 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1245 1246 /* Reinitialize SSN for both local streams 1247 * and peer's streams. 1248 */ 1249 sctp_ssnmap_clear(asoc->ssnmap); 1250 1251 /* Flush the ULP reassembly and ordered queue. 1252 * Any data there will now be stale and will 1253 * cause problems. 1254 */ 1255 sctp_ulpq_flush(&asoc->ulpq); 1256 1257 /* reset the overall association error count so 1258 * that the restarted association doesn't get torn 1259 * down on the next retransmission timer. 1260 */ 1261 asoc->overall_error_count = 0; 1262 1263 } else { 1264 /* Add any peer addresses from the new association. */ 1265 list_for_each_entry(trans, &new->peer.transport_addr_list, 1266 transports) { 1267 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1268 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1269 GFP_ATOMIC, trans->state); 1270 } 1271 1272 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1273 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1274 if (!asoc->ssnmap) { 1275 /* Move the ssnmap. */ 1276 asoc->ssnmap = new->ssnmap; 1277 new->ssnmap = NULL; 1278 } 1279 1280 if (!asoc->assoc_id) { 1281 /* get a new association id since we don't have one 1282 * yet. 1283 */ 1284 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1285 } 1286 } 1287 1288 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1289 * and also move the association shared keys over 1290 */ 1291 kfree(asoc->peer.peer_random); 1292 asoc->peer.peer_random = new->peer.peer_random; 1293 new->peer.peer_random = NULL; 1294 1295 kfree(asoc->peer.peer_chunks); 1296 asoc->peer.peer_chunks = new->peer.peer_chunks; 1297 new->peer.peer_chunks = NULL; 1298 1299 kfree(asoc->peer.peer_hmacs); 1300 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1301 new->peer.peer_hmacs = NULL; 1302 1303 sctp_auth_key_put(asoc->asoc_shared_key); 1304 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1305 } 1306 1307 /* Update the retran path for sending a retransmitted packet. 1308 * Round-robin through the active transports, else round-robin 1309 * through the inactive transports as this is the next best thing 1310 * we can try. 1311 */ 1312 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1313 { 1314 struct sctp_transport *t, *next; 1315 struct list_head *head = &asoc->peer.transport_addr_list; 1316 struct list_head *pos; 1317 1318 if (asoc->peer.transport_count == 1) 1319 return; 1320 1321 /* Find the next transport in a round-robin fashion. */ 1322 t = asoc->peer.retran_path; 1323 pos = &t->transports; 1324 next = NULL; 1325 1326 while (1) { 1327 /* Skip the head. */ 1328 if (pos->next == head) 1329 pos = head->next; 1330 else 1331 pos = pos->next; 1332 1333 t = list_entry(pos, struct sctp_transport, transports); 1334 1335 /* We have exhausted the list, but didn't find any 1336 * other active transports. If so, use the next 1337 * transport. 1338 */ 1339 if (t == asoc->peer.retran_path) { 1340 t = next; 1341 break; 1342 } 1343 1344 /* Try to find an active transport. */ 1345 1346 if ((t->state == SCTP_ACTIVE) || 1347 (t->state == SCTP_UNKNOWN)) { 1348 break; 1349 } else { 1350 /* Keep track of the next transport in case 1351 * we don't find any active transport. 1352 */ 1353 if (t->state != SCTP_UNCONFIRMED && !next) 1354 next = t; 1355 } 1356 } 1357 1358 if (t) 1359 asoc->peer.retran_path = t; 1360 else 1361 t = asoc->peer.retran_path; 1362 1363 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1364 " %p addr: ", 1365 " port: %d\n", 1366 asoc, 1367 (&t->ipaddr), 1368 ntohs(t->ipaddr.v4.sin_port)); 1369 } 1370 1371 /* Choose the transport for sending retransmit packet. */ 1372 struct sctp_transport *sctp_assoc_choose_alter_transport( 1373 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1374 { 1375 /* If this is the first time packet is sent, use the active path, 1376 * else use the retran path. If the last packet was sent over the 1377 * retran path, update the retran path and use it. 1378 */ 1379 if (!last_sent_to) 1380 return asoc->peer.active_path; 1381 else { 1382 if (last_sent_to == asoc->peer.retran_path) 1383 sctp_assoc_update_retran_path(asoc); 1384 return asoc->peer.retran_path; 1385 } 1386 } 1387 1388 /* Update the association's pmtu and frag_point by going through all the 1389 * transports. This routine is called when a transport's PMTU has changed. 1390 */ 1391 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1392 { 1393 struct sctp_transport *t; 1394 __u32 pmtu = 0; 1395 1396 if (!asoc) 1397 return; 1398 1399 /* Get the lowest pmtu of all the transports. */ 1400 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1401 transports) { 1402 if (t->pmtu_pending && t->dst) { 1403 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1404 t->pmtu_pending = 0; 1405 } 1406 if (!pmtu || (t->pathmtu < pmtu)) 1407 pmtu = t->pathmtu; 1408 } 1409 1410 if (pmtu) { 1411 asoc->pathmtu = pmtu; 1412 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1413 } 1414 1415 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1416 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1417 } 1418 1419 /* Should we send a SACK to update our peer? */ 1420 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1421 { 1422 struct net *net = sock_net(asoc->base.sk); 1423 switch (asoc->state) { 1424 case SCTP_STATE_ESTABLISHED: 1425 case SCTP_STATE_SHUTDOWN_PENDING: 1426 case SCTP_STATE_SHUTDOWN_RECEIVED: 1427 case SCTP_STATE_SHUTDOWN_SENT: 1428 if ((asoc->rwnd > asoc->a_rwnd) && 1429 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1430 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1431 asoc->pathmtu))) 1432 return 1; 1433 break; 1434 default: 1435 break; 1436 } 1437 return 0; 1438 } 1439 1440 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1441 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1442 { 1443 struct sctp_chunk *sack; 1444 struct timer_list *timer; 1445 1446 if (asoc->rwnd_over) { 1447 if (asoc->rwnd_over >= len) { 1448 asoc->rwnd_over -= len; 1449 } else { 1450 asoc->rwnd += (len - asoc->rwnd_over); 1451 asoc->rwnd_over = 0; 1452 } 1453 } else { 1454 asoc->rwnd += len; 1455 } 1456 1457 /* If we had window pressure, start recovering it 1458 * once our rwnd had reached the accumulated pressure 1459 * threshold. The idea is to recover slowly, but up 1460 * to the initial advertised window. 1461 */ 1462 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1463 int change = min(asoc->pathmtu, asoc->rwnd_press); 1464 asoc->rwnd += change; 1465 asoc->rwnd_press -= change; 1466 } 1467 1468 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1469 "- %u\n", __func__, asoc, len, asoc->rwnd, 1470 asoc->rwnd_over, asoc->a_rwnd); 1471 1472 /* Send a window update SACK if the rwnd has increased by at least the 1473 * minimum of the association's PMTU and half of the receive buffer. 1474 * The algorithm used is similar to the one described in 1475 * Section 4.2.3.3 of RFC 1122. 1476 */ 1477 if (sctp_peer_needs_update(asoc)) { 1478 asoc->a_rwnd = asoc->rwnd; 1479 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1480 "rwnd: %u a_rwnd: %u\n", __func__, 1481 asoc, asoc->rwnd, asoc->a_rwnd); 1482 sack = sctp_make_sack(asoc); 1483 if (!sack) 1484 return; 1485 1486 asoc->peer.sack_needed = 0; 1487 1488 sctp_outq_tail(&asoc->outqueue, sack); 1489 1490 /* Stop the SACK timer. */ 1491 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1492 if (timer_pending(timer) && del_timer(timer)) 1493 sctp_association_put(asoc); 1494 } 1495 } 1496 1497 /* Decrease asoc's rwnd by len. */ 1498 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1499 { 1500 int rx_count; 1501 int over = 0; 1502 1503 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1504 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1505 1506 if (asoc->ep->rcvbuf_policy) 1507 rx_count = atomic_read(&asoc->rmem_alloc); 1508 else 1509 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1510 1511 /* If we've reached or overflowed our receive buffer, announce 1512 * a 0 rwnd if rwnd would still be positive. Store the 1513 * the pottential pressure overflow so that the window can be restored 1514 * back to original value. 1515 */ 1516 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1517 over = 1; 1518 1519 if (asoc->rwnd >= len) { 1520 asoc->rwnd -= len; 1521 if (over) { 1522 asoc->rwnd_press += asoc->rwnd; 1523 asoc->rwnd = 0; 1524 } 1525 } else { 1526 asoc->rwnd_over = len - asoc->rwnd; 1527 asoc->rwnd = 0; 1528 } 1529 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1530 __func__, asoc, len, asoc->rwnd, 1531 asoc->rwnd_over, asoc->rwnd_press); 1532 } 1533 1534 /* Build the bind address list for the association based on info from the 1535 * local endpoint and the remote peer. 1536 */ 1537 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1538 sctp_scope_t scope, gfp_t gfp) 1539 { 1540 int flags; 1541 1542 /* Use scoping rules to determine the subset of addresses from 1543 * the endpoint. 1544 */ 1545 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1546 if (asoc->peer.ipv4_address) 1547 flags |= SCTP_ADDR4_PEERSUPP; 1548 if (asoc->peer.ipv6_address) 1549 flags |= SCTP_ADDR6_PEERSUPP; 1550 1551 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1552 &asoc->base.bind_addr, 1553 &asoc->ep->base.bind_addr, 1554 scope, gfp, flags); 1555 } 1556 1557 /* Build the association's bind address list from the cookie. */ 1558 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1559 struct sctp_cookie *cookie, 1560 gfp_t gfp) 1561 { 1562 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1563 int var_size3 = cookie->raw_addr_list_len; 1564 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1565 1566 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1567 asoc->ep->base.bind_addr.port, gfp); 1568 } 1569 1570 /* Lookup laddr in the bind address list of an association. */ 1571 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1572 const union sctp_addr *laddr) 1573 { 1574 int found = 0; 1575 1576 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1577 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1578 sctp_sk(asoc->base.sk))) 1579 found = 1; 1580 1581 return found; 1582 } 1583 1584 /* Set an association id for a given association */ 1585 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1586 { 1587 int assoc_id; 1588 int error = 0; 1589 1590 /* If the id is already assigned, keep it. */ 1591 if (asoc->assoc_id) 1592 return error; 1593 retry: 1594 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1595 return -ENOMEM; 1596 1597 spin_lock_bh(&sctp_assocs_id_lock); 1598 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1599 idr_low, &assoc_id); 1600 if (!error) { 1601 idr_low = assoc_id + 1; 1602 if (idr_low == INT_MAX) 1603 idr_low = 1; 1604 } 1605 spin_unlock_bh(&sctp_assocs_id_lock); 1606 if (error == -EAGAIN) 1607 goto retry; 1608 else if (error) 1609 return error; 1610 1611 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1612 return error; 1613 } 1614 1615 /* Free the ASCONF queue */ 1616 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1617 { 1618 struct sctp_chunk *asconf; 1619 struct sctp_chunk *tmp; 1620 1621 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1622 list_del_init(&asconf->list); 1623 sctp_chunk_free(asconf); 1624 } 1625 } 1626 1627 /* Free asconf_ack cache */ 1628 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1629 { 1630 struct sctp_chunk *ack; 1631 struct sctp_chunk *tmp; 1632 1633 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1634 transmitted_list) { 1635 list_del_init(&ack->transmitted_list); 1636 sctp_chunk_free(ack); 1637 } 1638 } 1639 1640 /* Clean up the ASCONF_ACK queue */ 1641 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1642 { 1643 struct sctp_chunk *ack; 1644 struct sctp_chunk *tmp; 1645 1646 /* We can remove all the entries from the queue up to 1647 * the "Peer-Sequence-Number". 1648 */ 1649 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1650 transmitted_list) { 1651 if (ack->subh.addip_hdr->serial == 1652 htonl(asoc->peer.addip_serial)) 1653 break; 1654 1655 list_del_init(&ack->transmitted_list); 1656 sctp_chunk_free(ack); 1657 } 1658 } 1659 1660 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1661 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1662 const struct sctp_association *asoc, 1663 __be32 serial) 1664 { 1665 struct sctp_chunk *ack; 1666 1667 /* Walk through the list of cached ASCONF-ACKs and find the 1668 * ack chunk whose serial number matches that of the request. 1669 */ 1670 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1671 if (ack->subh.addip_hdr->serial == serial) { 1672 sctp_chunk_hold(ack); 1673 return ack; 1674 } 1675 } 1676 1677 return NULL; 1678 } 1679 1680 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1681 { 1682 /* Free any cached ASCONF_ACK chunk. */ 1683 sctp_assoc_free_asconf_acks(asoc); 1684 1685 /* Free the ASCONF queue. */ 1686 sctp_assoc_free_asconf_queue(asoc); 1687 1688 /* Free any cached ASCONF chunk. */ 1689 if (asoc->addip_last_asconf) 1690 sctp_chunk_free(asoc->addip_last_asconf); 1691 } 1692