1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel reference Implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/poll.h> 54 #include <linux/init.h> 55 #include <linux/sched.h> 56 57 #include <linux/slab.h> 58 #include <linux/in.h> 59 #include <net/ipv6.h> 60 #include <net/sctp/sctp.h> 61 #include <net/sctp/sm.h> 62 63 /* Forward declarations for internal functions. */ 64 static void sctp_assoc_bh_rcv(struct sctp_association *asoc); 65 66 67 /* 1st Level Abstractions. */ 68 69 /* Initialize a new association from provided memory. */ 70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 71 const struct sctp_endpoint *ep, 72 const struct sock *sk, 73 sctp_scope_t scope, 74 gfp_t gfp) 75 { 76 struct sctp_sock *sp; 77 int i; 78 79 /* Retrieve the SCTP per socket area. */ 80 sp = sctp_sk((struct sock *)sk); 81 82 /* Init all variables to a known value. */ 83 memset(asoc, 0, sizeof(struct sctp_association)); 84 85 /* Discarding const is appropriate here. */ 86 asoc->ep = (struct sctp_endpoint *)ep; 87 sctp_endpoint_hold(asoc->ep); 88 89 /* Hold the sock. */ 90 asoc->base.sk = (struct sock *)sk; 91 sock_hold(asoc->base.sk); 92 93 /* Initialize the common base substructure. */ 94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 95 96 /* Initialize the object handling fields. */ 97 atomic_set(&asoc->base.refcnt, 1); 98 asoc->base.dead = 0; 99 asoc->base.malloced = 0; 100 101 /* Initialize the bind addr area. */ 102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 103 rwlock_init(&asoc->base.addr_lock); 104 105 asoc->state = SCTP_STATE_CLOSED; 106 107 /* Set these values from the socket values, a conversion between 108 * millsecons to seconds/microseconds must also be done. 109 */ 110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 112 * 1000; 113 asoc->frag_point = 0; 114 115 /* Set the association max_retrans and RTO values from the 116 * socket values. 117 */ 118 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 119 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 120 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 121 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 122 123 asoc->overall_error_count = 0; 124 125 /* Initialize the association's heartbeat interval based on the 126 * sock configured value. 127 */ 128 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 129 130 /* Initialize path max retrans value. */ 131 asoc->pathmaxrxt = sp->pathmaxrxt; 132 133 /* Initialize default path MTU. */ 134 asoc->pathmtu = sp->pathmtu; 135 136 /* Set association default SACK delay */ 137 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 138 139 /* Set the association default flags controlling 140 * Heartbeat, SACK delay, and Path MTU Discovery. 141 */ 142 asoc->param_flags = sp->param_flags; 143 144 /* Initialize the maximum mumber of new data packets that can be sent 145 * in a burst. 146 */ 147 asoc->max_burst = sctp_max_burst; 148 149 /* initialize association timers */ 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 156 157 /* sctpimpguide Section 2.12.2 158 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 159 * recommended value of 5 times 'RTO.Max'. 160 */ 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 162 = 5 * asoc->rto_max; 163 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 166 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 167 sp->autoclose * HZ; 168 169 /* Initilizes the timers */ 170 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 171 init_timer(&asoc->timers[i]); 172 asoc->timers[i].function = sctp_timer_events[i]; 173 asoc->timers[i].data = (unsigned long) asoc; 174 } 175 176 /* Pull default initialization values from the sock options. 177 * Note: This assumes that the values have already been 178 * validated in the sock. 179 */ 180 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 181 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 182 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 183 184 asoc->max_init_timeo = 185 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 186 187 /* Allocate storage for the ssnmap after the inbound and outbound 188 * streams have been negotiated during Init. 189 */ 190 asoc->ssnmap = NULL; 191 192 /* Set the local window size for receive. 193 * This is also the rcvbuf space per association. 194 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 195 * 1500 bytes in one SCTP packet. 196 */ 197 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 198 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 199 else 200 asoc->rwnd = sk->sk_rcvbuf/2; 201 202 asoc->a_rwnd = asoc->rwnd; 203 204 asoc->rwnd_over = 0; 205 206 /* Use my own max window until I learn something better. */ 207 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 208 209 /* Set the sndbuf size for transmit. */ 210 asoc->sndbuf_used = 0; 211 212 /* Initialize the receive memory counter */ 213 atomic_set(&asoc->rmem_alloc, 0); 214 215 init_waitqueue_head(&asoc->wait); 216 217 asoc->c.my_vtag = sctp_generate_tag(ep); 218 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 219 asoc->c.peer_vtag = 0; 220 asoc->c.my_ttag = 0; 221 asoc->c.peer_ttag = 0; 222 asoc->c.my_port = ep->base.bind_addr.port; 223 224 asoc->c.initial_tsn = sctp_generate_tsn(ep); 225 226 asoc->next_tsn = asoc->c.initial_tsn; 227 228 asoc->ctsn_ack_point = asoc->next_tsn - 1; 229 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 230 asoc->highest_sacked = asoc->ctsn_ack_point; 231 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 232 asoc->unack_data = 0; 233 234 /* ADDIP Section 4.1 Asconf Chunk Procedures 235 * 236 * When an endpoint has an ASCONF signaled change to be sent to the 237 * remote endpoint it should do the following: 238 * ... 239 * A2) a serial number should be assigned to the chunk. The serial 240 * number SHOULD be a monotonically increasing number. The serial 241 * numbers SHOULD be initialized at the start of the 242 * association to the same value as the initial TSN. 243 */ 244 asoc->addip_serial = asoc->c.initial_tsn; 245 246 INIT_LIST_HEAD(&asoc->addip_chunk_list); 247 248 /* Make an empty list of remote transport addresses. */ 249 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 250 asoc->peer.transport_count = 0; 251 252 /* RFC 2960 5.1 Normal Establishment of an Association 253 * 254 * After the reception of the first data chunk in an 255 * association the endpoint must immediately respond with a 256 * sack to acknowledge the data chunk. Subsequent 257 * acknowledgements should be done as described in Section 258 * 6.2. 259 * 260 * [We implement this by telling a new association that it 261 * already received one packet.] 262 */ 263 asoc->peer.sack_needed = 1; 264 265 /* Assume that the peer recongizes ASCONF until reported otherwise 266 * via an ERROR chunk. 267 */ 268 asoc->peer.asconf_capable = 1; 269 270 /* Create an input queue. */ 271 sctp_inq_init(&asoc->base.inqueue); 272 sctp_inq_set_th_handler(&asoc->base.inqueue, 273 (void (*)(void *))sctp_assoc_bh_rcv, 274 asoc); 275 276 /* Create an output queue. */ 277 sctp_outq_init(asoc, &asoc->outqueue); 278 279 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 280 goto fail_init; 281 282 /* Set up the tsn tracking. */ 283 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0); 284 285 asoc->need_ecne = 0; 286 287 asoc->assoc_id = 0; 288 289 /* Assume that peer would support both address types unless we are 290 * told otherwise. 291 */ 292 asoc->peer.ipv4_address = 1; 293 asoc->peer.ipv6_address = 1; 294 INIT_LIST_HEAD(&asoc->asocs); 295 296 asoc->autoclose = sp->autoclose; 297 298 asoc->default_stream = sp->default_stream; 299 asoc->default_ppid = sp->default_ppid; 300 asoc->default_flags = sp->default_flags; 301 asoc->default_context = sp->default_context; 302 asoc->default_timetolive = sp->default_timetolive; 303 304 return asoc; 305 306 fail_init: 307 sctp_endpoint_put(asoc->ep); 308 sock_put(asoc->base.sk); 309 return NULL; 310 } 311 312 /* Allocate and initialize a new association */ 313 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 314 const struct sock *sk, 315 sctp_scope_t scope, 316 gfp_t gfp) 317 { 318 struct sctp_association *asoc; 319 320 asoc = t_new(struct sctp_association, gfp); 321 if (!asoc) 322 goto fail; 323 324 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 325 goto fail_init; 326 327 asoc->base.malloced = 1; 328 SCTP_DBG_OBJCNT_INC(assoc); 329 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 330 331 return asoc; 332 333 fail_init: 334 kfree(asoc); 335 fail: 336 return NULL; 337 } 338 339 /* Free this association if possible. There may still be users, so 340 * the actual deallocation may be delayed. 341 */ 342 void sctp_association_free(struct sctp_association *asoc) 343 { 344 struct sock *sk = asoc->base.sk; 345 struct sctp_transport *transport; 346 struct list_head *pos, *temp; 347 int i; 348 349 list_del(&asoc->asocs); 350 351 /* Decrement the backlog value for a TCP-style listening socket. */ 352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 353 sk->sk_ack_backlog--; 354 355 /* Mark as dead, so other users can know this structure is 356 * going away. 357 */ 358 asoc->base.dead = 1; 359 360 /* Dispose of any data lying around in the outqueue. */ 361 sctp_outq_free(&asoc->outqueue); 362 363 /* Dispose of any pending messages for the upper layer. */ 364 sctp_ulpq_free(&asoc->ulpq); 365 366 /* Dispose of any pending chunks on the inqueue. */ 367 sctp_inq_free(&asoc->base.inqueue); 368 369 /* Free ssnmap storage. */ 370 sctp_ssnmap_free(asoc->ssnmap); 371 372 /* Clean up the bound address list. */ 373 sctp_bind_addr_free(&asoc->base.bind_addr); 374 375 /* Do we need to go through all of our timers and 376 * delete them? To be safe we will try to delete all, but we 377 * should be able to go through and make a guess based 378 * on our state. 379 */ 380 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 381 if (timer_pending(&asoc->timers[i]) && 382 del_timer(&asoc->timers[i])) 383 sctp_association_put(asoc); 384 } 385 386 /* Free peer's cached cookie. */ 387 kfree(asoc->peer.cookie); 388 389 /* Release the transport structures. */ 390 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 391 transport = list_entry(pos, struct sctp_transport, transports); 392 list_del(pos); 393 sctp_transport_free(transport); 394 } 395 396 asoc->peer.transport_count = 0; 397 398 /* Free any cached ASCONF_ACK chunk. */ 399 if (asoc->addip_last_asconf_ack) 400 sctp_chunk_free(asoc->addip_last_asconf_ack); 401 402 /* Free any cached ASCONF chunk. */ 403 if (asoc->addip_last_asconf) 404 sctp_chunk_free(asoc->addip_last_asconf); 405 406 sctp_association_put(asoc); 407 } 408 409 /* Cleanup and free up an association. */ 410 static void sctp_association_destroy(struct sctp_association *asoc) 411 { 412 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 413 414 sctp_endpoint_put(asoc->ep); 415 sock_put(asoc->base.sk); 416 417 if (asoc->assoc_id != 0) { 418 spin_lock_bh(&sctp_assocs_id_lock); 419 idr_remove(&sctp_assocs_id, asoc->assoc_id); 420 spin_unlock_bh(&sctp_assocs_id_lock); 421 } 422 423 BUG_TRAP(!atomic_read(&asoc->rmem_alloc)); 424 425 if (asoc->base.malloced) { 426 kfree(asoc); 427 SCTP_DBG_OBJCNT_DEC(assoc); 428 } 429 } 430 431 /* Change the primary destination address for the peer. */ 432 void sctp_assoc_set_primary(struct sctp_association *asoc, 433 struct sctp_transport *transport) 434 { 435 asoc->peer.primary_path = transport; 436 437 /* Set a default msg_name for events. */ 438 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 439 sizeof(union sctp_addr)); 440 441 /* If the primary path is changing, assume that the 442 * user wants to use this new path. 443 */ 444 if (transport->state != SCTP_INACTIVE) 445 asoc->peer.active_path = transport; 446 447 /* 448 * SFR-CACC algorithm: 449 * Upon the receipt of a request to change the primary 450 * destination address, on the data structure for the new 451 * primary destination, the sender MUST do the following: 452 * 453 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 454 * to this destination address earlier. The sender MUST set 455 * CYCLING_CHANGEOVER to indicate that this switch is a 456 * double switch to the same destination address. 457 */ 458 if (transport->cacc.changeover_active) 459 transport->cacc.cycling_changeover = 1; 460 461 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 462 * a changeover has occurred. 463 */ 464 transport->cacc.changeover_active = 1; 465 466 /* 3) The sender MUST store the next TSN to be sent in 467 * next_tsn_at_change. 468 */ 469 transport->cacc.next_tsn_at_change = asoc->next_tsn; 470 } 471 472 /* Remove a transport from an association. */ 473 void sctp_assoc_rm_peer(struct sctp_association *asoc, 474 struct sctp_transport *peer) 475 { 476 struct list_head *pos; 477 struct sctp_transport *transport; 478 479 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 480 " port: %d\n", 481 asoc, 482 (&peer->ipaddr), 483 peer->ipaddr.v4.sin_port); 484 485 /* If we are to remove the current retran_path, update it 486 * to the next peer before removing this peer from the list. 487 */ 488 if (asoc->peer.retran_path == peer) 489 sctp_assoc_update_retran_path(asoc); 490 491 /* Remove this peer from the list. */ 492 list_del(&peer->transports); 493 494 /* Get the first transport of asoc. */ 495 pos = asoc->peer.transport_addr_list.next; 496 transport = list_entry(pos, struct sctp_transport, transports); 497 498 /* Update any entries that match the peer to be deleted. */ 499 if (asoc->peer.primary_path == peer) 500 sctp_assoc_set_primary(asoc, transport); 501 if (asoc->peer.active_path == peer) 502 asoc->peer.active_path = transport; 503 if (asoc->peer.last_data_from == peer) 504 asoc->peer.last_data_from = transport; 505 506 /* If we remove the transport an INIT was last sent to, set it to 507 * NULL. Combined with the update of the retran path above, this 508 * will cause the next INIT to be sent to the next available 509 * transport, maintaining the cycle. 510 */ 511 if (asoc->init_last_sent_to == peer) 512 asoc->init_last_sent_to = NULL; 513 514 asoc->peer.transport_count--; 515 516 sctp_transport_free(peer); 517 } 518 519 /* Add a transport address to an association. */ 520 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 521 const union sctp_addr *addr, 522 const gfp_t gfp, 523 const int peer_state) 524 { 525 struct sctp_transport *peer; 526 struct sctp_sock *sp; 527 unsigned short port; 528 529 sp = sctp_sk(asoc->base.sk); 530 531 /* AF_INET and AF_INET6 share common port field. */ 532 port = addr->v4.sin_port; 533 534 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 535 " port: %d state:%s\n", 536 asoc, 537 addr, 538 addr->v4.sin_port, 539 peer_state == SCTP_UNKNOWN?"UNKNOWN":"ACTIVE"); 540 541 /* Set the port if it has not been set yet. */ 542 if (0 == asoc->peer.port) 543 asoc->peer.port = port; 544 545 /* Check to see if this is a duplicate. */ 546 peer = sctp_assoc_lookup_paddr(asoc, addr); 547 if (peer) { 548 if (peer_state == SCTP_ACTIVE && 549 peer->state == SCTP_UNKNOWN) 550 peer->state = SCTP_ACTIVE; 551 return peer; 552 } 553 554 peer = sctp_transport_new(addr, gfp); 555 if (!peer) 556 return NULL; 557 558 sctp_transport_set_owner(peer, asoc); 559 560 /* Initialize the peer's heartbeat interval based on the 561 * association configured value. 562 */ 563 peer->hbinterval = asoc->hbinterval; 564 565 /* Set the path max_retrans. */ 566 peer->pathmaxrxt = asoc->pathmaxrxt; 567 568 /* Initialize the peer's SACK delay timeout based on the 569 * association configured value. 570 */ 571 peer->sackdelay = asoc->sackdelay; 572 573 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 574 * based on association setting. 575 */ 576 peer->param_flags = asoc->param_flags; 577 578 /* Initialize the pmtu of the transport. */ 579 if (peer->param_flags & SPP_PMTUD_ENABLE) 580 sctp_transport_pmtu(peer); 581 else if (asoc->pathmtu) 582 peer->pathmtu = asoc->pathmtu; 583 else 584 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 585 586 /* If this is the first transport addr on this association, 587 * initialize the association PMTU to the peer's PMTU. 588 * If not and the current association PMTU is higher than the new 589 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 590 */ 591 if (asoc->pathmtu) 592 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 593 else 594 asoc->pathmtu = peer->pathmtu; 595 596 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 597 "%d\n", asoc, asoc->pathmtu); 598 599 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 600 601 /* The asoc->peer.port might not be meaningful yet, but 602 * initialize the packet structure anyway. 603 */ 604 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 605 asoc->peer.port); 606 607 /* 7.2.1 Slow-Start 608 * 609 * o The initial cwnd before DATA transmission or after a sufficiently 610 * long idle period MUST be set to 611 * min(4*MTU, max(2*MTU, 4380 bytes)) 612 * 613 * o The initial value of ssthresh MAY be arbitrarily high 614 * (for example, implementations MAY use the size of the 615 * receiver advertised window). 616 */ 617 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 618 619 /* At this point, we may not have the receiver's advertised window, 620 * so initialize ssthresh to the default value and it will be set 621 * later when we process the INIT. 622 */ 623 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 624 625 peer->partial_bytes_acked = 0; 626 peer->flight_size = 0; 627 628 /* Set the transport's RTO.initial value */ 629 peer->rto = asoc->rto_initial; 630 631 /* Set the peer's active state. */ 632 peer->state = peer_state; 633 634 /* Attach the remote transport to our asoc. */ 635 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 636 asoc->peer.transport_count++; 637 638 /* If we do not yet have a primary path, set one. */ 639 if (!asoc->peer.primary_path) { 640 sctp_assoc_set_primary(asoc, peer); 641 asoc->peer.retran_path = peer; 642 } 643 644 if (asoc->peer.active_path == asoc->peer.retran_path) { 645 asoc->peer.retran_path = peer; 646 } 647 648 return peer; 649 } 650 651 /* Delete a transport address from an association. */ 652 void sctp_assoc_del_peer(struct sctp_association *asoc, 653 const union sctp_addr *addr) 654 { 655 struct list_head *pos; 656 struct list_head *temp; 657 struct sctp_transport *transport; 658 659 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 660 transport = list_entry(pos, struct sctp_transport, transports); 661 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 662 /* Do book keeping for removing the peer and free it. */ 663 sctp_assoc_rm_peer(asoc, transport); 664 break; 665 } 666 } 667 } 668 669 /* Lookup a transport by address. */ 670 struct sctp_transport *sctp_assoc_lookup_paddr( 671 const struct sctp_association *asoc, 672 const union sctp_addr *address) 673 { 674 struct sctp_transport *t; 675 struct list_head *pos; 676 677 /* Cycle through all transports searching for a peer address. */ 678 679 list_for_each(pos, &asoc->peer.transport_addr_list) { 680 t = list_entry(pos, struct sctp_transport, transports); 681 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 682 return t; 683 } 684 685 return NULL; 686 } 687 688 /* Engage in transport control operations. 689 * Mark the transport up or down and send a notification to the user. 690 * Select and update the new active and retran paths. 691 */ 692 void sctp_assoc_control_transport(struct sctp_association *asoc, 693 struct sctp_transport *transport, 694 sctp_transport_cmd_t command, 695 sctp_sn_error_t error) 696 { 697 struct sctp_transport *t = NULL; 698 struct sctp_transport *first; 699 struct sctp_transport *second; 700 struct sctp_ulpevent *event; 701 struct list_head *pos; 702 int spc_state = 0; 703 704 /* Record the transition on the transport. */ 705 switch (command) { 706 case SCTP_TRANSPORT_UP: 707 transport->state = SCTP_ACTIVE; 708 spc_state = SCTP_ADDR_AVAILABLE; 709 break; 710 711 case SCTP_TRANSPORT_DOWN: 712 transport->state = SCTP_INACTIVE; 713 spc_state = SCTP_ADDR_UNREACHABLE; 714 break; 715 716 default: 717 return; 718 }; 719 720 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 721 * user. 722 */ 723 event = sctp_ulpevent_make_peer_addr_change(asoc, 724 (struct sockaddr_storage *) &transport->ipaddr, 725 0, spc_state, error, GFP_ATOMIC); 726 if (event) 727 sctp_ulpq_tail_event(&asoc->ulpq, event); 728 729 /* Select new active and retran paths. */ 730 731 /* Look for the two most recently used active transports. 732 * 733 * This code produces the wrong ordering whenever jiffies 734 * rolls over, but we still get usable transports, so we don't 735 * worry about it. 736 */ 737 first = NULL; second = NULL; 738 739 list_for_each(pos, &asoc->peer.transport_addr_list) { 740 t = list_entry(pos, struct sctp_transport, transports); 741 742 if (t->state == SCTP_INACTIVE) 743 continue; 744 if (!first || t->last_time_heard > first->last_time_heard) { 745 second = first; 746 first = t; 747 } 748 if (!second || t->last_time_heard > second->last_time_heard) 749 second = t; 750 } 751 752 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 753 * 754 * By default, an endpoint should always transmit to the 755 * primary path, unless the SCTP user explicitly specifies the 756 * destination transport address (and possibly source 757 * transport address) to use. 758 * 759 * [If the primary is active but not most recent, bump the most 760 * recently used transport.] 761 */ 762 if (asoc->peer.primary_path->state != SCTP_INACTIVE && 763 first != asoc->peer.primary_path) { 764 second = first; 765 first = asoc->peer.primary_path; 766 } 767 768 /* If we failed to find a usable transport, just camp on the 769 * primary, even if it is inactive. 770 */ 771 if (!first) { 772 first = asoc->peer.primary_path; 773 second = asoc->peer.primary_path; 774 } 775 776 /* Set the active and retran transports. */ 777 asoc->peer.active_path = first; 778 asoc->peer.retran_path = second; 779 } 780 781 /* Hold a reference to an association. */ 782 void sctp_association_hold(struct sctp_association *asoc) 783 { 784 atomic_inc(&asoc->base.refcnt); 785 } 786 787 /* Release a reference to an association and cleanup 788 * if there are no more references. 789 */ 790 void sctp_association_put(struct sctp_association *asoc) 791 { 792 if (atomic_dec_and_test(&asoc->base.refcnt)) 793 sctp_association_destroy(asoc); 794 } 795 796 /* Allocate the next TSN, Transmission Sequence Number, for the given 797 * association. 798 */ 799 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 800 { 801 /* From Section 1.6 Serial Number Arithmetic: 802 * Transmission Sequence Numbers wrap around when they reach 803 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 804 * after transmitting TSN = 2*32 - 1 is TSN = 0. 805 */ 806 __u32 retval = asoc->next_tsn; 807 asoc->next_tsn++; 808 asoc->unack_data++; 809 810 return retval; 811 } 812 813 /* Compare two addresses to see if they match. Wildcard addresses 814 * only match themselves. 815 */ 816 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 817 const union sctp_addr *ss2) 818 { 819 struct sctp_af *af; 820 821 af = sctp_get_af_specific(ss1->sa.sa_family); 822 if (unlikely(!af)) 823 return 0; 824 825 return af->cmp_addr(ss1, ss2); 826 } 827 828 /* Return an ecne chunk to get prepended to a packet. 829 * Note: We are sly and return a shared, prealloced chunk. FIXME: 830 * No we don't, but we could/should. 831 */ 832 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 833 { 834 struct sctp_chunk *chunk; 835 836 /* Send ECNE if needed. 837 * Not being able to allocate a chunk here is not deadly. 838 */ 839 if (asoc->need_ecne) 840 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 841 else 842 chunk = NULL; 843 844 return chunk; 845 } 846 847 /* 848 * Find which transport this TSN was sent on. 849 */ 850 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 851 __u32 tsn) 852 { 853 struct sctp_transport *active; 854 struct sctp_transport *match; 855 struct list_head *entry, *pos; 856 struct sctp_transport *transport; 857 struct sctp_chunk *chunk; 858 __u32 key = htonl(tsn); 859 860 match = NULL; 861 862 /* 863 * FIXME: In general, find a more efficient data structure for 864 * searching. 865 */ 866 867 /* 868 * The general strategy is to search each transport's transmitted 869 * list. Return which transport this TSN lives on. 870 * 871 * Let's be hopeful and check the active_path first. 872 * Another optimization would be to know if there is only one 873 * outbound path and not have to look for the TSN at all. 874 * 875 */ 876 877 active = asoc->peer.active_path; 878 879 list_for_each(entry, &active->transmitted) { 880 chunk = list_entry(entry, struct sctp_chunk, transmitted_list); 881 882 if (key == chunk->subh.data_hdr->tsn) { 883 match = active; 884 goto out; 885 } 886 } 887 888 /* If not found, go search all the other transports. */ 889 list_for_each(pos, &asoc->peer.transport_addr_list) { 890 transport = list_entry(pos, struct sctp_transport, transports); 891 892 if (transport == active) 893 break; 894 list_for_each(entry, &transport->transmitted) { 895 chunk = list_entry(entry, struct sctp_chunk, 896 transmitted_list); 897 if (key == chunk->subh.data_hdr->tsn) { 898 match = transport; 899 goto out; 900 } 901 } 902 } 903 out: 904 return match; 905 } 906 907 /* Is this the association we are looking for? */ 908 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 909 const union sctp_addr *laddr, 910 const union sctp_addr *paddr) 911 { 912 struct sctp_transport *transport; 913 914 sctp_read_lock(&asoc->base.addr_lock); 915 916 if ((asoc->base.bind_addr.port == laddr->v4.sin_port) && 917 (asoc->peer.port == paddr->v4.sin_port)) { 918 transport = sctp_assoc_lookup_paddr(asoc, paddr); 919 if (!transport) 920 goto out; 921 922 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 923 sctp_sk(asoc->base.sk))) 924 goto out; 925 } 926 transport = NULL; 927 928 out: 929 sctp_read_unlock(&asoc->base.addr_lock); 930 return transport; 931 } 932 933 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 934 static void sctp_assoc_bh_rcv(struct sctp_association *asoc) 935 { 936 struct sctp_endpoint *ep; 937 struct sctp_chunk *chunk; 938 struct sock *sk; 939 struct sctp_inq *inqueue; 940 int state; 941 sctp_subtype_t subtype; 942 int error = 0; 943 944 /* The association should be held so we should be safe. */ 945 ep = asoc->ep; 946 sk = asoc->base.sk; 947 948 inqueue = &asoc->base.inqueue; 949 sctp_association_hold(asoc); 950 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 951 state = asoc->state; 952 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 953 954 /* Remember where the last DATA chunk came from so we 955 * know where to send the SACK. 956 */ 957 if (sctp_chunk_is_data(chunk)) 958 asoc->peer.last_data_from = chunk->transport; 959 else 960 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 961 962 if (chunk->transport) 963 chunk->transport->last_time_heard = jiffies; 964 965 /* Run through the state machine. */ 966 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 967 state, ep, asoc, chunk, GFP_ATOMIC); 968 969 /* Check to see if the association is freed in response to 970 * the incoming chunk. If so, get out of the while loop. 971 */ 972 if (asoc->base.dead) 973 break; 974 975 /* If there is an error on chunk, discard this packet. */ 976 if (error && chunk) 977 chunk->pdiscard = 1; 978 } 979 sctp_association_put(asoc); 980 } 981 982 /* This routine moves an association from its old sk to a new sk. */ 983 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 984 { 985 struct sctp_sock *newsp = sctp_sk(newsk); 986 struct sock *oldsk = assoc->base.sk; 987 988 /* Delete the association from the old endpoint's list of 989 * associations. 990 */ 991 list_del_init(&assoc->asocs); 992 993 /* Decrement the backlog value for a TCP-style socket. */ 994 if (sctp_style(oldsk, TCP)) 995 oldsk->sk_ack_backlog--; 996 997 /* Release references to the old endpoint and the sock. */ 998 sctp_endpoint_put(assoc->ep); 999 sock_put(assoc->base.sk); 1000 1001 /* Get a reference to the new endpoint. */ 1002 assoc->ep = newsp->ep; 1003 sctp_endpoint_hold(assoc->ep); 1004 1005 /* Get a reference to the new sock. */ 1006 assoc->base.sk = newsk; 1007 sock_hold(assoc->base.sk); 1008 1009 /* Add the association to the new endpoint's list of associations. */ 1010 sctp_endpoint_add_asoc(newsp->ep, assoc); 1011 } 1012 1013 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1014 void sctp_assoc_update(struct sctp_association *asoc, 1015 struct sctp_association *new) 1016 { 1017 struct sctp_transport *trans; 1018 struct list_head *pos, *temp; 1019 1020 /* Copy in new parameters of peer. */ 1021 asoc->c = new->c; 1022 asoc->peer.rwnd = new->peer.rwnd; 1023 asoc->peer.sack_needed = new->peer.sack_needed; 1024 asoc->peer.i = new->peer.i; 1025 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 1026 asoc->peer.i.initial_tsn); 1027 1028 /* Remove any peer addresses not present in the new association. */ 1029 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1030 trans = list_entry(pos, struct sctp_transport, transports); 1031 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 1032 sctp_assoc_del_peer(asoc, &trans->ipaddr); 1033 } 1034 1035 /* If the case is A (association restart), use 1036 * initial_tsn as next_tsn. If the case is B, use 1037 * current next_tsn in case data sent to peer 1038 * has been discarded and needs retransmission. 1039 */ 1040 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1041 asoc->next_tsn = new->next_tsn; 1042 asoc->ctsn_ack_point = new->ctsn_ack_point; 1043 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1044 1045 /* Reinitialize SSN for both local streams 1046 * and peer's streams. 1047 */ 1048 sctp_ssnmap_clear(asoc->ssnmap); 1049 1050 } else { 1051 /* Add any peer addresses from the new association. */ 1052 list_for_each(pos, &new->peer.transport_addr_list) { 1053 trans = list_entry(pos, struct sctp_transport, 1054 transports); 1055 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1056 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1057 GFP_ATOMIC, SCTP_ACTIVE); 1058 } 1059 1060 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1061 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1062 if (!asoc->ssnmap) { 1063 /* Move the ssnmap. */ 1064 asoc->ssnmap = new->ssnmap; 1065 new->ssnmap = NULL; 1066 } 1067 } 1068 } 1069 1070 /* Update the retran path for sending a retransmitted packet. 1071 * Round-robin through the active transports, else round-robin 1072 * through the inactive transports as this is the next best thing 1073 * we can try. 1074 */ 1075 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1076 { 1077 struct sctp_transport *t, *next; 1078 struct list_head *head = &asoc->peer.transport_addr_list; 1079 struct list_head *pos; 1080 1081 /* Find the next transport in a round-robin fashion. */ 1082 t = asoc->peer.retran_path; 1083 pos = &t->transports; 1084 next = NULL; 1085 1086 while (1) { 1087 /* Skip the head. */ 1088 if (pos->next == head) 1089 pos = head->next; 1090 else 1091 pos = pos->next; 1092 1093 t = list_entry(pos, struct sctp_transport, transports); 1094 1095 /* Try to find an active transport. */ 1096 1097 if (t->state != SCTP_INACTIVE) { 1098 break; 1099 } else { 1100 /* Keep track of the next transport in case 1101 * we don't find any active transport. 1102 */ 1103 if (!next) 1104 next = t; 1105 } 1106 1107 /* We have exhausted the list, but didn't find any 1108 * other active transports. If so, use the next 1109 * transport. 1110 */ 1111 if (t == asoc->peer.retran_path) { 1112 t = next; 1113 break; 1114 } 1115 } 1116 1117 asoc->peer.retran_path = t; 1118 1119 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1120 " %p addr: ", 1121 " port: %d\n", 1122 asoc, 1123 (&t->ipaddr), 1124 t->ipaddr.v4.sin_port); 1125 } 1126 1127 /* Choose the transport for sending a INIT packet. */ 1128 struct sctp_transport *sctp_assoc_choose_init_transport( 1129 struct sctp_association *asoc) 1130 { 1131 struct sctp_transport *t; 1132 1133 /* Use the retran path. If the last INIT was sent over the 1134 * retran path, update the retran path and use it. 1135 */ 1136 if (!asoc->init_last_sent_to) { 1137 t = asoc->peer.active_path; 1138 } else { 1139 if (asoc->init_last_sent_to == asoc->peer.retran_path) 1140 sctp_assoc_update_retran_path(asoc); 1141 t = asoc->peer.retran_path; 1142 } 1143 1144 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1145 " %p addr: ", 1146 " port: %d\n", 1147 asoc, 1148 (&t->ipaddr), 1149 t->ipaddr.v4.sin_port); 1150 1151 return t; 1152 } 1153 1154 /* Choose the transport for sending a SHUTDOWN packet. */ 1155 struct sctp_transport *sctp_assoc_choose_shutdown_transport( 1156 struct sctp_association *asoc) 1157 { 1158 /* If this is the first time SHUTDOWN is sent, use the active path, 1159 * else use the retran path. If the last SHUTDOWN was sent over the 1160 * retran path, update the retran path and use it. 1161 */ 1162 if (!asoc->shutdown_last_sent_to) 1163 return asoc->peer.active_path; 1164 else { 1165 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) 1166 sctp_assoc_update_retran_path(asoc); 1167 return asoc->peer.retran_path; 1168 } 1169 1170 } 1171 1172 /* Update the association's pmtu and frag_point by going through all the 1173 * transports. This routine is called when a transport's PMTU has changed. 1174 */ 1175 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1176 { 1177 struct sctp_transport *t; 1178 struct list_head *pos; 1179 __u32 pmtu = 0; 1180 1181 if (!asoc) 1182 return; 1183 1184 /* Get the lowest pmtu of all the transports. */ 1185 list_for_each(pos, &asoc->peer.transport_addr_list) { 1186 t = list_entry(pos, struct sctp_transport, transports); 1187 if (!pmtu || (t->pathmtu < pmtu)) 1188 pmtu = t->pathmtu; 1189 } 1190 1191 if (pmtu) { 1192 struct sctp_sock *sp = sctp_sk(asoc->base.sk); 1193 asoc->pathmtu = pmtu; 1194 asoc->frag_point = sctp_frag_point(sp, pmtu); 1195 } 1196 1197 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1198 __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point); 1199 } 1200 1201 /* Should we send a SACK to update our peer? */ 1202 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1203 { 1204 switch (asoc->state) { 1205 case SCTP_STATE_ESTABLISHED: 1206 case SCTP_STATE_SHUTDOWN_PENDING: 1207 case SCTP_STATE_SHUTDOWN_RECEIVED: 1208 case SCTP_STATE_SHUTDOWN_SENT: 1209 if ((asoc->rwnd > asoc->a_rwnd) && 1210 ((asoc->rwnd - asoc->a_rwnd) >= 1211 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu))) 1212 return 1; 1213 break; 1214 default: 1215 break; 1216 } 1217 return 0; 1218 } 1219 1220 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1221 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1222 { 1223 struct sctp_chunk *sack; 1224 struct timer_list *timer; 1225 1226 if (asoc->rwnd_over) { 1227 if (asoc->rwnd_over >= len) { 1228 asoc->rwnd_over -= len; 1229 } else { 1230 asoc->rwnd += (len - asoc->rwnd_over); 1231 asoc->rwnd_over = 0; 1232 } 1233 } else { 1234 asoc->rwnd += len; 1235 } 1236 1237 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1238 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd, 1239 asoc->rwnd_over, asoc->a_rwnd); 1240 1241 /* Send a window update SACK if the rwnd has increased by at least the 1242 * minimum of the association's PMTU and half of the receive buffer. 1243 * The algorithm used is similar to the one described in 1244 * Section 4.2.3.3 of RFC 1122. 1245 */ 1246 if (sctp_peer_needs_update(asoc)) { 1247 asoc->a_rwnd = asoc->rwnd; 1248 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1249 "rwnd: %u a_rwnd: %u\n", __FUNCTION__, 1250 asoc, asoc->rwnd, asoc->a_rwnd); 1251 sack = sctp_make_sack(asoc); 1252 if (!sack) 1253 return; 1254 1255 asoc->peer.sack_needed = 0; 1256 1257 sctp_outq_tail(&asoc->outqueue, sack); 1258 1259 /* Stop the SACK timer. */ 1260 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1261 if (timer_pending(timer) && del_timer(timer)) 1262 sctp_association_put(asoc); 1263 } 1264 } 1265 1266 /* Decrease asoc's rwnd by len. */ 1267 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1268 { 1269 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1270 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1271 if (asoc->rwnd >= len) { 1272 asoc->rwnd -= len; 1273 } else { 1274 asoc->rwnd_over = len - asoc->rwnd; 1275 asoc->rwnd = 0; 1276 } 1277 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", 1278 __FUNCTION__, asoc, len, asoc->rwnd, 1279 asoc->rwnd_over); 1280 } 1281 1282 /* Build the bind address list for the association based on info from the 1283 * local endpoint and the remote peer. 1284 */ 1285 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1286 gfp_t gfp) 1287 { 1288 sctp_scope_t scope; 1289 int flags; 1290 1291 /* Use scoping rules to determine the subset of addresses from 1292 * the endpoint. 1293 */ 1294 scope = sctp_scope(&asoc->peer.active_path->ipaddr); 1295 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1296 if (asoc->peer.ipv4_address) 1297 flags |= SCTP_ADDR4_PEERSUPP; 1298 if (asoc->peer.ipv6_address) 1299 flags |= SCTP_ADDR6_PEERSUPP; 1300 1301 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1302 &asoc->ep->base.bind_addr, 1303 scope, gfp, flags); 1304 } 1305 1306 /* Build the association's bind address list from the cookie. */ 1307 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1308 struct sctp_cookie *cookie, 1309 gfp_t gfp) 1310 { 1311 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1312 int var_size3 = cookie->raw_addr_list_len; 1313 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1314 1315 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1316 asoc->ep->base.bind_addr.port, gfp); 1317 } 1318 1319 /* Lookup laddr in the bind address list of an association. */ 1320 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1321 const union sctp_addr *laddr) 1322 { 1323 int found; 1324 1325 sctp_read_lock(&asoc->base.addr_lock); 1326 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1327 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1328 sctp_sk(asoc->base.sk))) { 1329 found = 1; 1330 goto out; 1331 } 1332 1333 found = 0; 1334 out: 1335 sctp_read_unlock(&asoc->base.addr_lock); 1336 return found; 1337 } 1338